Abstract
The last two decades brought an explosion of computational tools and processes in many scientific domains (e.g., life-, social- and geo-science). Scientific workflows, i.e., computational pipelines, accompanied by workflow management systems, were soon adopted as a de-facto standard among non-computer scientists for orchestrating such computational processes. The goal of this
... read more
dissertation is to provide a framework that would automate the orchestration of such computational pipelines in practice. We refer to such problems as scientific workflow synthesis problems. This dissertation introduces the temporal logic SLTLx, and presents a novel SLTLx-based synthesis approach that overcomes limitations in handling data object dependencies present in existing synthesis approaches. The new approach uses transducers and temporal goals, which keep track of the data objects in the synthesised workflow. The proposed SLTLx-based synthesis includes a bounded and a dynamic variant, which are shown in Chapter 3 to be NP-complete and PSPACE-complete, respectively. Chapter 4 introduces a transformation algorithm that translates the bounded SLTLx-based synthesis problem into propositional logic. The transformation is implemented as part of the APE (Automated Pipeline Explorer) framework, presented in Chapter 5. It relies on highly efficient SAT solving techniques, using an off-the-shelf SAT solver to synthesise a solution for the given propositional encoding. The framework provides an API (application programming interface), a CLI (command line interface), and a web-based GUI (graphical user interface). The development of APE was accompanied by four concrete application scenarios as case studies for automated workflow composition. The studies were conducted in collaboration with domain experts and presented in Chapter 6. Each of the case studies is used to assess and illustrate specific features of the SLTLx-based synthesis approach. (1) A case study on cartographic map generation demonstrates the ability to distinguish data objects as a key feature of the framework. It illustrates the process of annotating a new domain, and presents the iterative workflow synthesis approach, where the user tries to narrow down the desired specification of the problem in a few intuitive steps. (2) A case study on geo-analytical question answering as part of the QuAnGIS project shows the benefits of using data flow dependencies to describe a synthesis problem. (3) A proteomics case study demonstrates the usability of APE as an “off-the-shelf” synthesiser, providing direct integration with existing semantic domain annotations. In addition, a manual evaluation of the synthesised results shows promising results even on large real-life domains, such as the EDAM ontology and the complete bio.tools registry. (4) A geo-event question-answering study demonstrates the usability of APE within a larger question-answering system. This dissertation answers the goals it sets to solve. It provides a formal framework, accompanied by a lightweight library, which can solve real-life scientific workflow synthesis problems. Finally, the development of the library motivated an upcoming collaborative project in the life sciences domain. The aim of the project is to develop a platform which would automatically compose (using APE) and benchmark workflows in computational proteomics.
show less