Biogeochemical functioning of the Baltic Sea
Kuliński, Karol; Rehder, Gregor; Asmala, Eero; Bartosova, Alena; Carstensen, Jacob; Gustafsson, Bo; Hall, Per O.J.; Humborg, Christoph; Jilbert, Tom; Jürgens, Klaus; Meier, H. E.Markus; Müller-Karulis, Bärbel; Naumann, Michael; Olesen, Jørgen E.; Savchuk, Oleg; Schramm, Andreas; Slomp, Caroline P.; Sofiev, Mikhail; Sobek, Anna; Szymczycha, Beata; Undeman, Emma
(2022) Earth System Dynamics, volume 13, issue 1, pp. 633 - 685
(Article)
Abstract
Location, specific topography, and hydrographic setting together with climate change and strong anthropogenic pressure are the main factors shaping the biogeochemical functioning and thus also the ecological status of the Baltic Sea. The recent decades have brought significant changes in the Baltic Sea. First, the rising nutrient loads from land
... read more
in the second half of the 20th century led to eutrophication and spreading of hypoxic and anoxic areas, for which permanent stratification of the water column and limited ventilation of deep-water layers made favourable conditions. Since the 1980s the nutrient loads to the Baltic Sea have been continuously decreasing. This, however, has so far not resulted in significant improvements in oxygen availability in the deep regions, which has revealed a slow response time of the system to the reduction of the land-derived nutrient loads. Responsible for that is the low burial efficiency of phosphorus at anoxic conditions and its remobilization from sediments when conditions change from oxic to anoxic. This results in a stoichiometric excess of phosphorus available for organic-matter production, which promotes the growth of N2-fixing cyanobacteria and in turn supports eutrophication. This assessment reviews the available and published knowledge on the biogeochemical functioning of the Baltic Sea. In its content, the paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, and P) external loads, their transformations in the coastal zone, changes in organic-matter production (eutrophication) and remineralization (oxygen availability), and the role of sediments in burial and turnover of C, N, and P. In addition to that, this paper focuses also on changes in the marine CO2 system, the structure and functioning of the microbial community, and the role of contaminants for biogeochemical processes. This comprehensive assessment allowed also for identifying knowledge gaps and future research needs in the field of marine biogeochemistry in the Baltic Sea.
show less
Download/Full Text
Keywords: General Earth and Planetary Sciences
ISSN: 2190-4979
Publisher: Copernicus GmbH
Note: Funding Information: Acknowledgements. The knowledge assessed and summarized in this study was acquired within the Baltic Earth programme (Earth System Science for the Baltic Sea region; see http://www. baltic.earth, last access: 27 March 2022) with significant support from the BalticAPP, BLUEPRINT, COCOA, INTEGRAL, MIRACLE, and SOILS2SEA projects jointly funded by BONUS (Art 185); the European Union’s Seventh Framework Programme for research, technological development, and demonstration; the Innovation Fund Denmark; the Swedish Environmental Protection Agency (Naturvådsverket); the Polish National Centre for Research and Development; the German Federal Ministry of Education and Research (BMBF); the Russian Foundation for Basic Research (RFBR); the Latvian Ministry of Education and Science; the Research Council of Lithuania; the Estonian Research Council; the Academy of Finland; and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS). Funding Information: Financial support. Karol Kuliński has been supported by the Polish National Science Centre (grants no. 2015/19/B/ST10/02120 and 2019/34/E/ST10/00167) and IO PAN statutory activity II.7. Gregor Rehder has been supported by the Integrated Carbon Observation Project (ICOS, funded by BMBF) and the project SPEC-TROPHABS, funded by the German Bundesamt für Seeschiffahrt und Hydrographie (BSH). Tom Jilbert has been supported by the Academy of Finland, (grant nos. 317684 and 319956). Per O. J. Hall has been supported by the Swedish Research Council (VR, grant no. 2015-03717) and the Swedish Agency for Marine and Water Management. Andreas Schramm has been supported by the Danish National Research Foundation (DNRF104 and DNRF136). Beata Szymczycha has been supported by the Norway Grants 2014– 2021 operated by the National Science Centre under project contract 2019/34/H/ST10/00645 and grant no. 2019/34/E/ST10/00217, funded by the Polish National Science Centre. Publisher Copyright: © 2022 Karol Kuliński et al.
(Peer reviewed)