Deep learning for lung cancer detection on screening ct scans: Results of a large-scale public competition and an observer study with 11 radiologists
Jacobs, Colin; Setio, Arnaud A.A.; Scholten, Ernst T.; Gerke, Paul K.; Bhattacharya, Haimasree; Hoesein, Firdaus A.M.; Brink, Monique; Ranschaert, Erik; de Jong, Pim A.; Silva, Mario; Geurts, Bram; Chung, Kaman; Schalekamp, Steven; Meersschaert, Joke; Devaraj, Anand; Pinsky, Paul F.; Lam, Stephen C.; van Ginneken, Bram; Farahani, Keyvan
(2021) Radiology: Artificial Intelligence, volume 3, issue 6, pp. 1 - 7
(Article)
Abstract
Purpose: To determine whether deep learning algorithms developed in a public competition could identify lung cancer on low-dose CT scans with a performance similar to that of radiologists. Materials and Methods: In this retrospective study, a dataset consisting of 300 patient scans was used for model assessment; 150 patient scans
... read more
were from the competition set and 150 were from an independent dataset. Both test datasets contained 50 cancer-positive scans and 100 cancer-negative scans. The reference standard was set by histopathologic examination for cancer-positive scans and imaging follow-up for at least 2 years for cancer-negative scans. The test datasets were applied to the three top-performing algorithms from the Kaggle Data Science Bowl 2017 public competition: grt123, Julian de Wit and Daniel Hammack (JWDH), and Aidence. Model outputs were compared with an observer study of 11 radiologists that assessed the same test datasets. Each scan was scored on a continuous scale by both the deep learning algorithms and the radiologists. Performance was measured using multireader, multicase receiver operating characteristic analysis. Results: The area under the receiver operating characteristic curve (AUC) was 0.877 (95% CI: 0.842, 0.910) for grt123, 0.902 (95% CI: 0.871, 0.932) for JWDH, and 0.900 (95% CI: 0.870, 0.928) for Aidence. The average AUC of the radiologists was 0.917 (95% CI: 0.889, 0.945), which was significantly higher than grt123 ( P = .02); however, no significant difference was found between the radiologists and JWDH ( P = .29) or Aidence ( P = .26). Conclusion: Deep learning algorithms developed in a public competition for lung cancer detection in low-dose CT scans reached performance close to that of radiologists. Keywords: Lung, CT, Thorax, Screening, Oncology Supplemental material is available for this article. © RSNA, 2021.
show less
Download/Full Text
The full text of this publication is not available.
Keywords: Artificial Intelligence, Radiological and Ultrasound Technology, Radiology Nuclear Medicine and imaging, Journal Article
ISSN: 2638-6100
Publisher: Radiological Society of North America Inc.
Note: Funding Information: Supported by a research grant of MeVis Medical Solutions, Bremen, Germany. Funding Information: Disclosures of conflicts of interest: C.J. Royalties from Veolity from MeVis Medical Solutions. A.A.A.S. Patents planned, issued, or pending from Siemens Healthineers; stock or stock options from Siemens Healthineers. E.T.S. No relevant relationships. P.K.G. No relevant relationships. H.B. No relevant relationships. F.A.M.H. No relevant relationships. M.B. Payment for speaker bureau/speaker CT webinars from Canon Medical Systems Europe. E.R. No relevant relationships. P.A.d.J. Departmental grants from Philips Healthcare, Sanifit. M.S. No relevant relationships. B.G. Stock or stock options from CRISPR Technologies, C2.ai, Teladoc, Nanostring technologies, Bionano genomics, Infinity Pharmaceuticals. K.C. No relevant relationships. S.S. No relevant relationships. J.M. No relevant relationships. A.D. Consulting fees from Brainomix. P.F.P. No relevant relationships. S.C.L. Grants from Terry Fox Research Institute, British Columbia Cancer Foundation, and VGH-UBC Hospital Foundation; expert advisor for Canadian Partnership Against Cancer; Chair, Pan-Canadian Lung Screening Network. B.v.G. Grants from the Dutch Science Foundation; royalties or licenses from Thirona, Me-Vis Medical Solutions, Delft Imaging; stock or stock options in Thirona; cofounder, Thirona. K.F. No relevant relationships. Publisher Copyright: © RSNA, 2021.
(Peer reviewed)