DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport
Hartill, Verity L; van de Hoek, Glenn; Patel, Mitali P; Little, Rosie; Watson, Christopher M; Berry, Ian R; Shoemark, Amelia; Abdelmottaleb, Dina; Parkes, Emma; Bacchelli, Chiara; Szymanska, Katarzyna; Knoers, Nine V; Scambler, Peter J; Ueffing, Marius; Boldt, Karsten; Yates, Robert; Winyard, Paul J; Adler, Beryl; Moya, Eduardo; Hattingh, Louise; Shenoy, Anil; Hogg, Claire; Sheridan, Eamonn; Roepman, Ronald; Norris, Dominic; Mitchison, Hannah M; Giles, Rachel H; Johnson, Colin A
(2018) Human Molecular Genetics, volume 27, issue 3, pp. 529 - 545
(Article)
Abstract
DNAAF1 (LRRC50) is a cytoplasmic protein required for dynein heavy chain assembly and cilia motility, and DNAAF1 mutations cause primary ciliary dyskinesia (PCD; MIM 613193). We describe four families with DNAAF1 mutations and complex congenital heart disease (CHD). In three families, all affected individuals have typical PCD phenotypes. However, an
... read more
additional family demonstrates isolated CHD (heterotaxy) in two affected siblings, but no clinical evidence of PCD. We identified a homozygous DNAAF1 missense mutation, p.Leu191Phe, as causative for heterotaxy in this family. Genetic complementation in dnaaf1-null zebrafish embryos demonstrated the rescue of normal heart looping with wild-type human DNAAF1, but not the p.Leu191Phe variant, supporting the conserved pathogenicity of this DNAAF1 missense mutation. This observation points to a phenotypic continuum between CHD and PCD, providing new insights into the pathogenesis of isolated CHD. In further investigations of the function of DNAAF1 in dynein arm assembly, we identified interactions with members of a putative dynein arm assembly complex. These include the ciliary intraflagellar transport protein IFT88 and the AAA+ (ATPases Associated with various cellular Activities) family proteins RUVBL1 (Pontin) and RUVBL2 (Reptin). Co-localization studies support these findings, with the loss of RUVBL1 perturbing the co-localization of DNAAF1 with IFT88. We show that RUVBL1 orthologues have an asymmetric left-sided distribution at both the mouse embryonic node and the Kupffer's vesicle in zebrafish embryos, with the latter asymmetry dependent on DNAAF1. These results suggest that DNAAF1-RUVBL1 biochemical and genetic interactions have a novel functional role in symmetry breaking and cardiac development.
show less
Download/Full Text
Keywords: Molecular Biology, Genetics, Genetics(clinical)
ISSN: 0964-6906
Publisher: Oxford University Press
Note: Publisher Copyright: © The Author(s) 2017. Published by Oxford University Press. All rights reserved.
(Peer reviewed)