Conserved white rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus
Miyauchi, Shingo; Hage, Hayat; Drula, Elodie; Lesage-Meessen, Laurence; Berrin, Jean-Guy; Navarro, David; Favel, Anne; Chaduli, Delphine; Grisel, Sacha; Haon, Mireille; Piumi, François; Levasseur, Anthony; Lomascolo, Anne; Ahrendt, Steven; Barry, Kerrie; LaButti, Kurt M; Chevret, Didier; Daum, Chris; Mariette, Jérôme; Klopp, Christophe; Cullen, Daniel; de Vries, Ronald P; Gathman, Allen C; Hainaut, Matthieu; Henrissat, Bernard; Hildén, Kristiina S; Kües, Ursula; Lilly, Walt; Lipzen, Anna; Mäkelä, Miia R; Martinez, Angel T; Morel-Rouhier, Mélanie; Morin, Emmanuelle; Pangilinan, Jasmyn; Ram, Arthur F J; Wösten, Han A B; Ruiz-Dueñas, Francisco J; Riley, Robert; Record, Eric; Grigoriev, Igor V; Rosso, Marie-Noëlle
(2020) DNA Research, volume 27, issue 2, pp. 1 - 14
(Article)
Abstract
White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here we combined comparative genomics, transcriptomics and secretome
... read more
proteomics to identify conserved enzymatic signatures at the onset of wood decaying activity within the Basidiomycota genus Pycnoporus. We observed strong conservation in the genome structures and the repertoires of protein coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analyzed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2 producing enzymes with H2O2 consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 LPMO gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood decaying process.
show less
Download/Full Text
Keywords: wood decay, lignocellulose, CAZyme, Lytic Polysaccharide Monooxygenase (LPMO), Class II Peroxidase
ISSN: 1340-2838
Publisher: Oxford University Press
Note: © The Author(s) 2020. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
(Peer reviewed)