Bioinspired gelatin/bioceramic composites loaded with bone morphogenetic protein-2 (BMP-2) promote osteoporotic bone repair
Echave, M. C.; Erezuma, I.; Golafshan, N.; Castilho, M.; Kadumudi, F. B.; Pimenta-Lopes, C.; Ventura, F.; Pujol, A.; Jimenez, J. J.; Camara, J. A.; Hernáez-Moya, R.; Iturriaga, L.; Sáenz Del Burgo, L.; Iloro, I.; Azkargorta, M.; Elortza, F.; Lakshminarayanan, R.; Al-Tel, T. H.; García-García, P.; Reyes, R.; Delgado, A.; Évora, C.; Pedraz, J. L.; Dolatshahi-Pirouz, A.; Orive, G.
(2022) Materials Science and Engineering C, volume 134, pp. 1 - 14
(Article)
Abstract
There are currently several commercialized products approved by the Food and Drug Administration and the European Medicines Agency based on the use of recombinant human BMP-2 for the treatment of non-unions long fractures and spinal fusion. However, the adverse effects recorded with the use of BMPs suggest the need for
... read more
drug delivery carriers that allow reducing the required doses and improve their cost-effectiveness. Herein, we have developed a new osteoconductive scaffold that reduces the required doses of BMP-2 for promoting bone regeneration in an osteoporotic defect model. The composite is, in brief, a gelatin-based 3D scaffold reinforced with either calcium sulfate or hydroxyapatite as an inorganic osteoconductive biomaterial. To this end, the organic/inorganic composite systems showed high hydration capacity and good in vitro degradability. The incorporation of 7.5% (m/v) ceramic compounds resulted in scaffolds with stiffer Young modulus (179 and 75 kPa for CaSO4_7 and HA_7, respectively) than bare gelatin hydrogels (48 kPa). Studies with human bone-marrow derived mesenchymal stem cells (hBM-MSCs) revealed that the 3D scaffolds promote cell adhesion and proliferation along with osteogenic differentiation capabilities. Specifically, downregulation of stemness (Nanog, Oct4) genes and upregulation of osteogenic markers (ALP, Col1a1, Fmod) by two fold were observed over 10 days under basal culture conditions. Promisingly, the sustained in vitro release of BMP-2 observed from the porous reinforced scaffolds allowed us to address the critical-sized osteoporotic mice calvarial defects with a relatively low growth factor doses (600 ng BMP-2/scaffold) compared to conventional doses at 2–15 micrograms. Overall, this study demonstrates the promising potential of osteoconductive gelatin/calcium bioceramics composites as osteogenic growth factors delivery carriers for bone-regeneration via ultra-low growth factor doses.
show less
Download/Full Text
The full text of this publication is not available.
Keywords: Bone, Bone morphogenetic protein-2, Calcium sulfate, Gelatin, Hydroxyapatite, Osteoporosis, General Materials Science, Condensed Matter Physics, Mechanics of Materials, Mechanical Engineering
ISSN: 0928-4931
Publisher: Elsevier BV
Note: Funding Information: Orive G wish to thank the Spanish Ministry of Economy, Industry and Competitiveness (PID2019-106094RB-I00/AEI/10.13039/501100011033) and technical assistance from the ICTS NANBIOSIS (Drug Formulation Unit, U10) at the University of the Basque Country. We also appreciate the support from the Basque Country Government (Grupos Consolidados, No ref: IT907-16). Echave MC and Erezuma I thanks to the Basque Country Government for the PhD grant (PRE_2020_2_0042). This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 951747. Funding Information: Orive G wish to thank the Spanish Ministry of Economy, Industry and Competitiveness ( PID2019-106094RB-I00/AEI/10.13039/501100011033 ) and technical assistance from the ICTS NANBIOSIS (Drug Formulation Unit, U10) at the University of the Basque Country. We also appreciate the support from the Basque Country Government (Grupos Consolidados, No ref: IT907-16 ). Echave MC and Erezuma I thanks to the Basque Country Government for the PhD grant (PRE_2020_2_0042). This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nº 951747 . Publisher Copyright: © 2021 Elsevier B.V.
(Peer reviewed)