The NORMAN Suspect List Exchange (NORMAN-SLE): Facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
Mohammed Taha, Hiba; Aalizadeh, Reza; Alygizakis, Nikiforos; Antignac, Jean-Philippe; Arp, Hans Peter H; Bade, Richard; Baker, Nancy; Belova, Lidia; Bijlsma, Lubertus; Bolton, Evan E; Brack, Werner; Celma, Alberto; Chen, Wen-Ling; Cheng, Tiejun; Chirsir, Parviel; Čirka, Ľuboš; D'Agostino, Lisa A; Djoumbou Feunang, Yannick; Dulio, Valeria; Fischer, Stellan; Gago-Ferrero, Pablo; Galani, Aikaterini; Geueke, Birgit; Głowacka, Natalia; Glüge, Juliane; Groh, Ksenia; Grosse, Sylvia; Haglund, Peter; Hakkinen, Pertti J; Hale, Sarah E; Hernandez, Felix; Janssen, Elisabeth M-L; Jonkers, Tim; Kiefer, Karin; Kirchner, Michal; Koschorreck, Jan; Krauss, Martin; Krier, Jessy; Lamoree, Marja H; Letzel, Marion; Letzel, Thomas; Li, Qingliang; Little, James; Liu, Yanna; Lunderberg, David M; Martin, Jonathan W; McEachran, Andrew D; McLean, John A; Meier, Christiane; Meijer, Jeroen; Menger, Frank; Merino, Carla; Muncke, Jane; Muschket, Matthias; Neumann, Michael; Neveu, Vanessa; Ng, Kelsey; Oberacher, Herbert; O'Brien, Jake; Oswald, Peter; Oswaldova, Martina; Picache, Jaqueline A; Postigo, Cristina; Ramirez, Noelia; Reemtsma, Thorsten; Renaud, Justin; Rostkowski, Pawel; Rüdel, Heinz; Salek, Reza M; Samanipour, Saer; Scheringer, Martin; Schliebner, Ivo; Schulz, Wolfgang; Schulze, Tobias; Sengl, Manfred; Shoemaker, Benjamin A; Sims, Kerry; Singer, Heinz; Singh, Randolph R; Sumarah, Mark; Thiessen, Paul A; Thomas, Kevin V; Torres, Sonia; Trier, Xenia; van Wezel, Annemarie P; Vermeulen, Roel C H; Vlaanderen, Jelle J; von der Ohe, Peter C; Wang, Zhanyun; Williams, Antony J; Willighagen, Egon L; Wishart, David S; Zhang, Jian; Thomaidis, Nikolaos S; Hollender, Juliane; Slobodnik, Jaroslav; Schymanski, Emma L
(2022) Environmental Sciences Europe, volume 34, issue 1
(Article)
Abstract
Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying
... read more
expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
show less
Download/Full Text
Keywords: Chemicals of emerging concern, Cheminformatics, Data exchange, Environmental contaminants, Exposomics, FAIR (Findable Accessible Interoperable Reusable) data, High resolution mass spectrometry, Non-target screening, Open science, Suspect screening, Pollution
ISSN: 2190-4707
Publisher: Springer
Note: Funding Information: The authors wish to acknowledge all contributors to the NORMAN-SLE and to the information behind the NORMAN-SLE who are not otherwise mentioned in this article. All authors thank those who contributed to all the open software and web services used in this study that have underpinned these efforts. We gratefully acknowledge the contributions of those we could no longer contact and/or who made contributions without our explicit knowledge. Specifically, the authors wish to acknowledge Anca Baesu (McGill University, Canada, S74), Barbara Günthardt (formerly Eawag/Agroscope, S29), Jan Oltmanns (Forschungs- und Beratungsinstitut Gefahrstoffe GmbH (FoBiG), Germany) and Rosa Sjerps (Oasen, Netherlands, S5, S27) who were all approached to be authors and preferred to be acknowledged, along with Robert Mistrik (HighChem, Slovakia, S19) who was approached to be authors but did not respond. Further, the authors acknowledge Ton van Leerdam (KWR, Netherlands), Sascha Lege (formerly University of Tübingen, Germany, S1), Graham Peaslee (Notre Dame University, USA, S9), Guangbo Qu and Guibin Jiang (Chinese Academy of Sciences, China, S46), Marie-Léonie Bohlen and Markus Schwarz (FoBIG, Germany, S54), Oliver Licht and Sylvia Escher (Frauenhofer ITEM, Germany, S54), David Fabregat-Safont, Maria Ibáñez and Juan Vincente Sancho (University Jaume I, Spain, S61), Raoul Wolf (Norwegian Geotechnical Institute, Norway, S90), the PFAS Analytical Exchange Steering Group members Alun James, Anna Kärrman, Audun Heggelund, Belén González-Gaya, Duncan Gray, Griet Jacobs, Leendert Vergeynst, Noora Perkola, Robert Carter, Stefan van Leeuwen and Ulrich Borchers (S95 [215]) as well as Ann Richard, Chris Grulke and the DSSTox curation team (US EPA, USA). This information is also given in Additional file 5. Thanks to the internal reviewers for their helpful comments. PJH retired from NIH NLM in 2020 and is now an NIH Special Volunteer in Toxicology and Environmental Health Sciences at NCBI. Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors (VN, ReS) alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organization. The views expressed in this manuscript are solely those of the authors and do not represent the policies of the U.S. Environmental Protection Agency or other agencies. Mention of trade names of commercial products should not be interpreted as an endorsement by the U.S. Environmental Protection Agency. This work has been internally reviewed at the US EPA and has been approved for publication. Funding Information: The NORMAN-SLE project has received funding from the NORMAN Association via its joint proposal of activities. HMT and ELS are supported by the Luxembourg National Research Fund (FNR) for project A18/BM/12341006. ELS, PC, SEH, HPHA, ZW acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101036756, project ZeroPM: Zero pollution of persistent, mobile substances. The work of EEB, TC, QL, BAS, PAT, and JZ was supported by the National Center for Biotechnology Information of the National Library of Medicine (NLM), National Institutes of Health (NIH). JOB is the recipient of an NHMRC Emerging Leadership Fellowship (EL1 2009209). KVT and JOB acknowledge the support of the Australian Research Council (DP190102476). The Queensland Alliance for Environmental Health Sciences, The University of Queensland, gratefully acknowledges the financial support of the Queensland Department of Health. NR is supported by a Miguel Servet contract (CP19/00060) from the Instituto de Salud Carlos III, co-financed by the European Union through Fondo Europeo de Desarrollo Regional (FEDER). MM and TR gratefully acknowledge financial support by the German Ministry for Education and Research (BMBF, Bonn) through the project “Persistente mobile organische Chemikalien in der aquatischen Umwelt (PROTECT)” (FKz: 02WRS1495 A/B/E). LiB acknowledges funding through a Research Foundation Flanders (FWO) fellowship (11G1821N). JAP and JMcL acknowledge financial support from the NIH for CCSCompendium (S50 CCSCOMPEND) via grants NIH NIGMS R01GM092218 and NIH NCI 1R03CA222452-01, as well as the Vanderbilt Chemical Biology Interface training program (5T32GM065086-16), plus use of resources of the Center for Innovative Technology (CIT) at Vanderbilt University. TJ was (partly) supported by the Dutch Research Council (NWO), project number 15747. UFZ (TS, MaK, WB) received funding from SOLUTIONS project (European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 603437). TS, MaK, WB, JPA, RCHV, JJV, JeM and MHL acknowledge HBM4EU (European Union’s Horizon 2020 research and innovation programme under the grant agreement no. 733032). TS acknowledges funding from NFDI4Chem—Chemistry Consortium in the NFDI (supported by the DFG under project number 441958208). TS, MaK, WB and EMLJ acknowledge NaToxAq (European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 722493). S36 and S63 (HPHA, SEH, MN, IS) were funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Project No. (FKZ) 3716 67 416 0, updates to S36 (HPHA, SEH, MN, IS) by the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) Project No. (FKZ) 3719 65 408 0. MiK acknowledges financial support from the EU Cohesion Funds within the project Monitoring and assessment of water body status (No. 310011A366 Phase III). The work related to S60 and S82 was funded by the Swiss Federal Office for the Environment (FOEN), KK and JH acknowledge the input of Kathrin Fenner’s group (Eawag) in compiling transformation products from European pesticides registration dossiers. DSW and YDF were supported by the Canadian Institutes of Health Research and Genome Canada. The work related to S49, S48 and S77 was funded by the MAVA foundation; for S77 also the Valery Foundation (KG, JaM, BG). DML acknowledges National Science Foundation Grant RUI-1306074. YL acknowledges the National Natural Science Foundation of China (Grant No. 22193051 and 21906177), and the Chinese Postdoctoral Science Foundation (Grant No. 2019M650863). WLC acknowledges research project 108C002871 supported by the Environmental Protection Administration, Executive Yuan, R.O.C. Taiwan (Taiwan EPA). JG acknowledges funding from the Swiss Federal Office for the Environment. AJW was funded by the U.S. Environmental Protection Agency. LuB, AC and FH acknowledge the financial support of the Generalitat Valenciana (Research Group of Excellence, Prometeo 2019/040). KN (S89) acknowledges the PhD fellowship through Marie Skłodowska-Curie grant agreement No. 859891 (MSCA-ETN). Exposome-Explorer (S34) was funded by the European Commission projects EXPOsOMICS FP7-KBBE-2012 [308610]; NutriTech FP7-KBBE-2011-5 [289511]; Joint Programming Initiative FOODBALL 2014–17. CP acknowledges grant RYC2020-028901-I funded by MCIN/AEI/1.0.13039/501100011033 and “ESF investing in your future”, and August T Larsson Guest Researcher Programme from the Swedish University of Agricultural Sciences. The work of ML, MaSe, SG, TL and WS creating and filling the STOFF-IDENT database (S2) mostly sponsored by the German Federal Ministry of Education and Research within the RiSKWa program (funding codes 02WRS1273 and 02WRS1354). XT acknowledges The National Food Institute, Technical University of Denmark. MaSch acknowledges funding by the RECETOX research infrastructure (the Czech Ministry of Education, Youth and Sports, LM2018121), the CETOCOEN PLUS project (CZ.02.1.01/0.0/0.0/15_003/0000469), and the CETOCOEN EXCELLENCE Teaming 2 project supported by the Czech ministry of Education, Youth and Sports (No CZ.02.1.01/0.0/0.0/17_043/0009632). Publisher Copyright: © 2022, The Author(s).
(Peer reviewed)