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1 Introduction

Everyone of us naturally uses geographical concepts in her or his daily conversation,
for example: ‘I come from a little town in the middle of Austria. Now I live in the
Netherlands, in an area called the Randstad. I also work there; my office is in the
eastern part of Utrecht. My latest hobby is Aikido, I train either in a dojo in my
neighborhood or in Amsterdam, which is north of Utrecht.’

Some of the geographical regions mentioned above have official, crisp bound-
aries, like Austria, the Netherlands, Utrecht (as a municipality), and Amsterdam.
Usually, people can agree on these, although most of them would not be able to
trace them exactly. Other geographical regions are used more loosely: they have
no real boundaries that can be traced in any way, but people share a common idea
about their location and extent. When people are asked to point out the middle of
Austria, the Randstad, or the area west of Utrecht on a map, they would probably
give similar boundaries to these regions, provided they are familiar with the concept
of the Randstad, for example. Yet other regions have an extent that depends on
each person individually. For example, my idea of the neighborhood I live in may be
completely different from somebody else’s who lives in the same apartment building.
Our different personal experiences and routines result in different boundaries of our
neighborhood.

Geographical regions with imprecise boundaries have received considerable at-
tention from researchers in linguistics as well as from researchers in geographic in-
formation science. Questions like ‘how many trees amount to a forest’, ‘where is
the border between the mountain and the valley’, or ‘what is a hill’, stand at one
end, algebraic frameworks to determine spatial relationships between imprecise re-
gions mark the other end of the research spectrum. Giving crisp boundaries for
imprecise regions is an important issue in geographic information systems (Gis) and
geographic information retrieval (Gir). For example, a typical question to be an-
swered by a Gis is ‘what is the average income of highly educated people living in
the Randstad?’ Levels of education and income can be derived from census data;
however, without crisp boundaries for the Randstad, this question cannot be an-
swered. Another typical query involving imprecise regions is for example to search
the Web for ‘3-star hotels in the north of Amsterdam’. Again, 3-star hotels are easy
to determine, whereas not many websites will state that the hotel lies in the north
of Amsterdam. These examples show that there is a need to derive reasonable crisp
boundaries for imprecise regions.
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This thesis introduces a number of geometric methods to derive crisp boundaries
for imprecise geographical regions. These crisp boundaries should be ‘reasonable’
boundaries for regions that do not have any, like the middle of Austria, south-
ern England or the Dutch Randstad. As an example of where the implementation
of crisp boundaries is not possible, we name coastlines with a beach. Defining
a crisp boundary between land and sea does not make sense, due to the varying
tidal influence. We present the first geometric, algorithmic approach to the prob-
lem of delineating imprecise geographical regions. Furthermore, we present an—also
geometric—approach to the ranking of documents with textual and spatial score,
which can be used in geographic information retrieval. Advantages and drawbacks
of this approach will be discussed in the corresponding chapters.

This chapter is structured as follows. We will give a brief introduction to geo-
graphic information systems and computational geometry in Section 1.1, together
with an overview of applications of computational geometry in Gis. Section 1.2 in-
troduces the notion of inaccuracy, vagueness, and imprecision of geographical data,
and summarizes related research concerning uncertainty in Gis and computational
geometry. Section 1.3 gives an overview of geographic information retrieval on the
Web and presents the Spirit Web search engine. Most of the research presented in
this thesis has been carried out within the Spirit project [94, 95]. We shall conclude
this chapter with an overview of the contents and results of this thesis.

1.1 Geographic Information Systems and Compu-

tational Geometry

Geographic information systems (Gis) and computational geometry both are rela-
tively young fields of science, which emerged in the mid sixties and seventies of the
last century. This section gives an introduction to geographic information systems
(Gis) and computational geometry. In Subsection 1.1.1 we will list the tasks per-
formed by a Gis for which techniques from computational geometry are successfully
applied.

A geographic information system (Gis) “can be seen as a system of hardware,
software and procedures designed to support the capture, management, analysis,
modeling and display of spatially referenced data for solving complex planning and
management problems” [78], or in short, it is “a set of computer based systems for
managing geographic data and using these data to solve spatial problems” [104].

Geographic information systems as they are known today emerged from a num-
ber of different sources dating from the nineteen-sixties. The Canadian geographic
information system (Cgis) addressed the need for land and resource information for
addressing transportation problems and computer mapping. The Oxford System for
high quality digital cartography was a Gis focusing on automated map generation.
The need to automate the access to and analysis of census data was another driving
force in the development of geographic information systems. Nowadays, all these
different sources are integrated into one system, the main tasks of which are the
following:
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• data acquisition and input

• data storage

• data manipulation

• data analysis

• data visualization

We will only briefly introduce these points here. A deeper discussion will follow in
Subsection 1.1.1. There are several ways of data acquisition and input. New data can
be collected directly in the field by an individual, or by using remote sensing meth-
ods. Existing paper maps can be digitized, or aerial pictures can be interpreted to
derive for example vegetation data. This is referred to as photogrammetry. Further-
more, also data collected in the last census is Gis data. Data storage is an important
task of a Gis. Modern data acquisition techniques provide a huge amount of data
which needs to be stored in well-accessible structures. There is a main distinction
between vector and raster data, and data manipulation is for example concerned
with the conversion between these two types of data. Data analysis is often consid-
ered the most important task of a Gis, and it determines properties that are not
represented explicitly in the data. Finally, the creation of meaningful output in the
form of maps and diagrams is the task of data visualization.

Nowadays, Gis are used in various ways and have different target groups. Geo-
graphic information systems are currently used by governments, the military, busi-
ness enterprises, researchers in geography, or any individuals. The uses include
telecommunications, transportation planning and navigation, urban planning in-
cluding market research and facility management, emergency management, land
administration, environmental monitoring and assessment, health care, and many
more. The different tasks performed by a Gis are discussed in more detail in the
next section.

Introductory books to Gis include [27, 106]. An introduction to the algorithmic
techniques applied in a Gis can be found in [165, 174].

Computational geometry is a discipline of computer science that has developed
in the early nineteen-seventies as a subarea of algorithms research. It was motivated
by application areas such as computer graphics and vision, where algorithms for spa-
tial data were needed, and reached its status as an independent field of research in
the mid eighties. Computational geometry aims to develop efficient algorithms and
data structures for solving geometric problems. Since the emphasis lies on discrete
mathematical problems involving mainly basic objects like points, line segments,
polygons, polyhedra, etc., it is possible to focus on the combinatorial properties of a
problem rather than dealing with numerical issues. Another goal of computational
geometry is to provide basic software tools for application areas. The development
of the libraries Cgal and Leda [33, 101] is a step in this direction.

Typical questions solved by computational geometry are for example:

• What is the minimum area convex polygon enclosing a given set of points?

• Which pairs of a given set of line segments intersect?
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• Are there more than two points of a given set that lie on a line?

• Does a given point lie inside a given polygon?

• Given a point, which is the nearest of a given set of locations?

In the design of algorithms, efficiency is measured in terms of time and memory use.
The time and storage requirement for an algorithm depends on the computer and
platform it is running on, as well as on the implementation. Therefore, the time and
storage requirements for an algorithm are usually described asymptotically using O-
(‘big-oh’) notation. If an algorithm runs in O(f(n)) time on an input of n objects,
this means that two constants, N and c, exist such that for any input size n > N ,
the running time of the algorithm is at most c · f(n) elementary operations (such as
additions, comparisons, assignments, etc.). Lower bounds Ω(f(n)) and asymptoti-
cally tight bounds Θ(f(n)) are similarly defined, see [42] for details.

The first book devoted to computational geometry was written by Preparata
and Shamos [137]. Nowadays, there are a number of textbooks on computational
geometry, some have a general, algorithmic focus [46, 124, 127], others deal with the
discrete-combinatorial aspects [114], and yet others are handbooks with numerous
references [79, 145].

Computational geometry has numerous applications in various fields, such as en-
gineering, visualization, robotics, motion planning, virtual environments, computer
graphics and computer vision, computer aided design and manufacturing, operations
research, pattern recognition, crystallography, computational biology, combinatorial
optimization, cartography, integrated circuit design and many more. Computational
geometry is also widely used in geographic information systems. In the next sec-
tion, we will describe the computational tasks performed by a Gis where geometric
algorithms are used.

1.1.1 Computational Geometry in Gis

In [164], a geographical information system is described as a system to “facilitate
the input, storage, manipulation, analysis, and visualization of geographic data”.
Computational geometry has applications in almost all tasks performed by a Gis,
except for data acquisition. In the following paragraphs, we will list a number of
these applications for each task of a Gis. As we are not attempting to be complete,
we would like to suggest the surveys of de Floriani et al. [47] and van Kreveld [164]
for further reading.

Data storage In a Gis, there are two types of geographical data, spatial data
(objects) and non-spatial data (attributes). Spatial data is either two dimensional
object data, representing, for example, the spatial location of buildings, railroads,
and forests, or field data, where every point is assigned a value, such as height,
annual precipitation, or average temperature. This data can be represented by two
different models as shown in Figure 1.1. In the raster model, the chosen area is
divided into equally-sized cells, each bearing an attribute value, e.g., for land cover
or land usage. The raster model is usually called regular square grid (Rsg) and
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Figure 1.1: The same region in vector and raster representation.

each cell contains one value for each specified field variable. In the vector model,
which is more commonly used in computational geometry, object data is represented
by points, lines or polygons. As an example of a vector data representation, we
name the well known doubly connected edge list (Dcel) introduced by Muller and
Preparata [122].

The corresponding vector model for terrain data is the triangulated irregular
network (Tin), composed of a number of scattered points with given height that
are triangulated. Usually, the Delaunay triangulation is used to generate a Tin.
However, it is possible that the Delaunay triangulation leads to undesired artifacts,
like nonexistent dams in a valley for example. In this case, when there are known
edges like valleys or ridge lines that should be preserved by the Tin, a constrained
Delaunay triangulation is preferred [48].

The R-tree [84], and a number of other hierarchical data structures based on it,
provides efficient access to geographical data and is probably the most widely used
data structure in Gis. For terrain data, different data structures are used. We will
only mention the quadtree [36, 156].

Data manipulation Both the raster and vector representations of spatial data
have different advantages and disadvantages, [105]. The raster model has the simplic-
ity of the structure and the operations on it as well as the direct access to information
concerning a given point as an advantage. A disadvantage lies in providing only an
approximate geometry that is highly dependent on the resolution of the grid. In the
vector model, spatial information can be represented directly through its geometry,
which leads to a high level of precision. The disadvantage of the vector model is
that efficient data access and manipulation requires complicated search structures
and techniques. Converting data from the raster to the vector model and vice versa
is a data manipulation task in a Gis. See [47] for an overview. Data compression
for dealing with the huge amounts of acquired data is also an important issue.

Data analysis Data analysis is often considered the most important task of a Gis.
Here, as well, geometric algorithms are used to derive efficient solutions. Here is a
brief survey of the types of problems and challenges that may arise.
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Geographical data of the same region is usually organized in different layers,
where each layer contains data with only one theme, such as road networks, land
cover, hydrography, factory premises, elevation contours, etc. By overlaying these
thematic layers, it is possible to find regions with the combined properties of dif-
ferent layers, e.g., land cover by elevation. Map overlays of two thematic layers
are often based on red-blue line segment intersection algorithms and can be solved
efficiently [35, 64, 132].

An important part of data analysis is the analysis of the neighborhood of a
geographical entity. The computation of buffer zones around geographical features
is equivalent to computing the Minkowski sum of the feature and a disk with given
radius, centered at the origin [2, 96]. Map overlay and buffer computation play an
important role in urban planning. For example, when planning a new railway line
that must avoid urban areas while not running too close to the river, one would first
compute appropriate buffer zones around the houses and the river. During the second
stage, these two new layers would be overlaid, and on the resulting map, the potential
area of the rail track can be determined. A related problem with applications in path
planning is the weighted region problem. It consists of finding a cost-optimal path
inside a region, where non-negative costs are assigned to each part of the region. The
costs are the expenses of traveling one unit along a path inside this region, and they
may be based on soil conditions, vegetation, etc. Obstacles that need to be avoided,
such as nature preserves, can be modeled by assigning infinite costs. Optimal path
planning inside weighted regions has applications in planning highways, railways,
and pipelines, and has been studied in several papers [75, 113, 119]. Computing
visibility is a well-studied area in Gis terrain analysis (see [126] for a survey) as well
as in computational geometry [14, 128]. Visibility computations have applications
such as finding the optimum placement of radio or telephone antennae such that
there is reception throughout the whole terrain [19]. Visibility computations can
also be used for planning scenic paths, where a number of vantage points are visible
from the points on the path. The opposite of a scenic path is called a hidden or
smuggler’s path, which is not visible from any predefined viewpoint [126].

Computing the drainage network of a terrain provides information about water
flow and resources, and areas that are likely to be flooded or have high risk of
erosion. It is generally assumed that water flows downwards in the direction of
steepest decent. It accumulates in streams and rivers that together form the drainage
network of the terrain. A drainage network is a directed graph, where the arcs are
directed towards the pits. Computing it is related to extracting point and linear
features of the terrain [178]. Also the identification of watersheds, the area from
which water drains into the same stream, provides information on the terrain [103].
Many other examples of geographical data analysis exist, see for example [49, 130].

Data visualization Geographical data is most often visualized on a map. A map
is a two-dimensional representation of three-dimensional space, and for a long time
maps were drawn by hand. In a Gis, maps can be precomputed and stored, but
most often they are created on demand. Normally, the user chooses the data set
and manner of visualization; therefore the output has to be automatically created
online. In addition, geographic information systems allow the viewer to zoom in and
out of a region, or to move to an adjacent region. Therefore, efficiency is crucial to
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Figure 1.2: Different visualizations of the outcome of the 2004 US presidential elec-
tions, taken from [74]. Darker regions depict democrat majority. Left: A choropleth
map. Right: A cartogram.

these kinds of applications.

When geographical data is processed, the scale of the output becomes an issue.
The larger the scale of the map, the more detail can be shown. Decreasing scale
makes a selection of the visualized features necessary. This is called map gener-
alization [123, 172]. It includes problems of displacement, selection, aggregation,
smoothing, simplification, and more.

Another well studied area in automated cartography as well as the algorithms
field is label placement [38, 54, 159]. There are labels for points (e.g., cities), line
objects (e.g., rivers), and polygonal objects (e.g., countries). Label placement is
often considered to be an optimization problem with the following constraints: the
labels must be legible and easy to relate to a spatial entity, they must not overlap
each other, nor must they cover relevant features of the map. The placing of dia-
grams on maps, to show employment rates by age for example, is related to label
placement [168].

Special purpose maps concentrate on showing one particular theme only and
may use different ways of visualization, see Figure 1.2. Choropleth maps use a
color scheme to represent a specified geographical variable per administrative region,
such as birth rates per country. Other special purpose maps are for example dot
maps (e.g., one dot representing 10.000 inhabitants), schematic maps (e.g., tram
networks), flow maps (e.g., migration between countries), and cartograms [50, 55].
A cartogram shows values for regions by adjusting their area, such that it corresponds
to the represented value. Naturally, a cartogram distorts geographic space. However,
the regions should remain recognizable, so they should keep their shape, adjacency,
and relative position as much as possible. Population cartograms are most common.

To give a terrain image a realistic appearance, shaded relief maps are used. They
combine height and slope information of the terrain with a supposed placement of
the sun in the northwest of the sky to produce shadows, providing clues to the terrain
structure, and the illusion of depth.
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1.2 Inaccuracy, Vagueness, and Imprecision

Geographical data as it is used in a Gis can never be absolutely correct. The reasons
for this are manifold: Geographical data in a Gis is a generalized and incomplete
representation of the real world. During the data acquisition and input phase, errors
are not only due to the error-prone methods used, but are often inherent in the data
itself. For example, remote sensing methods may be inaccurate, the decision as to
whether a small number of free-standing trees should be incorporated as a forest in
a Gis may be difficult, and the classification of an elevation as hill or mountain may
depend on its surroundings.

Inaccuracy, vagueness, and imprecision of geographic objects has been a major
field of research in the Gis community over the past years [26, 134, 180]. Note
that these terms, and others like error, fuzziness, indeterminacy, uncertainty, relia-
bility, and ambiguity, are often used interchangeably. There are different classes of
fuzziness [66, 120]. In the following, we shall use a classification similar to the one
in [120], and label the three classes inaccuracy, vagueness, and imprecision.

Fuzzy object description, which we will call inaccuracy, refers only to posi-
tional imprecision in the data points, which is due to measurement and computation
techniques that are subject to error. For example, the remote sensing device may
have an error margin, the (automated) interpretation of satellite images may include
faults near boundaries, or the (manual) digitizing of analogue maps may be impre-
cise and lead to distortions of features. See for example [98, 180] for an overview
of techniques for data acquisition and possible sources of inaccuracy. Besides these
errors that occur during data acquisition and input, other sources of data inaccuracy
are data generalization, or the conversion from one data model to another [104, 106].
Note that error propagation also plays a role [32, 90]. A bound on the measurement
error of the data acquisition stage is usually given and referred to as data accuracy.
It can be accounted for by either statistical methods, or by modeling the data points
as disks with a fixed radius. However, the inaccuracy arising from the other sources
remains difficult to formalize.

Fuzzy object definition, or vagueness, implies that no clear, generally accepted
criteria can be formulated to determine whether an object belongs to a certain class.
For example, how many trees comprise a forest? How large must a pond be to be
called a lake? When does a stream become large enough to be called a river? The
main question is to determine whether a certain object occurs at all in a specified
region. It may also be difficult to determine geographical prepositions (across, over)
and relationships (inside, next to). These linguistic terms may have no direct trans-
lation to other languages, or may even have a different meaning altogether [63, 160].
Not only language, but also perception, behavior and cognition play an important
role in defining certain geographical objects, which are therefore inherently vague.
Research on spatial reasoning aims to give crisp definitions of geographical objects,
(see for example [20, 91, 108]). However, it seems to be difficult, if not impossible,
to find generally accepted definitions for all geographical entities.
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Fuzzy object geometry, which we will refer to as imprecision, deals with the
spatial extent of a geographical object, such as a mountain range or a forest. In this
context, we will assume that the classification of a certain area as forest is known
and indisputable as such. In case of a clear break in land cover, (e.g., a lake, or in
agriculture: crops vs. corn), the determination of a crisp boundary is relatively easy.
However, most often there is a smooth transition between two types of land cover,
for example between a forest and scrubland, which makes the delineation of the for-
est more difficult. In this context, determining a crisp boundary of a region that is
imprecisely defined has received considerable attention over the past years [26, 102],
and it is also the main topic of this thesis. Imprecision in boundaries is obviously
intertwined with inaccuracy and vagueness, as the definition of an object as well as
the position of the data points contained in the object are crucial for the determi-
nation of a crisp boundary.

To contrast and clarify these classifications, we will provide the following exam-
ple: Assume we are given an area with a number of trees. Inaccuracy means that
our knowledge of where each tree is precisely situated may be wrong. Vagueness
implies that we do not know whether the area should be called a forest or not. Fi-
nally, provided that we have agreed upon calling our aggregation of trees a forest,
imprecision means that we cannot be sure of its boundaries distinguishing it from
its surroundings.

In this thesis, we will assume that the data points are accurate, and we will
introduce several algorithmic methods to determine crisp boundaries for various
types of imprecise regions. As stated above, crisp boundaries are necessary in Gis for
data analysis purposes that use membership relations like inside or outside.

There are different approaches for dealing with the imprecision of a region. One
method, for example, is to use bands around the region [138]. The boundary of the
region may lie anywhere inside this band, which can be seen as a buffer zone with
a fixed width around a point, a linear feature or a region. A different approach is
to use bands with variable widths around a region. An example of this approach
is given by Cohn and Gotts in [41]. They show the ‘egg-yolk’ representation of an
imprecise region, where the region is defined by two concentric subregions, the in-
ner ‘yolk’ and the outer ‘white’, both indicating different degrees of membership.
A similar approach to delineate imprecise regions is the Realm/Rose approach by
Schneider [149]. Alani et al. [5] use a gazetteer to extract locations that are classi-
fied as inside or outside of a certain region. A Voronoi diagram of all locations is
computed, and the edges of the Voronoi diagram that have adjacent cells with differ-
ently classified locations compose the boundary of the region. Purves et al. [40, 140]
use the Web as a way to find locations inside an imprecise region. By applying a
weight based on the document density, the extent of the imprecise region is defined
as a density surface. A similar approach using the same methods to find locations
is presented in Chapter 3.

Currently, Gis research focuses on delineating imprecise regions by applying fuzzy
set theory [68, 102, 179]. Instead of assigning only the two boolean values 0 and 1
for membership, fuzzy set theory allows the assignment of membership values that
cover the whole interval [0, 1]. The lower the assigned value, the less the described
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object equals the definition of the set. Often, the classifications by fuzzy sets overlap;
for example a patch of land at the edge of a forest may be classified as 40% forest
and 60% scrubland. This makes it possible to define boundaries that enclose regions
which have been classified as at least 50% forest, for example.

In the context of fuzzy geographical entities, computing the area, perimeter, or
shape has recently received attention [67, 68], as well as the influence of scale on the
representation of a fuzzy object [37, 65].

Despite the fact that imprecise regions have no crisp boundaries, it is still possible
to determine spatial relations between them. For example, it is clear that the Dutch
Randstad is not situated in the north of the Netherlands, and that the Vienna basin
is northeast of the center of Austria. A classification into eight possible topological
relations of two simple regions is: ‘disjoint, contains, inside, equals, meets, covers,
covered by, and overlaps’ [60]. These relations can also be represented by a 3 by 3
matrix, where the rows and colums represent the features interior, boundary, and
exterior of each region. These topological relations can be extended to imprecise
regions that have an inner and an outer boundary [39], such as the egg-yolk model
described above [41], or to imprecise regions modeled as fuzzy sets [81, 120].

For the modeling of cardinal directional relationships such as north of, southeast
of, etc., we shall name the cone-based directional system [70]. There, one refer-
ence region lies at the center of a coordinate system that divides space into four
(or more) cones, representing the North, East, West, and South, like on a compass
rose [71]. By partitioning space in this manner, we can easily derive the cardinal di-
rection of the reference region to any other region. Naturally, when the regions have
shapes that are not (almost) convex, other systems will have to be applied [135, 147].

In computational geometry, the issue of inaccuracy has been dealt with either
as computational or as data imprecision. The inaccuracy arising from error prop-
agation, as well as from using number types with a limited number of decimals
(e.g., float, double), is referred to as computational imprecision. See [177] for a
survey. Data inaccuracy implies that the exact coordinates of the data points are
not known. In this case, the data points are approximated by circles, squares,
or convex polygons. Data inaccuracy gives rise to a number of questions, for ex-
ample: how many convex hulls of a point set are possible [125, 129], or to what
extent may the points be perturbed in order for the topology of the geometric
structure (e.g., the Delaunay triangulation) to remain the same [1, 16, 83]. More
related work on dealing with data inaccuracy with varying motivation is for exam-
ple [22, 29, 45, 56, 80, 97, 112, 152].

In this thesis, we will present definitions based on geometric specifications for
vague regions like the North, East, West, and South of a country. Furthermore, we
will assume that the data points given are accurate, and therefore we will deal only
with imprecision, i.e., fuzzy object geometries.
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1.3 Geographic Information Retrieval

Traditional information retrieval is concerned with searching for whole documents or
parts of documents based on their content, or searching within databases, whether
stand-alone, or hypertext-networked such as the Internet, for text, sound, or images.
Geographic information retrieval (Gir) includes all these areas with the restriction
to spatially and geographically oriented indexing and retrieval that provides access
to georeferenced sources of information. In the following, we will focus on Gir for
documents on the Internet, although all the explanations apply to other fields of
Gir as well.

Geospatial search engines allow the specification of both geographical location
and textual terms in the query. The retrieved documents should be relevant with
respect to the textual terms and the distance to the geographical location. The
most common geographical queries are point-in-polygon (e.g., in which country lies
Utrecht), region queries (e.g., Aikido dojos in Amsterdam), distance and buffer zone
queries (e.g., swimming pools maximal 10 km outside Utrecht), and path queries
(e.g., shortest route from Utrecht to Amsterdam). To retrieve a document that is
relevant to a specific geographical location, it has to be georeferenced, i.e., its geo-
graphical context needs to be made accessible to a search engine.

Geotagging (also refered to as georeferencing or geocoding) web documents au-
tomatically has been a research topic for several years, see e.g., [6, 110, 171]. For
any web page, it is possible to process the admin-c section of the whois entry or the
IP-address of the computer hosting the page. However, often the administrator of
a web page is not the same person as its owner, and nowadays it is possible to host
web pages far from the places for which they are relevant, so these approaches lead
to unsatisfactory results of the search. Extracting Zip-codes from an address or area
codes of phone numbers given on a web page and using business directories is more
promising. It can also be useful to consider the link structure of the page to deter-
mine whether a page is of local or global interest (called the locality of the page),
for example, compare a page of a local Aikido dojo to the global Aikido-Faq [93].

It is also possible to process the metadata of a web page and to retrieve the
geographic scope of the document from it. However, as current search engines do
not use the meta tags of a html document for its ranking, there is only sparse
geographical metadata available, and as long as this data is not employed, users will
see no reason to include any. Furthermore, it is an unresolved issue whether the user
can be trusted to provide accurate data in a meta tag rather than giving fraudulent
information to reach a higher position in the ranking, and therefore increase the
number of hits on her or his site.

Another way to automatically georeference a document is to extract the names
of geographical entities (cities, regions, countries) from the document, and assign
a spatial footprint to each of them using a gazetteer. A spatial footprint consists
of the location, i.e., the coordinates, and the spatial extent of a named place. It
is important to find the geographical location the document focuses on, and to
eliminate non-relevant footprints, to achieve a better performance of the search.

When a query is sent to a Gir, the georeferenced documents are assigned a
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textual and a spatial score, which represent the relevance of the document with
respect to the given query. Assigning a textual score to a document is a standard
procedure in information retrieval. First, the document collection is preprocessed to
generate a term index from the full text. One of numerous methods to assign a score
to a text document is the vector space model [15]. It consists of a high-dimensional
space, one dimension for each term in the index. The query and all documents are
represented by high-dimensional vectors with a non-zero entry for every term that
appears in the query. The textual score of a document with respect to the query is
the angular distance between their vectors. More details on text and information
retrieval can be found in [15, 115].

Defining appropriate spatial scores for a document is a problem that differs from
georeferencing. An approach with spatial indexing similar to the textual scoring de-
scribed above is presented in [111]. Different ways of building a spatio-textual index
have been proposed in [163]. Spatial scores are mainly computed with respect to
the (Euclidean) distance of a location to the query, where increasing distance leads
to a decreasing score [146]. Another method is to compute spatial relationships be-
tween regions, such as overlap, intersection, equality, containment, and directional.
The spatial score for overlap then depends on the amount of overlap between two
regions [100].

Once relevant documents have been identified, they have to be ranked according
to their textual and spatial score. The balance between these two aspects is crucial
and depends on the user’s preference and the locality of the query. Locality is a
measure of the sphere of influence of an entity in geographical space. For exam-
ple, people may look for a Chinese takeout in their immediate neighborhood only,
whereas they may be willing to drive longer distances to find a good offer for a new
car.

There are a number of geospatial web search engines using different methods for
georeferencing and ranking, for example Gipsy [176], GeoVsm [28], and Buster

[170]. Most of the research in this thesis has been carried out within the framework
of the Spirit project [94, 95], and the Spirit demo [158] uses the ranking procedures
developed here. We will introduce the Spirit web search engine in the next section.

1.3.1 The Spirit Web search engine

Spirit is an acronym for ‘SPatially aware Information Retrieval on the InterneT ’,
and the goal of the Spirit project was to develop an internet search engine that is
able to accomplish web searches for e.g., ‘open air museums near Berlin’, ‘Aikido
dojos in the east of Amsterdam’, or ‘Starbucks close to the Guggenheim museum’.
All these queries are composed as ‘something spatially related to somewhere’, where
something is ‘open air museums’, ‘Aikido dojos’, and ‘Starbucks’, the spatial re-
lations are ‘near’, ‘in the east of’, and ‘close to’, and the somewhere is ‘Berlin’,
‘Amsterdam’, and ‘the Guggenheim museum’.

Conventional web search engines like Google, Yahoo, and others, are not capable
of exploiting the spatial context of these queries, and with the common text-based
retrieval, only web pages that contain all or most of the query terms will be found,
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Figure 1.3: Spirit architecture, taken from [94]. Dashed arrows indicate prepro-
cessing, solid arrows the data flow to process a query.

regardless of their relevance. Recent approaches to incorporate spatial knowledge
in these search engines are, for example, based on the use of phone numbers or Zip

codes occuring on the web pages, and business directories to aid in determining the
spatial context. However, this information may not be present on each relevant page,
or it may not be sufficient to determine the appropriate location. For example, a Zip

code in the Netherlands narrows the location of an address down to a few houses in
a certain street, whereas the Zip codes in Austria can include a whole town or city
district.

The demo of the Spirit Web search engine focuses on the tourism domain.
Furthermore, the areas where geographical data has been incorporated are restricted
to the United Kingdom, Switzerland, France, and Germany. Spirit consists of a
number of components to retrieve relevant documents for a user’s query. We will
first provide a brief overview of the components necessary for preprocessing the data,
and then see how they work together in answering a given query. More details can
be found in [94]. The parts of the Web engine involved in preprocessing are:

• A geographical ontology and an ontology of the tourism-domain.

• A collection of web documents.

• A set of metadata derived from the web collection.

• A textual and a spatial index.

Further parts of Spirit are the user interface, the core search engine, and the rele-
vance ranking component. These parts are only used online to process a query.

One major component of the Spirit search engine is the geographical and domain-
oriented ontology, focussing on tourism [72]. It can be seen as a representation of the



14 1. Introduction

semantics of terms and their relationship, providing a model of the terminology and
the structure of geographical space, as well as a terminology of the tourism domain.
This means that for each town, the geo-ontology contains not only its geographical
location, but also its bounding box and the hierarchy it lies in. For example, a
hierarchy of Cardiff is: Europe—Great Britain—Wales—southern Wales—Cardiff.
Furthermore, the bounding box of Cardiff is stored as well as a note: Cardiff—
capital of Wales. Other possible entries are Cardydd, the Welsh name of Cardiff.
For the tourism domain, the ontology contains terms that are semantically related,
for example: hotel, motel, bed and breakfast, and guest house are types of accomo-
dation. The ontology plays an important role in all other parts of Spirit; it is used
to extract the metadata from, and aids in spatial indexing of, the web collection for
the preprocessing. In the online handling of a user query, the ontology is used for
the disambiguation and expansion of the query (see below).

The Spirit demo uses a one Terabyte collection of web documents originating
from a web crawl performed in autumn 2002, which amounts to 94 million web pages.
Each web page that contains place names is associated with one or more spatial
footprints, which are part of the metadata, and are derived using the ontology.
Other parts of the metadata are extracted from the meta tags of the web page and
contain name, spatial extent, keywords, contact and resolution [87].

There are two different indexes used in Spirit: a pure text-based index, as it
is commonly used in text retrieval, and a spatio-textual index. Each term in the
text index is associated with a list of documents containing the term. By only using
this index, we get a similar text-only functionality as in a conventional search en-
gine. The spatial footprints are used to create the spatial index, which is combined
with the text index of the documents to form the spatio-textual index [163]. Spatial
footprints are not only useful for the retrieval of relevant documents, but are also
employed in distance computations to give a better ranking.

When a query like the ones above is entered into the demo of the Spirit Web
search engine, Spirit performs the following tasks to return a set of relevant pages.
Spirit, as depicted in Figure 1.3,

1. disambiguates and expands the query,

2. searches for the relevant web pages in the spatio-textual index,

3. ranks the retrieved results according to their relevance using the metadata,

4. and returns the list of ranked results.

When a user submits the query ‘hotels near Cardiff, UK’, it is first passed to the
ontology for disambiguation—if the user chooses to—and expansion. Automated
query disambiguation is based on population numbers and returns Cardiff, Wales
in Great Britain for the geographic place name and a query footprint that contains
the surroundings of Cardiff. Query expansion returns a list of possible other terms
for accomodation such as motel, guest house, etc. This way the query becomes
something like: ‘hotel or accomodation or motel or guest house inside the footprint
of Cardiff and its surroundings’.

This expanded and disambiguated query is then sent to the search engine, which
retrieves relevant documents using the spatio-textual index. The list of relevant
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Figure 1.4: The top 10 Spirit results for the query ‘hotels near Cardiff, UK’.

documents is passed to the relevance-ranking component, where they are ranked ac-
cording to their spatial and textual relevance. Details of how the ranking is done are
described in Chapter 5 of this thesis. Finally, a ranking of the retrieved documents
is returned to the user interface and displayed as a ranked list as well as a clickable
map of the surroundings of Cardiff. See Figure 1.4 for the result of this search.

1.4 Thesis Outline

The contribution of this thesis to the field of imprecise regions in geographic in-
formation systems lies in introducing algorithmic methods to delineate imprecise
geographic regions. Once we have found crisp boundaries for such regions, they
can be used, for example, in geographic information retrieval to aid visualization
and retrieval. Finding all campgrounds in the British Midlands for example, is only
possible if the extent of the region is known. In the next three chapters we will
introduce methods to delineate boundaries of various types of imprecise regions. In
Chapter 5 we will present algorithmic methods to rank documents according to a
textual and a spatial score.

In Chapter 2, we will look at the boundaries of North, East, West, and South
(News) of a country, a city, or any other region with given boundaries. As the
partitioning of a region into its News parts is often vague, we want to give crisp
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boundaries between North, East, West, and South. This is useful in answering
queries like ‘Aikido dojos in the east of Amsterdam’, where the term ‘in the east of
Amsterdam’ is unlikely to be present on the web page. The partitioning of Ams-
terdam into its News regions can be precomputed and stored to aid in finding all
relevant documents.

We will provide three simple suggestions for partitioning a country outline into
News regions. The first suggestion is to divide the country by using two lines with
slope +1 and −1 such that their intersection lies at the center of gravity of the
country. It is easy to see that this will lead to regions of different sizes. The second
suggestion is to partition the country by cutting off pieces of 25% of the country’s
area by using horizontal and vertical lines.

The third suggestion—we will call it good News—is a partitioning into four
equal-sized parts, such that the sum of the distances of the four centers of gravity
of the News regions to the center of the whole polygon is maximized. This good
News partitioning has a simple shape and is unique, as shown in Section 2.2. How-
ever, it can make sense to consider only News regions that are simply connected.
For this, it is necessary to relax some of the criteria, such as the 25% share of each
region. We will show in Section 2.3, that if a partitioning into four simply-connected
News regions with each having 25% of the total area exists, we can compute it effi-
ciently. Otherwise, we can compute a simply-connected partitioning that maximizes
the smallest region (or minimizes the largest) in cubic time. We have implemented
all three basic suggestions for a News partitioning and compare the outcomes in
Section 2.4, using the outlines of ten European countries. The results of this chapter
have previously appeared in [166].

In Chapter 3, we will delineate regions whose names are commonly used, but
whose boundaries are known only approximately, like the British Midlands, the
Dutch Randstad, or the Bible Belt in the United States. As these are imprecise
regions without crisp boundaries, we could ask a number of people to draw the
outline of what they think are the British Midlands on a map. Naturally, everyone
will have a different idea of this region, so the outlines may all have the same core,
but differ at the boundaries. A majority vote on the boundaries could be used to
resolve the ambiguity.

To get data on a larger scale and for more imprecise regions, we performed
a web search that provided us with a list of towns that seemingly lie within the
British Midlands. A list of all towns in Great Britian was taken from a gazetteer.
This allowed us to delineate boundaries of imprecise regions in a fully automated
manner. Further details on the data acquisition step can be found in [8].

With the data at hand, we can abstract the problem further, and obtain the
following: we are given a set of red (inside) and blue (outside) points from which
we want to determine a reasonable polygon that represents the boundary of the
imprecise region. However, the classification of the points to be red or blue may be
incorrect. We describe two main approaches to determine the polygon in Section 3.1.

For the first approach, we start by computing an initial polygon using α-shapes
based on the red points only. Then we try to adapt it such that for the final polygon
all red points are inside and all blue points are outside. We give different algorithmic
methods and results for initial polygons with one or more red and/or blue points
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inside. These results are given in Section 3.2. For the second approach, we change
the classification, i.e., the color, of a point if it is mainly surrounded by points of
the other color. Different recoloring strategies and algorithms are presented in Sec-
tion 3.3. Both approaches have been implemented, and we will provide the results
on real life data in Section 3.4. The research presented in this chapter has been
published in [143] and in [8].

In Chapter 4, we shall study imprecise regions in natural terrain data, using the
slope. The slope value at each point of the terrain is usually divided into gradi-
ent, i.e., the steepness of the slope, and aspect, the cardinal direction in which the
slope faces. We shall determine regions on a terrain having gradient values in a
certain interval, or the same aspect values. These regions on their own do not make
much sense; however, gradient and aspect are the most important values used in
geomorphometry, and by combining them with curvature and height values on the
terrain, it is possible to delineate landforms such as hills, valleys or mountain ranges.
Hence, the presented methods help obtaining crisp boundaries for these imprecise
landforms.

We shall introduce four different scale-dependent definitions of local gradient and
local aspect for any point on a terrain in Section 4.1. The first two definitions average
the given gradient or aspect values in a neighborhood around a point, applying
uniform or non-uniform weighing. For the third definition, we choose the local
gradient at a point to be the maximum gradient value to any other point within the
neighborhood. The local aspect is then defined by the vector pointing to the point
that realizes the maximum gradient. Finally, the fourth definition is a combination
of the first and the third: The local gradient and aspect at a point are defined to
be the maximum average gradient or aspect, respectively, over a diameter of the
neighborhood.

We give efficient algorithms to compute the local gradient and aspect values at
each point of a Tin terrain for each definition in Section 4.2. An implementation of
our methods for grid data has been produced, and we compare the outcome, i.e., the
resulting maps of constant gradient and constant aspect, of all methods for different
neighborhood sizes. Most of this chapter will appear in [144].

As stated above, the methods for the delineation of imprecise regions described
in Chapters 2 to 4 can be used for geographic information retrieval, for example to
aid in area or point location queries. Chapter 5 deals with another main issue of
geographic information retrieval, the relevance ranking of the retrieved documents.
Since every document is assigned a spatial score and a textual score, we can treat
each document as a point in two-dimensional space. When the query is represented
by a point at the origin, the most simple ranking of the other points is the compu-
tation of the distance to the origin. In this case, points that lie clustered together in
space represent documents with similar scores, and they are also clustered together
in the ranking. However, if it is assumed that documents with similar scores have
also similar contents, this outcome may be unsatisfactory for the user. Therefore,
more sophisticated ranking methods should be used.

In Chapter 5, we shall introduce a number of geometrical, scattered ranking
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methods. The idea is to produce a ranking such that consecutive documents in the
ranking have high relevance with respect to the query, but also differ sufficiently in
contents from each other. We will introduce two basic methods for scattered ranking,
the angle-to-ranked and the distance-to-ranked method. In both methods, we choose
the point that has maximum distance (Euclidean or angular) to any already ranked
point to be next in ranking. We can apply additional weighing to give a preference
to either the distribution or the proximity to the query. We also present additional
methods based on the basic methods as well as extensions of them with respect to
how the eligible points are chosen. It is possible that we have more than two scores,
for example additional scores on metadata like the link structure of the document. In
this case every document is represented by a point in multi-dimensional space, and
we present the extension of our models to higher dimensions, where this is possible.
Efficient algorithms to compute the ranking according to the different models are
given in the according sections. We present experimental results for the different
ranking schemes in Section 5.4.

The two basic scattered ranking methods for textual and spatial score are used,
together with a standard text only ranking, in the Spirit demo [158]. The research
presented in this chapter has been published previously in [167].

We shall provide a brief outlook on possible future research on imprecise regions
in Gis and Gir in Chapter 6.



2 Finding the North, East, West,

and South of a Region

This chapter addresses the issue of dividing a country or other geographical region
into four subregions by compass directions. It will allow questions about ‘northern
Germany’ or ‘eastern Spain’ to be answered properly in geographic information
retrieval. Note that the specified regions do not have a well-defined boundary, but
are used in a loose sense. A partitioning into regions like the ones we compute is
also useful in geographic user interfaces, where the partitioning of a country is shown
and the user can select a region by clicking.

Figure 2.1: Three partitions of Austria by compass directions.

Algorithmically, this chapter describes how to determine — for a simple polygon
P and a positive real A — all wedges with given apex angle and orientation that
contain exactly areaA of P inside. We solve both the standard version and one where
the wedge is restricted to its simply-connected part inside P . The first version we
solve in O(n2) time and the second version in O(n logn) time.

Related in computational geometry is research on area partitionings and contin-
uous ham-sandwich cuts of polygons [21, 23, 24, 89]. Shermer [155] shows how to
partition a simple polygon by a vertical line in two equal-area halves in linear time.
Dı́az and O’Rourke [51, 53] show how to compute, for a simple polygon P , a point p
that maximizes minh∈H Area(h ∩ P ), where H is the set of half-planes that contain
p. They also show in [52] how to partition a convex polygon into equal-size parts
using an orthogonal four-partition.

In Section 2.1 of this chapter we overview the most important criteria for a par-
titioning into North, East, West, and South (News). This leads to three simple
suggestions for good News partitionings (shown in Figure 2.1). One of these (Fig-
ure 2.1, right) is a partitioning of a simple polygon P into four equal-size parts,
such that the sum of the distances of the four centers of gravity (of the News re-
gions) to the center of gravity of P is maximized. Here the distances of West and
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East are measured by x-coordinate only, and the distances of North and South by
y-coordinate only. We show that such a partitioning has a simple shape and is
unique.

In Section 2.2 we show that, for a given value A and simple polygon P , the set of
all wedges with fixed apex angle and orientation that contain an area of size A of P
has Θ(n2) complexity, and we compute it optimally. We also develop an algorithm
to compute the partitioning that maximizes the above-mentioned sum of distances
of centers of gravity. For a simple polygon P with n vertices, it runs in O(n logn)
time. The optimal partitioning, however, does not necessarily give connected regions
for the North, East, West, and South. On the other hand, the algorithm also works
for sets of polygons, like countries with islands. The efficiency remains O(n log n).

In Section 2.3 we discuss simply-connected partitionings into News regions. We
have to relax some of the criteria to obtain a problem statement that is reason-
able, like the property that all four regions contain exactly 25% of the total area
of P . We show that a partitioning like the right one in Figure 2.1 into four equal-
size, simply connected regions can be computed in O(n log n) time, if one exists.
This partitioning may be different from the one of Section 2.2. We also show that
the simply-connected partitioning that minimizes the area of the largest region, or
maximizes the area of the smallest region, can be computed in O(n3) time.

In Section 2.4 we show the output of our algorithm and compare it visually to
the other two suggestions for partitionings done in Section 2.1, using ten country
outlines. Section 2.5 describes three possible extensions.

2.1 Criteria for a Good News Partition

There are many criteria one can use to partition a country into four regions by com-
pass directions. Some criteria are especially relevant for the application in query
answering of geographic information retrieval, whereas others apply more to geo-
graphic user interfaces. We list these criteria next:

1. The regions should be non-overlapping.

2. The union of the regions should fully cover P .

3. All regions should have the same portion of the area.

4. The relative orientation of any two points should be conserved (no point in
North should be farther to the South than any point in South).

5. The regions should be simply-connected.

6. The partitioning should have a simple shape.

7. The length of the partitioning should be small.

8. The partitioning should be simply-connected.

Not all of these criteria can be satisfied at once. It appears to be difficult to
choose criteria that would lead to ‘natural’ partitions for all countries. It is also
unclear which criteria are conflicting or enforce each other. The fourth criterion
contains the essence of the compass directions, and is therefore necessary. The first
three criteria seem important too, especially for the user interface application. For
the Gir application, some overlap between the regions may be desirable, because a
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feature in the Northwest should be found if the query specifies either one of North
and West.

We would like to develop a simple, efficient algorithm which works well for most
countries. This means we either restrict ourselves to some of the criteria, or we find
a solution which meets all to a certain extent. We choose to use purely geometrical
definitions of the four regions. The experiments show that some of these definitions
are often appropriate for a good partitioning. In any case they provide a good
basis for an adaptation that is appropriate. We also note that a partitioning with
some amount of overlap can be based on a partitioning with no overlap, for instance
by growing the four regions. With the above criteria in mind, various algorithmic
problems can be formulated to find a News partition of a country. They are stated
in the following three suggestions. The partitionings for these suggestions are shown
in Figure 2.1.

Suggestion 1 Compute the center of gravity of the polygon and draw two lines
with slope +1 and −1 through this point.

Suggestion 2 Use horizontal and vertical lines to iteratively cut the polygon into
four regions which each cover 25% of the polygon’s area.

Suggestion 3 Divide the polygon into four regular, equal-size regions such that the
sum

S = disty(CN , CP ) + disty(CP , CS) + distx(CE , CP ) + distx(CP , CW )

is maximized. Here CP denotes the center of gravity of polygon P , and CN ,
CE , CW , CS denote the centers of gravity of the North, East, West, and South
region. distx and disty denote distance by x-coordinate and by y-coordinate.
A closed region P is regular, if cl(int(P )) = P .

There are polygons that have an optimal partitioning where the center of grav-
ity CP has larger y-coordinate than the center of gravity CN of the North region.
Hence, in Suggestion 3 we have to be careful how to interpret distances since they
may become negative: We interpret disty(CN , CP ) to mean CN,y −CP,y, the differ-
ence of the y-coordinates. In the sum S, the coordinates of CP cancel out and we
can equivalently maximize S = disty(CN , CS) + distx(CE , CW ).

The center of gravity can easily be computed in linear time [17], which solves
the algorithmic part of Suggestion 1. For Suggestion 2, we let the x- and y-extent
determine whether we split by horizontal lines first or by vertical lines first. We
can apply the algorithm of Shermer [155] three times, which gives a linear time
solution. In this paper, we will focus on finding a News partitioning by an algorithm
following the last suggestion. For now we will consider only the more general setting
of partitioning the polygon into not necessarily simply connected News regions
(dealing with simply connected News regions is the topic of Section 2.3). We will
prove that a News partitioning by Suggestion 3 can only lead to a partitioning with
a particular shape described below.

We will denote with a construction made of a vertical line segment in the
middle and two line segments with slope +1 and −1 at the top and at the bottom.
Similarly, we denote with the rotated shape with a horizontal line segment as
middle part. We call the nodes where the three segments meet the focal points. In
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a partitioning, we have a West and an East focal point. In a partitioning, we
have a North and a South focal point.

Lemma 1 If an arbitrary simple polygon P is divided into four (not necessarily
connected) parts, such that each part covers exactly 25% of the polygon’s area and
the sum S = disty(CN , CS)+distx(CE , CW ) is maximized, then it has inner bound-
aries shaped or . Here CN , CE , CW , CS denote the centers of gravity of the
News regions. Furthermore, this partitioning is unique.

Proof: In the proof of this lemma we make use of the following property of the
center of gravity: If a polygon P can be partitioned into two parts A and B, then
CP is the weighted average of CA and CB , with the areas of A and B as weights.

We will prove in the first part that the inner boundary which separates the regions
always consists of five straight line segments, one of them is vertical or horizontal
and the other ones have slope +1 or −1. In the second part of the proof we will
show that in any News partition according to the lemma statement, there are at
most two different focal points.

First we prove that the middle part of the inner boundary is always a horizontal
(vertical) line segment. Assume that the polygon P is divided into a North N and
South S region only, such that both regions cover exactly 50% of the area and the
sum S is optimal. Let pN ∈ int(N) and pS ∈ int(S) be two points inside N and S
respectively, such that the y-coordinate of pN is smaller than the y-coordinate of pS.
Let d denote the difference between the two y-coordinates. Let 0 < γ < d/2. Because
both points pN and pS lie in the interiors of the regions, there exist ε-disks (0 <
ε ≤ γ) around these points which are fully contained in the according region. If we
exchange the two ε-disks, CS moves southward and CN moves northward, increasing
the sum S: a contradiction. We conclude that the boundary between North and
South is horizontal. Exactly the same argument shows that in a partitioning into
North, South, East, and West, there is a horizontal line with North above and South
below it. Furthermore, by symmetry we know that East and West are separated by
a vertical line.

Consider one of the other boundaries, say, the one between East E and South S.
Let both regions cover exactly 50% of the area of P and assume S

′ = CE,x−CS,y is
maximal. Let pS ∈ int(S) and pE ∈ int(E) be two points that can be separated by
a line ` with slope −1, such that pS lies above and pE below `. There exist ε-disks
around the points that are fully contained in the according region. If we exchange
the ε-disks, the values CE,x and CS,y will change. By construction, we get a total
increase of S

′. This shows that the boundary between South and East is a line with
slope −1, and the proof immediately extends to the sum S. Because of symmetry,
the NW boundary also has slope −1, whereas the NE and SW boundaries have slope
+1. Again, the argument applies as well when partitioning P into four regions. This
ends the first part of the proof.

In the second part we show that always three segments of the inner boundary
meet at one focal point. Because of symmetry reasons we need to look at only one
case; we choose to consider how the NS, NE, and SE boundaries meet. For now,
we restrict ourselves to the case that each one of the NS, NE, and SE boundaries
intersects int(P ). Given an arbitrary, simple polygon P and a News partition
such that the three supporting lines NS, NE, SE do not meet in a single focal
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point. Assume that S is optimal for this partitioning. For simplification we put the
coordinate system such that the NS boundary lies on the x-axis, the NE boundary
lies on the line with equation y = x+ δ, and the SE boundary lies on the line with
equation y = −x + δ. If δ = 0 then all three lines meet in one (East focal-) point
(see Figure 2.2, left). Let δ > 0 (the case δ < 0 is symmetric). We choose a point
pE ∈ int(E) very close to NE, a point pS ∈ int(S) very close to SE and a point
pN ∈ int(N) very close to NS. By ‘very close’ we mean at a distance d ≤ δ/4.
Around these three points we draw an ε-disk such that ε < d, with the same ε for
all three points. We name these disks Dε(pE), Dε(pS), Dε(pN ). By choosing ε small
enough, we ensure that none of these disks intersect the boundary of its region nor
the lines y = ±x (see Figure 2.2, right). We now exchange the ε-disks as follows:
We remove Dε(pE) from E and add it to N , we remove Dε(pN ) from N and add it
to S and we remove Dε(pS) from S and add it to E. We claim that (a) in this new
News partition all regions still have 25% of P ’s area and that (b) the new S

′ is
larger than the old S. (a) follows directly from our construction, and (b) is proved
next. We assign coordinates to the three points as follows:

pE = (a, a+ γ1) a > 0 and 0 < γ1 < δ
pS = (b+ γ2,−b) b > 0 and 0 < γ2 < δ
pN = (−c, γ3) c > 0 and 0 < γ3 < δ

With this, we can compute the changes of the centers of gravity as follows:

∆CN ,y = ε′ · (a+ γ1 − γ3)
∆CS ,y = ε′ · (−γ3 − b)
∆CE ,x = ε′ · (b+ γ2 − a)

with ε′ > 0, depending on ε and the area of P . It is easy to see that ε′ is the
same for all three equations, because N,S and E have the same area and the three
(exchanged) disks have the same size.

If we sum up the three changes, we get ∆S = ε′ · (γ1 +γ2−2 ·γ3). By definition,
γ1, γ2 are both greater than zero, and γ3 can be chosen arbitrarily small. So, the
total change ∆S is always greater than zero, and therefore S

′ = S+∆S > S. This
is a contradiction to the assumption that S is optimal.

Now we consider what happens if one boundary, say, SE, does not intersect
int(P ). If SE intersects ∂(P ) in the East, we can again find three disks whose
exchange increases S. If SE does not intersect ∂(P ) in the East, we can move SE
without changing the partition. Either we get that NS, NE, and SE meet at only
one focal point, which is what we set out to prove, or SE reaches the boundary of
P in the East. In the latter case we again find three ε-disks as before, which we can
exchange to increase S.

To prove uniqueness, assume that two partitionings of the shape exist that
give four regions of area 25% of the area of P . Two different partitionings like
will always have one region, say, North, such that North of the one partitioning
strictly contains North of the other partitioning. Since P is simply-connected, not
both North regions can have exactly 25% of the area of P . Similarly, two partition-
ings, one of shape and one of shape , will also have some region in the one
partitioning for which there is proper containment in the corresponding region in
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Figure 2.2: There are at most two focal points in any News partition.

the other partitioning. �

2.2 News Partitions with Arbitrary Regions

In this section we give an algorithm to compute all wedges with fixed apex angle
and orientation that contain a given area A inside. We also show how to compute a
News partitioning of a simple polygon following Suggestion 3.

Definition 1 For a simple polygon P , we call a wedge of the form (y ≥ x+a)∩(y ≥
−x+ b) that contains 25% of the area of P a North-wedge of P . East-, South-, and
West-wedges are defined similarly.

Definition 2 The North-trace TN is the locus of all points that are apex of a North-
wedge. East-, South-, and West-traces are defined similarly.

The outline of an algorithm to compute a News partitioning according to Sug-
gestion 3 is as follows:

1. Compute the East-trace TE and the West-trace TW of polygon P .

2. Scan TE and TW simultaneously from top to bottom to determine if there is
a pair of points pE ∈ TE and pW ∈ TW with the same y-coordinate and pE to
the right of pW (or coinciding) and which gives a North area of 25% of P .

3. If such a pair exists, return the partitioning.

4. Otherwise, compute the North-trace TN and the South-trace TS .

5. Scan TN and TS simultaneously from left to right, to determine a pair of points
pN ∈ TN and pS ∈ TS with the same y-coordinate and pN higher than pS and
which gives a West area of 25% of P .

6. Return the partitioning.

Before we describe the algorithm for computing a trace and finding the pair
in more detail, we first show some properties of the traces. For convenience, we
rotate the polygon by 45 degrees, so that a West-wedge is a quadrant of the form
(x ≤ a) ∩ (y ≤ b).
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Lemma 2 After rotation, the West-trace is an infinite, continuous, piecewise qua-
dratic curve consisting of Θ(n2) pieces in the worst case, and any line with positive
slope intersects the West-trace once.

Proof: Let p = (a, b) be a point on the West-trace, such that it is the apex of a
West-wedge that contains 25% of the area of P . Since P is a simple polygon, the
West-wedge must intersect the interior of P . Let p′ = (a′, b′) be any point with
a′ > a and b′ > b. Then a wedge with apex at p′ contains strictly more than 25%
of the area, thus p′ cannot be on the West-trace. This proves the last statement of
the lemma.

Assume next that we fix a subset of the edges of P that intersect the horizontal
half-line of a West-wedge, and we fix another subset for the vertical half-line of that
West-wedge. If the apex has a fixed y-coordinate, the area of intersection of the
polygon and the West-wedge is a quadratic function in x [155]. Similarly, if the
x-coordinate of the apex is fixed, the area of intersection is a quadratic function in
y. It follows that the trace has the form axy+ bx2 + cy2 +dx+ey = f as long as the
West-wedge intersects the same subset of edges of P . The values of the constants
a, b, c, d, e, and f depend on P .

The quadratic upper bound on the number of pieces is trivial. The lower bound
construction is shown in Figure 2.3. Proportions are chosen such that a wedge with
25% of the area contains four of the triangular teeth. The four long diagonal lines
are actually very thin parts that hardly influence the area inside the wedge. Four
wedges with 25% inside are shown dashed, and the trace is shown bold. �

`

`′

vi` vi

Figure 2.3: Left: A simple polygon that has a trace with quadratic combinato-
rial complexity. Middle and right: Illustration of the O(n logn) time partitioning
algorithm.

We next describe a sweep algorithm that computes the West-trace for the rotated
polygon. Since the algorithm can be used for any fixed area of P inside the wedge,
we set A = area(P )/4 and give an algorithm to compute all West-wedge positions
that have area A inside the intersection of P and the wedge. The sweep computes
the trace from left to right.

We initialize by computing a vertical line that has area A of P left of it. Then we
determine the highest point of P left of or on the vertical line. The x-coordinate of
the vertical line and the y-coordinate of the highest point give the first break point
p0 of the trace. The initial part of the trace is a vertical half-line down to p0. We
initialize two lists Lx and Ly with all vertices of P sorted by increasing x-coordinate
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and decreasing y-coordinate, respectively. We remove the vertices from the lists up
to the x- and y-coordinates of p0.

During the sweep we maintain three pieces of information: a balanced binary
search tree on the edges of P that intersect the sweep line, the leaf in this tree
that stores the edge of P vertically below the current position of the trace, and the
equation of the curve that is now valid. One of three types of event can occur:

1. The vertical line through the current position of the trace (the sweep line)
reaches a vertex of P .

2. The horizontal line through the current position of the trace reaches a vertex
of P .

3. The trace reaches the boundary of P .

Which event will occur next can be determined in O(1) time from the equation
of the curve, the first element in each list, and the edges of P above and below the
current trace position. Events of Type 1 and 3 may require an update of the tree
or the pointer to the leaf with the edge below the trace. If the event is of Type 1
and the vertex of P is above the position of the trace, we do nothing else. If the
event is of Type 1 and the vertex of P is below the position of the trace, we output
the next break point and we update the equation of the curve. The equation of the
curve is updated by subtractions and additions to the constants a, b, c, d, e, and f ,
depending on which edges of P are no longer intersected, and which edges of P start
to be intersected by the West-wedge. For the second and third type of event similar
actions are taken. Note that the sweep also continues if the position of the trace
goes outside P . Later it may enter P again.

Since preprocessing takes O(n log n) time, events of Types 2 and 3 take O(1)
time, events of Type 1 take O(log n) time, and the trace has quadratic complexity,
we conclude with the following theorem:

Theorem 1 Given a simple polygon P with n vertices and a value A, the set of
all positions of apexes of wedges with a fixed shape and orientation that contain a
portion of area A of P inside can be computed in optimal O(n2) time.

The News partitioning algorithm is completed by computing a pair of points on
the West- and East-trace such that 25% of the area of P is in the North (Step 2),
or the symmetric situation (Step 5). This also takes O(n2) time, so we can compute
a News partitioning for Suggestion 3 in O(n2) time. Note that the running time
for computing a trace is O(n logn + k), where k is the complexity of the trace.
Typically, k is much less than quadratic, and in practice the algorithm is expected
to be efficient.

We next give a worst case O(n log n) time algorithm, which improves the previous
result. We only describe the case of a partitioning. The idea is not to compute
whole traces, but only a small part that has at most linear complexity. We will first
determine between which two y-coordinates of vertices of P the horizontal half-line
of the West-wedge lies (in the rotated polygon) for a solution that gives four regions
with 25% of the area each. Similarly, we will find two consecutive x-coordinates
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for the vertical half-line of the West-wedge. Then we compute the West-trace only
between these x- and y-coordinates.

In more detail, the algorithm is as follows: First sort all vertices of P by x-
coordinate in a list. Also sort all vertices of P by x − y and by x + y in two other
lists. Then we start a binary search. Let vi be a vertex of P with median y-
coordinate, and consider a horizontal line ` through vi (see Figure 2.3, middle). We
will sweep the apex of a wedge on ` from left to right until the position where it is
a West-wedge and contains 25% of the area of P . To this end, sort the intersections
of ` and the boundary of P using Jordan sorting [92]. Merge them with the list of
vertices sorted by x, to obtain a list of all events sorted by x-coordinate. Sweep the
apex from left to right and maintain the area of P in the wedge. At every event
point we update the function that describes the area of P inside the wedge. When
the wedge has 25% of the area of P inside, the sweep stops; we found a West-wedge.
The West focal point defines a slope +1 line `′ on which the East focal point should
lie as well. We intersect P with `′, and sweep a wedge with its apex on `′ from the
upper right to the lower left until it is an East-wedge and contains 25% of the area
of P inside. The events of this sweep are intersections of `′ with P , and crossings
of the wedge boundary with the vertices of P . A sorted list of events is obtained by
merging three sorted lists. These are the lists sorted on x − y and x + y, and the
intersections of `′ and P after Jordan sorting.

If the West-wedge and the East-wedge partly overlap, this is always in a square.
In that case the part of P inside this square is both in West and East. To still be
able to make the correct decision for the binary search, compute the area of North
and of South, not including the square. North and South together have more than
50% of the area of P . If either North or South has area less than 25%, then we
can still make the decision correctly. If both North and South have area larger than
25%, we can conclude by the proof of Lemma 1 that no partitioning gives the
desired result, and we compute a partitioning instead.

We have given the basis of a binary search that will give two consecutive y-
coordinates y′ and y′′ of vertices of P between which the West focal point must lie.
Similarly, we determine between which two x-coordinates x′ and x′′ the West focal
point must lie. Each decision step of the binary search takes O(n) time, and we take
O(log n) steps in total. The three sorts on x, x − y, and x + y prior to the binary
search also take O(n logn) time.

We now know that the West focal point of the partitioning must lie in the
rectangle [x′ : x′′] × [y′ : y′′]. Within this rectangle we compute the West-trace
explicitly; we use the sweep algorithm given before. Since no vertex of P has its
x-coordinate strictly between x′ and x′′, nor its y-coordinate strictly between y′ and
y′′, we only have events of Type 3 in the sweep. We can have a linear number of
such events if many edges of P intersect [x′ : x′′] × [y′ : y′′]. However, we can not
have more than 2n of them: the West-trace cannot intersect the same edge of P
three or more times, because the subset of edges of P intersecting the half-lines of
the West-wedge is the same for those three intersection points, and the function
describing the trace is quadratic by Lemma 2. Hence, we compute the West-trace
inside [x′ : x′′]× [y′ : y′′] in O(n log n) time overall.

In exactly the same way we can compute the relevant part of the East-trace in
O(n log n) time. By sweeping a line with slope +1 over these two traces we get
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all candidate North regions and determine if one has the desired area. If not, a
partitioning does not exist and we compute a partitioning instead, in the same
way.

Theorem 2 Given a simple polygon P with n vertices, we can determine a par-
titioning by or where each region contains exactly 25% of the area of P in
O(n logn) time. The partitioning maximizes the sum of distances of centers of grav-
ity S = disty(CN , CS) + distx(CE , CW ).

2.3 Simply-connected News Partitions

In the previous section we obtained the optimal partition into News regions in the
case that we are only interested in the sum of center-of-gravity distances and the
property that each subregion has 25% of the total area of P . The solution of that
problem may give a partition into non-connected regions. In this section we study
variations where the four subregions must be simply-connected. This implies that
we must relax the 25% property, allow a different shape of partitioning, or accept
that a solution does not always exist.

Figure 2.4: Left, middle: It is not interesting to consider simply-connected region
partitions by relaxing the shape of the partitioning only. Right: When the West
focal point lies outside P , it is not well-defined how to cut. Any one of the dark
regions could be West.

Consider the polygon in Figure 2.4, left. It is partitioned according to the method
in the previous section, giving a disconnected South. However, giving freedom to
the shape of the partition would only yield the solution shown in the middle of
Figure 2.4, where the two former parts of South are connected artificially by a very
narrow passage. Therefore, we study problems where the shape of the partitioning
is maintained, but the 25% property is relaxed. However, this makes it unclear
what to optimize for the sum of distances of center-of-gravity. It seems we should
maximize a weighted sum, where each distance is weighted by the area of the region.
At the same time we still want the four News regions to have area close to 25%.
We choose to maintain the shape of the partition and try to obtain regions of area
close to 25%. The shape of the partition will—in practice—cause the four regions to
be taken from the appropriate parts of the polygon, which we previously formalized
by the center-of-gravity distances. Hence, we consider the following problems:

Fair partitioning: Find a simply-connected partition into four regions by or
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such that each region has 25% of the area, or decide that no such partition
exists.

Maxmin: Find a simply-connected partition by or that maximizes the area
of the smallest region.

Minmax: Find a simply-connected partition by or that minimizes the area
of the largest region.

We require in all cases that the partition itself is simply-connected inside P .
Otherwise, we may get several options with a or partition. For example, if
a focal point is outside, one of the diagonal boundaries incident to it cannot be
used. Furthermore, a diagonal boundary, for example between North and West,
may intersect the polygon several times and there is a choice which cut to take.
For example, in Figure 2.4, right, we must choose exactly one of the four dashed
intersections of and P .

Note that for some polygons we cannot guarantee any percentage of at least ε%
with ε > 0 fixed for all regions, no matter how small ε is. Similarly, we cannot
guarantee that all regions have at most (50− ε)% of the area. The fair partitioning
problem is a special case of both the second and the third problem, but we can solve
it in O(n logn) time, whereas our solution of the latter two problems takes O(n3)
time.

2.3.1 Computing a fair partitioning

For a fair split we wish to obtain four simply-connected regions, each with 25% of
the area. Again we will compute the traces for the four wedges, but we have to adapt
the algorithm considerably to incorporate simply-connectedness. Interestingly, the
combinatorial complexity of a trace is linear now, and we can compute a trace in
O(n log n) time. We again assume that P is rotated by 45 degrees and consider the
computation of the West-trace. We will sweep a vertical line from left to right to
compute all apex positions of wedges that have 25% of the area in the wedge. For
any x-coordinate, there can be up to three such apex positions. We let 4A be the
total area of P , so that we want to compute apex positions where the area of P in
the corresponding wedge is exactly A.

Let ` be some position of the sweep line, and let `i be some connected component
of `∩P (a vertical line segment). We consider apex positions on `i and observe that
the area in the wedge decreases monotonically from top to bottom on `i. Assuming
that no edge of P is vertical, the decrease is strict. The following four cases occur:

1. All wedges with apex on `i have area less than A.

2. All wedges with apex on `i have area greater than A.

3. There is one wedge with apex on `i that has area A.

4. None of the above, that is, the area decrease of the wedge when the apex goes
from top to bottom on `i has a discontinuity where it jumps from larger than
A to smaller than A.

The last case can occur at a y-coordinate of a vertex of P that is a local minimum
or maximum of the exterior, see Figure 2.5, left. Corresponding to the four cases
above, we store the following during the sweep:
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`

`i

` `

Figure 2.5: Left: Illustration of the area in a wedge with apex on `i (dark grey).
There are discontinuities in the area decrease at the dashed lines. Middle and right:
Two cases of the sweep algorithm.

1. We maintain the area in the wedge whose apex is at the highest point on `i,
as a function of x.

2. We do not store anything.

3. We maintain the equation of the curve on which the apex of the area-A wedge
lies.

4. We maintain the position on `i where the discontinuity that jumps over area
A occurs. We also maintain the area of the largest wedge that has area less
than A, as a function of x.

The curve of the third case is monotonically decreasing and is called the trace,
like before. The position of the fourth case keeps its y-coordinate, that is, it follows
a horizontal segment that we call shift.

To be able to know all events before they occur, we use a vertical decomposition
VD and a horizontal decomposition HD of P . These are constructed during the
preprocessing. For each edge in these decompositions, we also store the areas of
the two subpolygons it induces. This part of preprocessing can easily be done in
O(n logn) time (or even in linear time using linear time triangulation of polygons).
For any trace or shift, we maintain in which trapezoid of VD and HD it lies at the
current sweep position.

When the sweep line moves right, there are five possible events that can occur.
In the following paragraphs we will analyze the four times five cases; note that not
all combinations can occur, and that there is also some overlap. The largest number
of different events occur when the sweep line reaches a vertex of P . In the following,
we will call this a vertex event.

(i) The sweep line reaches a vertex of P . In several cases we have to perform
a scan down, which is to find the y-coordinate at the current sweep line position
where a trace or shift will start. We will always determine this y-coordinate from
top to bottom. The scan down is described at the end of this paragraph.

Assume that some interval `i on the sweep line ` reaches a vertex v of P . Then
v can be at the lower endpoint of `i, at the upper endpoint of `i, or in the middle.
We distinguish the following situations:
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Figure 2.6: Vertex events in the sweep algorithm: Situations A, B, C, and D.

A. The edges of P incident to v are on opposite sides of the sweep line, and v is the
upper endpoint of `i.

B. The edges of P incident to v are on opposite sides of the sweep line, and v is the
lower endpoint of `i.

C. The edges of P incident to v are both on the left of the sweep line, and v is the
lower endpoint of `i.

D. The edges of P incident to v are both on the left of the sweep line, and v is the
upper endpoint of `i.

E. The edges of P incident to v are both on the right of the sweep line, and v is in
the middle of `i.

These five situations must be combined with the four cases for `i before the event,
as described above.

For Situation A, the only non-trivial case is Case 1, see the top left picture in
Figure 2.6. The area function for a wedge with the apex at the highest point on `i
may grow with a jump (if both edges incident to v go upward), in which case we can
stay in Case 1 or get into Case 4. We can retrieve efficiently by how much the area
jumps, because we precomputed the areas of all subpolygons arising from segments
in the horizontal decomposition HD . So this is easy to test and handle. If we get
into Case 4, the shift must start at the y-coordinate of the vertex v. Situation A for
Cases 2, 3, and 4 cannot give a case transition, and we only need to update a trace
equation or an area function and test for future events that may occur.
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Figure 2.7: More vertex events in the sweep algorithm: Situation E.

For Situation B, the only non-trivial case is Case 2, see the second picture in the
left column of Figure 2.6. Depending on the edge of P to the right of v, we may get
a transition into Case 4. This is easy to handle. Situation B for Cases 1, 3, and 4
cannot give a case transition.

The three other situations combined with all possible cases are shown in seven
pictures in Figure 2.6 and in six pictures in Figure 2.7. In some of the pictures of
Figure 2.7 we see that after an event we can sometimes get into Case 2 or Case 4 for
the upper new intersection of ` and P , for instance in the pictures in the left column.
Which case we get into depends on the slope of the edge of P counterclockwise from
the vertex that caused the event. If the slope is negative, we get into Case 4,
otherwise in Case 2 (or in the top left picture, in Case 1 or we do a scan down).

Which case we get into after any of the events in the two figures can be determined
because we have precomputed all areas of subpolygons of P arising from the edges
in the horizontal and vertical decomposition. For example, consider Figure 2.7. Let
ed be the edge vertically down from the event vertex v in VD , let eu be the edge
vertically up from v in VD , and let el be the edge horizontally to the left in HD .
For each of these edges we precomputed the areas of the two subpolygons that they
induce. This allows us to determine from the previous case and the subareas what
case we get into for each of the two new intersections of the sweepline with P . For
example, consider the bottom right picture of Figure 2.7 and assume the edge of P
counterclockwise from v goes upward, as drawn. Then the upper branch will be in
Case 2 if the area of the subpolyon below el is greater than A. If this area is less
than A, the upper branch will be in Case 3 or 4, which is determined by a scan down
starting at the end of the shift.
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Scan down It remains to describe the scan down. In the scan down, we start at a
point on the boundary of P or at a trace or at a shift. In all cases we can determine
the area in the wedge at the start of the scan down, and this area will be greater
than A. We maintain the area inside the wedge as a function of the y-coordinate of
the apex.

When the apex of the wedge sweeps down, the horizontal half-line of the wedge
will cross horizontal edges of HD . If these are caused by a vertex v of P left of the
apex, this is an event. There are three types of vertex events.

If one edge incident to v goes up and the other goes down from v, we only have
to update the area function for the wedge.

If both edges incident to v go up from v, there is a sudden loss of area in the wedge.
The amount is known from the areas of subpolygons in the horizontal decomposition.
If the area in the wedge jumps over A, the scan down stops and a shift starts at this
point. Otherwise, we update the area function and proceed with the scan down.

If both edges incident to v go down from v, there is a sudden loss of area in the
wedge as well, and we do exactly the same.

Besides vertex events it can also happen that the area inside the wedge reaches
A. In that case, we stop the scan down and a trace starts at this point.

In the events where the area function changes, we must update the event list to
detect the events where the area inside the wedge reaches A in time.

(ii) The trace or shift reaches an edge of P . In this event, the only point
or candidate point to give a desired wedge lies on the boundary of P and will go
outside. Consequently, after the event, the whole interval `i will be in Case 1 (when
the trace or shift leaves at the top of `i) or Case 2 (when the trace or shift leaves at
the bottom of `i). We update the status structure accordingly. If we go into Case 1,
we must determine the function giving the wedge area if the apex is on the top edge,
and determine if and when a new trace can start (to predict event (iv) in time).

(iii) The area in the shift of a wedge becomes A. This can only happen in
Case 4, and we get into Case 3 afterwards. We update the status structure and
compute the equation of the trace. We also do tests to predict if events of Type (v)
or Type (ii) will occur for the trace.

(iv) The area in the wedge with apex at the top of `i becomes A. This
event can only occur for Case 1, and gives a transition into Case 3. We update the
status structure and compute the equation of the trace. We also do tests to predict
if and when events of Type (v) or Type (ii) will occur for the trace.

(v) The trace or shift crosses an edge of the vertical or horizontal decom-
position. This event can only occur for Cases 3 and 4. We update the trapezoid
in which the trace or shift is, and if necessary, compute the new equation of the
trace or area function for the shift. When the trace crosses an edge of HD , this may
give a transition from Case 3 into Case 4 (see Figure 2.8), in which case we do the
necessary updates in the status structure. To obtain the area function for the shift,
we subtract the ‘lost area’ in the subpolygon left and below the vertex that was hit.
This area is precomputed as the area of some subpolygon in HD .
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case 3

case 4

Figure 2.8: Type (v) event where a Case 3 to Case 4 transition occurs.

Then we do tests do predict when the next event of Types (ii), (iii), or (v) will
occur for this trace or shift. All other situations to be handled are also Type (i)
events, and these are treated separately.

Type (i) events are known in advance (some of these events are also of Type (v)).
Type (ii) events are known on time since we maintain in which trapezoid of VD and
HD any trace or shift lies, and a trapezoid gives at most two edges of P that can
be reached. Types (iii) and (iv) events are known because we maintain the function
that gives the area in the wedge, and we can determine for which x an area A is
reached. Type (v) events are known because we know in which trapezoid the trace
or shift is.

Correctness and running time follow from the following lemmas. Lemma 4 implies
linear complexity of the traces.

Lemma 3 Every wedge with area A inside will be found by the algorithm.

Proof: The beginning of the trace on which the apex of such a wedge lies will be
found during some event. So the event handling proves the correctness. �

Lemma 4 Any trapezoid of VD or HD is intersected by at most one trace or shift.

Proof: First, observe that in the vertical decomposition VD there cannot be two
points in one trapezoid on traces with the same y-coordinate. The wedge with apex
at the higher point will have strictly larger area inside. Similarly, in the horizontal
decomposition HD , there cannot be two points in one trapezoid on traces with the
same x-coordinate.

Next, consider the case when two shifts go through the same trapezoid of VD .
Any point on a shift has the property that a point on it gives a wedge area less than
A, and a point just above it gives a wedge area greater than A. Then obviously, two
shifts with different y-coordinate cannot enter the same trapezoid of VD . It would
contradict the property that the wedge area is monotonically decreasing when the
apex goes down vertically. For the same reason, a shift and a trace cannot enter the
same trapezoid of VD . �

The algorithm given above can be used for any value of A. Furthermore, it
applies to any wedge with a given orientation and angle. We can simply rotate
and shear-transform the polygon to bring it into the case that was described. We
conclude:

Lemma 5 Given a simple polygon P with n vertices and a value A, we can deter-
mine in O(n log n) time all locations of the apex of a wedge with fixed orientation
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and area A inside it, when the intersection of the polygon and the wedge is simply-
connected.

After computing the West-traces and East-traces in the (still rotated) polygon
P , we determine if there is a connecting line segment with slope +1 completely
inside P that gives a North region of area A, and hence, a South region of area
A as well. This can be done easily with a sweep over the polygon and the traces
with a line of slope +1. If we fail, we also try the North trace, the South trace,
and a connecting segment of slope −1. If this also fails, there is no partitioning of
P into four simply-connected regions by or , where the partitioning itself is
simply-connected inside P as well. We conclude with the following theorem:

Theorem 3 For a simple polygon P with n vertices, we can determine in O(n log n)
time if there is a simply-connected or partitioning into four simply-connected
regions that all have 25% of the area of P .

2.3.2 Computing a maxmin and minmax area partitioning

To compute a partitioning that maximizes the smallest area region or minimizes the
largest area region, we also assume that P is rotated by 45 degrees. We only describe
the case where the North and South regions are adjacent in the partitioning.

ci

Figure 2.9: Left: The decomposition D induced by the horizontal and vertical de-
composition, and a pair of aligned cells. Right: Area function for the North when
the West focal point lies in ci.

The algorithm begins with computing a horizontal decomposition HD and a
vertical decomposition VD inside P . This gives a decomposition D of the interior
of P into O(n2) cells (see Figure 2.9). For each vertex of D , we precompute and
store the following: (i) The area of the West (East, North, and South) region if
the West (East, North, and South, respectively) focal point would coincide with the
vertex. (ii) The edges of P directly above, below, left, and right of it. We can easily
precompute this information in O(n) time per vertex, and O(n3) time overall. For
every vertical edge of the decomposition D , we precompute the area in the cell left
of it, and the area in the cell to the right of it. This is easy in linear time per vertical
edge, or in quadratic time altogether. Next, we will consider pairs of cells of D that
can be aligned diagonally, by which we mean that there is a line of slope +1 that
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intersects both cells. One cell can be aligned with Θ(n2) other cells, but we can
show that there are only O(n3) alignments in total by a simple counting argument.

Lemma 6 There are O(n3) pairs of cells in the decomposition that can be aligned
diagonally.

Proof: We imagine sweeping a line with slope +1 over the polygon and its de-
composition D . We count a pair of cells as soon as they become aligned, which is
when the sweep line starts intersecting the second cell of the pair. This happens at
the top left vertex of the cell (assuming the cell is in the interior of D). At any top
left vertex of a cell, only O(n) new pairs are found, because the sweep line intersects
only O(n) edges of D . �

When we consider a pair of aligned cells, we are interested in the functions that
describe the areas of the West, East, North, and South regions as a function of the
locations of the two focal points. Let these coordinates be (xw, yw) and (xe, ye),
where ye = yw + xe − xw . The function for West is a bivariate function in xw and
yw. The functions for East, North, and South are trivariate functions in xw , yw, and
xe.

Assume that we have the four area functions for a pair of cells of the decomposi-
tion. Then we determine the exact values of the three unknowns that maximize the
minimum of the four functions, or minimize the maximum. It will be the highest
point on the lower envelope of four 3-dimensional patches in 4-space, or the lowest
point on the upper envelope. We need to solve sets of three quadratic equations in
three unknowns. In the standard model of computation for surface patches, these
operations take O(1) time.

It remains to show that we can obtain the appropriate functions in O(1) time for
a pair of cells. The area functions of West and East are easy and can be obtained
directly from the precomputed information. For the North region, we will do this
by choosing a cell for the West focal point and considering in which cells the East
focal points can lie, see Figure 2.9. We treat the cells by looking at a row from left
to right, and then going to the next higher row. Whenever we go from one cell to
the next, we know which edges of P no longer intersect the North region boundary,
and which edges of P have started to intersect the North region boundary. In this
way we can determine the new quadratic function in O(1) time per cell using the
precomputed information. For the South region we do the same. We obtain:

Theorem 4 For a simple polygon P with n vertices, we can compute a simply-
connected or partitioning that minimizes the maximum area subregion or
maximizes the minimum area subregion in O(n3) time.

2.4 Experiments

We implemented the partitioning algorithms for all three suggestions to evaluate the
performance on ten countries. We did not implement the versions producing simply-
connected partitionings, so the partitionings produced for Suggestions 2 and 3 always
give four regions with 25% of the area. The results can be found in Table 2.1.
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The left column shows the partitionings for Suggestion 1, using the center of
gravity. As expected, the resulting regions may have an area deviating significantly
from 25%, like the East regions of Norway and Portugal and the West of Great
Britain. Consequently, there are several parts that are not classified as east Portugal
or west Great Britain, where intuition would do so.

The middle column shows the partitionings for Suggestion 2. If the x-extent
is larger than the y-extent, the algorithm first computes a vertical line with 25%
of the area left of it and a vertical line with 25% right of it. The remaining part
is partitioned in equal-size regions by a horizontal line. If the y-extent is larger,
the symmetric partitioning method is taken. Generally, the results correspond rea-
sonably well to intuition. But the partitioning of a square-like shaped country as
France, for instance, is highly dependent on the fact that the y-extent is slightly
larger. If the x-extent were slightly larger, a completely different partitioning would
be produced. As a consequence, the partitioning of France shows a West and East
region that are unnaturally limited. Another unnatural situation appears in the
northeast of Austria. Also observe that a large part of the West coast of Norway is
in the East region.

The right column shows the partitionings for Suggestion 3. The partitionings of
Austria and France are much better, but the partitionings of Norway and Italy are
not ideal. In summary, the second and third suggestions both give good partitionings
on most countries, although both fail on some. It depends on the global shape of
the country which of the two suggetions is better.

Our suggestions did not take any perceptual aspects into account. The purely
geometric and simple problem statements of the second and third suggestions must
be adapted to work well in nearly all cases that may arise. There are many possible
ways of doing this, but it is beyond the scope of this chapter to implement, compare,
and discuss these.
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Table 2.1. Comparison of three different algorithms for determining
a News division for ten european countries.

From top to bottom: Austria, Croatia, France, Germany, and Great Britain.
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Table 2.1. (Continued)

From top to bottom: Greece, Italy, The Netherlands, Norway, and Portugal.
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2.5 Extensions

In many cases it is useful to partition not only simple polygons, or to go beyond
a partitioning into North, East, West, and South only. We briefly discuss three
possible extensions.

Firstly, we consider non-connected polygons, which arise for countries that have
one or more major islands. For all three suggestions, the algorithms can be adapted
in a straightforward manner to incoporate this case. For the second suggestion, this
follows from the fact that Shermer’s algorithm [155] applies to disconnected polygons
as well.

Secondly, one can define a center region of a country as well, which is important
for spatial information retrieval. Suggestion 3 can be restated as partitioning a
polygon into five regions, each with 20% of the area, such that the summed distances
of the centers of gravity of North, East, West, and South to that of the original
polygon is maximized (again, measured in x- or y-distance only). In this case, we
can apply the same proof ideas as in Section 2.1 to show that the center region
will be an axis-parallel rectangle and the boundaries between North, East, West,
and South are lines with slope +1 or −1 that start at the corners of the central
rectangle.

Thirdly, it is useful to define a degree of North, East, West, and South for any
point in the country. For example, San Francisco is more in the West of the U.S.
than Salt Lake City, although both can be considered to lie in the West. This is
important for relevance ranking of the list of retrieved documents of a Web search.

2.6 Concluding Remarks

This chapter discussed how to partition a region into four subregions in a natural
way, such that the subregions can be associated with the North, East, West, and
South. The applications lie in geographic information retrieval and Web searching.
After giving criteria for a good partitioning, we suggested and analyzed three pos-
sibilities. One of these led to interesting algorithms related to earlier research on
partitioning (sectioning, cutting, dividing) a simple polygon into equal-size parts.
The experiments show that two of the suggestions for partitioning give good results,
albeit not perfect.

It is open whether the algorithms in this chapter can be improved: there is no
Ω(n logn) or cubic lower bound. Another interesting algorithmic question is how
efficiently one can determine an orthogonal four-partition as in Suggestion 1, but
one that minimizes the largest region, or maximizes the smallest region. Also the
question of defining and computing a degree of North, East, West, and South is an
interesting problem.



3 Delineating Imprecise Regions

using Locations

In the previous chapter, we have looked at the North, East, West, and South parts
of a country and presented a method to delineate them. These regions are relatively
simple to recognize and to delineate by straight lines. There are numerous other
imprecise geographical regions like the British Midlands, the US Bible Belt or the
Dutch Randstad, which have a more complex boundary and are less easy to delineate.
Often, these boundaries are described like ‘above the rivers’ or ‘beyond the valley’,
sometimes there are no visible or physical boundaries at all. In this chapter, we
will delineate such regions by using place names marked as ‘inside’ or ‘outside’ as
evidence.

To determine the locations that are inside or outside a certain imprecise re-
gion we can make use of the Web. The enormous amount of text on Web pages

Table 3.1: Trigger phrases used to identify geo-references

ID Trigger phrase Examples
in ∗ in [R] Birmingham in

the Midlands
which is ∗ which is [in | in the ∗ of] [R] West Ham which is

in London
is a ∗ is a [city | county | province Paris is a

| region | state | town | village] city in France
in [R]

is direction ∗ is [in | located in | situated in] Canterbury is located
the [center | centre | north | south in the south east
| east | west | north east | of England
south east | north west | south west]
of [R]

such as [cities | towns | villages | counties Cites in the
| provinces | regions | states] in [R] Midlands such as
[such as | including] ∗ Birmingham

and other ∗ and other [cities | towns Staffordshire and
| villages | counties | provinces other counties
| regions | states] in [R] in the Midlands
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can be used as a source of data; the idea of using the Web as a geo-spatial database
has appeared before [109, 121, 140]. Our approach is using so-called trigger phrases.
For any reasonable-size city in the British Midlands, like Nottingham, it is quite
likely that some Web page contains a sentence fragment like ‘. . . Nottingham, a city
in the British Midlands,. . . ’, or ‘Nottingham is located in the British Midlands. . . ’.
Table 3.1 lists the trigger phrases used for the data acquisition of this chapter, where
‘∗’ matches anything, [R] represents the target region and [X|Y] matches X or Y.
The sentence fragments found give locations that are most likely inside the British
Midlands, and we used the Spirit ontology together with a gazetteer list from UK
Ordnance Survey to assign coordinates to the extracted locations. These locations
are considered ‘inside’ the British Midlands; we compute their bounding box, and
enlarge it by 20% in each direction to get their surroundings as well. Again, we use
the ontology and the gazetteer to determine all locations and their coordinates in-
side the enlarged bounding box, which were not found using the trigger phrases. We
consider this set of locations to be ‘outside’ the British Midlands. Details of using
trigger phrases to determine locations inside or outside a region to be delineated, as
well as an evaluation of the method can be found in [8]. Obviously the process is
not very reliable, and false positives as well as false negatives are likely to occur.

We have arrived at the following computational problem: given a set of ‘inside’
points (red) and a set of ‘outside’ points (blue), determine a reasonable polygon that
separates the two sets. Imprecise regions generally are not thought of as having holes
or a tentacle-shaped boundary, but instead as having a compact shape. Therefore,
possible criteria for such a polygon are:

• The red points are inside and the blue points are outside the polygon.

• The polygon is simply-connected.

• The polygon has small perimeter.

• The polygon boundary has small absolute angular change.

• The polygon has large compactness ratio, circularity ratio, or form ratio, or
it has small elongation ratio. These are shape measures for polygons used in
geography [73, 130].

It is likely that some points are misclassified, and that a polygon with much better
shape can be obtained if a small number of red points are allowed to be outside and a
small number of blue points are allowed to be inside the polygon. A suitable balance
is needed between the shape measure and the misclassification measure. The field
of machine learning is largely devoted to the use of points of known classification
(e.g., red and blue) to infer the classification of other points (see e.g., [43]). In
machine learning applications, the feature space is usually high-dimensional and one
is generally not constructing explicit region boundaries, as we are motivated to do
in our geographical application. In pattern recognition, extraction of shapes from
point patterns is also studied [162]. However, since we concentrate on a geographical
application, we will consider only the polygon criteria listed above.

Related work in Gis has been conducted by Alani et al. [5], who use a gazetteer
to extract locations that are classified as inside or outside of a certain region. A
Voronoi diagram of all locations is computed, and the Voronoi cells are classified
inside or outside, according to the locations they enclose. The region is the union
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of all cells classified as inside, and its boundary is composed by the Voronoi edges
that separate cells of different classification. However, this approach does not take
into account that the data points may be classified wrongly. Concurrent with our
approach, Purves et al. [40, 140] proposed another method which is also based on
using trigger phrases to find locations inside imprecise regions on the Web. Instead
of delineating polygons that separate points that are classified as inside or outside
the imprecise region, they use weights like document density, to define the extent of
the imprecise region as a density surface.

In computational geometry, red-blue separation algorithms exist of various sorts;
see Seara [150] for a survey. Red-blue separation by a line—if it exists—can be
solved by two-dimensional linear programming in O(n) time for n points. Red-
blue separation by a line with the minimum number of misclassified points takes
O((n + k2) log k) expected time, where k is the number of misclassified points [34].
Other fixed separation shapes, such as strips, wedges, and sectors, have also been
considered [9, 150]. For red-blue separation by a polygon, a natural problem is the
minimum perimeter polygon that separates the bichromatic point set. This problem
is NP-hard (by reduction from Euclidean traveling salesperson [10, 57]); polynomial-
time approximation schemes follow from the m-guillotine method of Mitchell [118]
and from Arora’s method [13]. Minimum-link separation has also received atten-
tion [4, 12, 117].

In this chapter we present two general approaches to determine a reasonable
polygon for a set of red and blue points. Based on these approaches we define and
solve various algorithmic problems, some of which are of theoretical interest, others
are of practical interest. The two global approaches are outlined in Section 3.1. The
first approach starts by computing an α-hull of the red points, with a number of red
and blue points inside this polygon. In a second step it tries to adapt the polygon to
get the blue points outside while keeping the red points inside. We show that for a
red polygon with n vertices and only one blue point inside, the minimum perimeter
adaptation can be computed in O(n) time. For the case of one blue and O(n) red
points inside, an O(n log n)-time algorithm is presented. If there are m blue points
but no red points inside, an O(m3n3)-time algorithm is given. If there are m red
and blue points inside, we give an O(Cm logm ·n)-time algorithm, for some constant
C. These results are given in Section 3.2. The second approach changes the color
of points to obtain a better shape of the polygon. Different recoloring strategies
and algorithms are presented in Section 3.3. The implementation and test results
on several data sets for both approaches are given in Section 3.4.

3.1 Approaches to Delineate Imprecise Regions

This section describes our two approaches to obtain a reasonable boundary for a
bichromatic set of points that may contain wrongly colored points. Let R be the set
of red points and B the set of blue points.

3.1.1 Adaptation approach

In the adaptation approach we begin by computing on the red points only. A
reasonable shape for the red points can for example be based on the α-shape [58, 59].
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Figure 3.1: The α-shape of a set of points for a negative value of α.

The concept of α-shapes formalizes the intuitive notion of ‘shape’ for spatial point
set data, and they have been studied and used extensively in geometric modeling,
grid generation, medical image analysis, and visualizing the structure of earthquake
data.

The formal definition of α-hulls, taken from [58], is:

Definition 3 An α-disk for α ∈ R is

• a closed disk of radius 1/α if α > 0,

• a closed half-plane if α = 0, and

• the closed complement of a disk of radius −1/α if α < 0.

For a finite set S of sites in the plane, an α-disk is full if it contains S. The α-hull
of S is the intersection of all full α-disks.

If α = 0, the α-hull is the convex hull of the point set S. An α-shape is closely
related to the α-hull, but it has straight edges. For every pair of points that give an
α-disk that defines some part of the boundary of the α-hull, there is an edge between
them in the α-shape. Figure 3.1 gives an example; a formal definition is complex
and can be found in [58].

A reasonable choice for a polygon P to delineate an imprecise region enclosing
the red points is the outermost set of edges of the connected component of the α-
shape that contains the largest number of red points. This polygon is not necessarily
simple because vertices may appear more than once on the boundary. We call such
a polygon a degenerate simple polygon. The value of α has large influence on the
shape; it should be chosen depending on the density of cities and towns in the region
of interest. Using the component of the α-hull with most red points takes care of red
outliers, which are isolated or appear in smaller components. These red points are
likely to have been misclassified. This can happen due to ambiguity of place names,
or by incorrect listing of a place name in a trigger phrase.

In the adaptation approach, we start with the polygon P based on the red points
only. The polygon P may contain blue points, so we will change its shape to get
them outside, but without bringing any red points outside. In practice we will bring
blue points outside only if this does not change the shape of the polygon too much
(for example, the perimeter increase is small). Blue points that remain inside are
likely to have been misclassified; they correspond to places that are in the imprecise
region, but are not mentioned in any trigger phrase.
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The theoretical question of changing a polygon while increasing its perimeter
as little as possible gives rise to various computational problems that we discuss in
the next section. In all cases we are interested in a subpolygon P ∗ ⊆ P that does
not contain the blue points in the interior, nor any red points in the exterior, and
has smallest perimeter among these (or the smallest absolute angular change). The
polygon P ∗ will be simple and possibly degenerate. We will give different algorithms
for various instances of the problem, e.g., for convex and simple polygons with one
or more blue points inside only and with red and blue points inside, in Section 3.2.
Experimental results are given in Section 3.4.

3.1.2 Recoloring approach

In the recoloring approach, we change the colors of points that are likely to have
been misclassified. This is the case if many surrounding points have the other color.
Let R be the set of red points and B the set of blue points. Compute the Delaunay
triangulation of R ∪ B. For each point, consider its color and the colors of its
neighbors. If the point is largely surrounded by points of the other color, then we
change its color, and continue. To formalize ‘largely surrounded’, we consider for a
point the maximum angle of consecutive differently colored neighbors. If this angle
is greater than some pre-specified value, say 230◦, then we recolor. A more formal
definition of the angle is given in Section 3.3. If the critical angle is smaller than
180◦, then the method may not terminate so we always assume that it is at least
180◦.

In general there are several points that can be recolored at some moment, and
it is important in which order the recoloring is performed. Different orders can
give different final colorings. We examine different recoloring schemes and prove
bounds on the number of recolorings that can occur in certain schemes in Section 3.3.
Experimental results of the recoloring approach are given in Section 3.4.

3.2 Adaptation Approach in Detail

In the adaptation approach, we start with a polygon P and adapt it until all blue
points inside P are no longer inside, or until the shape would have to be changed too
drastically. By choosing P initially as an α-shape, with α chosen such that e.g., 90%
of the red points lie inside P , we can determine an appropriate initial shape and
remove red outliers (red points outside P ) in the same step. The parameter α can
also be chosen based on ‘jumps’ in the function that maps α to the perimeter of the
initial polygon that we would choose. Once P is computed, the remaining problem
is to change P so that the blue points are no longer inside. The resulting polygon
P ∗ should be contained in P and its perimeter should be minimum. In this section
we discuss the algorithmic side of this problem. In practice it may be better for
the final shape to allow some blue points inside, which then would be considered
misclassified. Some of our algorithms can handle this extension.
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Figure 3.2: Illustration of the proof of Lemma 8.

3.2.1 One blue point inside P

First, we assume that there is only one blue point b inside P . The optimal, minimum-
perimeter polygon P ∗ inside P has the following structure:

Lemma 7 An optimal polygon P ∗ is a (possibly degenerate) simple polygon that (i)
has b on its boundary, and (ii) contains all edges of P except one.

Proof: If P has no blue point inside, then the optimal subpolygon P ∗ ⊂ P = P ,
as it must include all the red vertices of P . With one blue point b inside P , we have
to adapt P by replacing k of its edges by a path inside P that excludes b of P . If
k = 0, this path leads from a vertex v of P to b and back to v. The shortest of all
such paths consists of two straight line segments vb, bv, where v is a vertex of P that
is directly visible from b. The length of P ∗ is the length of P plus the length of vb
and bv. P ∗ can be shortened by replacing one of the line segments and the edge vv′

by a geodesic from a neighboring vertex v′ of v to b. Therefore, it must hold that
k ≥ 1. It is easy to see that P ∗ cannot be optimal if k > 1, as it can be shortened
by replacing one of the paths by an edge of P . Furthermore, if the new path around
b does not contain b, it can always be shortened until it contains b. �

We consider two versions of the problem: the special case where the interior of
P contains only one point (namely b), and the general case where the interior of P
contains b and a number of red points.

One blue and no red points in the interior of P

Let P be a red polygon with only one blue point b inside. Let e = v1v2 be the edge
of P that is not an edge of P ∗. The endpoints v1 and v2 are connected by a path
F via b inside the boundary of P . We denote the path that leads to the minimum-
perimeter polygon P ∗ by F ∗; it consists of a shortest geodesic path between b and
v1, and between b and v2, and is called a funnel. Note that these paths may have
vertices at red points other than v1 and v2; such vertices are concave vertices of P ,
as shown in Figure 3.3 (left). In the optimal solution P ∗, the edge e and the shortest
path F ∗ have the following additional properties:
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Lemma 8 (i) The path F ∗ is a simple funnel. (ii) A funnel F with root b and base
e can only be minimal if e is (at least partially) visible from b.

Proof: We prove the first claim by contradiction (see Figure 3.2). Let P be a
simple polygon with a point b inside. Let e and F ∗ be the edge and path that lead
to the minimum perimeter polygon P ∗, and assume that F ∗ has some edge on both
shortest geodesic paths between b and v1 and v2. Then the edges incident to b must
also be the same. Let this shared segment be bv. Vertex v is the endpoint of two
edges ei, ei+1 of P ∗. The solution using e and F ∗ has perimeter strictly greater than
the perimeter of P plus twice the length of bv. However, using ei instead of e and
the geodesics to ei’s endpoints yields a solution of length at most the perimeter of
P plus twice bv, a contradiction.

The second claim follows from the first claim. As the geodesics do not share
any edges, there must be some opening angle 0 < φ < π at b, and F ∗ is a funnel.
The angle φ is determined by the two edges of the funnel that are incident to b. As
the interior of F ∗ does not contain polygon edges, the base edge e is visible from b
through φ. �

We use the algorithm of Guibas et al. [82] to find the shortest path from the
point b to every vertex v of the polygon. For every two adjacent vertices vi and vi+1

of the polygon, we compute the shortest paths connecting them to b. The algorithm
of Guibas et al. [82] can find all these paths in O(n) time. For each possible base
edge and corresponding funnel, we add the length of the two paths and subtract the
length of the edge between vi and vi+1 to get the added length of this choice. We
obtain the following result.

Theorem 5 For a simple polygon P with n vertices and with a single point b inside,
we can compute in O(n) time the minimum-perimeter polygon P ∗ ⊆ P , that contains
all vertices of P , and has b on its boundary.

One blue and several red points in the interior of P

In the general case we may also have red points inside P . Let R be the set of
these red points, and assume that its size is O(n). We need to adapt the algorithm
given before to take the red points into account. We first triangulate the polygon
P . Ignoring the red points R, we compute all funnels F from b to every edge e of
the polygon. We get a partitioning of P into O(n) funnels with disjoint interiors. In
every funnel we do the following: If there are no red points inside F , we only store
the length of the funnel without its base edge. Otherwise, we need to find a shortest
path πmin from one endpoint of the base edge to b and back to the other endpoint
of the base edge, such that all red points in R still lie inside the resulting polygon
P ∗.

The shortest path πmin inside some funnel F with respect to a set R ∩ F of red
points consists of two chains which, together with the base edge e, again form a
funnel F ∗, see Figure 3.3 (middle). This funnel is not allowed to contain points of
R ∩ F in its interior. We need to consider all possible ways of making such funnels,
which involves partitioning the points of R ∩ F into two subsets. The red points of
R ∩ F can only appear as reflex points on the funnel F ∗, and therefore we can use
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Figure 3.3: Left: The path F ∗ if R = ∅. Middle: The case R 6= ∅. Right: P ∗ for
R 6= ∅.

an order on these points. For ease of description we let e be horizontal. Then F has
a left chain and a right chain. The optimal funnel F ∗ also has a left chain and a
right chain, such that all points of R∩F lie between the left chains of F and F ∗ and
between the right chains of F ∗ and F . We extend the two edges of F incident to b,
so that they end on the base edge e. This partitions F into three parts: a left part,
a middle triangle, and a right part. In the same way as the first claim of Lemma 8,
we can show that all points of R∩F in the left part must be between the left chains
of F and F ∗, and all points of R ∩ F in the right part must be between the right
chains of F and F ∗. The points of R ∩ F in the middle triangle are sorted by angle
around b. Let the order be r1, . . . rh, counterclockwise.

Lemma 9 There is an index i such that the points r1, . . . , ri lie between the left
chains of F and F ∗, and ri+1, . . . , rh lie between the right chains of F ∗ and F .

We iterate through the h + 1 possible partitions that can lead to an optimal
funnel F ∗, and maintain the two chains using a dynamic convex-hull algorithm [88].
Every next pair of chains requires a deletion of a point on one chain and an insertion
of the same point on the other chain. We maintain the length of the path during
these updates to find the optimal one.

As to the efficiency, finding all shortest paths from b to all vertices of P takes lin-
ear time for a polygon. Assigning the red points of R to the funnels takes O(n logn)
time using either plane sweep or planar point location. Sorting the h red points in-
side F takes O(h logh) time, and the same amount of time is taken for the dynamic
convex hull part. Since each red point of R appears in only one funnel, the overall
running time is O(n logn).

Theorem 6 For a simple polygon P with n vertices, a point b in P , and a set R of
O(n) red points inside P , we can compute in O(n logn) time the minimum-perimeter
polygon P ∗ ⊆ P , that contains all vertices of P and all red points of R, and has b
on its boundary.

3.2.2 Several blue points inside P

When there are more blue points inside P , we use other algorithmic techniques. We
first address the case of only blue points inside P and give a dynamic-programming
algorithm. Then we assume that there are a constant number of blue and red points
inside P , and give a fixed-parameter tractable algorithm.
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Several blue and no red points in the interior of P

Let P be a simple red polygon with n vertices, given in clockwise order. Let B
be a set of m blue points inside P . In this section, we present a polynomial-time
algorithm to compute a (possibly degenerate) simple polygon, P ∗ ⊂ P , of minimum
perimeter such that (1) no point of B is interior to P ∗, (2) no point of P is exterior
to P ∗, and (3) P ∗ ⊆ P .

P ∗

Q(v)

bv

av v

e(v)

Figure 3.4: The (degenerate) simple polygon P ∗ is shaded and lies inside the black
boundary of the input polygon P . The red points are vertices of P and of P ∗, and
the blue points (hollow circles) that were inside P are excluded from P ∗, lying within
pockets, each of which is formed by the relative convex hull of the blue points within
it.

We begin by stating a structure lemma, which forms the basis for our algorithm
(see Figure 3.4):

Lemma 10 The polygon P ∗ is a (possibly degenerate) simple polygon whose vertices
are either red points (of P ) or blue points (of B). Each red point of P appears at
least once (and at most twice) as a vertex of P ∗. Each blue vertex, v, of P ∗ is
necessarily a reflex vertex of P ∗ and is associated with an edge of P , e(v) = avbv,
which is the lid of the pocket, Q(v), associated with v. Q(v) is a simple polygon and
is one of the connected components of the difference P \ P ∗. The boundary of Q(v)
consists of the lid edge e(v) = avbv, together with a polygonal chain of red and blue
vertices; Q(v) is the relative convex hull of the set {av, bv} ∪ (B ∩Q(v)).

In general, P ∗ is a degenerate simple polygon, with ‘pinch points’ at red vertices
that arise along the boundary of a relative convex hull of blue points within a pocket.
Such pinch points appear twice in a boundary traversal of the vertices of P ∗.

Let πP (u, v) denote the geodesic path within P from u ∈ P to v ∈ P . We note
that, by the defining property of relative convex hulls, each blue vertex v that appears
on the boundary of a pocket Q = Q(v) is geodesically visible to the endpoints, av
and bv, of the lid of the pocket Q: πP (v, av) ⊂ Q and πP (v, bv) ⊂ Q.

Since P ∗ is a simple polygon, it has a triangulation T , whose diagonals join
pairs of vertices of P ∗. (The existence of a triangulation holds even though P ∗ is
potentially degenerate.) Our algorithm is a dynamic programming algorithm that
searches for an optimal polygon P ∗, together with a triangulation of it.
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Our dynamic programming algorithm defines a value function, f(·), which assigns
to each subproblem the cost of an optimal solution of the subproblem. In order
to describe what goes into defining a subproblem, consider a diagonal, uv, of the
triangulation T of P ∗. We consider uv to partition P ∗ and T into the ‘done’ and the
‘yet-to-be-done’ portion of the triangulated optimal solution. The endpoints of uv
are vertices of P ∗, which may be red or blue. In the case that one or both are blue,
we will also need to specify the identity of the lid of the pocket associated with the
blue vertex; this permits us to partition the region P , within which the blue points
are located that need to be excluded in the optimal enclosure P ∗.

For a blue vertex u of P ∗, we let aubu = e(u) be the lid of the pocket Q(u),
with au preceding bu in clockwise order around P ; for a red vertex u, we define
au = bu = u, and Q(u) = u, for convenience. Then, the ‘done’ and the ‘yet-to-be-
done’ portions of P are separated by a polygonal path, πP (bu, u), uv, πP (v, av), which
is the concatenation of the geodesic path πP (bu, u) ⊂ Q(u), the diagonal uv ⊂ P ∗,
and the geodesic path πP (v, av) ⊂ Q(v). The subproblem associated with the ‘state’
(bu, u, v, av) is to compute a minimum-length red-blue separator (polygonal path)
that starts at u, ends at v, lies inside P , encloses all red vertices of P going clockwise
from bu to av, and excludes the set Bbu,u,v,av

of blue points within P that lie to the
left of the polygonal path πP (bu, u), uv, πP (v, av). We let f(bu, u, v, av) be the length
of such a shortest separator; i.e., f(bu, u, v, av) is the value (or cost) associated with
the subproblem.

For any diagonal, uv, of P ∗ in the triangulation T , there is a triangle, ∆uvw,
to the left of the oriented diagonal uv. We can view this triangle (i.e., the choice
of vertex w) as the optimal choice in the dynamic program. By optimizing over
all choices of w, we get a recurrence relation (the Bellman equations) that must be
satisfied by the value function f .

We distinguish several cases, depending on the color of the endpoints u and v:

(1) u and v are both blue. Necessarily, u and v lie on different pockets, by the
relative convexity of pockets, since a diagonal uv is, by definition, internal to
P ∗. There are several subcases according to the choice of w:

(a) w is a blue vertex on a different pocket, with lid e(w) = awbw; see
Figure 3.5. Then, there are two new subproblems, (bu, u, w, aw) and
(bw, w, v, av). We define

f (1a)(bu, u, v, av) = min
w∈W (1a),aw∈[bu,av)

[f(bu, u, w, aw) + f(bw, w, v, av)] ,

where [bu, av) indicates the half-closed interval of vertices of P in the
clockwise listing from bu to av, and W (1a) is the subset of Bbu,u,v,av

for
which no blue point lies inside or interior to an edge of the triangle ∆uvw.
(We can tabulate in advance the set of all such triples of blue points.)

(b) w is a blue vertex on the same pocket as u; see Figure 3.6. Then, there is
one new subproblem, (bw = bu, w, v, av). We define

f (1b)(bu, u, v, av) = min
w∈W (1b)

[|uw|+ f(bu, w, v, av)] ,

where W (1b) is the subset of Bbu,u,v,av
for which no blue point lies inside

or interior to an edge of the triangle ∆uvw, and uw lies inside P .
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Figure 3.5: A step of the dynamic pro-
gram: u and v are blue (hollow cir-
cles), and w is blue and lies on a dif-
ferent pocket.
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Figure 3.6: A step of the dynamic pro-
gram: u and v are blue, and w is blue
and lies on the same pocket as u.

(c) w is a blue vertex on the same pocket as v. This case is analogous to case
1b and leads to a similarly defined function f (1c).

(d) w is a red vertex, with both uw and wv being (internal) diagonals of P ∗;
see Figure 3.7. Then, there are two new subproblems, (bu, u, w, aw) and
(bw, w, v, av). We define

f (1d)(bu, u, v, av) = min
w∈(bu,av)∩W (1d)

[f(bu, u, w, w) + f(w,w, v, av)] ,

where (bu, av) indicates the open interval of vertices of P in the clockwise
listing from bu to av, and W (1d) is the set of red points for which no blue
point lies inside or interior to an edge of the triangle ∆uvw.

(e) w is a red vertex, with uw an edge of P ∗, namely the first link in the
geodesic path πP (u, bu); see Figure 3.8. Let w′ be the (red) successor of
w in the geodesic path πP (u, bu); possibly, w′ = bu. Then, there are two
new subproblems, (bu, w

′, w, w) and (w,w, v, av). We define

f (1e)(bu, u, v, av) = min
w∈[bu,av ]∩W (1e)

[|uw|+ f(bu, w
′, w, w) + f(w,w, v, av)] ,

where [bu, av] indicates the closed interval of vertices of P in the clockwise
listing from bu to av, and W (1e) is the set of red points for which no blue
point lies inside or interior to an edge of the triangle ∆uvw.

(f) w is a red vertex, with wv an edge of P ∗, namely the first link in the
geodesic path πP (v, av). This case is analogous to Case 1e and leads to a
similarly defined function f (1f).

(2) u and v have different colors (say, u is red and v is blue). There are subcases
depending on the choice of w:

(a) w is blue, lying on a different pocket as v; see Figure 3.9. As in Case 1a,
we obtain a value function f (2a) by optimizing over choices of w and lid
awbw, requiring triangle ∆uvw to be blue-free (except at its vertices).
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Figure 3.7: A step of the dynamic pro-
gram: u and v are blue, and w is red,
with uw and wv being (internal) di-
agonals of P ∗.
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Figure 3.8: A step of the dynamic pro-
gram: u and v are blue, and w is red,
with uw an edge of P ∗ (the first link
in the geodesic path πP (u, bu)).
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Figure 3.9: A step of the dynamic pro-
gram: u is red, v is blue, and w is blue
and lies on a different pocket.
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Figure 3.10: A step of the dynamic
program: u is red, v is blue, and w is
blue and lies on the same pocket as v.
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Figure 3.11: A step of the dynamic
program: u is red, v is blue, and w is
red. In this particular case, w is the
clockwise successor of u around P , but
it could be that uw is a diagonal of P ∗,
in which case a nonvacuous subprob-
lem is specified by (u, u, w, w).
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Figure 3.12: A step of the dynamic
program: u and v are red, and w is
blue.
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(b) w is blue, lying on the same pocket as v; see Figure 3.10. As in Cases 1b
and 1c, we obtain a value function f (2b) by optimizing over choices of w,
requiring triangle ∆uvw to be blue-free (except at its vertices).

(c) w is red, lying in the interval (u, av]; see Figure 3.11. As in Cases 1b
and 1c, we obtain a value function f (2c) by optimizing over choices of w,
requiring triangle ∆uvw to be blue-free (except at its vertices). If w is
the clockwise successor of u around P (as it is in the figure), then the
value of the corresponding vacuous subproblem, (u, u, w, w), is defined to
be the Euclidean length, |uw|, of edge uw.

(3) u and v are both red vertices; see Figure 3.12, where one of the two possible
subcases (that in which w is a blue vertex) is shown. The corresponding
subcases, 3a and 3b, are handled analogously to above, resulting in value
functions f (3a) and f (3b), corresponding to whether w is blue or red.

Then, the overall optimization to compute f optimizes over all of the above
subcases, 1a-1f, 2a-2c, and 3a-3b.

The correctness of the dynamic programming algorithm follows by induction.
The running time of the algorithm is O(m3n3), since there areO(n2m2) choices of

state (bu, u, v, av) and there are at most O(mn) choices of actions (when we optimize
over choices of w and aw).

We summarize our result in the following theorem:

Theorem 7 For a simple polygon P with n vertices and m ≥ 1 blue points in P , we
can compute in O(m3n3) time the minimum-perimeter polygon P ∗ ⊆ P that contains
all vertices of P and has the blue points either outside or on its boundary.

Finally, we remark that, at a cost of increasing the complexity of the state space
by a factor of k, and increasing the complexity of the action space also by a factor of
k (in order to specify how to partition the ‘budget’ k), we can extend our results to
optimize over red-blue separators that allow up to k ≤ m misclassified blue points
remaining inside P ∗, resulting in

Theorem 8 For a simple polygon P with n vertices and m ≥ 1 blue points in P ,
we can compute a minimum-perimeter polygon P ∗ ⊆ P , allowing up to k ≤ m
misclassified blue points to remain inside P ∗, in time O((k + 1)2m3n3).

Several blue and red points in the interior of P

We next give an algorithm that can handle m red and blue points inside a red
polygon P with n vertices. The algorithm is fixed-parameter tractable: it takes
O(Cm logm ·n) time, where C is some constant. Hence, if m is constant, this solution
is more efficient than using dynamic programming.

Let R and B be the sets of red and blue points inside P , respectively, and let
m = |R| + |B|. The structure of the solution is determined by a partitioning of
R ∪ B into groups; see Figure 3.13. One group contains points of R ∪ B that do
not appear on the boundary of P ∗. In Figure 3.13, this group contains v, w, x, and
y. For the other groups, the points are in the same group if they lie on the same
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Figure 3.13: Structure of an optimal subpolygon when both blue (hollow) and red
(solid) points are inside the original red polygon P .

chain that forms a pocket, together with some lid. On this chain, points from B
must be convex and points from R must be concave for the pocket. Besides points
from R ∪B, the chain consists of geodesics between consecutive points from R ∪B.
For all points in the group not used on chains, all points that come from B must be
in pockets, and all points that come from R may not be in pockets (they must lie
inside P ∗).

For a fixed-parameter tractable algorithm, we try all options for R ∪ B. To this
end, we generate all permutations of R ∪ B, and all splits of each permutation into
groups. The first group can be seen as the points that do not contribute to any chain.
For any other group, we get a sequence of points (ordered) that lie in this order on
a chain. We compute the full chain by determining geodesics between consecutive
points, and determine the best edge of P to be replaced by this chain (we need one
more geodesic to connect to the first point and one to connect to the last point of the
chain). The best edge of P is the one with the smallest length increase. We repeat
this for every (ordered) group in the split permutation, resulting in a candidate
polygon P (∗). Then we test if P (∗) is (degenerate) simple, if the blue points of the
first group are outside P (∗), and the red points of the first group are inside P (∗). If
so, P (∗) is one of the real candidates from which we want to find one with minimum
perimeter.

Theorem 9 For a simple polygon P with n vertices, and m ≥ 1 red and blue points
inside it, we can compute the minimum-perimeter subpolygon P ∗ ⊆ P that contains
all vertices of P and all red points, and has the blue points outside or on its boundary,
in O(Cm logm · n) time, for some constant C.

Proof: Each of the m! permutations of R ∪ B gives rise to 2m−1 splits, which
amounts to O(Cm logm

0 ). For each permutation and split we can compute P ∗ in

O(mn) time. Clearly, O(Cm logm
0 ·mn) = O(Cm logm · n) for C > C0. �

Remark: The algorithm can easily be adapted to deal with up to k misclassified
red and blue points in R and B within the same time bound.

Remark: If P is convex and there are only blue points inside P , we can improve
the running time to O(Cm ·n) by considering crossing-free partitions of B only. We
can prove, in a similar way as in Lemma 8, that in an optimal solution, two chains
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Figure 3.14: The absolute angular change of the simple polygon shown is the sum
of the highlighted angles.

cannot intersect, and hence we need only consider partitionings into groups whose
convex hulls do not intersect. There are only O(Cm) crossing-free partitions [154].

3.2.3 Minimizing absolute angular change

Getting all blue points out of P and at the same time minimizing the perimeter
length of the red region may in some cases lead to a highly detailed, fjord-like
boundary, which is not desirable. One way to overcome this problem is, as already
stated, to consider up to k blue points as misclassified and to allow them to remain
inside the red region. Another way is to minimize not the perimeter length, but
the total amount of ‘twists and turns’ of the boundary. We define the absolute
angular change (or total turn, as it has been called in the study of bicriteria path
optimization [11, 136]); see Figure 3.14.

Definition 4 The absolute angular change of a polygon is the sum of the absolute
value of the angle between the extension of an edge and its successor edge, when
walking counterclockwise along the polygon.

It is easy to see that the absolute angular change equals 2π in case of a convex
polygon and is strictly larger than 2π in case of any other simple polygon.

Now the problem statement is as follows. We wish to determine the subpolygon
P ∗ ⊆ P that does not contain any blue points in the interior, nor any red points in
the exterior and has smallest absolute angular change.

After an examination of the four possible cases (one or more blue points inside
P with none or several red points inside P ) we find that all the methods that were
presented in Subsections 3.2.1 and 3.2.2 can easily be adapted to find the solution
with the smallest absolute angular change. The running times for all methods remain
the same.

3.3 Recoloring Approach in Detail

In the adaptation approach, we changed the boundary of the red region to bring
blue points to the outside. However, if a blue point p is surrounded by red points, it
may have been classified wrongly and recoloring it to red may lead to a more natural
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boundary of the red region. Similarly, red points surrounded by blue points may
have been classified wrongly and we can recolor them to blue.

In this section we present schemes for recoloring the given points, that is, as-
signing a new inside-outside classification. The starting point for our schemes is as
follows: We are given a set P of n points, each of which is either red or blue. We
first compute the Delaunay Triangulation DT(P ) of P . In DT(P ), we color edges
red if they connect two red points, blue if they connect two blue points, and green
otherwise. A red point is incident only to red and green edges, and a blue point is
incident only to blue and green edges. To formalize that a point is surrounded by
points of the other color, we define:

Definition 5 Let the edges of DT(P ) be colored as above. Then the green angle φ
of p ∈ P is

• 360◦, if p is only incident to green edges,

• 0◦, if p has at most one radially consecutive incident green edge,

• the maximum turning angle between two or more radially consecutive incident
green edges otherwise.

We recolor points only if their green angle φ is at least some threshold value
Φ. Note that if Φ has any value less than 180◦, then it may be that a point is
recolored red and blue indefinitely, with no termination. (A simple example consists
of red points at (−ε, 1) and (−ε,−1), blue points at (ε, 1) and (ε,−1), for some
small, positive ε, and a point at (0,0), which repeatedly changes color if Φ < 180◦.)
So we assume in any case that Φ ≥ 180◦; a suitable value for the application can
be found empirically. After the algorithm has terminated, we define the regions as
follows. Let M be the set of midpoints of the green edges. Then, each Delaunay
triangle contains either no point or two points of M . In each triangle that contains
two points of M , we connect the points by a straight line segment. These segments
define the boundary between the red and the blue region. Note that each point of
M on the convex hull of the point set is incident to one boundary segment while
the other points of M are incident to exactly two boundary segments. Thus, the set
of boundary segments consists of connected components that are either cycles, or
chains that connect two points on the convex hull. An alternative is to choose the
separating polygon based on relative convex hulls. We define the perimeter of the
separation to be the total length of the boundary cycles and chains. The intuition
behind this approach is that the perimeter decreases with most recolorings and that
we end up with a compact shape that separates the red and blue points. To get an
even more compact shape in our experiments we defined the boundary segments via
a point at a constant small distance from the red endpoint of each green edge. For
green edges that were shorter than the fixed distance, we used the midpoint.

Before we present different recoloring schemes, we make the following basic ob-
servation.

Observation 1 If we can recolor a blue point, then we do not destroy this option if
we first recolor other blue points. We also cannot create possibilities for recoloring
a blue point if we have only recolored red points before.

We can now describe our first recoloring scheme, the preferential scheme. We first
recolor all blue points with green angle φ ≥ Φ red, and afterwards, all red points
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Figure 3.15: Illustrating Lemmas 11 and 12. Left: Either an edge or its opposite
is in any coloring set. Right: If vertices to the left of p do not change color, but p
does, then its color depends upon q. Points are shown solid (blue) or hollow (red) if
they do not change color anymore; half-solid points indicate points whose color may
still change.

with green angle φ ≥ Φ blue. It can occur that points that are initially blue become
red, and later blue again. However, with our observation we can see that no more
points can be recolored. Hence, this scheme leads to at most a linear number of
recolorings. As this scheme gives preference of one color over the other, it is not
fair and therefore not satisfactory. It would for example be better to recolor by
decreasing green angle, since we then recolor points first that are most likely to be
misclassified. Note that a red preferential scheme and a blue preferential scheme
exist. They give the recolorings with the maximum number of red and blue points,
respectively.

Another scheme is a true adversary scheme, in which an adversary may recolor
any point with green angle φ ≥ 180◦. First, we show that the adversary scheme
terminates after at most an exponential number of steps.

We observe that points on the boundary of the triangulation can be recolored at
most once: such a point p is on the convex hull, and any edge sequence with angle
greater than π must include both boundary edges incident to p. Thus, p can be
recolored only to the color its two neighbors on the hull already have. Therefore,
each point on the convex hull is recolored at most once.

Consider an edge pq with p left of q. Unless q is the rightmost point on the
convex hull, we can choose an opposite edge qr such that there is no edge between
qr and the ray from q that goes in the direction opposite p, which is drawn dashed
in Figure 3.15 (left). Fix a particular sequence of recoloring steps. If the color of
point p is changed at step j, let Cq(j) denote the coloring set, which is the maximal
sequence of angularly consecutive green edges incident to q. Each coloring set for q
must contain an edge or its opposite:

Lemma 11 For any pair of an edge pq with its opposite qr, if point q changes color,
then q receives either the color of p or of r.

Proof: By the definition of an opposite edge, any coloring set Cq(j) that does not
contain pq must include the opposite edge qr for its angle to be at least π. �
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To show that any sequence of recoloring steps converges, we study the colors for
a monotone chain: Starting with any edge p0p1, choose a chain of vertices p0, . . . ,
pm, ordered by x-coordinate, such that pipi+1 is opposite pi−1pi, for all 0 < i < m.
This chain will end with pm on the convex hull. Define the color-change number
of this chain to be the number of integers 0 < i ≤ m for which vertices pi−1 and
pi have different colors. Lemma 11 implies that recoloring of the interior vertices
of this chain (i.e. vertices p1, . . . , pm−1) never causes the color-change number to
increase.

We can start considering the sequence after the convex hull vertices have changed
color. By starting a little inside the hull, we can show that the color-change number
for some monotone chain must decrease.

Lemma 12 Fix an integer j > 0 and let p be the point with smallest x-coordinate
of all the points that are recolored in steps ≥ j. Then point p is recolored a finite
number of times.

Proof: If p is recolored once, then the lemma is trivially true, so assume that p is
recolored at least twice. Note that p cannot be on the convex hull.

We claim that p always receives the color of a point q to its right. But this would
imply that the color-change number of a chain beginning with edge pq decreases
with each recoloring, so the maximum number of recolorings of p is the number of
edges in such a monotone chain. Thus, it is sufficient to prove this claim.

Let j1 and j2, with j ≤ j1 < j2, denote the next two recoloring steps for p. The
coloring sets Cp(j1) and Cp(j2) contain edges to neighbors to the left of p that have
different colors, as shown in Figure 3.15 (right), since points to the left of p cannot
change color by assumption. Thus, there is a wedge left of p between two different
colors that cannot be contained in any coloring set Cp(i) for steps i ≥ j. All such
coloring sets for p span the reflection of this wedge through p, which is shown shaded
in Figure 3.15 (right). Any edge pq that goes to the right inside this wedge, or is the
next edge clockwise or counterclockwise of it, is contained in all coloring sets for p
after step j, which means that p receives the color of q when recolored. �

For the upper bound, observe that there are 2n possible color assignments to
points. As there is no cycling in the adversary scheme, that means it is not possible
to return to a color assignment that has already occurred before, so the adversary
scheme is finite. Therefore, the upper bound on the number of recolorings is 2n− 1.

Second we show that there exists a point set such that the number of recolorings
is at least Ω(n2). We arrange the n points as n/3 equilateral triangles that have the
same center and orientation, but different sizes, so they contain each other. Each
triangle initially only has points of one color, and the triangles have alternating
colors from smallest to largest; see Figure 3.16. We call these equilateral triangles
layers, to avoid confusion with the Delaunay triangles for this point set. The layers
are numbered 1 and up from the inside out.

The point set is degenerate, and several Delaunay triangulations are possible.
The freedom is only how to triangulate between two consecutive layers. We do so
asymmetrically, as shown in the figure. For any layer i, one of its points has edges
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Figure 3.16: The construction for the quadratic lower bound of recolorings.

to all three points of the enclosing layer i+1, and this point has green angle > 180◦.
We can choose the relative sizes of the layers such that points on layers more to the
inside always have the point with the largest green angle. Furthermore, we can make
sure that after recoloring a point of a layer, the other two points will be recolored
next since they will then have the largest green angle.

We choose the first (innermost) layer to be blue. By construction its points will
be recolored first to be red (first the point with degree 5, then the point with degree
4, and then the point with degree 3), resulting in a first and second layer that are
red. Now a point of the second layer has the largest green angle (the point that has
edges to all three blue points of the third layer), and consequently the points of the
second layer will be colored blue. Then the first layer will be colored blue again. In
the next phase the first three layers will be colored red. Repeating this construction
gives the lower bound of Ω(n2). We can summarize:

Theorem 10 Given any triangulation T of a finite number of points, each colored
in one of two colors, then any sequence of recolorings is finite and the number of
recolorings is at most 2n − 1. There exists a triangulated colored point set such that
the number of recolorings is Ω(n2).

Finding a polynomial upper bound on the number of recolorings is difficult. The
lower bound example shows that the total green angle need not decrease during ev-
ery recoloring, so we cannot use this argument to bound the number of recolorings.
Similarly, the number of green edges need not decrease. There are examples of re-
colorings that increase the number of points with green angle ≥ 180◦. Recoloring a
point with green angle ≥ 180◦ can also increase the separation perimeter.

To select a practical recoloring scheme for implementation, we choose one that
makes a reasonable choice on which point to recolor next, namely the one with
the largest green angle. Furthermore, we only want to recolor a point if this leads
to a decrease in the perimeter of the separating polygon. We call this the angle-
and-perimeter scheme. Even with this choice, the best known upper bound on the
number of recolorings is still 2n − 1.

To implement the algorithm efficiently, we maintain the subset of points that
can be recolored, sorted by decreasing green angle, in a balanced binary search tree.
We extract the point p with largest green angle, recolor it, and recolor the incident
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edges. This can be done in time linear in the degree of p. We must also examine
the neighbors of p. They may get a different green angle, which we must recompute.
We must also test if recoloring a neighbor still decreases the perimeter length. This
can be done for each neighbor in time linear in its degree. We summarize:

Theorem 11 The running time for the angle-and-perimeter recoloring algorithm is
O(n+ Z · n logn), where Z denotes the actual number of recolorings.

3.3.1 The angle-and-degree scheme

In the angle-and-degree scheme we use the same angle condition as before, addition-
ally we require that the number of green edges decreases. For any red (blue) point
p, we define δ(p) to be the difference between the number of green edges and the
number of red (blue) edges incident to p. We recolor a point if its green angle φ
is at least some threshold Φ and its δ-value is larger than some threshold δ0 ≥ 1.
We always choose the point with largest δ-value, and among these, the largest green
angle. In every recoloring step the number of green edges in DT (P ) decreases by
δ(p), so we get a linear number of recolorings.

Theorem 12 The running time for the angle-and-degree recoloring algorithm is
O(n2 logn).

Remark: In practice, vertices in Delaunay triangulations have constant degree. In
this case we obtain running times of the two recoloring schemes of O((n+Z) logn)
and O(n log n).

3.4 Experiments

Using Spirit, we received four data sets with different numbers of red and blue
points (in parentheses). The data sets are Eastanglia (14, 57), Midlands (56, 52),
Southeast (51, 49), and Wales (72, 54). The red points were determined by Web
searches using www.google.uk in September 2004 and trigger phrases such as ‘lo-
cated in the Midlands’ and then extracting the names of the corresponding towns
and cities in the search results as described in the introduction to this chapter and
in [8]. Notice that Wales is not an imprecise region, but it can be used for the
evaluation of our delineation methods.

We have implemented both the adaptation and the recoloring approaches using
C++, and the libraries Leda, Cgal and Qt. Although we made no attempt to
minimize computation time, each of our tests took only a few seconds on an Intel-
Xeon with a 2.80-GHz CPU and 2 GB memory under Linux-2.6. We show and
discuss a few screen shots. Figure 3.17 features the adaptation method for two
different values of α. The corresponding radius-α disk can be found at the right of
each subfigure. Regarding the recoloring method we give an example of the angle
scheme and of the angle-and-degree scheme; see Figure 3.18. In each figure blue
points are marked by hollow circles and red points by black circles. Due to the
α-shape that is used as initial region in the adaptation method, the area of the
resulting region increases with increasing α; see Figure 3.17. We found that good
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Figure 3.17: Regions for Wales computed by the adaptation approach. The α-values
are shown as radius-α disks right of the figures.

values of α have to be determined manually. For smaller values of α, the α-shape
is likely to consist of several connected components, which leads to strange results;
see Figure 3.17 (left). Here, the largest component captures Wales quite well, but
the other components seem to make little sense. For larger values of α the results
tend to change very little, because then the alpha shape becomes similar to the
convex hull of the red points. However, the value of α may not be too large since
then outliers are joined in the α-shape and cause strange effects. For example, in
Figure 3.17 (right) Wales has an enormous extent. When the initial value of α was
well chosen, the results matched the region quite well for all our data sets, as far as
this can be judged at all for imprecise regions.

For the angle scheme we found the best results for values of Φ that were slightly
larger than 180◦, say in the range 185◦–210◦. Larger values of Φ severely restrict
color changes. This often results in a large perimeter of the red region, which is not
desirable. We compared the results of the angle scheme and of the preferential-blue
and preferential-red scheme for Φ = 185◦.

The preferential-red scheme recolors all eligible points from blue to red first and
then all eligible points from red to blue. Only slight differences occurred on all four
data sets.

The results strongly depend on the quality of the input data. Figure 3.18 shows
this effect: Although Wales is contained in the resulting region, the region is too
large. Too many points were classified falsely positive. The quality of the Eastanglia
data was better, and the resulting region nearly matches the extent of Eastanglia
(as generally considered).

For a small degree threshold, say δ0 ≤ 4, the angle-and-degree scheme yielded
nearly the same results as the angle scheme. This occurs because points having a
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Figure 3.18: Region for Wales recolored by the angle scheme with Φ = 185◦ (left)
and for Eastanglia recolored by the angle-and-degree scheme with Φ = 200◦ and
δ0 = 4 (right).

green angle larger than 180◦ are likely to have a positive δ-value. For increasing
values of δ0 the results depend less and less on the angle threshold Φ. If a point has
a δ-value above 4, then its green angle is usually large anyway. However, if the main
goal is not the compactness of the region, or if the input is fairly reliable, larger
values of δ0 can also yield good results; see Figure 3.18 (right), where only the two
light-shaded points were recolored.

Comparing the adaptation and recoloring approaches shows that the two ap-
proaches behave similarly on the inner part, the ‘core’, of a point set. The main
differences occur along the boundaries. The adaptation approach may produce
more fjord-like boundaries than the recoloring approach. For example, compare
Figure 3.17 (right) and Figure 3.18 (left).

Since Wales is a region with known administrative boundaries, we can compare
it to the polygons we derived using our algorithms. In Table 3.2 we contrast the
following data (related to the area of Wales): Wales correctly identified, Wales not
identified, and regions incorrectly identified as Wales. On first glance the recoloring
method performs better, as it identifies almost all of Wales correctly. However, this
comes at the high cost of identifying regions twice as big as Wales itself incorrectly
as Wales. The adaptation method yields the best result for α = 0.0068, where the
correctly identified part of Wales lies at 80% and the incorrectly as Wales identified
region is only half the size of Wales. For smaller values of α both correctly and
incorrectly identified regions decrease, whereas for larger values of α mainly the
regions incorrectly identified as Wales increase. See Figures 3.19 and 3.20. Note,
however, that a considerable part of the boundary of Wales is coast, and we do not
have blue points in the water by default. This influences the results.

We now investigate how the parameters α and Φ of the adaptation and recoloring
approaches, respectively, influence shape measures for polygons that are commonly
used in geography [73, 130]. Such measures are compactness (A/r2), circularity ratio
(A/p2), and form ratio (A/d2), where A is the area of a given polygon P , r is the
radius of the smallest enclosing circle of P , p is the perimeter of P , and d is the
diameter of P . It turned out that the results of our experiments did not vary much
between the different measures, so we only show how the compactness of the red
region in our four data sets depends on α and Φ; see Figure 3.21. In the left figure,
the sudden jumps show where the number of points that are classified as outliers
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Figure 3.19: The red regions of the input data of Wales (left) and the angle scheme
with preference ‘largest green angle’ for Φ = 215◦ (right).

Figure 3.20: The red regions of Wales of the adaptation method for α = 0.0035
(left), and α = 0.0068 (right).
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Table 3.2: Comparison of derived regions of Wales with administrative borders of
Wales. Percentages are given with respect to the actual size of Wales.

% of incorrectly
% of Wales % of Wales identified
identified not identified as Wales

Adaptation method
α = 0.0035 52.2 47.8 23.6
α = 0.0045 62.3 37.7 33.1
α = 0.0068 81.6 18.4 41.1
α = 0.008 81.6 18.4 46.7
α = 0.0114 83.5 16.5 103.1
Recoloring method
Φ = 185 97.1 2.9 243.7
Φ = 215 96.3 3.7 190.1
Φ = 260 97.2 2.8 240.8
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Figure 3.21: Compactness A/r2 for various values of α (left) and Φ (right).

changes. Since the recoloring method can give rise to several red regions, we only
counted the largest one in Figure 3.21 (right).

Finally, we investigate the performance of the angle scheme for the recoloring
approach on random data. We are especially interested in the number of recolorings
under the angle scheme, since we have not been able to show a polynomial upper
bound on the number of recolorings. In order to imitate real instances we draw the
point sets from the following distribution: from a given number n of points we draw
n/2 blue points uniformly distributed from the unit square centered at the origin O,
n/8 red points from a square of side length 7/8 centered at O, and the remaining
3n/8 red points from a circle of radius 1/4 also centered at O. For an example
with n = 200, see Figure 3.23 (left). The result of the angle scheme recoloring for
Φ = 210◦ is depicted in Figure 3.23 (right).

Figure 3.22 (left) shows how the number of recolorings (y-axis) depends on the
angle threshold Φ (x-axis) for random data sets of size n = 800. Figure 3.22 (right)
shows how the number of recolorings depends on the number of points (x-axis) for a
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Figure 3.22: Number of recolorings as a function of Φ (left) and as a function of the
number of points (right) respectively for random data.

Figure 3.23: The red regions of a random point set before (left) and after (right)
recoloring by the angle scheme for Φ = 210◦.

fixed angle threshold Φ = 210◦. Both figures show how often blue nodes were colored
red, how often red nodes were colored blue, and the sum of these two numbers. All
numbers were averaged over 30 random point sets of a given size or for a given
threshold. The error bars show the minimum and the maximum total number of
recolorings that occurred among those 30 point sets. It is interesting to see that
the minimum, maximum, and average number of recolorings do not vary much, and
that the number of recolorings seems to scale perfectly with the number of points.

The strength of the recoloring method is its ability to eliminate false positives
provided that they are not too close to the target region. Since the differences
between the various schemes we investigated seem to be small, a scheme that is
easy to implement and terminates quickly can be chosen, e.g., the preferential-red
or preferential-blue scheme.

3.5 Concluding Remarks

This chapter discussed the problem of computing a reasonable boundary for an
imprecise geographical region based on noisy data. The methods presented here
can also be used to delineate the extent of other imprecise regions, e.g., regions
where a certain dialect is spoken, an ethnic minority dominates or a traditional
custom prevails. Using the Web as a large database, it is possible to find cities
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and towns that are likely to be inside and cities and towns that are likely to be
outside the imprecise region. We presented two basic approaches to determine a
boundary. The first approach formulated the problem as a minimum perimeter
polygon computation, based on an initial red polygon and additional points that
must be outside (blue) or stay inside (red). For the case of one blue point inside the
red polygon we presented a linear time algorithm, and an O(n logn) time algorithm
if there are also red points that must stay inside. If there are m blue points and no
red points inside, we gave an O(m3n3) time algorithm, and a variation that allows
misclassified points. For the case of m red and blue points inside, we presented a
fixed-parameter tractable algorithm running in O(Cm logm ·n) time. This algorithm
can also be adapted to deal with misclassified points.

The second approach involved changing the color, or inside-outside classification
of points if they are surrounded by points of the other color. We proved a few lower
and upper bounds on the number of recolorings for different recoloring criteria.
An interesting open problem is whether the most general version of this recoloring
method has a polynomial upper bound on the number of recolorings. In tests, the
number of recolorings was always less than n.

We also presented test results of our algorithms, based on real-world data and
random data. The real-world data included places obtained from trigger phrases for
several British regions. Indeed the data appeared to be noisy, which is one reason
why the boundaries determined were not always acceptable. Using post-processing,
it is possible to improve the shape of the boundaries in various ways. Also, with
the expanding of the Web, more reliable data may present itself automatically, when
smaller towns also make their appearance on the Web and can be found using trigger
phrases.

A natural extension is to assign weights or confidence values with red and blue
points. Cities that appear many times in a trigger phrase are surely inside, and
cities mentioned often on the Web, but never in a trigger phrase, are almost surely
outside. For small towns not mentioned, the situation is less clear.



4 Computing Multiscale Gradient

and Aspect Maps

This chapter is the last of this thesis dealing with the delineation of imprecise geo-
graphical regions, and it is different from the two previous chapters. The regions we
will delineate in the following, are regions with gradient values in a certain interval
and regions with constant aspect values, which do not make much sense when used
stand-alone. However, for a geomorphologist, gradient and aspect present valuable
clues about a terrain, and she or he will be able to derive the boundaries of landforms
like hills, valleys, or mountain ranges.

Geomorphometry is concerned with the precise measurement and quantitative
description of the shape of landforms. Given a terrain, the most important measures
to classify landforms are slope, as well as profile curvature and plan curvature [157].
The value for slope at each point of the terrain is usually divided into gradient,
i.e. the steepness of the slope, and aspect, the cardinal direction in which the slope
faces. Using such measures and classifications, the goal is for example to derive
drainage maps, specify areas in mountains that have high danger of avalanches, or
study how a certain area has been formed.

Using some numerical value for gradient, and the classification convex or concave
for plan and profile curvature, it is possible to identify landforms like convergent and
divergent shoulders, footslopes, or crests, swales, and plains (see e.g. [61, 116, 133]).
Slope can also be used to compute shaded relief maps, for irradiance mapping [27],
and for parametric terrain classification.

Contour maps of terrains where each curve represents constant height values are
very common. Especially when the original data is not available, they are used
for example for digital terrain modelling [31, 44, 148]. However, as contour maps
lack morphometric information between the contour lines, the outcome may not be
satisfactory. Maps with curves representing constant gradient values — for simplicity
we will call them isogradients — or areas of constant aspect (isoaspects) can aid in
digital terrain modelling.

Other geomorphological features in terrains are critical lines. Critical lines are
features where the slope or curvature changes abruptly, like ridges and valleys. They
can be determined by identifying critical points such as maxima, minima, and sad-
dle points of the terrain, and connecting them [141]. Critical points can be detected
from their slope and curvature values [175], or using drainage network and catchment
area delineation [178]. For applications like extracting volcano-tectonic features it
is necessary to also find lines that define a break of slope without being a ridge or a
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channel

ridge

planar slope

Figure 4.1: The same point can be classified differently at different scales, based
on [65].

valley. These lines can be found with the method introduced in this chapter. The
terrain can also be partitioned into areas having the same curvature, and the critical
lines are identified as the boundaries of these areas [62]. Also for this application,
maps that give scale-dependent isogradient lines can be useful. An important in-
fluencing factor of geomorphometry is at which scale we are studying the terrain.
Visualization of a terrain at a large scale provides the most detail, and the smaller
the scale, the more information is lost due to generalization. Another problem for
the classification of landforms with respect to scale is that the morphometric class
may change with different scales. See Figure 4.1 taken from Fisher et al. [65]. The
scale of the terrain model also influences for example the area of a lake or the length
of a seashore. This influence can be crucial when the investigated spatial object
already has fuzzy boundaries [26, 37]. The book edited by Tate and Atkinson [161]
presents research on scale related issues in Gis.

As a new method that yields isogradient lines and isoaspect maps, we introduce
local gradient and local aspect for each point of a terrain. The basic idea is to define
the local gradient for a point based on some neighborhood of the point. The size
of the neighborhood can be chosen, which makes the definition scale dependent.
Our definitions yield a continuously changing value of the local gradient value on
for example Tins (Triangular Irregular Networks), whereas the standard definition
on a Tin does not yield continuity. Continuity is important for the generation of
isogradients.

Parametric terrain classification is concerned with the classification of landscapes
by e.g., land features, surficial materials or geomorphological processes. For this
application, it is important to determine generalized isogradient lines. These can
be computed in various ways. Firstly, we can generalize the terrain and then derive
isogradients from this. Alternatively, we can first derive the isogradients from the
terrain and then simplify them using line simplification. Our definitions provide a
third method.
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This chapter is structured as follows: In Section 4.1 we will introduce four dif-
ferent scale dependent definitions for local gradient and local aspect for every point
on a terrain. In the first two definitions for local gradient (aspect), we average all
gradient (aspect) values in a certain neighborhood around a point. We can either
apply uniform or non-uniform weighing for the averaging. These two definitions
lead to algorithms to compute local gradient (aspect) for every point on a terrain
with a running time of O(mn). Here, m denotes the maximum number of edges
intersected by the neighborhood of any point. In the third definition we choose
the local gradient at a point to be the maximum gradient value to any other point
inside the neighborhood. Local aspect is then defined by the vector to the point
that realizes this maximum. We can compute local gradient and local aspect for
the whole terrain in O(n ·m3+ε) time, where ε > 0 is an arbitrarily small constant.
The fourth definition for local gradient (aspect) at a point is the maximum average
gradient (aspect) over a diameter of the neighborhood. This definition does not lead
to an algorithm that can analytically derive a solution on a Tin, therefore we only
present a heuristic to compute approximate isogradients and isoaspects in O(nm)
time. These results are given in Section 4.2 and apply for a square neighborhood
around each point of a Tin. We have implemented all four methods for grid data
and we compare the results for different sizes of the neighborhood in Section 4.3.
Conclusions and an outlook on possible future work can be found in Section 4.4.

4.1 Definitions for Local Slope

Assume we are given a terrain T where every point has well defined values for slope.
By default, slope is defined by a plane tangent to the surface at any given point. It
consists of two components: the gradient, which is the maximum rate of change of
altitude, and the aspect, the compass direction of the maximum rate of change. We
will refer to these definitions as the standard definitions of gradient and aspect, and
denote them by F̂g(x, y) and F̂a(x, y), respectively. Usually, gradient is measured in
percent or degrees, and aspect in degrees, which are converted to a compass bearing.
From these given values we want to derive a scale dependent contour map with lines
or areas representing constant values of gradient or aspect. Throughout this chapter,
we will call them isogradients and isoaspects, respectively.

We introduce the notion of local slope, composed of local gradient and local aspect,
for each point p of the terrain T , using some neighborhood around p and denote them
by Fg(x, y) and Fa(x, y). A natural choice for such a neighborhood can be derived
from a disk in the xy-plane with some prespecified radius r, centered at p, which we
will project vertically onto the terrain T and denote by Dr.

It is obvious that the choice of the size of the neighborhood influences the re-
sulting isogradients and isoaspects and is therefore very important. If we choose a
small radius r, such that we take only points close to p into account, we expect to
get many, detailed isogradients. If we choose a large value for r, we expect to get
few, more smooth isogradients.

The basic idea is to define for every point p that is the center of a disk Dr the
local gradient and aspect depending on the points that lie inside Dr. We can do this
in the following four ways:
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1. Uniform weighing over the neighborhood Dr

2. Non-uniform weighing over the neighborhood Dr

3. Maximum value in the neighborhood Dr

4. Uniform weighing over a diameter in the neighborhood Dr

Note that standard gradient and aspect values need not be defined everywhere,
e.g., on the edges and vertices of a Tin. In this case we can either exclude these
points from the computation, or assign values from an adjacent triangle. All four
definitions for local gradient lead to continuous functions Fg(x, y) on the whole
terrain.

The local aspect value at each point is a function Fa(x, y) : R
2 → [0◦, 360◦) ∪

{Flat}, where the degree value is usually divided into a number of discrete classes
(e.g., North, East, West, South). The additional value Flat is assigned to horizontal
parts of the terrain, where the aspect is undefined. In this context, the aspect
function is continuous at p, if the aspect at p is Flat, or for every point in an ε-
neighborhood of p the aspect value changes only by a small amount δε. The first
two definitions given above lead to continuous functions Fa(x, y) for the local aspect,
the last two lead to not continuous functions.

We will first give the basic definitions and properties of local gradient and local
aspect for a circular neighborhood Dr with radius r at any point p of the terrain.

4.1.1 Uniform weighing over a neighborhood

Gradient

In the uniform weighing over the given neighborhood Dr, we compute the average
gradient sum of all points in Dr. The local gradient at a point p is defined by the
following equation:

Fg(p) =
1

area(Dr)

∫

p′∈Dr

F̂g(p
′) dxdy (4.1)

Here, p′ = (x, y) is some point in the neighborhood Dr, and F̂g(p
′) is the gradient

according to the standard definition.
Gradient is usually considered to be a scalar value. However, in the standard

definition, the gradient at p is derived from the tangent plane at p. Therefore, we
have the choice whether we use the scalar or the vector gradient F̂g(p

′) in Equa-
tion (4.1). The final, local gradient Fg(p) will always be represented as a scalar
value. The following example shows that this makes a difference. If we have two
equally sized, adjacent regions with the same standard gradient value, say 10, and
their outer normals pointing in opposite cardinal directions, say North and South,
we will get as local gradient the value 10, when treating standard gradient as a
scalar. Another way to look at it is to treat standard gradient as a 3-dimensional
vector at each point on the terrain T , and to compute the vector sum of all 3D
gradient vectors inside Dr. We take as local gradient at p the value represented by
the resulting vector, which gives as local gradient the value zero in this example.

When treating gradient as vector, and the neighborhood cuts off the terrain at
the same height everywhere at its boundary, the resulting gradient should indicate
gradient zero. In case of a piecewise linear terrain in two dimensions, we can achieve
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∂(Dr) ∂(Dr)

Figure 4.2: When the terrain is cut off at the same height at the boundary of Dr

(∂Dr), the resulting gradient vector should point vertically upwards, indicating a
value zero.

this by normalizing the y-component of the normal vectors to 1, before weighing it
with the projected length of the terrain. The local gradient at p is derived from
the weighted vector sum of all normal vectors. It is easy to show that in case of a
piecewise linear terrain in two dimensions, the local gradient is a vector that points
vertically upwards (see also Figure 4.2). Therefore, when treating the gradient as
a vector of the terrain, we normalize the z-component of the vector at every point
before integration.

In both cases, whether we treat the given gradient value as a scalar or as a vector,
it is easy to see that the uniform weighing leads to a continuous function Fg for local
gradient. Hence, isogradients will generally be closed loops or end at the boundary
of T .

Aspect

As we want the local aspect to correspond to the local gradient at each point p, we
will use the same uniform weighing and z-normalization as for the gradient given
above. When treating gradient as a vector, we get the same result by simply comput-
ing the resulting vector gradient at point p and deriving the aspect vector directly
from it. Note that we still need to project the result into the xy-plane and normalize
it onto the unit circle centered at p.

It is easy to see that for example on a Tin, the standard aspect values given
for each point may jump from one of the possible values to any other one as a
point passes an edge of the terrain. However, with our method of uniform weighing,
i.e., averaging over the neighborhood Dr, it is clear that the local aspect function
Fa becomes continuous, which means that it can only change to adjacent values (or
Flat) with respect to the circular scale of cardinal directions.
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Figure 4.3: Computing the non-uniform weight for one triangle of a Tin is equivalent
to computing the intersection of the weight cone with the prism erected on the
triangle.

4.1.2 Non-uniform weighing over a neighborhood

Gradient

In the non-uniform weighing we give a higher importance to points that are closer
to p and a lower importance to points that are closer to the rim of the disk Dr. We
do this by a weight that decreases linearly with the distance to p. The weight values
themselves form a cone with its tip at p. On the rim of Dr and outside Dr, the
weight is zero.

Computing the weighted average over all points p′ inside the diskDr is equivalent
to computing the height of the point on the cone C directly above p′ times the
standard gradient value at the point p′. See Figure 4.3 for an illustration of this
definition on a Tin.

Stated more formally, we get the following integral representing the local gradient
at point p:

Fg(p) =
1

vol(C)

∫

p′∈Dr

(h− h

r

√

x2 + y2) · F̂g(p′) dxdy (4.2)

Here, h denotes the height of the cone, r the radius of the disk, x and y are the
coordinates of a point p′ with respect to p = (0, 0), the center of Dr, and F̂g(p

′)
denotes the gradient at p′ according to the standard definition.

Again, we can treat the gradient value F̂g(p
′) as either a scalar or a vector. In the

first case we compute the local gradient value by integrating over all weighted values
and dividing by the total volume of the cone. In the second case, when treating
the gradient value as vector, we again need to normalize the z-component before
the weighing, and the local gradient value is a weighted vector sum as before. The
non-uniform weighing method also gives a continuous function Fg for local gradient.
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Aspect

For the local aspect vector at a point p, weighted non-uniformly over the disk, we
can use the same model with the linearly decreasing weight that corresponds to the
local gradient. The local aspect is the weighted vector sum with the resulting vector
at p, projected into the xy-plane and normalized onto the unit disk centered at p.

The model of non-uniform weighing also gives a local aspect function Fa that is
continuous, which means that its values can only change to adjacent values in the
classified situation.

4.1.3 Maximum value in a neighborhood

Gradient

In the maximum value method for a neighborhood Dr, we set the local gradient at
a point p to be the absolute maximum gradient value from p to any other point p′

inside Dr. The gradient between two points p and p′ in space is defined as their
z-distance divided by their Euclidean distance in the xy-plane, which leads to the
following definition for the local gradient at a point p:

Fg(p) = sup
p′∈Dr\{p}

distz(p, p
′)

√

distx(p, p′)2 + disty(p, p′)2
(4.3)

Note that this definition gives local gradient values that are at least as large as the
standard gradient definition. As the local gradient is not averaged, but depends
only on one single value, there is no distinction between a scalar or vector version.
Furthermore, note that the point p′ that gives the maximum gradient value may not
be unique. This model also leads to a continuous function Fg for local gradient.

Aspect

As local aspect at p we choose the vector between p and the point that gives the
maximum gradient and project it into the xy-plane and onto the unit circle centered
at p. When there is more than one point p′ giving the maximum gradient, the aspect
is generally not well-defined. A possible solution could be to choose the point p′ that
has the largest z-distance to p, but this is an arbitrary choice.

Note that this definition does not lead to a continuous local aspect function Fa,
as whenever the point of maximum gradient changes, the local aspect vector jumps
directly to the point of the new maximum. This means that the aspect value derived
from this vector can change abruptly, e.g., from the class North directly to the class
South, without passing through any intermediate classes or Flat first.

4.1.4 Uniform weighing over a diameter of the neighborhood

Gradient

The uniform weighing over a diameter method is in some way a combination of the
first and the third method presented in the previous subsections. As the standard
slope value is realized in one direction, it is natural to take points in only one
direction into account for the averaging in a local slope definition.
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We define as local gradient the maximum average gradient over all line segments
` that are diameters of Dr. Any such line segment ` has length 2r in case of a
circular neighborhood. The local gradient at a point p is defined by the following
integral:

Fg(p) = max
φ

1

2r

∫

p′∈`(p,φ)

F̂g(p
′)dxdy (4.4)

Here, φ denotes the angle of the line segment ` and the x-axis, and F̂g(p
′) denotes

the gradient at p′ according to the standard definition.
As we are again taking an average value for local gradient, we can treat the

gradient value F̂g(p
′) as either a scalar or a vector for the averaging. In the first case

we compute the local gradient value by integrating over all values and dividing by the
length of ` inside the neighborhood. In the second case, when treating the gradient
value as vector, we again need to normalize the z-component before integration, and
the local gradient value is a vector sum as before. The uniform weighing over a
diameter method also yields a continuous function Fg for local gradient.

Aspect

For local aspect, we use the corresponding definition as for gradient, i.e., we take
the line ` that leads to the maximum average gradient and compute the average
weighted aspect using the vectors from all points that lie on the line and inside Dr.
We need to project the resulting vector into the xy-plane and normalize it onto the
unit disk centered at p.

This definition of local aspect does not lead to a continuous function Fa. Al-
though the local gradient is a continuous function, the diameter leading to the max-
imum average gradient may change abruptly.

4.2 Algorithms for Local Slope and Isolines

In this section we will describe efficient algorithms to compute an explicit represen-
tation of the local gradient and local aspect on the whole terrain. This will allow
us to determine isogradients and isoaspects in a simple way. We will focus on pre-
senting the algorithms for a Tin. For the first two methods, where we compute the
weighted average, we need to know the area of projection of each triangle that is
intersected by the neighborhood. This area of intersection is given by a function in
the coordinates of p. In case of a circular neighborhood, this function may consist
of up to a linear number of terms, all involving square roots. Such functions gener-
ally cannot be simplified, and hence, the equations describing isogradients are too
complex to be used.

Therefore, we restrict ourselves to the case of a square neighborhood with side
length 2r, denoted byDr. In this case, the area of intersection is given by a quadratic
function, hence the problems mentioned above do not occur. We observe that all
algorithms can easily be adapted from square neighborhoods to regular polygons, if a
better approximation to a circular neighborhood is desired. Furthermore, our focus
will lie on computing the local scalar gradient for each method; however, computing
the local vector gradient and local aspect is very similar for all four methods.
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Figure 4.4: Left: The Minkowski sum (gray) of a triangulation and a square Dr

with fixed orientation. Right: The subdivision S, such that for any placement of a
reference point of Dr inside a cell of S the edges of Dr intersect the same features
of T ′.

Note that on the edges and vertices of a Tin, the standard gradient and aspect
are not defined. However, in our definitions of local gradient and aspect we assume
that every point inside the neighborhood has a value for gradient and aspect. We can
overcome this problem by either excluding these points from the neighborhood and
hence from the computation, or by assigning the value from any neighboring triangle.

As mentioned in the last paragraph, we want the local gradient at each point p
to be determined by a function Fg(x, y) → R expressed in the coordinates of p. It is
therefore natural to subdivide each triangle of the Tin into cells such that for each
point inside a cell, the function Fg(x, y) is determined by the same features, i.e., the
same edges or vertices of the Tin. Whenever the boundary of such a cell is crossed,
the list of features influencing Fg(x, y) changes. When this function is given in each
cell, it can be evaluated in constant time to compute the value for local gradient at
each point p. Also, for every chosen gradient value we can compute the isogradient
in one cell in constant time by setting the function of that cell equal to the chosen
value. The resulting equation gives the isogradient in that cell. We use fg(x, y) to
denote the function Fg(x, y) inside one cell only. All functions fg(x, y) for all cells
together define Fg(x, y).

Van Kreveld et al. show in [168] how to compute the placement space for a
general subdivision and a square, such that for each cell of the placement space a
reference point of the square can be placed such that the sides of the corresponding
square intersect only fixed sets of edges of the subdivision. They prove bounds on
the number of cells and on the running time for computing the placement space.

However, in our case we have a triangulation instead of a general subdivision,
and hence, we can achieve refined bounds. Let T be a Tin, which we project into
the xy-plane to get a planar triangulation T ′ with n edges. Let m be the maximum
number of edges in S that are intersected by any placement of a square Dr. This
number can be as large as O(n), but typically it is much smaller.

Analyzing the number of distinct placements of a square Dr with fixed size and
orientation in a triangulation T ′ can be achieved by considering the Minkowski sum



76 4. Computing Multiscale Gradient and Aspect Maps

of Dr and T ′. It can be visualized by placing the center of Dr (which is chosen to be
the reference point) at a vertex of T ′, sliding Dr along each edge of T ′, and taking
the union of all generated polygons. This is shown in Figure 4.4, left. Note that the
white triangles are not part of the Minkowski sum; they depict placements of the
square such that its sides do not intersect any of the edges of the triangulation. Any
point in T ′ can be covered by at most m Minkowski sums of Dr and an edge. This
is easy to see, as otherwise there must be at least one square intersecting more than
m edges of T ′. Furthermore, the boundaries of every pair of Minkowski sums can
have only two proper intersection points [96]. With these observations, we can use
a result of Sharir [153], which gives us an upper bound of Θ(mn) on the number of
combinatorially distinct placements of Dr on T ′.

We can improve the running time to compute the placement space of Dr on T ′.
First we compute the Minkowski sums of the triangulation T ′ with each corner of
a square Dr with side length 2r. This gives four equivalent triangulations, each
translated by +r or −r in x and y direction. As these triangulations are simply
connected and planar, we can directly use an algorithm of Finke and Hinrichs [64]
three times to compute their overlay in O(n + mn) = O(mn) time. To get the
final subdivision S (see Figure 4.4, right), we also need to insert the square centered
at each original vertex of the triangulation. We separately insert the vertical and
horizontal sides of Dr, which each connect two of the translated vertices. We do
so by traversing the cells of the subdivision S between the two vertices that are
connected, and adding a new edge and a vertex for every intersection point of a side
of a square with an existing edge of the subdivision. Observe that every cell of S
has constant complexity because T ′ is a triangulation. This property remains valid
when horizontal and vertical sides of the squares are inserted. Hence, any side of
a square can be inserted in time linear in the added complexity of the subdivision,
that is, in the number of intersection points of the new edge. There can only be
O(m) intersected edges per inserted side, therefore all edge insertions take O(nm)
time altogether. We summarize this in the following lemma:

Lemma 13 Let E be the set of n edges of a triangulation T , and let Dr be a square
of fixed size and orientation. Let m be the maximum number of edges intersected by
any placement of Dr. There are O(mn) distinct subsets of edges of E intersected by
different placements of Dr, and the subdivision representing all distinct placements
of Dr with respect to T can be constructed in O(nm) time.

The combinatorially distinct placements of a square Dr on the terrain give a subdi-
vision S of the projected terrain T ′ into smaller cells (see Figure 4.4, right). When
placing the reference point (i.e., the center of Dr) anywhere inside such a cell, the
sides of Dr will intersect the same sets of at most m features (i.e., edges or vertices)
of T ′.

4.2.1 Uniform weighing method

In each cell of the subdivision S the local gradient is given by a function fg(x, y),
in the coordinates of the center of Dr. The gradient function also depends on the
O(m) terrain features the square Dr will intersect. We need to determine the local
gradient function for each cell of the subdivision S. A straightforward way to do
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Figure 4.5: The set of features changes when an edge of Dr moves over a vertex of
the terrain.

this takes O(nm2) time. However, by not explicitly computing the O(m) features
for each cell of the subdivision, we can improve this. The idea is to precompute the
change of fg(x, y) across all cell boundaries. Since fg(x, y) is a quadratic function
in x and y, we can store the change with each edge of S in O(1) space.

We do this as follows (see Figure 4.5): We place Dr over a vertex of the triangu-
lation such that the upper side lies directly above the vertex, and we compute the
O(m) features and the gradient function for this placement of Dr. Then we move
Dr downwards until the upper side lies directly below the vertex. We compute the
change of the set of intersected features and of the gradient function between these
two placements of Dr. We store the change of the gradient function with the corre-
sponding O(m) horizontal edges of the subdivision S. Note that for any horizontal
positioning of Dr with respect to the vertex, the same set of intersected features
is changing when the upper side of Dr crosses the vertex. Therefore, we need to
compute the change of the gradient function only once. We do this for all four sides
of Dr and every vertex of the triangulation. Furthermore, for all other edges of S,
the change of the gradient function is easy to determine in O(1) time, as only one
feature of T ′ changes when these edges are crossed. The whole precomputation takes
O(nm) time.

Afterwards, we traverse the subdivision S to determine the gradient function
fg(x, y) of each cell. We choose a starting cell of S, in which we have to compute
the O(m) features and the gradient function. From there, we traverse S to an
adjacent cell. Whenever the reference point crosses a boundary of a cell, there are
two possible, corresponding events: Either a corner of the square Dr crosses an edge
of the triangulation, or a side of Dr crosses a vertex of the triangulation. As the
change of the gradient function is stored with each cell boundary, both types of
events can be handled in constant time. The traversal of S to determine all gradient
functions fg(x, y) in all cells of S takes O(nm) time overall. We summarize:

Lemma 14 Given a subdivision S representing the combinatorially distinct place-
ments of a square Dr with fixed orientation and side length on a triangulation, we
can determine the gradient functions fg(x, y) for all cells of S in O(nm) time.

It is easy to see that the same statements hold for the aspect function. We would
not compute fa(x, y) in each cell, but the three-dimensional vector that represents
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slope. Its three components are quadratic functions in (x, y). From this vector,
the aspect function can be determined in constant time per cell. Hence, the aspect
function for the whole terrain can be computed in O(nm) time as described above.

The gradient function Fg(x, y) for the uniform weighing method is continuous
over the whole terrain, but not differentiable at the boundaries of the cells. To de-
termine the isogradients for any given value, we set the gradient function fg(x, y)
in each cell to this value and the equation gives the curve in one cell. We can do
this for each cell of S in constant time. As the local gradient function Fg(x, y) is
continuous, the isogradients are curves on the terrain, which are either closed loops
or end at the boundaries of the terrain.

In a similar fashion, we can compute the local aspect values for each point p. It is
important to note that the cells of the subdivision S, where we get a function fa(x, y)
for the local aspect, do not correspond to the isoaspect areas. The boundaries of
the isoaspect areas depend on the classification and can be determined by setting
fa(x, y) to the value in degrees of the boundary between adjacent aspect values in
the compass rose (e.g., 22.5◦ for N-NE). Wherever fa(x, y) is undefined, we assign
the value Flat. We can summarize:

Theorem 13 Let T be a Tin terrain with n triangles, let Dr be a square neighbor-
hood with side length 2r, and let m be the maximum number of edges of T intersected
by any placement of Dr. We can compute in O(nm) time a subdivision S of T that
has O(nm) cells, and for each cell the local gradient fg(x, y). The uniformly weighted
local gradient fg(x, y) is a quadratic function. We can compute the corresponding
subdivision for the uniformly weighted local aspect in the same time.

4.2.2 Non-uniform weighing method

In the non-uniform weighing method, we give a higher importance to points that
lie close to p and a lower importance to points that lie at the boundary of the
neighborhood. We can do this by applying a weight that decreases linearly with the
distance to p. As our neighborhood Dr is now a square, it is natural to use the
L∞ distance instead of the Euclidean distance. This way, the weight values form
a pyramid with its tip at p. Computing the weight for each point inside a triangle
is equivalent to computing the intersection volume of the pyramid P centered at p
with a prism A, which has a triangular base and edges parallel to the z-axis. The
volume of one such prism can be computed as

VA = Axy ·
a+ b+ c

3
, (4.5)

where Axy denotes the area of the projection of the terrain triangle onto the xy-plane
and a, b, c depend on the coordinates of p and denote the side lengths of the three
sides of the prism.

The algorithm to compute local gradient on the whole terrain is as follows: We
construct the subdivision S of the projected terrain with Dr as before, where Dr is
partitioned into four triangles by its diagonals. This increases the number of cells
only by a constant factor. The gradient is represented by a cubic function fg(x, y) in



4.2. Algorithms for Local Slope and Isolines 79

each cell of S. The gradient function Fg(x, y) is continuous over the whole terrain,
but not differentiable at the boundaries of the cells.

To determine the isogradients for any given value, we set the gradient function
in each cell to this value and the resulting equation gives the curve in the cell. We
can do this for each cell of S in constant time.

In a similar fashion, we can compute the local aspect function Fa(x, y). The
boundaries of the isoaspect areas can be determined in each cell by setting fa(x, y)
to the value of the boundary between adjacent aspect values in the compass rose.
Wherever the aspect function is undefined, we assign the value Flat. We conclude
by the following theorem.

Theorem 14 Let T be a Tin terrain with n triangles, let Dr be a square neighbor-
hood with side length 2r, and let m be the maximum number of edges of T intersected
by any placement of Dr. We can compute in O(nm) time a subdivision S of T that
has O(nm) cells, and for each cell the local gradient fg(x, y). The non-uniformly
weighted local gradient fg(x, y) is a cubic function. We can compute the correspond-
ing subdivision for the non-uniformly weighted local aspect in the same time.

4.2.3 Maximum value method

In the maximum value method, the local gradient at p is defined by the maximum
absolute gradient from p to any other point p′ in Dr. We observe that on a Tin,
the maximum gradient will occur between p and a vertex or an edge of the terrain
or the boundary of Dr.

Computing the gradient from p to any other point p′ inside Dr is straightforward.
We can show that for an arbitrary line ` and any point p that is not on `, the gradi-
ent between p and ` can have only one maximum. That means that the maximum
gradient between a point p and an edge e of the terrain T either lies in the interior
of e or at one of its endpoints. Note that when only part of an edge e lies inside Dr,
we only consider this part for the computation of the maximum gradient. The point
of maximum gradient on ` can be determined by applying analytical methods using
Equation (4.3), the equation for ` and the coordinates of p. This takes constant time
for each line and thus for each edge e of the terrain.

The algorithm to compute local gradient on the whole terrain is as follows: We
generate the subdivision S from the projected terrain and Dr as described in the
beginning of this section, and overlay it with the original triangulation T ′ to assure
that p is inside a single triangle if p is in a cell of this new subdivision S ′. We
can further subdivide each of the O(mn) cells such that in each cell of the refined
subdivision S′′, there is exactly one vertex or edge of the Tin or part of the boundary
of Dr that defines the maximum gradient. This means that the boundary of each cell
of S′′ is determined by exactly two features, and for every point on the boundary,
the gradient to both of the features is the same. There are only three possible pairs
of features to define such a boundary: two vertices, a vertex and an edge, or two
edges of the Tin or on Dr. We can determine the boundaries between the cells
of S′, where the maximum gradient is determined by the same feature, as follows:
We compute the gradient function from every point p to each of the O(m) features
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inside each cell in O(nm2) time for all cells of S′. This will yield for each cell of the
subdivision O(m) surface patches in three dimensional space given by the fraction of
a quadratic function and the square root of a quadratic function in x and y, derived
from Equation (4.3). To find the one feature that determines the maximum for a
given point, we need to find the pointwise maximum of all surface patches inside
the cell. The pointwise maximum of m surfaces is called the upper envelope. It has
complexity O(m2+ε) and can be computed in O(m2+ε) time [3], where ε > 0 is an
arbitrarily small constant.

The boundaries of the cells of the refined subdivision S ′′ are defined by the
intersections of two surface patches on the upper envelope, and we project them
onto the terrain. In each cell of S ′′, there is only one feature such that the gradient
from each point in the cell to this feature is maximal, and the gradient function
fg(x, y) itself is the fraction of a quadratic function and the square root of a quadratic
function.

It is easy to see that the upper envelope of all surface patches over the whole
terrain is the representation of the gradient of every point of the terrain. The
gradient function Fg(x, y) is continuous, but not differentiable at the boundaries of
the cells. For each cell, we can determine the isogradients as before in constant time.

For the local aspect function, we determine the vector from p to the point with
maximal gradient and convert it to the aspect value. It is easy to see that the
subdivision S′′ is the same as the subdivision for local gradient. Note that the local
aspect function Fa(x, y) is not continuous.

Theorem 15 Let T be a Tin terrain with n triangles, let Dr be a square neighbor-
hood with side length 2r, let m be the maximum number of edges of T intersected
by any placement of Dr, and let ε > 0 be an arbitrarily small constant. We can
compute in O(n · m3+ε) time a subdivision S of T that has O(n ·m3+ε) cells, and
for each cell the local gradient fg(x, y). The maximum value local gradient fg(x, y)
is a fraction of a quadratic function and the square root of a quadratic function. We
can compute the corresponding subdivision for the maximum value local aspect in the
same time.

4.2.4 Uniform weighing over diameter method

In the uniform weighing over diameter method, the local gradient is defined to be the
maximum average gradient over all diameters of Dr. We observe that for a square
neighborhood Dr the diameter length lies in the interval [2r, 2

√
2r], depending on

the angle of the diameter with the x-axis, and is not a fixed value. For each point p
on the terrain, the local gradient is determined by a function in (x, y, ρ), where (x, y)
are the coordinates of p and ρ denotes the angle of the diameter with the x-axis. To
compute the maximum average gradient at any point p, we have to determine the
value of ρ that maximizes the gradient function. This cannot be done analytically,
not even for a given point p, because it requires solving a polynomial equation in
ρ that can be of maximum degree m. Therefore, for this method, we only give a
heuristic to approximate the local gradient at each point. We do this by computing
the value of the gradient function for a constant number k predefined values of ρ,
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and then taking the maximum of these values.

The heuristic to compute an approximate local gradient on the whole terrain is
as follows: We compute the subdivision S of the projected terrain with Dr, where
Dr is partitioned into 2k pieces by k diameters. We assume that k is a constant, and
each neighboring pair of the k diameters encloses an angle φ = 360/k degrees. This
increases the number of cells only by a constant factor k. We can further subdivide
each of the O(nm) cells, such that in each cell of the refined subdivision S ′ the local
gradient for each point is defined by the same value of φ. Inside each cell of S ′, the
local gradient is defined by a linear function fg(x, y).

We can determine the boundaries between the cells of S ′, where the local gradient
is defined by the same value of φ as follows. For each point p in a cell of the
subdivision S, we compute the average gradient over a diameter through p for a
set of k predefined values for φ. In each point and for a fixed value of φ, we get
k linear functions fg(x, y) defining the average gradient over the diameters. We
can find the maximum average gradient in each cell of S by computing the upper
envelope of all k linear functions in O(k log k) time, which is constant for constant
k. The intersection of two functions of the upper envelope gives the boundaries of
the refined subdivision S′, which can have O(k) cells for each cell of S.

As before, the upper envelope of all linear functions over the whole terrain is the
representation of the gradient of every point of the terrain. The resulting gradient
function Fg(x, y) is continuous, but not differentiable at the boundaries of the cells.
For each cell, we can determine the isogradients in constant time as before.

The local aspect value is computed in a similar fashion. It is easy to see that the
subdivision S is the same as the subdivision for local gradient. The representation
of the local aspect of every point is not continuous, as the diameter leading to
the maximum average gradient may change abruptly whenever a cell boundary is
crossed.

Theorem 16 Let T be a Tin terrain with n triangles, let Dr be a square neighbor-
hood with side length 2r, and let m be the maximum number of edges of T intersected
by any placement of Dr. We can compute in O(nm) time a subdivision S of T that
has O(nm) cells, and for each cell the local gradient fg(x, y). The approximation
of the local gradient fg(x, y), uniformly weighted over a diameter, is a linear func-
tion. We can compute the corresponding subdivision for the local aspect, uniformly
weighted over a diameter, in the same time.

We observe that, as we only average over a number of diameters of the neighbor-
hoodDr, the shape ofDr does not directly influence the computations. Therefore, in
our approximation of the uniform weighing over a diameter a circular neighborhood
can be used as well.

4.3 Experimental Results for Grid Data

We have implemented our methods for Dem data in Java and compared them for
data of different types of terrain. We downloaded the data set presented here
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Figure 4.6: From top to bottom and left to right: The original terrain as a Dem, the
100 m contour map of the original terrain, standard gradient, and standard aspect.
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Figure 4.7: Comparison of different gradient methods for radius r = 5. From top
to bottom and left to right: uniform weighing (scalar method), uniform weighing
(vector), non-uniform weighing (scalar), non-uniform weighing (vector).
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Figure 4.7 (cont.): Comparison of different gradient methods for radius r = 5. From
top to bottom and left to right: uniform weighing over diameter (scalar method),
uniform weighing over diameter (vector), maximum value.
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Figure 4.8: Comparison of four different aspect methods for radius r = 5. From
top to bottom and left to right: uniform weighing, non-uniform weighing, uniform
weighing over diameter, maximum value.
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Figure 4.9: Comparison of different gradient methods for radius r = 10. From top
to bottom and left to right: uniform weighing (scalar method), uniform weighing
(vector), non-uniform weighing (scalar), non-uniform weighing (vector).
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Figure 4.9 (cont.): Comparison of different gradient methods for radius r = 10. From
top to bottom and left to right: uniform weighing over diameter (scalar method),
uniform weighing over diameter (vector), maximum value.
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Figure 4.10: Comparison of four different aspect methods for radius r = 10. From
top to bottom and left to right: uniform weighing, non-uniform weighing, uniform
weighing over diameter, maximum value.
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Figure 4.11: Comparison of four different gradient methods for radius r = 15. From
top to bottom and left to right: uniform weighing (scalar method), uniform weighing
(vector), non-uniform weighing (scalar), non-uniform weighing (vector).
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Figure 4.11 (cont.): Comparison of four different gradient methods for radius r =
15. From top to bottom and left to right: uniform weighing over diameter (scalar
method), uniform weighing over diameter (vector), maximum value.
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Figure 4.12: Comparison of four different aspect methods for radius r = 10. From
top to bottom and left to right: uniform weighing, non-uniform weighing, uniform
weighing over diameter, maximum value.
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from [107], it is a 358 by 468 pixel grid representing an area of 11.3 by 14.5 kilo-
meters northwest of Denver, USA, with a grid spacing of approximately 30 meters.
In Figure 4.6, we show the original elevation data (black is low and white is high
elevation) and its 100 m contour map at the top. For the presented data set and a
radius of r = 5 pixels, our experiments on an iBook G4 with 1.2 GHz CPU and 384
MB memory took only a few seconds for all methods.

In all figures that we will discuss, we have used a circular neighborhood of given
radius r around p . We approximate the disk Dr on the grid as follows: Every grid
cell whose center is closer to p than r is part of Dr, all other grid cells are not. The
chosen values for the isogradient lines were 0.3 (light gray), 0.6, 0.9, 1.2, and 1.5
(black). The aspect maps are computed with the same settings as the gradient maps.
In the aspect maps, white represents a flat area, black has aspect facing South and
light gray is aspect North. To increase readability of the aspect maps, no distinction
was made between the coloring of East and West. The bottom half of Figure 4.6
shows the standard gradient map and the standard aspect map of the terrain. The
white, flat areas of the standard aspect map depict lakes in the chosen area.

Note that when the chosen neighborhood did not fully cover the terrain, i.e., at
the edges and corners of the data set, there is no proper neighborhood to define local
gradient and aspect, so we set the value for local gradient and aspect to zero. This
is the reason for having a frame of width r around each of the maps.

4.3.1 Comparison of different methods

Here we compare the outcome of the different methods for local gradient and aspect.
The following observations are valid for all three investigated values of radius r =
5, 10, and 15 pixels, which corresponds to approximately 150, 300, and 450 meters.

For the local gradient, we see in Figures 4.7, 4.9, and 4.11, that the maximum
value method results in the most detailed map. This is as expected, as this method
does not perform any averaging. As expected, the level of detail of the uniform
weighing over a diameter method lies in between the maximum value method and
the averaging methods, which give the smoothest maps. Furthermore we see that
the scalar methods provide more detail in the flat parts of the terrain (upper half),
whereas the vector methods give more detail in the rugged parts of the terrain
(lower half). This is consistent with the other terrains we have investigated, and
can be explained with the additional smoothing of the vector method, which is
more effective in flat terrains. There appears to be more detail in the non-uniform
weighing methods than in the uniform weighing methods.

In general, it seems that the uniform weighing method, either scalar or vector,
provides the best output when looking for a generalization of the isogradients. When
high detail is desired, the maximum value method is preferred. This is also the only
method that preserves the highest isogradient class well. It gives a smoothing of a
different character than the other methods.

The situation for the three (vector) methods for local aspect is similar, see Fig-
ures 4.8, 4.10, and 4.12. Again, the maximum value method shows the most detailed
map of all methods, followed by the uniform weighing over a diameter method. Both
the uniform and the non-uniform weighing method give a similar result for this ter-
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rain; the non-uniform method produces a slightly more detailed aspect map.

4.3.2 Comparison of different radii

Here we discuss the influence of different radii on the outcome of isogradients and
isoaspects.

Comparing Figures 4.7, 4.9, and 4.11, we can see that the smaller the radius and
therefore the area of influence, the more detailed the gradient map becomes. We get
many isolines with highly detailed boundaries, many of which are relatively short.
Also the spacing between isolines with different values is small. When gradually
increasing the radius, we get less detailed maps, the isolines show less detail and
become more smooth, and also the distance between isolines with different values
gets larger.

The situation for aspect is similar, see Figures 4.8, 4.10, and 4.12. Again, the
aspect map with smallest radius of the neighborhood shows the highest detail, and
the map with largest radius has the largest and smoothest areas. Note especially
the gradual decrease in size of the flat white lake area in the upper right corner of
the aspect map. As an area is flat only if the aspect points exactly in z-direction,
even one cell inside the neighborhood that is outside the flat area will change the
outcome of the averaging and cause the local aspect to be non-flat.

This effect of decreasing detail with increasing radius is smallest in case of the
maximum value method and larger, but similar, in all other methods.

4.4 Concluding Remarks

In this chapter we have introduced the notion of scale dependent local slope, i.e., local
gradient and local aspect, for each point of a given terrain. We suggested four
different definitions of local slope inside a neighborhood with radius r around a
point and presented efficient algorithms to compute it on a Tin. Once we have
derived local slope at each point of the terrain it is straightforward to compute
maps with lines of constant gradient or areas of constant aspect.

The results of the implementation on a gridded Dem show the expected smooth-
ing behavior compared to the slope values computed by the standard method. The
maximum value method gives the most detailed maps for all investigated radii, fol-
lowed by the uniform weighing over a diameter. The output of the unweighted and
weighted methods (vector and scalar based) are similar to each other. It is unclear
to us whether a geomorphologist can see significant differences among the methods,
and would prefer any of the methods. The uniform weighing scalar method is the
easiest one to implement, it may be the method of choice. However, which method
to prefer for a certain application may also depend on the desired level of detail of
the result.

Future work includes more extended experiments, for example to compare the
length of isogradients and the areas of isoaspects for different methods and radii.
Furthermore, it is interesting to develop similar methods as investigated in this
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chapter to compute scale dependent maps that show plan and profile curvature, and
other measures used in geomorphometry.



5 Scattered Relevance Ranking for

Geographic IR

In the last three chapters we have given methods to delineate boundaries of imprecise
regions. These can be used for geographic information retrieval to aid in queries like
‘hotels in northern Spain’ or ‘Aikido dojos in the Dutch Randstad’. Once all relevant
documents are retrieved, the other main issue of geographic information retrieval
needs to be resolved: The ranking of the documents according to their textual and
spatial relevance, represented by a term and a spatial score.

For example, the Web search could be for campgrounds in the neighborhood
of Neuschwanstein, and the documents returned ideally have a score for the query
term ‘campground’ and a score for the proximity to Neuschwanstein. This implies
that a Web document resulting from this query can be mapped to a point in the
2-dimensional plane, where both axes represent a score. In Figure 5.1, the map

rating
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Figure 5.1: Campgrounds near Neuschwanstein mapped to points in the plane.

(taken from [7]) indicates campgrounds near the castle Neuschwanstein, which is
situated close to Schwangau, with the distance to the castle on the x-axis and the
rating given by the Anwb1 on the y-axis.

Another query is for example ‘castles near Koblenz’. When mapping to the plane,
a cluster of points could be several documents about the same castle. If this castle
is in the immediate vicinity of Koblenz, all of these documents would be ranked
high, provided that they also have a high score on the term ‘castle’. However,
the user probably also wants documents about other castles that may be a bit
further away, especially when these documents are more relevant for the term ‘castle’.

1Algemene Nederlandse Wielrijders Bond (Dutch automobile association)
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To incorporate this idea in the ranking, we introduce multi-dimensional scattered
ranking in this chapter. We present various models that generate ranked lists where
closely ranked documents are dissimilar. We also present efficient algorithms that
compute scattered rankings, which is important to keep server load low.

Scattered ranking requires two scores, a spatial score and a term score. Methods
as how these are defined for a document have been presented in Chapter 1.3. In this
chapter, we will assume that for each document a spatial as well as a term score are
given.

We can also use scattered ranking to obtain geographically scattered ranked lists
of documents. In this case we use the geographical locations associated with Web
documents explicitly in two coordinates. If we also also have a term score, each docu-
ment has three values (scores) that can be used for ranking the relevant documents.
Using our example, two documents referring to two castles at the same distance
from Koblenz, but in opposite directions, may now be ranked consecutively. The ge-
ographically scattered ranking problem is related to the so-called settlement selection
problem, which appears in map generalization [99, 169].

Also in other applications it can be useful to rank documents according to more
than one score. For example we could distinguish between the scores of two tex-
tual terms, or a textual term and a spatial term, or a textual term and metadata
information, and so on. A common example of metadata for a web document is the
number of hyperlinks that link to it; a document is probably more relevant when
more links point to it. In all of these cases we get two or more scores which need to
be combined for the ranking.

In traditional information retrieval, the separate scores of each document would
be combined into a single score (e.g., by a weighted sum or product) which produces
the ranked list by sorting. Besides the problem that it is unclear how the scores
should be combined, it also makes a scattered ranking impossible. Two documents
with the same combined score could be similar documents or quite different. If
two documents have two or more scores that are the same, one has more reason to
suspect that the documents themselves are similar than when two documents have
one (combined) score that is the same.

Related research has been conducted in [18], where each document or informa-
tion object is assigned a spatial, temporal and thematic rank. Using the spatial
relationships inside, overlap, and containment between a document and a query, the
spatial and temporal rank depend on the area of overlap of two spatial regions or
two time frames. One or more thematic ranks of a document can be assigned by
textual methods. The three ranks for a document are combined into a three part
glyph, where different colors and hues indicate the relevance of the document. This
has the advantage of clearly showing the relevance of the document with respect to
each rank separately. However, the disadvantage of this presentation is that it does
not lead to a list of documents ranked from most relevant to least relevant.

Rauch et al. focus in [142] on disambiguating geographical terms of a user query.
The disambiguation of the geographical location is done by combining textual in-
formation, spatial patterns of other geographical references, relative geographical
references from the document itself, and population heuristics from a gazetteer.
This gives the final value for the geoconfidence. The georelevance is composed of
the geoconfidence and the emphasis of the place name in the document. The textual
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relevance of a document is computed as usual in information retrieval. Once both
textual and geographical relevance are computed, they are combined by a weighted
sum.

Finding relevant information and at the same time trying to avoid redundancy
has so far mainly been addressed in producing summaries of one or more documents.
Carbonell and Goldstein use in [30] the maximal marginal relevance (Mmr), which
is a linear combination of the relevance of the document to the user query and its
independence of already selected documents. Mmr is used for the reordering of
documents. A user study has been performed, showing that users preferred Mmr

ranking to the usual ranking of documents. The paper [30] contains no algorithm
how to (efficiently) compute the Mmr. Following up on this, a Novelty Track of
Trec [85] discusses experimenting with rankings of textual documents such that
every next document has as much additional information as possible.

Goldstein et al. propose in [76] another scoring function for summarizing text
documents. Every sentence is assigned a score combined of the occurrence of statis-
tical and linguistic features. They are combined linearly with a weighting function.
In [77], Mmr is refined and used to summarize multiple documents. Instead of full
documents, different passages or sentences are assigned a score.

The remainder of this chapter is organized as follows. In Section 5.1 we in-
troduce the two basic ranking methods angle–to–ranked and distance–to–ranked.
Documents can be efficiently ranked by these two methods in O(n2) time worst
case. In Section 5.2 we introduce two more basic scattered ranking methods, two
addition methods that run in worst case O(n2) time and a wavefront approach. For
the wavefront method we can give an algorithm that computes a ranking according
to it in O(n log2 n) time. We give three extensions to the basic methods. First
we restrict the number of eligible points to be next in the ranking by the staircase
enforcement method. Only points that lie on the lower left staircase of the point set
may be ranked next. Second, we restrict the influence of the already ranked points
to the not yet ranked ones in the limited windows method. Finally, we investigate
the possibility of extending all presented basic algorithms to higher dimensions. We
show how to adapt all four algorithms and give the new running times in Section 5.3.
In Section 5.4 we show how the different ranking methods behave on real-world data.

5.1 Basic Scattered Ranking Methods and Algo-

rithms

In this section we present two basic scattered ranking methods. Like in traditional
information retrieval, we want the most relevant documents to appear high in the
ranking, while at the same time avoiding that documents with similar information
appear close to documents already ranked. We will focus on the two-dimensional
case only, although in principle the ideas and formulas apply in higher dimensions
too. We will discuss extensions to higher dimensions explicitly in Subsection 5.3.3.

We assume that a Web query has been conducted and a number of relevant
documents were found. Each document is associated with two scores, for example
a textual and a spatial score (which is the case in the Spirit search engine). The
relevant documents and the query are mapped to points in the plane. We perform
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Figure 5.2: An unranked point p amidst ranked points p1, p2, p3, pi, where p is closest
to pi by distance and by angle.

the mapping in such a way that the query is represented by a point Q at the origin,
and the documents are mapped to a set of points P = {p1, . . . , pn} in the upper
right quadrant, such that the documents with high scores are the points close to Q.
We can now formulate the two main objectives for our ranking procedure:

1. Proximity to query: Points close to the query Q are favored.

2. High spreading: Points farther away from already ranked points are favored.

A ranking that simply sorts all points in the representation plane by distance
to Q is optimal with respect to the first objective. However, it can perform badly
with respect to the second. Selecting a highly scattered subset of points is good
with respect to the second objective, but the ranked list would contain too many
documents with little relevance early in the list. We therefore seek a compromise
where both criteria are considered simultaneously. Note that the use of a weighted
sum to combine the two scores into one as in [142] makes it impossible to obtain a
scattered ranking.

The point with the smallest Euclidean distance to the query is considered the
most relevant and is always first in any ranking. The remaining points are ranked
with respect to already ranked points. At any moment during the ranking, we have
a subset R ⊂ P of points that have already been ranked, and a subset U ⊂ P of
points that are not ranked yet. We choose from U the ‘best’ point to rank next,
where ‘best’ is determined by a scoring function that depends on both the distance
to the query Q and the set R of ranked points. Intuitively, an unranked point has a
higher added value or relevance if it is not close to any ranked points.

For every unranked point p, we consider only the closest point pi ∈ R, where
closeness is measured either in the Euclidean sense, or by angle with respect to
the query point Q. This is illustrated by ‖p− pi‖ and φ, respectively, in Figure 5.2.
Using the angle to evaluate the similarity of p and pi seems less precise than using the
Euclidean distance, but it allows more efficient algorithms, and certain extensions
of angle-based ranking methods give nicely scattered results. See the experiments
in Section 5.4 for this. We will first present the basic models, and then give the
algorithms in Subsection 5.1.3.
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5.1.1 Distance to query and angle to ranked

Our first ranking method uses the angle measure to obtain the similarity between
an unranked and a ranked point. In the triangle 4pQpi (see Figure 5.2) consider
the angle φ = φ(p, pi) and rank according to the score S(p,R) ∈ [0, 1], which can be
derived from the following normalized equation:

S(p,R) = min
pi∈R

(
2(φ(p, pi) + c)

π + 2c
·
(

1

1 + ‖p‖

)k

) (5.1)

Here, k > 0 denotes a constant. If k is small, the emphasis lies on the spreading,
and if k is large, we give a large importance to the proximity to the query. The
additive constant c > 0 ensures that all unranked points p ∈ U are assigned an angle
dependent factor greater than 0. This is necessary if several points lie on the same
halfline originating in Q. The score S(p,R) necessarily lies between 0 and 1, and
is appropriate if we do not have a natural upper bound on the maximum distance
of unranked points to the query. If such an upper bound were available, there are
other formulas that give normalized scores.

5.1.2 Distance to query and distance to ranked

In the previous section we ranked by angle to the closest ranked point. It may be
more natural to consider the Euclidean distance to the closest ranked point instead.
In Figure 5.2, consider the distance ‖p − pi‖ from p to the closest ranked point pi
and rank according to the outcome of the following equation:

S(p,R) = min
pi∈R

(
‖p− pi‖
‖p‖2

) (5.2)

The denominator needs a squaring of ‖p‖ (or another power > 1) to assure that
documents far from Q do not appear too early in the ranking, which would conflict
with the proximity to query requirement. A normalized equation such that S(p,R) ∈
[0, 1] is the following:

S(p,R) = min
pi∈R

((1− e−λ·‖p−pi‖) · 1

1 + ‖p‖) (5.3)

Here, λ > 0 is a constant that defines the base eλ of the exponential function.

5.1.3 Basic algorithms

For both methods described above, during the ranking algorithms we always choose
the one unranked point p that has the highest score S(p,R) and rank it next. This
implies an addition to the set R and hence, recomputation of the scores of the other
unranked points may be necessary.

In this section we describe two simple algorithms that can be applied for the
two basic methods given above as well as for the other methods we present in the
next section. We assume that relevant documents have already been retrieved and
mapped to points in the plane. We only describe the scattered ranking algorithms
themselves.
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A straightforward implementation of the ranking algorithms takes O(n3) time,
where n is the number of points to be ranked. However, by keeping the closest
ranked point for each unranked point in evidence, we can create a very simple,
generic algorithm which has a running time of O(n2). The distance referred to in
Steps 2(a) and 4 can be interpreted either as angle or as Euclidean distance in the
plane.

Algorithm 1: Given: A set P with n points in the plane.

1. Rank the point r closest to the query Q first. Add it to R and delete it from
P .

2. For every unranked point p ∈ P do

(a) Store with p the point r ∈ R as the closest point.

(b) Compute the score S(p,R) = S(p, r) and store it with p.

3. Determine and choose the point p with the highest score S(p,R) to be next in
the ranking; add it to R and delete it from P .

4. Compute for every point p′ ∈ P the distance to the last ranked point p. If it
is smaller than the distance to the point stored with p′, then store p with p′

and update the score S(p′, R).

5. Continue at Step 3 if there are still unranked points.

The first four steps of this algorithm all take linear time. As we need to repeat
Steps 3 and 4 until all points are ranked, the overall running time of this algorithm
is O(n2). If we are only interested in the top 10 documents of the ranking, we
only need linear time for the computation. More generally, the top t documents are
determined in O(tn) time.

The next algorithm is a variation of the first, and computes the same ranking.
It uses a Voronoi diagram to find the closest unranked points to a ranked point p.
Its worst case running time is the same as of Algorithm 1, namely O(n2); however,
a typical case analysis shows that it generally runs in O(n logn) time in practice.

Algorithm 2: Given: A set P with n points in the plane.

1. Rank the point r closest to the query Q first. Add it to R and delete it from
P . Initialize a list with all unranked points and store it with r. Determine the
point p in this list with the highest score and insert it in an initially empty
priority queue H .

2. Choose the point p with the best overall score from the priority queue H as
next in the ranking; add it to R, delete it from P , and perform the following
updates:

(a) Delete p from the priority queue H .

(b) Insert p as a new site in the Voronoi diagram of R.

(c) Create for the newly created Voronoi cell V (p) a list of unranked points
that lie in V (p) by traversing the list of each ranked point p′ whose Voronoi
cell V (p′) neighbors V (p), removing the points from it that are closer to
p than to p′, and adding these points to the list of p.
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(d) Compute the point with the best score for the newly created Voronoi cell
V (p) and insert it in a priority queue H . For all Voronoi cells whose lists
changed, recompute the unranked point with the best score and update
the priority queue H accordingly.

3. Continue at Step 2 if the priority queue H is non-empty.

For the efficiency analysis, assume first that we used the distance-to-ranked ver-
sion for assigning scores. Then the Voronoi diagram is the usual planar subdivision,
and the average degree of a Voronoi cell is almost six. One can expect that a typical
addition of a point p to the ranked points involves a set of neighbors R′ ⊆ R with
not many more than six ranked points. If we also assume that, typically, a point
in R′ loses a constant fraction of the unranked points in its list, we can prove an
O(n log n) time bound for the whole ranking algorithm. The analysis is the same as
in [86, 169]. In the angle-to-ranked version of assigning scores, the set of neighbors
R′ will have only two ranked points. We conclude with the following theorem:

Theorem 17 A set of n points in the plane can be ranked according to the basic
scattered models in O(n2) time in the worst case. By maintaining a Voronoi diagram
of the closest points, the points can be ranked in O(n log n) time under certain natural
assumptions.

5.2 Other Scattered Ranking Methods and Algo-

rithms

In this section we present more basic ranking methods, namely addition methods
and a wavefront approach. The addition methods are simple variations of the ideas
of the methods from Section 5.1. Instead of dividing the angle (or distance) of a
point p to the closest ranked point by the distance of p to the query, we add those two
values (one of them inverted). We can adapt both algorithms given above. However,
as we will see in Subsection 5.2.1, for one of the methods we can give an algorithm
with better running time. The wavefront method is in a way an inversion of the
ideas of the basic methods. In the last section, we ranked the point with the highest
score according to some scoring function next. For a fixed set of ranked points, the
subset of the plane with the same score is a set consisting of curved pieces. When
decreasing the score, the curved pieces move and change shape. The next point to
be ranked is the one encountered first by these curves when decreasing the score.
In Subsection 5.2.2 we will use this process instead of a scoring function to define
a ranking: we predefine the shape of a wavefront and move it until it hits a point,
which will be ranked next. As before, we first introduce the methods, and then
present the algorithms in Subsection 5.2.3.

5.2.1 Addition methods

So far, both our scattered ranking methods were based on a scoring function that
essentially is a division of the angle or distance to the closest ranked point by the
distance to the query. In this way, points closer to the query get a higher relevance.
We can obtain a similar effect, but a different ranking, by adding up two terms,
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obtained from the angle or distance to the closest ranked point, and the distance
to the query. The term depending on the distance to the query should be such
that a larger distance gives a lower score. Although it is unusual to add angles and
distances, it is not clear beforehand which method will be more satisfactory for users,
so we analyse these methods as well. If the results are satisfactory, this method may
be the one of choice, since there is an efficient algorithm for it.

S(p,R) = min
pi∈R

(

α · (1− e−λ·(‖p‖/‖pmax‖)) + (1− α) · φ(p, pi) ·
2

π

)

(5.4)

In this equation, pmax is the point with maximum distance to the query, α ∈ [0, 1]
denotes a variable which is used to put an emphasis on either distance or angle, and
λ is a constant that defines the base of the exponential function.

Another, similar, addition method adds the distance to the query and the dis-
tance to the closest ranked point:

S(p,R) = min
pi∈R

(

α · (1− e−λ1·(‖p‖/‖pmax‖)) + (1− α)(1− e−λ2·‖p−pi‖)
)

(5.5)

Again, pmax is the point with maximum distance to the query, α ∈ [0, 1] is a variable
used to influence the weight given to the distance to the query (proximity to query)
or to the distance to the closest point in the ranking (high spreading), and λ1 and
λ2 are constants that define the base of the exponential functions.

5.2.2 The wavefront approach

The ranking methods presented so far can also be described visually. For example,
consider the angle-to-ranked method of Subsection 5.1.1. At any moment in the
algorithm, some selection has been made, and the next point for the ranking must
be found. This point is the first point hit by a wavefront of a particular shape, as
shown in Figure 5.3. From the shape of the wavefront it is clear that points that are
not closest to the query could easily be chosen next, if the angle of the vector p (with
the positive x-axis) is not close to the angle of pi for any previously ranked point pi.
This illustrates the desired behavior of trying to choose a point next that is different
from already ranked points. We can derive new ranking methods by specifying the
shape of the wavefront instead of a scoring function. At the same time, the idea
gives rise to other ways to compute the ranking.

Figure 5.3 depicts the positions in space where the score values are the same,
namely 0.05, for the three ranked reference points p1 = (1, 1), p2 = (2, 3), and
p3 = (7, 2). These functions are of the following form (constants omitted):
arccos (dist to closest/dist to query)/dist to query. They can easily be derived from
Equation 5.1. Note that the curves are symmetric with respect to the line starting
at the origin and passing through the ranked point they correspond to, and that the
intersection with this line lies on a circle with the same radius r for all three curves.
Furthermore, two curves of neighboring sectors meet exactly at the bisecting lines
between the ranked points.



5.2. Other Scattered Ranking Methods and Algorithms 103

bisecting line

bisecting line

P1

P2

P3

{p |S(p, P3) = 0.05}

{p |S(p, P1) = 0.05}

{p |S(p, P2) = 0.05}

Figure 5.3: Wavefront of the angle method of Subsection 5.1.1. The solid line is the
locus of all points p, such that the score S(p, {p1, p1, p3}) = a, for a = 0.05. The
wavefront moves when a is increased.

5.2.3 Efficient algorithms for addition and wavefront model

For both methods described above, Algorithms 1 and 2 can be applied, which gives a
worst case running time of O(n2) in both cases. But in fact, we can seriously improve
the worst case running time with a different algorithm. As the angle φ(p, pi) is an
additive and not a multiplicative part of the score equation, we can give an algorithm
with a worst case running time of O(n log n) for the angle-distance addition method.
We will also present an algorithm for the piecewise linear wavefront method which
computes such a ranking in O(n log2 n) time in the worst case.

The angle-distance addition algorithm

To initialize for the ranking algorithm, we select the point r from P that is closest
to the query and rank it as the first point. Then we build two augmented binary
search trees, one for the subset of points P0 ⊆ P\{r} that are below the line through
Q and r and one for the subset P1 = P\{r} − P0 of points above or on this line.

The point set P0 is stored in the leaves of a binary tree T0, sorted by counter-
clockwise (ccw) angle to the y-axis. In every leaf of the tree we also store: (i) ccw
and clockwise (cw) angle to r and to the x-axis respectively; (ii) the distance to the
query; (iii) ccw and cw score, where the angles used are taken from (i). We augment
T0 as follows (see e.g., [42] for augmenting data structures): In every internal node
we store the best cw and the best ccw score per subtree. We additionally store for
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Figure 5.4: The split and concatenate of trees in Algorithm 3.

the whole tree T0 that its closest ranked point, r, is counterclockwise, and correction
values, one cw and one ccw, to be used later. They are additive corrections for all
cw and ccw scores of points in the whole tree. Note that the augmentation allows
us to descend in a tree towards the point with the best score along a single path; at
any node we simply proceed in the subtree that contains the point with the higher
score (cw or ccw score, depending on the information stored with the tree).

The point set P1 is stored in the same way in a tree T1, with the following
differences. The cw angle used in the leaves is to r and the ccw angle is taken to the
y-axis, and we store for the whole tree that its closest ranked point, r, is clockwise.
Finally, we initialize a priority queue with the point from T0 with the best score and
the point from T1 with the best score.

During the algorithm, for every ranked point two trees are present. It is easy
to see that all trees T2i+1, i = 0, . . . ,m − 1 have their closest ranked point in cw
direction, whereas all trees T2i, i = 0, . . . ,m− 1, have their closest ranked point in
ccw direction. As shown left in Figure 5.4, between two already ranked points p1

and p2, indicated by `1 and `2, there are two binary trees, T1 cw and T2 ccw of the
bisecting line `12. All the points in T1 are closer in angle to p1 and all the points in
T2 are closer in angle to p2. If we insert a new point p3 to the ranking, this means
we insert a new imaginary line `3 through p3 and we need to perform the following
operations on the trees:

1. Split T1 and T2 at the bisecting lines `32 and `13, creating the new trees T ′
cw

and T ′
ccw and two intermediate trees T cw and T ccw.

2. Concatenate the intermediate trees from (1), creating one tree T .

3. Split T at the newly ranked point p3, creating T ′′
cw and T ′′

ccw.

Figure 5.4, right, shows the outcome of these operations. Whenever we split or
concatenate the binary trees we need to make sure that the augmentation remains
correct. In our case, this is no problem, as we only store the best initial scores in the
inner leaves. However, we need to update the information in the root of each tree
about the closest cw and ccw ranked point and the correction values. The former
is easy to update. For the correction values, note that all scores for points in the
same tree are calculated with respect to the same ranked point and they change
with the same additive amount in the addition model. Therefore, we should simply
subtract (1 − α) · φ′ · 2/π from the scores, where φ′ denotes the angle between the
previously closest ranked point cw (ccw) and the newly closest ranked point cw (ccw,
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respectively). For efficiency reasons, we do not do this explicitly but at once using
the cw (or ccw) correction value. So we subtract (1−α)·φ′ ·2/π from the appropriate
correction value. If there is no previously closest ranked point cw or ccw (first and
last trees), then we take the angle between the newly ranked point and the x-axis
or y-axis instead.

Furthermore, we need to update the score information in the priority queue. This
involves deleting scores that are no longer valid, and inserting scores that are new
best scores in a tree. Now we can formulate an algorithm for the addition method
that runs in optimal O(n logn) time.

Algorithm 3: Given: A set P with n points in the plane.

1. Determine the closest point r and remove it from P , split P\{r} into sets P0

and P1 as described, and initialize the augmented trees T0 and T1. Determine
the points in T0 and T1 with the best score an store them in a priority queue
H .

2. Choose the point p with the highest score as next in the ranking by deleting
the best one from the priority queue H .

3. For every last ranked point p do:

(a) Split and concatenate the binary trees as described above and update the
information in their roots.

(b) Update the best score information in the priority queue H :

i. Delete the best score of the old tree T1 or T2 that did not contain p.

ii. Find the four best scores of the new trees T ′
cw, T

′
ccw, T

′′
cw, and T ′′

ccw

and insert them in the priority queue H .

4. Continue at Step 2 if the priority queue H is non-empty.

The initialization (Step 1) takes O(n logn) time. Step 2 takes O(log n) time for
each execution. In Step 3, the split and concatenate of at most four binary trees,
takes O(log n) time for each tree. Updating the best score information in the priority
queue also takes O(log n) time. So, overall, the algorithm takes O(n log n) time in
the worst case.

Note that this algorithm is not applicable for the second addition method, where
we add up the distance to closest and the distance to the query. This is easy to see,
since the distance to the closest ranked point does not change by the same amount
for a group of points. This implies that the score for every unranked point needs to
be adjusted individually when adding a point to R, which is done by the two basic
algorithms.

Theorem 18 A set of n points in the plane can be ranked according to the angle-
distance addition method in O(n log n) time.

The wavefront algorithm

The linear wavefront method generates a ranking as follows (see Figure 5.5). Assume
a set P of n points in the plane is given, and also an angle ρ which, intuitively,
captures how much preference should be given to scattering. It is the angle between
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Figure 5.5: Illustration of the linear wavefront method.

a segment of the wavefront and the nearest (by angle) line through Q and a ranked
point. Let p1, . . . , pi be the points ranked so far. Draw lines `1, . . . , `i where `j passes
through Q and pj , where 1 ≤ j ≤ i and remove duplicates, if any. Assume without
loss of generality that the lines `1, . . . , `i are sorted by slope in non-increasing order
(steepest first). Consider a circle Cs with radius s centered at Q. The wavefront for
p1, . . . , pi and s (Figure 5.5) is defined as the polygonal line v1, v2, . . . , v2i+1, where
v2j is the intersection point of `j and Cs for 1 ≤ j ≤ i, and the edges v2j−1v2j and
v2jv2j+1 include an angle ρ with the line `j . This defines the position of the vertices
v3, v5, . . . , v2j−1. Vertex v1 is on the y-axis such that v1v2 includes an angle ρ with
`1, and vertex v2j+1 is on the x-axis such that v2jv2j+1 includes an angle ρ with `i.
When s is increased, the segments of the wavefront move away from Q and they get
longer, but they keep their orientation.

Algorithm 4: The first point in the ranking is the point of P that is closest to the
query Q. The next point p in the ranking is determined as follows. Start with s = 0
and increase s continuously until some segment of the linear wavefront hits the first
non-ranked point. This point p is ranked next. Then restart (or continue) the grow-
ing of s with the new wavefront, which has two more vertices and two more segments.

To implement this ranking scheme efficiently, we use a geometric data structure
that allows us to find the next point p in O(log2 n) time. Since we will perform
n − 1 queries, the total time to rank will be O(n log2 n). The data structure to be
designed stores all unranked points and must be able to answer queries Segment-

Drag(φ, ψ, ρ), where the first point hit by a moving and growing line segment must
be found. The moving and growing line segment is specified by the three angles φ, ψ,
and ρ, and is defined by two consecutive vertices of the wavefront. Let `φ and `ψ be
the lines through Q that have angle φ, respectively ψ with the positive x-axis. The
line segment that is moved and grows has its endpoints on `φ and `ψ, and includes
an angle ρ with `φ (if the endpoint on `φ is closer to Q than the endpoint on `ψ, or
with `ψ otherwise).

Assume that all points of P lie between the lines `φ and `ψ. Then the query
problem reduces to querying with a full line that lies outside the convex hull of P
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and is translated towards P . The data structures of Hershberger and Suri [88] and
Brodal and Jacob [25] have linear size, O(log n) deletion time, and answer queries
in O(log n) time amortized. These data structures are dynamic convex hull query
structures.

For a data structure that can answer SegmentDrag(φ, ψ, ρ), we store the set P
sorted by angle in the leaves of a binary search tree T . For an internal node ν, denote
by Tν the subtree of T rooted at ν, and by Pν ⊆ P , the subset of points that are
stored in the leaves of Tν . For any internal node ν, we store a pointer to an associated
structure T ′

ν which stores the points Pν in a data structure for dynamic convex
hull queries [25, 88]. The technique of extending a data structure by adding a one-
dimensional range restriction (here on angle) is quite standard [131, 173] and used for
instance for orthogonal range queries [46]. The storage requirements, preprocessing
time, query time, and update time all increase by a factor of O(log n). This implies
that a SegmentDrag query can be answered in O(log2 n) time with a data structure
that has size O(n log n), construction time O(n log2 n), and deletion time O(log2 n).

To obtain an O(n log2 n) time algorithm for ranking in the linear wavefront
method, we maintain a set of candidate points to be ranked next in a priority queue.
We store one point for each sector defined by lines `j and `j+1, where `j (and `j+1)
is the line through Q and the point vj (resp. vj+1) on the linear wavefront, where
1 ≤ j ≤ 2i. The point we store in a sector is the one that is hit for the lowest value
of s, the radius of the circle that defines the wavefront. The overall best candidate,
and hence the point to be ranked next, is the one with the lowest value of s among
all candidates. Since the candidates are stored in a priority queue H , the best one
can be found and extracted in O(log n) time. After selecting and ranking a point
p we must update the priority queue H and the data structure for SegmentDrag

queries. The first update is easy; it is the deletion of point p. To update H further,
we must first delete the best candidate in every sector that has changed due to the
ranking of p. There can be at most two such sectors, so we delete two points from
the priority queue. Then we must find the new best candidate in every new sector
arising due to the ranking of p. There are at most four new sectors, and we find
the new candidates by four SegmentDrag queries. These new candidates are then
inserted in the priority queue H , which prepares it for ranking the next point. We
conclude with the following theorem:

Theorem 19 A set of n points in the plane can be ranked according to the linear
wavefront method in O(n log2 n) time.

5.3 Extensions of the Basic Ranking Methods

In this section we present extensions of the basic ranking methods introduced in
Sections 5.1 and 5.2. We divided the given point set P into the set of already ranked
points R and the set of unranked points U during the algorithms. We chose the
candidates to be ranked next from all points in U and computed the score functions
with respect to all ranked points in R. In this section we present two extensions
where this is not the case anymore. The staircase enforcement extension limits the
set of candidates to be ranked next to the points in U that lie on the lower left
staircase of the point set P . The limited windows method limits the set of ranked
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reference points to be used for the score computation to only the last k ranked
points. Furthermore, we will describe the necessary adaptations of the algorithms
in higher dimensions.

5.3.1 Staircase enforcement

In the basic methods, every unranked point was eligible to be next in the ranking, if
it had the highest score. This can lead to a ranking where a point is ranked before
other points that are better in both aspects. Often this is an undesirable outcome.
As an alternative, we choose the candidates to be ranked next only from the points
p that lie on the lower left staircase of the point set. A point p is on the lower left
staircase of the point set P if and only if for all p′ ∈ P \ {p}, we have px < p′x, or
py < p′y, or px = p′x and py = p′y. If we always select from the staircase of unranked
points, we automatically obtain the property that any ranked document is more
relevant in at least one aspect than all documents that are ranked later.

We can easily adapt the basic ranking algorithms for staircase enforcement. We
consider as eligible candidates for next in the ranking only the points on the staircase
of unranked points, which we maintain throughout the algorithm. When a point is
ranked, the staircase has to be updated, and points that are new on it become
eligible too. Computing the staircase of a point set with n points takes O(n logn)
time, insertion or deletion of one point takes O(log n) time per point. In every
update of the staircase, we delete one point from it. There can be as many as a
linear number of points that need to be inserted in one update, so a single update
can have a running time of O(n log n). However, every point of P is inserted to
the staircase and deleted from it exactly once. This means that maintaining the
staircase takes only O(n log n) time during the entire execution of the algorithm.

In the following, a brief description of the necessary changes to the basic algo-
rithms is given.

In the generic Algorithm 1, which can be used for all models, we compute the
staircase at the beginning, and then we only need to change Step 3 as follows:

3. Update the staircase of P and choose from the points on the staircase the one
with highest score S(p,R) as next in the ranking; add it to R and delete it
from P and from the staircase.

Computing the staircase in the beginning takes O(n log n) time. We only need to
do this once. Updating the staircase in Step 3 takes O(log n) time per insertion
and deletion, and the other computations can be performed in constant time. As
this step needs to be repeated n times, it takes O(n log n) time overall, and hence,
staircase enforcement does not influence the total running time of O(n2).

In Algorithm 2 for the angle and distance models, we maintain the Voronoi di-
agram of all ranked points, and for each Voronoi cell, a list of all unranked points
in that cell. The main adaptation is that only points on the staircase of unranked
points are stored in the priority queue. That is, for every list of a Voronoi cell the
point with highest score and that lies on the staircase will be in the priority queue.
We must also maintain the staircase of unranked points throughout the algorithm to
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have this information. Neither the worst case nor the typical time analysis change
in this case, so the worst case time bound is still O(n2), and the typical running
time remains O(n log n).

For Algorithm 3 we change the algorithm as follows: We start by computing the
staircase of the point set P\{r} and create the initial, augmented trees T0 and T1

only for the points from the staircase. The priority queue is initialized with the best
points from T0 and T1. We rank the next point p, update the corresponding trees
and the priority queue as before, and delete p from the staircase. Step 4 needs to
be modified as follows:

4. Update the staircase to incorporate the deletion of p. Insert the new points
on the staircase into the binary trees while keeping the augmentation correct.
Update the best-score information in the priority queue. Continue with Step 2
if the priority queue is non-empty.

The new version of Step 4 takes O(n log n) time overall, so the total running time
of O(n logn) is not affected.

Algorithm 4 for the wavefront model is also easy to adapt. In the original model,
we move a line segment towards the convex hull of the whole point set P and rank the
first point that is hit next. Here, the point set is restricted to the points of P that lie
on the staircase of P . We do not need to change any of the data structures described
in Section 5.2, but we need to precompute the staircase once (O(n log n) time) and
maintain it through the algorithm (O(log n) time per insertion and deletion). This
leaves the asymptotic running time of the wavefront algorithm unchanged.

5.3.2 Limited windows

In all previously presented basic ranking methods as well as in the staircase enforced
extensions, the closest point from the set R of ranked points is used to determine
the score of an unranked point. However, if the second best point lies very close to
the best point, it should not be late in the ranking just because it is very similar
to the best point. We would like the influence of a ranked point to stop after, say,
another ten points have been ranked after it. This is captured in the limited windows
extension, where only the k latest ranked points are kept in evidence for the future
ranking. The value of k is fixed throughout the algorithm.

The general idea is as follows. We store the set of ranked points that we consider
in a queue W , which we will call the window. The basic algorithms remain exactly
the same as long as the size of W does not exceed k. When the (k + 1)-th point is
ranked, we add it at the tail of the queue and delete the point p at the head of it.
For all unranked points that had the deleted point p as their closest, we need to find
the new closest point among the k ranked points in W and recompute their score.

We give a brief description of the necessary adaptations of the basic algorithms
in the next paragraphs. An adaptation of the staircase enforced methods to get a
combination of the two extensions is straightforward and therefore not given here.
We assume that k is fixed.

The adaptation of Algorithm 1 is straightforward. We now determine in Step 4
for all unranked points p′ the smallest distance to the k last ranked points in R
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to determine the score of each unranked point. This clearly takes O(kn) time for
each next ranked point, so the overall running time of the algorithm is O(kn2). If
we allow O(kn) extra storage, we can store with every unranked point all k last
ranked points sorted by distance. We can keep the sequence of all k points sorted
in O(n2 log k) time in total.

Algorithm 2 for the angle or distance model is adapted as follows. We keep all
ranked points in a queueW . WhenW contains more than k points, we delete the first
point p from the queue and from the Voronoi diagram of R. All unranked points that
lie in the Voronoi cell of p need to be redistributed to the at most k neighboring cells,
which means that their lists of unranked points need to be updated. Furthermore,
we need to recompute the highest score value from these k lists and update the
priority queue H accordingly.

The worst case time analysis for deleting one point from the window is as follows.
The operations on W only take constant time each. Deleting the point p from
the Voronoi diagram can be done in O(k) time. There can be a linear number
of unranked points that need to be redistributed, which takes O(kn) time in the
worst case. Updating the k lists can be done in O(n) time in total and updating the
priority queue takes O(k log k) time. This leads to an overall worst case running time
of O(kn2). This can be improved to O(n2 log k) time by doing the redistribution
more cleverly.

In a typical time analysis we can delete a point p from the queue and the Voronoi
diagram in O(1) time. The list of p contains—on the average and once k points are
ranked— O(n/k) points, and redistributing them to the O(1) neighboring cells takes
O(n/k) time. Updating the priority queue H takes O(log k) time typically. Overall,
we therefore get a typical running time of O(n2/k + n log k).

Algorithm 3 for the addition model can be easily adapted. As before, every
ranked point is added to a queue W . When it contains more than k points, the
first element p is deleted from the head of the queue, which means that we delete
the imaginary line ` that passes through p. We have to concatenate the four binary
trees that lie between p and its closest clockwise neighbor p′ and counterclockwise
neighbor p′′, thus creating one tree T . We then split T at the angle of the bisecting
barrier line `p′p′′ . During the concatenate and split operations we need to keep the
augmentation correct. Finally, we need to update the best score information in the
priority queue H , which means that we delete the best scores of the old trees and
insert the best scores of the new trees. The analysis of the running time is similar
as before, and the asymptotical running time does not change.

Algorithm 4 for the wavefront method can be adapted in a similar manner. We
add every ranked point to a queue W , and if it contains more than k points, the
first element p is deleted from the head of the queue, which means that we delete
the line `p that passes through p. Thus, we create one new sector out of two old
ones. We delete the three vertices vp−1, vp, and vp+1 of the wavefront and add one
new vertex, namely the intersection of the two edges that make an angle ρ with the
bounding lines of the new sector. Finally, we need to delete the two old candidate
points of the old sectors from the priority queue and insert the new candidate point
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of the new sector into it. The overall running time remains O(n log2 n) in the worst
case.

5.3.3 Higher dimensions

So far, we have considered only two possible scores that are combined to give a
scattered ranking. The applications from the introduction show that dealing with
more than two scores for each point of the point set P can also be useful. For
example, for the query ‘castles near Koblenz’, there could be two castles with the
same distance to Koblenz, one north and one south of it. If the documents about
them have a similar textual score, they will be mapped to points in the plane which
are very close to each other, and therefore they will be ranked apart. However, in this
example, this outcome is unsatisfactory, and it would be better if we could distinguish
the relative position of the castles to Koblenz by using two spatial dimensions (scores)
and one textual score.

The four presented methods can be used for any number of scores. Computing
the ranking requires extending the basic algorithms to higher dimensions. However,
not all of the algorithms presented in Sections 5.1 and 5.2 can be extended to work as
efficiently in higher dimensions. In this section we will briefly discuss the extensions
of the presented algorithms to higher dimensions, where possible, or otherwise, state
why this cannot be done.

The generic Algorithm 1, which can be applied to all four presented models,
works as presented in any dimension d. Therefore, we conclude that the worst case
running time for the generic algorithm is O(n2) in any dimension.

Algorithm 2 for the basic models can be extended to higher dimensions d ≥ 3,
but the worst case running time will go up with the dimension. We maintain the
d-dimensional Voronoi diagram for the ranked points, and for each cell we maintain
the unranked points in that cell in a list. The point with the highest score value per
list is stored in a priority queue, where the next point to be ranked is chosen from.

For d ≥ 3, the Voronoi diagram has complexity O(ndd/2e) in the worst case,
and it can be constructed in O(ndd/2e) time [69]. It can also be constructed in
O(N logn) time, where N is the actual complexity of the Voronoi diagram [151].
This leads to O(ndd/2e) time to rank a set of n points in d dimensions, d ≥ 3, in the
distance model. The Voronoi diagram for the angle model in three dimensions can
be determined as follows: we project the ranked points to the surface of the unit
sphere and compute the Voronoi diagram on this surface, which essentially is a 2-
dimensional Voronoi diagram. In general, the Voronoi diagram needed for the angle
model for point sets in d-dimensional space has dimension d − 1. Consequently, in
the angle model, ranking can be done in O(nd(d−1)/2e) = O(nbd/2c) time for d ≥ 4,
and in O(n2) time for d = 3.

To analyze the typical running time for the algorithm in higher dimensions,
we will make some assumptions and show time bounds under these assumptions.
Whether the assumptions hold in practice cannot be verified without implementa-
tion. We will assume that any newly ranked point only has a constant number of
neighbors in the Voronoi diagram, and every list has length O(n/r), where r is the
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number of ranked points so far. Note that the former assumption is, in a sense,
stronger than in the planar case, because there are point sets where the average
number of neighbors of a cell in the Voronoi diagram is linear, when d ≥ 3. How-
ever, for uniformly distributed point sets, a higher-dimensional Voronoi diagram has
linear complexity [69], and the average number of neighbors of a cell is indeed con-
stant. Under these two assumptions, we can obtain a running time of O(n log n), as
in the planar case.

Algorithm 3 for the addition model cannot be extended to higher dimensions
d ≥ 3. In the plane we have a linear ordering by angle on the point set P . This
ordering is crucial for the functioning of the algorithm, because the split and con-
catenate operations are with respect to this ordering. In three or more dimensions
the approach does not apply anymore.

It is possible to extend the wavefront model to higher dimensions, but the higher-
dimensional version of Algorithm 4 would be complex and considerably less efficient.
It would require linearization and higher-dimensional partition trees. Because of the
highly increased problem complexity in higher dimensions we will not discuss the
wavefront model any further.

5.4 Experiments

We implemented the generic ranking Algorithm 1 for the basic scattered ranking
methods described in Subsections 5.1.1, 5.1.2, and 5.2.1. Furthermore we imple-
mented the extensions for staircase enforcement (Subsection 5.3.1) and limited win-
dows (Subsection 5.3.2). We compare the outcomes of these algorithms for the two
different point sets shown in Figure 5.6. The point set on the left consists of 20
uniformly distributed points, and the point set on the right shows the 15 highest
ranked documents for the query ‘safari africa’ which was performed on a data set
consisting of 6,500 Lonely Planet web pages. The small size of the point sets was
chosen out of readability considerations.

5.4.1 Basic ranking algorithms

Figure 5.6 shows the output of a ranking by distance to query only. It is useful as a
reference when comparing with the other rankings.

In the other basic ranking methods, shown in Figure 5.7, points close together
in the plane are not necessarily close in the ranking sequences. This is visible in
the ‘breaking up’ of the cluster of four points in the upper left corner of the Lonely
Planet point set rankings. Note also that the points ranked last by the simple
distance ranking are always ranked earlier by the other methods. This is because we
enforced higher spreading over proximity to the query by the choice of parameters.
The rankings are severely influenced by this choice. In our choice of parameters we
did not attempt to obtain a ‘best ranking’ for the particular methods. We used the
same parameters in all three ranking methods presented here, to simplify qualitative
comparison.
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Figure 5.6: Ranking by distance to origin only.

5.4.2 Staircase enforced ranking algorithms

In the staircase enforced methods, shown in Figure 5.8, the candidates to be ranked
next are only those points that lie on the (lower left) staircase of the unranked
points. The scoring functions and parameters are as before. With this adaptation,
proximity to the query gets a higher importance than before. This is clearly visible
in the figures, as the points farthest away from the query are almost always ranked
last. Still, spreading in the rankings is present. This can for instance be seen from
the two points in the lower right corner of both point sets: they are the closest pair
of points in space, but their ranking differs significantly. In fact, this is just the
behavior we expected from our scattered ranking methods.

5.4.3 Ranking algorithms with limited windows

In the final experiments, shown in Figure 5.9, the already ranked reference point we
need to compute angle or distance to, is not the closest of all ranked, but the closest
among the five last ranked points. This way we want to avoid that the angle or
distance to the closest becomes too small to ensure a good scattering. The scoring
functions and parameters are as before. With a window size of five, the first six
ranked points are the same as with the basic models. It can be seen that points
that lie very close to early ranked points are now ranked higher than with the basic
methods, although the overall ranking remains well spread.
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Figure 5.7: A comparison of the basic ranking methods. Top: Ranking by distance to
origin and angle to closest (k = 1, c = 0.1). Middle: Ranking by distance to origin
and distance to closest (Equation 5.3, λ = 0.05). Bottom: Ranking by additive
distance to origin and angle to closest (α = 0.4, λ = 0.05).
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Figure 5.8: A comparison of the staircase enforced methods. Top: Ranking by
distance to origin and angle to closest (k = 1, c = 0.1). Middle: Ranking by
distance to origin and distance to closest (Equation 5.3, λ = 0.05). Bottom: Ranking
by additive distance to origin and angle to closest (α = 0.4, λ = 0.05).
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Figure 5.9: A comparison of the basic methods with a limited window of size 5.
Top: Ranking by distance to origin and angle to closest (k = 1, c = 0.1). Middle:
Ranking by distance to origin and distance to closest (Equation 5.3, λ = 0.05).
Bottom: Ranking by additive distance to origin and angle to closest (α = 0.4,
λ = 0.05).
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5.5 Concluding Remarks

This chapter introduced multi-dimensional scattered relevance ranking for docu-
ments that have two or more scores. It is particularly useful for geographic informa-
tion retrieval, where documents have both a textual and a spatial score. Scattered
ranking combines high relevance of the query while avoiding redundancy. To our
knowledge, it is the first time that these issues have been addressed with a purely
geometric approach.

We have presented several methods for scattered ranking that are mainly based
on a combination of the distance to the query and the distance to the closest already
ranked point. Furthermore, we presented two extensions of the given basic methods,
by staircase enforcement and limited windows. We first presented a generic algorithm
with quadratic running time, which can be used for any of the presented methods
and in any dimension. For some of the methods we can give efficient algorithms with
better worst case running time.

The visual inspection of the outcome of the conducted experiments show that
both requirements for a good ranking, small distance to query and high spreading,
can be obtained simultaneously. Especially the staircase enforced methods and the
methods with limited windows seem to perform well.

Initial experiments conducted using the Spirit prototype indicate that the basic
scattered ranking methods based on a spatiotextual index perform better than a
ranking based on a textual index only [139]. However, these experiments are time
consuming and need a large number of volunteers to be conclusive. At this moment,
there is not enough data available to claim any stronger statement. Furthermore, a
user evaluation is still needed to discover which of the described scattered ranking
methods is preferred, and which specific parameters should be used.





6 Conclusions and Future Work

How to model and determine geographical regions with imprecise boundaries, like the
south of Austria or the german Schwarzwald, has attracted the interest of researchers
of various disciplines. Research in linguistics and cognitive science aims to give
definitions for geographical features like lakes, hills, and forests, or investigates the
reason why many people can easily place the town they live in inside a certain part
of their country, but are surprised by the fact that North and South America are
not aligned in north-south direction (South America is more to the east).

Defining boundaries for imprecise geographical regions has been a research issue
in geographic information systems for a number of years [26]. Giving crisp bound-
aries for regions that have none, is important in Gis and Gir to be able to answer
queries, for example, for hotels in northern Spain, or for Aikido dojos in the german
Ruhrgebiet.

This thesis introduced a number of geometric, algorithmic approaches to deter-
mine reasonable, crisp boundaries for various types of imprecise geographical regions.
In Chapters 2 to 4, we presented a number of different geometric methods to delinate
various types of imprecise geographical regions. The presented methods are based on
simple geometric specifications, like the equal area share of the good News regions
in Chapter 2, or the requirement of finding the shortest boundary in the adaptation
method of Chapter 3. Our methods do not take any kind of cognition, perception,
or personal knowledge into account. This has the advantage that any kind of region
can be delineated without being biased, prejudiced, or just plain wrong because of
what people think they know. However, this is also a drawback, as including this
knowledge into our approaches may lead to better boundaries. Furthermore, our
methods do not take any existing natural boundaries like rivers, mountain ranges,
or change in vegetation into account. By including them into our approaches, the
derived boundaries may be better and appear more natural.

We presented in Chapter 3 several methods to derive boundaries of imprecise
regions from data points that are classified as inside or outside. This is the most
versatile way examined in this thesis to address the delineation problem. First, be-
cause any kind of point data can be used, for example census data on the average
household income in a town, the portion of people speaking a certain dialect, or
belonging to an ethnic minority. Also point data that is sampled in the field, like
soil classes and vegetation types at a certain location, can be used as input to these
models. Second, because these methods can most easily include non-point data rep-
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resenting natural boundaries like mountain ranges or coast lines. In this context,
assigning weights to the data representing the confidence in the inside/outside clas-
sification is a useful extension. This way it is possible to derive boundaries with
different values of confidence, which is similar to a fuzzy set approach.

So far, we have only implemented the basic methods to delineate imprecise re-
gions, and they do well for most of the instances we have tested. However, for all
presented methods it will be necessary to do more extensive testing on various input
data to verify whether they perform well in most cases, or whether there are classes
of instances where they fail completely. It is also desirable for the applications to
find fixed parameters that lead to a good result in most cases, rather than manually
tuning them. It is also possible that an incorporation of the suggestions given above
may lead to even better results of our methods.

The basic methods for the ranking of spatio-textually relevant documents, pre-
sented in the previous chapter, have been implemented and used in the Spirit Web
search engine. So far, with evaluation still underway, we can only state that our
methods give a ranking different than the classical text-only based ranking. What
remains to be done is a user evaluation, where the users are asked which ranking
best fulfills their needs and expectations. Also, finding good standard values for the
parameters that influence the spreading of our methods is an open problem.

Other research questions in Gis and Gir involving imprecise regions include the
following. Imprecise regions can also be delineated in three dimensions. An example
is to compute the volume of high concentration of a certain natural resource, like
coal or ore, to determine if mining is economically justifiable, or the extent of soil
contamination around a factory. In these applications, we can assume that the data
is sparse and mainly classified correctly. Therefore, the adaptation method may
be the method of choice here, as it does not change the classification of the data,
except for obvious outliers. Allowing a certain amount of clearance around the data
points and thus taking the sparseness of the data into account, may improve the
results of this method. How to efficiently implement the adaptation method in three
dimensions is unclear; the resulting region will consist of one or more polyhedra. An
extension of the good News delineation method to three dimensions would yield
a partition of a three-dimensional object into parts that resemble the classification
top/bottom, left/right, and front/back, possibly with an additional center part. This
can be used in a second step of the application mentioned above, to give a sequence
of parts in which the minings should take place, e.g., starting with the top and center
parts, and eventually ending with the bottom part.

How to give spatial scores to a document is another main issue of Gir. A spatial
score for point data is often based on Euclidean distance. For two-dimensional
regions, the Euclidean distance as well as other measures, like the area of overlap,
could be included in assigning a spatial score. Different ways of determining a
spatial score are possible. First of all, it is unclear which reference points to choose
to determine the Euclidean distance between two regions. For example, we can
choose the reference point to be the center of gravity of the region, but in this case
we may have the problem that the center lies outside. A way to overcome this
problem is to compute the largest enclosed circle of the region and choose its center
to be the reference point. Second, we should take the topological relations between
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two regions into account when assigning a spatial score. If one region lies fully inside
another, the assigned score should be higher than if they only partially overlap. We
could build on the system of topological relations of Egenhofer and Herring [60], and
give different basic scores to different types of relations.

Related to assigning spatial scores is to give a town inside a region a weight
describing its degree of ‘north’, ‘central’, etc. For example, both Utrecht and Am-
sterdam lie in the central area of the Netherlands, but Utrecht should get a higher
weight for ‘central’ than Amsterdam. In this context, defining a center which is
assigned the highest weight is interesting. The center could be a point of the region,
the weight linearly decreasing with increasing distance from it. This point could
be defined by using the medial axis of the boundary, and then retracting it to one
center point. Or the center could be defined as a central region by defining buffer
zones around the boundary of the whole region, where each buffer zone is assigned
a different weight, increasing as it becomes more centered.

Overall, applying geometric, algorithmic methods to address problems in Gis and
Gir may provide new impulses for these areas. Any problem that can be abstracted
and modeled in a strictly geometric manner and is solved in an efficient algorithmic
way, will give useful results. These results, which depend on the way the problem is
modeled, will lead to new insight into Gis and Gir.
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Samenvatting

Ieder van ons is gewend aan benamingen van geografische gebieden zoals ‘het zuiden
van Utrecht’, ‘de Hollandse Randstad’ of ‘de bergen van Oostenrijk’. Sommige van
deze gebieden hebben precieze, vastomlijnde grenzen zoals de stad Utrecht of het land
Oostenrijk. Andere daarentegen, zoals de Randstad en de bergen van Oostenrijk,
hebben geen precieze grenzen en worden in het gebruik op een minder vastgelegde
manier omschreven. Echter, soms is het noodzakelijk om dergelijke gebieden toch
precies te omlijnen teneinde vragen te kunnen beantwoorden zoals ‘Hoeveel mensen
onder 25 leven in de Randstad?’ of ‘Zijn er 4-sterren hotels aanwezig in het zuiden
van Utrecht?’ Zonder een gespecificeerde, redelijke afbakening van deze gebieden is
het onmogelijk om antwoord te geven op dergelijke vragen. Deze vragen zijn stan-
daard in Geografische Informatiesystemen en -retrieval (Gis en Gir), maar dienen
ook beantwoord te kunnen worden door zoekmachines op Internet. Het hoofdthema
van dit proefschrift is, hoe onduidelijk gedefinieerde gebieden zoals hierboven ver-
meld af te bakenen met behulp van zuiver geometrisch-algoritmische methoden ten
dienste van de zoekanalyse, gebruikt in Gis en Gir, alsmede voor visualisaties.

Figuur 6.1: drie verdelingen van Nederland in noord, oost, west en zuid.

In hoofdstuk 2 worden drie verschillende methoden beschreven om een willekeu-
rig stuk grondgebied te verdelen in noord-, oost-, west- en zuidgedeeltes. In de
eerste methode (Figuur 6.1, links) wordt het grondgebied op een dusdanige manier
verdeeld door lijnen met een hellingshoek van +1 en −1 , dat de intersecties van
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deze lijnen precies samenvallen met het zwaartepunt van het gebied. Het is hierbij
gemakkelijk voor te stellen dat dit leidt tot vier deelgebieden welke sterk in grootte
kunnen variëren. Bij de tweede methode (Figuur 6.1, midden) wordt het grond-
gebied verdeeld in gebieden van 25% van het totale grondgebied door gebruik te
maken van verticale en horizontale lijnen. Bij de derde methode (Figuur 6.1, rechts)
wordt het gebied in vier delen van gelijke grootte verdeeld en wel op zo’n manier
dat de som der afstanden van de vier zwaartepunten van de deelgebieden maximaal
is. Deze verdeling heeft een simpele vorm, ze lijkt op of en is altijd uniek.

Hoofdstuk 3 presenteert methoden die gebieden zoals de Randstad kunnen af-
bakenen door gebruik te maken van een aantal steden die geclassificeerd worden als
binnen of buiten het gebied. Om deze classificatie te bepalen wordt het Internet
gebruikt als een ruimtelijk databestand. Documenten waarin tekstgedeeltes voorko-
men zoals ‘Utrecht, een stad in de Randstad’ leiden tot de classificatie van Utrecht
als binnen. Door deze manier van dataverwerving kan de classificatie binnen/buiten
foutief toegekend worden. Ons doel is echter om redelijke begrenzingen aan te geven
voor onduidelijk gedefinieerde gebieden. Deze grenzen moeten (de meeste) steden
omvatten die als binnen geclassificeerd werden en tegelijkertijd (de meeste) steden
niet omvatten die als buiten te boek staan. Volgens de aanpassingsmethode wordt
een gebied doorberekend op het aantal binnen steden, en veranderen zijn grenzen
zodanig dat de andere steden buiten het omlijnde gebied komen te liggen. Volgens
de herkleuringsmethode nemen we aan, dat bijvoorbeeld Amstelveen geclassificeerd
dient te worden als binnen, als Amstelveen geclassificeerd wordt als buiten de Rand-
stad maar omgeven wordt door een voldoende aantal steden die geclassificeerd wor-
den als binnen. De uiteindelijke begrenzing van de Randstad is vervolgens berekend
indien alle herclassificaties hebben plaatsgevonden.

In hoofdstuk 4 worden niet precies omschreven gebieden afgebakend in natuur-
lijke terreinen. Daarbij worden aan ieder punt binnen het terrein hellinggradiënt-
en hellingliggingwaarden gegeven op basis waarvan kaarten ontwikkeld worden die
gebieden aangeven met dezelfde gradiënt- en liggingwaarden. Gradiënt en ligging
behoren tot de belangrijkste waarden in geomorfometrie, en gezamenlijk met hoogte,
plan- en profielverloop is het mogelijk om landstreken te omschrijven als heuvels,
valleien of berggebieden. We introduceren enkele methoden om schaalafhankelijke
lokale gradiënten en lokale liggingen te berekenen, om van daaruit kaarten samen te
stellen van lokale gradiënt en ligging. Volgens deze definities van gradiënt en ligging
in combinatie met andere geomorfometrische waarden kunnen precieze grenzen ver-
kregen worden voor onduidelijk gedefinieerde gebieden als ‘de bergen van Oostenrijk’.

Zoals hierboven beschreven is het aangeven van precieze begrenzingen van on-
duidelijk gedefinieerde gebieden bruikbaar in Gis en Gir om zoekvragen te beant-
woorden als: ‘Aikido dojo’s in het oosten van Amsterdam’, vooropgesteld dat we
dit onderzoek laten verrichten door een zoekmachine op Internet en we op basis
hiervan verscheidene documenten hebben verkregen met de relevante tekstuele in-
houd alsmede ruimtelijke locatie. Vervolgens is er de vraag deze documenten naar
tekstuele en ruimtelijke relevantie te ordenen. In hoofdstuk 5 van dit proefschrift
stellen we een aantal methoden voor om deze documenten die scoren op tekstuele
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alsmede ruimtelijke relevantie te ordenen. Bij al deze methoden nemen we aan dat
documenten met een gelijke score dezelfde inhoud hebben, en derhalve niet even
hoog in de rangorde moeten staan. We presenteren een aantal methoden die docu-
menten ordenen naar relevantie van de zoekvraag en de mate van ongelijkheid met
documenten die al eerder een rangorde hebben gekregen.

De geometrisch-algoritmische methoden die in dit proefschrift werden gepresen-
teerd om geografische gebieden af te bakenen en documenten te ordenen, zijn een
nieuwe manier om deze problemen in Gir te benaderen.
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