Monitoring of Anthropogenic Sediment Plumes in the Clarion-Clipperton Zone, NE Equatorial Pacific Ocean
Haalboom, Sabine; Schoening, Timm; Urban, Peter; Gazis, Iason Zois; de Stigter, Henko; Gillard, Benjamin; Baeye, Matthias; Hollstein, Martina; Purkiani, Kaveh; Reichart, Gert Jan; Thomsen, Laurenz; Haeckel, Matthias; Vink, Annemiek; Greinert, Jens
(2022) Frontiers in marine science, volume 9
(Article)
Abstract
The abyssal seafloor in the Clarion-Clipperton Zone (CCZ) in the NE Pacific hosts the largest abundance of polymetallic nodules in the deep sea and is being targeted as an area for potential deep-sea mining. During nodule mining, seafloor sediment will be brought into suspension by mining equipment, resulting in the
... read more
formation of sediment plumes, which will affect benthic and pelagic life not naturally adapted to any major sediment transport and deposition events. To improve our understanding of sediment plume dispersion and to support the development of plume dispersion models in this specific deep-sea area, we conducted a small-scale, 12-hour disturbance experiment in the German exploration contract area in the CCZ using a chain dredge. Sediment plume dispersion and deposition was monitored using an array of optical and acoustic turbidity sensors and current meters placed on platforms on the seafloor, and by visual inspection of the seafloor before and after dredge deployment. We found that seafloor imagery could be used to qualitatively visualise the redeposited sediment up to a distance of 100 m from the source, and that sensors recording optical and acoustic backscatter are sensitive and adequate tools to monitor the horizontal and vertical dispersion of the generated sediment plume. Optical backscatter signals could be converted into absolute mass concentration of suspended sediment to provide quantitative data on sediment dispersion. Vertical profiles of acoustic backscatter recorded by current profilers provided qualitative insight into the vertical extent of the sediment plume. Our monitoring setup proved to be very useful for the monitoring of this small-scale experiment and can be seen as an exemplary strategy for monitoring studies of future, upscaled mining trials. We recommend that such larger trials include the use of AUVs for repeated seafloor imaging and water column plume mapping (optical and acoustical), as well as the use of in-situ particle size sensors and/or particle cameras to better constrain the effect of suspended particle aggregation on optical and acoustic backscatter signals.
show less
Download/Full Text
Keywords: Clarion-Clipperton Zone (CCZ), deep-sea mining, dredge experiment, plume monitoring, polymetallic nodules, sediment plume, sensor array, Oceanography, Global and Planetary Change, Aquatic Science, Water Science and Technology, Environmental Science (miscellaneous), Ocean Engineering
ISSN: 2296-7745
Publisher: Frontiers Media S.A.
Note: Funding Information: This research was carried out in the framework of the European collaborative project MiningImpact and received funding through the Joint Programming Initiative Healthy and Productive Seas and Oceans (JPI Oceans): German Ministry of Research grant no. 03F0812A-H; Dutch Research Council grant no. 856.18.002. SH received funding from the Blue Nodules project (EC grant agreement no. 688785). Additional funds for representing the data within the 4D Digital Earth Viewer came through the Helmholtz Project “Digital Earth” grant ZT-0025. Funding Information: We gratefully acknowledge the support of the captain and crew of RV Sonne for their essential assistance during cruise SO268. We thank the GEOMAR ROV KIEL 6000 team for the endless ROV dives, without which we would not have been able to deploy our gear and obtain images of the SLIC boxes. We also thank Yasemin Bodur and the OFOS team, as the images they acquired greatly contributed to tracing back the dredge tracks, as well as mapping the sediment coverage. We thank reviewers Xavier Durrieu De Madron and Jeroen Ingels for their constructive feedback, which helped to improve the manuscript. Publisher Copyright: Copyright © 2022 Haalboom, Schoening, Urban, Gazis, de Stigter, Gillard, Baeye, Hollstein, Purkiani, Reichart, Thomsen, Haeckel, Vink and Greinert.
(Peer reviewed)