Environmental controls on African herbivore responses to landscapes of fear
Davies, Andrew B.; Cromsigt, Joris P. G. M.; Tambling, Craig J.; le Roux, Elizabeth; Vaughn, Nicholas; Druce, Dave J.; Marneweck, David G.; Asner, Gregory P.
(2021) Oikos, volume 130, issue 2, pp. 171 - 186
(Article)
Abstract
Herbivores balance forage acquisition with the need to avoid predation, often leading to tradeoffs between forgoing resources to avoid areas of high predation risk, or tolerating increased risk in exchange for improved forage. The outcome of these decisions is likely to change with varying resource levels, with herbivores altering their
... read more
response to predation risk across heterogeneous landscapes. Such contrasting responses will alter the strength of non-consumptive predation effects, but are poorly understood in multiple-predator/multiple-prey systems. We combined fine-scaled spatial information on two predator and 11 herbivore species with remotely-sensed measurements of forage quantity and vegetation structure to assess variation in herbivore response to predation risk with changing environmental context, herbivore body size, herbivore foraging strategy (browsers versus grazers), predator type (ambush versus coursing hunters) and group size across a South African savanna landscape. Medium-sized herbivore species were more likely to adjust their response to risk with a changing resource landscape: warthog, nyala and wildebeest tolerated increased long-term predator encounter risk in exchange for abundant (warthog and nyala) or preferred (wildebeest) forage, and nyala selected areas with higher visibility only in landscapes where food was abundant. Impala were more likely to be observed in areas of high visibility where wild dog risk was high. In addition, although buffalo did not avoid areas of high lion encounter risk, large buffalo groups were more frequently observed in open areas where lion encounter risk was high, whereas small groups did not alter their space use across varying levels of risk. Our findings suggest that risk effects are not uniform across landscapes for medium-sized herbivores and large buffalo groups, instead varying with environmental context and leading to a dynamic landscape of fear. However, responses among these and other prey species were variable and not consistent, highlighting the complexities inherent to multi-predator/multi-prey systems.
show less
Download/Full Text
The full text of this publication is not available.
Keywords: Global Airborne Observatory, LiDAR, fractional cover, landscape context, non-consumptive effects, predation risk, tradeoffs, viewshed, Ecology, Evolution, Behavior and Systematics
ISSN: 0030-1299
Publisher: Wiley
Note: Funding Information: – This study was supported by the Andrew Mellon Foundation and the Avatar Alliance Foundation. The Global Airborne Observatory has been made possible by grants and donations to GPA from the Avatar Alliance Foundation, Margaret A. Cargill Foundation, David and Lucile Packard Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W. M. Keck Foundation, John D. and Catherine T. MacArthur Foundation, Andrew Mellon Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr., and William R. Hearst III. ER was supported by the Claude Leon Foundation and the Royal Society Newton International Fellowship. Funding Publisher Copyright: © 2020 Nordic Society Oikos. Published by John Wiley & Sons Ltd
(Peer reviewed)
See more statistics about this item