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Preface

I have always enjoyed reading prefaces of dissertations because they often reveal
something about the person behind the text and about the litany of people involved
in the research.

Although I was unable to formulate it in this way as a youngster, I have always been
intrigued by how people think and learn. At school I read histories of philosophy to
see where ideas came from, I learned to play the violin (my mother being a violinist
and music therapist), psychology sounded interesting, and artificial intelligence was
‘hot’. However, due to my father (a mathematics teacher) and the Mathematics and
Pythagoras Olympiads, mathematics eventually caught my imagination as the purest
form of human thinking. I chose to study mathematics, but its relations to other dis-
ciplines such as philosophy, logic, history, and education continually demanded
attention. After receiving a Master’s degree in mathematics, investigating the philo-
sophical foundations of set theory proved rewarding, but this pursuit seemed some-
how irrelevant to society. And while teaching secondary school mathematics felt
very relevant, it was not my calling.

In 1998, I acquired a graduate position (onderzoeker in opleiding) at the Freudenthal
Institute and mathematics education turned out to be the interdisciplinary mix I had
been looking for without knowing it. This mix is reflected in my thesis: I studied the
history of statistics to understand how statistical concepts evolved and to gain in-
sights into promising ways to teach them. Conducting the design research required
incorporating insights from educational science, psychology, mathematics and sta-
tistics education, and practical experience as a teacher. Last, the semiotic analyses
reflect my interest in the philosophy of language.

First, I would like to express my gratitude to Koeno Gravemeijer, who succeeded in
raising the funds for this project from the Netherlands Organization for Scientific
Research (NWO). He coached me along the route of becoming a researcher in math-
ematics and statistics education. Gellof Kanselaar and Jan de Lange complemented
the advisory team, each in their own helpful way. For more specialized topics I con-
sulted experts who were forthcoming in their commentary on various chapters: Paul
Cobb (Chapters 2, 4, and 8), Stephen Stigler (4), Cliff Konold (2, 4), and Michael
Hoffmann (6, 8, 9). Thank you, Paul, Cliff, and Michael, for rewarding meetings and
your hospitality as well. I also like to mention the inspiration I received from the Fo-
rum for Statistical Reasoning, Thinking, and Literacy, chaired by Dani Ben-Zvi and
Joan Garfield.

Conducting Ph.D. research can be a solitary enterprise, but [ was happy to participate
in a larger project (aandachtsgebied). In this way, | was always able to discuss issues
with and feel support from Monique Pijls, Dirk Hoek, Michiel Doorman, and in par-
ticular Paul Drijvers. The Freudenthal Institute formed another stimulating commu-



nity of practice, in which I learned a lot just by participating. In particular I would
like to thank two colleagues, Mieke Abels and Corine van den Boer, who also taught
during the teaching experiments, and their students. Aad Goddijn and Martin Kindt
were always willing to discuss mathematical and historical issues.

The ways in which I have been assisted are numerous. Petra van Loon, Harm Ber-
gevoet, Carolien de Zwart, Sofie Goemans, and Yan Wei Zhou assisted during the
teaching experiments by interviewing and videotaping. Han Hermsen taught me
how to use Framemaker, the word processor with which this book has been made.
Tanja Klooster, Ellen Hanepen, and Parul Slegers helped to transcribe students’ ut-
terances. Anneleen Post, among others, helped me when Repetitive Strain Injury (or
Carpal Tunnel Syndrome) hindered my work at the computer. Nathalie Kuijpers and
Tim Muentzer corrected my English and Betty Heijman and Sylvia Eerhart assisted
in the book’s publication. And of course I would like to thank Frans van Galen with
whom I have shared my office all these years. Huub van Baar and Yolande Jansen
supported me as friends and ushers (paranimfen). Thank you all!

Jantien, you helped me in various ways and I am grateful for your very existence in
my life. That is why I dedicate this book to you.
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1.1

Introduction

Information is the fuel of the knowledge society in which we live.
Johan van Benthem

The present study is a sequel to design research in statistics education carried out by
Cobb, McClain, Gravemeijer, and their team in Nashville, TN, USA. The research
presented in this thesis is also part of a larger research project on the role of IT in
secondary mathematics education.! In the remainder of this introductory chapter we
discuss the notions of the title Design research in statistics education: on symboliz-
ing and computer tools, and identify the purpose of the research.

Statistics education

Statistics is seen as a science of variability and as a way to deal with the uncertainty
that surrounds us in our daily life, in the workplace, and in science (Kendall, 1968;
Moore, 1997). In particular, statistics is used to describe and predict phenomena that
require collections of measurements. But what are the skills essential to the naviga-
tion of today’s technological and information-laden society? Statistical literacy is
one of those skills. Gal (2002) characterizes it as the ability to interpret, critically
evaluate, and communicate about statistical information and messages. We give
three instances to exemplify how citizens of modern society need at least some sta-
tistical literacy.

1 Many newspapers present graphs or data on the front page. Apparently, citizens
are expected to understand and appreciate such condensed information; it is not
just the educated who are confronted with statistical information. Research in
statistics education, however, shows that graphs are difficult to interpret for most
people:

The increasingly widespread use of graphs in advertising and the news media for
communication and persuasion seems to be based on an assumption, widely con-
tradicted by research evidence in mathematics and science education, that graphs
are transparent in communicating their meaning. (Ainley, 2000, p. 365)

It could also be that newspapers attempt to create a reliable or scientific impres-
sion.

2 More and more large companies have a policy of teaching almost all employees
some basic statistics. This is often part of a quality control method; for instance,

1. Among the publications of the other project members are Drijvers (2003), Doorman (in
press), Hoek, Seegers, & Gravemeijer (in press), and Pijls, Dekker, and Van Hout-Wolters
(2003).



Chapter 1

Six Sigma aims to increase profitability by controlling variation in production
processes (e.g. Pyzdek, 2001). The basic idea of statistical process control is that
variation and the chance of mistakes should be minimized and that to achieve
that, every employee should be familiar with variation, usually measured by the
standard deviation, around a target value, usually the mean (Descamps, Janssens,
& Vanlangendonck, 2001). This makes statistics an instrument for economic
success.

3 In almost every political and economic decision, at least some statistical infor-
mation is used. Fishermen, for instance, negotiate with the government and per-
haps environmental groups about fish quotas, which are based on data and statis-
tical models (Van Densen, 2001). This makes statistics a language of power.

If we want to provide all students some basic statistical baggage, we need to teach
statistical data analysis to school-aged children. Statistical literacy, however, is not
an achievement that is readily established: the growing body of research in this area
shows how much effort it takes to teach and learn statistical reasoning, thinking, and
literacy (Garfield & Ahlgren, 1988; Shaughnessy, Garfield, & Greer, 1996). Stu-
dents need to master difficult concepts and use complicated graphs, and teachers of-
ten lack the statistical background to help students do so (Makar & Conftey, in press;
Mickelson & Heaton, in press). This implies that students need early exposure to sta-
tistical data analysis and that we need to know more about how to support them.
Besides societal need, there are also theoretical reasons to do research in statistics
education. It is a useful field to investigate the role of representations in learning, be-
cause graphs are key tools for statistical reasoning (Section 1.3). Statistics education
is also a suitable field for investigating the role of the computer in the classroom, be-
cause the computer is almost indispensable in performing genuine data analysis due
to the large amount of data and laborious graphing (Section 1.4).

In some countries such as the United States of America and Australia, students al-
ready learn some statistics when they are about ten years old, explaining why most
available research at the middle school age comes from these countries (ACE, 1991;
NCTM, 1989, 2000). In the Netherlands, students first encounter descriptive statis-
tics when they are about 13 years old, and hardly any Dutch research into statistics
education with younger students has been carried out.

It is clear from the growing need for statistical literacy and the relatively small
amount of research and experience with 10 to 14-year-old students that we need an
instruction theory for early statistics education. In short, an instruction theory for a
specific domain is a theory of how students can be supported in learning that domain.
It entails knowledge about students’ statistical intuitions, the key concepts of statis-
tics, the type of reasoning and thinking that is possible for specific age groups, and
supportive instructional activities embedded in a longitudinal learning trajectory.
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1.3

Introduction

The purpose of the present research is therefore

to contribute to an empirically grounded instruction theory for early statistics edu-
cation.

When we write ‘statistics’, we mean descriptive statistics and exploratory data anal-
ysis, not inferential statistics. In Chapter 2, we set out our points of departure and
summarize the research literature relevant to our study, in particular that of Cobb,
McClain, and Gravemeijer, which leads to the research questions of the present
study.

Design research

One way to develop an instruction theory is by conducting design research. The
strength of design research (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) or
developmental research (Freudenthal, 1991; Gravemeijer, 1994, 1998) is that it can
yield an instruction theory that is both theory-driven and empirically based. A design
research cycle typically consists of three phases:

1 preparation and design;
2 teaching experiment;
3 retrospective analysis.

The methodology of design research is described in more detail in Chapter 3. In that
chapter we also present an overview of the teaching experiments we carried out in
Dutch seventh and eighth-grade classes (age 11-13). The preparation phase consists
of a historical study (Chapter 4) and a so-called didactical phenomenology (Chapter
5). The teaching experiments in grade 7 are described in Chapters 6 and 7, and the
teaching experiment in grade 8 in Chapter 9. Retrospective analyses are presented in
Chapters 6 to 9.

Symbolizing

To investigate the role of graphical representations in learning statistics we use semi-
otics, the science of signs and meaning. Semiotically seen, a graph is a sign, and a
sign is defined as something that stands for something else for someone (Peirce,
NEM). In our context, the first ‘something’ is mostly an inscription on paper or com-
puter screen and the second ‘something’ is a mental construction, ideally a mathe-
matical or statistical object. By ‘someone’ we mostly mean a student, but it could
also be ‘the’ community of statisticians. A symbol is a sign for which the represen-
tational relation is conventional or arbitrary, and not based on likeness for instance
(Peirce, NEM). A diagram is a sign representing relations. In statistics education, we
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are mainly interested in diagrams and symbols.

At the end of the nineteenth century, the non-fixed relationship of a sign and its ob-
ject was introduced by the philosophy of language and has been widely accepted
ever since. In particular, it is acknowledged that a sign is always interpreted as refer-
ring to something else within a social context. For a statistician, for example, a
sketch similar to Figure 1.1 signifies a normal distribution, but a student who does
not know this distribution as a statistical object may interpret it as an image of a
mountain. This indicates a fundamental learning problem: symbols in mathematics
and statistics refer to objects that students still need to construct. This problem can
supposedly be overcome if students start with simple symbols and meanings they at-
tribute to them and gradually develop more sophisticated symbols and meanings. It
is assumed that the process of symbolizing (making, using, and adjusting symbols)
and the process of constructing meaning of such symbols co-evolve (Meira, 1995).
How this co-evolvement proceeds is the theme of Chapters § and 9.

Figure 1.1: Graph symbolizing the normal distribution

Computer tools

Computer tools allow users to dynamically interact with large data sets and to ex-
plore different representations in a way that is impossible by hand. However, com-
puter tools can also distract students’ attention to the tools themselves instead of me-
diating effectively between the learner and what is to be learned (Noss & Hoyles,
1996). As we establish in Section 2.2, students with hardly any statistical back-
ground need special educational software to learn statistics. We are therefore inter-
ested in the question of how such educational computer tools could be used to sup-
port students’ learning. In the present study we used the Minitools (Cobb, Grave-
meijer, Bowers, & Doorman, 1997) that were designed for the Nashville research.
The Minitools are three simple applets with one type of plot for each applet, which
we have translated and revised. Minitool 1 offers a value-bar graph, Minitool 2 a
stacked dot plot, and Minitool 3 a scatterplot (see Section 2.3). In the present study,
students only used Minitools 1 and 2.
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Background and research questions

The purpose of this research, as identified in Chapter 1, is to contribute to an empir-
ically grounded instruction theory for statistics education at the middle school level.
In this chapter, we begin with the pedagogical and didactical philosophy of the do-
main-specific instruction theory of Realistic Mathematics Education (RME). Next
we survey the research in statistics education relevant to the present study and focus
on the Minitools research from Nashville that the present study builds upon. In the
last section we formulate the research questions of this study.

Realistic Mathematics Education (RME)

Realistic Mathematics Education (RME) is a theory of mathematics education that
offers a pedagogical and didactical philosophy on mathematical learning and teach-
ing as well as on designing instructional materials for mathematics education. RME
emerged from research in mathematics education in the Netherlands in the 1970s
and it has since been used and extended,? also in other countries. Some readers might
wonder why we start with a theory on mathematics education as statistics is not a
branch of mathematics. One reason is that contexts are very important to both the
RME theory and statistics education. Moreover, educational practice is that statistics
is taught as part of the mathematics curriculum.

The central principle of RME is that mathematics should always be meaningful to
students. The term ‘realistic’ stresses that problem situations should be ‘experien-
tially real” for students. This does not necessarily mean that the problem situations
are always encountered in daily life. Students can experience an abstract mathemat-
ical problem as real when the mathematics of that problem is meaningful to them.
Freudenthal’s (1991) ideal was that mathematical learning should be an enhance-
ment of common sense. Students should be allowed and encouraged to invent their
own strategies and ideas, and they should learn mathematics on their own authority.
At the same time, this process should lead to particular end goals. This raises the
question that underlies much of the RME-based research, namely that of how to sup-
port this process of engaging students in meaningful mathematical and statistical
problem solving, and using students’ contributions to reach certain end goals.
Views similar to those within RME have been formulated in general reform efforts
in the United States (NCTM, 1989, 2000), Australia (ACE, 1991), and other coun-
tries, and by the theoretical movements such as situated cognition, discovery learn-
ing, and constructivism in its variants. The theory of RME, however, is especially

2. For instance: Freudenthal’s work (e.g. 1973, 1983, 1991) and several dissertations (Tref-
fers, 1987; De Lange, 1987; Van den Brink, 1989; Streefland, 1991; Gravemeijer, 1994;
Van den Heuvel-Panhuizen, 1996; Menne, 2001; Van Amerom, 2002; Drijvers, 2003;
Keijzer, 2003; Van den Boer, 2003).
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tailored to mathematics education, because it includes specific tenets on and design
heuristics for mathematics education. When we use the term ‘design’, we mean not
only instructional materials, but also instructional setting, teacher behavior, interac-
tion, and so on. RME tenets and heuristics are described in the following sections.

Five tenets of RME
On the basis of earlier projects in mathematics education, in particular the Wiskobas
project, Treffers (1987) has defined five tenets for Realistic Mathematics Education:

1 Phenomenological exploration. A rich and meaningful context or phenomenon,
concrete or abstract, should be explored to develop intuitive notions that can be
the basis for concept formation.

2 Using models and symbols for progressive mathematization. The development
from intuitive, informal, context-bound notions towards more formal mathemat-
ical concepts is a gradual process of progressive mathematization. A variety of
models, schemes, diagrams, and symbols can support this process, provided
these instruments are meaningful for the students and have the potential for gen-
eralization and abstraction.

3 Using students’ own constructions and productions. It is assumed that what stu-
dents make on their own is meaningful for them. Hence, using students’ con-
structions and productions is promoted as an essential part of instruction.

4 Interactivity. Students’ own contributions can then be used to compare and re-
flect on the merits of the different models or symbols. Students can learn from
each other in small groups or in whole-class discussions.

5 Intertwinement. It is important to consider an instructional sequence in its rela-
tion to other domains. When doing statistics, what is the algebraic or scientific
knowledge that students need? And within one domain, if we aim at understand-
ing of distribution, which other statistical concepts are intertwined with it? Math-
ematics education should lead to useful integrated knowledge. This means, for
instance, that theory and applications are not taught separately, but that theory is
developed from solving problems.

In addition to these tenets, RME also offers heuristics or principles for design in

mathematics education: guided reinvention, didactical phenomenology, and emer-

gent models (Gravemeijer, 1994). We describe these in the following sections.

Guided reinvention

Freudenthal (1973, 1991) advocated teaching mathematics as a human activity as
opposed to a ready-made system. When students progressively mathematize their
own mathematical activity (Treffers, 1987) they can reinvent mathematics under the
guidance of the teacher and the instructional design. This explains the first principle
of RME, guided reinvention, which states that students should experience the learn-
ing of mathematics as a process similar to the process by which mathematics was
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invented (Gravemeijer, 1994). The designer of realistic mathematics instruction can
use different methods to design instruction that supports guided reinvention.

The first method is what Freudenthal called a ‘thought experiment’: designers
should think of how they could have reinvented the mathematics at issue themselves.
In fact, this is what Freudenthal (1991) used to do when he read mathematical theo-
rems: find his own proof of the theorems. The second method is to study the history
of the topic at issue: the method of carrying out a so-called historical phenomenolo-
gy is used in Chapter 4. The third method, elaborated by Streefland (1991), is to use
students’ informal solution strategies as a source: how could teachers and designers
support students’ solutions in getting closer to the end goal?

Didactical phenomenology

To clarify his notion of phenomenology, Freudenthal (1983a) distinguished thought
objects (nooumena) and phenomena (phainomena). Mathematical concepts and
tools serve to organize phenomena, both from daily life and from mathematics itself.
A phenomenology of a mathematical concept is an analysis of that concept in rela-
tion to the phenomena it organizes. This can be done in different ways, for example:

1 Mathematical phenomenology: the study of a mathematical concept in relation
to the phenomena it organizes from a mathematical point of view. The arithmet-
ical mean is used, for example, to reduce errors in astronomical observations. See
Section 5.2 for a short mathematical phenomenology of distribution.

2 Historical phenomenology: the study of the historical development of a concept
in relation to the phenomena that led to the genesis of that concept. For example,
the mean evolved from many different contexts, including navigation, metallur-
gy, and astronomy. It took until the sixteenth century before the mean of two val-
ues was generalized to more than two values. The first implicit use was in esti-
mating large numbers (Section 4.3.1).

3 Didactical phenomenology: the study of concepts in relation to phenomena with
a didactical interest. The challenge is to find phenomena that “beg to be organ-
ised” by the concepts that are to be taught (Freudenthal, 1983a, p. 32). In Section
6.2 we describe how students organized a picture of elephants into a grid and
used a so-called ‘average box’ to estimate the total number of elephants in the
picture.

In this research, the design of instructional materials was preceded by a historical
study of the relevant statistical concepts and graphs, including average values, dis-
tribution, and sampling. The goal of this historical study was to find problem situa-
tions or phenomena that could provide the basis for the development of the mathe-
matical concepts or tools we wanted students to develop. Such problem situations
could lead to paradigmatic solutions that are first specific for that situation, but can
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be generalized to other problem situations. This last possibility is worked out under
the heading of emergent models.

Emergent models

As the second tenet of RME about models for progressive mathematization implies,
we search for models that can help students make progress from informal to more
formal mathematical activity. Gravemeijer (1994, 1999a) describes how models of
a certain situation can become a model for more formal reasoning. In the case of sta-
tistics, the notion of a distribution in combination with diagrams that display distri-
butions was envisioned to become a model of data sets and later a model for more
formal statistical reasoning (Gravemeijer, 2002).

4. formal

3. general

2. referential

1. situational

Figure 2.1: Levels of emergent modeling from situational to formal reasoning.

These four levels (Figure 2.1) can be described as follows (after Gravemeijer, Cobb,
Bowers, & Whitenack, 2000, p. 243):

1 Situational level: activity in the task setting, in which interpretations and solutions
depend on understanding of how to act in the setting (often in out-of-school set-
tings);

2. Referential level: referential activity, in which models-of refer to activity in the

setting described in instructional activities (mostly posed in school);

3. General level: general activity, in which models-for enable a focus on interpreta-
tions and solutions independently of situation-specific imagery;

4. Formal level: reasoning with conventional symbolizations, which is no longer de-
pendent on the support of models-for mathematical activity.

Trends in statistics education research

Now that we have discussed the domain-specific theory of RME, we move to the do-
main of statistics education. This section gives an overview of research in statistics
education relevant for the present study. Concentrating on research at the middle
school level, when students are about 10 to 14 years old, we do not pay much atten-
tion to issues such as assessment (Gal & Garfield, 1997) and professional develop-
ment of teachers (Mickelson & Heaton, in press; Makar & Confrey, in press), al-
though these are important topics of research.
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As background information we first sketch a short history of statistics education in
the Netherlands. Statistics was proposed as part of the secondary mathematics cur-
riculum in 1954, but the proposal was rejected due to concerns about an overloaded
curriculum. It was not until the early 1970s that descriptive statistics was introduced
in the upper-levels of the secondary mathematics curriculum. The main reasons for
introducing statistics in the curriculum were that it was needed in many sciences and
fields of work and that students could experience the usefulness of mathematics
(Freudenthal, 1974; Van Hiele, 1974). Around 1990, statistics was introduced in the
lower grades; since then graphs such as the box plot and the stem-and-leaf plot have
been taught in grade 9 (W12-16, 1992).

We start our overview of research in statistics education with the work of Kahne-
man, Tversky, and their colleagues because much of the early research in statistics
education was grounded in their work (Kahneman & Tversky, 1973, 1982; Shafir,
Simonson, & Tversky, 1993; Tversky & Kahneman, 1971, 1982; Tversky & Shafir,
1992). From the early 1970s onwards, these cognitive psychologists have been in-
vestigating how people use statistical reasoning in everyday situations to arrive at
decisions. Although these heuristics result in the same decisions as would be made
based on statistical theory, there are instances when they lead to decisions which are
at odds with such theory.3 The overall impression is that statistical reasoning is very
demanding cognitively.

In the late 1970s and 1980s, statistics education research mainly focused on college
level and on probability (Pfannkuch & Wild, in press). In the 1990s, studies were un-
dertaken at lower levels, mainly middle school level, and because statistics became
part of the mathematics curriculum, more and more mathematics educators became
involved in the discipline. Because statistics appeared early in the curriculum of the
United States, Australia, and the United Kingdom, the majority of studies at the mid-
dle school level took place in these countries.

When we compare the curricula of different countries, for instance, the United
States, the Netherlands, and Germany, we can observe a lot of variation. In the Unit-
ed States, mean, median, and mode are introduced in grade 4 or 5, when students are
9 or 10 years old (NCTM, 2000). In the Netherlands, students learn their first de-
scriptive statistics in grade 8, when they are 13 or 14 years old. In most German
states, the median is not even in the high school curriculum (Engel, personal com-
munication, November 4, 2002).

These international differences in curricula indicate that we cannot simply apply re-
search findings from, for instance, American studies to the Dutch situation. If Dutch
students learn a statistics topic in a higher grade than American students, the Dutch
students will mostly have a better mathematical background than American students
in lower grades, which could make it easier (or perhaps more difficult) to learn cer-

3. For an overview in Dutch see Bakker (1999).
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tain statistical topics. Mathematical issues that have been identified as important for
statistics are multiplicative reasoning (ratios, percentages, and proportions), the Car-
tesian system, and line graphs (Cobb, 1999; Friel, Curcio, & Bright, 2001; Zawojew-
ski & Shaughnessy, 1999). On the one hand, this means that Dutch students with
proficiency in these matters do not necessarily encounter the same problems with
statistical graphs and concepts as younger American students. On the other hand, the
Dutch seventh-grade students do not have the same experience with data and science
as most younger American students. This reveals the need for design research that
will eventually lead to statistics curricula that are tuned to the mathematics and sci-
ence curricula in the different countries.

The prominent image that emerges from reading the early research on statistics ed-
ucation is that students have trouble with understanding and using the mean, which
was the most investigated statistic. Students mostly know how to calculate it but are
not able to use it well (Hardiman, Well, & Pollatsek, 1984; Mevarech, 1983; Mokros
& Russell, 1995; Pollatsek, Lima, & Well, 1981; Strauss & Bichler, 1988). Similar
problems occur for many statistical graphs such as the histogram and for methods
such as hypothesis testing. The literature gives the impression that students had to
deal with artificial problems and artificial data (Singer & Willett, 1990), that statis-
tics consisted of ‘number crunching’ (Shaughnessy, Garfield, & Greer, 1996, p. 209)
and that statistics courses were overloaded with formal probability theory, which led
to the nickname of ‘sadistics’ (Wilensky, 1997). With these images in mind, we
summarize recent developments in statistics education research with the following
five trends.

New pedagogy and new content;

Using exploratory data analysis (EDA);

Using technology;

Focusing on graphical representations;

Focusing on aggregate features and key concepts.

DN AW N =

1. New pedagogy and new content. In the research literature, the information trans-
mission model has made place for constructivist views, according to which students
should be active learners (Moore, 1997). Bottom-up learning is advocated as op-
posed to top-down teaching. Students should have the opportunity to explore, build
upon their intuitive knowledge, and learn in authentic situations. Such ideals are also
expressed in the reform movements in mathematics education (NCTM, 2000) and
the theory of Realistic Mathematics Education (2.1).

The old instructional paradigm was to teach the theory and then apply it. Freudenthal
(1973, 1991) promoted the opposite: learning mathematical theory by developing it
from meaningful situations that are usually seen as applications. Box (1999) advo-
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cates a similar view for statistics education: statistics is often taught as a set of tech-
niques, but these ‘one-shot’ standard ways of dealing with certain situations such as
hypothesis testing are often black boxes to students, and do no justice to the practice
of statistical investigations either. An example of the new pedagogy and content is
given by De Lange and colleagues (1993), who report that students can reinvent
meaningful graphs themselves.

A call for new pedagogy and content also came from a different source. Although
statistics was (and still is) often taught as if it were a branch of mathematics, many
statisticians have argued that it should be taught differently. G. Cobb (1997), for ex-
ample, has spelled out the implications of this view for statistics education: where
mathematics focuses on abstraction, statistics cannot do without context. One of his
slogans to summarize this view was “more data and concepts, less theory and reci-
pes” (see also G. Cobb & Moore, 1997). The emergence of constructivist philosophy
and exploratory data analysis fitted well with these attempts to differentiate statistics
from mathematics.

2. Exploratory data analysis (EDA) is a relatively new area of statistics, in which
data are explored with graphing techniques (Tukey, 1977). The focus is on meaning-
ful investigation of data sets with multiple representations and little probability the-
ory or inferential statistics. In EDA, it is allowed to look for unanticipated patterns
and trends in existing data sets, whereas traditional inferential statistics only allows
testing of hypotheses that are formulated in advance.

EDA was adopted by several statistics educators to serve the need for more data and
less theory and recipes (Biehler, 1982; Biehler & Steinbring, 1991). EDA was also
thought useful to bridge the traditional gap between descriptive and inferential sta-
tistics. Descriptive statistics was often taught as too narrow a set of loosely related
techniques, and inferential statistics tended to be overloaded with probability theory.
EDA was considered an opportunity to actively involve students, to broaden the con-
tent of descriptive statistics, to give students a richer and more authentic experience
in meaningful contexts, and to come closer to what statistics is really about (Ben-Zvi
& Arcavi, 2001; Jones et al., 2001; Shaughnessy et al., 1996). Manually exploring
real data with graphing techniques is laborious, which implies that using technology
is a big advantage.

3. Technology, in particular computer software, enables to deal with larger data sets
and allows for more efficient ways of representing data. It supplies ways of visual-
izing concepts, letting students interact with data sets, avoiding laborious computa-
tions, and allowing problem solving in real complex situations (Ben-Zvi & Fried-
lander, 1997). There is, however, an inherent tension between the new pedagogy and
the use of technology. In the reform movement, students are seen as active creators
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of knowledge and they should have the opportunity to experience mathematics as
meaningful, but computer software mostly seems to provide the opposite: what is
possible in a software program is predetermined, and what the computer does in re-
action to clicking certain buttons can hide the conceptually important part of the op-
erations (cf. Drijvers, 2003, about computer algebra systems). Of course, students
need not know exactly which operations the software does to make a histogram, but
they should be able to understand that data are categorized into certain intervals and
that the bars’ areas are relative to the number of values in those classes. In most sta-
tistical software packages such operations are hidden, which suggests that we need
special software for education that minimizes this black-box character. As Biehler
writes:

Professional statistical systems are very complex and call for high cognitive entry
cost. They are often not adequate for novices who need a tool that is designed from
their bottom-up perspective of statistical novices and can develop in various ways into
a full professional tool (not vice versa). (...) As a rule, current student versions of pro-
fessional systems are no solution to this problem because they are technical reductions
of the complete system. (Biehler, 1997, p. 169)

In Sections 2.3, we discuss bottom-up software tools that have been designed spe-
cially for middle school students and that have been used in this study, the Minitools
(another bottom-up program, Tinkerplots (Konold & Miller, 2004), is under devel-
opment). The present research focuses on cognitive tools (Lajoie & Derry, 1993),
not on simulations, computer-based instruction, or web-based projects. We are in-
terested in how educational tools can be used in a sensible way and ask what the
graphs provided by these tools mean to students. These computer programs and
graphs are tools that reorganize learning. We deliberately avoid ‘amplify’ or ‘im-
prove learning’, because numerous researchers have shown that using computer
tools often drastically changes the learning process and what is learned (e.g. Dorfler,
1993; Noss & Hoyles, 1996; Pea, 1987). It can be hard to compare statistical learning
with and without the use of technology, because these two conditions lead to the
learning of different ‘content’, which is, as noted above, often inseparable from the
tools and symbols used (cf. Tall et al., 2000). In the present research, we ask how
computer tools can be used, not whether using computer tools leads to better test re-
sults.

4. Focus on graphical representations. In EDA and technology, graphical represen-
tations play a central role. Graphs have the potential of showing more than the values
in the data table. They can provide an overview of the whole data set and can high-
light specific characteristics that are not visible from the numbers. Research has
shown, however, that seemingly simple graphs are often not transparent to students
(Ainley, 2000; Ainley, Nardi, & Pratt, 2000). It is acknowledged that transparency
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is not a feature of the graph itself, but that it is connected to a purpose and tied to a
cultural practice. Meira (1998) describes transparency as an emergent phenomenon
intricately interwoven with learners’ current activities and participation in ongoing
cultural practices (see also Roth, 2003). This means that a graph is not an end goal
in itself but that it should serve the purpose of solving a statistical problem and com-
municating the results. Even then, as Lehrer and Schauble (2001) note, graphs are
too often taught as prefabricated solutions that have advantages and conventions that
may be invisible to students. The question that rises is how can we let students rein-
vent and use graphical tools for statistical problem solving and in which order can
we provide them with graphical tools that are meaningful for them.

Several researchers have proposed a certain order of graphs based on the complexity
of the graphs for students (Biehler & Steinbring, 1991; Friel, Curcio, & Bright,
2001). Feldman, Konold, and Coulter (2000) suggest an order that is based on how
easy it is to identify individual cases in a plot. Cobb, McClain, and Gravemeijer
(2003) proposed a sequence of graphs, value-bar graphs before dot plots, which is
summarized in the next section.

A conclusion we have drawn from several studies is that students should begin with
graphs in which they can retrace each individual data value, so-called ‘case-value
plots’, before they use graphs in which data are aggregated, so-called ‘aggregate
plots’ (Konold & Higgins, 2003). Typical examples of case-value plots are case-val-
ue bar graphs (Figure 2.2) and stacked dot plots (Figure 2.3); examples of aggregate
plots are histograms and box plots. Bar graphs can be both case-value plots and ag-
gregate plots. If each bar represents a case, it is a case-value plot (a case-value bar
graph, as Feldman et al., 2000, call it). If a bar represents a number of cases, a fre-
quency for instance, it is an aggregate plot. A consequence of this is that using
graphs such as histograms and box plots is more demanding for students than using
bar graphs and dot plots. But there is more. There are hidden conventions and con-
ceptual elements in histograms and box plots: in histograms, the area of the bars is
relative to the number of values it signifies, and in box plots conceptual elements
such as median and quartiles are depicted.

The difference in case-value and aggregate plots highlights that students need con-
ceptual structures to conceive aggregates before they can interpret and use graphs
sensibly. This insight explains the focus on aggregates and the key concepts of sta-
tistics at the middle school level (trend 5). In fact, this is the reason that we have a
closer look at the relationship of graphs and concepts in the process of symbolizing
and ask how we can support students in developing an aggregate view on data.

5. Focus on aggregate features and key concepts. Statistical data analysis is mainly
about describing and predicting aggregate features of data sets.

And so was born the modern sciences of statistics, the science of collections or aggre-
gates, replacing the certainty of deterministic physics about a single individual by the
certainty of the behaviour of groups of individuals. (Kendall, 1968, p. 6)
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One can mostly not predict the values of individual cases, but one can predict aggre-
gate features such as the mean or the distribution of a data set. Hancock, Kaput, and
Goldsmith (1992) note that students have considerable trouble in conceiving data
sets as aggregates. This implies that there is a strong conceptual component in inter-
preting graphs: in order to be able to see the aggregate students have to ‘construct’
it. After Hancock and colleagues, other researchers have dealt with the problem as
well. Konold, Pollatsek, and Well (1997), for example, observed that high school
students, after a yearlong statistics course, still had a tendency to focus on properties
of individual cases, rather than on propensities of data sets. Ben-Zvi and Arcavi
(2001) notice that seventh-grade students initially have a local view on data, and
need time and good support to develop a global view on data. Without appropriate
conceptual structures, students do not perceive the data as is necessary for doing sta-
tistical data analysis.

This stresses the necessity of addressing a number of key concepts of statistics,
which are also called ‘overarching statistical ideas’ or, with a somewhat fashionable
term, ‘big ideas’ (Schifter & Fosnot, 1993). There is no unique list of the key con-
cepts of statistics. Here, we advocate a list for the middle school level that is inspired
by a list from Garfield and Ben-Zvi (in press) for statistics education in general. We
do not want to suggest any order, because these key concepts are only meaningful if
dealt with in relation to each other (Wilensky, 1997).

— Variability;
— Sampling;

— Data;

— Distribution;
— Covariation.

Variability

Variability is at the heart of statistics because without variability there is no need for
statistical investigation (Moore, 1990). In the PISA framework for assessment in
mathematics education (OECD, 1999), statistics and probability fall under the over-
arching idea of ‘uncertainty’ (the others being ‘change and growth’, ‘shape and
space’, and ‘quantitative reasoning’). Kendall characterized statistics as the science
that gives relative certainty about uncertainty.

We live in a world of chance and change, surrounded by uncertainty; our object is to

impose a purpose on that uncertainty and, in some sense, to bring the world under con-
trol (Kendall, 1968, p.1)

In fact, uncertainty and variability are closely related: because there is variability, we
live in uncertainty, and because not everything is determined or certain, there is vari-
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ability. If we plan to go somewhere by car, for example, it is uncertain at what time
we will arrive due to variability among conditions. Various uncertain factors, such
as traffic jams and weather conditions cause variability in travel times. We chose to
call this key concept ‘variability’ because ‘uncertainty’ has the connotation of prob-
ability, which we do not address in this thesis.

Sampling

In order to investigate a variable phenomenon, one can take a sample. Without sam-
pling there is no data set, distribution, or covariation to describe. The notion of sam-
pling has been studied at the middle school level, but not extensively. Though stu-
dents seem to have useful intuitions about sampling, it is a complex notion that is
difficult to learn (Rubin, Bruce, & Tenney, 1990; Schwartz et al., 1998; Jacobs,
1999; Watson & Moritz, 2000; Watson, 2002).

Data

Sampling and measurement lead to data, that is numbers with a context (Moore,
1997). The idea of data involves insight into why data are needed and how they are
created. This implies that the idea of data relies on knowledge about measurement.
Too often, however, data are detached from the process of creating them (Wilensky,
1997), so many researchers and teachers advocate students collecting their own data
(NCTM, 2000; Shaughnessy et al., 1996). This is time-consuming, so “talking
through the process of data creation,” as Cobb (1999) calls it as opposed to data col-
lection, can sometimes substitute for the real creation of data. Once represented as
icons, we can manipulate the data icons in a graph to find relations and characteris-
tics that are not visible from the table of numbers (Lehrer & Romberg, 1996).

The idea of data is intimately connected with the other overarching ideas. For in-
stance, data are often conceptually organized as ‘pattern + deviation’ (Moore, 1997)
or as ‘fit + residual’ (G. Cobb, 1997) and data analysis is also described as the search
for signals in noisy processes (Konold & Pollatsek, 2002). A data set can be ana-
lyzed for patterns and trends by using suitable diagrams. A key instrument in this
analysis process is the concept of distribution with its various aspects such as center
and spread.

Distribution

Distribution is probably the most central concept in statistics (Bethlehem & De Goo-
ijer, 2000). It is an important tool in describing and predicting patterns in variability.
Despite its complexity, it has recently been identified as an important key concept
even for the middle school level (Cobb, 1999; Gravemeijer, 1999b, c; Petrosino, Le-
hrer, & Schauble, 2003). The problem is that students tend to see data sets as rows
of individual numbers instead of a whole that can have aggregate features. Distribu-
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tion could afford an organizing conceptual structure for thinking about patterns in
variability and to view a data set as an aggregate. Besides that, distribution is a key
idea in statistics that is connected to almost all other statistical concepts. Hence, fo-
cusing on distribution as an end goal of instruction or as a guideline for design has
the additional advantage of possibly providing more coherence in the different sta-
tistical concepts and graphs (Cobb, 1999).

Because distribution is a complex concept with many aspects and different layers of
possible understanding, from frequency distributions to probability density func-
tions, research is needed to tease out the different conceptions of distribution that
students have and can develop. The historical study in Chapter 4 aids in the analysis
of this concept. Section 5.2 is devoted to this key concept of distribution, in partic-
ular the necessity of viewing a data set as a whole or an object that can have charac-
teristics. A central question of the present study is how this process of becoming an
object (reification) evolves (Chapter 8 and 9).

We consider center and spread as two main characteristics of the concept of distri-
bution.

Center

Center can only be the center of something else, the distribution. If there is a ‘true
value’, a measure of center can be used to estimate the signal in the noise (Konold
& Pollatsek, 2002). However, as Zawojewski and Shaughnessy (2000) argue, stu-
dents can only sensibly choose between the different measures of center if they have
a notion of the distribution of the data.

Spread

Spread did not receive much attention in statistics education research until about
1997 (Shaughnessy, Watson, Moritz, & Reading, 1999; Reading & Shaughnessy,
2000). The reason for neglecting spread in education has probably been the focus on
the measures of central tendency. We use the term spread for variation in the variable
at issue, and ‘variation’ as a more general term, for example for variation in frequen-
cy, in density, or around a curve. Noss, Pozzi, and Hoyles (1999) report on nurses
who view spread as crucial information when investigating blood pressure. Spread
is also crucial information when doing repeated measurements, for example in a
physical or biological context (Lehrer & Schauble, 2001). For an overview of the re-
search on variation see Meletiou (2002).

Statistical covariation

Covariation is advocated as a topic for middle school by the NCTM (2000), but it is
not in the Dutch mathematics curriculum of secondary schools. As a study by Cobb,
McClain, & Gravemeijer (2003) in grade 8 shows, covariation is a difficult statistical
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idea. They are convinced that students should first develop a notion of univariate dis-
tributions before they can sensibly deal with covariation. It is perhaps not too diffi-
cult to draw a straight line by eyeballing, but Cobb and colleagues chose to deal with
covariation at a deeper level than just drawing a line through a cloud to signify a
trend.

Covariation is not a topic investigated in the present study. We focused on the first
four key concepts, because the students hardly had any statistical background and
had only 10 to 15 lessons on data analysis (it was not possible to use more lessons).
We do mention covariation as a key concept, because we think that it should be
somewhere in the Dutch mathematics curriculum: students encounter covariation in
physics, chemistry, biology, and the social sciences, mostly represented in scatter-
plots.

There is not much research on how these key concepts can be developed at the mid-
dle school level. If we narrow our focus to studies that use bottom-up software in
which students do not have to choose from ready-made graphs, the only one research
we can directly build upon is that of the research team in Nashville (e.g. Cobb, Mc-
Clain, & Gravemeijer, 2003). That research focused on the notion of distribution
(grade 7) and covariation (grade 8), and, as mentioned in Chapter 1, formed the start-
ing point of the present study.

In the next section, we summarize the results of the Nashville research in a very de-
tailed way, which allows us to present elements of our initial conjectured instruction
theory for early statistics education and to confirm, reject, or extend their findings.

Nashville research with the Minitools

In this section, we summarize the instructional design issues of the research carried
out by Cobb, McClain, and Gravemeijer and their team at Vanderbilt University,
Nashville, USA. We focus on their points of departure (2.3.1), the rationale of the
software (2.3.2), results and recommendations (2.3.3), and the way they described
the process of symbolizing (2.3.4). The numerous articles on these teaching experi-
ments mainly deal with themes that transcend the instructional design issues that we
are interested in here: individual and collective development of mathematical learn-
ing, sociomathematical norms and mathematical practices, tool use, the teacher’s
proactive role, diversity, equity, and so on. We therefore base this section mainly on
Gravemeijer’s manuscripts on the instructional design part of the research (Grave-
meijer, 1999b, c, 2000a, b, 2001) and thus make the instructional design component
accessible to a wider audience. Other sources used for this section were videotapes
of the seventh-grade teaching experiment and articles that have been published
(Cobb, 1999, 2002; Cobb & Hodge, 2002a, 2002b; Cobb & McClain, 2002, in press;

4. This section has been authorized by Cobb and Gravemeijer.

17



2.31

Chapter 2

Cobb, McClain, & Gravemeijer, 2003; Cobb & Tzou, 2000; Gravemeijer, 2001,
2002; McGatha, 1999; McClain, 2002; McClain & Cobb, 2001; McClain, McGatha,
& Hodge, 2000; McGatha, Cobb, & McClain, 2002; Sfard, 2000a). We start with
factual information about the teaching experiments with the Minitools.

Members of the research team at the Vanderbilt University, Nashville, TN, USA,
were Paul Cobb, Kay McClain, Koeno Gravemeijer, Maggie McGatha, José¢ Corti-
na, Lynn Hodge, Carrie Tzou, Carla Richards, and Nora Shuart-Farris. External con-
sultants were Cliff Konold (University of Massachusetts, Amherst) and Erna Yackel
(Purdue University, Calumet). A short pilot with seventh-graders (twelve years old)
was carried out in the fall of 1996 (McGatha et al., 2002). The seventh-grade teach-
ing experiment took place in a regular school situation in the fall of 1997 and con-
sisted of 37 lessons of 40 minutes, with a group of 29 students over a ten-week pe-
riod; the eighth-grade teaching experiment was one year later in 1998 with 11 of the
29 students (thirteen years old) and consisted of 41 lessons of 40 minutes over a four-
teen-week period. This last experiment was carried out during the so-called ‘activity
hour’, normally used for doing homework. The school served a mixed working class
and middle class student population, and about 40% of the students were classified
as minority (almost all African American). In the course of the experiment, 5 stu-
dents dropped out and 11 voluntarily continued to attend throughout (Cobb, personal
communication, November 22, 2002).

Points of departure and end goal

The team’s general points of departure can be described with respect to the trends of
the previous section. In terms of pedagogy (trend 1), the theory of RME served as a
domain-specific instruction theory, and heuristics such as the guided reinvention
principle and emergent models were used for instructional design (Section 2.1). In
line with Freudenthal’s credo that students should experience mathematics as a hu-
man activity, the team strived for students’ participation in genuine data analysis as
opposed to learning a set of techniques. As pointed out in Section 2.2, EDA (trend
2) has an investigative spirit that seemed suitable for this purpose. EDA can be done
without difficult probabilistic concepts and, in comparison to traditional descriptive
statistics, it forms a broader basis for authentic learning in meaningful contexts.
Graphical software can be supportive of the goals of EDA (trend 3) but, as pointed
out earlier, special software was needed to allow students to build upon what they
already knew (case-value plots) and that at the same time could lead to more sophis-
ticated graphical representations (aggregate plots). Because there was no software
that suited the team’s needs, it had to be designed especially for this project. To
avoid students experiencing statistics as just “doing something with numbers” (Mc-
Gatha et al., 2002) and to stay within the investigative spirit of EDA, graphs were a
central focus as instruments in problem solving (trend 4). However, as pointed out
in the paragraphs on the ‘key concepts’, students also need to develop statistical con-

18



Background and research questions

cepts when they learn to analyze data (trend 5). Otherwise, they would probably
keep perceiving individual data instead of conceiving the aggregates displayed in the
graphs.

We have numbered the issues to refer more easily to the same issues later in this
book when we show how our results compare to those of the Nashville team. P#
stands for point of departure number #, and R# for result or recommendation
number #. We would like to draw attention to the fact that the first teaching experi-
ment took place in 1997, when much less was known about statistics education than
nowadays, and that issues in this section should be seen as part of a design process.

P1. As pointed out, EDA requires conceptual tools to conceive of patterns and
trends. The research team decided to combine, as they called it, the process charac-
ter of EDA with the product character of statistical tools and concepts as endpoints
of instruction (Gravemeijer, 2000a; McGatha et al., 2002).

P2. The pedagogical point of departure was that the learning process should always
be genuine data analysis from the outset, as opposed to learning specific tools and
then applying them. Students should deal with real problems that they considered so-
cially important or, in other words, a statistical problem had to be solved for a rea-
son. This point of departure influenced the contexts that were used (AIDS, ambu-
lance travel times, CO, emission, speeding cars, braking distances of cars).

P3. Because data collection is time-consuming and not always possible, the research
team decided “to talk the students through the process of data creation,” as they
called it. Too often, in their view, data are just collected for the purpose of doing
something with data and graphs. The term ‘creation’ was deliberately used to stress
that data are not already there, but need to be produced (G. Cobb & Moore, 1997;
Lehrer & Romberg, 1996; Moore, 1997; Roth, 1996). Data are the result of a process
of measurement that usually involves several decisions. First, there must be a ques-
tion that implies a certain way of looking at a phenomenon. It has to be decided
which attribute is to be measured and how this is to be done. For some types of mea-
surement, this procedure is clear-cut, for instance for height. For other contexts, this
is not directly evident, for instance, measuring whether a certain medicine has the
desired effect. The team found it important that students always considered the
whole process of data creation. To achieve this, typically the teacher during whole-
class discussion capitalized on questions such as, “What is it that we want to know
and why do we want to know this? How do we come to know it?”” After students had
thought about the data creation process, the teacher told them how the data at issue
had been created: “This is how they did it”. The students then got the opportunity to
comment on this.
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P4. Instructional format. The instructional format typically used was a whole-class
discussion, followed by individual or group work with computers, and again a
whole-class discussion. The first discussion was for talking through the data creation
process and the second discussion was for collectively discussing students’ analyses.

P5. Distribution. With these points of departure, the question was, “Which concepts
and graphical tools do we have to focus on?”” In her dissertation on the learning of
the research team, McGatha (1999) describes how the notion of distribution as a po-
tential end goal of the instructional sequence emerged from a conceptual analysis of
the topics and from the discussion on the relevant research literature. The two major
reasons to focus on distribution were the following.

First, distribution is a concept that can help students to conceive aggregates. Data
had to be seen as distributed in a space of possible values and the notion of distribu-
tion had to become, in the end, an object-like entity with characteristics such as
where the data were centered and how they were spread. Conventional graphs such
as box plots and histograms had to emerge as ways to describe and structure distri-
butions. A more extensive analysis of this notion of distribution is given in Section
5.2.

Second, focusing on distribution could bring more coherence to the curriculum. Tra-
ditionally, statistical concepts and graphs are taught in middle school as a set of
loosely related techniques (Cobb, 1999). Concepts such as mean, median, spread,
and skewness are only meaningful when they refer to distributions. Coherent statis-
tical knowledge could emerge if these concepts can be developed as characteristics
of distributions and graphs as ways to structure and describe distributions.

P6. The team conjectured that comparing distributions would be a valuable way to
involve students in reasoning about characteristics of distribution, because there
would be a reason to think about the whole data sets.> Hence, most instructional ac-
tivities in the seventh-grade experiment involved comparing two distributions.

P7. Mean. There were three reasons not to focus on the mean. The first reason was
that a considerable amount of research, including an analysis of the pilot (McGatha
et al., 2002), showed that students generally see the mean as a procedure and do not
use it sensibly to compare groups (see also Section 2.2). The team thought that this
procedural approach would interfere with the kind of reasoning they wanted to fos-
ter. Gravemeijer (1999b):

Another reason for avoiding the mean was in our assertion that the mean is not very
relevant if it comes to characterizing the distribution of data values. The mean does

5. This idea is in line with findings of Watson & Moritz (1999) and Konold & Higgins
(2002).
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give you an aggregated measure of the data values but it does not tell you anything
about the distribution as such. (p. 13)

As we explain in Chapters 4 and 5, this is not our own view.

P8. The median seemed more appropriate to use as a measure of center than the
mean, and quartiles seemed more appropriate to use as a measure of spread than the
standard deviation (Gravemeijer, 1999b). In the team’s reasoning, the median was
easier to understand than the mean (but see R16), the position of the median in rela-
tion to the extreme values showed skewness, and a five-number summary of mini-
mum, first quartile, median, third quartile, and maximum was seen as a way to de-
scribe the distribution (Tukey, 1977).

P9. Sampling. EDA typically does not deal with probability and sampling issues. G.
Cobb and Moore (1997), writing about college level, recommend EDA as a basis for
data production (design), which in turn forms the basis for probability and then sta-
tistical inference. Because the research team brought distribution and multiplicative
reasoning to the foreground, the issue of sampling moved to the background and was
not to be addressed explicitly.

P10. The designers experienced that it was almost impossible to find real data sets
that served their pedagogical agenda. This was the reason they mainly used realistic
data as opposed to real data, where realistic means “as it could have been in a real
situation.”

P11. Multiplicative reasoning. During the pilot, the team had noticed that students
struggled with ratios and proportions when solving statistical problems. Students’
reasoning is called additive if they use absolute instead of relative frequencies. For
instance, if students compare 4 of a group of 24 with 6 of a group of 65 without tak-
ing the proportion into account, they reason additively. If they use proportions or
percentages to compare the groups of different size, they reason multiplicatively (cf.
Thompson, 1994). Konold et al. (1997) argue that a focus on a proportion of data
within a range of values is at the heart of a statistical perspective, so multiplicative
reasoning is an important issue to address. Multiplicative reasoning “also cuts across
anumber of content strands and constitutes the overarching goal for American math-
ematics instruction at the middle-school level” (McClain & Cobb, 2001, p. 108). The
team therefore decided to make multiplicative reasoning a central theme of the re-
search.

Our goal for the learning of the classroom community was that reasoning about the
distribution of data in multiplicative terms would become an established mathemati-
cal practice that was beyond justification. (Cobb, 2002, p.176)
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The problem of technology as described in trend 3 implied that special software had
to be designed. This is the topic of the next section, which also deals with the repre-
sentational backbone of the instructional sequence. The specially designed so-called
“Statistical Minitools’ (Cobb, Gravemeijer, Bowers, & Doorman, 1997) were used
in 27 of the 34 classroom sessions of the seventh-grade experiment, and in about 25
of the 41 sessions of the eighth-grade experiment.

Rationale of the Statistical Minitools®

Most educational statistical software packages only provide common and culturally
accepted graphical representations (e.g. Datascope, Fathom, VU-Stat; see also Bie-
hler, 1997). Users of such packages need to anticipate the information that they can
extract from the representations and measures that the computer program has to of-
fer. For students with hardly any statistical background, this is difficult, and such an
approach is not in line with the reform movements or the RME philosophy. Tabletop
(Hancock, 1995) does offer non-standard plots, but in the team’s view this program
seemed to orient students to focus on characteristics of individual cases, which was
at odds with their concern for distribution. The team therefore developed three so-
called Statistical Minitools to support a process of guided reinvention of the notion
of distribution and graphical representations that can organize distributions. The
backbone of the sequence is formed by a series of inscriptions that are embedded in
the Minitools.

0 10 20 30 40 50 =01} 70 a0 S0 00 1100 1200 1300 140
Tough_cell

™ valuehar I Sart by size
™ Select range ™ Hide pink
¥ Bars ™ Hide orange

Figure 2.2: Case-value bars in Minitool 1 signifying life spans in
hours of two different battery brands

6. This section is an edited version of a section by Gravemeijer (2001). In this way, we
stick as closely as possible to the original motivation for the Minitools design. The
Minitools are free for use in the classroom (NCTM, 2003; www.wisweb.nl).
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The rationale is that the activities with the computer tools follow each other in such
a manner that the activity with the newer tool is experienced as a natural extension
of the activity with the earlier tool.

Minitool 1

The starting point is in the measures, or magnitudes, that constitute the data set. With
Minitool 1, case-value bars (Figure 2.2) are introduced that signify single measures.
Initially, the measures under investigation are of a linear type, such as length and
time. Later, this is generalized to other types of measures. Students can organize the
data by sorting by size and by color (for comparing subsets). Furthermore, there are
two tools, a ‘value tool” and a ‘range tool’, which have to support the organization
of data and understanding of the variable on the horizontal axis. The value tool (or
‘reference line’) was also meant to afford visual estimation of a measure of center,
in particular to avoid calculations for getting the mean. The range tool was to support
the discourse on a modal class.
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Figure 2.3: A dot plot in Minitool 2

Minitool 2

In the discussions on data represented by value bars, the students are assumed to fo-
cus on the endpoints of the value bars. As a consequence, these endpoints come to
signify the corresponding value bars for the students. This allows for the introduc-
tion of a dot plot as a more condense inscription, that omits the value bars and only
keeps the endpoints (Figure 2.3). The dots are collapsed down onto the axis without
moving to the right or left. This explains the open spaces that sometimes occur in a
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dot plot. Note that there is no frequency axis: the students still need to construct one
mentally. This type of representation is also called a numberline plot.7

Minitool 2 offers various tool options to help the students structure the distribution
of data points in a dot plot. There are five options to structure the data: making your
own groups, making two or four groups with an equal number of data points, making
groups of a certain size (e.g. 10 data points per group), and making equal intervals.

Create your own groups. Apart from incorporating options that would anticipate
conventional graphs, the team wanted to make sure that the Minitool would offer the
students the freedom to structure the data in ways that make sense to them. Hancock
and colleagues had observed that students tend to make their own clusters of data
(Hancock, Kaput, & Goldsmith, 1992), so an option to create one’s own groups was
built in.

Two and four equal groups. Minitool 2 features equal-groups options, one that par-
titions a set of data points into two halves, and one that partitions a set of data points
into four quartiles. The latter results in a four-equal-groups inscription, which can be
seen as a precursor to the conventional box plot. The similarity with a box plot is
clearer when the ‘hide data’ option is used (Figure 2.4).

Figure 2.5: Box plot overlay that was made available in the revised version of Minitool 2

7. Some people find the stacked dot plots unclear because the vertical dimension only gives
an informal sense of density. This problem could be solved by rounding off values or
changing the scale such that the dots stack neatly, so that the vertical dimension conveys
frequency.
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The hide data option also creates the opportunity to shuttle back and forth between
the dot plot and the four-equal-groups inscription. This is helpful, for instance, if one
wants to make the adequacy of a four-equal-groups description a topic for discus-
sion. The four-equal-groups option was considered useful for fostering multiplica-
tive reasoning: it does not depend on the size of the data set, so data sets of different
size can be compared adequately. The team assumed that the four-equal-groups in-
scription (a precursor to the box plot) would support reasoning about the shape of
the distribution in terms of density, which is a key characteristic of a distribution.
The idea is that students learn to relate the width of an interval to the density of the
distribution in that area.

Equal interval width. As an alternative to the four-equal-groups option, the students
can also choose to structure the data in equal intervals. When using this option, the
students can indicate the size of the interval width. In addition to intervals, Minitool
2 shows the number of data points in each interval (Figure 2.6).

Figure 2.7: The histogram overlay that was made available in the revised version of Minitool 2

The hide data option makes it possible to view just the numbers. The corresponding
inscription can be seen as anticipating a frequency histogram. In a more elaborate
sequence, the histogram with absolute frequencies might be developed into a histo-
gram with relative frequencies. Such a histogram might eventually come to function
as a basis for the description of a distribution by a continuous curve: the curve might
be the result of taking the limit with the interval width approaching zero. However,
the notion of taking a limit is far too demanding for seventh-graders. Instead, the end
goal was formulated as follows: “The notion of the shape of the distribution has to
be the result of analyzing data sets with the Minitools, after students have come to
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see the shape of the dot plot as a description of the distribution of variable values in
terms of density” (Gravemeijer, 2000b). The box plot and the histogram overlays
(Figures 2.5 and 2.7) were not available in the original version of Minitool 2; they
were added during the present research, but only the eighth graders worked with
them.

Minitool 3

For the eighth-grade experiment in Nashville, the end goal was that students would
come to see bivariate data as a series of distributions of univariate data. To support
a learning process towards that end goal, Minitool 3 was developed. It offered a scat-
terplot with a few ways of structuring the data such as groups of a fixed size or equal
groups. One insight was that a series of stacked distributions (as in Figure 2.8) would
support deeper understanding of covariation in a scatterplot (Cobb, McClain, &
Gravemeijer, 2003). Deeper understanding meant that covariation had to be much
more than drawing a line through a cloud of dots. In the team’s view, covariation in
a scatterplot can be seen as a description of how a univariate distribution changes
along with the independent variable. This underlines the importance of a good un-
derstanding of univariate distributions before addressing statistical covariation. For
this transition students need to see a series of dot plots turned at angles and squeezed
into one vertical line.

Because Minitool 3 was not used in the present study, we do not discuss this Mini-
tool any further (see for instance www.wisweb.nl). We only discuss the findings
when students worked with Minitool 3 that were relevant for our own study.
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Figure 2.8: Scatterplot in Minitool 3 with stacked data as opposed to a ‘clouds’ (left)
and four equal groups within the scatterplot slices (right)

Results and recommendations
In this section, we summarize the results and recommendations that formed starting
points of the present study.
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Seventh-grade teaching experiment

RI. Cobb and Tzou (2000) claim that talking through the data creation process
proved successful. One sign of that is that students adopted the teacher’s questioning
attitude on the data creation.

R2. Tt was noted in retrospect that talking through the data creation process is a way
of implicitly addressing the issue of sampling. However, it was acknowledged that
sampling should be addressed more thoroughly, since it underlies the notion of fair
comparison and it cannot always be kept in the background (Gravemeijer, 1999c).
This issue is revisited in R17.

R3. The students used the range tool to partion data sets and to isolate intervals to
make comparisons as well as to investigate consistency. For example, in the context
of the life span of two battery brands (Always Ready and Tough Cell), Casey used
it to indicate the interval 104.9 to 126.6 (Figure 2.9):

Casey: Alright, because there’s ten of the Always Ready and there’s ten of the
Tough Cell, there’s 20, and half of 20 is ten.

Teacher: And why would it be helpful for us to know about the top ten, why did you
choose that, why did you choose ten instead of twelve?

Casey: Because [ was trying to go with the half. (Cobb, 2002, p.178)
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Figure 2.9: Battery data set in Minitool 1 with range tool

R4. The value tool or vertical reference line was used to find certain values or to rea-
son with certain cutting points. For example, Brad used it at 80 (Figure 2.9):

Brad: See, there’s still green ones [Always Ready] behind 80, but all of the
Tough Cell is above 80. I would rather have a consistent battery that I
know will get me over 80 hours than one that you just try to guess.

Teacher: Why were you picking 80?

Brad: Because most of the Tough Cell batteries are all over 80. (Cobb, 2002, p.
178)

R5. There turned out to be a shift from looking at individual cases to the data set as
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awhole. “The mathematical practice that emerged as the students used the first mini-
tool can (...) be described as that of exploring qualitative characteristics of collec-
tions of data points” (Cobb, 2002, p. 179). The term ‘collection of data points’ is
used here in opposition to ‘distribution’. The first term refers to additive reasoning
whereas the second denotes multiplicative reasoning. The notion of the majority of
data did not become a topic of discussion until students analyzed data sets with un-
equal numbers (Cobb, 2002) and the notion of majority was then used in conjunction
with the hill notion (see next item).

R6. In the context of comparing situations before and after the installment of a speed
trap, one student spontaneously used the notion of a ‘hill’ to refer to the majority of
the data points. The meaning attributed to the hill, was more than just visual; it was
interpreted in the context of the speed of cars (Figure 2.10):

Janice:  If you look at the graphs and look at them like hills, then for the before
group the speeds are spread out and more than 55, and if you look at the
after graph, then more people are bunched up close to the speed limit which
means that the majority of the people slowed down close to the speed limit.
(Cobb, 2002, p. 180)

In describing hills, Janice had reasoned about qualitative relative frequencies. This
notion of the majority of the data, however, did not become a topic of discussion un-
til the students analyzed data sets with unequal numbers of data values.
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Figure 2.10: Speed trap data set in Minitool 2 (in miles per hour).

The team’s analysis indicates that a majority of the students could interpret graphs
of unequal data sets organized into equal interval widths, an analog of histograms,
and into four equal groups, an analog of box plots, in terms of global characteristics
of distributions. The mathematical practice that emerged as they developed these
competencies can be described as that of exploring qualitative characteristics of dis-
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tributions (Cobb, 2002). Note that this second mathematical practice is about distri-
butions, whereas the first practice is about collections of data points.

R7. Bottom-up approach. The team has been reasonably successful in the bottom-up
approach. The first example that supports this claim is that students themselves came
up with the notion of consistency to denote what we would perhaps call the variation
or spread of the data. The second example is students’ spontaneous use of the notion
of a ‘hill’ for comparing distributions (see student quotes in R6).

RS. Multiplicative reasoning versus distribution. Gravemeijer (2000b) remarks that
when students use Minitool 2 grouping options, there is a pitfall of fragmentation,
because students often compared vertical slices. For instance, students noticed that
50% of one data set was below a certain cutting point whereas 75% of the other data
set was below the same point. Hence, the development of multiplicative and arith-
metical reasoning had some success at the expense of developing the notion of dis-
tribution as a whole in relation to shape. See also R13.

RY. Students did not use the value tool to estimate means, except for one student, but
he used the value tool only as an instrument of calculation (Gravemeijer, personal
communication, January, 2003).

R10. Though students started to talk about a shift of the data, for instance in the con-
text of a speed trap, students found it very difficult to describe the shift in quantita-
tive terms. Presumably, students did not conceive the measures of center as charac-
teristics of the whole distribution.

R11. For the instructional sequence, the team considered it sufficient if students de-
veloped an image of the normal distribution as symmetrical, with a maximum in the
middle, and descending towards the extremes (Gravemeijer, 2000b).

R12. As a way of letting students reason about the appropriateness of graphical dis-
plays, the team had gradually come to push the students in the role of data analysts
as opposed to just problem solvers. By that the team meant that students did not need
to solve the problem themselves, but should describe and represent the data in such
a way that others, such as politicians and other decision makers, could make a rea-
sonable decision.

Eighth-grade experiment on covariation

Because covariation is included in the American middle school mathematics curric-
ulum and is important for statistical literacy, the team felt that bivariate data and
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scatterplots had to be addressed. During the eighth-grade experiment they learned to
see bivariate data as a distribution of univariate distributions. For students, it turned
out to be very difficult to achieve this view, but the intermediate step of using
stacked data that show a series of vertical distributions was promising (Cobb, Mc-
Clain, & Gravemeijer, 2003).

In the Dutch mathematics curriculum up to grade 12, covariation and scatterplots are
not dealt with. Because we did not address covariation in the present study (apart
from the spontaneous reinvention of a scatterplot in Section 6.11), we only summa-
rize results from the eight-grade experiment that are essential for the present re-
search.

R13. In many situations, for example when working with data sets with a lot of vari-
ation and especially when working with univariate data, students found it hard to
perceive hills. Cobb and colleagues (2003) conclude that smoother distributions are
probably needed to support students’ perception of shapes. It is also advisable to fos-
ter a basic set of shapes such as normal, skewed, and bimodal.

R14. The research team used the term ‘shape’ for more than the visual part. It refers
to how the density of the data varies over the measured variable. Students talk about
full and empty parts: data are bunched up in certain parts of the graph or are spread
out in other parts, for instance in a four-equal-group organization. In that sense, they
indeed started to reason about density, and not just about frequency distributions.

R15. The team concluded that the mean cannot really be avoided (see P7). The main
reason that Gravemeijer (1999b) mentions is that many real data values are already
means:

It may be noted that the eighth-grade teaching experiment on bivariate data made us
very aware of the fact that many interesting data sets are constituted by data that con-
sist of means themselves. For instance, when looking at the relation between heart dis-
eases and alcohol consumption, based on data from various countries. We might use
the very same type of situations, where the question of how to compensate for the dif-
ferences in population size of the various countries could be a starting point. (p. 13)

This last idea is worked out by Cortina and colleagues (Cortina, 2002; Cortina,
Saldanha, & Thompson, 1999).

R16. The median turned out to be problematic, both for the students and for the in-
structional designers. For the students, the median initially was a procedure of count-
ing inward from each end of an ordered data set to find the middle number. The team
defined the median as the value that divides the data set in half (with the option of
two equal groups in Minitool 2) and tried to let students use the median as an indi-
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cation of the majority, but were not successful in doing so. There was only one epi-
sode in which a student said that the median is where the majority is, but this idea
was rejected by the other students. Cobb and colleagues (2003) write that students
saw the median at the level of just another data point instead of a measure of center.
With hindsight, the team realized that the median had previously been used as a cut-
ting point to support multiplicative reasoning about equal parts of the data (for ex-
ample, 25% versus 75%) and not as a measure of center (see also RS8).

R17. Sampling. Around the 36th lesson, the team made an interesting observation.
Students did not want to predict a single value (reaction time of an eighth-grader),
but argued that the reaction times of another group of ten eighth-graders would prob-
ably be similar. Gravemeijer writes that the team had ‘downplayed’ the role of sam-
pling. They had kept the fact that most problems dealt with samples in the back-
ground, for they wanted to avoid problems with probability. The few times they tried
something with making inferences about single events proved them right, but the ex-
ample above “opened a new avenue.” “We can address sampling, if the questions are
cast in terms of the population from which the sample is taken” as opposed to com-
paring data sets (Gravemeijer, 1999b, p.15-16). Gravemeijer goes on to say:

To foster the idea that there is a strong relation between the distribution of a popula-
tion and the distribution of an adequate sample of that population, students have to
gain experience with comparing samples and populations. (ibid.)

These seventeen results were the main issues that the present research built upon.
We now turn to the issue of symbolizing, which was another focus of both the Nash-
ville and the present research.

Symbolizing

As mentioned in Chapter 1, the purpose of the present research is to contribute to an
instruction theory for early statistics education. In Section 2.2 we hinted at the rela-
tionship between graphs and concepts: it is impossible to make sense of graphs with-
out having appropriate conceptual structures, and it is impossible to communicate
about concepts without any representations. Thus, to develop an instruction theory
it is necessary to investigate the relation between the development of meaning of
graphs and concepts. This process is a focus of both the Nashville research and the
present research, and part of that process is called ‘symbolizing’. What exactly is
meant by symbolizing? Before answering that question, we invite the reader to try
and think of the normal distribution without any representation or application of it.
We have no idea of how to do that. In our minds, we see the bell shape or perhaps
another graph; we think of the probability density function, the Galton board, or we
think of phenomena that can be modeled with the normal distribution (for example,
height). In line with Dorfler’s observation that he could not find the concept of the
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number 5 or the triangle in his mind, we cannot find the concept of the normal dis-
tribution in our mind, only representations (Tall, Thomas, Davis, Gray, & Simpson,
2000). As Peirce (CP 2.228),8 one of the founding fathers of semiotics, remarked:
all our mathematical thinking is on signs. In particular, graphs and diagrams are in-
tegral to statistical reasoning. But how do graphs become meaningful for students?
How do diagrams come to serve as useful tools to organize data and solve statistical
problems? What is the relation between the concept and a graph of the normal dis-
tribution?

In recent years, researchers in mathematics education have framed such questions as
semiotic questions and have taken graphs as signs or symbols. A sign, in short, is
something that stands for something (referent or object) for someone. Many concrete
entities can serve as a sign: graphs, diagrams, charts, tables, icons on a computer
screen, sketches on paper, building blocks, or a knot in a handkerchief. A symbol is
a special type of sign, namely one that is arbitrary or conventional in a sense. While
a footprint or a photograph is mostly not used as a symbol, the letter « is commonly
used in mathematics as a symbol for the proportion of circumference and diameter
of a circle. It has generally been acknowledged since at least the end of the nine-
teenth century (Frege, 1962) that there is no fixed relation between a sign and a ref-
erent. Someone has to interpret a sign in relation to a referent. But how does a person
learn how to interpret a sign in the intended way?

It is now commonly accepted in the philosophy of language (and mathematics edu-
cation research) that symbols gain their meaning by the way they are used (e.g. Witt-
genstein, 1984), that is in activity and in a community of practice (Wenger, 1998;
Meira, 1998). A histogram, for instance, has no meaning by itself, but only when
used to solve a certain problem or to describe the distribution of a data set. Thus it
can function as a sign of a distribution.

Literally, symbolizing means “making a symbol.” The term ‘symbolizing’ as it is
used by the research community, however, seems to be a pars pro toto: it stands for
the whole process of making a symbol for a specific purpose, using it, improving it
and possibly making a new symbol (Cobb, Yackel, & McClain, 2000; Gravemeijer,
Lehrer, Van Oers, & Verschaffel, 2002). The term is used to stress that symbols gain
meaning in activity. This attention for symbolizing as an activity as opposed to sym-
bols as ready-made representations is in line with Freudenthal’s (1991) focus on
mathematics as the activity of mathematizing versus mathematics as a ready-made
system.

In mainstream psychology, internal and external representations are distinguished:
signs are external representations and concepts internal representations. It is howev-
er not clear how a connection is established between internal and external represen-

8. Following common practice we refer to the Collected Papers of Peirce as CP with the vol-
ume (2) and section number (228).
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tations. According to Cobb (2000), it is by the focus on the activity of symbolizing
that the dichotomy between internal and external representations can be overcome.
Several proposals have been made to describe this process of symbolizing. Latour
(1990), Meira (1995) and Roth (1996) write about ‘cascades of inscriptions’; Lacan
(1968), and in his footsteps many others, used a ‘chain of signification’ (Cobb, 2002;
Gravemeijer et al., 1997; Presmeg, 2002; Walkerdine, 1988; Whitson, 1997).

For the origin of the chain of signification, we have to go back to another founding
father of semiotics, Ferdinand de Saussure, who conceived a sign as a pair of signi-
fier and signified: the signifier signifies the signified. Lacan used this idea to de-
scribe how the meaning of one sign can slide under another sign; in this way a chain
of signification can be built.

dot plots

sign,

{Value-bar graphs } .
——=—— ¢ sign,
situation

Figure 2.11: Chain of signification with the Minitools after Cobb (2002, p.188).

Cobb (2002) uses this idea to describe how the meaning of the value-bar graph in
Minitool 1 slid under the next sign, the dot plot of Minitool 2 (Figure 2.11). The
chain of signification started at the problem situation of life span of batteries and oth-
er contexts. After talking through the process of data creation (P3), the life spans
were inscribed as horizontal bars in Minitool 1. This inscription (used as a sign)
opened possibilities to partition the data set, for example, and to discuss features of
the data set (extreme values, intervals, range). The first mathematical practice (RS)
is defined as reasoning about qualitative characteristics of collections of data points.
Students routinely investigated the number of data points above or below a certain
value or within a specific interval. This habit was continued when students worked
with Minitool 2. The way in which they used this computer tool to partition data sets
was consistent with and built upon the ways of organizing data they were used to
with the first Minitool. Cobb (2002) notes that it is the way of reasoning with a sign
that can slide under a new sign, not something that emerges from the material fea-
tures of the signs themselves.

While reasoning with the second Minitool, students came to view data sets as distri-
butions as opposed to collections of individual data points. Cobb (2002, p. 187)
claims that “the central mathematical idea of distribution would not have emerged
had the students continued to use the first minitool or if the second minitool had in-
volved a different way of describing data.” And “it is doubtful that the line plot in-
scription [dot plot of Minitool 2] would have afforded the emergence of the notion
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of distribution had the students used the second minitool from the very beginning of
the design experiment” (ibid.). He represents the chain of signification with the
Minitools as in Figure 2.11.

In our view, there are several problems associated with using chains of significations
to analyze students’ learning, for example if two chains come together when com-
paring signs. We have therefore searched for an alternative semiotic framework
without that linear nature. We discuss those issues in Chapters 8 and 9.

Conclusions for the present study
The conclusions of the Nashville research with the Minitools that were most relevant
for the instructional design part of the present study were the following:

e (Center. The measures of center had to be reconsidered. It turned out that the
mean should be addressed and that problems around the median had to be solved.
How do these statistics become measures of the data set or distribution?

»  Shape of distributions. More attention should be paid to the shape of distributions
in terms of density (shift of the hill; where are data bunched up?). The pitfall of
fragmentation due to a focus on multiplicative reasoning should be avoided (R8).
Using smoother unimodal distributions without comparing numbers of data
points in certain groups might help to avoid the problems mentioned in R8 such
as that students do not consider the whole shape when comparing parts multipli-
catively.

e Sampling has to be taken into account from an early stage onwards. The notion
of distribution could perhaps be developed by using sampling (R17), but how
this can be done without turning to sampling distribution is an open question.

o Symbolizing. According to Cobb (2002) students’ learning process with the two
Minitools can be described with a chain of signification and mathematical prac-
tices. In Chapter 8 we argue why we have searched for a different semiotic
framework and chose for Peirce’s semiotics.

Research questions

Because the present study is a sequel to the design research just described, we took
the same points of departure, the same Minitools, the results and recommendations
of these experiments as the basis for the present research. All of the numbered issues
of Section 2.3 are addressed in the following chapters to show in which sense our
results confirm the Nashville results or deviate from them. Here we only highlight
the key issues to motivate our research questions.

In the Nashville research, the end goal was distribution as a single, multifaceted no-
tion (P4). As indicated in the section on key concepts (2.2), we aim for simultaneous-
ly dealing with data, distribution, and sampling in a coherent way, with distribution
as the central idea. The first research question of this thesis, to be understood within
the RME approach, is similar to the one of the Nashville research:

34
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1. How can students with little statistical background develop a notion of distribu-
tion?

Because of the issues on sampling, we decided from the outset to pay more attention
to sampling than the Nashville team did (R17). The answer to this first question is
given in Chapter 7.

The Nashville team claims that there is a reflexive relationship between how stu-
dents use symbols and what they signify for students (e.g. Cobb, 2002). Cobb uses
the notion of a chain of signification to describe this process, but we argue in Chapter
8 there are practical and theoretical problems with the theory of chains of significa-
tion. Although the Nashville team was able to describe the development of mathe-
matical practices on the macro-level with chains of signification, it is not exactly
clear to us how this signification process evolves at the micro-level. To contribute to
an instruction theory for early statistics education, we found it necessary (2.2 and
2.3.4) to investigate the symbolizing process, the relationship between graphical and
conceptual development, in more detail. The second main research question is there-
fore:

2. How does the process of symbolizing evolve when students learn to reason about
distribution?

We use different semiotic theories as instruments of analysis in our search for a the-
ory that helps to describe and analyze this process of symbolizing, and that can in-
form instructional design as well. We answer the second research question in Chap-
ter 8. Because the two research questions turn out to be strongly related when using
Peirce’s semiotics, an integrated research question is answered in Chapter 9.
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If you want to understand something you have to change it
and if you want to change something you have to understand it.
Seth Chaiklin (personal communication, June 17, 2002)

There is nothing so practical as a good theory.
Kurt Lewin (1951, p. 169)

Design research methodology

The purpose of the present research is to contribute to an empirically grounded in-
struction theory for early statistics education. Such a theory should specify patterns
in students’ learning as well as the means supporting that learning in the domain of
statistics education (Cobb, Confrey, et al., 2003). This implies that the development
of an instruction theory includes both the design of such instructional means and re-
search of how these means support successive patterns in students’ reasoning. Par-
ticularly if the research aims at specific types of learning that differ from common
educational practice, one needs to design instructional materials that support the de-
sired type of learning. In general, we first need to create the conditions in which we
can develop and test an instruction theory, but to create those conditions we also
need research. Design and research are therefore highly intertwined when develop-
ing an instruction theory.

In the present research we are especially interested in how students can learn to rea-
son about distribution in RME-oriented education. This implies that we need to de-
sign an instructional environment that supports such learning and that we need to an-
ticipate successive patterns in students’ reasoning that could lead to particular end
goals.

Our methodology falls under the general heading of design research, because it con-
siders design as a crucial part of the research. This type of research is also termed
‘developmental research’, because instructional materials are developed, but by us-
ing the term ‘design research’ we hope to avoid two possible connotations (cf. Cobb,
1999). One is developmental psychology in the style of Piaget, and the other is re-
search that describes the development of mathematical concepts in students. Design
research (Edelson, 2002; Kelly & Lesh, 2000), developmental research (Engestrom,
1987; Gravemeijer, 1994; Van den Akker, 1999), and design experiments (Brown,
1992; Collins, 1992) all treat design as a strategy for developing and refining theo-
ries. These types of research have been used successfully in a wide range of domains
and for a variety of research questions (Edelson, 2002; Educational Researcher
32(1)). Design experiments can also be combined with comparative empirical re-
search (Brown, 1992).

Cobb, Confrey, et al. (2003) identify five features that apply to different types of de-
sign research. The first is that its purpose is to develop theories about learning and
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the means that are designed to support that learning. We develop an instruction the-
ory for early statistics education and instructional means that support the learning of
a multifaceted notion of distribution. The second feature of design research is its in-
terventionist nature. The methodology allows researchers to take their “best bets”
(Lehrer & Schauble, 2001) at all times so that they are not constrained to improve
the design after an experiment cycle has been carried out. The third cross-cutting
feature is that design research has a prospective and reflective component that need
not be separated by an experiment. In implementing hypothesized learning (the pro-
spective part) the researcher confronts conjectures with actual learning that he ob-
serves (reflective part). The fourth feature is the cyclic character of design research:
invention and revision form an iterative process. Conjectures on learning are some-
times refuted and alternative conjectures can be generated and tested. The fifth
crosscutting feature of design research is that the theory under development has to
do real work (see the motto of Kurt Lewin: Nothing is so practical as a good theory).
This theory is relatively humble in the sense that it is developed for a specific do-
main, for instance statistics education. Yet it must be general enough to be applicable
in different contexts such as classrooms in other schools in other countries.

The objectives of design research are different from those of comparative empirical
research. The main objective of design research is to develop theories together with
instructional materials whereas the main objective of comparative research to eval-
uate theories or materials. This does not mean that we separate developing and eval-
uating theories, because in design research the theory that is under development is
evaluated during and after design experiments. Glaser and Strauss’ (1967) remarks
about their method of comparative analysis also apply to design research: “Although
our emphasis is on generating theory rather than verifying it, we take special pains
not to divorce those two activities, both necessary to the scientific enterprise.” (p.
viii)

The difference in emphasis of the objectives also implies different norms of justifi-
cation of theories. The Research Advisory Committee of the National Council of
Teachers of Mathematics (RAC, 1996) observes a gradual shift from norms that ap-
ply to comparative empirical research to norms that apply to research such as design
research. The norm of justification in the first type is often limited to assessing
whether innovative curricula or professional development programs are better than
traditional ones. The norm of justification in the second type is that an empirically
grounded theory about ow the design works, in terms of anticipatory conjectures,
can be tested and revised in practice.

Design research is evaluated against the metrics of innovation and usefulness, and
its strength comes from its explanatory power and grounding in experience. More-
over, it often leads to products that are useful in educational practice because they
have been developed in practice. Design research, as we use it, consists of cycles of
three phases:
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1 apreparation and design phase,

2 ateaching experiment,

3 aretrospective analysis.

The results of such a retrospective analysis mostly feed a new design phase. In this
way, the retrospective analysis of the Nashville research formed the basis for the
present design research. The design research of the Nashville team had resulted in
developed software, a set of instructional activities and an emerging instruction the-
ory for early statistics education aiming at the notion of distribution as a single mul-
tifaceted notion. This did not mean that we could simply replicate this research be-
cause the Dutch context differs considerably from the American. The exploratory in-
terviews indicate, for instance, that Dutch students in grade 7 have a different
mathematical and statistical background than those in Nashville. To answer the re-
search questions of this study, we needed to develop instructional activities that
would be suitable within the Dutch context while taking into account new insights
from the prior experiments, such as the role of the mean, median, and sampling. We
also wanted to enhance the software, for instance by allowing histograms and box
plots in the interface. Additionally, there were still open questions around the pro-
cess of symbolizing. These could only be answered from a situation in which stu-
dents would get the opportunity to share their ideas and make their own graphs. Be-
fore discussing the three phases of a design research cycle in more detail we need to
define what we mean by a hypothetical learning trajectory.

Hypothetical learning trajectory (HLT)

A design and research instrument that proved useful during all phases of design re-
search is the so-called ‘hypothetical learning trajectory’ (HLT), which we regard as
an elaboration of Freudenthal’s thought experiment. Simon (1995) defined the HLT
as follows:

The hypothetical learning trajectory is made up of three components: the learning goal
that defines the direction, the learning activities, and the hypothetical learning pro-
cess—a prediction of how the students’ thinking and understanding will evolve in the
context of the learning activities. (p. 136)

Simon used the HLT as part of the so-called Mathematics Teaching Cycle, mostly
for one or two lessons, but we use it as an instrument in design research for longer
sequences of instruction.”

The HLT is the link between an instruction theory and a concrete teaching experi-
ment. It is informed by general domain-specific and conjectured instruction theories

9. The TAL team uses so-called ‘Learning-Teaching Trajectories’, but these refer to longi-
tudinal curriculum strands across several grades (Van den Heuvel-Panhuizen, 2001). Our
HLT is more similar to what Klaassen (1995) calls a scenario.
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(cf. Gravemeijer, 1994), and it informs researchers and teachers how to carry out a
particular teaching experiment. After the teaching experiment, it guides the retro-
spective analysis, and the interplay between the HLT and empirical results forms the
basis for theory development. This means that an HLT, after it has been mapped out,
has different functions depending on the phase of the design research and continual-
ly develops through the different phases. It can even change during a teaching ex-
periment.

1 During the design phase, the HLT, once formulated, guides the design of instruc-
tional materials that have to be developed or adapted. The confrontation of a gen-
eral rationale with concrete activities often leads to a more specific HLT, which
means that the HLT usually develops during the design phase (Drijvers, 2003).

2 During the teaching experiment, the HLT functions as a guideline for the teacher
and researcher what to focus on in teaching, interviewing, and observing. It can
happen that the teacher or researcher feels the need to adjust the HLT or instruc-
tional activity for the next lesson. As Freudenthal wrote (1991, p. 159), the cyclic
alternation of research and development can be more efficient the shorter the cy-
cle is. Minor changes in the HLT are usually made because of incidents in the
classroom such as anticipations that have not come true, strategies that have not
been foreseen, activities that were too difficult, and so on. In such cases, a micro-
cycle of design, experiment, and analysis occurs within a macro-cycle of design
research. Such micro-cycles are generally not accepted in comparative empirical
research, but in this type of design research, changes in the HLT are made to cre-
ate optimal conditions and are regarded as elements of the data corpus. This
means that these changes have to be reported well and the information is stronger
if changes are supported by theoretical considerations. The HLT can thus also
change during the teaching experiment phase.

3 During the retrospective analysis, the HLT functions as a guideline determining
what the researcher should focus on in the analysis. Because predictions are
made about students’ learning, the researcher can contrast those anticipations
with the observations made during the teaching experiment. Such an analysis of
the interplay between the evolving HLT and empirical observations forms the
basis for developing an instruction theory. After the retrospective analysis, the
HLT can be reformulated, in an often more drastic way than during the teaching
experiment, and the new HLT can guide a next design phase.

An HLT can be seen as a concretization of an evolving instruction theory. Converse-
ly, the instruction theory is informed by evolving HLTs. For example, if patterns of
an HLT stabilize after a few macro-cycles, these generalized patterns in learning or
instruction and the insights of how these patterns are supported by instructional
means can become part of the emerging instruction theory.
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For an overview of the levels in the design research as conceived in our case, see Ta-
ble 3.1; these levels are meant to be neither completely exclusive nor exhaustive. For
some readers, the term ‘trajectory’ might have a linear connotation. Although we
aim for a certain direction, the HLT was non-linear in the sense that we did not make
a linear sequence of activities in advance that we strictly adhered to (cf. Fosnot &
Dolk, 2001).

Table 3.1: Levels in the present design research

theories and knowledge psychology, educational science, semiotics, activity theory,
from multiple sources mathematics, mathematics education, statistics, statistics
education, science education,...

instruction theories ranging from small to large domain, e.g. from statistics at the
middle school to Realistic Mathematics Education in general

hypothetical learning particular teaching experiments
trajectories
instructional materials activities, software, tools, teacher guides, etc.

(means of support)

Between lessons we often took a slightly different next step than thought before and
sometimes even adjusted the end goals (micro-cycles of design research). Moreover,
in our use of the term ‘learning trajectory’, we do not mean to exclude the teaching
component of education. A better term might be ‘education trajectory’.

In the following sections we give a more detailed description of the three phases of
a macro-cycle of design research and discuss relevant methodological issues.

Phase 1: Preparation and design

It is evident that the relevant present knowledge about a topic such as statistics edu-
cation should be studied first. Gravemeijer (1994) characterizes the design research-
er as a tinkerer or, in French, a bricoleur, who uses all the material that is at hand,
including theoretical insights and practical experience with teaching and designing.
In our case, relevant theoretical knowledge came from multiple sources such as
mathematics, statistics, realistic mathematics education, history, psychology, gener-
al educational research, cultural-historical activity theory, philosophy of language,
linguistics, and semiotics.

In the first design phase, we collected and invented a collection of activities that
could be useful and discussed these with colleagues who were experienced in de-
signing for mathematics education. We also adjusted activities that had proven suc-
cessful in Nashville. The important criterion for selecting an activity was its poten-
tial role in the HLT towards the end goal of distribution. Would it possibly lead to
types of reasoning that students could build upon towards that end goal? Would it be
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challenging? Would it be a meaningful context for students?

Our first HLT included expectations about students’ learning with the activities and
Minitools used in the Nashville research and was mainly informed by their points of
departures and results (Section 2.3). For instance, we assumed that students would
initially view data points as individual data without looking at the whole structure of
the data set. We further assumed that it was important to talk through the process of
data creation and let students adopt a role as data analyst. Another source of inspira-
tion was the history of statistical concepts (Chapter 4).

Phase 2: Teaching experiment

The notion of a teaching experiment arose in the 1970s. Its primary purpose was to
experience students’ learning and reasoning first-hand, and it thus served the pur-
pose of eliminating the separation between the practice of research and the practice
of teaching (Steffe & Thompson, 2000). Over time, teaching experiments proved
useful for a broader purpose, namely as part of design research. During a teaching
experiment, researchers and teachers take their ‘best bets’, as Lehrer and Schauble
call it (2001). That is, they use activities and types of instruction that seem most ap-
propriate at that moment according to the HLT. Observations in one lesson and the-
oretical arguments from multiple sources can influence what is done in the next les-
son. Hence, this type of research is different from experimental research designs in
which a limited number of variables is manipulated and effects on other variables
are measured. The situation investigated here, the learning of students in a new con-
text with new tools and new end goals, is simply too complicated for such a set-up.
Besides that, a different type of knowledge is looked for, as pointed out earlier in this
chapter: we do not want to assess innovative material or a theory, but we need pro-
totypical instructional materials that could be tested and revised by teachers and re-
searchers, and an instruction theory that can be used by others to formulate their own
HLTs suiting local contingencies.

For a careful retrospective analysis, it is necessary to keep track of changes in the
HLT and of students’ learning. The data collection during the teaching experiments
varied (see Table 3.2). In the last two seventh-grade experiments and the eighth-
grade experiment, we collected student work, tests before and after instruction, field
notes, audio recordings of whole-class discussions and mini-interviews, and video
recordings of every lesson and, in grade 8, of the final interviews. During the first
teaching experiment, we spontaneously interviewed students during the lessons to
get to know what graphs meant to them and how they had solved the problems. Soon
afterwards, we came to call these interventions ‘mini-interviews’, lasting from about
twenty seconds to four minutes, and looked for ways to systematize these mini-in-
terviews. During the first teaching experiments, we had namely noted that some stu-
dents were easier to interview than others, and that some were more interesting or
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explicit in their utterances, which resulted in non-representative samples of the class.
In the second experiment, we decided to focus on four students with average learn-
ing abilities to get a better image of the majority of the students.

Table 3.2: Chronological overview of the teaching experiments and data collection.
The levels are mavo (lower general secondary education), havo
(higher general secondary education), vwo (pre-university education).

Class type of data collection # of les-
. level
(# students) experiment sons
26 students interviews audio recording - mavo,
grade 7 (15 minutes per havo, vwo
pair)
1A (25) 4 exploratory audio, student work, field 4 havo
grade 7 lessons observations, mini-interviews
1F (27) 1st teaching idem plus final test 12 vwo
experiment
1E (28) 2nd teaching 15 vwo
experiment
1D (23) not attended only teacher notes 10 havo-vwo
1C (23) 3rd teaching exp audio, video, student work, 12 havo
- observations, mini-inter-
1B (23) 4th teachlng exp views, pre-test and final test 12 havo
(two assistants)
18 classes | implementationat | field observations in five les- | about 200 havo,
(by June one school sons, e-mail conversation havo-vwo,
2003) with two teachers, some stu- and vwo
dent work
2B (30) 5th teaching exp audio, video, student work, 10 havo-vwo
grade 8 (three assistants) observations, mini-inter-
views, final test, and inter-
views between lessons and
after last lesson

In the last seventh-grade experiment and the eighth-grade experiment, when assis-
tants helped us, we divided the class into three groups and interviewed all students
in our own group with approximately the same frequency. We formulated questions
beforehand that we would ask the students and all interviewers had to ask at least
these questions. These questions were motivated by the anticipations of our HLT
and by specific questions we were interested in (e.g., do students prefer a certain
Minitool to investigate the spread of the data?). In this way, we tried to get a repre-
sentative image of the classes’ developments. These mini-interviews were an impor-
tant source of information for the evolving HLT. We realize that these mini-inter-
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views had a learning effect, since they mostly evoked reflection. The validity of the
research was not in danger in our eyes, because the question was not whether the de-
signed instructional sequence was suitable for other classes and teachers as well, but
(1) how students could learn certain notions and graphs in a process of guided rein-
vention and (2) how the process of symbolizing evolved. Moreover, most mini-in-
terview questions were formulated in advance and discussed with assistants. This
means these questions can be viewed as part of the HLT.

During the last seventh-grade experiment, the assistants were two students in math-
ematics who specialized in mathematics education, and during the eighth-grade ex-
periment there were three pre-service teachers of mathematics of whom two were al-
ways present in the classroom. We prepared them before the teaching experiments
and audio taped briefings after almost every lesson.

Our teaching experiments all took place in regular classrooms in a regular school sit-
uation. In this study, the teacher and the researcher were not the same person, except
for one lesson in class 1B (grade 7) when the teacher could not be there. To avoid
the risk of extra ‘noise’ caused by inexperienced teachers, we worked with two
teachers with 26 and 11 years of experience, who were also used to participating in
teaching experiments.

The sequence designed for the seventh grade was later used by two novice teachers
in eighteen other classes (by June 2003). Occasional visits and written reports from
the teachers did give some indication of the effect of having experienced teachers
and one or more researchers conducting mini-interviews. This issue is taken up in
Chapter 10.

Apart from these lessons given by the novice teachers, we attended all lessons of the
teaching experiments. As the remarks about the mini-interviews earlier in this sec-
tion make clear, the researchers were not just observers because they influenced the
learning process. In design research, that is even the objective. The knowledge we
need includes the ways in which we deal with unexpected situations to foster the
learning process desired. As a participant in the learning culture, it is easier for the
researcher to experience the factors relevant to the HLT or instruction theory and
which were not foreseen explicitly (De Corte, 2000). Such factors can range from
issues on the micro-scale (e.g. poor knowledge of percentages for instance or the
usefulness of a computer projector), via the meso-scale (e.g. school culture: students
in one experiment were not used to class discussions) to issues on the macro-scale
(e.g. the Dutch mathematics curriculum).
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Phase 3: Retrospective analysis

In the retrospective analysis the HLT is compared with students’ actual learning. On
the basis of such analyses we can answer the research questions and contribute to an
instruction theory. For the last teaching experiment in grade 7 and the one in grade
8, we used the following method of analysis.

First we transcribed the episodes that could inform us about the topics of interest.
What constituted a topic of interest was determined by the research questions and
the HLT. Off-task behavior (“Can I have my pen back?”’; “My mouse is not work-
ing”) was not transcribed, but coded as such (e.g. ‘soc’ for social talk and ‘comp’ for
computer problems). Then we used a method that is inspired by the ‘constant com-
parative method’ (Glaser & Strauss, 1967; Strauss & Corbin, 1998) and Cobb and
Whitenack’s method of longitudinal analyses (1996). We read all transcripts and
watched the videotapes chronologically episode-by-episode. With the HLT and re-
search questions as guidelines, conjectures about students’ learning and views were
generated, documented, and tested at the other episodes and other data material (stu-
dent work, field notes, tests). This testing meant looking for confirmation and
counter-examples. The process of conjecture generating and testing was repeated,
not on the level of the conjectures themselves, as Cobb and Whitenack (1996) did,
but on the original data material. Seemingly crucial episodes were discussed with
colleagues to test whether they agreed upon our interpretation or perhaps could think
of alternative interpretations (peer examination).

For the analysis of the last seventh-grade experiment we used computer software for
coding the transcripts, namely MEPA, which stands for ‘multiple episode protocol
analysis’ (Erkens, 2001). We coded students’ utterances line-by-line with task (e.g.
battery, jeans), literal terms (e.g. mean, spread out, Minitool), the concept dealt with
(e.g. spread, distribution), and clues for easy retracing (e.g. ‘see video’). These codes
proved useful during the retrospective analysis to retrace all instances of a certain
kind. An example of a conjecture tested in this way was that students find it easier
to estimate the mean in Minitool 1 than in Minitool 2 (see Chapter 7 and the Appen-
dix). In both classes 1B and 2B, the number of transcript lines was about 10,000.
For the eighth-grade experiment, all transcripts were coded with conjectures that
were related to the HLT and the research questions. The transcripts of the lessons
which seemed most informative (4, 6, 7) with the conjectures attached to episodes
were discussed with the three assistants. Only codes that all four of us agreed upon
were kept as codes. In Chapter 9 we provide examples of such conjectures and one
example of a conjecture that one of us found not so clear in that episode. In this way,
about a quarter of the transcripts was discussed. There were very few codes that any
of us found doubtful, from which we concluded that the agreement among judges
was high. The results of the retrospective analysis formed the basis for adjusting the
HLT and for answering the research questions.
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Reliability and validity
A few methodological issues have already been discussed in previous sections. Here
we deal more explicitly with reliability as the absence of unsystematic bias and va-
lidity as the absence of systematic bias (Maso & Smaling, 1998). The issues dis-
cussed in this section are inspired by guidelines of Maso and Smaling (1998) and
Miles and Huberman (1994).

Internal reliability refers to the reliability within a research project. It can be im-
proved with several methods. In the previous sections, we discussed the data collec-
tion, how we coded the transcripts, how we used computer software during one ret-
rospective analysis, and how we discussed the coding with three assistants. Internal
reliability further refers to the reasonableness and argumentative power of inferenc-
es and assertions. We improved that by discussing the critical episodes, including
those discussed in this book, with colleagues (peer examination).

External reliability usually denotes replicability, meaning that the conclusions of the
study should depend on the subjects and conditions, and not on the researcher. In
qualitative research, replicability is mostly interpreted as virtual replicability; the re-
search must be documented in such a way that it is clear how the research has been
carried out and how conclusions have been drawn from the data. A criterion for vir-
tual replicability is ‘trackability’ (Gravemeijer & Cobb, 2001; Maso & Smaling,
1998). This means that the reader must be able to track the learning process of the
researchers and to reconstruct their study: failures and successes, procedures fol-
lowed, the conceptual framework used, and the reasons to make certain choices must
all be reported. In Freudenthal’s words:

Developmental research means: experiencing the cyclic process of development and
research so consciously, and reporting on it so candidly that it justifies itself, and that
this experience can be transmitted to others to become like their own experience.
(1991, p. 161)

Internal validity refers to the quality of the data collections and the soundness of the

reasoning that has led to the conclusions (also labeled as ‘credibility”). We used sev-

eral methods to improve the internal validity of this study.

— During the retrospective analysis, we tested conjectures that were generated and
tested at specific episodes at other episodes and other data material, such as field
notes, tests, and other student work (source triangulation). During this testing
stage we searched for counterexamples of our conjectures.

— The succession of different teaching experiments made it possible to test the con-
jectures developed in earlier experiments in later experiments.

— We analyzed important episodes with multiple theoretical instruments of analy-
sis (theoretical triangulation). See for instance Section 8.1.
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— Theoretical claims are substantiated where possible with transcripts to provide a
rich and meaningful context. The possibility to do this in longer texts is the major
reason to write this thesis as a book and not as a collection of journal articles.

External validity is mostly interpreted as the generalizability of the results. The
question is how we can generalize the results from these specific contexts as to be
useful for other contexts. An important way to do so is by framing issues as instances
of something more general (Cobb, Confrey, et al., 2003; Gravemeijer & Cobb,
2001). The challenge is to present the results (instruction theory, HLT, instructional
activities) in such a way that others can adjust them to their local contingencies
(Barab & Kirshner, 2002). In the conclusions we list a number of issues of the Nash-
ville team that have been confirmed in the present study (10.3). Such issues have be-
come more general. Additionally, we found patterns that occurred in several classes
of our own teaching experiments (Chapters 6, 7, 9, Appendix).

By using the general theory of semiotics, we intend to provide more abstract expla-
nations connected to a theoretical network that is beyond the immediate study (the-
oretical validity). To investigate the role of graphs and their meaning for students,
we use semiotics to frame graphs (in relation to object and interpretant) as signs and
the learning process as signification (Chapters 8 and 9).

In addition to generalizability as a criterion for external validity we mention ‘trans-
ferability’ (Maso & Smaling, 1998). If lessons learned in one experiment are suc-
cessfully applied in other experiments, this is a sign of successful generalization.
Gravemeijer and Cobb (2001), for instance, claim that the method of analysis they
had developed in a teaching experiment on measurement in grade 1 proved useful in
the statistics experiments described in Section 2.3. This implies that the transferabil-
ity and viability of the results of the present study can better be judged in the future
if applied in other situations.

Overview of the teaching experiments and subjects

Exploratory interviews

We first wanted to know to what extent the activities and results of the Nashville ex-
periments would apply to the Dutch situation, because we expected differences be-
tween the Dutch and American students. On the one hand Dutch students quickly
learn to calculate their own grades for their reports with means from grade 7 onwards
(unlike American students). On the other hand, Dutch students tend to learn fewer
statistical graphs in earlier grades (mainly bar graphs). It is difficult to test students’
prior knowledge of distribution. We were therefore focused on their prior knowledge
of statistics, and we were especially interested in Dutch students’ notion of the mean
and their understanding of the graphs in Minitool 1 and 2. To that purpose, we inter-
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viewed 26 students randomly chosen from the different seventh-grade classes of a
school in Amsterdam, which offered three levels of education: mavo (the lower gen-
eral secondary education track), savo (the higher general secondary education
track), vwo (the pre-university track). At that time, about 15% of the Dutch students
attended vwo, 20% havo, and 35% attended mavo. About 50% of the students of that
school belonged to an ethnic minority. The students were interviewed in pairs for
about 15 minutes. The data collection included audio recordings and student work.
For the results of these interviews see Section 5.1.

Grade 7 experiments

The aim of these experiments was to find ways to teach the notion of distribution in
relation to other key concepts of statistics and the types of graphs that structure and
display distributions. The teaching experiments in grade 7, when students are 12 or
13 years old, were held at a secondary school in a small city near Utrecht in the
school year of 1999-2000. This havo-vwo school had about 800 students from grade
7 to 12. The school is considered a ‘white’ (ethnically mainly Dutch) school serving
a middle-class population. The teacher had been teaching for 26 years, and had con-
siderable experience as a curriculum designer. Each week we discussed the next two
lessons. Every odd-numbered lesson was in a regular classroom without computer
or a computer projector. Every even-numbered lesson took place in a computer lab
where the students worked in pairs with Minitools 1 and 2. These teaching experi-
ments were carried out in what is called ‘theme education’: students study a theme
for about five or six weeks (12 lessons of 50 minutes in blocks of two lessons). The
themes included astronomy, dance, the newspaper, and statistics. The students main-
ly worked in pairs with Minitool 1 and 2. These experiments are described in Chap-
ters 6 to 8.

Grade 8 experiment

The purpose of this experiment was to test newly developed instructional ideas and
conjectures, in particular the idea of growing samples (Chapter 7) as a way to devel-
op the notion of distribution in connection with that of sampling. This experiment
was carried out in a havo-vwo school in the center of Utrecht, which had about 1,100
students, in October and November, 2001. The population was much more diverse
than of the school where the seventh-grade experiments were carried out. The class
was a havo-vwo class with 30 students (12 girls and 18 boys). The teacher had 11
years of teaching experience and also worked as researcher in mathematics educa-
tion. We had weekly meetings about the planning of the next two lessons. The se-
quence consisted of ten lessons, as part of the mathematics lessons. Every odd-num-
bered lesson took place in a computer lab where the students worked in pairs with
Minitools 1 and 2. Every even-numbered lesson was in a regular classroom without
computer or a computer projector. Every week about four pairs of students, random-
ly chosen by the teacher, were interviewed for about 12 minutes to gain more insight

48



Methodology and subjects

into their thinking about particular problems. Over the five-week period, all students
had been interviewed except one who had been ill for most of the time. The day after
the last lesson, semi-structured interviews were held with ten students for about 10
minutes per pair. The three assistants have also questioned all of the students about
their interests, the minitools, contexts, and instructional settings. Some of the survey
results are referred to in Chapter 10. Chapter 9 deals with this eighth-grade teaching
experiment.
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Purpose

Various authors have suggested that studying the history of a topic is good prepara-
tion for teaching that topic (Dijksterhuis, 1990; Fauvel & Van Maanen, 2000; Freu-
denthal, 1983b; Gulikers & Blom, 2001; Radford, 2000). The obstacles that people
in the past grappled with are interesting to teachers and designers because students
often encounter similar obstacles. However, students also know things that people
in the past did not know. What is the relationship between the historical development
of statistical and mathematical concepts (phylogenesis) and the individual develop-
ment of students (ontogenesis)? For a discussion of this question we refer to Radford
(2000) for a mathematics education perspective and to Cole (1996) for a cultural
psychology perspective. Here we confine ourselves to the question of what we can
learn from a historical study for an instruction theory for early statistics education.
We used the RME heuristic of guided reinvention as a general guideline for the type
of instruction we aimed for and we used a historical phenomenology as a method for
studying the relation between the phenomena that were organized and the statistical
concepts that historically arose for organizing such phenomena (2.1). Freudenthal
(1983b) envisioned the following process of guided reinvention:

The young learner recapitulates the learning process of mankind, though in a modified
way. He repeats history not as it actually happened but as it would have happened if
people in the past would have known something like what we do know now. It is a
revised and improved version of the historical learning process that young learners re-
capitulate.

‘Ought to recapitulate’~we should say. In fact we have not understood the past well
enough to give them this chance to recapitulate it. (p. 1696)

Taking this cue from Freudenthal we decided to study the early history of statistics,
in particular of averages, sampling, distribution, and graphs, which were the basic
ingredients of the intended instructional sequence. In combination with a didactical
phenomenology we could then conjecture on what “a revised and improved version
of the historical learning process” for this particular topic might look like. As such
this historical phenomenology also prepares the development of a hypothetical
learning trajectory.

In this chapter,lo we first discuss the method of our historical phenomenology, and
then we study the average values (mean, midrange, mode), sampling, median, dis-
tribution, and finally graphs. The last section summarizes the insights that were most
informative for the instructional design.

10. Sections 4.1 to 4.3 are based on Bakker (2003).
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Method

When explaining what he meant by a phenomenology, Freudenthal (1983a) started
his exposé as follows:

I start with the antithesis—if it really is an antithesis—between nooumenon (thought ob-
ject) and phainomenon. The mathematical objects are nooumena, but a piece of math-
ematics can be experienced as a phainomenon; numbers are nooumena, but working
with numbers can be a phainomenon. (p. 28)

As Freudenthal wrote, there is a philosophical difficulty when distinguishing phe-
nomena and concepts: it is hard to separate phenomena from concepts, since con-
cepts also determine and influence how humans perceive the phenomena (e.g. Kant,
1787/1974). From a psychological perspective this distinction is also hard to make.
For example, it is not exactly clear if and how humans’ perception of colors depends
on the terms that are available in their language (Anderson, 1995). For an education-
al purpose, it is still useful to try and separate phenomena and concepts, because stu-
dents do not perceive the same phenomena as we do because of our understanding
of certain concepts (an example of this is given in Chapter 9). Where statisticians see
a clear pattern in a graph of a signal with noise (Konold & Pollatsek, 2002), students
might just see a bunch of dots. Studying history can help us see certain phenomena
through the eyes of people who did not have the same concepts and techniques as we
have nowadays. By analyzing the historical process we expect to be able to identify
different layers and aspects of concepts that seem to be fixed products nowadays.
This attention to historical development may help us take a student’s perspective and
to better understand and guide the learning process.

The method of historical phenomenology requires identifying phenomena that have
been organized by certain concepts and identifying concepts that have been applied
to get a handle on certain phenomena. This historical phenomenology could be used
to feed a didactical phenomenology, especially to find phenomena that challenge
students to develop particular statistical methods or concepts. We have found no re-
search literature in which this was already done for the statistical concepts that we
were interested in, with the exception of Steinbring (1980), who writes about the de-
velopment of chance and distribution with a didactical interest. Nor have we found
historical phenomenologies that describe a systematic method.

Applying the method outlined above, we first collected as many historical phenom-
ena with a statistical flavor as possible, mainly about center, sampling, distribution,
and graphs (before 1900). Doing this we experienced several difficulties. One was
that most histories of mathematics hardly pay any attention to the history of statis-
tics. This need not be very surprising, because statistics arose largely from disci-
plines other than mathematics such as geodesy, astronomy, navigation, metallurgy,
political arithmetic, medicine, anthropometry, biology, and social sciences. A sec-
ond difficulty was that most historical studies of statistics start at around 1660,
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which many authors mark as the start of probability and statistics (e.g. Hacking,
1975; Kendall, 1960), and focus on the nineteenth century (Porter, 1986; Stigler,
1986), whereas we had to go further back in time for the origins of the concepts we
were interested in.

The next step, the selection of historical examples, was guided by the educational
potential we saw in them; we only selected examples that could be regarded as pre-
liminary stages of statistical notions with possible relevance for the design. For ex-
ample, if an estimation of a number of years was reached by some method that could
be interpreted as an intuitive version of an average, it was included in our phenom-
enology. A simple guess of a large number would not have been included. We also
give an example from geometry to show that what might sound statistical (“arith-
metic mean’) need not be statistical. After many historical examples we formulate a
hypothesis about students’ learning, indicated with H#. Some of these hypotheses
are revisited in the didactical phenomenology and in the retrospective analyses in the
forthcoming chapters, but we have not been able to test them all.

Our methodology and purpose differ from what is common in historical science. In
our historical study we do not describe the historical development of concept, but try
to find sources of inspiration. We certainly do not want to suggest that ‘the’ histori-
cal development of statistical concepts was an accumulation of insights or a contin-
uous refinement of concepts. As many authors nowadays note, revolutions and rup-
tures occurred in the history of mathematics and statistics as well (Gillies, 1992;
Kriiger et al., 1989). Nor do we want to suggest that students’ learning always needs
to follow the historical development. In this chapter we give a few examples in
which students’ cultural knowledge, for instance about surveys, makes it inefficient
to follow the historical order. Although center, distribution, sampling, and graphs
are highly interrelated topics, we address them separately for reasons of readability.
There are six remaining sections: 4.3 on the average values (excluding the median),
4.4 on sampling, 4.5 on the median, 4.6 on distribution, 4.7 on graphs, and 4.8 is a
summary of the most important results. In Chapter 5 we revisit several issues to in-
vestigate possible didactical consequences.

Average

If we use the term ‘average’ or ‘average values’ we refer to arithmetic mean, median,
mode, midrange, and precursors of those measures of center. Because we study the
early history of statistics as a source of inspiration for instruction to young students,
we do not make technical distinctions between, for example, the mean of a popula-
tion and the sample mean to estimate the center of a distribution. The terms ‘center’
and ‘location’ are also used informally for the center of a data set or a distribution.
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Average values to estimate a total

The oldest historical examples that we considered relevant for the historical phe-
nomenology all had to do with estimation of large numbers. Three of them are pre-
sented below to illustrate preliminary stages of several average values.

Example 1. Number of leaves on a branch

In an ancient Indian story, which was finally written down in the fourth century AD,
the protagonist Rtuparna estimated the number of leaves and fruit on two great
branches of a spreading tree (Hacking, 1975). He estimated the number on the basis
of one single twig, which he multiplied by the estimated number of twigs on the
branches. He estimated 2095, which after a night of counting turned out to be very
close to the real number. Although it is uncertain how Rtuparna chose the twig, it
could well be that he chose an average-sized twig, since that would lead to a proper
estimation.

The educational potential we saw in this example was that such an implicit use of a
representative value could be an intuitive predecessor of the arithmetic mean be-
cause one average number represents all other twig numbers and this average num-
ber is somehow ‘in the middle’ of the others. The choice is presumably made in such
a way that what is counted too much on the one hand is counted too little on the other
hand. This use of an average has to do, in our modern eyes, with compensation, bal-
ance, and representativeness. Even if Rtuparna did not use the method we think he
used, the problem situation inspired our instructional design to let students reinvent
such a method. (For a similar example of estimating a large number, the number of
years between the first and last king of Egypt, see Rubin, 1968, or Bakker, 2003).
Rubin (1971) has found other old examples of statistical reasoning in the work of
one of the first scientific historians, Thucydides (circa 460-400 BC). The following
two quotations are from his History of the Peloponnesian War. The reader is invited
to decide how he or she would translate these two excerpts into modern statistical
terms.

Example 2. Height of a wall of Platea (Figure 4.1)

(The problem was for the Athenians)... to force their way over the enemy’s surround-
ing wall... Their method was as follows: they constructed ladders to reach the top of
the enemy’s wall, and they did this by calculating the height of the wall from the num-
ber of layers of bricks at a point which was facing in their direction and had not been
plastered. The layers were counted by a lot of people at the same time, and though
some were likely to get the figure wrong, the majority would get it right, especially as
they counted the layers frequently and were not so far away from the wall that they
could not see it well enough for their purpose. Thus, guessing what the thickness of a
single brick was, they calculated how long their ladders would have to be...

(Rubin, 1971, p. 53)
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Figure 4.1: Walls of Platea as pictured in Hobbes’ translation (1634)
of Thucydides (1975, p. 189)

Example 3. Crew size on ships

Homer gives the number of ships as 1,200 and says that the crew of each Boetian ship
numbered 120, and the crews of Philoctetes were fifty men for each ship. By this, I
imagine, he means to express the maximum and minimum of the various ships’ com-
panies... If, therefore, we reckon the number by taking an average of the biggest and
smallest ships... (Rubin, 1971, p. 53)

We interpret example 2 as an implicit use of the mode, here indicated by “the ma-
jority,” because “the majority” probably means “the most frequent value” and not
necessarily “more than half.” In this situation, the Greeks probably assumed that the
most frequent number would be the correct one. To find the total height of this num-
ber of bricks, they supposedly needed another estimation: the expected or the aver-
age thickness of a single brick.

Example 3 also illustrates an estimation that is based on an average value. Thucy-
dides possibly interpreted the given numbers as the extreme values, so that the total
amount of men on the ships could be estimated by taking the average of these two
extremes. In fact this is called the midrange, defined as the arithmetic mean of the
two extremes. This technique of averaging the extreme values of the range to obtain
the midrange can be justified if certain assumptions are defensible, for instance that
the underlying distribution is approximately symmetrical.

Resuming, in these historical examples we encountered phenomena that were orga-
nized by predecessors of contemporary statistical concepts. In examples 1 and 2, a
kind of average similar to the arithmetic mean was probably used. In example 2, we
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can also recognize the mode. In example 3, Thucydides described a method that we
can call taking the midrange. In these estimation examples these notions of average
were not defined or used explicitly, although many mean values were known in
those days (Heath, 1981). The median, however, was absent in the early examples.
Eisenhart (1974), who investigated these issues in detail, has found no possible pre-
cursors to the median before 1599.

The conjecture that arises from these historical examples is the following.

HI. Estimation of large numbers could challenge students to use intuitive notions of
average.

In Section 6.3 we describe how we tested and confirmed this conjecture in seventh-
grade classes.

Mean values in Greek geometry

Explicit use of mean values and names for these values are found in ancient Greek
mathematics. In Pythagoras’ time, around 500 BC, three mean values were known,
namely the harmonic, geometric, and arithmetic mean (Heath, 1981; Iamblichus,
1991). Only some 200 years later, at least eleven different mean values had been de-
fined (Heath, 1981). For a historical phenomenology it is relevant to study the phe-
nomena that gave rise to these concepts. It turns out that the theory of the three men-
tioned mean values was developed with reference to music theory, geometry, and
arithmetic. We provide an example of the mean values in geometry to illustrate that
these mean values were not used in a statistical way. Yet we can learn from the geo-
metrical representation and the definitions of the mean values.

This example from geometry, a theorem of Pappus, illustrates that the Greeks stud-
ied the mean values for their geometrical beauty (see Figure 4.2) and not in a statis-
tical sense. If in the semicircle ADC with center O one has DB L AC and BF L DO,
then DO is the arithmetic mean, DB the geometric mean, and DF the harmonic mean
of the magnitudes AB and BC (Boyer, 1991). This theorem does clearly not belong
in a statistics course at the middle school level. Yet two aspects are important: the
definitions of the arithmetic mean and the representation of magnitudes.

Figure 4.2: Theorem of Pappus on arithmetic, geometric, and harmonic mean.
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In addition to the Greek definition of the arithmetic mean, Aristotle (384-322 BC)
defined a philosophical form of the mean, the “mean relative to us.” About the dif-
ference between the arithmetic mean and “the mean relative to us” he wrote:

By the mean of a thing I denote a point equally distant from either extreme, which is
one and the same for everybody; by the mean relative to us, that amount which is nei-
ther too much nor too little, and this is not one and the same for everybody. For ex-
ample, let 10 be many and 2 few; then one takes the mean with respect to the thing if
one takes 6; since 10-6 = 6-2, and this is the mean according to arithmetical proportion
[progression]. But we cannot arrive by this method at the mean relative to us. Suppose
that 10 Ib. of food is a large ration for anybody and 2 Ib. a small one: it does not follow
that a trainer will prescribe 6 1b., for perhaps even this will be a large portion, or a
small one, for the particular athlete who is to receive it; it is a small portion for Milo,
but a large one for a man just beginning to go in for athletics. (Nichomachean Ethics,
book II, chapter vi, 5; italics added)

The description “not too much and not too little” for the average is one that students
used in all of the seventh-grade teaching experiments in the context of estimation
6.3).

Figure 4.3: Greek representation of magnitudes as bars (2, 6, and 10)

In Greek mathematics, numbers and magnitudes were represented by lines. Aristot-
le’s example with the mean of 10 and 2 represented in the Greek way (Figure 4.3)
illustrates that Greek mathematics had a different form and aim than modern math-
ematics: it was highly geometrical and visual. This difference between Greek and
modern mathematics can also be demonstrated by the difference in definitions of the
arithmetic mean. The Greek definition, as we saw in the quotation of Aristotle, is as
follows: the middle number b of a and c is called the arithmetic mean if and only if
a-b =b-c. Note that this definition differs in formulation from the equivalent modern
one, (a+c)/2, and that it refers to only two values. The Greek version shows that the
mean is in between the two extremes and that it is difficult to generalize, whereas the
modern version emphasizes the calculation and is easy to generalize. With the didac-
tical phenomenology in mind, it is important to note that the Greek definition shows
other qualitative aspects than the modern quantitative one. For example, we can im-
mediately see from the Greek definition that the mean is halfway between the two
other values. This feature is used in Greek astronomy for interpolation (Ptolemy,
1998), but we consider this application as non-statistical. Yet we highlight this ‘in-
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termediacy’ aspect because students do not always realize that the mean is in be-
tween the extreme values (Strauss & Bichler, 1988). In a representation such as 4.3
students might be able to see that the part of the longest bar that ‘sticks out’ (com-
pared with the middle bar) compensates the part of the shortest bar.

H2. The Greek bar representation might support the understanding that the mean is
in between extreme values (intermediacy) and it might even scaffold a compensation
strategy of visually estimating the mean.

In Section 6.7 we discuss how this conjecture was tested and confirmed in the teach-
ing experiments.

Average, midrange, and generalization of the mean

In Section 4.3.1 we illustrated how the average was sometimes used implicitly in es-
timations and in Section 4.3.2 we conjectured that the Greek way of representing
numbers by bars has educational potential for visual estimation of the mean. In the
present section we describe how the average emerged from fair share in trade and
insurance contexts, and that taking the mean of only two extreme values, the
midrange, could be a predecessor of the arithmetic mean of more than two values in
the context of science.

In the first millennium before Christ, the sea trade in the Mediterranean was lively
(P16n & Kreutziger, 1965). During a storm, captains of small vessels with valuable
merchandise sometimes needed to cut away the mast or throw some cargo overboard
to avoid capsizing or to save the rest of the cargo. This act of throwing cargo over-
board became known as the ‘jettison’ of cargo.
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Figure 4.4: Part of the first page of a Dutch book on average by Weytsen (1641)
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From about 700 BC, merchants and shippers agreed that damage to the cargo and the
ship should be shared equally among themselves. What a merchant had to pay was
called his ‘contribution’. This idea became part of customary law and was written
down in the ‘lex Rhodia de iactu’, the Rhodian law on jettison during the codifica-
tion of Roman Law in 534. The basic principle in the Digest XIV.2.1 is as follows.

The Rhodian law decrees that if in order to lighten the ship merchandise has been
thrown overboard, that which has been given for all should be replaced by the contri-
bution of all. (Lowndes & Rudolf, 1975, p. 3)

The rest of the text explains what should be done in specific situations and raises
questions like, “In which proportion should compensation be paid?” Digest
XIV.2.2.4 states that the equalized portion should take into account what the value
of the saved and the lost cargo was. The number examples in the Latin texts are ex-
tremely simple and not very explicit. In Digest XIV.2.4.2 we read, for example:

If therefore, for instance, two persons each had merchandise valued at 20,000 sester-

ces and one lost 10,000 due to water damage, the one with the saved merchandise

should contribute according to his 20,000, but the other on the basis of the 10,000.

(Spruit, 1996; translation from Latin and Dutch'")
Old Dutch books on average (e.g. Weytsen, 1641) were not very explicit either (Fig-
ure 4.4). In search of more realistic examples of calculations we resorted to books of
the nineteenth century that describe how to calculate averages (e.g. Arnould & Ma-
clachlan, 1872; Hopkins, 1859; Van der Hoeven, 1854). These averages were calcu-
lated by a so-called ‘average-adjuster’, who was a kind of accountant. This must
have been a serious profession, because there was even an ‘Association of Average
Adjusters’ in England in the nineteenth and early twentieth century (Lowndes & Ru-
dolf, 1975).
From this law-historical account we can track the development of the average in
maritime law. Important for this historical phenomenology is that the average’s ori-
gin is fair distribution and that proportions play a major role (cf. P11). But how did
the term ‘average’ also come to signify the arithmetic mean?
The Oxford English Dictionary (Simpson & Weiner, 1989) writes that one of the
meanings of ‘average’ in maritime law is “the equitable distribution of expense or
loss, when of general incidence, among all the parties interested, in proportion to
their several interests.” In its transferred use it came to signify the arithmetic mean:

The distribution of the aggregate inequalities (in quantity, quality, intensity, etc.) of a

series of things among all the members of the series, so as to equalize them, and as-
certain their common or mean quantity, etc. (...) the arithmetical mean so obtained.

From the examples in this section we see that this type of average originally arose

11. Translations in this thesis by AB unless indicated otherwise.
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from the phenomena of fair share and insurance.

H3. Learning the mathematics that is involved in fair share and insurance (e.g. pro-
portions and ratios) is good preparation for learning about the arithmetic mean.
Fair share is also a suitable context to practice such skills (cf. Cortina et al., 1999).

Another possible precursor to the arithmetic mean is the midrange, which was used
for example in Arabian astronomy of the ninth to eleventh century, but also in met-
allurgy and navigation (Eisenhart, 1974). Nowadays we model many observations
and errors in those contexts with symmetrical distributions. Therefore, it is under-
standable that the midrange was used in those situations. Because the midrange was
probably a precursor to the mean as a way to organize the center or estimate the true
value, it might well be that students also use the midrange as a precursor to the mean.

HA4. Students may use the midrange as a precursor to more advanced notions of av-
erage.

Not until the sixteenth century was it recognized that the arithmetic mean could be
generalized to more than two cases: @ = (a;+a,+...+a,)/n. Székely (1997) supposes
that the invention of the decimal system by Stevin in 1585 facilitated such division
calculations. This generalized mean proved useful for astronomers who wanted to
know a real value, such as the position of a planet or the diameter of the moon. Using
the mean of several measured values, scientists assumed that the errors added up to
a relatively small number when compared to the total of all measured values. This
method of taking the mean for reducing observation errors was mainly developed in
astronomy, first by Tycho Brahe. From the late sixteenth century onwards, using the
arithmetic mean to reduce errors gradually became a common method in other areas
as well (Eisenhart, 1974; Plackett, 1970). This implies for our didactical phenome-
nology:

H5. Repeated measurement might be a useful instructional activity for developing
understanding of the mean and distribution (cf. Konold & Pollatsek, 2002, Lehrer
& Schauble, 2001). See also H12 and Section 10.4.

A question that arose was how we could benefit from the Greek definition and bar
representation and still reach a general definition of the mean on # values (see Sec-
tion 5.4).

The mean as an entity in itself
The historical examples until about the nineteenth century mostly had to do with ap-
proximating a real or best value, for example the number of leaves on a branch or
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the diameter of the moon. In these old examples, the mean was used as a means to
an end. It took a long time before the mean was used as a representative or substitute
value as an entity in itself. The Belgian statistician Quetelet (1796-1874), famous as
the inventor of /'homme moyen, the average man, was one of the first scientists to
use the mean as the representative value for an aspect of a population. This transition
from the real value to a representative value as a statistical construct was an impor-
tant conceptual change (Porter, 1986; Stigler, 1986). What is relevant for the histor-
ical phenomenology is that there are several layers of understanding the mean as a
representative value. We conjecture the following.

H6. Using an average value in estimations of large numbers and using the mean for
reduction of errors are probably easier for students than understanding the mean as
an entity in itself, that is as a representative value for an aspect of a population.

In Sections 5.1.6 and 5.1.7 we give some empirical support for this conjecture. It
makes a difference if the mean as an entity in itself stands for a value that can exist
or cannot exist. In 1877, Peirce—the same whom we revisit Chapters 8 and 9—wrote
about this issue:

In studies of numbers, the idea of continuity is so indispensable, that it is perpetually
introduced even where there is no continuity in fact, as where we say that there are in
the United States 10.7 inhabitants per square mile, or that in New York 14.72 persons
live in the average house. [Footnote:] This mode of thought is so familiarly associated
with all exact numerical consideration, that the phrase appropriate to it is imitated by
shallow writers in order to produce the appearance of exactitude where none exists.
Certain newspapers, which affect a learned tone, talk of “the average man,” when they
simply mean most men, and have no idea of striking an average. (CP 2.646)

Sampling

Estimation and sampling

Below the surface of the estimation examples, sampling issues also play a role. For
instance, in the Indian story on estimating the number of leaves and fruit on a branch,
the right twig had to be chosen to find an accurate average or representative value.
Centuries later, John Graunt used a similar method of estimating the population of
London, and Laplace to estimate the population of France (Bethlehem & De Ree,
1999), but they dealt more explicitly with sampling issues and reliability than we can
infer from the examples in Section 4.3.1. Graunt knew that in parishes with reliable
information about the population about three people died per eleven families per
year. He also knew that there were about 13,000 funerals per year in London and he
estimated the average family size as eight, which led him to 13,000 /3 * 11* 8 is
roughly 384,000 inhabitants of London. Also in Laplace’s example, average values
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were used to find a total number.

H?7. More complicated estimation tasks than those of Section 4.3.1, such as those of
Graunt and Laplace, might be useful to deal more explicitly with sampling issues.

Figure 4.5: Definition of a rod of 16 feet depicted by Kobel in 1535
(Mathematikunterricht 48(3), 2002).

Conversely, a total number can also be used to find a mean as a measure. Such an
example of average in which sampling plays a role occurs in a geometry book by K6-
bel in 1535. Figure 4.5 shows how a rod of 16 feet should be determined by measur-
ing the feet of sixteen men as they leave church (Stigler, 1999). This rod of 16 feet
was to become a standard for other measurements in the community. In this simple
measurement example we encounter several statistical issues. Were people in the
past aware of the fact that the total of 16 feet is equal to 16 times the arithmetic mean
of the lengths of these 16 feet? Probably not because the arithmetic mean was only
defined later for more than two values. How was the sample taken? We may assume
that there was no size-based criterion for selection. Although many scientists in 1535
still assumed that combining observations would amplify the errors instead of re-
duce them (Stigler, 1986), this example seems to be an intuitively clear way of com-
bining measurements to reduce variation. Did the inventors of this method realize
that they benefitted from compensation of errors? For the purpose of our historical
phenomenology it is not necessary to know this; we simply use the example as a
source of inspiration for instructional activities (6.3, 6.4, and 6.9). As the examples
show, variation and sampling issues often underlie seemingly simple problems con-
cerning averages.

HS. Examples similar to those in this section may be used to let students think about
the arithmetic mean in close connection to variation, measurement, and sampling.

Decision-making

There are examples of sampling that reveal yet another origin of statistics: decision-
making. We give a few examples from Jewish Law. Jewish Law deals mainly with
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social, ethical, and ritual duties and is considered a rational pursuit: although rabbis
accepted divine guidance, they insisted on rational methods in coming to decisions.
Rabbis had to decide, among other things, how inheritances had to be distributed and
whether food was kosher. If, for example, 9 out of 10 shops in a city sold kosher meat
and someone found a piece of meat in that city, a rabbi could advise to consider it
kosher (Rabinovitch, 1973). We interpret this as follows. If from a sample of 10
shops 9 sell kosher food, this proportion gives an indication of the chance that an ar-
bitrary piece of meat in the city is kosher. Thus proportional or multiplicative rea-
soning plays an important role in the relation of sample to population.

Another decision-making example concerning multiplicative reasoning and sam-
pling concerns the question of whether an epidemic has taken place, which is rele-
vant to know (as it is today) for undertaking particular steps.

A town bringing forth five hundred foot-soldiers like Kfar Amiqo, and three died there

in three consecutive days - it is a plague... A town bringing forth one thousand five

hundred foot-soldiers like Kfar Akko, and nine died there in three consecutive days -

it is a plague; in one day or in four days - it is not a plague. (Rabinovitch, 1973, p. 86)
In this example three points are interesting for the historical phenomenology. First,
we see that rabbis reasoned proportionally to the total population. Second, a kind of
sampling was used: the amount of foot soldiers was used as an indicator of the total
population, probably because foot soldiers formed a constant percentage of the pop-
ulation. Third, the rabbis seemed to know typical or average death rates and they
took into account how the deaths were distributed over the consecutive days.

HY9. When making data-based decisions, multiplicative reasoning is an essential skill
in dealing with samples versus populations (cf. P11 in Section 2.3).

Quality control

Apart from estimation and decision-making there are several other origins of statis-
tics. One of them is quality control. In this section, we discuss an old secular exam-
ple of sampling and quality control: the trial of the Pyx (Stigler, 1977). This trial took
place at the Royal Mint of Great Britain where gold and silver coins were made.
Starting from the twelfth century, every day one of the coins was put in the Pyx,
which was a box in Westminster Abbey. After a few months or years, the Pyx was
opened and the coins were investigated on weight and pureness. Not the single coins
but the whole box was weighed and a sample of coins was melted to investigate the
pureness of the coins. If the coins turned out to be good, this fact was celebrated with
a banquet; otherwise the coin makers were punished. This is the first clear example
of quality control we have found that is based on sampling inspection.

In Section 2.2 we wrote that we were in search for coherent knowledge of the key
concepts of statistics. What we can learn from this historical phenomenology for the
didactical phenomenology is that the use of averages often involves sampling issues
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(4.4.1). This close link to sampling indicates one of the difficulties of learning the
mean, but the link can also be used to teach sampling issues from what students al-
ready know about averages. Another thing we conjectured from this example is that
sampling as carried out here, one coin per day, might be an intuitively clear way of
sampling to students as well (but see Section 6.9).

HI10. Problem situations similar to the trial of the Pyx may challenge students to re-
invent simple sampling methods. Randomness is implicit in the trial of the Pyx.

HI11. Moreover, such problems may be used to reinforce a meaningful relation be-
tween average and total, which in turn can form the basis for insight into the relation
of sample and population.

Random sampling

From the examples in the previous sections on sampling we can infer that sampling
can be used for different purposes such as finding a total number, finding a measure
based on a total, and making a decision. Historically the next stage was to use sam-
pling for getting information about a population. There are different reasons to use
sampling. An important motive for the Central Bureau of Statistics in the Nether-
lands was to reduce the costs of its studies (Bethlehem & De Ree, 1999), and often
it is also impossible to measure the whole population. Yet is sampling a relatively
recent accomplishment.

Censuses were held both in ancient China and Egypt. Famous, of course, is the Ro-
man census of Caesar August that is known from the biblical story about Jesus’s
birth. Incas (1000-1500) recorded information about their people, homes, llamas,
marriages, and young men that could be recruited for the army. Until late in the nine-
teenth century, only integral surveys were carried out because other methods were
considered unreliable and discriminatory. It was considered unfair to take observa-
tions of certain human beings into account and replace those of others by calcula-
tions. This last feeling of resistance is understandable if we make a comparison with
voting. Today most of us would also protest if we were not allowed to vote for a new
government and a sampling method were to be used instead. Yet statisticians argue
that a good sampling method is more reliable than a self-selection which results from
a non-obligatory call to vote (De Mast, 2002).

A new period for statistics started in 1895 when the Norwegian Kiaer presented his
‘representative method’, which implied the deliberate selection of a representative
sample, for instance as many men and women, from cities and villages, of all ages,
and so on (stratified sample). It was not until 1903, however, that the International
Statistical Institute accepted this method provided that the selection was carefully
described. In 1906, Bowley proposed to use a process of drawing lots. The two meth-
ods coexisted until Neyman (1934) was finally able to prove that random sampling
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was superior to Kiaer’s method.

One of the underlying conceptual difficulties of sampling is its close link to proba-
bility as we already hinted at in the section on decision-making. In The Probabilistic
Revolution (Kriiger et al., 1989) different authors underline the conceptual shift from
determinism to indeterminism that was made at the end of the nineteenth century,
and which proved crucial to the development of statistics and probability theory (see
also Hacking, 1990; Porter, 1986; Stigler, 1986).

In contrast to people in and before the nineteenth century, students today are ac-
quainted with surveys, which are now culturally accepted, and students might also
know about random numbers from computer games. This means that students need
not exactly follow the historical development of sampling, but it could still be that
students think that everybody should be measured in some cases. From this histori-
cal outline we can distinguish different levels of understanding sampling.

HI2. If the unit of thought or focus of attention is a concrete object such as a coin
and if there is little variation, students may reinvent sampling methods. However, if
the unit of thought or object of interest is a whole population that is influenced by
multiple variables, students probably prefer stratified sampling to random sam-
pling, because it gives the suggestion of having control of the sample.

Before the seventh-grade teaching experiments we had mainly paid attention to the
average values and to sampling. The historical study of distribution for example had
not yielded very much. The teaching experiments in grade 7, however, urged us to
reconsider the history of the median, distribution, and graphs. Because we preferred
to keep the historical phenomenology of the different concepts in one chapter, the
history of these concepts and graphs is discussed in the next sections. As a conse-
quence, the hypotheses in those sections were formulated only after the seventh-
grade teaching experiments and they did not play an explicit role in the hypothetical
learning trajectory of these experiments.

Median

After the seventh-grade teaching experiments we had two reasons to investigate the
history of the median more carefully. First, the seventh-grade students had more
problems with the median as a representative value than we had expected, even after
taking the results of the Nashville team into account (R16).12 To understand stu-
dents’ problems with the median we carried out a conceptual analysis of it. Second,

12. Cobb (personal communication, February 18, 2003) and Gravemeijer assume that stu-
dents’ problems with the median were due to the design (see also Cobb, McClain, &
Gravemeijer, 2003), but we conjecture that there are conceptual problems with the median
that are not easy to overcome.
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during instructional design we could not find phenomena that beg to be organized
by the median as a measure of center or a representative value. So far, our historical
study had not helped us much further because we had hardly found any examples of
the median before about 1840. Why did the median arise so late? Is it because it is a
difficult concept? What was it used for? Can we find clues for instructional design?
The historical phenomenology we undertake in this section is thus meant to find out
why the median is difficult for students and to find phenomena that require using the
median. Unfortunately, there turned out to be very few historical studies of the me-
dian; its history is mostly buried under bigger issues such as the normal distribution,
Bayes’ theorem, the central limit theorem, and the method of least squares. Monjar-
det (1991) describes the median’s history with an interest in metric spaces; Godard
and Crépel (1999) concentrate on the median’s statistical characteristics after 1750;
and Harter’s Chronological annotated bibliography on order statistics (1977) pro-
vides a list of articles on order statistics, some of which deal with the question of
whether the mean or median is a better measure of center (this was around 1900).
Hence we had to do our own historical study of the median. We used the same meth-
od as for the previous sections.

We organize this section by focusing on the phenomena and contexts in which the
median arose. It turned out that the median mostly emerged as a differentiation of
the mean, and it was often the alternative measure that appeared less viable. In met-
aphorical terms, Ms Median appeared to be the stepsister of Ms Mean.

Theory of error

The most important context in which the average values were used was the theory
of error (Sheynin, 1996). The problem at first was to find the assumed true value
from the available observations, later to find the best estimate of such a value. The
Greeks often used a value that fitted the theory instead of real observations to “save
the phenomena,” as they called it (Pannekoek, 1961; Steinbring, 1980). Another
method was to choose a value that seemed reliable, for example from a middle clus-
ter or from values measured under favorable conditions (cf. Section 7.2). As we
mentioned before (4.3.3), the midrange was used as well, for instance by Arab sci-
entists in the ninth to eleventh century. It was not until the late sixteenth century,
however, that the mean of more than two values was defined (4.3.3). Tycho Brahe
seems to be the first to use the mean for reducing error and combining observations
(Placket, 1970).

The first possible instance of the median that Eisenhart (1974) has found was in a
book by Edward Wright of 1599 on navigation. Wright wrote about the determina-
tion of location with a compass (note that the letters ‘v’ and ‘v’ were used differently
in those days):
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Exact trueth amongst the vnconstant waues of the sea is to bee looked for, though
good instruments bee neuer so well applied. Yet with heedfull diligence we come so
neare the trueth as the nature of the sea, our sight and instruments will suffer vs. Nei-
ther if there be disagreement betwixt obseruations, are they all by & by to be reiected;
but as when many arrows are shot at a marke, and the marke afterwards away, hee may
bee thought to worke according to reason, who to find out the place where the marke
stood, shall seeke out the middle place amongst all the arrowes: so amongst many dif-
ferent obseruations, the middlemost is likest to come nearest the truth.

(Eisenhart, 1974, p. 52)

It is not certain that Wright really meant the median, since he gave no numerical ex-
amples. Eisenhart argued that since Wright wrote “Neither... are they all by & by to
be reiected” it is possible that he recommended the middle-most observation, the
median, and not the middle place, the midrange, since then most observations would
not be used. Even if this is a real example of the median, it is just a solitary example,
and certainly not an indication of a common practice of using the median in naviga-
tion or any other context.

A clearer example of the median, in the context of measurement errors, is found in
the work of Boscovich (around 1755). The interesting point of his work for the his-
tory of the median was the set of conditions he proposed in the search for true values,
in particular a line of best fit through observations. One of these conditions was that
the sum of absolute errors should be minimal; in our notation: X|x;-x| is minimal.
This condition turns out to be equivalent to the statistical median (David, 1998b;
Eisenhart, 1977), which can be proven with differentiation. Note that the condition
that the errors should add up to zero is equivalent with the arithmetic mean:
Z(x;—a)=0=Zx/n=a.

H13. If the theory of errors (e.g. repeated measurements) is taken as a context for
developing statistical ideas of center and distribution, it may be advantageous to let
students formulate their own intuitions about the distribution of errors. Do the er-
rors add up to zero? Is the chance that the measurement is too small equal to the
chance that they are too large? Do errors occur symmetrically?

In fact, discussions on the mean in error theory led to the development of the concept
of distribution (4.6).

Probability

Another context in which the median arose as a counterpart of the mean was proba-
bility theory. We give three examples of how the median is connected to probability.
The first is a paradigmatic example of how an intuition of something, in this case a
middle value, became differentiated into two concepts, namely median and mean
life time. The second example is about birth rates and deals with quartiles and the
interquartile range. The third example stems from Legendre and Laplace, who dis-
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tinguished two possibilities of finding a true value, one of which we would now call
the median.

1. In 1669, the Dutch brothers Chistiaan and Lodewijk Huygens had an informal cor-
respondence about their father’s life expectancy and about life expectancy in gener-
al. In 1662, just a few years earlier, they had received the famous Bills of Mortality
by John Graunt and with the tabular data in the book they calculated their father’s
and their own chances, which then evoked a flow of new mathematical problems
(Véron & Rohrbasser, 2000). The brothers continued to write each other on annuities
and life insurance based on these mortality tables, but they disagreed about certain
calculations. It was Christiaan who realized that there was a difference between ex-
pected remaining life time and the life time that half of the people would reach. On
November 28, 1669, he wrote to Lodewijk:

There are thus two different concepts: the expectation or the value of the future age of

a person, and the age at which he has an equal chance to survive or not. The first is for

the calculation of life annuities, and the other for wagering. (C. Huygens, 1895, Vol-

ume 6, letter to Lodewijk Huygens; translation from French: Hald, 1990, p. 106)
Christiaan made a graph from which we can read the median life time; this graph was
one of the first line graphs ever (Tufte, 2000, 2001; see also Section 4.7). In Figure
4.6 we can see that a 20-year-old person (A) had a median life time of 36 years: take
the half of AB and find CD further in the graph. The French terms that Christiaan
used for what we now call median life time were apparence (likeliness) and vie
probable (probable life), since the person has equal chance to survive to this age or
not. The chance of a half appears a natural point to look at, though it was not very
useful except for chance-like problems such as wagering. More useful was what
Christiaan called espérance and what we now call mean or expected life time. This
is also what Johan de Witt and Jan Hudde used for the life annuity calculations two
years later.
We conclude for the historical phenomenology that the phenomenon of predictions
about life times asked for a distinction between mean and median life time due to
skewed distribution (Stamhuis, 1996). The mean life time was useful for annuities,
but the median was only useful for wagering.

HI14. In this context of life times, that is in a skewed distribution, the median and
mean refer to different intuitions of center. The median is connected to probability
theory, in particular to halves, and the mean to expectation. When aiming at the me-
dian, it is worth trying to design problem situations in which it is reasonable to look
at halfs or compare halves, for instance in chance situations.
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Figure 4.6: Huygens’ theoretical line graph of mortality data (Huygens, 1895, between page
530 and 531). The letters and numbers in the original are enlarged for readability.

2. The second context in which we see a connection between probability and the me-
dian is birth rates. It brings us to quartiles and the interquartile range.

Mathematicians such as De Moivre, Stirling, and Daniel Bernoulli studied birth phe-
nomena with binomial distributions, not with real data. Bernoulli, for example,
wanted to calculate the probability that in a binomial distribution the variable ap-
peared between two limit values. He assumed that somewhere 2N children were
born, with equal chances for boys and girls. The essential point for our median story
is that he then raised the question of what the limit values were that would delimit
half of the cases. A hundred more boys could be indicated by +100, 24 more girls by
—24. With 2N=20,000 he found that this limit value was 47 Y at either side of N. In
general, he wrote, it is O.4725\/N, which is close to the value 0.4769VN that is de-
rived from the normal distribution (Hald, 1990). For the middle range between the
limit values Bernoulli used the term status medius; and for the middle limits the term
limites medii (Bernoulli, 1982, pp. 220, 385). His status medius is the same as the
interquartile range and the /imites medii are the same as the first and third quartiles.
With a modern view we might interpret the middle position as the median here—
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equal numbers left and right—and not the mean.

What is striking in this context of dealing with birth rates is that the median and the
quartiles are more apparent than the mean and modulus (this is a precursor to the
standard deviation' 3; see Walker, 1931). The median is seen as the exact balance of
boys and girls. Bernoulli (and later Galton) would probably have been surprised if
they had heard that nowadays students learn the 68.26% rule for standard deviations

in normal distributions, and do not work with the interquartile range of 50%.

H15. Quartiles and the interquartile range are intuitively clearer measures of vari-
ation than standard deviations (cf. P§).

3. The third example of the connection between the median and probability is the fol-
lowing. Legendre, Laplace (1812/1891), and their contemporaries used the term mi-
lieu de probabilite, the middle of the probability, which is a suggestive name for the
median in the context of probability functions.
Cournot (1843) was the first to use the term ‘median’ (valeur médiane) for this value
(Bru, 1984; David, 1995, 1998b; Stigler, 1986). He defined the median as the value
xy for which the distribution function F" was F(x,)=/2 and he explained that it is the
value for which the area under the graph is the same on the left and on the right (Fig-
ure 4.7). Furthermore, he wrote:

Two players, one betting of the value smaller than x and the other larger than x, would

bet with the same chances. With a very big number, the quotient of the larger (or

smaller) values than x and the total number of values will not differ much from the
fraction 2. (Cournot, 1843, p. 83; translation from French)
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Figure 4.7: Graph from Cournot (1843, Figure 17) with the
median in a skewed distribution.

13. The name ‘standard deviation’ was introduced by Karl Pearson at the end of the nineteenth
century (David, 1995; Walker, 1931).
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HI16. One way to visually estimate the median in a dot plot such as in Minitool 2 is
to look for which value the areas on the left and right are the same (see Section 10.5).

The central point of this section is that the median and quartiles are closely related
to probability theory, especially with the chance of a half.

Ease of calculation and ordinal data
In 1874 Gustav Theodor Fechner (1801-1887) used the median, the Centralwerth,
in an attempt to describe many sociological and psychological phenomena with
methods that had proven to be useful in astronomy. He advocated the ease of calcu-
lation of the median, but he also had more theoretical reasons for using other mea-
sures of center than the mean, which we address in Section 4.5.5.
Francis Galton used the English term ‘median’ for the first time in 1882 (David,
1995) and caused the breakthrough of the concept (Godard & Crépel, 1999). As hap-
pens often in the history of mathematics and statistics (Bissell, 1996; Dijksterhuis,
1950), Galton knew the concept before he used this particular term. Before 1882 he
used other terms including the middle-most value (1869) and the medium (1880),
and in a lecture in 1874 he gave the following description:

The object then found to occupy the middle position of the series must possess the

quality in such a degree that the number of objects in the series that have more of it is
equal to that of those that have less of it. (Walker, 1931, p. 87)

Figure 4.8: Galton’s graph of the normal distribution with quartiles p and q,
and median m (Galton, 1875, p. 36)

In a graph from 1875 he indicated the median and quartiles with the letters p, m, and
g and the fractions 7, 5, 3, but not with names (Figure 4.8). We come back to this
graph in Section 4.6 on distribution.
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HI17. A five-number summary of extreme values, quartiles, and median may be a
suitable way for students to characterize distributions, once students know the me-
dian and quartiles as measures of center and spread.

Important reasons for Galton to use the median were its ease of calculation and its
intuitive clarity (Stigler, 1973). Most phenomena Galton studied were roughly sym-
metrical, so the median would not differ much from the mean, which is laborious to
calculate. Throughout his book Natural Inheritance (1889) he therefore used the me-
dian M and quartile distance Q, with Q = 1/2 (Q3 — Qy), Q; being the first and Q5 the
third quartile (in the modern terminology). He rarely mentioned the mean and mod-
ulus (V2 times the standard deviation), probably to reduce calculation efforts and not
scare away scientists without the necessary statistical background.

Apart from ease of calculation and intuitive insight, yet another reason for using the
median could have played a role. Galton studied variables that he measured in an or-
dinal way. And indeed, with ordinal data the mean cannot be calculated, in contrast
to the median.

What struck us in the historical study was that ordinal data are so rare, apart from the
paradox of Borda and other theoretical voting problems that we interpret as non-sta-
tistical (Condorcet, 1785; Crépel & Godard, 1999; Goddijn, 1988; King, 1963; Mon-
jardet, 1991). Galton seems to be one of the first to study real ordinal data, for in-
stance in the context of intelligence and reputation. From the historical overview we
conjecture the following.

HI18. Although ordinality is a statistical reason to use the median as a measure of
center, contexts with ordinal data are not very suitable to help students understand
the median.

Robustness

Over the last centuries scientists have been concerned with the sensitivity of the
mean to outliers, and have proposed different procedures that were more ‘robust’ as
Box called it in 1953: trimmed means, weighted means, averaging different average
values, but also the median (Stigler, 1973, 1980). Francis Ysidro Edgeworth (1845-
1926), a younger contemporary of Galton, preferred the median to the mean because
of its insensitivity to outliers, probably due to his interest in economics, which has
less regular data than is common in astronomy for instance, and he was not the only
one to prefer the median (Harter, 1977). Nowadays, the median’s resistance to out-
liers is one of the major reasons to use it, especially when the data are irregular as is
common in social sciences and economics.

72



4.5.5

4.5.6

A historical phenomenology

H19. Using irregular data with outliers can motivate students to reason with the me-
dian instead of the mean as a measure of center, provided students already know
about outliers and measures of center.

Skewed distributions

For a long time, distributions of error were assumed to be symmetrical. In 1838,
Bessel was probably the first to doubt the assumption of symmetry (ESS, 1998;
Steinbring, 1980). In contrast to most other scientists of his time, Fechner (1874)
even assumed that most distributions of data were asymmetric. It turned out that the
median minimizes the sum of absolute deviations to the first power and the mean the
sum of deviations to the second power. Consequently, both measures of center are
special cases of Fechner’s so-called Potenz-mittelwerthen, the values that minimize
the sum of the deviations to the n-th power: Z|x;-x|" is minimal. Fechner used these
generalized measures of center to describe the skewness of distributions. Edgeworth
also used the difference of mean and median, divided by a normalizing factor, and
this measure is still used today as an indication of skewness (ESS, 1998; Stigler,
1986).

As Tukey (1977) pointed out decades later, the median is also useful in the five-num-
ber summary of unimodal distributions, consisting of the minimum value, first quar-
tile, median, third quartile, and maximum value. In fact, this five-number summary
is the basis of the box plot. The median is especially useful as a measure of center in
asymmetric distributions, because it is far less influenced by extreme values than the
mean (the median is more ‘robust’).

For the Nashville team, a reason to use the median was that it tends to be closer to
the majority of a unimodal data set than the mean (R16). Another reason was that the
median plus quartiles seemed easier than the mean plus standard deviation (P8). And
third, the median and quartiles seem more appropriate when describing skewed dis-
tributions than mean and standard deviation (4.5.2).

H20. Skewed distributions can be used to show the usefulness of the median.

Summary of the median’s history

The mean was used for reducing error from the late sixteenth century onwards, but
the median was developed relatively late. We summarize a few examples. Expected
life time was a useful element in calculating life annuities, whereas the median life
time was considered to be just “for wagering,” as Christiaan Huygens wrote. For
Daniel Bernoulli the quartiles (limites medii) were evident values to look at, but the
standard deviations won in the nineteenth century.14 In the theory of error the mean

14. There are of course exceptions: in 1910, the Dutch botanist Tine Tammes preferred medi-
an and quartiles (De Knecht-van Eekelen & Stamhuis, 1992).
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became a popular measure for combining observations and reducing error, but the
median was not used until it was acknowledged that distributions can be skewed.
The contexts in which such distributions became apparent were for example the so-
cial sciences and economics (Crépel & Godard, 1999). Phenomena in these fields are
far less regular than in astronomy and physics, so a measure of location that is less
sensitive to outliers, such as the median, is useful. Despite the efforts of scientists
like Cournot, Fechner, Galton, and Edgeworth, the median was neglected and the
mean favored.

Nowadays, the median is used in order statistics, since the mean cannot be used for
ordinal data. The median is also used in robust statistics, since it is far more robust
than the mean. Since statistics is applied in more and more areas with irregular data,
the median has become more popular (Portnoy & Koenker, 1997). The question re-
mains, however, whether Ms Median as the stepsister of Ms Mean will ever turn out
to be Cinderella.

Distribution

For reasons of readability, we organized the historical phenomenology of average
values, sampling, and distribution into different parts, but as we argued in Section
2.2 and as the examples in previous sections show, all these concepts are intimately
interwoven. Estimation using average values has to do with sampling and the medi-
an examples often involve distribution issues.

In the eighteenth century, the concept of distribution arose from the theory of errors,
when the arithmetic mean as a method to reduce errors was still a topic of debate.
Due to the impossibility of determining individual errors, one had to look at the re-
lation between the errors.

Measurements, and functions of measurements, such as their arithmetic mean, are not
amenable to mathematical theory, (...) as long as individual measurements are regard-
ed as unique entities, that is, as fixed numbers yy, y,, ... A mathematical theory of
measurements, and of functions of measurements, is possible only when particular
measurements yy, y,... are regarded as instances of hypothetical measurements Y,
Y>,... that might have been, or might be, yielded by the same measurement process
under the same circumstances. (ESS, 1998, p. 531)

In 1756 Simpson made this shift to looking at the relation between errors when he
used simple probability functions to argue that the mean of several observations was
better than a single observation. The first distribution of errors he proposed was a
discrete uniform distribution, that is with equal probabilities for all values -v, -
vtl,...-1, 0, 1,..., v. Next, he assumed a discrete isosceles triangle distribution with
probabilities proportional to 1, 2,..., v-1, v, v+1, v,..., 2, 1, from which he obtained a
continuous isosceles triangle distribution one year later (see Figure 4.9).
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Figure 4.9: Distributions proposed by Simpson: discrete uniform (1756), discrete isosceles

triangle (1756), continuous isosceles triangle (1757) (after ESS, 1998)
Quickly after Simpson had launched his idea of probability distributions, other sci-
entists proposed alternative laws of error. Among them were Lagrange, Lambert,
Daniel Bernoulli, Laplace, and Gauss. Note that the analytic expressions in Figure
4.10 are a modern accomplishment. Lambert, for instance, introduced his method of
maximum likelihood without ever expressing his error-frequency distribution in a
functional form (ESS, 1998).

0.5 Lambert (1765): flattened semicircle

fx) = %A/(l—xz) “1<x<1

3/4 Lagrange (1776): continuous parabolic

f(x) =%(1—x2) l<x<l
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Lagrange (1776): continuous uniform

Lagrange (1781): cosine function

flx) = gcos(%) -1<x<1

Laplace (1781): log function

fix) = llogi -1<x<1
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Laplace (1774): double exponential
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Gauss (1809) and Laplace (1810): law of
error or normal distribution

N
. f(X)fﬁe

Figure 4.10: Chronological overview of distributions of error that were proposed from
Simpson to Gauss and Laplace (adapted from ESS, 1998)

H21. Students can reason about the shape of distributions without being bothered by
analytic expressions (R14). They may implicitly assume distributions to be symmet-
rical.

Mathematically, there are many ways in which the normal distribution can arise.
Historically the first way, and still a very common one, is to obtain the normal dis-
tribution as the limit of the binomial distribution bin(n, p) with n to «. This is a result
of the De Moivre-Laplace limit theorem, which is a special case of the central limit
theorem transpiring that in many cases the sum of a large number of independent
random variables is approximately normally distributed.

In the context of people’s height, we can think of many factors that influence this
including their parents’ height, their diet in their youth, their age, and their sports his-
tory. Even if these factors themselves are not normally distributed, their sum roughly
is. This explains why so many phenomena can be described by the normal distribu-
tion (Sittig & Freudenthal, 1951; Wilensky, 1997).

This distribution and its curve are known under many names (Stigler, 1999) includ-
ing ‘the law of error’, the ‘frequency law’, the ‘Gaussian curve’, ‘Laplace-Gauss’
(mainly in the French literature). One name Stigler does not mention is the ‘De
Moivre distribution’, which Freudenthal (1966b) used because De Moivre was the
first to define this function. An immediate result of Gauss’s work with the normal
distribution was that astronomers were able to find the planetoid Ceres in the sky
again (Steinbring, 1980). Quetelet then used methods that had proven successful in
astronomy for anthropometrical purposes, and modeled phenomena such as the
chest sizes of Scottish soldiers with a binomial distribution with the curve of the nor-
mal distribution superimposed as the so-called ‘curve of possibility’. In his tracks,
Galton used the normal distribution (‘normal scheme”) for his studies in human fac-
ulties and inheritance. A famous quote is:
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It is difficult to understand why statisticians commonly limit their inquiries to Aver-
ages, and do not revel in more comprehensive views. Their souls seem as dull to the
charm of variety as that of the native of one of our flat English counties, whose retro-
spect from Switzerland was that, if its mountains could be thrown into its lakes, two
nuisances would be got rid of at once. An Average is but a solitary fact, whereas if a
single other fact be added to it, an entire Normal Scheme, which nearly corresponds
to the observed ones, starts potentially into existence. (Galton, 1889b, p. 62)

Galton realized that he needed just two numbers for describing the whole distribu-
tion: the median and the quartile distance.

If we know the value of M [median or mean] as well as that of Q we know the entire
Scheme [normal distribution]. M expresses the mean value of all the objects contained
in the group, and Q defines their variability. (Galton, 1889b, p. 61)

Being interested in tribes—he traveled in Africa in 1851 (Galton, 1889a)—he recom-
mended anthropologists to ask chiefs to arrange their people in order of height. De-
termining the first quartile, median, and third quartile would be sufficient statistics
to describe the whole height distribution of the tribe (Walker, 1931, p. 84). Com-
pared to the earlier large tables with observations, this use of a distribution was in-
deed a major leap forwards (Figure 4.11). In fact, this is why students need to devel-
op such notions in relation to distributions:

Over-minuteness is mischievous, because it overwhelms the mind with more details
than can be compressed into a single view. (1889b, p. 36)
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Figure 4.11: a) Another ogive-shaped graph with quartiles by Galton (1889b, p. 40);
b) one with 21 hypothetical data values (1883, p.51)

Galton was really impressed by the normal distribution (‘law of frequency of error’),
which inspired him to write poetic phrases:
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I know of scarcely anything so apt to impress the imagination as the wonderful form
of cosmic order expressed by the “Law of Frequency of Error.” The law would have
been personified by the Greeks and deified, if they had known of it. It reigns with se-
renity and in complete self-effacement amidst the wildest confusion. The huger the
mob, and the greater the apparent anarchy, the more perfect is its sway. It is the su-
preme law of Unreason. Whenever a large sample of chaotic elements are taken in
hand and marshalled in the order of their magnitude, an unsuspected and most beau-
tiful form of regularity proves to have been latent all along. (Galton, 1889b, p. 66)

Several scientists compared Gauss’s law of error with observed frequencies in mass
phenomena and considered the agreement as good. Among these scientists was C.S.
Peirce (NEM III), who collected many data values on a young man’s reaction time
on consecutive days. About the curves of Figure 4.12 he wrote:

/|
A
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Figure 4.12: One page of Peirce’s curves that, according to Peirce, differed little
from the normal distribution: reaction time of an individual on
consecutive days (Peirce, NEM III, p. 676)

The curve has, however, not been plotted directly from the observations, but after they
have been smoothed off by the addition of adjacent numbers in the table eight times
over, so as to diminish the irregularities of the curve. The smoother curve on the fig-
ures is a mean curve for every day drawn by eye so as to eliminate the irregularities
entirely. It was found that after the first two or three days the curve differed very little
from that derived from the theory of least squares [the normal distribution].

(NEM 111, p. 659)

The belief in the general applicability of the normal law was ubiquitous and slow to
die. Lippmann, a French physicist, said to Poincaré (1854-1912) about this:

All the world believes it firmly, because mathematicians imagine that it is a fact of
observation, and the observers that it is a theorem of mathematics. (Poincaré, 1892;
cited from ESS, 1998)
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In Section 4.5.5 we already saw that some scientists such as Bessel, Fechner, and
Edgeworth dropped the assumption of symmetry (Steinbring, 1980). Pearson, in the
late nineteenth century developed a class of distributions which were transforma-
tions of the normal distribution, and which could be applied to many more phenom-
ena.

This section shows that the concept of distribution developed over several centuries.
What is important for the historical and didactical phenomenology is that concepts
such as distribution change over time. This means that we have to consider these
concepts in a dynamic perspective, as Steinbring (1980) writes about the concept of
chance:

It is impossible to give a definition of chance that stays the same in all grades. This
implies that the concept of chance should be carefully related to suitable contexts and
extended by extending the contexts. This relation between foundation and application
leads to a dynamic perspective of development with respect to the concept of chance.
(p. 446; translation from German)

If we replace ‘chance’ by “distribution’, the quotation applies to our situation (in fact
this holds for other statistical notions such as mean as well).

H22. 4 notion of distribution cannot stay the same in all grades. Accordingly, the
representations in which students study distributions need not stay the same.

We allow students’ informal and possibly sloppy characterizations of distribution in
our teaching experiments and allow them to work with their own informal sketches
before using more advanced representations and definitions.

Graphs

Graphs are crucial tools in statistical investigations, because we can see patterns and
trends of frequency distributions that are hard to see from a table of numbers. In this
section we ask ourselves from which phenomena statistical graphs were developed.
Beniger and Robyn (1978) distinguish four problem areas in which the most impor-
tant graph types were developed:

1 spatial organization (17th and 18th century), for instance Halley’s map with lines
of magnetic declination (1701);

2 discrete comparison (18th and early 19th century), for example Playfair’s bar
chart of import and export in Scotland (published in 1786);

3 continuous distribution (19th century) with histogram and ogive-shaped line
graphs;

4 multivariate distribution and correlation (late 19th and early 20th century) with
three-dimensional charts and correlation diagrams.
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1. Spatial organization

Descartes (1596-1650) was convinced that imagination and visualization, and in
particular the use of diagrams, had a crucial part to play in scientific investigation.
One of his contributions, the coordinate system, still proves powerful today. A first
major success of using coordinates in a Cartesian system was Halley’s scatterplot of
barometer readings against elevation above sea level (1701). This plot was an excep-
tion, though, because scientists had an obsession for tabular data (Beniger & Robyn,
1978). Between 1660 and 1800, even automatic graphs created by mechanical re-
corders to measure temperature, barometric readings, and tidal movements were
routinely translated into tabular logs. Apparently, tables were considered clearer
than graphs. It was not until the 1830s that scientific journals began to record graphs.
We already know that students tend to focus on individual data values (2.2).

H23. Students initially tend to focus on tables and values. Even if they easily answer
questions with the help of case-value plots, they still interpret these graphs as codi-
fications of tables.

Exports and lmports of SCOTLAND to and from different parte for one Year from Clirifimas 1780 to Chrittmas 1781
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Figure 4.13: Playfair’s bar chart of Scotland’s import and export in 1781
(from Neeleman & Verhage, 1999, p. 21)
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2. Discrete comparison

In 1765, Priestley published time-line charts with individual bars to compare the
life-spans of about 2,000 celebrated persons who had lived between 1200 BC and
1750 AD. Not long after that, Playfair invented the first bar chart, which was pub-
lished in 1786 and represented Scotland’s imports and exports for seventeen coun-
tries in 1781 (Figure 4.13). Ironically, he made this graph due to a lack of data. Be-
cause he had no time series data, he graphed a single year as a series of 34 bars, and
apologized to the reader for that. This graph can be considered a way to make a dis-
crete quantitative comparison of import and export.

Playfair’s bar chart was among the first graphs used and it resembles the representa-
tion of Minitool 1. Hence we conjecture:

H24. The bar chart in Minitool 1 is a representation that students easily come to un-
derstand.

This hypothesis was confirmed in the exploratory interviews and in the teaching ex-
periments.

3. Continuous distribution

In the section on distribution we already demonstrated how several famous mathe-
maticians had looked for functions that matched the distribution of error. Note that
the graphs of Figures 4.9 and 4.10 were added for the modern reader as it was not
until about 1820 that such graphs became more common. The problem of represent-
ing continuous distributions arose in vital statistics, the statistics of life information,
and led to two important solutions: ogive-shaped line graphs and the histogram.
Fourier made a bar graph that represented the population of Paris by age groups and
made a line graph of this, which led to the first appearance of a cumulative frequency
distribution (1821). The first histogram was made by Guerry in 1833, who reorga-
nized a bar graph to represent crime data that he had arranged in intervals of age and
month. This led to a histogram. The term ‘histogram’ stems from Pearson (1895)
(David, 1995; Schwartzman, 1994; Walker, 1931). Quetelet, then, was largely re-
sponsible for the further development of such graphs. In 1846, for instance, he pub-
lished a symmetrical histogram with the curve of the normal distribution superim-
posed as the so-called ‘curve of possibility’. The histogram emerged from organiz-
ing a bar graph. This could also indicate, from a historical perspective, that a
histogram is a more advanced graph than a bar graph (see Section 2.2 and 2.3).

H25. The histogram is more difficult to learn than the bar graph.

Galton pictured the normal distribution differently from what we are used to nowa-
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days (Figure 4.14 left). He wrote:

I shall best explain my graphical method of expressing Distribution, which I like the
more, the more I use it, and which I have latterly much developed, by showing how
to determine the Grade of an individual among his fellows in respect to any particular
faculty. (Galton, 1889b, p. 37) [‘Grade’ is a percentile; e.g., the first quartile is the
25th grade.]

This type of ogive-shaped graph was no exception in the beginning of the twentieth
century, judging from Walker’s remark in 1931 that such graphs were commonly
used in school textbooks for statistics. Galton wrote that though the ‘Curve of Fre-
quency’ (right) was generally used by statisticians, but then “turned at right angles,”
it was “far less convenient than that of Distribution [left]” (p. 49). He turned the fre-
quency curve to “show more clearly its relation to the Curve of Distribution.” But,
he admits, “the Curve of Frequency has other uses, of which advantage will be taken
later on” (p. 49).

Figure 4.14: Galton’s graphs of the normal distribution (1889, p. 38) on men’s strength
measured in 1bs. Left is the ‘Curve of Distribution’ and right the ‘Curve of Frequency’.

Galton called the type of graph on the left an ‘ogive’, after the architectural term
(Bissell, 1996; Dictionary of Art, 1996). We have indeed found this ogive shape in
many buildings in different countries (e.g. Figure 4.15).

H26. It is useful to let students deal with two representations of distributions similar
to those of Galton, not just one (Figure 4.14).
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Figure 4.15: Ogive shape in architecture (Kalamafka, Crete) and one of the
ogive shapes from the Dictionary of Art (1996)

The reader may already have noticed the resemblance of Galton’s graphs with Mini-
tools 1 and 2, be they turned at an angle. Apparently, Galton found the cumulative
curve (left in Figure 4.14) more useful for many of his purposes than the frequency
curve (right), and he pointed at the transition between the two graphs that we also
want students to see. It could indicate, but this is a tentative remark, that though the
‘Curves of Frequency’ are more common among statisticians, the ‘Curve of Distri-
bution’ is easier for students to understand in some situations.

H27. The median is easier to conceive and develop in a representation that is similar
to Galton’s Curve of distribution than in a Curve of frequency,; hence it may be eas-
ier in Minitool I-type representations than in Minitool 2-type representations. It
could well be important that the bars in Galton’s distribution curve are vertical, be-
cause we conjecture that it is easier for students to read from left to right, and so to
speak take the midrange, which happens to be the median, than reading from top to
bottom, such as in Minitool 1.

We have not been able to test the hypotheses on the median in this study.

4. Multivariate distribution and correlation

By 1850, quantitative graphs had become accepted tools in statistics. The only graph
of the problem area of multivariate data that we discuss is Galton’s first correlation
diagram, because we see an analogy with Minitool 3 as a sequel to Minitool 2. Gal-
ton’s diagram, Figure 4.16, shows a bivariate distribution of head size and height. At
the sides we see the univariate distributions of those variables. We interpret this ex-
ample as supporting the idea of the Nashville team that a notion of univariate distri-
bution is a prerequisite for really understanding bivariate distributions.
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Figure 4.16: Galton’s first correlation diagram on head size and height (Hilts, 1975)

We jump to the late 1960s for other major contributions to statistical graphing,
namely in exploratory data analysis. The most famous newcomers are the stem-and-
leaf plot and the box-and-whiskers plot, which were first presented by Tukey in 1969
as ways to display and explore data sets by hand. Because the basic box plot was of-
ten misinterpreted, Tukey and colleagues also invented alternative box plots with ad-
ditional information (McGill, Tukey, & Larsen, 1978). From this we conclude that
box plots are not that easy: even in the statistical world they sometimes led to con-
fusion. Hence, they should also be handled with care in education.
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H28. The box plot is one of the most advanced graph types used in middle schools.
This is due to the incorporation of conceptual measures of center (median) and

spread (quartiles).

We therefore propose to postpone the introduction of box plots until after middle

school.

In addition to the four areas mentioned earlier, we cite Florence Nightingale (1820-
1910) as a pioneer in graphical representations. Her main goal with those graphs was
to convey to others the need to improve health care, for instance during the Crimean
War (Cohen, 1984).

Table 4.1: Overview of the history of graphs, mainly from Beniger and Robyn (1978)

ca. 1350 | Proto-bar graph of a theoretical function (Nicole Oresme)
17th cent. | Tables of empirical data (Die Tabellen-Statistik in Germany)
ca. 1660 | Automatic recording device producing a graph of temperature (Christopher
Wren)
1686 Edmund Halley’s bivariate plot of barometric readings against altitude
1765 Measurement error as deviations from regular graphed line (Lambert)
1786 Playfair’s bar chart
1801 Playfair’s pie chart or circle graph
1821 Fourier’s cumulative frequency curve of inhabitants of Paris by age group-
ings
1828 Mortality curve (Quetelet)
1830-35 | Graphical analysis of natural phenomena appears in journals
1833 Guerry'’s first histogram of crime by age and months
1846 Quetelet represented urn schemata as symmetrical histograms with a “curve
of possibility,” later called normal curve
ca. 1855 | Bar graphs and polar-area graphs on mortality by Florence Nightingale
1868 Statistical diagrams in a school textbook (Levasseur)
1874 Age pyramid, bilateral histogram (F. Walker)
1875 Galton’s ogive graph of normal distribution
1884 Dot plot (see Wilkinson, 1999)
1969 Box plot and stem-and-leaf plot for EDA (Tukey)

We end this section with a chronological overview of types of graphs used in our re-
search and graphs related to those (Table 4.1). We do not suggest that an instruction-
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al sequence should follow this order. Taking Freudenthal’s cue we try to understand
the past well enough to design a “revised and improved version of the historical
learning process” (4.1). What we see in history is that a lot of mathematics and sta-
tistics was already known before most graphical representations were invented. In
education this is different: students know much less mathematics than scientists
from around 1800 but they have encountered more graphical representations.

Summary

A historical phenomenology is an analysis of the development of concepts (‘thought
objects’) in relation to the phenomena that gave rise to these concepts (2.1). The es-
sential point of didactical phenomenology is to translate such phenomena into prob-
lem situations that are meaningful for students and create the need for organization
by a particular concept. Knowing the historical development of certain concepts can
help to anticipate a process of guided reinvention.

It can be demanding for instructional designers and teachers to put aside their knowl-
edge of these concepts and take a student perspective. What may seem a minor step
might have taken centuries to develop historically and might also be difficult to de-
velop for students. A historical study can help to distinguish various aspects, prob-
lems, related notions and intermediate stages of the development of certain notions.
In other words, it can help us look through the eyes of the students. This section is a
summary of the results that turned out most useful for the didactical phenomenology
and for the teaching experiments.

Estimation (HI, 7, 8)

Estimation of large numbers could well be one of the ancient origins of statistical
methods. From a modern point of view we can recognize precursors to notions of
average and sampling in those methods.

These thought objects of average and sample are used to handle the phenomenon of
variability in what is estimated. This implies that we could use estimation tasks as
the starting point of a statistics unit that supports a process of guided reinvention of
average and sample.

Bars representation (H2)

Magnitudes can be represented by tallies and numbers, but also by the lengths of bars
(Euclid, 1956). We assume that students can easily interpret bars as representations
of data values such as in a value-bar graph, especially if the variable at issue has a
time dimension (life span) or a one-dimensional physical connotation (wing span,
height, braking distance).

Moreover, we assume that the bar representation of data values can help students in
estimating means from data sets by using a compensation strategy. Better than from
a table of values, they can see where the center of the data values is from a bar rep-
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resentation such as a value-bar graph.

Midrange (H4)

Before the arithmetic mean was used to reduce measurement errors or to summarize
data (16th century), the midrange was used for such purposes (9-11th century). From
a modern perspective the midrange is not a very useful measure of center, because
it is too sensitive to outliers, but with symmetrical distributions (such as most error
distributions) this problem is less apparent. It is likely that students will also use the
midrange as an initial way to find an average, for example when estimating total
numbers. With skewed distributions students can then be challenged to scrutinize
their midrange strategy. Similarly, skewed distributions can be used to create a need
for a distinction between mean and median (H20).

Mean as an entity in itself (H6)

Considering the mean of a variable as a representation of a specific aspect of a pop-
ulation (percentage of dead letters, inclination to suicide) is much more recent than
the other types of means we discussed. In the nineteenth century, the mean was used
more and more as an entity in itself. This was especially apparent in cases where the
mean did not refer to actual situations.

In 1877, for example, Peirce (CP 2.646) gave the example that in New York 14.72
persons lived in the average house. It is likely that students find this type of mean
more difficult to understand than older types of means.

Sampling (HS, 10, 11, 12)

Just as there are different levels of using the mean, there are different levels of using
sampling. In the estimation examples sampling was mostly implicit: the focus is on
the total number and the sample helps to reduce variability in a smart way. In the Tri-
al of the Pyx example of quality control of coins, the focus was on the weight and
pureness of coins and sampling was necessary because not every coin could be melt-
ed to test its pureness. Both the total and the individual coins were clear units of
thought.

Later in history, however, scientists became interested in more abstract aspects of
populations, as the section on the mean as an entity in itself shows. More advanced
methods of sampling became necessary, because measuring populations became too
expensive or even impossible. In this case, a sample is a thought object with which
something can be said about the population.

Measures of spread (H15)

One way to organize the variability of a data set is by summarizing it. This can be
done with a measure of the spread. Historically the oldest measure of spread is the
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range (David, 1998a). However, the range is sensitive to outliers; more robust mea-
sures are the interquartile range and the standard deviation.

Distribution (H21, 22)

A more sophisticated way to summarize or model a data set is by using the thought
object of ‘distribution’. In history, different distribution shapes have been proposed
as summarizing the pattern in the variability of errors. Before the nineteenth century,
distributions were assumed to be symmetrical. When statistics became used in more
and more contexts including economics and social sciences, there was a need to
make distinctions between different types of distributions (symmetrical or skewed,
frequency or density distribution, sampling or population distribution).

Graphs (H23-25)

Before about 1800, scientists rarely used graphs because they preferred tabular data.
Graphs are another way of summarizing data sets or patterns in variability. They can
be used to represent distributions. What is interesting with respect to the normal dis-
tribution is that different representations were used; it was not only represented with
the famous bell curve, but also as an ogive. This ogive shape also appears if vertical
value bars are ordered by size, for example when students line up by height (Figure
7.19). It may be useful to use different representations of distributions to highlight
different aspects of these distributions. By and large, the historical development of
graphs is in line with the rationale of the Minitool representations.

On the basis of the present historical phenomenology, as well as prior research and

exploratory interviews, a didactical phenomenology is formulated in the next chap-
ter.
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Exploratory interviews and a didactical phenomenology

As part of the preparation phase of the design research, this chapter presents the re-
sults of exploratory interviews and a didactical phenomenology of the key concepts
of distribution, sampling, center, and graphs that can display distributions. One pur-
pose of a didactical phenomenology is to find problem situations that can be used for
the guided reinvention of the concepts, graphs, and types of reasoning that form the
end goals. Such problem situations were found in three sources.

The first was the research presented in Chapter 2, the second the historical phenom-
enology of Chapter 4, and the third was a set of exploratory interviews. If we want
to learn from prior research and from a historical phenomenology, we also need to
know about students’ prior knowledge. In what respect does the prior knowledge of
Dutch students differ from that of the American students of the Nashville experi-
ment? And what do students know that people in the past did not know?

To answer these questions, a set of exploratory interviews was used as the third
source for the didactical phenomenology15 presented in this chapter. Once we know
more about the students’ prior knowledge, we can identify possible starting points
of a hypothetical learning trajectory (HLT). And once we know how the Dutch stu-
dents react to certain activities that were used in Nashville, we will be better able to
anticipate what will happen in the seventh-grade teaching experiments.

The following section describes the results of the exploratory interviews with 26
Dutch seventh graders. Together with the prior research (2.2 and 2.3) and the histor-
ical phenomenology, these results form the basis for a didactical phenomenology of
the key concepts of statistics in this research. The last section of this chapter de-
scribes the first outline of an HLT for the seventh-grade teaching experiments. Sche-
matically, this set-up can be represented as in Figure 5.1.

- prior research (2.2 and 2.3) ) )
- historical phenomenology (4) didactical phenome- }> HLT (6-7)
- interviews (5.1) nology ()

Figure 5.1: Schematic representation of the three sources of the didactical
phenomenology, which in turn forms a basis for the HLT

15. For Freudenthal (1983a), a didactical phenomenology was carried out behind the desk, but
we needed empirical input for writing this didactical phenomenology.
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Exploratory interviews

Questions

To formulate an HLT, we needed to know more about the prior statistical knowledge
of Dutch seventh graders: in particular, whether we could use the activities used in
Nashville. As an indication of students’ prior knowledge of statistics, we decided to
investigate Dutch students’ notion of average. Because multiplicative reasoning is
important for statistical reasoning, we were also interested in how students would
reason multiplicatively in statistical contexts. And the third sub-question was: How
easily will the Dutch students solve the activities that were used in the Nashville
teaching experiments? We chose two key problems from the Nashville research that
had led to informal reasoning about distribution aspects and shape: a version of the
battery problem with Minitool 1 and the speed trap problem with Minitool 2.

On the one hand, we expected Dutch students to be better able to understand the
mean than the American students, because Dutch students learn to calculate their
own grades for their reports with arithmetic means from grade 7 onwards (compared
to American students who are used to a grading system with A, B, C,...).

On the other hand, we expected Dutch students might have difficulties in using par-
ticular graphical representations that American students were already used to, be-
cause Dutch students learn almost no statistics before grade 8, in contrast to Ameri-
can students. '

Table 5.1: Interview format

1 These horizontal bars represent the life spans of batteries of two brands (Figure 5.2).
Which brand would you choose? Why? (asked to fourteen students)

2 At a certain spot in the city a lot of accidents happened. The police have placed a
speed trap. Each dot represents the speed of a car (Figure 5.3). Below, you see how
fast the cars drove before the speed trap was placed; above, after the speed trap was
placed. Above 55 km/h drivers get fined. Did the action have effect? (asked to fourteen
students)

3 What is the average? Can you estimate the average annual temperature from this ta-
ble or graph? (Figure 5.4)

4 Can you calculate your report grade? Assume that three tests count twice and one
counts once. (For example, 7.8, 7.2, and 6.8 twice, and 8 once; a calculator was al-
lowedq)

5 What does it mean that the average Dutchman watches television for 1.5 hours per
day? Can you invent watching times that have 1.5 hours as an average?

6 What does it mean that the average family size is 2.5? Can you invent family sizes that
have 2.5 as an average?

16. Compare, for instance, the key goals of the Dutch curriculum (Methodewijzer, 1998) with
the Principles and Standards for School Mathematics in the United States (NCTM, 2000).
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As described in 3.6, we interviewed 26 students, randomly chosen from seventh-
grade classes of different levels, for about 15 minutes per pair. The interview ques-
tions are given in Table 5.1. For practical reasons, the graphs were presented on pa-
per, not on a computer screen. In the following sections we present the results of
these questions

&00 Too 200 |00 1000 1100 1Z00 1200

Figure 5.2: Battery problem in Minitool 1 (value-bar graph) as used for the interviews.
The life span is in minutes. This data set is different from the one used in the teaching
experiments. The samples of D and P are of different sizes (12 and 9).
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Figure 5.3: Speed trap problem in Minitool 2 (dot plot) as used in the interviews.
The speed is in km/h. Above was the after situation and below the before situation.
This is clumsy, but at that time we knew of no easy way to change the order.
Both data sets consist of 60 values.
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Figure 5.4: Average monthly temperatures in the Netherlands
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Battery problem in Minitool 1 (question 1)

Seven student pairs solved the battery problem, and seven pairs solved the speed trap
problem; one pair did both because there was time left. No student found it difficult
to read off the values from a value-bar graph, but all of the students first chose the
longest bar of brand D: “You can just take the longest, can’t you?” This shows that
these Dutch students also tended to focus on individual data values (cf. Section 2.2).
In terms of a didactical phenomenology, they initially organized this problem situa-
tion by localizing individual data values and not by conceiving the general shape or
by regarding the data set as a sample of one battery brand.

When we explained that the longest bar only referred to one battery that lasted a bit
longer than the rest of that brand, students started to look at various other aspects,
for example:

. You have to be lucky.

. It depends on which (battery) you buy.

. Those four (of D) are better than those (large group of P).

. Likelihood that you get a short one with this brand (D).

. P has more of the same value.

. With P you know how long it lasts.

. The P ones are closer together, they’re all even, not “which one shall I take.”

NN DN kAW~

These examples vary in quality. The first two arguments probably show a case-ori-
ented view, because students focus on the single battery that might be bought. The
student who used the third argument paid attention to a specific category within the
data sets, a categorical view, which we consider in between a case-oriented and an
aggregate view on the data sets. Arguments 4 to 7 indicate that students looked at the
whole data set. In argument 4, the “likelihood” probably refers to a relatively large
part of low values in the subset of D compared to that of P. Arguments 5 to 7 suggest
a sense of consistency, though the focus also seems to be on the battery that is going
to be bought.17

As these examples illustrate, the battery activity could function as a springboard for
discussion about majority, outliers, chance, and predictability. It would be necessary
to support students in making their fuzzy and informal notions more exact, for in-
stance by quantifying expressions such as ‘close together’ by a measure of spread,
and ‘how long it lasts’ by a measure of center. Somehow, we would have to prevent
too many students from only looking at one value (see Section 6.4). Moreover, we
decided to use a different data set, so that students would first compare two subsets
with the same number of data values (in this data set, there were 12 data values of D
and 9 of P). We expected this to be easier as a starting point.

17. This is similar to the so-called outcome approach (Konold, 1989), which is common in
probability contexts.
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Speed trap problem in Minitool 2 (question 2)

Ten of the fourteen students to whom we presented the speed trap problem were able
to read the dot plot without further explanation. The other four found it hard to read
the dot plot in the first instance, but quickly came to understand it. One student ini-
tially thought that the cars ran into each other. From what she said, we concluded
that she interpreted the dots as cars that were literally close to each other, as on a map
or in a picture. Apparently, she did not immediately interpret the dots as signifying
the speeds of cars.

The majority of the students quickly answered that the speed trap had an effect, al-
beit “not a very large effect.” A common argument was that fewer people drove
more than 55 km per hour after the speed trap had been installed (55 km/h was the
speed at which people would be fined). Because both conditions consisted of the
same number of measurements, this was a valid argument.

What bothered us about the context was that students used 55 as a cutting point and
did not argue about a hill or a majority. For the HLT we decided to change the for-
mulation of the problem and leave out the number 55, in the hope that students
would look at the whole distribution and not cut it into two parts. Thus we tried to
avoid the distracting influence of focusing on multiplicative reasoning instead of the
whole distribution (R8).

One issue that struck us was that several students gave commonsensical answers that
were often not based on data, but on what they knew about the context. For example:

People who know will drive slower.

It depends on the day too; on Sunday people may drive more slower.
It helps because above 55 km/h they get fined.

They get a fine so they don’t drive too fast anymore.

I think the people knew there was a speed trap and slowed down.

This is not really surprising, because these students had no prior experience with
data analysis. For the HLT we concluded that the teacher should establish the norm
of needing to reason with data when available.

We also wanted to have an indication of how well Dutch seventh graders reason
multiplicatively. We therefore asked ten students to reason from new hypothetical
data (Table 5.2):

Assume there were six cars below 55 and six above in the before situation versus
twelve below and six above in the after situation. What would you say then?

Table 5.2: hypothetical situation of speed problem

speed trap <55 km/h 55+
before 6 6
after 12 6
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Students’ skills in multiplicative reasoning varied. Some said that there was no im-
provement because there were still six cars driving too fast; they reasoned additive-
ly, but within the context this is not really surprising. Maybe they thought that for
safety the absolute number of cars driving too fast is more important than the per-
centage. One girl was in doubt:

The number is important, but also the whole. You cannot really tell. There are also
more cars here (in the after situation).

One boy noticed that “it had effect in percentages.”

Students’ skills in calculating percentages or proportions also varied considerably.
Two of them were not able to calculate the percentages of cars driving too fast; two
answered the question with informal terms such as ‘the most;” most of them needed
a little help, and four students easily found either 50% and 67% or § and % .

The speed trap problem turned out to be a rich problem with possibilities for talking
about shape (“the hill is more compact here”), and for extending it to more difficult
situations that ask for multiplicative reasoning. As with the battery problem, we con-
cluded that the speed trap would be a useful activity in the HLT with a potential for
progressive mathematization. The difference between the before and after situations
might be quantified with the mean or median, and the difference in spread might be
quantified with quartiles.

Because the battery problem preceded the speed trap and Minitool 1 preceded Mini-
tool 2 in the Nashville sequence, we had expected that students would find the bat-
tery problem easier than the speed trap, and Minitool 1 easier to use than Minitool
2. In contrast to that expectation, the students needed a little more time and help to
answer the battery problem than to answer the speed trap problem. Reading the two
graphs was not a problem except for four students reading Minitool 2. We then as-
sumed that if we spent more time talking through the data creation process in the bat-
tery context, the difference in difficulty between the two problems would diminish.
Additionally, we decided, in the teaching experiments, to pay attention to whether
these students found Minitool 1 easier to use for analyzing data sets than Minitool 2,
because insight into this issue would be relevant for the HLT. We return to this issue
in Section 6.13.

What is the average? (question 3)

With respect to the question on the average we need to mention that the Dutch word
for average, gemiddelde, refers to both the informal meaning of average and the sta-
tistical meaning of arithmetic mean, but it does not function as a collective noun for
mean, median, and mode as the term ‘average’ sometimes does in English. In answer
to this third question on the average, 13 of the 26 students mentioned the algorithm
or parts of it, and ten mentioned other aspects such as ‘most’, ‘about’, ‘roughly’, ‘in
between’, ‘a bit in balance’, and ‘midpoint’ (Table 5.3). In the contexts of other in-
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terview questions, students also said things such as “a large amount” or “half is be-
low, half is above” when looking for the average.

Table 5.3: Students’ reactions to the question, What is the average?

What is the average?

freq

Possible statistical interpretations
and aspects

The half. The whole, and in between
the half, that is the average

Part of the algorithm: dividing by two

Everything together

Part of the algorithm: adding all values

Add and divide by 2 2 Simple algorithm

Add and divide by the number 9 Algorithm

The most 2 Mode, typical

What you think it is roughly 3 Estimation, representativeness, true
value?

The mean is about a bit in balance 1 Balance point

In between (“15 is halfway 10 and 3 Midrange

20”); what is in the middle

The midpoint 1 Midrange, median, center of gravity

A large amount (context of TV watch- 2 Maijority

ing)

It is put in balance (context of TV 1 Balance point

watching and temperature)

Half is above, half is below (tempera- 1 Median

ture context)

Compensation strategy in bar graphs 5 Mean

(context of battery and temperature)

Five students (both at the vwo and mavo levels) reinvented a visual compensation
strategy—two with the battery graph from question 1 (Figure 5.2) and three with the
vertical temperature bar graph (Figure 5.4). One boy said:

[ take off everything that is above 8 (degrees Celsius) and add that to what is under §;
you do that by filling up till 8 (later he agreed with his peer that 9 or 10 °C would be

a better estimation).

When we asked other students who did not spontaneously use that compensation
strategy what they thought of estimating the mean in the bar graph by cutting and
pasting, most seemed to understand it, but one boy opposed.

It is not possible, because in July it is warmer than in January, so it is false.

Thinking of the literature on the mean and the Nashville experiment (R9), we found
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it promising that almost half of the students did not immediately mention the algo-
rithm or parts of it, but mentioned qualitative aspects such as midpoint, the most, or
“what is in the middle.” There was no indication that students calculated the mean
for whatever statistical problem they encountered. We concluded that the drill and
practice problem that many American researchers have observed (2.2) did not apply
to the Dutch situation. Hence, we did not need to follow the attempts of the Nashville
team to avoid the mean for this reason (P7). In Section 5.3 we further elaborate on
the position of the mean in the HLT.

Weighted mean (question 4)

Question 4 asked students to calculate their own report grade, which was a weighted
mean. Of the 19 students asked, two did not do it correctly, nine first divided by 4,
realized that something was wrong, and changed to dividing by 7; the remaining
eight students found the right answer immediately. If we take into account that even
college students have trouble with weighted means (Hardiman et al., 1984; Pollatsek
et al., 1981), we can conclude that these students were reasonably skilled in calcu-
lating means in the context of their report grades. However, it is likely that their per-
formance of weighted means in other, less-known contexts would not be as good.

Average Dutchman (question 5)

Students reacted differently to the question of what an average Dutchman watching
1.5 hours of television daily means. Nine of the fifteen students were not surprised
by the notion of an average Dutchman, but six found it strange. A few students said
that the average Dutchman did not exist; one called it a typical Dutchman; two stu-
dents explained it as “a large part of the Dutch”; one as “it varies around it.” Two
students, Leila and Jenny, thought that an average Dutchman would be half a Dutch-
man (they also thought that the average was “the half”; see Table 5.3) and their halv-
ing strategy was persistent:

Interviewer: Roughly how many hours of TV do you watch per day?

L. Ten or so?

Interv.: Per day? [surprised]

J: So much?

Interv.: Isn’t that impossible?

L.: Hm. [thinking]

Interv.: And you? [to J.]

I Five hours or so.

Interv.: Per day? Each day? And how much on average? [just checking]
J: 2.5.

L. 2.5. [They divide by 2 again.]

Of the nine students we asked to invent watching times that would yield 1.5 as an
average, two found this very hard even with help, four students succeeded with sup-
portive questions, and three succeeded without any help and mentioned for example

98



51.7

Exploratory interviews and a didactical phenomenology

1 and 2 hours as possible watching times. We concluded that students’ notions of the
average Dutchman varied considerably. We also got the impression that their skills
in calculating averages seemed to be separated from their informal knowledge (as
expressed in “what it is roughly”).

Historically, the average man was an invention by Quetelet (nineteenth century).
Though the idea of an average man is culturally quite accepted now, it is quite a dif-
ferent matter to have an informal image of this idea than to understand its meaning
in terms of calculations, as is shown by the next section as well. This contrast raised
the question of how students’ informal ideas about average could be linked to their
idea of the mean as an algorithm.

Average family size (question 6)

Although most students had sensibly answered the previous question about watching
television, eleven were confused by the question of what was meant by an average
family size of 2.5. Only five understood it. Seven students thought the ‘point 5’
would be a child. Two said that half people do not exist and one joked that “the point
5 did not have legs.” Apparently, the students experienced the two contexts of the
1.5 TV hours and the 2.5 people very differently. This is not really surprising, be-
cause half hours are common and half people are not.

For the didactical phenomenology this means that it is difficult for students to deal
with the mean as a construct in cases in which the resulting number cannot corre-
spond to an existing situation. From the historical phenomenology, we had expected
that the mean as an entity in itself representing aspects of populations would be the
most difficult face of the mean (4.3.4). From the interviews we concluded that a fur-
ther distinction into discretion (e.g. family size) or continuity (e.g. watching hours)
was necessary.

Conclusions from interviews

What can we learn from the interviews for the didactical phenomenology? These
seventh-grade students had already learned about the arithmetic mean, but our im-
pression was that their informal understanding of the mean and their knowledge of
the algorithm should somehow be linked better. Their understanding of the mean
turned out to be better than the students in Nashville (McGatha et al., 2002), and the
Dutch students were certainly not drilled to calculate means for solving statistical
problems.

For the beginning of the HLT, we searched for suitable problem situations to refine
students’ intuitions of the mean and link that intuition to their knowledge of the al-
gorithm of calculating the mean. The battery and speed trap activities, which were
designed for the Nashville experiments, were neither too easy nor too difficult for
the Dutch students. We concluded that we could use these activities in the HLT for
the Dutch seventh-grade students as well. We expected that the Dutch students
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would need less time than the Nashville students to solve those problems, because
we would only work with havo and vwo students, that is with the students being pre-
pared for higher vocational education and university (about 35% of all students fol-
low these tracks of education).

Didactical phenomenology of distribution

Because the concept of distribution is central to the research, we present a didactical
phenomenology of distribution in relation to other key concepts such as sampling.
In the next section we then turn to specific aspects of distribution: center in particu-
lar. Note that the ideas on distribution as presented below are more explicit than they
were before the teaching experiments.

The basic phenomena that statistics is about are uncertainty and variability. To de-
tect patterns in the variability we can take a sample, do measurements, and thus cre-
ate data. If a data set is created, it can be analyzed for patterns and trends by using
suitable diagrams. A key concept in this analysis process is the concept of distribu-
tion, which can be seen as a pattern in variability. Distribution has various aspects
such as center and spread, but also density, skewness, kurtosis, et cetera. Table 5.4
visualizes the relations between those statistical ideas.

Table 5.4: Structure of distribution in relation to other key concepts of statistics

distribution
(conceptual unity, pattern in variability; represented in diagram)
center spread density skewness etc.
(mean, median, (range, IQR, SD)
midrange)
data

(empirical plurality; represented in a table)

sampling
(measurement leads to data)

uncertainty <> variability
(lead to necessity of sampling and data)

The power of statistical data analysis lies in describing and predicting aggregate fea-
tures of data sets that cannot be noted from individual cases. Consequently, aggre-
gates form an essential topic in this didactical phenomenology. As mentioned in
Chapter 2, students tend to conceive a data set as a collection of individual values
instead of an aggregate that has certain properties (Ben-Zvi & Arcavi, 2001; Han-
cock, Kaput, & Goldsmith, 1992; Konold & Higgins, 2002). An underlying problem
is that middle-grade students generally do not see ‘five feet’ as a value of the variable
‘height’, but as a personal characteristic of, say, Katie. In addition to this case-ori-
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ented view, students should learn to disconnect the measurement value from the ob-
ject or person measured, and consider data against a background of possible mea-
surement values. The importance of developing a notion of distribution is that it is
an organizing conceptual structure with which students can conceive the aggregate
instead of just the individual values (Cobb, 1999; Gravemeijer, 1999b, c; Petrosino,
Lehrer, & Schauble, 2003). In other words, with a notion of distribution and with the
help of suitable diagrams, students can learn to conceive patterns in data sets and de-
velop an aggregate view of data. To help students come to view data sets as objects
with aggregate characteristics, we should therefore pose problems that can be solved
by reasoning about the characteristics of data sets and not by looking at individual
data points.

Before the teaching experiments in grade 7 started, one of the few things we explic-
itly wanted to accomplish was that students would come to see mean and median as
characteristics of a distribution and not just as operations on data values. For exam-
ple, when seen as group descriptors, mean and median can be used to compare two
data sets. As Zawojewski and Shaughnessy (2000) note, students can only sensibly
choose between these measures of center if they have some notion of distribution.
But what do we mean by ‘distribution’ for students with hardly any statistical back-
ground? It is clear that one cannot teach them the probability density function of the
normal distribution (Figure 5.5), because that would be too formal. We decided that
‘distribution’ had to mean a frequency distribution, at least in the beginning. Never-
theless we also decided that density had to be addressed in an informal sense, as it
had been in the Nashville research (2.3).

fx) = %e‘x

02 T

Figure 5.5: A graph and a formula of the probability density function
of the normal distribution

Our aim with the instructional unit was that students would come to see center,
spread, and skewness, as characteristics of a distribution. Mean and median are then
measures of center (of the distribution); the range and standard deviation (not used
in the present study) can become measures of spread (of the distribution); skewness
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can be characterized informally by where the majority of the data values are in rela-
tion to the extreme values.

To clarify this aim as opposed to statistics as ‘number crunching’ (2.2), we came to
distinguish an upward and downward perspective with reference to Table 5.4. In the
upward perspective, students tend to operate on individual data values, such as cal-
culating the mean or quartiles. In the downward perspective, students use a notion
of distribution with its characteristics to model data. As the research literature indi-
cates (2.2), novices in statistics generally have an upward perspective only. Experts
can combine the two perspectives: they can regard a mean, for instance, as a calcu-
lation on data values but also interpret it as an estimator of the theoretical mean of a
distribution, that is as a characteristic of that distribution.

It is clear that middle school students cannot reach the full downward perspective.
However, in our research we have become convinced that we should and could make
progress in that direction. In other words, students should learn to model data at an
informal level with an informal notion of distribution and come to see measures of
center and spread as characteristics of a distribution (pre-stages to the downward
perspective).

Our aim was not to work through an upward perspective in understanding of fre-
quency distributions, and only then to let students develop a downward perspective.
Instead, we wanted students to develop a downward perspective from an early stage.
The question is how, and the answer lies, as R14 of the Nashville team states, in the
notion of shape. It is possible to infer characteristics of a distribution from its shape
in a particular graphical representation. ‘Shape’ offers a way to think and talk about
the characteristics of a distribution, whether a frequency distribution or a density
function. For example, we expected that students, as in the Nashville research,
would learn to conceive the distribution as a whole with the help of ‘hills’. Of course,
the shape of a distribution depends on the graph type used; a normal distribution in
a value-bar graph has a different shape than in a dot plot (cf. Figure 4.14).

Dutch students are acquainted with graphical representations such as the bar graph
and the Cartesian coordinate system. The interviews indicate that the students, in
general, did not find it difficult to interpret the value-bar graph of Minitool 1 or the
dot plot of Minitool 2. As motivated in Section 2.2, we assumed that case-value plots
(such as value-bar graph and dot plot) would be easier to use for students than ag-
gregate plots (such as histogram and box plot). We decided to follow the rationale
of the Minitools (2.3.2) as long as empirical observations did not indicate another
direction. As mentioned in Section 2.3, Cobb (1999) describes how a seventh-grade
class proceeded from the practice of dealing with collections of data to dealing with
distributions of data. We decided to try and replicate that, albeit with a larger role for
the mean and for sampling.
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Reification of distribution

As stated above, one of the goals of the HLT was that students would come to con-

ceive a distribution or its shape as an object that has certain characteristics. The ques-

tion of how this process evolves is part of the second research question. To answer
the question of how distribution can become an object, we could not build upon the

Nashville research. Instead we tried to apply different theories on the formation of

mathematical objects.

— Tall and colleagues (2000) use the notion of ‘procept’ to refer to the two-sided-
ness of mathematical objects as procedures and concepts.

— Dubinsky (1991) uses the notion of ‘encapsulation’ to describe object formation.
A step-by-step action (A) becomes conceptualized as a process (P), which then
is encapsulated as a mental object (O). This object can then become part of a
schema (S). This four-part theory is referred to with the acronym APOS.

— Sfard (1991) describes the two sides of mathematical concepts as operational and
structural, and stresses the importance of discourse in the process of object for-
mation (Sfard, 2000a, 2000b). The last step of this object formation process is
called ‘reification’.

A common element of those theories is that procedures can become an object (e.g.
Tall et al., 2000; Van Oers, 2000). For example, the expression 2x+6 can be inter-
preted as a procedure: multiply a number x by 2 and add 6. Sometimes, however, it
is necessary to interpret this expression as an object, for example, when substituting
this expression in equations, such as —;}———- = 3. To solve this problem it helps to
regard the denominator as an object, the number 4, because otherwise it would prob-
ably be a trial and error procedure of trying out numbers for x (see Drijvers, 2003).
The focus of these modern theories is on the concepts of number and function. If a
set of objects is counted (a procedure), the result is a number (an object). The func-
tion as a calculation procedure leads to an outcome, and as an object, it can be ma-
nipulated (e.g. substitution, multiplication, transformation) and described (e.g. lin-
ear, quadratic). When we tried to apply these theories, we ran into the question of
what would be the operational side of the concept of distribution. The only thing we
could think of was the process of sampling. In Section 9.7, we describe in what sense
students might interpret distribution as a procedure.

More than with functions, the concept of distribution shows similarities with com-

posite units (Schifter & Fosnot, 1993). The number 10, for instance, can be seen as

a collection of ten individual things, but also as a unit. For young students, it is often

difficult to combine these two views as a composite unit. Similarly, students find it

difficult to see a data set as a unit composed of individual cases.

Sfard’s theory offers a heuristic for object formation entailing that one should look

for a situation in which students need a1 frocess as an object at a higher level. For

instance, in the preceding example, STE 3, it is easier to solve the equation
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when taking the denominator 2x + 6 as an object than taking it as a procedure (cf.
Drijvers, 2003). In Section 6.11 we describe how we used this idea of manipulating
distributions as objects to create the need of distribution as an object.

There is yet another important aspect in the theories on reification which has to do
with using predicates for objects. Peirce, Piaget, and Dienes, for instance, described
how a predicate of a subject can become the subject of a further predicate (see also
Van Oers, 2000, on predication). We envisioned that a mean, spread, and other no-
tions should become characteristics of a distribution, or predicates of an object, but
we did not yet know how. This topic is addressed in Chapters 8 and 9.

Didactical phenomenology of center, spread, and sampling

In this section, we focus on center but also treat spread and sampling. Traditionally,
measures of center such as mean and median are taught before distributions come
into play. However, students need to have a sense of distribution before they can sen-
sibly choose between such measures (Zawojewski & Shaughnessy, 2000). For ex-
ample, if there are outliers or if the distribution is skewed, we might prefer the me-
dian. Furthermore, students must have a sense of center before they can interpret a
mean or median as a measure of center or central tendency. This leads to the ques-
tion: which should be developed first? In our view, students need to develop notions
of center and distribution concurrently. And this, in turn, means that we need to de-
fine levels of understanding center and distribution.

To map out an HLT for center in relation to distribution, we need to know about the
notions students already have and to make conjectures about which types of center
can be developed in which contexts and in which order. To do so, we go back to the
exploratory interviews and the historical study.

It was not always clear how to interpret students’ answers to the question of what the
average was. When one boy said “the midpoint,” did he refer to the point in the mid-
dle of the lowest and highest value, to the middle-most value, or to a center of grav-
ity? We were not sure. At least we can conclude that the student answers together
cover many aspects of the average. Additionally, we conclude that the students made
no clear distinctions between the different aspects of the average values.

Similarly, the historical examples on estimation illustrate that it can be difficult to
make implicit aspects of average values explicit. Did Thucydides really think of the
midrange in estimation example 3 in Section 4.3.1? When people organized their
world and solved problems, they were urged to become clearer and define their
methods more precisely than before. The etymology of the word ‘definition’ reflects
this as Latin ‘finis’ means end, border, or boundary. “When you define something
you ‘put boundaries around’ what it can mean. A good definition puts an end to con-
fusion about what a term means” (Schwartzman, 1994, p. 68). Note that putting an
end to confusion is mostly temporary, both in history and education. In line with the
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RME tenet on phenomenological exploration and the heuristic of guided reinvention
(2.1), we strove for a learning process in which students would first explore the sub-
ject area before they understood and appreciated clear and more formal definitions.
They should first have an image before they sharpen it. This resonates with the ped-
agogy mentioned in Section 2.2, but most textbooks take the opposite direction.
They define mean, median, and mode, and then let students practice the procedures
and applications.

From the research literature, it is well noted that mean and median as representative
values are hard to develop for students (Section 2.2). Mokros and Russell advise
postponing the algorithmic aspects of the mean until late in the middle grades, “well
after students have developed a strong foundation of the idea of representativeness”
(Mokros & Russell, 1995, p. 38). Representativeness is important because the aver-
age as a representative value has to represent the total, that is the data set or distri-
bution, for example when comparing two situations.

We could not follow the advice of Mokros and Russell for the mean, because Dutch
students in grade 7 already know the algorithm of the mean. However, we could try
to create opportunities in which students could link that algorithmic knowledge with
the mean and median as representative values. We used the historical phenomenol-
ogy as a source of inspiration while keeping in mind that these students had already
learned the algorithm. From the history we identified three different levels of repre-
sentativeness in using the mean:

1 Estimation. For example in the case of the number of leaves and fruit, the average
was the number of leaves on a typical branch. In the estimation examples (4.3.1),
the mean was used as a multiplicand to find a total. The role of the mean as a rep-
resentative value is rather implicit in such cases. The mean should not be too lit-
tle and not too much, because otherwise the total would be too small or too large.

2 True value. The mean as an estimator of a true value so to speak represents that
true value (4.3.3). Konold and Pollatsek (2002) characterize true values as sig-
nals in noise, a metaphor that probably stems from telegraphy.

3 Entity in itself. The mean as an entity in itself represents an aspect of a population
(4.3.4). The mean could be something that does not exist, such as an average
family size of 2.5.

From the history of the mean we conjectured that the first level would be easier for

students than the second and we concluded that there was an important conceptual

leap from the first and second levels to the third. This could imply that the latter type
of mean would be more difficult for students than the first and second types of mean,
and this was indeed reflected in the exploratory interviews. When we asked students
to explain how families could have an average size of 2.5 people, several students
thought that this referred to two adults and one child. We decided not to address this
issue in our HLT, but to make sure that students first linked their qualitative insights
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about the average with their algorithmic skills. We present five approaches of how
this could be done while also drawing students’ attention to how data values are dis-
tributed. The historical phenomenology served as a source of inspiration formulating
those approaches.

a To estimate a large number, a mean value can be multiplied by the number of
cases (n-x= X ). The kind of average value used might initially be implicit be-
cause the focus is on finding the total. In this way, we expected that students,
while organizing the problem situation, would develop qualitative aspects of the
mean such as representativeness, intermediacy, balance, and compensation (cf.
Mokros & Russell, 1995; Strauss & Bichler, 1988). We searched for pictures of
demonstrating people, stars in the sky, flocks of birds, and ended up with a pic-
ture of a herd of elephants (Boswinkel et al., 1997) from which we decided to ask
students to estimate the total number. These problem situations ‘beg to be orga-
nized’ by a notion of average.

b The first variation on the theme of estimation is when we have or estimate a total
and use the mean value to find a number (£/%= n ). An example of this is the so-
called ‘polar bear problem’, designed by Van den Heuvel-Panhuizen (1993,
1996):

How many students weigh as much as one polar bear?

Nelissen (1997, 1999) describes how third-grade students guessed that a polar
bear would be 500 kg and an ‘example child’ would be about 25 kg, which re-
sulted in 20 students, but not all students bought into this context of the polar
bear. Inspired by this activity we thought of an elevator context, but the teacher
we worked with in grade 7 proposed to change the context:

How many 12-year-old students could go into the basket of a hot air balloon if nor-
mally eight adults are allowed?'®

We expected students to use informal sampling methods to find an average value
(see Section 6.3). Discussions about the reliability of the methods might bring up
many issues of sampling and distribution (representativeness, sample size, sam-
ple method, shape of the distribution).

¢ Fair share (H3) has to do with finding the mean from a total and a number
(2/n = x). This calculation answers the question of how much everyone would
get after fair redistribution or reallocation (4.3.3). The fairness origin of average
in combination with children’s intuitions on fairness implies that fair share might
be a suitable instructional context to develop an understanding of the mean as
well (e.g. Boswinkel et al., 1997). Related to this fair share is the mean as a mea-

18. The eight adults do not include the driver.
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sure for fair comparison, for instance if we need to compensate for the number
of values in different groups. We then use parts per million, a percentage, gross
national product per capita, et cetera. Cortina and colleagues (1999) call this type
of mean the “mean as a measure.” The historical examples of coin testing (Sec-
tion 4.4.3) and of measuring a 16-foot rod were also means as measures (Section
4.4). A disadvantage of a fair share approach in education is that it might stress
the computational face of the mean.

d Another way to stimulate a more qualitative notion of average was inspired by
the compensation strategy that five students in the interviews used and by the
Greek way of representing magnitudes. The Greeks used bars to represent mag-
nitudes of different kinds (4.3.2), but generalization of the mean to n values had
to wait until the sixteenth century (4.3.3). In fostering a visual estimation of the
mean in case-value bar graphs, we expected to benefit both from the Greek rep-
resentation and the generalized definition (H2). On the basis of this historical
study we conjectured that students would not reinvent a compensation strategy
when using dot plots or balance models.

e Another possible way to foster a qualitative view on average and a sense of how
data values are distributed is by allowing the midrange as a first, rough way for
students to organize center. Historically, the midrange was one of the predeces-
sors of the mean. In other words, the middle of the range was used as an indica-
tion of center or a true value. Hence, students might also structure problem situ-
ations by using that value (H4). In most school textbooks, the midrange is avoid-
ed because it is sensitive to outliers. Without the historical study, we would
probably not have thought of the midrange as a precursor to the mean or of al-
lowing the midrange as an initial measure of center.

For understanding the average values, it is also necessary to learn and examine how
data values are distributed. If data values are distributed symmetrically, there is no
evident need to distinguish the midrange, median, or mean. A skewed distribution
can show the limitation of the midrange as an organizing measure of center, and it
could make the differences between midrange, mean and median a topic of discus-
sion in relation to outliers and the skewness of data (H20). If we want students to
understand the drawbacks of this measure, we should use skewed data at some point
in the HLT.

So far, we have not addressed the median. Before the teaching experiments we had
no clear image of what to do with it, but we knew that the median’s historical devel-
opment was a kind of side branch of the mean’s. The Nashville research shows that
it is difficult to let students develop the median as a representative value.

We decided that the median should be dealt with in the HLT, because it seems easy
to calculate and it is useful as a measure of spread in combination with the quartiles,
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but we did not yet know how.!” We decided to start with the mean, because students
were already familiar with it and because we saw approaches (a to e) of letting stu-
dents develop the mean as a measure of center.

With the estimation activities we can clarify what we mean by a didactical phenom-
enology. We were in search of problem situations in which students would be chal-
lenged to reinvent methods or thought objects to organize certain phenomena
(2.1.3). We expected students to use intuitive notions of average, density, and sam-
pling to estimate the total numbers of elephants and the number of students in the
balloon basket. Additionally, we envisioned that in discussing these issues that stu-
dents would think more explicitly about center and sampling, and perhaps even the
distribution of elephants and student weights.

The image that emerged from the historical and didactical phenomenology is that the
mean is a rich notion with many faces. Because we did not want to stress the algo-
rithmic face of the mean in the HLT, we decided to focus initially on the first two
types of estimation (a and b), and not on fair share (¢).

As mentioned earlier, there was little research on students’ development of variation
or sampling when we started this research. We summarize a few of our thoughts. The
most basic measure of variation, both historically (David, 1998a) and didactically,
is the range. We also saw historical support for the conjecture that the interquartile
range is intuitively clearer for students than the standard deviation (H17; cf P8). Un-
derstanding of the interquartile range could be prepared with the four-equal-groups
option in Minitool 2.

On the basis of the historical phenomenology we assumed that some instances of
sampling would be easier to understand for students than others (H10, HI1).

1 A situation such as the trial of the Pyx, in which the unit of thought is a single
item (for instance, a coin), is probably easier for students to develop a notion of
sampling from than
a situation of stratified sampling or

3 random sampling in which the focus is on an aspect of a population.

One reason we assume that stratified sampling is easier for students is that it suggests
that we can deliberately create a representative sample. We decided to use the first
situation as an initial attempt to address sampling (6.8).

19. Please recall that the historical phenomenology of the median was only carried out after
the seventh-grade teaching experiments.
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Initial outline of a hypothetical learning trajectory

The main point of departure was that students would develop notions of variability,
sampling, data, and distribution in a coherent way (2.4). In particular, we strove for
the reification of the notion of distribution by making the shape of distributions a
topic of discussion. On the basis of the historical and didactical phenomenology, we
thought of using estimation tasks such as the elephant and balloon activities as a
starting point of the HLT. We conjectured that students would use a notion of aver-
age to find a total number and would look at the way the elephants were distributed
in the picture. During the balloon activity we expected students to use a notion of
average as well, and possibly informal notions of representativeness and sampling.
Variability in those contexts would be no problem: the elephants were not uniformly
distributed over the picture, and students know that not every student has the same
weight. As written earlier (2.4), we decided to pay more attention to sampling than
the Nashville team had, but apart from the elephant and balloon activities we did not
yet know how.

By and large, we followed the Nashville rationale of the Minitools (2.3.2). Students
would for instance first solve the battery problem with value-bar graphs (5.1.2),
which would presumably lead to similar reasoning about aspects of distribution such
as majority, consistency, and outliers, as the Nashville team had reported.
Furthermore, we expected that students would come to reason with hills when work-
ing on the speed trap problem (5.1.3), and that they would explore ways of describ-
ing the speed trap distributions with the grouping options of Minitool 2, especially
four equal groups and equal interval width. We strove to foster a shift from qualita-
tive to quantitative reasoning, that is from reasoning about hills to classes, quartiles,
or percentages. We also strove to end up with the box plot and histogram represen-
tations to describe and represent distributions in conventional ways. A possible end-
point of the HLT was that students would assume a stability of shape and that they
would be able to interpret shapes in the context and, vice versa, to relate changes in
a context to changes in the shape of a distribution. In short, this initial outline can be
characterized as challenging students to reason about aspects of distributions in in-
creasingly sophisticated ways with increasingly sophisticated notions and graphical
representations.
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Designing a hypothetical learning trajectory for grade 7

Chapters 4 and 5 describe the preparation phase of the research. Chapters 6, 7, and

8 concern the other phases of the design research cycles in grade 7.

— Chapter 6 focuses on the design process of a hypothetical learning trajectory
(HLT) in three teaching experiments.

— Chapter 7 focuses on testing the developed HLT during the last teaching exper-
iment in grade 7.

— Chapter 8 is a retrospective analysis of the symbolizing process when students
learn to reason about the shape of a distribution.

In the present chapter, we discuss issues relevant to the hypothetical learning trajec-

tory (HLT) or, more generally, to the evolving instruction theory for early statistics

education such as the importance of talking through the data creation process and

students’ roles as data analysts. We further describe the design process of instruc-

tional activities in three cycles of design research, and we do so according to the in-

structional sequence; Table 6.4 shows in which chronological order the activities

have been designed, and which ideas presented in this chapter lead to the HLT tested

in Chapter 7. In describing the design process, we show how activities developed by

the Nashville team were revised and how ideas stemming from the historical and di-

dactical phenomenology worked out in practice. Towards the end of the chapter, we

also reflect on the use of the Minitools.

Outline of the hypothetical learning trajectory revisited

At the end of Chapter 5 we sketched an initial outline of an HLT that we summarized
as challenging students to reason about aspects of distributions in increasingly so-
phisticated ways with increasingly sophisticated statistical notions and graphical
representations. What we envisioned was that students would learn to reason coher-
ently with the key notions of data, center, spread, sampling, and distribution. These
notions then had to become more conventional and less dependent on context or
graphical representations.

In the terminology of emergent models (2.1), we needed problem situations at a ref-
erential level that students could solve within a certain context with their own infor-
mal notions. In terms of statistical notions we thought of average in the daily sense,
as well as informal notions of sampling, majority, spread, and consistency; all within
the context students would be dealing with. From these activities at a referential lev-
el, models of the situations had to be developed, such as particular representations
with which other problems could be solved (value-bar graph, for example). As point-
ed out in the Sections 4.3.1 and 5.3, we expected that estimation tasks would be use-
ful for this level.

At a more general level, these models of had to become models for a more mathe-
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matical reality, and students’ informal notions had to become more conventional,
supported by using Minitool 2. At some point we expected to address statistical is-
sues as interesting in their own right and not necessarily bound to a particular statis-
tical problem. For instance in their roles as data analysts, students could discuss the
relative merits of graphical representations (6.5).

Estimation of a total number with an average

In the historical and didactical phenomenologies we argue the potential benefit of es-
timation tasks. As a starting point of the instructional unit, students had to invent a
method of estimating the number of elephants in a picture (Figure 6.1). From the
very start, we wanted to stress that we valued reasoning more than number answers
or procedures. We aimed at challenging them to work with a notion of average in a
way similar to the historical estimation examples (4.3.1).

Figure 6.1: Students’ strategies to estimate the total number of elephants
in the picture. (Reprinted with permission from
Mathematics in Context © 1998 Encyclopaedia Britannica, Inc.)

The students in the seventh-grade classes used four main strategies with some vari-
ation (Figure 6.1). For each strategy, we add the frequencies in classes 1F (27 stu-
dents) and 1E (28). The strategies were the following.
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a Make groups, guess how many there are in each group, and add all numbers
(15 + 10 + ...); this strategy was used by 0 students in 1F and 2 students in 1E.

b Make a group with a fixed number and estimate how many groups fit into the
whole (in Figure 6.1b the students estimated groups of 10); this strategy was used
by 6 and 11 students respectively.

¢ Count the number of elephants lengthwise and widthwise, and multiply these.
Readers who have seen the video Goodnight Mr. Bean may recognize his method
of counting sheep before falling asleep. We refer to this method as the ‘area
method’ or the ‘Mr. Bean method’; 4 and 2 students used this strategy respec-
tively.

d Make a grid, choose an ‘average box’ and multiply this multiplicand by the num-
ber of boxes in the grid; this was used by 13 students in both classes.

Strategy d relies on an intuitive sense of average and, strikingly enough, this strategy
led to numbers that were closest to the counted number of elephants (336). Strategies
a and b yielded estimations that tended to be too low and strategy ¢ tended to yield
estimations that were too high. When we asked the students what they meant by an
average box they described it as “a box with not too few and not too many.” A sim-
ilar description can be found in Aristotle’s Nichomachean Ethics (Section 4.3.2). At
this point we could not know how deep this description of an average box as “neither
too few and nor too many elephants in it” was. We therefore looked for ways to let
students become more explicit and precise: that is, ways to use their activity of esti-
mating numbers with an average value as a model for more mathematical discus-
sions. This issue is taken up in Section 6.6.
The estimation activity of elephants in a picture evoked the kind of reasoning that
we had aimed for. In all four seventh-grade teaching experiments, students invented
an ‘average box’ to estimate the total number of elephants. There are indications that
students:
— indeed looked at the density of elephants or how the elephants were distributed
in the picture at a referential level;
— seemed to like the activity (we inferred that from what they said about the activ-
ity and from how they worked at it);
— were later able to use this notion of an average box as a model for a more math-
ematical reality as interesting in its own right (Section 6.6).
For homework we asked the students to estimate the number of stars in a picture
from the NASA website with the average box method, so that every student would
get experience with this method (www.nasa.gov, picture of the day, April 29, 1999).
From the experiences, we concluded that the elephant activity served as a suitable
starting point for the HLT and that is how we used it in all subsequent seventh-grade
teaching experiments. In short, students learned to use a notion of average to reduce
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variation and were involved in reasoning about distribution and density at a referen-
tial level.

Estimation of a number from a total

In the didactical phenomenology we identified a variant of estimating a total number
(n-x= ¥), namely estimating a number with an average value (£/x= n ). The activ-
ity we decided to use was the balloon activity (5.3):

If normally eight adults are allowed in a certain balloon, how many seventh graders
would you allow, if you only consider weight?

This activity would implicitly ask for an average that was not calculated but estimat-
ed. The estimated weights of these students and adults would function as a represen-
tative value and the activity could be used to let students think about sampling issues.
In a class discussion these issues could then be made more explicit by asking the fol-
lowing questions: “How do you know the average weight of students? How can you
make a reliable estimation of that?”

In all classes, students used two basic strategies to solve the problem. They all esti-
mated the average weight of adults and seventh-grade students first. The first strat-
egy was to use the proportion (e.g. 80 kg : 40 kg = 2) to estimate the number of stu-
dents (2 * 8 adults = 16 students). The second strategy was to estimate the total
weight that would be allowed (e.g. 75 kg * 8 adults = 600 kg) and divide that by the
estimated weight of seventh-grade students (600 kg : 50 kg = 12 students). The an-
swers in most classes varied from 10 to 16 students. Apparently, students knew the
weight context well. When solving the balloon problem, some students in 1 A asked
a “normal looking child” how much he or she weighed; others asked a few students
and took a value somewhere in the middle. One girl passed around a sheet of paper
to collect others’ weights, which we interpret as taking a small sample. Consequent-
ly, they were indeed dealing with the aspect of representativeness.

We concluded that the balloon activity could indeed support reasoning about aver-
age, representativeness, and sampling at a referential level. In Section 6.11 and 7.9
we describe how the balloon activity was used as a reference context for discussing
sampling and distribution issues on a higher level. The balloon activity indeed func-
tioned well in the beginning of the HLT to address the representativeness aspect of
the mean and informal notions of sampling, which could be the basis for further dis-
cussion.

Talking through the data creation process

In all of the classes we used the battery problem in the second lesson to support stu-
dents’ reasoning about distribution aspects such as majority, outliers, and consisten-
cy (Section 2.3 and 5.1.2, and Figure 6.2). In the first trial (class 1A) we did not
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spend much time on the introductory process of talking through the data creation
process (P3 and R1). Soon we heard students say that they would choose the battery
of 121 hours, which many of them also wrote down. We interpreted such answers as
indications that students tended to focus on individual data values (2.2) and that the
notion of sampling within this battery context was difficult for these students. We
concluded that we had not spent enough time on talking through the data creation
process. It was clear to us that we should spend more time on discussing the variable
that has to be measured (life span), how it could be measured (with the same toy or
walkman), and to look for alternative ways to deal with the sampling issue. Appar-
ently, without a basic notion of measurement and sampling, students cannot really
understand what the data values stand for. This supports R2 on the data creation pro-
cess.

Data analyst role

One of the results of the Nashville experiments was the insight that students, in their
role as data analysts, might reason on a more general level (R12). If students do not
just solve a problem but also think about how to present the results to another person
who could make a decision based on their result, they learn to reflect on the use of
certain representations (at a model-for level). In this section, we present support for
that claim and show how a seemingly subtle change in framing the question can lead
to better reasoning. This is also an example of how the HLT changed between mac-
ro-cycles and how a result of the Nashville team was confirmed and extended in our
research.

In the exploratory lessons in 1A, we asked the students in a straightforward way
which brand was better, but they generally answered the question superficially. The
students came up with one choice supported by one argument, for example “brand
D because it has the highest value,” “K is more reliable because it has four with the
same value,” or “brand K because it has more higher ones.” Our instructional goal
with presenting such problems to students was not that they were just to solve the
problem, but that they develop techniques, notions, and graphs in order to learn to
solve such problems in general and communicate about them. Students, however,
cannot anticipate this goal when they read the simple question, “Which brand is bet-
ter?” They probably think that they have to make a decision for themselves and
choose between the two brands.

We expected students to give more profound answers and learn more if they took the
role of data analysts (R12). Because many students in 1A found brand K “the best
brand because it has four of the same values,” we changed the four data values with
exactly 115 into four slightly different values (113, 114, 115, and 116). If too many
students were to choose one brand, we would miss the benefit of heated debates
about which brand is best.
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Figure 6.2: Battery life spans of two brands in hours (with slightly modified values)

In the first teaching experiment (1F), we framed the problem as follows.

Write a letter to the shops on behalf of each factory. Give good arguments why the
shops should sell your batteries.

Why did we choose for the letters from the factories? First, we wanted the students
to find arguments for both brands. We thought that the conflict between several ar-
guments could help the development of different measures of center and spread. Fur-
thermore, we hoped that writing for a factory would make the students keener on the
arguments, because there would be competition and money to earn.

Unfortunately, it did not work out this way. First of all, many students divided the
task. One wrote the letter for brand D and the other student the other letter for brand
K. In general, there was little interaction between the students. Second, some stu-
dents used language that is common in advertisements: “You will see that D is just
great” and “K batteries are the best!” They praised the batteries without many objec-
tive arguments and invented all kinds of additive information such as “not good,
money back” (for brand K with the outliers). From a commonsense perspective, it is
nice that students invent such solutions: if one brand happens to have outliers, giving
the money back could be a solution. However, our hidden agenda with this activity
was to let students reason about aspects of distributions in a more statistical way.
When the students worked on the problem, we heard a few of them refer to the Con-
sumer Reports (Consumentenbond). One student even answered that the test was
carried out by the Consumer Reports. This indicated that at least some students knew
about the Consumer Reports, so for the second teaching experiment (1E) we decided
to change the context.

Consumer Reports has to report on the quality of these two brands. Give them such
information that they can write about the two brands.

But we had additional reasons for choosing the Consumer Reports context. First, we
expected that the students would discuss in pairs because they had to produce one
report per pair. Second, we expected that the arguments would be more objective,
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because the norm is that the Consumer Reports has to provide objective information.
We expected the students to play the role of data analyst in a more serious or math-
ematical way than they did for the factories.

To compare the quality and quantity of students’ arguments in the two conditions,
we rated them (Table 6.1). The classes had the same level and preparation; the ex-
periment in 1E was only six weeks later. The results in 1E were better than in 1F: in
1E there were many more arguments with a high rate and fewer arguments with a
low rate than in 1F (Table 6.1). The argument that brand D was more constant or re-
liable only occurred in 1E. This result does of course not imply that students should
always write reports to the Consumer Reports; the important thing is to look for a
context in which students give objective and precise arguments. These arguments
and ideas emerged while solving a specific problem; hence, we can characterize this
activity as being on a referential level. The next step in the HLT would be to use the
notions students developed during this activity in other situations, or in a more gen-
eral or statistical way (cf. Doerr & English, 2003).

Table 6.1: Rated arguments about the two battery brands D and K

low rate high rate
- D has the highest value — D has a higher mean than K
- K has more values in a certainin- | —  D: everything is close to the mean
terval, e.g. 110-120 hours —  D: everything above 80
— Dis more consistent, reliable, or con-
stant

—  Khas outliers of a low value
— Khas more higher ones
— Range of K is larger

1F 13 arguments with a low rate 21 arguments with a high rate
(by 24 students)

1E 10 arguments with a low rate 33 arguments with a high rate
(by 23 students)

With this example we demonstrated how one activity in the HLT changed in several
design cycles: the roles of students switched from making a decision (choosing be-
tween two brands), to selling, and finally to being a data analyst. In the last role their
arguments were most objective. At the level of instruction theory, the insights on the
role of data analyst (R12) had received more empirical support and the importance
of this role was substantiated by this example of changing the context.

Compensation strategy for the mean

Next we wanted to bring student experiences from the first two lessons together in
the third lesson, by using the elephant context with the representation of Minitool 1
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for estimating the mean visually. From the historical and didactical phenomenolo-
gies, we had concluded that a qualitative and visual way of working with averages
is favorable to a procedural way of computing the mean (e.g. 5.4). Based on the ex-
ploratory interviews, we decided to challenge students to reinvent a compensation
strategy for estimating means, as students had spontaneously done with a bar graph
of the monthly temperatures (5.1.4). Because Minitool 1 resembles this bar graph
representation, we expected that this representation with the value tool option would
give students the opportunity to reinvent this method of compensating (see Figure
6.3). We used the activities of estimating elephants and the representation of the bat-
tery problem as reference contexts. We preferred the bar representation to balance
models, because we assumed that the students would not have a good understanding
of the physical laws of balance (cf. Hardiman et al., 1984).

In class 1F, the reinvention of the compensation strategy happened quite easily, but
in 1E it did not work out very well, although the students in the two classes were con-
sidered to have equal learning abilities (as seen in their report grades for all subjects).
We therefore analyzed the two lessons in more detail to find out what could have
caused the difference.

Description of the third lesson in 1F

At the beginning of the lesson, the teacher and students discussed several strategies
from the first lessons of estimating the number of elephants (Figure 6.1). One boy
proposed to count the emptiest and the fullest box in order to find an ‘average box’,
and multiply the number in these two boxes by 4 (there were eight boxes). The teach-
er remarked that this was the same as multiplying the ‘average’ by 8. This is a little
more precise than “somewhere in the middle,” which some other students said, but
we aimed for a next step: using the average box for other, hypothetical situations.

Table 6.2: What would have been an average box in this case?

24 18 15

19 40 33

29 45 28
36 25 1

The teacher asked:

Assume we had not estimated elephants but something else, what would have been an
‘average box’ here [in Table 6.2]?

This might sound strange since the numbers were already there, but this question
was meant to let students explain what they meant by an average box. The students
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did not have any trouble with this hypothetical question; the game-like activity drew
their attention and evoked statistical reasoning. One boy said 29; he looked how
many were above and below that number, which could indicate a median strategy.
Others said (45 + 11) / 2 = 28, which shows a midrange strategy. A girl then used a
counterexample to argue that the latter strategy was not reliable:

But if you have one that is 100 and the rest [of the numbers] are 1, then you wouldn’t
take 50, would you?

From the reactions of her classmates we concluded that her point seemed clear. A
boy then stressed that one has to look how the rest of the numbers lie in between the
lowest and highest number. From such examples, we concluded that the activity of
explaining what average boxes meant encouraged students to look at how the num-
bers were distributed—one of the things the HLT aimed at.

The next step in the evolving HLT was inspired by the didactical phenomenology:
create situations in which the intuitive variants of center would create cognitive con-
flicts (cf. Watson, 2002) and ask for clearer definitions (5.3). The teacher showed
another matrix with a more skewed distribution and asked the same question of what
the average box would have been (Table 6.3). This time, students did not use the
midrange anymore. Instead, some students looked for a bunch of numbers that were
close together, which is similar to what Noss et al. (1999) report about nurses inter-
preting graphs on blood pressure. Others looked at how many were above or below
a certain number, which could be seen as a precursor to the median. In short, the dis-
cussion on what an average box might mean led to the reinvention of measures of
center such as midrange and median, though the students did not have words for
them yet.

Table 6.3: A more skewed distribution of numbers. The midrange was rejected.

35 58 91
93 83 89
98 97 68
76 82 1

After this activity of explaining what students meant by an ‘average box’ with the
matrices, we returned to the elephant problem with the same question, but with a dif-
ferent representation to evoke a compensation strategy. The teacher showed a value-
bar graph of the numbers of elephants in the boxes (Figure 6.3).
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Figure 6.3: What was the average box if you look at this Minitool 1 representation?

The students discussed this question extensively. First they talked about the number
of values before and beyond 40 or 45. In order to push the discussion into the direc-
tion of compensating, the teacher drew a vertical line at 40 (Figure 6.3). This is an
example of her proactive role while guiding the reinvention process (cf. McClain,
2000). Then the students started to reason about the lengths of the bars. One girl
drew a circle around what was too high on one side and too short on the other. “What
you cut off on one side you give to the other side.” This convinced the other students
that 40 was too little. “But 45 is too much,” others said. One boy proposed a value
somewhere in between, 42, which was in fact the real average, 336 / 8§ =42. It struck
us how precisely students could estimate the mean with value-bar graphs.

This is how the strategy of compensation arose in 1F without much effort from the
teacher’s side. The strategy was easily adopted and applied in other situations such
as the battery problem. A few students even employed this strategy as their favorite
for comparing data sets. This implies that the grid with average boxes first func-
tioned as a model of the elephant problem and later as a model for comparing data
sets. In this way, students reinvented informal measures of center including the
midrange, a precursor to the median, and a value somewhere in a cluster. (This last
strategy was common among Greek astronomers as well.)

From the fact that a student chose 42 as the mean, it is clear that these students un-
derstood that the mean need not be one of the values, in contrast to what students of
this age often think (Mokros & Russell, 1995; Strauss & Bichler, 1988). We assume
that this was stimulated by the visual, continuous way of dealing with the mean in
Minitool 1. This way of dealing with the mean avoids the algorithm and seems to be
more connected to qualitative aspects such as intermediacy, compensation, and rep-
resentativeness. Therefore, we concluded that this strategy was an important part of
the HLT and we wanted to replicate this success in 1E.20

Unfortunately, evoking the compensation strategy did not happen as readily in 1E as
in 1F. The cause was not that the students of 1F were smarter: other things went bet-

20. Students in Nashville did not use the value tool for estimating means (R9), except one stu-
dent. In that case the estimation strategy was a way of calculating, whereas in the case that
was just described, the goal was not to calculate the mean but to explain what the average
box would have been.
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ter in 1E (see Sections 6.5 and 6.11). Rather, it turned out that we had not analyzed
our initial success in 1F well enough.

After analyzing both lessons we concluded that the teacher had not always asked the
right questions and the HLT had not provided her with suitable questions. Where the
main question in 1F was to explain what students meant by an average box, the
teacher asked in 1E:

Teacher: How could you estimate the mean without calculation?
Kristin: Take the number that is closest.

Bas: It is around the [inaudible].

Teacher: How could you check this?

Finally, after many attempts by the teacher to guide the discussion, one student men-
tioned the leveling-out strategy that we had hoped for.

Anissa: The long ones that stick out at the right can fill up the other parts.

The teacher then explained how this worked.

In 1F the goal was to explain what students meant by an ‘average box’ in relation to
the elephant problem while using the representation of the battery problem. The
method of compensation arose as a way of explaining and justifying what an average
box was. In 1E, however, it was not clear what the reference context was, the ele-
phants or the battery problem.

This implies that both the designer and teacher should be very aware of where they
want to go, and more importantly where the students come from, so that the designer
and teacher are also aware of the previous knowledge upon which they can build. In
other words, the HLT should be very explicit and clear for the teacher. In this exam-
ple, our HLT was not explicit enough. Somehow, while developing the HLT we
tended to focus on things that did not go as we anticipated. Due to this incident in 1F
and 1E we came to acknowledge the importance of learning from design success as
well. In the remaining teaching experiments we would try to repeat what had hap-
pened in 1F by asking what would have been an average box in hypothetical cases.

Data invention in the battery context

One of the prime goals of the HLT was that students would come to see a data set as
a whole instead of just as a collection of individual data points. During the battery
activity students had already reasoned about how good and reliable the brands were,
but these informal notions did not seem to match with average and spread. As a way
of assessing their statistical understanding and to stimulate the average coming to
stand for ‘how the batteries last’, and spread for reliability, we decided to reverse the
battery problem in 1C. Around the fourth lesson, we asked the students to invent data
sets in Minitool 1 that belonged to the particular characteristics of hypothetical
brands. We asked the students to invent data sets in Minitool 1 that belonged to the
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following propositions:

— Brand A is good and reliable.

— Brand B is good but unreliable.

— Brand C’s spread is like that of A but the brand it less good.

We conjectured that going back and forth between the Minitool 1 representation and
notions such as reliability and spread would foster a stronger link between the sym-
bol system of value-bar graphs and the conceptual network of statistical notions (cf.
Sfard, 2000b; Steinbring 1997).

Figure 6.4: Invented data for brands A, B, and C (ten values per brand)

We did not specify a sample size, but most students chose ten per brand (as in the

first battery problem). Almost all of the students made something like Figure 6.4,

which roughly shows a match between average and ‘good’ and between spread and

‘reliability’ (in this example, the spread of brand C is not similar to that of A). In

other words, the students gradually came to use more statistical notions. From the

notes we made in the classroom and from the videotapes, we observed that most of
the students liked this activity and that they were actively involved.

We concluded from the retrospective analysis that the back-and-forth movement be-

tween networks of notions and graphs, and presumably between graphs, would be a

good design heuristic for several reasons.

1 Lemke (2003) writes that students can express particular ideas on quantitative
phenomena more easily with graphs than with words. Consequently, if students
express their ideas of quantitative phenomena in graphs, it might be easier for
teachers and researchers to assess what students really understand. This could be
more than they express in words.

2 We can use students’ cognitive limitations to prevent them from thinking of a
bunch of individual data values, namely by asking for aggregate characteristics.
Konold and Higgins (2003, p. 203) write, “With the individuals as the foci, it is
difficult to see the forest for the trees.” Inspired by this metaphor we formulated
the following design heuristic for statistics education:

If students do not see the forest for the trees, ask about characteristics of the forest

or other forests.

Here we asked for a characteristic “good but unreliable” as an overall character-
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istic of a data set that was to be constructed. In this way we created a need for a
cognitive structure that could help to see a data set as a whole or a composite unit.

3 In most school textbooks, students have to interpret ready-made graphs (Friel et
al., 2001) and if they have to make their own graphs, the type of graph and draw-
ing procedure are often prescribed. De Lange et al. (1993) and Meira (1995) rec-
ommend letting students invent their own graphs and inscriptions. We assume
that this freedom to make their own symbolizations will enlarge the chance that
these are meaningful and functional to students.

In retrospect, we were positive enough about the results of this reverse battery
activity to use the idea again in 1B.

Towards sampling: Trial of the Pyx

In the historical and didactical phenomenologies, we conjecture that a context such
as the Trial of the Pyx (4.4.3) would be useful to let students reinvent sampling meth-
ods (H10). In the case of estimation we translated the historical contexts into modern
ones: instead of the number of leaves and fruit on a tree we asked to estimate the
number of elephants in a herd. In 1A and 1F, however, we tried to use a historical
example without translation into a modern context. The text we gave the students in
IF was:

A long time ago, coins were made of gold and silver. The coins had the same value as
the value of the gold or silver, which is different from the present situation. Nowadays
they use cheaper materials to make coins. From the 12th to the 18th century coin mak-
ers had to be checked: they could have used too much or too little gold or silver for
the coins. If they used too little gold they were fired and had to pay a fine to the King.
If they used too much gold they spoilt the King’s gold and were punished too. It was
not possible to weigh every coin because that was too much work.

Describe extensively your advice to the King. How should he let the coins be
checked? Explain why your method is good.

With a summary of an episode from 1F, we intend to give an impression of students’
ideas of sampling in such a context and to give an example of an activity that we did
not keep in the HLT.

The teacher asked the students what they would advise the King to check the coin
makers. At first she did not get a clear answer, so she asked what the problem was.

Teacher: Can you explain what the problem was with the coins?
Marek: Yes, that they didn’t weigh the same, these coins.

This means that Marek realized that there was variation in the coins’ weights; we
consider this the basis of statistical investigation (cf. 2.2). Joan then made a connec-
tion with the mean.
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Joan: You take 25 coins, weigh them and divide by 25. You do the same for all
and then you know how much one coin weighs, so you don’t need to weigh
every coin separately.

Teacher: Why do you take 25?

Joan: You could also take 50.
Teacher: OK, but why do you do all this?
Joan: Then you can calculate the mean.

Teacher: When you have found the mean, what then?

Indeed, Joan’s idea is time-saving compared to weighing individual coins and it
demonstrates understanding of the mean as an aggregate feature of a group of coins.
The intention of the HLT, however, was that students would find out how these coins
should be selected, because that would nicely leap into the issue of random sam-
pling. Unfortunately, the teacher did not ask this particular question of how the coins
should be selected (the HLT had not been explicit about this), but focused on the
question of how the coin makers had to be checked. In this class, students clung to
computations of means, though we tried hard to direct their attention towards more
qualitative aspects of the average values. Students proposed and repeated different
strategies but they wanted to test all coins. None of them went in the direction of
sampling until two boys had the following ideas.

Timo:  Well, you can burst into the coin makers’ place, take a balance, take 100
coins or so, and weigh them. If the result is not 10 grams per coin, then it is
wrong. Then you have to punish them.

Jelle: A spy, put a spy into the smith’s place. Give him a piece of 20 grams gold
that is surely 20 grams.

Although we thought that the discussion was useful preparation to developing a no-
tion of sampling, we concluded that the historical context formed an extra problem
to overcome (cf. Van Amerom, 2002). Most students did not know what the situation
was in England around 1200; instead of being a statistical problem this also became
a historical one. Students from class 1A even talked anachronistically of computers
and ingenious machines that would throw out inferior coins. We also concluded that
these students had no clear intuition about sampling in such a context. Based on
these two conclusions, we decided not to use this context again, but to look for other
ways of letting students think about sampling.

Median and outliers

The Nashville team capitalized on the median as a measure of center, but it turned
out to be difficult for students to develop an understanding of the median as a mea-
sure of center of distribution (R16). As motivated in the historical and didactical
phenomenologies, we capitalized on the mean, but still thought that the median
should somehow be addressed. One trivial reason is that the median is in the Stan-
dards (NCTM, 2000) and in the Dutch mathematics curriculum of grade 8 (Meth-
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odewijzer, 1998). The main reason was that the median is a useful characteristic of
skewed distributions and data sets with outliers; it is less sensitive to outliers (more
robust) than the mean, which is particularly helpful in social or economic contexts
with irregular data (Chapter 4). We expected that if students dealt with the difference
between mean and median that they would also think about aspects of distribution
such as outliers and skewness.

The first activity with which we tried to challenge students to use the median was
the so-called wing span activity (in Minitool 1). Students had to inform a bird ency-
clopaedia about the size of adult birds (sparrow, blackbird, sea eagle, albatross) on
the basis of data sets, two of which included suspect values (a sparrow with 0.15 cm
wing span and two young albatrosses). The intention was that students would see
that the middle-most value (median) is useful if there are outliers, but we also would
appreciate ranges in the middle of the data set.

It did not quite work out that way. Although students came to think about outliers,
they mostly did not realize the usefulness of the median. Some kept using the mean
by estimating it with the value tool. A few students just took a middle range, which
is very sensible in this context because it accounts for the variation that occurs in real
life: “Adult albatrosses have a wing span of 330-360 cm.” The median was defined
as the middle-most value with respect to value-bar graphs and dot plots. However,
from later mini-interviews, we concluded that the vast majority of students confused
the median with the midrange. And if they developed some understanding of the me-
dian in relation to the two equal groups of Minitool 2, some thought it as always dif-
ferent from the mean. From the final interviews in class 1F we concluded that even
those students who were able to find the median in Minitool 1 were not able to find
it in a series of numbers. Apparently their understanding of the median depended
heavily on the representation and context they were used to. We decided to try and
combine the two equal groups option with series of numbers in discussions about
mean and median (Section 7.7).

In short, we encountered many problems with the median and could not think of a
suitable problem situation that really begged to be organized by the median. Yet we
considered the median an important measure of center to address because, by ad-
dressing it, we could make the distribution of data values a topic of discussion. We
decided to have a closer look at the history of the median to find indications for the
conceptual problems and to find phenomena that could inspire us for useful problem
situations (4.5).
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Figure 6.5: Wing spans in cm of nine albatrosses in Minitool 1. Left is unordered
and right is ordered with a value tool at the median, 345 cm; in both
figures, another subset of data is hidden by the ‘hide’ option

Low, average, and high values

When designing an HLT it is important to ascertain which prior knowledge students
already have and which knowledge they can easily develop. In the beginning of the
teaching experiments in grade 7, we did not know what intuitions students would
have of distributions. It was not until we interviewed one student in 1E that we were
able to formulate a conjecture about this that was confirmed in all subsequent teach-
ing experiments.

During the ninth lesson in 1E after discussing the balloon activity, students had to
make a graph of students’ height or weight for the balloon driver. In a mini-inter-
view, we asked Danny what his prediction would be before collecting any data. He
started to draw the first sketch in Figure 6.6. We initially thought that he was draw-
ing a hill shape. When we asked for clarification, he did not answer but drew the next
sketch and then said, “There are taller and shorter and average students,” while
pointing at the corresponding parts in the sketch. We wondered if he saw the students
standing next to each other, so we asked him where he got this idea from. He then
made a third sketch, which resembled the dot plot of Minitool 2. Again, he explained
that there were short, average, and tall students while indicating the various parts of
the dot plot. From his sketch we can clearly see how he conceptually organized the
height phenomenon with three separate groups. He said that there were “more
around average,” by which he presumably meant a high density or frequency in a
certain interval. This led us to conjecture that students easily come to organize data
sets into three groups of low, average and high values if they know the context (in
which a normal distribution is to be expected).
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Figure 6.6: Danny’s organization of the height distribution into three groups

This mini-interview also provides an example of symbolizing, which we character-
ized for the time being as the process of making a symbol for a specific purpose, us-
ing it, improving it and possibly making a new symbol (2.3.4). To clarify his
thoughts, Danny made a sketch, which he improved and explained, and again
changed into another symbol with a more explicit explanation (cf. Lehrer, Schauble,
Carpenter, & Penner, 2000; Meira, 1995). Again we see the importance of students’
symbolizations and their explanations: when analyzing their inscriptions and reflec-
tions we can better understand how they think (cf. 6.7). In Section 8.2 we analyze
this mini-interview as an instance of diagrammatic reasoning.

Reasoning about shape

Anticipations in the HLT

One of main goals in the HLT was that students would learn to reason about the
shape of distributions (Section 2.2 and R14). Though students in the first two teach-
ing experiments started to reason about majorities and density when using Minitool
2, for example during the speed trap activity, they did not explicitly reason with
shape. We had hoped that they would reason with ‘hills’, as reported by the Nash-
ville team (R10), but they did not. A possible reason for this is that the reasoning
with hills in their teaching experiment occurred in the final phase of 34 lessons,
whereas our teaching experiments lasted only 12 or 15 lessons. In this section, we
show how students in class 1E came to reason about and with shapes.

Because De Lange et al. (1993) and Meira (1995) report positively on student in-
vented graphs, and because of the RME tenet that promotes student productions and
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constructions (Treffers, 1987), we decided to let students invent their own graphs for
their own data (cf. 6.10). We expected that their own graphs would be more mean-
ingful and functional for them than ready-made representations (cf. 6.7). In addition,
we thought it would help if students worked with their own data in a familiar context.
To avoid a focus on individual data, we also played with the idea of activities using
sketch-like graphs without any data. As a follow-up to the balloon activity (Section
6.3), we asked the students to make a graph for the balloon driver with which she
could decide how many students she could safely take on board. Note that students
were encouraged to take a data analyst role in this question (6.5).

Retrospective analysis

The students drew various graphs (Figure 6.7), but the teacher focused the discus-
sion on two of them, namely Mike and Emily’s graphs (Figure 6.8 and 6.9), presum-
ably because she saw an opportunity to talk about hills with the help of Mike’s
graph.
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Figure 6.7: A scatterplot that was not discussed

She postponed Bas’s graph, which resembles Minitool 3, but did not manage to dis-
cuss it. (We could interpret Bas’s creation as a reinvention of the scatterplot, which
the students had not learned in mathematics lessons.)
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Figure 6.8: Mike’s graph
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Mike explained how he got the dots as follows.

Mike:  Look, this is roughly, averagely speaking, the amount of students with this
weight and there I have put a dot. And then I have the number of students
on the left [y-axis]. There is one student who weighs about 35 [kg], and there
is one who weighs 36, and two who weigh 38 roughly.

And so forth: the dot at 48, for example, signifies about four students with weights
of around 48 kg. After some other graphs had been discussed, including that of
Emily, the teacher asked the following.

Teacher: What can you easily see in this graph [Mike made]?

Laura: Well, that the average, that most students in the class, uhm, well, are be-
tween 39 and, well, 48.

Teacher: Yes, here you can see at once which weight most students in this class
roughly have, what is about the biggest group. Just because you see this
bump here. We lost the bump in Emily’s graph.

Apparently, Mike’s graph helped students see the majority of the data—between 39
and 48 kg. This ‘average’ or group of ‘most students’ is an instance of what Konold
and colleagues (2002) call a ‘modal clump’. Teachers and curriculum designers can
use students’ informal reasoning with clumps as preparation to their using the aver-
age as a representative value for the whole group, for example.

Here, the teacher used the term ‘bump’ to draw students’ attention to the shape of
the data. By saying that “we lost the bump in Emily’s graph,” she invited the students
to think about an explanation for this observation. Nathalie reacted as follows.

Nathalie: The difference between ... they stand from short to tall, so the bump, that
is where the things, where the bars [from Emily’s graph] are closest to one
another.

Teacher: What do you mean, where the bars are closest?
Nathalie: The difference, the endpoints [of the bars], do not differ so much with the
next one.
Evelien added to Nathalie’s remarks:

Evelien: If you look well, then you see that almost in the middle, there it is straight
almost and uh, yeah that [teacher points at the horizontal part in Emily’s

graph].
Teacher: And that is what you [Nathalie] also said, uh, they are close together and
here they are bunched up, as far as (...) weight is concerned.
Evelien: And that is also that bump.
These episodes demonstrate that, for the students, the bump was not merely a visual
characteristic of a certain graph, but that it signified a relatively large number of data
points with about the same value—both in a hill-type graph and in a value-bar graph.
For the students, the term ‘bump’ signified a range where there was a relatively high
density of data points, which they referred to as the ‘majority’.
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Figure 6.9: Emily’s graph. The lighter, smaller bars represent students weights;
the darker bars students’ heights. (Although all students used the same data set, Mike’s
graph does not exactly match the values in Emily’s graph.
Mike’s graph is more like a rough sketch.)

In the next lesson, students used the bump as a reasoning tool, as the next episode
shows.

Laura: But then you see the bump here, let’s say [Figure 6.10].

Yvonne:  This is the bump [pointing at the straight vertical part of the lower ten
bars].

Researcher: Where is that bump? Is it where you put that red line [the vertical bar]?

Laura: Yes, we used that value bar for it (...) to indicate it, indicate the bump. If

you look at green [the upper ten], then you see that it lies further, the
bump. So we think that green is better, because the bump is further.

The examples show that some students started to reason about shape, which was in-
deed the purpose of these activities. However, they still focused on the majority, the
modal clump, instead of the whole distribution. This seemed to change in the thir-
teenth lesson.
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Figure 6.10: Reasoning with the ‘bump’ in Minitool 1

In that lesson, we discovered that asking students to predict and reason without
available data can be helpful in fostering an aggregate view of data. An initial exam-
ple of such a question was to predict what a graph of the weights of eighth graders
might look like, as opposed to one of seventh graders. We hoped that students would
shift the whole shape instead of just the individual dots or the majority.

Teacher: ~ What would a graph of the weights of eighth graders look like?

Luke: I think about the same, but another size, other numbers.

Gerdien:  The bump would be more to the right.

Teacher:  What would it mean for the box plots?

Mike: Also moves to the right. That bump in the middle is in fact just the box
plot, which moves more to the right.

It could well be that Luke reasoned with individual numbers, but he thought that the
shape would remain the same. Instead of talking about individual data points, Ger-
dien talked about a bump, in singular, shifted to the right. Mike related to the box
plot as well, though he probably just referred to the box of the box plot.

Another prediction question also led to reasoning about the whole shape, this time
in relation to other statistical notions such as outliers and sample size. Note that stu-
dents in all classes used the term ‘outliers’ for very low and high values, whereas
statisticians only use the term outliers for exceptional or suspect values that fall out-
side the distribution.

Researcher: If you measured all seventh graders in the city instead of just your class,
how would the graph change, or wouldn’t it change?

Emily: Then there would come a little more to the left and a little more to the
right. Then the bump would become a little wider, I think. [She ex-
plained this using the term ‘outliers’.]

Researcher: Is there anybody who does not agree?
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Mike: Yeah, if there are more children, then the average, so the most, that also
becomes more. So the bump just stays the same.

Anissa: I think that the number of children increases and that the bump stays the
same.

In this episode, Emily related shape to ‘outliers’; she thought that the bump would
grow wider if the sample grew. Mike argued that the group in the middle also grew
higher, which for him implied that the bump kept the same shape. Anissa’s answer
is interesting in that she seemed to think of relative frequency: for her the shape of
the distribution seemed to be independent of the sample size. If she had thought of
absolute frequency she probably would have thought that the bump would be much
higher. Apparently, the notion of a bump helped these students to reason about the
shape of the distribution in hypothetical situations. In this way, they overcame the
problem of seeing only individual data points.

A last example illustrates how two students came to reason about distribution. As
with Laura and Yvonne (Figure 6.10), they were not disturbed by the fact that dis-
tributions do not literally look like hills in Minitool 1. In the final test, students had
to revisit the battery problem with more advanced questions such as whether the dis-
tributions of the battery brands looked ‘normal’ or skewed. ‘Normal’ was informally
defined as “symmetrical, with the median in the middle and the majority close to the
median.” They used the term ‘hill’ to indicate the majority in Minitool 1 (see Figure
6.10).

Anissa: Oh, that one [brand of lower ten bars] is normal (...).

Nathalie: ~ That hill.

Anissa: And skewed if like here [the upper ten bars] the hill is here [the straight

part].

Again, this indicates that the notion of a hill was not just visual but had become a
conceptual tool for different students.
From these lessons in 1E we were able to draw a number of conclusions. Our first
conclusion was that it can be useful to let students invent their own graphs of their
own data to allow a discussion on the merits of the different graphs.
Second, we observed that reasoning of high quality only occurred during the lessons
without computers. This raised the question of what the role of computer tools is for
students’ learning. Do the tools constrain their thinking or are students not inclined
to reflect when working with a computer unless explicitly asked to? We conjectured
that the students’ experience with the Minitools was very influential; their graphs
(except Bas’s) were clearly influenced by the Minitools background. From the mini-
interviews in this class, however, we concluded that on the whole the students them-
selves did not see the resemblance with the Minitools. We also conjectured that re-
flective discussion is easier without computers.
Third, we concluded that predictions about shape in hypothetical situations can be
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helpful to foster understanding of shape or distribution. If students predict a graph
without having data, they have to reason more globally with an aggregate feature in
mind (earlier we defined the design heuristic, “Ask questions about the forest, or pre-
dict properties of other forests”). In this way, designers can use humans’ cognitive
limitations: if there are no available data and students have to predict something on
the basis of a conceptual characteristic, it is impossible to imagine many individual
data points. Another, more slogan-like heuristic that we used was, “sometimes stay
away from data.”

The type of reasoning developed in this class 1E came closest to what we aimed for
in the HLT. To learn from the success (cf. 6.6) we decided to analyze students’ rea-
soning about bumps more extensively and answer the second research question on
the basis of the episodes of this section (see Chapter 8).

In the HLT we had not explicitly dealt with the relation of sample to population; we
thought that this distinction would be too technical for students at this stage. In hind-
sight, we acknowledged that the idea of reasoning about very large samples comes
close to linking the concepts of sample and population. For the eighth-grade teach-
ing experiment we decided to make this distinction explicit (Chapter 9).

During the teaching experiments we often wondered whether the goal of distribution
as an object-like entity would not be too demanding for the majority of students.
Sometimes students themselves hinted at that. For instance, two students asked us,
“Why do we have to solve those adult questions?” And indeed, when we visited a
class during another lesson it struck us that the teacher treated them much more as
young children than we did (reading aloud a story by Roald Dahl, for instance). We
took this as one of the indications that the end goal was too demanding for the ma-
jority of the students. We therefore decided to focus on simpler issues such as spread
for the teaching experiment in 1B and to do the next macro-cycle on distribution
with older students (grade 8).

Revision of the Minitools

Soon after the first lessons with the Minitools, we formulated a list of revision wish-

es. The most important were:

— Change the slow applets, running via the Internet, into faster stand-alone appli-
cations that also provide options to save and print.

— Make different versions of Minitool 1 and 2, with fewer and more options. The
main reason for this was that we wanted students to focus on the global shape (cf.
Ben-Zvi & Arcavi, 2001) and not make vertical slices with fixed interval width
for instance. We had seen examples of this in our own experiment as well, for
instance with the speed trap.

— Make histogram and box plot available after students have chosen equal interval
width or four equal groups respectively. We found it unsatisfactory that students
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were prepared to use histograms and box plots, but would never be able to use
them within the software. If we want to support students to go from organizing
data in certain ways to conventional representations, then we should incorporate
these graph options (see Figures 2.5 and 2.7).
Unfortunately, it took until the last seventh-grade experiment before these revisions
were realized. It also took until after that experiment before the revised Minitools
worked well at the school site. Nonetheless, but we had the revised Minitools at our
disposal for the teaching experiments in grade 8.

Is Minitool 1 necessary?

In reaction to a presentation of the Minitools, a few colleagues questioned the func-
tion of Minitool 1 and some found it more difficult to interpret than Minitool 2. From
the exploratory interviews (5.1) and from the first two teaching experiments, we had
no clear evidence whether Minitool 1 or 2 would be easier to use for students. To
find out whether using Minitool 1 had any added value, we decided to start with
Minitool 2 in one Aavo-class (1C) and compare what happened with the next zavo-
class (1B), hoping that those classes would be comparable. Classes 1C and 1B took
the same pretest and participated in the same activities in the first couple of lessons,
except that 1C solved the first battery problem with Minitool 2, and 1B with Mini-
tool 1. Unfortunately, class 1C turned out incomparable with the next havo-class: the
students did not concentrate well and had lower results; this also held true for sub-
jects other than mathematics. Hence, we could not draw reliable conclusions by
comparing the classes. Yet there were some indications that Minitool 1 has its use.
We give a few examples in the remainder of this section.
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Figure 6.11: Battery problem in Minitools 1 and 2, now with a larger data set

After the students in 1C had worked with Minitool 2 in the second lesson, the teacher
introduced Minitool 1 in the third lesson and asked about the average. One student
spontaneously exclaimed, “But those bars are much easier!”

In the fourth lesson, when we interviewed him about the merits of the two Minitools,
he said that he found Minitool 1 handier [handiger] and Minitool 2 more obscure

134



Designing a hypothetical learning trajectory for grade 7

[ondoorzichtiger] but could not explain why. In the eighth lesson, we interviewed
other students, working on the speed trap problem. Some of them found Minitool 1
better organized [overzichtelijker], whereas others preferred Minitool 2, and it
turned out that there could be a difference in what the tool was used for. Consider
this example.

Carl: I mean, such a dot, you can hardly see it.

Mark: Indeed. (...)

Interv.: Can you explain in more detail why you find this handier than Minitool
2?

Carl: It is harder to calculate the mean [in Minitool 2 than in Minitool 1]. (...)

Mark: Yes.

Interv.: And what could you see better here [in Minitool 2], perhaps?

Carl: Spread.

Mark: Yes.

Carl: Yes, you see that with the other one [Minitool 2] (...) You see the spread
because it is so [moves his finger from the lowest to the highest value].

Mark: From here to here [from lowest to highest value].

Not all of the students found Minitool 1 better organized than Minitool 2. Consider
the following excerpt:

Interv.: What did you find clearer, this graph with the dots or that graph with the
bars?
Martin: The other one [Minitool 2 with the dots]. That is, I found that one better

because you can see better where everything is. Because here [Minitool
1] you do not get a really clear image of it.

However, like the earlier pair, this pair found Minitool 1 better for estimating means:

Interv.: Where was it easier to estimate the mean?
Martin: The mean was easier to estimate in that one [Minitool 1].
Interv.: And why is that?

Martin: You can stick them together [kan je het op elkaar plakken).
Edward:  Yes.

Martin: You can turn them and stick them to each other.

Interv.: And why can’t you do that with the dots?

Martin: Because there are no lines.

Edward:  Yes, they are all dots.

Martin: It is a different graph.

Interv.: And why is the mean so difficult to estimate here [in Minitool 2]?

Edward:  You cannot stick it on the left-hand side [omklappen].

Martin: You cannot do [in Minitool 2] what we do here [sticking together in
Minitool 1] as easily.

Interv.: And where do you better see how the spread is?

Martin: With the other [Minitool 2].

From such episodes, we conjectured that students would find Minitool 1 easier for
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estimating means and Minitool 2 for looking at how the data are spread out. Because
there were only a few mini-interviews supporting this conjecture, we decided to test
it in class 1B. The other interviews in 1C give a mixed impression without an un-
equivocal conclusion. One of the reasons is that many students seemed to interpret
our question as, “In which Minitool is it easier to read off the values?”

The issues raised in this section lead to the questions of what the affordances of both
tools are, and what the value of comparing two representations is (for theories on
multiple representations see Ainsworth, Bibby, & Wood, 2002; Van Someren, Rei-
mann, Bozhimen, & De Jong, 1998). In that sense, Minitool 1 could well be useful
in addition to Minitool 2. As the interviews tentatively indicate, both Minitools may
support particular types of reasoning in different problem situations. To gain more
insight into this issue, we decided to ask students more about the two Minitools in
the last seventh-grade teaching experiment.

Reflection on the results

In this section we reflect on the results of the various teaching experiments analyzed

here (1F, 1E, and 1C) and compare them with those of the Nashville research. This

makes it easier to formulate what in the evolving instruction theory should be reject-
ed, refined, or has been confirmed. The results presented below reflect the patch-
work character of the design process. At the end of this section we reflect on the first
outline of the HLT (5.4) and indicate which activities were to be used in the last

teaching experiment in grade 7 (Chapter 7).

1 Intertwinement of key concepts. Our point of departure as stated in Section 2.4
and the didactical phenomenology (Chapter 5) is to deal with several key con-
cepts of statistics at the same time, starting at a referential level (2.1). The activ-
ities we used in the beginning of all teaching experiments, elephant estimation,
balloon, battery problem, all served that purpose. These activities formed the ba-
sis for students to reason about representativeness, skewness, the distribution of
number (or elephants), majority, ‘spread out’, reliability, and basic sampling in
specific contexts. When working with Minitool 2, students dealt with additional
notions that were discussed such as frequency, density, median, range, and
spread. In 1E students came to reason about shape in relation to statistical notions
such as outliers and sample size.

2 Mean. In the historical and didactical phenomenology, we argue that the mean
should play an important role in an instructional sequence for early statistics ed-
ucation. As apparent from the different teaching experiments, students are able
to reinvent different measures of center if this process is well guided. Though we
understand why the Nashville team wanted to avoid the mean (P7), we still ad-
vocate attention for the mean from an early stage onwards. We must however ac-
count for the cultural difference: Dutch students are apparently not as drilled to
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use the mean for statistical problems as American students and have a better un-
derstanding of the mean (5.1).

Compensation strategy. We show how students reinvented a compensation strat-
egy of finding the mean with case-value bars. We are convinced that this repre-
sentation is more suitable than the common balance metaphor. As Hardiman et
al. (1984) note, this balance metaphor is only useful if students know that phys-
ical context from science classes or daily life (see also Pine & Messer, 2000).
These seventh-grade students had not yet learned about this at school, though
they probably had informal knowledge about seesaws.

Median. Despite some examples of students reinventing the median method for
comparing data sets, we had not been very successful in designing good instruc-
tional activities for developing a notion of the median as a measure of center. The
vast majority of students confused it with the midrange. Students in 1F had de-
veloped some understanding of the median in relation to the two equal groups of
Minitool 2, but they did not see it as a measure of center, they tended to see it as
always different from the mean, and they could not find it in a row of numbers.
We decided to combine the two equal groups option with series of numbers in
discussions about mean and median (6.9) and to study the history of the median.
Talking through the process of data creation. This is indeed important as we re-
discovered, which supports R1, and it is indeed necessary as a way to address
sampling issues (R2). We assume this result, like some of the other results of this
section, can be taken as part of an instruction theory for statistics education.
Role as data analyst. The results of the battery activity in 1A, 1F, and 1E show
that students were more objective and precise in the Consumer Reports than in
the factories context. This supports and substantiates R12 (about the importance
of the role of data analyst), which we take as part of our the instruction theory as
well. We are well aware that it is still necessary to establish a socio-mathematical
norm (Yackel & Cobb, 1996) of taking that role (2.3). Letting students produce
a report to the Consumer Reports is not enough to establish such a norm.

Data invention. To establish a closer relationship between notions such as aver-
age, quality, reliability, and spread on the one hand, and graphs on the other, we
asked students to invent their own data sets that would fit certain characteristics,
in this case aggregate features of battery brands. We saw this as a successful in-
stance of a back-and-forth movement between notions and graphs, inspired by
theories on symbolizing. The key issue is that students can develop conceptual
structures when inventing data sets that have particular aggregate features.
Shape of the distribution. It was not easy to evoke reasoning about shapes of dis-
tributions, but in 1E we succeeded by letting students make their own graphs of
their own data and discuss a few student graphs. In this reasoning about shape,
students used several statistical notions (outliers, majority, average) to explain
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how the shape would change in hypothetical situations in a well-known context.
Clearly, the ‘bump’ had become more than just a visual feature and served well
in reasoning about aggregate features of data sets (as opposed to a case-oriented
view on data). To understand students’ development of a shape notion in a more
general way, we decided to analyze these episodes on reasoning with the bump
more extensively with semiotic theories that are not domain-specific.

9 Low, average, and high values. We have seen many examples in which students
conceptually divide data sets of unimodal distributions into three groups of low,
average, and high values. This categorization into three groups is already better
than looking at individual data values. We assumed that students already have an
intuition about distribution in that three-groups sense and that the activities of
this sequence helped them to express this intuition with notions and graphs.

10 Histogram and box plot.2 ' A mistake that some students made with histogram-
type graphs was that they interpreted the height of bars as signifying height of
people instead of the frequency of people with that specific height. Many stu-
dents found box plots hard to use and understand, though some could describe
advantages of both graphs. For the teaching experiment in 1B we decided to fo-
cus on spread and sampling, and not so much on conventional graphs such as the
histogram and the box plot.

11 Design heuristics. In this chapter we formulate several design heuristics that are
partially related to each other. If students do not see the forest for the trees, ask
them about the forest or other forests; go back and forth between graphs and no-
tions, or different graphs; predict the shape of distributions in hypothetical situ-
ations; and sometimes stay away from data. These heuristics were applied again
in subsequent teaching experiments.

12 Is Minitool I necessary? There were indications that using Minitool 1 in addition
to Minitool 2 made a difference. One successful change in the HLT was to let
students compare the same data set in both Minitools when we introduced Mini-
tool 2. We also offered students the freedom to solve a problem in the Minitool
they preferred to use. In our view, the original chain of signification was too lin-
ear for our purpose of designing and revising the HLT. More on this issue fol-
lows in Chapter 8.

13 Added value of the Minitools? We observed that reasoning of high quality only
occurred during the lessons without computers, across all teaching experiments.
A question that rose was whether using the Minitools had any added value com-
pared to using no computer software. We assumed that experimenting with the
Minitools formed a good experience to reflect upon and functioned as a basis for
making graphs. The clearest examples of this are the episodes in which students
reasoned about Mike and Emily’s graphs, which were influenced by working

21. This issue has not been discussed earlier in this chapter.
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with the Minitools. Moreover, visually estimating means was afforded by the
value tool. Additionally, students were motivated to use the Minitools. We cite
from the field notes: “The students liked working with the applets via the Inter-
net.” To gain more insight into the advantages of working with such computer
tools it would be interesting to compare a teaching experiment in which the Mini-
tools (or similar tools) are used with a teaching experiment in which they are not
used.

If we compare these thirteen items with the HLT outline presented at the end of
Chapter 5, we can conclude that it has not changed drastically, but has been refined
and extended. In short, the estimation and battery activities led to reasoning about
many statistical issues including the reinvention of measures of center. To avoid a
focus on individual data points, we asked students to work without data and to invent
their own data and graphs according to aggregate features. Students in class 1E, hav-
ing more lessons than the other classes, were able to reason about distribution in an
informal way. Apparently, predictions about hypothetical situations helped to foster
an aggregate view on data. The episodes in class 1E about distributions, however,
were exceptions when compared to the whole set of episodes throughout the year.
Concerning the Minitools we had left the initial linear path and were looking for
more flexible ways of using them. For instance, we let students compare one data set
in the two tools, inspired by theories on multiple representations, and we gave stu-
dents the freedom to use either tool for solving a statistical problem.

If we compare the statistics unit we developed with the traditional Dutch statistics
curriculum, one of the striking things is that we did not teach techniques were only
meant for application later. Instead we let them develop their own techniques and
notions which at the same time led to conventional graphs and notions as part of per-
forming data analysis. Furthermore, Dutch teachers probably consider the set of tra-
ditionally taught techniques and graphs relatively easy. In contrast, the statistical
problems we presented to students were complicated from the outset, which urged
students to reason about the major key concepts of statistics from the very start. Our
approach is therefore more authentic in keeping with the statistical practice of prob-
lem solving but also more demanding for teachers. Besides this, most of these prob-
lems can be solved at very different levels, which makes them useful for students of
different learning abilities and for multiple purposes. The battery problem, for ex-
ample, was used as one of the first problems, but in a few classes also in the final test
with more difficult questions.

Table 6.4 shows the chronological order in which the activities were designed and
which activities presented in Chapter 6 led to the HLT tested in Chapter 7.
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Table 6.4: Overview of main results that fed the HLT for class 1B

Inter- cs, ba, sp
views
lesson # 1 2 3 4 5 6 7 8 9 10 | 11 12 +
class
1A el | ba | bl - - - - - - - - -
1F ell | ba | cs wi sp -
bl
1E el ba | cs | wi bl sp bu | bu | bu
1C el ba | cs di cr | wi sp bu cr -
bl
1B el ba | cs di cr wi bl sp | ne | je bu te -

Table 6.5: Abbreviations of Table 6.4

ba | batteries (data analyst role, data creation)

bl | balloon (estimation, sampling, mean)

bu | reasoning with bumps (shape in student graphs)

cr | comparing representations (e.g. Minitools 1 and 2)

cs | compensation strategy for finding mean (with bar graph)

di | data invention (battery context)

el | estimation of the number of elephants in a picture

je | jeans activity (leading to histogram)

ne | new activity (growing samples)

sp | speed trap (shift of hill, quantitative difference)

te | final test

wi | wing span (median, outliers)
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In the previous chapter we described how we designed a hypothetical learning tra-
jectory (HLT) for grade 7. A notion of distribution as an object had turned out to be
difficult to develop, though students in one class were able to reason with shape. The
median appeared difficult to develop as a measure of center, and the route planned
towards using box plots for describing distributions proved to be time-consuming.
We therefore decided to focus on students’ notions of spread and sampling in rela-
tion to simpler plots such as value-bar graphs and dot plots. Another reason for this
focus was that little is known about students’ notions of spread, and that our attempts
to address sampling had not proven very viable yet.

In the present chapter we test the HLT that was developed for class 1B, a havo-class
with 23 students (havo is higher general secondary education). We first present the
results of the pretest to give an impression of the starting point of students’ learning
process. Next, we compare the HLT specified for particular activities with students’
actual learning. In doing so, we analyze how the activities support the development
of students’ notions of average and spread, and then of sampling and shape (for the
method of analysis see Chapter 3). Afterwards, we present the results of the final as-
sessment. In the concluding section, a summary of the results of testing the HLT
gives an answer to the first research question of how students with little statistical
background can develop a notion of distribution.

Table 7.1: Questions of the pretest

1. | In Figure 7.1a you see two graphs of speeds of cars in km/h. In the Dorpstraat, 60
cars are measured (top graph); in the Stationsweg, 60 cars are measured as well (bot-
tom graph). Each dot represents the speed of a car.

a. Do people in one street drive faster than in the other? Explain.

b. If there is a difference, could you tell by how much people drive faster in that street?
Explain.

2. | After a year, the police of that village have made the graph shown in Figure 7.1b. At
the top you see the speeds of cars in the Dorpstraat and at the bottom the speeds in
the Stationsweg.

a. What can you infer from these graphs?

b. What does the height of the graph mean?

3. | In Figure 7.2 you see the average monthly temperatures in de Bilt (in degrees Cel-
sius).

a. Can you estimate the average annual temperature without calculation? You are
allowed to draw in the graph.

b. What is your estimate?

4. | Calculate the mean of the following rows of numbers.
a.6,7,7,7,9
b.3,0,1,12
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Pretest

Before the first lesson, students took a 25-minute test (Table 7.1). This test was used
to get an impression of their prior knowledge of statistics, which was important in-
formation for the HLT. In particular we wanted to find out how students would solve
the speed trap problem with dot plots and continuous graphs without preparatory in-
struction, and how well they could estimate and calculate means. The speed trap ac-
tivity was taken as exemplary for activities with Minitool 2. We added the continu-
ous sketches to find out if we could use such graphs earlier than in previous versions
of the HLT. The rationale for this was that, if students could use such continuous
sketches in an earlier stage, we might stimulate an aggregate view on data. Class 1B
made the same pretest as class 1C, but performed better.

: Dorpstraat

3
4647 43 51 53 55 67 589 61 B3 65 67 69
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Figure 7.1: Speed plots of questions 1 and 2 of the pretest (unit is km/h)
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Figure 7.2: Temperature graph of question 3
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We discuss the results of the pretest per question.

la.

1b.

2a.

2b.

Of the 23 students, all except 4 wrote that people drove faster in the Stationsweg
than in the Dorpstraat, but their explanations differed considerably. One typical
correct answer was that there were more dots, or cars, at higher values for the
Stations-weg. There were six students who referred to the spread of the data, for
example:

The dots [in the upper graph] are closer to each other.

The lower dots are more straight.

In the Stationsweg there is more spread [verspreidingzz] at higher speed.
The dots are more spread out.

More dots apart.

Only two students referred to the average (“no, it is roughly equal, on average”
and “the dots are further on average”). As in previous classes, we encountered
case-oriented views on data, such as “no, the fastest is the same in both.”
The question on the difference in km/h was harder to answer. Only five students
gave an answer that we consider reasonable (2 and 3 km/h). Many students did
not answer the question, which probably indicates they did not understand it.
The relatively large variation makes it extra difficult (and perhaps not very sen-
sible) to conceive the mean as a group descriptor.
From the results we concluded that we could use this speed trap activity to let
students reason about spread using informal terms, but that it would be demand-
ing for students to quantify the differences and regard means as group descrip-
tors.
Twelve students answered that people in the Stationsweg drove faster and one
that people in the Dorpstraat drove faster. Despite the similarity with the dot
plots of the previous question (in the eyes of an expert), this continuous sketch
was hard to interpret for some students. This is not surprising because students
were not acquainted with such graphs without a vertical axis. An example of a
wrong interpretation:

In the first table they only drove fast at the beginning of the street and in the second

it is spread out over the road.
This student probably interpreted the axis as representing the street.
Eighteen students wrote that the height of the graph represented “how many
there were,” although there was no frequency or relative density axis in the
sketch. But there were also incorrect interpretations such as “the speed of the
cars.”
Though the large majority understood that the height of the graph has something
to do with “how many there were,” we concluded that the interpretation of con-

22.

If Dutch terms are unconventional or difficult to translate we also provide the original
Dutch ones. Verspreiding, e.g., is not a conventional word; it is similar to ‘spread-out-
ness’.

143



Chapter 7

3a.

3b.

4a.

4b.

tinuous density sketches is not straightforward and should be prepared carefully,
for example by paying more attention to density (as opposed to frequency). We
dropped the idea of using continuous sketches at an early stage of the HLT. In
retrospect, we would not use this pretest question again: without a sense of prob-
ability density functions such continuous sketches are likely to be interpreted as
frequency distributions.

Most of the answers on how students estimated means were rather cryptic, which
shows the need for developing a more precise language in which students can
explain how they think about the mean.

Take the middle.

Look where the temperature is high, but also low.
Having an overall look [4lgemeen kijken].

By looking.

And some were incorrect or incomplete:

Half of the highest temperature.

Half of the longest bar.

The lowest is 2 and the highest is about 16 and then half it. [The answer was 7,
which means this students probably divided the difference between 16 and 2 by 2.]

When estimating the average annual temperature, three students used a compen-
sation strategy with a horizontal line. During a mini-interview, it turned out one
of them had used the midrange.

I looked at the highest temperature and the lowest temperature, added and divided

by two.
When the interviewer asked whether this method would work if only one month
had a high temperature, she realized that her method would then yield too high a
number.
The estimations ranged from 6.5 to “10 to 12,” but most answers were between
8 and 10 (the correct answer is close to 9).
We conjectured that it would be possible to let students reinvent a compensation
strategy with bar representations and that many would initially use a midrange
strategy as in previous classes. We further assumed that it would be possible to
let students realize that taking the midrange is an unreliable method to find an
average if the distribution of values is skewed.
Sixteen out of twenty-three students gave the correct answer of 7.2. Of the seven
incorrect answers most were 7.1. We assume that the students with the answer
7.1 did not really calculate the mean, but guessed that the answer would be just
a little more than 7.
Twenty-one students correctly answered 4 and the two remaining students an-
swered 3.1. These two might have guessed that the answer would be just a little
more than 3.
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Testing the hypothetical learning trajectory in grade 7

On the basis of the research literature on the mean we had expected that students
would have more problems with weighted means and zeros in rows of numbers
(e.g. Mokros & Russell, 1995; Strauss & Bichler, 1988), but they seemed reason-
ably fluent in calculating means, better than the students in Nashville.

From the pretest we concluded that these students, in general, were able to work with
dot plots and to calculate means. Certainly not all of the students understood the
graphs we had presented them, and from the written test and the mini-interviews we
had the impression that the students had not yet developed a suitable language to ex-
press their ideas. None of the students talked or wrote about global shapes such as
hills. Some reasoned about spread aspects, which confirmed the decision to focus on
spread instead of distribution. From the results we concluded that the HLT was tuned
well enough to the level of the students and they did not already know what we want-
ed them to learn.

Average box in elephant estimation

HLT for lesson 1

In all previous seventh-grade teaching experiments, the elephant estimation had
served well as a starting point of the HLT (6.2). In short, it was used to let students
think about the variation, density, and distribution of the elephants in the picture, and
about a strategy to find a reliable total number, preferably with an ‘average box.’
This average box is typical in the sense that it contains a typical number of elephants
and is normally crowded (in student language: “not too full or too empty”’). From the
earlier interviews and experiments it appeared that students had different views on
average (gemiddelde), which we expected to encounter again in this savo-class in
the first lesson. To stimulate discussions on qualitative aspects of the mean, we again
discouraged calculation of the mean. In the HLT, we aimed at evoking the compen-
sation strategy for visually estimating means to make a connection between stu-
dents’ knowledge of the mean algorithm and their qualitative insights into the mean.
Furthermore, we expected that such a compensation view of the mean could aid the
insight that the mean accounts for all data in the data set. As in class 1F, we would
ask what would have been an average box, in this case while showing a matrix with
a skewed distribution to question the midrange as a strategy to find a total number
(6.6).

Retrospective analysis

During the class discussion on students’ different strategies of estimating the total
number of elephants, the same strategies were applied as in earlier teaching experi-
ments (Section 6.2): estimating groups and adding the numbers, estimating a number
of groups of a fixed size, the area method, and the ‘average box’ method. The last
was used most frequently. This implies that there is a pattern in the strategies that
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students came up with in the four different teaching experiments.

In the retrospective analysis, we focused on the different views of average that the
students had and wondered if students already looked at how the data were distrib-
uted. From the earlier analyses we differentiated the following views on average val-
ues and coded students’ sayings accordingly during the retrospective analysis with
the computer software MEPA (Erkens, 2001). These codes were consistent with ap-
proaches to the average as described by Mokros and Russell (1995). We started with
the following codes (a-g) and needed to add one during the analysis (h).

a

f
g

Algorithm. With respect to the average as an algorithm there was only one epi-
sode. Ciska said, “You should in fact add it all,” when asked how to find “an av-
erage box.” The discouragement of calculations had apparently worked well.
Normality. Most fragments belong to this category. Students used the term ‘av-
erage box’ in the sense of a normal or typical box, as we had anticipated. Some
students even literally called it a normal box (rormaal hokje or vakje).
Intermediacy. When asked what they meant by an average or a normal box, they
typically answered “not too much, not too little” or “somewhere in the middle”
(cf. 5.3).

Compensation. As we had anticipated in the HLT, students started to look at how
the numbers in the different boxes varied. Ciska and Susan, for example, were
aware of the fact that choosing a full box as an average box would give a total
number that was too high.

Midrange. Two students used the midrange: they averaged the number of ele-
phants in the fullest and the emptiest box.

Median. We found no clear example of a median in the first lesson.

Mode. We found no indication of an average as a mode in this context.

In this class there was also a new view on average (h). One group of four students
explained that they had roughly averaged their results to get a reliable number. In
doing that they probably tried to reduce errors. They explained:

Well, Babette had something like 270 and Tim had 210 and you had [inaudible] and
I had 250 or so.

Everybody got something different, different number of herds and we averaged that.
We took about the middle and what was logical.

Well, what was in between.

And which was drawn the neatest.

What was the most reliable [240].

In other words, they chose a value in the center that seemed reliable, logical, or neat-
est. This last view on average is interesting with respect to the history of the mean,
because Greek scientists also chose values that looked reliable (4.5.1).

At the end of the class discussion, students agreed that the method of using average
boxes was the most reliable one. The analysis shows that students’ notions of aver-
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age were much richer than just the algorithm aspect, and that the elephant estimation
task helped to bring these views to the fore.

After discussing the elephant strategies, the teacher said that something else was es-
timated; a picture was divided into boxes and the students had to explain what would
have been an ‘average box’ in this case of Table 7.2. Again, students took different

approaches.
Table 7.2: What would have been an ‘average box’?
35 58 91
93 83 89
98 97 68
76 82 11
1 Compensation. Ciska took a compensation approach to the average box:

I would take 76, because you have a lot above it, like 97, 98, and 89, but sometimes
you are below it, and if you take the upper ones off and add it to the lower ones,
then I think 70 is the closest to the mean. (The mean is 72.)

2 Median? Ellen then explained, “I looked how many were above it... six were

above it.” We wondered if she used something like a median, but during an in-
terview after the class discussion she said something different. She started with
something that looks like an inward counting strategy but she was apparently
aware of the differences in how much the numbers differed from a middle value:

1 just look first at the largest and smallest and those are 93 and 11, or 98 and 11;
then there are a few numbers, 93 and 91, and so on, but there are also a few under,
35 and 58, so then I thought that 68 would be roughly in between. (...) I have seen
that 76 is not far away and neither is 82, so I thought 68 is roughly in between.

Midrange. John used a midrange strategy: “11 + 98 = 109, so half of it is about
58.” Nico opposed that there were more numbers in the nineties and fewer low
numbers: “They are not equal numbers, you cannot compare them like that” (cf.
6.6). He correctly remarked that John’s estimation would be too low. Both he and
Ciska seemed to be aware of the skewed distribution of these numbers, and this
probably held true for more students.

With respect to variation we note that students clearly acknowledged the varia-
tion in the number of elephants in each box. In the retrospective analysis we
found only one episode that could be a counterexample. Rob said, “All boxes
may have about the same number,” but this does not mean that he thought that
all boxes contained exactly the same number; he probably expected little varia-
tion.

The experiences in 1B confirm the anticipations of the HLT, because roughly the
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same strategies were used and similar views on the average were held as in earlier
experiments. Thus, despite the differences between classes, a general pattern in stu-
dents’ reasoning became visible in the different teaching experiments. The power of
the estimation activities is that students need to choose an average value and look
how numbers are distributed in order to give a good estimate. The apparent purpose
is to find the total number, but the hidden agenda is to let students develop notions
of average and spread as tools in their reasoning. From the very start students indeed
dealt with center, density, variation, extremes, where the majority is, and how the
estimated total number is influenced by the average chosen. This was all at a refer-
ential level but, as the following sections show, this activity formed a basis for more
general reasoning in later lessons as well (as in Section 6.6).

We concluded that the elephant estimation activity was indeed a useful starting point
for the HLT. It built upon what students already knew and functioned as a means of
supporting students’ learning of average values in a more qualitative and coherent
way than just applying the algorithm of the mean. In terms of the didactical phenom-
enology, students indeed organized the estimation phenomena with those conceptual
tools that we wanted them to reinvent. In particular, students started to see how the
average was influenced by the way in which numbers were distributed.

Reliability of battery brands

HLT for lesson 2

The general rationale of the HLT was that students would learn to reason about in-
creasingly sophisticated aspects of distribution in relation to shape in increasingly
precise ways. From the earlier experiments it was apparent that the battery activity
was a powerful one because many aspects of distribution can become topics of dis-
cussions at a referential level. The two distributions were deliberately chosen differ-
ently, one was symmetrical and the other skewed, so that different distribution as-
pects could become topics of discussion. As with the elephant activity, students need
to take the distribution of the data into account to give an answer to the question of
which advantages the brands have. We expected that students would use their no-
tions of average as developed in the first lesson in the battery context as well.

As stated in the didactical phenomenology and Chapter 6, sampling also had to be-
come a topic of discussion. In 1C we had already enlarged the battery data set from
10 per brand to 30 for one brand and 35 for the other one. The first reason for doing
so was that it would otherwise not make much sense to compare the data set in both
Minitools 1 and 2 (in Minitool 2 it is hard to say anything about shape with small
data sets). The second reason was that we considered it inconsistent to teach that
samples should be large enough while mentioning at the same time that Consumer
Reports had only measured 10 batteries per brand.?? Third, we expected that reason-
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ing about different sample sizes could also be a starting point for multiplicative rea-
soning and talking about majorities, because in the Nashville research the notion of
the majority of data did not become a topic of discussion until students analyzed data
sets with unequal numbers (Cobb, 2002).

Because the Consumer Reports context had turned out to be the most suitable one in
previous teaching experiments (6.5), we decided to use that context again in 1B. In
contrast to earlier teaching experiments, however, we decided to focus more on
spread, because we had noticed that students’ attention was often distracted by the
mean. We refer to this phenomenon as the ‘mean distractor’ after Streefland’s (1991)
‘N-distractor’ in the context of learning fractions.>* F ollowing the Nashville re-
search in which students came to reason about consistency of battery brands as a pre-
cursor to spread, we decided to focus the class discussion on consistency to explore
qualitative and aggregate characteristics of collections of data points.

Retrospective analysis

To illustrate once more that students generally start with a case-oriented view on da-
ta, we mention the observation that the sampling issue of the battery problem was
not at all obvious. Nico, for example, explained Figure 7.3 (in which the data values
were sorted by size and color) by saying that “you can see the battery fall back.” He
probably interpreted the data values as the life span values during an experiment on
one battery. If so, he took a case-oriented view on the data.
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Figure 7.3: “You can see the battery fall back.”

In arguing about the brands, the students in previous experiments developed differ-
ent methods of comparing data sets. The teacher wrote their strategies on the black-
board; they used the mean, the midrange, and thought about the median without us-
ing conventional words for midrange or median. This means that they used notions
of average they had developed in the first lesson, as expected. Students reasoned
with range, outliers, the majority and so on, all situated in a context that was mean-

23. From a brochure of a battery brand we learned that testing batteries is a complex process
in which many batteries are tested in realistic intervals and in different devices.

24. When students learn about fractions, many of them think, for instance, that 1/2 is smaller
than 1/3 because 2 is smaller than 3.
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ingful to them.

When we confronted students with the unequal sample sizes, they found the com-
parison unfair: the sizes should be equal. However, if we asked during mini-inter-
views whether one could compare a sample of 400 with one of 405 battery life spans,
they thought it was fair enough. This means that they probably did not see the gen-
eral shape of the samples as saying something about the brands (populations). We
return to the battery problem in Section 7.5 on the fourth lesson.

Compensation strategy for the mean

HLT for lesson 3

According to the HLT, the value of the compensation strategy for finding the mean
is mainly that students need to look at how the data values are distributed in order to
estimate the mean. As in earlier activities, the hidden agenda of the activities of the
present lesson was to let students look at how data values were distributed. More-
over, the mean had to account for all data and become a group feature of a data set.
In the third lesson, we combined the context of the elephants and the representation
in Minitool 1 to provoke a discussion on finding the mean, as in class 1F (Section
6.6). We expected that the students would further develop their understanding of
qualitative aspects of the mean together with the computational aspect. In addition
to the HLT of previous teaching experiments, we asked the teacher to do some
‘backing’ (cf. Cobb, 1999), and ask students why they thought their method worked
well. This implies that we felt the need to include advice for the teacher in the HLT
(cf. Klaassen’s, 1995, notion of scenario).

Retrospective analysis

In the third lesson, the teacher first recalled the elephant task. Showing a slide of the
elephant numbers in the eight boxes, represented in Minitool 1, she asked what
would have been an average box (Figure 7.4). The students had no trouble in under-
standing the question; they immediately said 40, 42.5, “41 point something,” and 45.
When explaining his answer, David drew a vertical line on the slide at 40 and cut off
what was too much on the right and added it on the left (Figure 7.4). Other students
commented that he “was too low.” Apparently, David used something similar to the
value tool of Minitool 1 which had been used in the second lesson, and other students
understood what he was doing; the vertical value tool had become a tool in their rea-
soning about the mean (this had not happened in the Nashville research). Another
promising issue is that the students did not stick to the actual numbers of the bars (40
and 45), but ended up with the conclusion that the mean would be somewhere in be-
tween (42, which is indeed the correct mean as 336 : 8 = 42). This means that stu-
dents did not think that the mean needed to be one of the actual numbers, in contrast
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to what middle school students sometimes think (cf. Mokros & Russell, 1995).
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Figure 7.4: David’s drawings on a slide

In line with the HLT, the teacher asked why this method of finding the mean was
allowed. Ellen answered:

It stays the same. Together all the elephants remain the same number.

Ciska took a calculation approach to prove that “you get the same mean: you add
them all and divide by the number, so the mean is the same.” Nico then remarked
that calculations were not allowed. In his eyes, she apparently violated the norm that
calculations were not allowed.

This whole discussion took place in the first ten minutes of the lesson, which indi-
cates that the compensation strategy was more easily developed than in previous
teaching experiments. This could be due to the way we designed the lesson, but also
to the similar item on temperature in the pretest or to the fact that these students had
more experience with the mean than students in earlier experiments.

In the past we felt the students had not practised new methods enough. To make sure
that all of the students would understand and practise the compensation strategy, it
was applied in another situation, the battery problem. From the analysis we conclud-
ed that most students were able to use this strategy sensibly themselves. If we com-
pare this result with the pretest (question 3) we can conclude that they had learned
something new about the mean: in the pretest only a few students estimated the mean
visually and no student could explain clearly what he or she did.

Students’ notions of spread in the battery context

HLT for lesson 4

The fourth lesson built on the second lesson, in which the battery problem was ad-
dressed. In the present lesson, we wanted to address center and spread issues at a ref-
erential level. The quality of a battery brand can be seen as a combination of the av-
erage life span and the consistency of the different batteries of the brand. As in ear-
lier teaching experiments, we expected students to come up with different aspects of
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the brands that would be related to center, spread, and distribution. In the fourth les-
son, we also decided to let students compare one data set in a value-bar graph of
Minitool 1 and a dot plot of Minitool 2, because in earlier experiments comparing
different representations of the same data set had turned out useful (Chapter 6). In
previous experiments we had gained more insight into students’ notions of average
than into their notions of spread. In the forthcoming retrospective analysis we focus
on students’ notions of spread.

Retrospective analysis

As expected, the reasoning about the battery brands was similar to students’ reason-
ing in other classes. For example, working with Minitool 1, Ingrid commented that
the values of the green25 brand (K) that “are spread out, there are bad ones and good
ones” and “the pinks (D) all have about the same quality.” Ho Shan said that “green
has more spread” and Tim that “they are much further apart.” Students generally
agreed that less spread was better.

A short class discussion was instigated to stimulate students to consider more argu-
ments than the ones they had invented themselves. The issues discussed were the fol-
lowing. Some students preferred the green brand (K) because there were many “high
ones” and others preferred the pink brand because they were “all in one area.” A girl:
“Then you are sure that all have that life span.” The discussion focused on reliability
and predictability, which is probably similar to the notion of consistency that was
used in the discussions in Nashville. What was also similar was that some students
explained reliability as “at least 80 hours,” whereas others interpreted reliability as
being within a certain interval (similar observations are made by Sfard, 2000a).
There were also indications that students noticed the skewness of brand K: “the
greens because it has more at the end.”

One mini-interview question that we, including the two assistants, have often asked
is, what do you mean by spread? In the following paragraphs we describe how we
analyzed students’ notions of spread, not only in the battery context but also in other
contexts. Thus we exemplify the method of analysis described in Chapter 3: formu-
lating conjectures and testing them at other episodes. Within the battery context, stu-
dents seemed to view large spread as having big gaps in between dots. The most
common description of spread was “how far apart the values are.” This led to the
conjecture that students interpreted spread as “how far apart the values are” and this

25. As the observations demonstrate, students used color and name indications interchange-
ably. In earlier teaching experiments we insisted that students used names and not just col-
ors, but due to Nemirovsky and Monk’s (2000) notion of fusion we realized that students
mostly did not confuse name and color indications. We therefore did not insist anymore
that students referred to the life spans of battery brands as ‘K’ and ‘D’ as long as their rea-
soning about ‘pink’ and ‘green’ was really about the life spans of batteries. See Roth
(2003) for a discussion of the notions of fusion and transparency.
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conjecture was indeed confirmed at the other episodes, also in other contexts such
as the speed sign context. This characterization of spread does not specify whether
students look at the range or some other aspect of the spread. By analyzing the epi-
sodes we could make a distinction between a range and a density view. We have not
encountered any episodes in which students considered spread as dispersion from a
center. We now discuss the range and density views on spread and give an example
of an episode in which both views occurred.

Range view on spread

When clarifying his answer on what spread was, David said, “I had the distance be-
tween the longest and the shortest dot.” This means that he interpreted spread as
range (and there were several more students doing so). To avoid confusion between
range and other ways of viewing spread, we decided to let students think about the
distinction between range and spread in the next lesson. In other words, we decided
to guide their reinvention of spread notions to avoid a situation in which the meaning
of the term ‘spread’ would be identified with range.26

Density view on spread

Other students had a local view on spread: “Here it is spread out and there the dots
are together” or “the green one as more at the end.” We interpret this as a local view
on spread: students describe the spread in a particular area. We consider this view a
possible precursor to a notion of density, which is the reason we call this a density
view on spread. We give an example of an episode in which different views on
spread were expressed. It turned out that students also considered spread or variation
in different variables.

Example of different views on spread

While students worked in groups on their problem, we interviewed the group of
Fenne, Susan, and Ciska to find out what they looked at when thinking of spread.
We had made up two data sets with the same range but one set of value bars was less
spread out from the center (F) than the other (G), as in Figure 7.5a (the b figure
shows what Minitool 1 representation it could be a sketch of). Susan said that the
spread was the same, which must be a range view on spread. Fenne thought that G
had larger spread than F.

26. In Dutch, the difference between the highest and lowest value is called spreidingsbreedte.
The English term ‘range’ is used for both the interval as the difference between the highest
and lowest value. The Dutch word spreiding can mean spread, variation, or dispersion.
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Figure 7.5a and b: Which spread is larger? Sketch (left) of a Minitool
1 representation (right) of imaginary battery brands F and G

Fenne: I think that this (G) has more spread; it stands further apart (die loopt verder
uit elkaar). And this (F) is here, say from there to here (the middle six val-
ues), it is a bit equal and then (the highest values) the spread is large.

Ciska’s observations were similar to Fenne’s, but she came to a different conclusion.
Like Fenne, she seemed to think that there was less spread in the middle part of F
and more spread at the extremes, but she concluded that the overall spread of F was
greater.

Ciska: Here (in F) it goes back suddenly by a large amount; then there is suddenly a
straight part. [ think that there is a large spread. (...) Because here (straight part in the
center) it is close together and here it shoots out (near the extremes). (...) Yes, then (in
Q) it goes evenly (geleidelijk) and you do not notice that there is a large piece between
it (between the extremes) and then I think there is no large spread (in G).

In other episodes we had already seen that students tend to look at differences be-
tween data values (cf. Ben-Zvi & Arcavi, 2001). Ciska probably thought that the
spread is large if the differences in the distances vary and that the spread is small if
the distances are similar (‘even’). Thus the similar distances of G showed small
spread in her eyes and the variation of differences of F showed large spread.

It is likely that both Fenne and Ciska looked at differences in density in three differ-
ent areas of the F graph: low, average, and high values. We can reconcile the differ-
ent conclusions of Fenne and Ciska if we distinguish between the variables they re-
ferred to. Fenne probably related spread to the life span variable, whereas Ciska re-
lated spread to the frequency or density variable.?” For instruction, this implies that
we have to be explicit to students about which kind of spread we are talking about,
and this is easier if students already have a sense of variable, for instance from alge-

27. We have seen these contrasting views in other instances in grade 7 as well. Moreover, sim-
ilar confusion between spread in the x-variable and variation in the frequency variable
also occurs when students learn about variation while using histograms, even at college
level (Meletiou & Lee, 2002).
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bra courses. One intention of contrasting the hypothetical brands F and G was to find
out whether students would interpret spread as dispersion from the center, but we
have found no indication for such a dispersion view. Mini-interviews such as the one
with Fenne and Ciska made us realize how arbitrary it is from a student’s point of
view to measure spread from a hypothetical measure of center such as a mean. De-
veloping a compensation strategy for estimating the mean that accounts for all data
in the data set is clearly not enough to motivate the convention to measure variation
from a center value (as with the standard deviation). This could be different in a con-
text of repeated measurements of an assumed true value (Petrosino et al., 2003).

Spread as a conceptual tool

Students’ notions of spread were mostly not well articulated, but they were able to
use spread as a reasoning tool. We give an example. At the start of the fourth lesson,
the teacher introduced the second Minitool by showing the same battery data set in
both Minitools and asking how they could get Minitool 2 from Minitool 1. She asked
the students which graph belonged to which brand (the order was reversed, as in Fig-
ure 7.6, and the slide only offered one gray tone for both brands). It is of course pos-
sible to answer this question by looking at the individual data points or range, but
students probably used a density view of spread as a conceptual tool; they argued
that because D has smaller spread, D must be the dot plot at the top (the dots in the
clump of D are closer together). Linking aspects of two representations can be useful
to stimulate the use and development of conceptual tools such as the spread notion
(see also Chapter 8).
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Figure 7.6: Battery problem in Minitool 1 and 2.
Which dot plot corresponds to which brand?

From spread to distribution?

As stated before, we decided to focus on spread (and sampling) in this teaching ex-
periment because distribution would be too demanding. However, we noticed after
the fourth lesson that when students reasoned about spread, they often looked at how
the data were distributed, for instance, where the dots were spread out and where
they were together. In other words, they looked at the density of the data (cf. mini-
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interview with Fenne and Ciska). We conjectured that if we let students describe
how data are spread out, they would in fact describe how the data are distributed. We
also conjectured that it would be helpful to use single distributions instead of com-
paring distributions, because students tend to compare in vertical slices when com-
paring two distributions, while they might compare horizontally within one distribu-
tion if there is just one distribution to describe. Another reason for avoiding too
many comparisons of two distributions was that it seemed dull if every statistical
problem involved a comparison (cf. P6 and Cobb & Hodges, 2002).

We concluded that students’ notions of spread were strongly linked to the context,
and this context presumably made it easier for students to interpret the term ‘spread’
in a meaningful way as reliability or predictability in relation to relatively simple
plots such as a value-bar graph or a dot plot. The next step would be to generalize to
other contexts and other representations, and to make distinctions in context-bound
notions of spread in range and more sophisticated measures of spread such as the in-
terquartile range (prepared by the four equal groups option in Minitool 2).

Data invention

HLT for lesson 4 continued
To support students’ further development of spread, we decided to use the battery
context again and stimulate their interpreting spread as an indication for the reliabil-
ity of a battery brand. As mentioned earlier, we would introduce the notion of range
to avoid spread from simply coming to mean range. We expected that the notion of
range would not be hard to understand.
Asin 1C (6.7), we decided to let students invent their own data sets according to cer-
tain spread-related notions such as reliability. This activity was inspired by different
theories that assume a reflexive relationship between symbol and meaning develop-
ment (Meira, 1995, p. 270) or plead for a back-and-forth movement between differ-
ent sign systems (Sfard, 2000b). Instead of just interpreting graphs in a context, stu-
dents should, in our view, also think about how particular features in a context trans-
late into a new graph. If the context were to change, how would the graph change?
As with the design heuristic on asking about aggregate properties (6.7), we assumed
that students need and develop conceptual tools to link distribution aspects in differ-
ent representations (see also Chapter 8). The last part of the task was to invent their
own data sets that showed certain characteristics:

— Brand A is good and reliable;

— Brand B is good but unreliable;

— Brand C has about the same spread as brand A, but it is the worst of all brands.
In 1C, several students had invented sensible data sets, so we expected similar results
in this class.
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Retrospective analysis

As expected, the introduction of the range definition was not problematic. We con-
cluded that students interpreted range as intended and spread as how far apart data
were in different spots of the graphs. This implies that their notion of spread was lo-
cal and could be seen as a precursor to density.

The students seemed to enjoy inventing these data sets, but their inventions did not
always correspond with what we intended. Two boys interpreted ‘worst’ as the larg-
est spread and ‘reliable’ as having high values, the opposite of what we had in mind.
This made us realize how arbitrary, in some students’ eyes, the links are between
good and average on the one hand and reliable and spread on the other hand. One
way to improve this task is to replace ‘good’ with ‘having a long life span’. The clos-
est to what we aimed at was the following explanation.

Figure 7.7: Invented data with the explanation:

Why is brand A better. Because it lives long. And it has little spread.
Brand B is good but unreliable. Because it has much spread. But it lives long.
Brand C has little spread but the life span is not very long.

From the retrospective analysis, we concluded that the design heuristic of letting stu-
dents invent their own data sets according to particular conceptual characteristics
can indeed help support an aggregate and conceptual view on data values. As antic-
ipated, most of the students made the distribution of brand C similar to that of A, and
not just the spread. This supports the conjecture that students’ notions of spread (in
a density view) could be seen as a precursor of a notion of distribution (‘how data
are distributed’).

Estimating the mean with the median

HLT for lesson 5

In the first HLTs, the four-equal-groups option in Minitool 2 was meant to give stu-
dents a way to measure the center with the median and quantify spread with quar-
tiles. This would further be a prerequisite for characterizing distributions with five-
number summaries or even with box plots. In classes 1F and 1E, however, we had
noticed that the median was not easy to develop as a measure of center (cf. R16).
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Before motivating the HLT for lesson 5, we summarize the problems with the me-
dian we encountered in previous classes.

First, many students mistook the median for the midrange, even though they had
learned the median as the value that makes two equal groups in Minitool 2.
Second, even when students knew that the median was the value that split the data
set into two equal groups, they could rarely find the median in a row of numbers. In
hindsight, this is not surprising, because they had learned about the median in a dif-
ferent graphical system, Minitool 2, with the two-equal-groups option and not as the
middle-most value (or mean of two middle-most values) in a row of numbers. Be-
cause of this one-sidedness in the original HLT and because students probably find
tables with data values easier to read than plots (H23), we decided to introduce the
median in 1B in the context of values and then link this to the median in plots.
Third, students in the teaching experiments tended to see the mean as more precise
than the median, since the latter does not account for how far apart the data are. This
last point was already clear in the exploratory interviews (5.1), and from earlier ex-
periences with the average box grids. This view is understandable: to estimate a to-
tal, one needs to take deviations from an average value into account. To encourage
the use of the median, we assumed we needed to stress its ease of calculation or its
robustness, or delay the median’s introduction until students have a notion of skew-
ness (Chapter 4: H19 and H20).

Fourth, when students knew the difference between mean and median, they inter-
preted them as very different things, not as two possible measures of a center. During
the final interviews with a couple of students of 1F, we noticed that even in symmet-
rical distributions they were not willing to estimate the mean with the two equal
groups option, because “the mean and median are different things.” This implies that
they did not take the distribution into account when arguing about mean and median,
and it also exemplifies that students can only sensibly use the mean and median if
they take the distribution into account (cf. Zawojewski & Shaughnessy, 2000). As
in prior activities, we therefore searched for further situations in which students
needed to look at how values were distributed to solve particular problems.

For the HLT of 1B, we decided to take a different approach to the median than be-
fore: we started with rows of numbers before turning to Minitool 1 or 2 with the wing
span data. We focused on three aspects of the median: its ease of calculation, its ro-
bustness, and its use in irregular distributions (4.5).”% For homework, students had
to estimate means of rows of numbers within a few seconds. They also had to find
out when the middle-most value could be taken as a quick estimate. As in earlier ac-
tivities, this activity was meant to let students take the whole distribution of numbers
into account, but now on a more formal level (with only numbers as the context). We

28. Note, however, that we had not yet completed the historical phenomenology of the median
at this point.
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assumed that the hint to give a quick estimate would demand a global look at the dis-
tribution of numbers and would give the task a playful twist.

Retrospective analysis

In the fifth lesson, the teacher first discussed the homework students had done. Most
of the students were able to reason why the median was higher or lower than the
mean. However, we also commented in our field notes that part of the discussion was
too academic for many of the students. Although students might recall the compen-
sation tasks, the step to a context of just numbers was presumably too big. For the
students, there was probably no apparent reason to be interested in the mean or me-
dian. Yet there were indications that students were increasingly aware of how num-
bers were distributed, possibly by the discussion on mean and median. Consider this
an example.

The teacher linked the representation of rows of numbers to the representations of
the Minitools. This was her own idea; the HLT did not explicitly require this. The
question she referred to was:

Is the median a good estimate of the mean in the following row?
33, 56, 89, 118, 120, 151, 163, 165, 165, 177, 178, 181, 182.

Teacher: Assume you had these last numbers in a Minitool, with the dots. Can you
imagine where they would be? What it would look like, the dots? Could you
tell me?

John: Well, very far apart in any case. It looks a bit as the uh, the green ones with
the uh. (From his further explanation it was clear that he meant the ‘green’
battery brand K in Minitool 1, which was indeed skewed to the left.)

This is an example of successfully linking representations (for other examples see
6.11 and 7.5). By using an aspect of the distribution, in this case the density at dif-
ferent spots of the distribution, John was able to link the big steps in the beginning
of the row of numbers to the big steps in the beginning of the value-bar graph, and
the high density towards the higher numbers to the corresponding part in the value-
bar graph.

In other words, John looked at how the values were distributed. In student language,
there are “large steps in the beginning and small steps at the end,” and in statistical
language this is “skewed to the left.” In this fifth lesson, however, there seemed to
be few students who understood this link between the two representations.

From such examples we formulated a design heuristic on linking two representa-
tions.

Create opportunities for students to link multiple representations and create a need for
using or developing conceptual tools to make this link. Ideally, making this link is a
way to solve another question, like which data set is which. Developing such concep-
tual tools should of course be in the proximal zone of development of the majority of
the students.
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In retrospect, we concluded that seventh-grade students need much more time to de-
velop a notion of center before they can use formal measures such as mean or medi-
an. We consider the informal notions of clump, cluster, and majority as precursors
to such a notion of center (cf. Cobb, McClain, & Gravemeijer, 2003; Konold et al.,
2002). The historical phenomenology of the median shows what the main reasons
were for preferring a median to a mean, but these reasons are beyond the scope of
seventh graders with hardly any statistical background. For instance, the median’s
ease of calculation can only be appreciated if it is seen as one of the ways of indicat-
ing a center. To understand the median’s use for ordinal data students need to know
what ordinal data are. To appreciate the median’s robustness students need to under-
stand the influence of outliers on measures of center. To understand the median’s use
in skewed distributions or for irregular data, students need to have a notion of such
distributions (this is the route Cobb, McClain, & Gravemeijer, 2003, propose).

It is of course not very difficult to learn how to find the median of a series of num-
bers. However, our research shows that we cannot expect that students will then be
able to use the median in statistical reasoning, for instance for comparing two distri-
butions. One of the crucial problems students appear to have with the median is that
it seems counterintuitive with respect to rational data represented along a ratio scale.
The challenge here is to forget about the values of the deviations and only consider
the order of the data points. It is not surprising that students say that “the mean is
more precise” if we take into account their experience with estimating total numbers.
Retrospectively, we hypothesize that students would not find the median counterin-
tuitive with respect to representations in which data points are represented in an or-
dinal way, such as a series of numbers, dots, or vertical value bars (cf. Bakker, 2002).
More generally, there are indications that the median’s difficulty heavily depends on
the graphical representations used. The position of the median in a new HLT re-
quires further investigation. One of the ideas that seem viable is to address skewed
shapes and then describe how skewed distribution shapes are using a median. This
route, however, requires considerable investment in first developing a notion of
shape.

Average and sampling in balloon context

HLT for lesson 6

The first five lessons were mainly devoted to center and spread, but from the sixth
lesson onwards we focused on sampling and shape. As before, we asked: how many
seventh graders would be allowed in a balloon if normally eight adults are allowed?
This balloon question builds on the elephant estimation task, but the sampling issue
is more difficult. In the elephant task the population is the whole herd visible in the
picture, but in the weight context students need to use their context knowledge or
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simple sampling techniques to find out about student and adult weights. For the bal-
loon problem we assumed that students would use the same two strategies as in ear-
lier classes (Chapter 6). This time we would use the balloon question to organize a
discussion on sampling and students’ own graphs (as in class 1E).

Retrospective analysis

In the discussion on the reliability of students’ methods of estimating averages, stu-
dents first focused on the average itself. Tim thought that “the average student is
about 45 kilo.” A girl said that she included her own weight and that of others in her
estimation; exactly how was not clear. It took some effort on the part of the teacher
to get the students to think about the reliability of their answers. They just seemed
to assume that their own estimations were good, and were not inclined to make this
abstraction step towards thinking about methods of sampling. Students either relied
on small samples or thought that none of the estimates were reliable. For instance:

You never know for sure. Yes, if you could look at all students from the Netherlands,
then it could be a completely different number.

After some discussion on the reliability of the method, Ciska proposed to weigh two
boys and two girls, and later another student proposed to measure all students of the
class. Ciska argued against taking the whole class: “Two students are missing.” She
probably preferred a stratified sample with as many boys as girls to a larger sample
in which two students could be missing (H11, H12). After some discussion, all of
the students then weighed themselves, while the rest worked on a revised version of
the wing span activity (6.9). The discussion illustrated that most of the students were
small samplers in this problem situation (Watson & Moritz, 2000), and that they still
had much to learn about sampling and representativeness.

towards shape by growing a sample

HLT for lesson 7

In previous teaching experiments the balloon activity was used as a follow-up of the
elephant estimation task. However, in class 1B, we wanted to use it as a starting
point for reasoning about sampling and shape. For homework students had to make
a graph for the balloon driver with which she could decide how many seventh grad-
ers she could take in the basket. We decided to start the seventh lesson with students’
own ideas, a sample of two boys and two girls: we would then show the data of the
whole class and stimulate a discussion on different distribution aspects, focussing on
shape in particular. In general, students found it hard to say something about the
shape of graphs. Their language for doing so was not well developed; for example,
they could not actively use the term ‘symmetrical.” During one of the battery activ-
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ities, Nico described the shape as “There is a kind of rthythm in it.” From the rest of
the mini-interview we inferred that he meant that the shape was symmetrical. Other
students called such shapes ‘even’ [gelijk].

From the experiment in 1E we inferred that conceptual reasoning about hypothetical
situations, “staying away from data,” could stimulate an aggregate view on data. We
therefore decided to let students predict the shapes of graphs for larger and larger
samples, hoping they would feel the need to make continuous sketches instead of
drawing many bars or dots. Moreover, we conjectured that reasoning about larger
and larger samples would be a good basis for talking about samples versus popula-
tions at a later stage.

Retrospective analysis

One class

In the seventh lesson, the teacher started the discussion with the question of why the
weight data were created. The first reactions were “to calculate the mean” and “to
know precisely.” These reactions exemplify the mean distractor effect that we tried
to avoid. Perhaps the context did not have any intrinsic motivation for looking at the
spread of the weight data. In the balloon activity students had to reduce variation to
answer the question of how many students could go into the balloon. The discussion
on spread might have been unexpected from a student perspective. If we were to do
this again, we would probably design a different activity in which spread would be
more relevant to avoid this problem. The teacher then asked why they started with
four students and then decided to measure the whole class.

Aster:  Yes, because those four could be lying out [die vier kunnen misschien wel
heel erg uitwijken).

Fenne: There are always kids in the class who are heavier or much lighter. (...) with
the whole class you have a clearer average.

The students had made different types of graphs (e.g. Figure 7.8). Bar graphs were
favored and, remarkably enough, many students used vertical bars, although Mini-
tool 1 only offers horizontal bars (the same happened in grade 8). Despite their ex-
perience with Minitool 1, these students were probably more acquainted with verti-
cal bar graphs than with either horizontal bar graphs or dot plots.29 In our view, it is
therefore an unnecessary restriction that Minitool 1 only provides horizontal value
bars. The discussions revealed a few things about the students’ notions of sampling.
In the previous lesson, Ciska had opposed measuring the whole class, because two
students were missing.

29. This could well be a more general phenomenon: in a study by Baker, Corbett, and Ko-
edinger (2002), American eighth and ninth graders mostly drew vertical value-bar graphs
when asked to make a histogram of a data set.
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Figure 7.8: Susan’s graph for the balloon driver: the sample of four is
indicated with black dots; boys and girls’ weights with different colors

In the present lesson, she noticed that the data set showed only seven girls, whereas
there were nine girls in the class. Aster responded to this:

I think that this is not so good, because there are more boys than girls and then you are
not certain, the ones that are more, maybe these are the outliers.

In the prediction of the whole class, Corinne expected more heavy students, but oth-
ers expected more students of average weight. When the teacher asked, “What could
you say about the larger sample,” Tomer observed that “the largest part of the class
is around the 50.” John then said that “the spread becomes larger.” From what he
said about it, the teacher inferred that he in fact referred to range and she asked the
class:

Teacher: Do you always look at the lowest and highest?

Froukje: You can also look where the most are. (...) Between 40 and 50.

This is one of the many examples in which a student talks about a group in the mid-
dle or the lowest and highest values.
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Figure 7.9: Growing weight samples in grade 7 (4, 19, and 67 data points)

Three classes

When the teacher showed the data from other classes, several students reacted with
saying, “Wow.” They were stunned with the data around 80 kg of one other class.
“Who is this?” There were several indications that students were involved in reason-
ing about the growing samples, and the discussion revealed much about their statis-
tical notions. As in the aforementioned quote, Froukje seemed to look at a modal
clump, while Fenne seemed to mean a kind of density when she used the term
‘spread’ (cf. Section 7.5.3).

Fenne: They are all a bit around the same weight. And those above, there the spread
is much larger, much further apart.

At some point in the discussion we were faced with the problem of having long dis-
cussions; students can tire and lose their concentration. For the next time, we decided
to let students do more of the growing samples activity by themselves or in small
groups (Chapter 9).

Six classes

Next, the students had to predict what the weight data of six instead of three classes
might look like in a graph. In general, the shapes of the graphs students made were
smoother than those of the real data. Almost all students used dots or small x’s in-
stead of bars (see Figure 7.10b and c). We assume that students opted to use dots be-
cause we presented them dot plots as feedback and because drawing many bars is
rather clumsy.

As a solution to the problem of what to do with very large samples, a few students
let one dot signify more than one student. Jeroen, for example, wrote under his graph
of six classes:
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Because it looks like this with three classes; one dot is just worth more.

Ho Shan indicated the hypothetical averages of six classes called A to F in his graph
(Figure 7.10a). Ingrid doubled all ‘frequency’ values of the three classes; she just
added a 35 as a low ‘outlier’ (Figure 7.10b). Froukje made a shape that is in fact
smoother than a typical real data set (Figure 7.10c).
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Figure 7.10: Predictions of six classes: a) six averages of Ho Shan,
b) Ingrid’s dot plot, c) Froukje’s dot plot

In contrast to the anticipations of the HLT, students had not made continuous sketch-
es. We therefore used the mini-interviews to ask about a graph of even larger sam-
ples. One observation was that if students drew lines, these tended to be not very
smooth but rather bumpy. After Tomer had drawn the bumpy line in Figure 7.11, we
added three continuous sketches (right-skewed, ‘normal’, and left-skewed) and
asked during a mini-interview:

Int.:  Assume now that there are very many relatively light children in the Nether-
lands and a few that are very heavy, which graph would you (interrupted)?

Tomer: This one. (This is correct: right-skewed)

Int.:  And when would you get something like this? (left-skewed)

Tomer: If there are very many heavy students and a few light ones.

Tomer was apparently able to relate the form of the sketch to the meaning (many
light students and a few heavy ones). This is an example of a mini-interview that
goes beyond what is discussed in the lesson to find out where we could go in the next
lesson or a future teaching experiment. In retrospect, we realized that we had implic-
itly expected continuous smooth shapes. We concluded from the bumpy lines that
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students accounted for the variability of the data.>? Smooth continuous lines are in
fact idealizations that do not give a realistic impression of the situation. In other
words, where we had tended to think just of the signal, students also took the noise
into account and could probably not consider signal and noise as separate constructs
(cf. Konold & Pollatsek, 2002).

—_

Ton's sketch

/Sk:{.’ll to the right

‘normal®

-

h

skewed to the left

Figure 7.11: Sketches during to mini-interview with Tomer

More than expected, the growing samples activity created opportunities to discuss
aspects of distributions. For example, students predicted more values around the av-
erage and larger spread if the sample was grown. They had reasoned better about
shape than before. We decided to conduct another teaching experiment focusing on
distribution in relation to this idea of growing samples, this time in grade §, when
students have a better mathematical background than in grade 7. We envisioned that
students, after enough experience with activities such as growing samples, would
come to see the stability of distribution aspects such as mean and shape (5.2).

Average and spread in speed sign activity

HLT for lesson 8

In the Nashville teaching experiment, it was during the speed trap activity around the
thirtieth lesson that students started to reason with shape, in this case ‘hills.” With
the growing samples activity as a background, we expected that the students of 1B
would also reason about shapes, although we planned to use the speed activity as ear-
ly as the eighth lesson. We also decided to use this lesson to find out more about stu-
dents’ preferences for Minitool 1 or 2, and to find out how well they understood the
different grouping options in Minitool 2. Again, we slightly changed the phrasing of

30. In American classes of grade 5, 6, and 9 that we have visited, students also made such
bumpy or even spiky lines, and never smooth curves.
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the problem to avoid vertical slicing and comparing numbers before and after a cut-
ting point, for instance 55 km/h, which is the point where people get fined for speed-
ing. We changed the context to a sign with “you are driving too fast” on it if people
drove too fast, and we mentioned nothing about the speed limit in that street. We ex-
pected that more students than in the pretest would be able to quantify the difference
between the two conditions, because of their developing notions of center and dis-
tribution and their experience with the Minitools activities.

Retrospective analysis

In the eighth lesson, the teacher and the students first talked through the data creation
for the speed sign. This introduction felt more natural than some others, probably be-
cause the teacher did a good job and because students could easily get an image of
the situation due to the fact that all knew such signs on roads.

sreafiiue .
TERT 4 R R ,
4547 48 51 53 55 57 50 61

63 65 67 64 4647 49 51 53 55 &7 5% /1 83 B &7 ]

e B AR AN A e o e
4547 49 51 53 55 67 59 G 63 65 67 69 4647 43 &1 53 S5 &7 53 61 63 65 6F 69

a b
a1

46 47 49 a1 53 a5 A7 68 B1 B3 B5 B7 1]

1} 4 |14 |22 N 5|2 1 0 1 0 o ‘

4647 48 51 531 55 57 53 61 63 65 67 B8 4647 49 53 a5 57 58 B1 B3 65 67 G

o
:

12 014 | 10| @

s|la|i|o]a ‘

4547 49 51 53 55 57 59 B1 Bl G5 &7 B9

c d

Figure 7.12: a) Speed sign data structured with b) four equal groups,
¢) equal interval width, and d) fixed group size (10 per group)

Was the speed sign effective? Yes, answered most students, but not by much. One
of the questions was how much the effect was in km per hour. Babette and Aster first
thought, “how can we know that,” but then they immediately started using the value
tool for finding means, and found a difference of 1.8 km/h. They concluded that “the
largest group is driving less fast.” However, certainly not all students had a reason-
able answer to this question. Though many students were able to quantify the differ-
ence in the two speed situations than in the pretest, we cannot conclude from stu-
dents’ answers whether they interpreted mean and median as group descriptors.
Students had to compare the different Minitool options in which the data were hid-
den. Each representation seems to have its advantages.
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From student answers when using the fixed-group-size option, we conjectured that
students can see the density in various parts of the graph well when using this fixed-
group-size option. For example, Klaas and David had chosen fixed group size 7.
Klaas said that the lines were closer together in the after condition. This means “that
the spread is less large.” David concluded, “so it had effect.”

It could well be that the four-equal-groups option helped some students to see where
the ‘majority’ was. For instance, Peter chose four equal groups as the clearest option
because “then you see what most do.”

We conjecture that reasoning with these multiple representations was useful to grasp
the notion of spread. Although students’ answers were often vague, it was clear that
they started to develop a language to talk about range, spread, and distribution. One
of the questions was how the spread had changed. Nico answered that it was “less
but with more outliers.” Most students by now understood the difference between
range and spread, but there were also counterexamples. Jeroen, for example, an-
swered to the question of how the spread had changed: “The spread has not changed
but it has shifted.” He probably meant that the range was the same, but that the clump
(majority, hill, high density part) where “the spread was small” had moved to the
left. We interpret this as confirming our conjecture that the differences between
spread, density, and distribution are not always clear for students (C7).

The difference between mean and median was not clear to many students. They of-
ten thought that the blue line of two equal groups was the average, or they thought
that the midrange was the median. Apparently, getting to know the median takes
more practice than we had assumed.

The three interviewers asked many students whether they found Minitool 1 or Mini-
tool 2 easier for answering the questions, but the answers were not very useful. One
boy had a clear preference for Minitool 2 when looking at spread. Another boy pre-
ferred Minitool 1 for small data sets and Minitool 2 for large data sets. Most answers
only referred to how easy it was to read off values from the graphs (cf. H23). This
means we were not able to confirm or reject our conjecture that students find Mini-
tool 1 easier for estimating means and Minitool 2 for looking at spread. This conjec-
ture probably needs to be tested in a more clinical way.

Creating plots with small or large spread

HLT for lesson 9

Within the battery context, most students had learned to take the mean as indicating
the average life span and the spread as related to the reliability of the brand. This
means that they reasoned with spread at a referential level. Later, they learned what
range was, and they characterized spread as “how far apart the values are.” In this
ninth lesson, we wanted to check whether students could invent graphs with large
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and small spread at a more general level, without a specific context. We would also
ask whether students could make a graph with a large range and a small spread, but
expected this to be a tough question.

Additionally, we intended to combine several things that were discussed earlier,
such as sample size, shape, and the Minitool representations. For that reason, we
asked the students to make an overview of the differences and similarities between
the different classes’ weights. We had the impression that students liked tasks that
ask for differences or similarities. Moreover, the advantages and disadvantages of
small samples had to be discussed.

Retrospective analysis

By this ninth lesson, students knew that small samples are easier and cheaper, but
less reliable. Almost all of them were able to draw graphs with small or large spread.
Some chose value-bar graphs (either horizontal or vertical); others chose dot plots.

L ]

Figure 7.13: Nico’s graphs of small (left) and large spread (right).

Figure 7.13 provides one example. As with the data invention activity (7.6), students
liked to invent graphs of data sets. During a class discussion we asked what the
smallest possible spread would look like. Some students understood that all data
points should then be the same (“exactly on top of each other”), but others objected
that there would no spread at all. We also asked if students could think of a graph
with a large range but small spread. This proved to be a tough question indeed. Only
after some help did a few students get the idea and made something like in Figure
7.16.

169



712

7121

Chapter 7

Figure 7.14: Susan’s value-bar graph and a dot plot with large range and small spread

We had the impression that students at this stage thought that small spread is best,
an idea that probably stemmed from the battery activity. Therefore we asked if stu-
dents could invent contexts in which large spread is favorable. They mentioned
coins (not only 10 cent pieces), soccer matches (different scores are favorable to
ties), and fruit (not only apples of the same size). We concluded from this lesson that
students had developed a better understanding of samples, and a more general un-
derstanding of spread in relation to two different graphical representations, value-
bar graphs and dot plots.

Jeans activity

HLT for lessons 10 and 11

If you know the waist sizes of 200 men, which percentages of each jeans size would
you advise the factory to make? We considered this question a way to avoid the
mean distractor effect, because the whole distribution is important, not only the
mean. Additionally, we expected that this question would offer students a more
quantitative and precise way of structuring a distribution than simply working with
low, average, and high values.
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Figure 7.15: Jeans data set with equal interval width
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In that sense, this jeans activity built on the speed sign activity and other activities
that supported students’ notions of spread. Because we had learned from previous
teaching experiments that setting the stage for such an activity was very important
(talking through the process of data creation), we decided to spend one lesson on the
question of how one could investigate the question of the jeans factory, and the ques-
tions of who else might be interested in people’s measurements, and how one could
best take a sample. Moreover, this activity was meant to motivate using the equal-
intervals option and support future understanding of the histogram (the revised
Minitool 2 with histogram and box plot overlays was ready but, unfortunately, it did
not run properly at the school site).

Retrospective analysis

It proved harder than expected to let students invent a design for investigating the
question of the jeans factory. Most students were pragmatic: if you have left-overs
in one year you know you have to order fewer of that size the next year. As in pre-
vious attempts it turned out hard to engage students in discussing sampling issues.
In the next computer hour, many students first chose the four-equal-groups option to
structure the given data set. It could well be that they chose four equal groups be-
cause the percentages would then be easy to find. Their answers were very general;
for example, “make a lot of sizes from 32 to 34 (inches) and a little less of 36 to 46.”
We then asked if students thought that a factory paying 1000 guilders would be glad
with such advice. Many students then looked for more precise ways and eventually
used the equal interval width option at 2 inch, which provided frequencies. They had
no problems with dividing these numbers by 2 to find percentages. From the mini-
interviews and their answers we inferred, however, that hardly any student had un-
derstood the details of rounding off or up (a person with waist of 33.2 needs size 34)
or of the representativeness of the data set for other groups of men.

The clothing sizes context was too complex and not really appealing: students just
try clothes on, they rarely even know their size, and they are usually unfamiliar with
what inches are. We concluded that this activity needed revision in several ways. For
a next time we would prefer to invest more time in sampling, center, and spread is-
sues than trying to guide the reinvention of a histogram or a box plot, for example.
We do not deny that reading off values from a histogram or box plot can be easy (cf.
Baker et al., 2002), but in our approach graphs had to stand for distributions and be-
come reasoning tools about aggregate features of the data sets.

Final test

During the twelfth lesson, students made a final test with four tasks, which are de-
scribed in this section. Almost all students were also interviewed in pairs on one of
the tasks.

This final test was only part of the assessment: their answers to the activities in pre-
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vious lessons were also judged on completeness, neatness, and quality of argumen-
tation.

First task: row from small to tall

What would it look like if a random sample of 100 men were to stand in a row from
short to tall? Gravemeijer (1998c) asked many people this question and the mistakes
and surprises were numerous. More than a century earlier, in 1871, intrigued by
Quetelet’s work on the normal distribution, Knapp reported on how he drilled re-
cruits. He ordered them to stand in a row by height. Freudenthal (1966a) wrote about
this:

Toen hij tot zijn schrik bemerkte, dat de kruinen niet naar links én rechts afliepen, dus

niet zoiets als een normale kromme aftekenden, liet hij ze heel eigenaardige exercities
uitvoeren, waarvan de finesses mij niet duidelijk zijn geworden. (p. 137)

When he noticed to his horror that the line of the tops of their heads did not slope to
the left and to the right, i.e. that the line did not look like a normal curve, he let them
do very peculiar exercises of which I do not understand the subtleties. (translation
from Dutch)

Apparently, it can be hard to imagine the line over the tops of people’s heads. These
two references inspired us to ask how we could picture the whole class in a row from
short to tall. This question was meant to discover whether students could relate their
understanding of distribution in dot plots to a value-bar graph or a continuous shape.
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Figure 7.16: Four sketches that were provided to “help or mislead you.”

If students could transfer their intuition that there are many people around average
into a flat part in the graph, we could then conclude that they had some conceptual
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understanding of variation and distribution with which to make this step of transfer.
We provided four continuous sketches as a reference context “to help or mislead
you,” as we wrote in the task.

Three students of the 21 who made the test gave no answer, and three drew straight
lines. Six students drew a bumpy continuous line without a horizontal part in the
middle, and three used vertical bars or sketches of people of linearly increasing
height. We assume that they did not account for differences in density or frequency,
but that the six with bumpy lines did account for some variation. Four students drew
a line with a horizontal part in the middle and four drew bars or a line of people with
a flat part in the middle. From their explanations we inferred that they thought of
three groups of low, average, and high values (see C1 in Appendix).

There are tall children and short children and most of the children are about equally
tall [zijn toch wel even lang].
There are a few short ones and a few tall ones and the rest is average.

The fact that students drew sketches without a flat part in them does not mean that
they thought that there was no difference in frequencies of certain heights. Some of
those who had made straight lines showed insight into this task during the interview.
Fenne, for example, explained her sketch as follows:

But look here, from here to here, look, it is a little higher, this a little lower, but this

piece [in the middle], that is roughly about the same. And these are then again the high
outliers and these the low outliers.

Because she used ‘outliers’ in an unconventional way, we asked her peer:

.-

Do outliers occur often or rarely, Corinne?

Rarely.

Rarely.

No, I think that [interrupted].

Otherwise they would not be called outliers.

No, I do think that they occur often. I think that if you go to any class here,
whether 5 vwo or 6 vwo, or 2 havo, or whatever. You always have.

But not many, because otherwise it wouldn’t be outliers.

No, but I think, no, that you’d get that in all classes [dat je wel bij alle klassen
zo uitkomt]. With animals too, uh and uh with everything, I think.

maQmEQg
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From Fenne’s words, we infer that she had a sense of the stability of distributions.
She expected values with a low frequency in all data sets. Fenne interpreted ‘outli-
ers’ as extreme values of which there are only a few, but Corinne interpreted it as
values that are rare or exceptional. Though Fenne was not very good in mathematics
or other school subjects, and did not work very well for most of the lessons, she dem-
onstrated a sense of the stability of how data are distributed. In retrospect, we had
paid too little attention to culturally accepted ways of using the term ‘outliers’.
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From the retrospective analysis we concluded that students tended to think of data
sets as three groups of low, average, and high values (C1). There was only one ex-
ception that we could interpret as a qualification of that observation. Ciska made the
sketch in Figure 7.17 and explained it as follows: “There are 3 smaller ones, about
10 average, 3 to 4 taller, and of course in between.” It could be that she realized that
the numbers she guessed had to add up to 23.
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Figure 7.17: “There are 3 smaller ones, about 10 average,
3 to 4 taller, and of course in between.”

We concluded that two thirds of the students were able to express their notion of dis-
tribution consisting of low, average, and high values in some graphical representa-
tion with a continuous line or a series of bars or people. We assume that their expe-
rience with both Minitool 1 and 2 was a prerequisite for this ability.

Though this first task was informative about students’ notions of distribution, we
would not use it again in this form as an assessment task. As the mini-interview with
Fenne demonstrates, some students initially chose the wrong shape, but could still
explain why there should be an almost horizontal part in the middle of the shape.
Without such interviews, we would have had very different findings.

Second task: training program

The second task was meant to see if students could make graphs that were compati-
ble with a context story on running practice with both informal and statistical no-
tions. There were no restrictions on the type of graph they could use. We had delib-
erately incorporated characteristics in the story that ranged from easy to difficult, so
that all of the students could display a number of characteristics in their own graphs
on their own