Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies
Dejanovic, Borislav; Huntley, Melanie A.; De Mazière, Ann; Meilandt, William J.; Wu, Tiffany; Srinivasan, Karpagam; Jiang, Zhiyu; Gandham, Vineela; Friedman, Brad A.; Ngu, Hai; Foreman, Oded; Carano, Richard A.D.; Chih, Ben; Klumperman, Judith; Bakalarski, Corey; Hanson, Jesse E.; Sheng, Morgan
(2018) Neuron, volume 100, issue 6, pp. 1322 - 1336.e7
(Article)
Abstract
Synapse loss and Tau pathology are hallmarks of Alzheimer's disease (AD) and other tauopathies, but how Tau pathology causes synapse loss is unclear. We used unbiased proteomic analysis of postsynaptic densities (PSDs) in Tau-P301S transgenic mice to identify Tau-dependent alterations in synapses prior to overt neurodegeneration. Multiple proteins and pathways
... read more
were altered in Tau-P301S PSDs, including depletion of a set of GTPase-regulatory proteins that leads to actin cytoskeletal defects and loss of dendritic spines. Furthermore, we found striking accumulation of complement C1q in the PSDs of Tau-P301S mice and AD patients. At synapses, C1q decorated perisynaptic membranes, accumulated in correlation with phospho-Tau, and was associated with augmented microglial engulfment of synapses and decline of synapse density. A C1q-blocking antibody inhibited microglial synapse removal in cultured neurons and in Tau-P301S mice, rescuing synapse density. Thus, inhibiting complement-mediated synapse removal by microglia could be a potential therapeutic target for Tau-associated neurodegeneration.
show less
Download/Full Text
The full text of this publication is not available.
Keywords: Alzheimer's disease, C1q, complement, GTPase, mass spectrometry, neurodegeneration, postsynaptic density, proteomics, synapse, Tau, Embryo, Mammalian, Post-Synaptic Density/metabolism, Humans, Proteome/metabolism, Synapses/drug effects, Female, Cell Differentiation, Tauopathies/diagnostic imaging, Complement C1q/immunology, Animals, Newborn, Prion Proteins/genetics, Mutation/genetics, Mice, Inbred C57BL, Cells, Cultured, Rats, Induced Pluripotent Stem Cells/drug effects, Mice, Transgenic, Antibodies/therapeutic use, tau Proteins/genetics, Animals, Amyloid beta-Protein Precursor/genetics, Mice, Presenilin-2/genetics, General Neuroscience, Journal Article
ISSN: 0896-6273
Publisher: Cell Press
Note: Copyright © 2018 Elsevier Inc. All rights reserved.
(Peer reviewed)