mRNA structural dynamics shape Argonaute-target interactions
Ruijtenberg, Suzan; Sonneveld, Stijn; Cui, Tao Ju; Logister, Ive; de Steenwinkel, Dion; Xiao, Yao; MacRae, Ian J; Joo, Chirlmin; Tanenbaum, Marvin E
(2020) Nature structural & molecular biology, volume 27, issue 9, pp. 790 - 801
(Article)
Abstract
Small interfering RNAs (siRNAs) promote RNA degradation in a variety of processes and have important clinical applications. siRNAs direct cleavage of target RNAs by guiding Argonaute2 (AGO2) to its target site. Target site accessibility is critical for AGO2-target interactions, but how target site accessibility is controlled in vivo is poorly
... read more
understood. Here, we use live-cell single-molecule imaging in human cells to determine rate constants of the AGO2 cleavage cycle in vivo. We find that the rate-limiting step in mRNA cleavage frequently involves unmasking of target sites by translating ribosomes. Target site masking is caused by heterogeneous intramolecular RNA-RNA interactions, which can conceal target sites for many minutes in the absence of translation. Our results uncover how dynamic changes in mRNA structure shape AGO2-target recognition, provide estimates of mRNA folding and unfolding rates in vivo, and provide experimental evidence for the role of mRNA structural dynamics in control of mRNA-protein interactions.
show less
Download/Full Text
The full text of this publication is not available.
Keywords: Argonaute Proteins/metabolism, Cell Line, HEK293 Cells, Humans, Nucleic Acid Conformation, RNA Cleavage, RNA Folding, RNA, Messenger/chemistry, Ribosomes/metabolism, Molecular Biology, Structural Biology, Research Support, Non-U.S. Gov't, Journal Article, Research Support, N.I.H., Extramural
ISSN: 1545-9985
Publisher: Nature Publishing Group
Note: Funding Information: We thank M. Depken for helpful discussions with the computational modeling. We thank L. Steller, I. Bally, and R. Banerjee for help with experiments. We would also like to thank the Tanenbaum lab members for helpful discussions and T. Hoek and D. Khuperkar for critical reading of the manuscript. This work was financially supported by the European Research Council (ERC) through an ERC starting grant (ERCSTG 677936-RNAREG) to M.E.T., a VENI grant from the Netherlands Organization for Scientific Research (NWO) (NWO 016.VENI.171.050) to S.R., an ERC consolidator grant (819299) and a VIDI grant from NWO (864.14.002) to C.J., and the National Institute of General Medical Sciences (R35 GM127090) to I.J.M.; M.E.T., S.R., S.S., D.d.S. and I.L. are supported by the Oncode Institute that is partly funded by the Dutch Cancer Society (KWF). Publisher Copyright: © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
(Peer reviewed)