Occupational exposure to diesel engine exhaust and alterations in lymphocyte subsets
Lan, Qing; Vermeulen, Roel; Dai, Yufei; Ren, Dianzhi; Hu, Wei; Duan, Huawei; Niu, Yong; Xu, Jun; Fu, Wei; Meliefste, Kees; Zhou, Baosen; Yang, Jufang; Ye, Meng; Jia, Xiaowei; Meng, Tao; Bin, Ping; Kim, Christopher; Bassig, Bryan A; Hosgood, H Dean; Silverman, Debra; Zheng, Yuxin; Rothman, Nathaniel
(2015) Occupational and Environmental Medicine, volume 72, issue 5, pp. 354 - 9
(Article)
Abstract
BACKGROUND: The International Agency for Research on Cancer recently classified diesel engine exhaust (DEE) as a Group I carcinogen based largely on its association with lung cancer. However, the exposure-response relationship is still a subject of debate and the underlying mechanism by which DEE causes lung cancer in humans is
... read more
not well understood. METHODS: We conducted a cross-sectional molecular epidemiology study in a diesel engine truck testing facility of 54 workers exposed to a wide range of DEE (ie, elemental carbon air levels, median range: 49.7, 6.1-107.7 µg/m(3)) and 55 unexposed comparable controls. RESULTS: The total lymphocyte count (p=0.00044) and three of the four major lymphocyte subsets (ie, CD4+ T cells (p=0.00019), CD8+ T cells (p=0.0058) and B cells (p=0.017)) were higher in exposed versus control workers and findings were highly consistent when stratified by smoking status. In addition, there was evidence of an exposure-response relationship between elemental carbon and these end points (ptrends<0.05), and CD4+ T cell levels were significantly higher in the lowest tertile of DEE exposed workers compared to controls (p=0.012). CONCLUSIONS: Our results suggest that DEE exposure is associated with higher levels of cells that play a key role in the inflammatory process, which is increasingly being recognised as contributing to the aetiology of lung cancer. IMPACT: This study provides new insights into the underlying mechanism of DEE carcinogenicity.
show less
Download/Full Text
Keywords: Adult, Air Pollutants, Occupational, B-Lymphocytes, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Carbon, Carcinogens, Cross-Sectional Studies, Humans, Inflammation, Lung Neoplasms, Lymphocyte Subsets, Middle Aged, Motor Vehicles, Occupational Exposure, Risk Assessment, T-Lymphocytes, Vehicle Emissions, Taverne
ISSN: 1351-0711
Publisher: BMJ Publishing Group Ltd
(Peer reviewed)