Abstract
About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion
... read more
power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.
show less