Abstract
This paper investigates total variation minimization in one spatial dimension for the recovery of gradient-sparse signals from undersampled Gaussian measurements. Recently established bounds for the required sampling rate state that uniform recovery of all $s$-gradient-sparse signals in $\mathbb{R}^n$ is only possible with $m \gtrsim \sqrt{s n} \cdot \text{PolyLog}(n)$ measurements. Such
... read more