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Pourquoi donc, reprit le Sirien, citez-vous un certain Aristote en grec ? –
C’est, répliqua le savant, qu’il faut bien citer ce qu’on ne comprend point
du tout dans la langue qu’on entend le moins.

Voltaire, Micromegas

Schüler: Kann Euch nicht eben ganz verstehen.
Mephistopheles: Das wird nächstens schon besser gehen,

Wenn Ihr lernt alles reduzieren
Und gehörig klassifizieren.

Goethe, Faust



Preface

Sets in the middle

Conflict sets are sets where two wavefronts coming from different objects meet. To see a
conflict set throw not one, but two stones in a pond. The interference pattern you get is a
conflict set.
We will study how these are sets are curved, if they are smooth at all. When they are not
smooth we will study their singularities. The main theme is that conflict sets are very much
like wavefronts themselves.
The study of conflict sets was motivated by some very tangible geometric notions. The
first of these is the notion of a Voronoi diagram. A Voronoi diagram is a division of the
plane in different regions {Vi}i=1,··· ,l, such that for x ∈ Vj the closest of a number of points
{pi}i=1,··· ,l is pj . Voronoi diagrams arise in many sciences, for instance the pi can be roots
of plants and the Vi the regions that each of the plants can take their water from.
The second of these is the idea of a skeletal set describing the form of an object in n-space. If
we have a closed compact hypersurface M in Rn, for instance the surface of a dog bone, the
distance from some interior point to M can have non-unique absolute minima: the minimal
distance is d0 and there are at least two points on M for which it is attained. Normally,
there is just one absolute minimum and thus the locus of points where there are two minima
forms a codimension one subset in the interior of M . The set so obtained is commonly
called, the medial axis or the central set. The two concepts are related as we can see from
figure 1.
For the definition of the conflict set we will replace the points pi in the definition of the

Figure .1. The medial axis of a dog bone approximated by a Voronoi diagram

Voronoi diagram by compact manifolds Mi and the critical values of the distance function
are no longer required to be absolute minima. In this way we will obtain a set in the middle:
the conflict set.

Generic differential geometry

Let M be an embedded manifold in an Riemannian manifold X. In differential geometry
one studies the properties of such an embedding that are invariant under isometries of the
ambient manifold X.

v
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In this way a lot of results can be obtained. Even more can be said when one restricts atten-
tion to certain embeddings that we call “generic”. As the name suggests most embeddings
are generic. Genericity is defined using transversality conditions. For instance, a generic
line in R3, intersects the XY -plane in a single point. A line contained in the XY -plane can
be rotated slightly in space. The rotated line intersects the XY -plane in just one point.
Another example: most quadruples of points span a positive volume. Again, if the points
do not span up a positive volume we can move one just a little bit and obtain four points
that do span a positive volume.
What the transversality condition actually is varies from problem to problem but it is a
method by which strong results can be obtained under mild conditions.
Here is one such result, concerning the envelope of the normal lines from a curve in the plane.
Let γ : S1 → R2 be an embedding of the circle in the plane. We may think of an ellipse. At
every point s0 the curvature κ(s0) and the normal ν(s0) are defined. The focal set or evolute,
or caustic, is defined as the set of points in the plane traced out by γ(s) + κ−1(s)ν(s). It is
the envelope of the normals to the curve γ. Let us mention a well-known theorem.
Theorem .1. For a generic embedding γ the focal set F has the following property: ev-
ery point p ∈ F has a neighborhood in p ∈ U ⊂ R2 such that the intersection U ∩ F is
diffeomorphic to one of the following algebraic varieties x2 = 0, x1x2 = 0 or x3

2 − x2
1 = 0.

In this theorem we have characterized all generic local forms of the focal set. Locally only
a few singular situations can arise. In chapter four we obtain a similar characterization of
conflict sets in low dimensions.

Cut locus, Maxwell strata, central set, medial axis, symmetry set

In generic differential geometry one often studies singular sets which are associated to a
distance function from a submanifold and which measure some sort of symmetry.
The most well-known of these sets is probably the cut-locus associated to a Riemannian
manifold X and a point p. In a neighborhood U of 0 ∈ TpX the exponential map

exp: TpX 7→ X

is a diffeomorphism: small vectors are mapped to geodesics that are globally minimizing.
However, what is locally the shortest path need not be the shortest path globally.
For each v ∈ TpX with ‖v‖ = 1 let t = t(v) be the largest number such that for all
0 ≤ s0 ≤ t(v) the path

{s ∈ [0, s0] | exp(p, sv)}
is the shortest path from p to exp(p, s0v). Clearly t(v) might be infinite. If t(v) is finite the
point exp(p, t(v)v) is called the cut point of p, v.
All cut points together form the cut-locus of X wrt. p. At points of the cut-locus the expo-
nential map exp(p, ·) is no longer injective or its differential is no longer injective. If X is
compact the cut-locus is a deformation retract of X \ {p}.
Another such set is related to an embedded manifold M ⊂ X, where X is supplied with
a Riemannian metric. For (p, v) ∈ NM , where ‖v‖ is small, that a neighborhood of p, v
is mapped diffeomorphically to X. Where the exponential map is no longer a injective or
immersive we have a locus called the central set or medial axis. It is what Thom called the
“cut-locus d’une variété plongée”, see [Tho72]. If M is a parabola and X is the plane it
lies in we can see that the central set measures symmetry.
The central set of an ellipse in the plane consists of just one line segment. But the ellipse
has two symmetry axes. So how do we incorporate the other axis?
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The other axis is contained in the symmetry set. The symmetry set is the closure of those
points p ∈ X where the distance function M 3 q → d(p, q) has two non-degenerate critical
points with the same critical value. When we consider the symmetry set of the ellipse in
the plane we will get the desired two line segments.
There is a drawback here. The definitions of cut-locus and central set presuppose that we
work in an ambient manifold X where the unit speed geodesics are defined for all times t.
We ask that X is geodesically complete.
Examples of geodesically complete spaces are compact Riemannian manifolds, say an ellip-
soid ⊂ R3, with three different axes. A geodesic on an ellipsoid can be non-periodic. In
fact most geodesics on ellipsoids are non-periodic. Hence, symmetry sets of curves on the
ellipsoid might become quite awkward, because not just the absolute minimum but every
critical value is considered. Completeness of X is not enough for the definition of symmetry
set set to give reasonable results.
To avoid unwanted behavior rather strict conditions have to be imposed on the ambient
spaces that we consider. In this thesis these conditions are stated in section III.1.9. Ba-
sically X is assumed to be complete and all points in X are assumed to have an empty
cut-locus.
It is not only in this respect that the symmetry set is different from the central set. Lo-

Figure .2. Two symmetry sets and the graph of a distance function having
two critical points with the same critical value

cally the two can exhibit quite different behaviour. Consider a compact manifold without
boundary in R3. Suppose the surface is the surface of a generic smooth dog bone. At one of
the sides we will find a point where the central set looks like we can see at the left hand side
of figure 3. There are

(
4
2

)
= 6 planes intersecting in 4 lines meeting at a point. Centered at

that point of the central set there is a sphere completely contained inside the dog bone that
touches the surface of the dog bone in four points. Such a singularity happens generically.
It cannot be removed by deforming the dog bone. However the symmetry set looks quite
different at such a point. On the symmetry set the six planes continue: there are still critical
values but they are no longer absolute minima.
Both the symmetry set and the central set can have what we call endpoints. Endpoints are
points where the axes of symmetry of the ellipse stop. Such endpoints are really singular
points of a focal set. Though interesting, we will not consider these endpoints here. Instead
we will measure symmetry between several manifolds. We take l manifolds Mi in our am-
bient manifold X and define the conflict set as the closure of those points p ∈ X for which
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Figure .3. Left: singularity of the central set or medial axis, right: what
the symmetry set looks like at such a point

there exist qi ∈ Mi such that the distance functions

di,p : Mi → R qi 7→ di(p, qi)

all have a non-degenerate critical point and at the same level, that is, with the same critical
value. Such points q form the conflict set. Pictures of the conflict set are in the figures I.1,
II.2 and a singular one in figure III.5.
To develop some intuition for the differences between the conflict set and the symmetry set
consider again the example of figure 3. The sphere that touches four patches of surface can
come up in three different types of conflict sets. First of all there is the conflict set of four
( compact ) surfaces in R3. Such a conflict set generically contains only isolated points.
Hence when l = 4 and dim X = 3 figure 3 reduces to the intersection point of six planes.
In the setting of three surfaces in 3-space their conflict set is a line. Figure 3 will happen
when two of the four points lie on one surface M1 and the other two lie each on a different
surface: M2 and M3. The symmetry set of M1 and the conflict set of M1, M2 and M3

intersect. Figure 3 reduces to two intersecting curves.
In the setting of two surfaces in 3-space we can get a sphere touching four pieces of surface
when two symmetry sets meet on a conflict set. From the six planes in figure 3 four remain.
Hence, there is a correspondence between singularities of central sets, symmetry sets and
conflict sets, but there are also differences.

Symplectic and contact geometry

The focal set we introduced above is an instance of a much studied class of manifolds:
Lagrangian submanifolds of a symplectic manifold. We will use Lagrangian manifolds to
study the singularities of conflict sets.
Lagrangian submanifolds arise as one tries to solve first order partial differential equations.
The standard example of such a PDE is one that describes equidistants to a submanifold.
If u : X → R is the function that describes the distance from a point x to a submanifold
M ⊂ X then at each point x ∈ X we will have that the ∂u

∂x are unit length normal vectors.
Thus we would need that

(.1) ‖∂u

∂x
‖ = 1



OUTLINE OF THE RESULTS ix

Equation (1) describes a PDE, with initial condition u|M = 0.
The solutions of the PDE are well-defined except at points of the caustic or the symmetry
set. Hence the function that describes the distance to a submanifold is not really a function:
we consider not the function but what would be the graph of ∂u

∂x , this is a Lagrangian
submanifold of T ∗X, or the graph of u, ∂u

∂x , this is a Legendrian submanifold in J1(X,R). If
we project these graphs to X the singular points of the projection form the focal set.
Lagrangian and Legendrian manifolds are usually constructed in a down to earth way. Let
d : X ×X → R be a metric on X. If γ : M → X is an embedding of M then the distance
from s ∈ M to x ∈ X is F (x, s) = d(γ(s), x). The distance function has a critical point
where

(.2)
∂F

∂s
=

∂d(γ(s), x)
∂s

= 0

Then where (2) holds the derivative of the distance “function” u above is ∂F
∂x .

In general if we have a family of functions F (x, s) such that the set ∂F
∂s = 0 still behaves

reasonably - i.e. it is a manifold - then the “graph” over X of ∂F
∂x is

ΛF = {x,
∂F

∂x
| ∂F

∂s
= 0}.

This “graph” is called a Lagrangian manifold. In chapter three we will elaborate on these
remarks. It turns out that for conflict sets such a family of functions exists as well and
generically it behaves well.

Outline of the results

The contents and results of this thesis are as follows.
• In chapter one we will define the conflict set of l oriented hypersurfaces in Rn. A remark

concerning the smoothness of the conflict set is made. In chapters one and two we will
study curvature and torsion properties of conflict sets, in terms of the properties of the
base manifolds Mi. We will prove a formula for the curvature in the case where l = 2,
and where l = n = 3. We will indicate how to proceed in the case l = n > 3. Chapter two
concludes with a long computation that through an example proves the curvature formula
for l = n = 3 in another way.

• The torsion of a conflict set is calculated in chapter two. The fact that in the case of
spheres it is generically zero is the subject of a theorem in chapter 1.

• In chapter three we will prove that the singularities of conflict sets generically are of the
same nature as the singularities of wave fronts. We also discuss what happens when the
singularity of the conflict set is non-generic. The chapter starts with a review of the results
from symplectic and contact geometry that we need. Part of the review is a slightly novel
treatment of the Gauss map. We also use the language of symplectic geometry to rephrase
some of the results of chapter one.

• In chapter four we discuss some notions similar to the conflict set. We introduce the
center set, and show that it generically has the structure of a wavefront as well. We also
discuss its relation to the center symmetry set introduced by Janeczko. In the last section
we relate the notions of conflict set and center set to existing notions such as orthomtic,
billiard transformation and pedal curve.

• In chapter five we classify singularities of conflict sets. In low dimensions local models for
the conflict set are fabricated using non-versal deformations of sums of the well-known
ADE-singularities. We determine explicitly in which dimensions there is a finite list
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of singularities. The methods employed here are very similar to ones used to classify
singularities of caustics and wavefronts. We thus try to put our results in that perspective,
reviewing some of these things. It turns out that our analysis still gives rise to some
surprises. For instance from the generic point of view the singularities of the conflict set
of n surfaces in Rn are the same as those of 3 surfaces in R3.

The reader is notified that a shorter version of chapters one and two is in [vM03]. Chapters
three, four and five are an extension and improvement of [vM]. Chapter 3 was the subject
of talks of the author at conferences in the second half of 2000 in Cambridge and Liverpool.



I Curvature for two surfaces

I.1. Introduction

Let M1, · · · ,Ml be l manifolds in Rn, all of smoothness Cj with j ≥ 1 and of dimension n−1.
Suppose the Mi are orientable. The orientations supply us with n1, . . . , nl, unit sections of
the conormal bundle N∗(Mi) of the Mi in Rn. We can speak of wavefronts that emanate
from the l manifolds in distinct directions as “time” increases or decreases.
The conflict set Mc of (M1, n1), (M2, n2), . . . , (Ml, nl) is defined as the set of points where
these wavefronts meet. The conflict set of M1,M2, . . . ,Ml is defined as the union of all the
conflict sets associated to particular configurations of orientations. The symmetry set of
(Mi, ni) is defined as the set of points traced out by the self intersections of the wavefronts
of Mi.
Given the second fundamental forms of M1 and M2, can we determine the second funda-
mental form IIc of Mc?
In the next few theorems and their proofs we will assume that the distance function for each
of the k manifolds has only regular points on the conflict set and that - again on the conflict
set - the wavefronts travel in different directions, or if they travel in the same direction, they
should do so at different speeds. This is to say that the sphere with center c on the conflict
set and touching one of the Mi, touches at one point p only and c is not one of the centers
of curvature of p. A more precise notion is provided in paragraph I.3. The regular part of
the conflict set makes up what one might call the Al

1 stratum. It consists of those points
that do not correspond to ones on the symmetry and/or focal set of the Mi.

Theorem I.1. Let Mi, i = 1, · · · , l ≤ n, be hypersurfaces in Rn of smoothness Cj, j ≥ 1.
Let wavefronts at constant speeds λi emanate from Mi. The conflict set Mc is at least Cj at
regular points.

Theorem I.2. If M1 and M2 have second fundamental forms II1 and II2 then Mc has second
fundamental form (2 cos φ)−1PT (II∗1 − II∗2)P, where 2φ is the angle that the tangent spaces
encompass, II∗ denotes the second fundamental form at the point where the wavefronts meet,
and P : TpRn → TpMc is the projection - restricted to the tangent space of the wavefronts of
the Mi. The two manifolds are required to have smoothness C2.

Theorem I.3. Let wavefronts emanate from Mi, i = 1, · · · , l, spheres with different radii
in Rn, l ≤ n. Let the convex hull of the centers of these scaled spheres be at least l − 1
dimensional. The Al

1 stratum of Mc is a conic section in an (n− l + 2)-dimensional affine
subspace of Rn.

Example I.4. Consider two circles α1 and α2 in the plane, with centers (0, b1) and (0,−b2)
and radii r1, r2, such that 0 < b1 < b2 and b1 + b2 6= ±r1 ± r2. For each configuration of
normals a separate conflict set arises. In concordance with theorem I.3 the conflict set is
with all configurations a conic section. See the next chapter for a more meaningful example.

In the papers [Sie99] and [SSG99] similar results concerning curves in R2 and convex hy-
persurfaces in R3 are proved. Our results however are more general and our method of proof
is completely different. Similar calculations are in [Ber95] and [BW59]. In section IV.4 we
will explain their relevance and discuss some applications of the curvature formula.
The main lemmas we use to prove theorem I.2 are reexamined at the end of chapter three.
The proofs here are lengthy but elementary and thus may provide some more insight.

1



2 I. CURVATURE FOR TWO SURFACES

Figure I.1. The conflict set from example I.4

I.2. Preliminaries on contact between submanifolds

Let M and N be two manifolds in Rn both of dimension m. If M ∩N is not empty we can
study the contact between M and N at points p in M ∩N . Let σN be locally a submersion
for N and ιM be an immersion for M near p. The contact map for M and N at p is
κN,M = σN ◦ ιM . If diκN,M is zero for i < k then we say that M and N have k-contact at
p.
The κ-class of κM,N is the equivalence class of functions f : Rm 7→ Rn−m that are contact
equivalent to κM,N . If K and L are also m-manifolds in Rn and they have such a function
as contact map at q then there is a diffeomorphism φ carrying a neighborhood of p to a
neighborhood of q and such that φ(M) = K and φ(N) = L.
It is also possible to consider contacts between anequidimensional manifolds. Let M1 have
dimension m1 and M2 dimension m2, and m1 < m2. Put

κM1,M2 = σM1 ◦ ιM2 : Rm2 7→ Rn−m1

To compare two contacts one considers the κ-class of κM1,M2 . A result of Montaldi says
that κM1,M2 is a trivial unfolding of κM2,M1 , see [Mon83].
If M1 and M2, with dim M1 ≤ dim M2, have at least 2-contact, then the tangent space of
M1 at p will be contained in Tp(M2). In this case we also employ the notion of k+1-contact
in a certain direction V of Tp(M1). V will in general be a subspace of the tangent space.

Definition I.5. M1 and M2 have (k +1)-contact, with k > 0 in the direction V ⊆ (TpM1∩
TpM2) if

(1) M1 and M2 have k-contact at the point p and,
(2) there is a third manifold L1 with TpL1 = V 6= (TpM1 ∪ TpM2) and such that L1

has (k + 1)-contact with both M1 and M2.

Our main interest will be in two manifolds that have 3-contact at p in a certain direction.
Here the second derivative of the contact map d2κM1,M2 and its pushforward along ιM1 is
a bilinear form - possibly vector valued - on the tangent space of Rn at p with values in a
euclidean space. We say that a vector v ∈ TpRn is in the kernel of ι∗ d2 κM1,M2 if

vTι∗d2κM1,M2v = 0.
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Example I.6. Let a hypersurface M in Rn+1 be given by an immersion ιM = (t, f(t)),
with f : Rn, 0 7→ R, 0. Let N be another hypersurface with immersion ιN = (t, g(t)) and
g : Rn, 0 7→ R, 0. The hypersurfaces have k-contact iff. the first k − 1 derivatives of f and g
agree in 0.
Lemma I.7. Two manifolds M1 and M2 have 3-contact at the point p in the directions
W ⊂ (TpM1 ∩ TpM2) iff. vTι∗ d2 fiv = 0, ∀v ∈ W and for all components fi of the contact
map κM1,M2

Proof. ”=⇒” Let L be the manifold that has 3-contact with both M1 and M2. Let
dim L = l ≤ m1 = dim M1 and m1 ≤ m2 = dimM2. We can assume that L = Rl × {0}.
Because, at p = 0 the tangent space of L is contained in the tangent space of Mi we can
write the immersions of M1 and M2 as

ιM1 = (s1, · · · , sm1 , fm1+1(s1, · · · , sm1), · · · , fn(s1, · · · , sm1))

and
ιM2 = (s1, · · · , sm2 , gm2+1(s1, · · · , sm2), · · · , gn(s1, · · · , sm2))

Because
d2κL,M2 = 0

and
d2κM1,L = 0

are zero by hypothesis it follows that

d2
l κM1,M2 = 0

in the point p = 0. Here dl denotes the derivative with respect to (x1, · · · , xl). This is
exactly what we needed to prove.
”⇐=” Choose an orthonormal basis for TpM1 so that W is spanned by e1, . . . , ek, the first
k basis vectors. L is then the manifold that is the image of

ιM1(x1, . . . , xk, 0, . . . , 0).

¤

From the proof it is clear that a similar statement holds for higher order contacts.

I.3. Proof of theorem I.1

If the speeds of the wavefronts are all equal we can think of spheres centered at the conflict
set having at least 2-contact with each of the Mi. Note that there may be more than one
sphere with center on the conflict set, i.e. the conflict set of oriented hypersurfaces may have
self-intersections.
When the speeds of the wavefronts are different, that is λi, each of the spheres centered on
the conflict set decomposes into l different spheres. The ratio of the radii of these spheres
will be λ1 : . . . : λl.
The spheres in both cases will be called the kissing spheres, the terminology coming from
the two-dimensional case. The points where the kissing spheres (αj)i of a point p on the
conflict set Mc and Mi touches Mi will be called the basepoints pj . At each basepoint we
have a singularity type of the contact between the kissing sphere and the corresponding Mi.
This is the same as the singularity type of the distance function d(p, ·) on Mi. The following
definition ensures that we are away from focal sets and also away from selfintersections.
Definition I.8. A point p on the conflict set Mc is called regular if
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• For each i the distance function s → d(p, s) d : Mi → R is smooth and has a non-degenerate
critical point at the basepoint s = pi,

• The vectors

n∗i =
(

λi,
∂d

∂x |x=p

)

are linearly independent.
Even in the generic case - we won’t specify what that means until chapter 3 - we expect
other than regular points on the conflict set.
The definition of regularity assures that the conflict set is an immersed submanifold at p. It
does not assure that the conflict set is an embedded submanifold.
A weaker version of the theorem I.1 is in fact a known result, see [JB85]. A short version
of this argument goes as follows.
The distance functions induce a mapping of

(I.1) Rn ×
l∏

i=1

Mi 7→
l∏

i=1

J1(Mi,R)

The projection of the Al
1 stratum on to the first factor is an immersed Cj−1 manifold. This

stratum represents exactly those points q that are the center of a sphere having 2-contact
with all manifolds Mi.
However, this proves only that the conflict set is Cj−1.
We have conormal bundles N∗(Mi). Denote by ∗i a map N∗(Mi) 7→ Rn+1 defined by

∗i : (p, ξ) 7→ (p + ξ~n(p), λiξ)

The images of these maps in Rn+1 are n-manifolds, possibly singular. In the literature one
sometimes uses the term big wavefront for the image of N∗(Mi) by ∗i. To check whether
the image is a manifold around a point ∗i(p, ξ) we have to check two things. Firstly the map
should be injective and secondly the derivative should have rank n. The first condition fails
when there is more than one basepoint. Hence we have to be away from the symmetry set
of Mi. The second condition fails when the first n coordinates represent the point on the
focal surface corresponding to the basepoint or one of the basepoints, see [Mil63]. This is
exactly the definition of a regular point.
Now the intersection of the k images in Rn+1 is a transversal intersection at all but the above
mentioned points, because ~niλi 6= ~njλj . Furthermore it is Cj−1. The projection onto the
first n coordinates has no critical points because the vector that is the direction of projection

(0, · · · , 0, 1) ∈ Rn+1

never lies in the tangent space of the big wavefront. The projection is also the conflict set
and thus we have established that the conflict set is Cj−1. But in fact we shall see that the
big wavefront is a Cj manifold. And thus the conflict set is Cj .
A nice proof of the fact that the big wave front of a hypersurface M1 at points where the
distance function has regular values has the same smoothness as M1 was supplied by J. J.
Duistermaat.
Let p be a point on the original hypersurface M . Let q be a point on the wavefront W at
distance d. If q is a regular point of the distance function on W with p being the basepoint
of q then the conormal bundle N∗W has the same smoothness as N∗M around these points.
They both have smoothness Cj−1.
But the conormal bundle of a manifold W has smoothness Cj−1 iff. the the manifold itself has



I.4. PROOF OF THEOREM I.2 5

smoothness Cj . Thus the wavefronts have equal smoothness at regular points of the distance
function. As the big wavefront is a union of these wavefronts, smoothly parameterized, the
big wave front is also Cj .

I.4. Proof of theorem I.2

The proof of the theorem will depend on some lemmas. Basically we will construct for
each basepoint a Meusnier sphere to the Mi it lies on. The Meusnier spheres Ni will have
3-contacts in appropriate directions Vi. As a consequence the intersections of the images of
N∗(Ni) and those of N∗(Mi) in Rn+1 will also have a 3-contact in some direction Vc. With
this we can find the second fundamental form of the conflict set.
Lemma I.9. Let M and N have 3-contacts in the direction V ⊂ TpM . Then M∗ = ∗M (M)
and N∗ = ∗N (N) have 3 contact in the directions of the linear span of (n, 1), n ∈ NpM and
{(v, 0) | v ∈ V }
Proof. It is enough to consider the Monge forms - that is : the second order Taylor
approximations of the immersions and submersions of M and N . Thus choose coordinates
such that

ιM (t1, . . . , tn−1) = (t1, . . . , tn−1, (t1, . . . , tn−1)T A(t1, . . . , tn−1))

where A is a symmetric matrix.
In the same fashion presume that

σN (x1, . . . , xn) = xn − (x1, . . . , xn−1)T B(x1, . . . , xn−1)

The contact map between the manifolds is then

(x1, . . . , xn−1)T (A−B)(x1, . . . , xn−1)

For vectors in v ∈ V we will have vT (A−B) v = 0. We shall write (t1, . . . , tn) = (t′, tn) =
(t′, t′′) and (s1, . . . , sn) = (s′, sn) = (s′, s′′). The normal nM to M in a neighbourhood of 0
is:

nM = (−
∑

k

Ak1t1, . . . ,−
∑

k

Ak,n−1tn−1, 1) = (−At′, 1)

Although this normal does not have unit length we can use it to write ∗M in coordinates:
∗M = (ιM + tnnM , tn).
We make a transformation on the first n coordinates of Rn+1 by

H :

{
si = (∗M )i i = 1, . . . , n− 1
sn = tn

This transformation is not singular in some neighborhood of 0 for ∂H
∂t (0) = I. Its inverse

can be calculated when t is small:

t′ =
(
I + snA +

s2
n

2
A2 + . . .

)
s′

It is also convenient that the transformation H is the identity map on the tangent space of
M , N , M∗ and N∗.
We are interested in the Monge form of ∗M and ∗N in these new coordinates. The map ∗M

has the following particularly simple form:

∗M = (s1, . . . , sn−1, (s1, . . . , sn−1)T A(s1, . . . , sn−1) + sn, sn),
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We will compute a Monge form for N∗. The first n− 1 components of ∗N are

(I− tnB) t′ = s′ + sn (A−B) s′ + o(t2)

The other components are simply s′T Bs′ + sn and sn. The submersion for M∗ is

σM∗ = xn − xn+1 − (x1, . . . , xn−1)T A(x1, . . . , xn−1)

and as a consequence
κM∗,N∗ = σM∗ ◦ ∗N = s′T Bs′ − s′T As′

whereby the lemma is proved. ¤

At p = 0 we have 2 pairs of hypersurfaces: M1, N1 and M2, N2. Each element of a pair
intersects transversally with elements of the other pair and the elements in one pair have
identical tangent spaces. We have a third pair of manifolds: Mc = M1 ∩ M2 and Nc =
N1 ∩N2.
Lemma I.10. If M1 and N1 have 3-contact in the directions Va and M2 and N2 have 3-
contact in the directions Vb then Mc and Nc have 3-contact in the directions Vc = Va ∩ Vb.

Proof. As in the proof of the previous lemma we will only consider Monge forms. Of
course we want to calculate the contact map. The submersion for Mc is quickly found:

σMc = (σM1 , σM2)

To find an immersion for Nc first notice that the immersion for N1 and N2 can be written
in the form:

ιN1 = (t1, . . . , tn−2,R(φ)(tn−1, t
′T At′))(I.2)

ιN2 = (t1, . . . , tn−2,R(ψ)(tn−1, t
′T Bt′))(I.3)

Here we wrote R(φ) for a rotation by an angle φ. The points of Nc are the points where

ιN1(t
′) = ιN2(s

′)

from which we conclude that

si = ti, i = 1, . . . , n− 2

We have sn−1 = sn−1(s1, . . . , sn−2) and tn−1 = tn−1(t1, . . . , tn−2). With these relations
we obtain two different immersions for ιMc , number one is derived from ιN1 and tn−1 =
tn−1(t1, . . . , tn−2), number two from ιN2 and sn−1 = sn−1(s1, . . . , sn−2). We combine this
with the above obtained to obtain a contact map.

κMc,Nc = (σM1 ◦ ιN1|tn−1=tn−1(t1,...,tn−2), σM2 ◦ ιN2|tn−1=sn−1(t1,...,tn−2))

Now we want to calculate the second derivative of this map. We will start with the first
component.

(I.4)
∂κM1,N1|tn−1=tn−1(t1,...,tn−2)

∂(t1, . . . , tn−2)
=

∂κM1,N1

∂(t1, . . . , tn−2)
+

∂κM1,N1

∂tn−1

∂tn−1

∂(t1, . . . , tn−2)

and
∂2κM1,N1|tn−1=tn−1(t1,...,tn−2)

∂(t1, . . . , tn−2)2
=

∂2κM1,N1

∂(t1, . . . , tn−2)2
+

∂κM1,N1

∂tn−1

∂2tn−1

∂(t1, . . . , tn−2)2

+
∂2κM1,N1

∂t2n−1

∂tn−1

∂(t1, . . . , tn−2)
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Because M1 and N1 have 3-contact in some direction we will surely have

∂κM1,N1

∂tn−1
= 0

and thus we are to evaluate the derivative

(I.5)
∂tn−1

∂(t1, . . . , tn−2)

in p = 0. As the surface xn−1 = xn = 0 is the tangent space of Mc in 0 we can see that the
derivative (I.5) evaluates to 0 in p = 0. If we write for a n− 1× n− 1 matrix C

C =
(

C(n−2,n−2) C(n−1)

C(n−1) Cn−1,n−1

)

then the second derivative of the contact map of Mc and Nc in 0 equals
(
d2κM1,N1 (n−2,n−2), d

2 κM2,N2 (n−2,n−2)

)

This proves the lemma. ¤

Lemma I.11. Let M and N be manifolds Rn+k with a 3-contact in the direction V ⊂ TpRn+k.
Let pr : Rn+k → Rn, such that TpM does not lie in the direction of the projection: dim V =
dimpr(V ) then pr(M) and pr(N) have 3 contact in the direction pr(V ) at pr(p).

Proof. The proof consist of a simple verification with the contact map. ¤

After these lemmas we are ready to complete the proof I.2. Suppose we are at a point p in
Mc.
There are two base points pa and pb on M1 and M2 respectively. Propagate the wave fronts
until the three points pa, pb and pc fall together, say p. Now take an arbitrary direction in
the tangent space of Mc, say vc. The direction vc projects to directions v1 and v2 in TpM1

and TpM2 respectively.
We will proceed to construct the big wavefront of M1 and M2 : Mh

1 and Mh
2 . Because p is

a regular point for the distance function at (p, 0) ∈ Rn+1 they intersect transversally in a
manifold Mh

c . The manifold Mh
c projects down to Mc in Rn.

There are Meusnier spheres to M1 and M2 in the directions v1 and v2 : N1 and N2. Their
big wavefronts can also be constructed : Nh

1 and Nh
2 .

We apply lemma I.9 to obtain that Nh
1 and Mh

1 have 3-contacts in the direction

V1 = sp
((

v1

0

)
,

(
n1

1

))
.

In a similar vein we define V2.
We define Nh

c as the transversal intersection of Nh
1 and Nh

2 at (p, 0). By lemma I.10 Mh
c

and Nh
c have 3-contact in the direction Vc = V1 ∩ V2. The directions in Vc can be projected

down to Rn by a projection pr.
We claim that

(I.6) pr(V1 ∩ V2) = vc.

To prove equation I.6 we first try to solve the equation

λ1

(
v1

0

)
+ λ2

(
n1

1

)
= λ3

(
v2

0

)
+ λ4

(
n2

1

)
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If n1 = n2 then also v1 = v2. In this case λ2 = λ4 = 0 and equation I.6 will hold. Thus we
will assume λ2 = λ4 6= 0 and we can write (with different λi)

(I.7) λ1

(
v1

0

)
+

(
n1

1

)
= λ2

(
v2

0

)
+

(
n2

1

)

Because n1 6= n2 we can write nc = n1 − n2. Now v1 and v2 are projections of vc onto the
tangent planes of TpMc. The tangent planes of M1 and M2 make an equal angle with Mc.
Therefore we can solve I.7 if we put λ1 = λ2. The line that is thus in Vc is of the form

vh
c =

(
v1

0

)
+ λ

(
n1

1

)
=

(
v2

0

)
+ λ

(
n2

1

)

Equation I.6 is proved.
We also know that pr(vh

c ) makes an equal angle with v1 and v2 so that we will have

vh
c =

(
v1 + v2

µ

)

Projecting N c
h down to Nc we see that this projection is regular around p and that, by

lemma I.11, the manifold Nc will have 3-contact with Mc at p in the direction vc. Thus the
curvature of Mc in the direction vc is that of Nc. Indeed, intuitively, this is the direction in
which a minimal change in chord length is achieved.
We now see that it is enough to calculate the curvature of the spheres N1 and N2 in the
directions v1 and v2 and then to compute the curvature of the conflict set of the spheres
in the direction vc. In particular, for two wavefronts starting from a plane curve, it will be
enough to calculate the curvature of the conflict set of two curvature circles. Example I.4 is
characteristic. The conflict line is parameterized by (

√
b1b2 sinh t, 2−1(b1 − b2)(1− cosh t)).

Its curvature is

(I.8)
1
2

(
1
T1
− 1

T2

)
cos φ

where T1 and T2 are the distances from the conflict set to the curvature centers, and φ is
half on the angle that n1 and n2 thus their inverses are the curvatures of the circles at the
point where the wavefronts meet.
Remark I.12. For a further discussion of (I.8) and its applications see section IV.4.
Remark I.13. Sometimes it is more convenient to choose n1 and n2 so that nc = n1 + n2.
In this case the minus sign in equation I.8 becomes a plus sign. Thus, in equation I.8 the
distances T1 and T2 are measured with respect to the direction of the normals n1 and n2. If
one chooses the normals to the wavefronts as in the setup then the formula holds but when
one chooses the distances differently the mentioned sign change occurs. In the sequel we
will stick to the original setup where the sign change does not occur.
Example I.14. In figure I.2 one sees two circles with their conflict set. The conflict set is
an ellipse. The normals at the left side are the normals that give this ellipse as conflict set.
But, chosen thus T1 and T2 will have different signs.
The normals as chosen in the picture on the right do not correspond to the conflict set as
shown. However if we use these normals to compute the curvature of the conflict set as
shown in the picture we need to change the minus sign in equation I.8 into a plus sign.
With two spheres in Rn the conflict set is a hyperboloid or ellipsoid. v1, v2, vc and nc all
lie in one 2-dimensional plane. Thus the above formula also applies to each direction in
TpMc. When vc ∈ TpM1 ∩ TpM2 the angle γ will be 0. In that case we can simply add the
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n1 nb n1 n2

Figure I.2. Two ways of choosing the normals

curvatures of the circles we obtain. The spheres have radius T1 and T2. The corresponding
circles have radius T1 cos φ and T2 cosφ where φ is the angle between n1 and nc. In the
other case vc /∈ TpM1∩TpM2 and we choose vc to lie orthogonally to this intersection. Then
v1, v2 and vc lie in the plane spanned by n1, n2 and nc. The angle vc and v1 make in this
case is also φ. Thus we have formulas for the curvature, in the two cases an illustration of
which is in figure I.3.

κc = 1
2

(
κ1

cos φ − κ2
cos φ

)
(I.9)

κc = 1
2 (κ1 − κ2) cos φ(I.10)

The final step in the proof consists of linking these two formulas to the elegant matrix repre-

@
@R

TpM1 ∩ TpM2

Figure I.3. Two orthogonal directions in TpMc account for two different
curvature formulas

sentation. Choose an orthonormal basis {e1, . . . , en−2} for TpM1∩TpM2 and choose vectors
ea, ea and ec that complete to orthonormal bases for TpM1, TpM2 and TpMc respectively.
ea, eb and ec correspond with each other.
The projection of TpRn onto TpMc restricted to TpM1 is an isomorphism. It is the identity
on sp{e1, . . . , en−1 and ea is mapped to ec cosφ. Call the matrix representation of this P.
The function that assigns a curvature to each direction of the tangent space of a C2 hyper-
surface is in fact a symmetric bilinear form on the tangent space. It is the inverse of the
first fundamental form multiplied by the second fundamental form. Thus the representation
for this function is a matrix. One such matrix for TpMc that gives the correct curvatures in
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the directions e1, . . . , en−2 and ec would be
1

2 cos φ
PT (A−B)P

where A and B are the matrices of the curvature functions on the tangent spaces TpM1 and
TpM2. To prove that this is in fact the curvature function for TpMc all we need to do is
write the equations for the curvature in other directions than e1, . . . , en−2 and ec. We will
omit this calculation.
We now want to pass on from the curvature functions to second fundamental forms. For
M1 and M2 we can take immersions as the ones in equations I.2, replacing ψ by −φ. We
now see that their first fundamental forms in intrinsic coordinates at 0 are simply identity
matrices. The first fundamental form of the conflict set is the identity matrix. We have
proven that at 0 the second fundamental form of the conflict set IIc is:

IIc =
1

2 cos φ
PT (II1 − II2)P

I.5. Proof of theorem I.3

The special case of l spheres in Rn the conflict set has an appealing property: each of its
components is a conic section.
So let us have l spheres in Rn, each having center pi, i = 1, . . . l. Denote their radii by ri.
Each component is given by l − 1 equations:

(I.11) ‖x− pi‖ = ‖x− p1‖+ di, i = 2, . . . , l

The equations (I.11) describe conic sections.
Each di will be written

d1,i = di = ai − a1

where ai = ±ri. Thus we have in total a maximum of 2l components of the complete conflict
set. We will consider a fixed component, that is we will fix ai for the rest of the proof. Other
equations are

‖x− pj‖ = ‖x− pi‖+ di,j

with di,j = d1,j − d1,i.
Now we square both sides of these equations.

〈x, x〉 − 2〈pj , x〉+ 〈pj , pj〉 = 〈x, x〉 − 2〈pi, x〉+ 〈pi, pi〉+ 2di,j‖x− pi‖+ d2
i,j i, j = 1, . . . , l

and we obtain

2di,j‖x− pi‖ = 2〈x, pi − pj〉+ ‖pj‖2 − ‖pi‖2 − d2
i,j , i, j = 1, . . . , l

When di,j = ±‖pi − pj‖ the solution to the equation I.11 is a line. So the component of the
conflict set we consider lies in a line and the theorem is trivially true. We can safely exclude
this case and all the others where

di,j = ±‖pi − pj‖

If they exist choose mutually disjoint subsets J1, · · · , Jk of {1, · · · , n} so that
• ai1 = ai2 for all i1, i2 ∈ Ji

• the cardinalities ji =| Ji | are ordered j1 ≥ j2 ≥ · · · ≥ jk.
• ji ≥ 2



I.5. PROOF OF THEOREM I.3 11

The complement of the union of these subsets will be denoted by J0:

∪k
i=0Ji = {1, · · · , l}

The number of elements j0 in J0 is possibly 0. If all ai are different then j0 = n, and k = 0.
It is now convenient to put

P (i, j) = 2di,j‖x− pi‖
= 2〈x, pi − pj〉+ ‖pj‖2 − ‖pi‖2 − d2

i,j

We finally relabel the points such that

J0 = {1, · · · , j0}, J1 = {j0 + 1, · · · , j0 + j1}
and so on. Let us first assume that k ≥ 1 and j0 ≥ 3.
From each of the Jm we have jm − 1 linear equations

(I.12) P (j0 + · · ·+ jm, i) = 0 i ∈ Jm\{j0 + · · ·+ jm}
We also have j0 − 2 linear equations

(I.13)
P (1, 2)

d1,2
=

P (1, i)
d1,i

i = 3, . . . , j0

There is a third set of m linear equations that read

(I.14)
P (1, 2)

d1,2
=

P (1, i)
d1,i

i = j0 + j1, j0 + j1 + j2, · · · , j0 + j1 + · · ·+ jm

In total we have l − 2 linear equations. These equations all have the form

(I.15) 〈vi, x〉 = wi

From I.12, I.13 and I.14 there are three sets of vi. The first set is

(I.16) pj0+j1+···+jm − pi i ∈ Jm\{j0 + · · ·+ jm}
The second set is

(I.17)
p1 − p2

d1,2
− p1 − pi

d1,i
i = 3, . . . , j0

The third set is

(I.18)
p1 − p2

d1,2
− p1 − pi

d1,i
i = j0 + j1, j0 + j1 + j2, · · · , j0 + j1 + · · ·+ jm

Each of the equations determines an affine hyperplane in Rn The hypersurfaces will inter-
sect transversally if the vectors vi are linearly independent. The l − 2 vectors are linearly
independent iff. there are 2 more vectors such that these l will be independent. Two vectors
that will do are p1 and p2 because by hypothesis the pi span up a l−1 dimensional simplex.
If k = 0 then all the ai are different and the vectors are given by equations as in I.13 and
I.17. If k > 0 and j0 = 2 the vi are given by equations I.12, I.14 and I.16, I.18. If k > 0 and
j0 = 1 j1 will equal 2. The case j0 = 1 is similar. When l = 2 the theorem is trivial.
Saying that the conflict set is a conic section is equivalent to saying that the conflict set is
the zero-set of some quadratic equations. The quadratic equations are given by the P (i, j).
This completes the proof of theorem I.3.
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Remark I.15. Theorem I.3 should also hold with other conditions. There are examples of
3 spheres in Rn, with their centers lying on a line, such that a component of the conflict set
lies in a hyperplane and that it is a conic section in this plane. Caution is needed though
because there are also examples of four spheres in Rn - i. e. two concentric spheres mirrored
through some hyperplane - where the theorem is not true.
Remark I.16. If l = n = 3 we have a special case, that was studied a lot classically. The
1 parameter family of spheres with center on the conflict set that touch the three given
spheres has a special surface , called a Dupin cyclide, as an envelope. By an appropriate
inversion the conflict set - which is on the symmetry set of the cyclide - is mapped onto a
circle. Under this inversion the cyclide is mapped to a torus. Thus the conflict set itself is
a conic section in a hyperplane in R3, see [Cox52]. For cyclides one might consult several
works of T.E. Cecil.



II Three and more surfaces

II.1. Introduction

In this chapter we will elaborate on the results of the previous chapter. We will obtain a
formula for the curvature and the torsion of the conflict set of three surfaces. The relevant
formulas are in theorems II.6 and II.10. The last section of this chapter - which can be safely
skipped - contains an illustration of the formulas for curvature and torsion and of theorem
I.3.

II.2. The tangent space to the conflict set

We would like to give a description of the tangent space of the conflict set of (M1, n1),
(M2, n2), . . . , (Ml, nl) at regular points, where the Mi are hypersurfaces in Rn.
So at regular points we have - as in the previous chapter - a set of basepoints pi on each
of the Mi. The tangent spaces TpMi define l affine hyperplanes Wi in Rn that intersect
transversally. The conflict set of the Wi has the same tangent space as the conflict set of
the Mi. So we might as well assume that the Mi are affine hyperplanes, with a point p in
their intersection.
Here the tangent space will be n− l + 1 dimensional. We will split it into two components.
First of all a part of it will correspond to the intersection of the Mi. Let Vc =

⋂l
i=l TpMi,

then Vc ⊂ TpMc. This part of the tangent space is readily calculated and so we can study
the projection

π : TpRn 7→ TpRn/Vc.

The π(ni) form a basis for TpRn/Vc and we also have that π(ni) ⊥ π(TpMi). Denote Mπ
c

the conflict set of the π(Mi). This will be just a line. And this line corresponds to the
second part of the tangent space. We thus have

Vc ⊕ “line” = TpMc

Proposition II.1. π(TpMc) = TpM
π
c and Vc ⊕ TpM

π
c = TpMc

Proof. Consider a vector x that is in TpMc. It has a lift to Rn+1 where it has to be in the
intersection of the tangent spaces to the big fronts. Thus the vectors x that are in TpMc all
have

〈x, ni〉 = 〈x, nj〉
From here it follows that

〈π(x), π(ni)〉 = 〈π(x), π(nj)〉
On the other hand if π(x) ∈ TpM

π
c then either x ∈ Vc or we may assume that x ⊥ Vc, in

which case the above two equations are equivalent. ¤

For this second part of the tangent space it is thus enough to look at the case where l = n
and Vc = {0}. In this case we have a formula. In order to write this formula we introduce
the following notations. If i, j, k are integers then we write

q(i, j, k) = 1 + ((i + j − 1) mod k)

This function is a “circulator” over a finite index set {1, · · · , k}. Also, if we have n − 1
vectors in Rn we define a cross product, that generalizes the cross product of 2 vectors in

13
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R3. The cross-product of n− 1 vectors vi in Rn is defined by the requirement that for each
vector w ∈ Rn we have

〈×n−1
i=1 vi, w〉 = det(v1, · · · , vn−1, w)

Proposition II.2. If l = n then the vector

tc =
l∑

i=1

(−1)(i+1)(l+1) ×l−1
j=1 nq(i,j,l)

defines the tangent space to the conflict set.

Proof. All we need to verify is that 〈tc, ni〉 = 〈tc, nj〉. ¤
We summarize our discussion in a theorem:
Theorem II.3. The tangent space to the conflict set of (M1, n1), (M2, n2), . . . , (Ml, nl), all
hypersurfaces in Rn is spanned by

Vc ⊕
(

l∑

i=1

(−1)(i+1)(l+1) ×l−1
j=1 π(nq(i,j,l))

)

provided that we are at regular points of the conflict set.

II.3. A curvature formula

We next want to calculate the curvature of the conflict set of (M1, n1), (M2, n2), . . . , (Ml, nl)
at regular points in terms of the curvature at the basepoints. We calculate the curvature
for the case l = n = 3. The result is in theorem II.6.
The curvature formula will be obtained by differentiation. As before we write:

(II.1) tc = n1 × n2 + n2 × n3 + n3 × n1

We will also write
e =

tc
‖tc‖

We will denote ti the unit vector of the projection of tc to TpMi. For the curvature of the
conflict set we need to calculate, according to the Frenet-Serret equation, the derivative ∇ee:

∇ee = ∇e
tc
‖tc‖ =

‖tc‖2∇etc − 〈tc,∇etc 〉tc
‖tc‖3

By ∇v we mean the directional derivative

∇v =
n∑

i=1

vi
∂

∂xi

It is clear that
〈∇ee, tc〉 = 0

We can choose coordinates so that e is (0, 0, 1). In particular this means that ∇ee has a
zero component in the last coordinate, the “z” coordinate. The vector tc has only non-zero
components in all but this last coordinate. Now denote (¦)i the i-th component of a vector.
We have just concluded that:

(∇ee)3 = 0
and that thus:

κ2
c =

(∇etc)21 + (∇etc)22
‖tc‖2
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n1

n2

n3

−t1

−t2

−t3

−tc

Figure II.1. The geometry of the three tangent planes

Remark II.4. We will calculate the square of the curvature. In this way we avoid “sign”
problems. There seems to be no natural choice of frame for the conflict set. For instance
when we interchange n1 and n2 in (II.1) tc changes sign. For the first normal to the conflict
set things get even more complicated.
We compute ∇etc through a further choice of coordinates namely:

(II.2) e =




0
0
1


 ni =




sin α sin βi

sin α cosβi

cos α


 ti =



− cos α sin βi

− cos α cos βi

sin α




Furthermore

(II.3) ∇eni = κiti sin α

where κi is the normal curvature of the wavefront of Mi at the point of the conflict set that
we are considering.
Remark II.5. Suppose a curve γ is contained in a hypersurface M ⊂ R3. This curve has a
so-called normal curvature κn and a so-called geodesic curvature κg. The geodesic curvature
depends only on the interior geometry of M and the normal curvature depends only on the
exterior geometry of M . The curvature of γ as a space curve is κ. Between κ and the
aforementioned curvatures we have the following relation:

κ2 = κ2
g + κ2

n

Thus equation (II.3) merely says that the derivative only depends on the exterior geometry.
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With these choices

‖tc‖2 = sin4 α (sin(β1 − β2) + sin(β2 − β3) + sin(β3 − β1))
2

= 16 sin4 α sin2(
β1 − β2

2
) sin2(

β2 − β3

2
) sin2(

β3 − β1

2
)(II.4)

and

(∇etc)1 = sin3 α (κ1(cosβ3 − cosβ2) + κ2(cos β1 − cos β3) + κ3(cos β2 − cos β1))

Similarly

(∇etc)2 = sin3 α (κ1(sinβ3 − sin β2) + κ2(sin β1 − sin β3) + κ3(sin β2 − sin β1))

This is because

∇etc = (∇en1)× (n2 − n3) + (∇en2)× (n3 − n1) + (∇en3)× (n1 − n2)
= κ1 sin αt1 × (n2 − n3) + κ2 sin αt2 × (n3 − n1) + κ3 sin αt3 × (n1 − n2)

Now we have
(∇etc)21 + (∇etc)22 = sin6 α

(
(κ1 − κ2)2 + (κ2 − κ3)2 + (κ3 − κ1)2

+ 2(cos β1 cos β2 + sin β1 sin β2)(κ2 − κ3)(κ3 − κ1)

+ 2(cos β2 cos β3 + sin β2 sin β3)(κ3 − κ1)(κ1 − κ2)

+ 2(cos β3 cosβ1 + sin β3 sin β1)(κ1 − κ2)(κ2 − κ3))

= sin6 α
(
(κ1 − κ2)2 + (κ2 − κ3)2 + (κ3 − κ1)2

+ 2 cos(β1 − β2)(κ2 − κ3)(κ3 − κ1)

+ 2 cos(β2 − β3)(κ3 − κ1)(κ1 − κ2)

+ 2 cos(β3 − β1)(κ1 − κ2)(κ2 − κ3))

This is finally equal to

(II.5) = −4 sin6 α

3∑

i=1

sin2

(
βq(i,1,3) − βq(i,2,3)

2

)
(κq(i,2,3) − κi)(κi − κq(i,1,3))

We have proven the following theorem.
Theorem II.6. The squared curvature of the conflict set of 3 hypersurfaces is at regular
points given by the formula:

(II.6) κ2
c = − sin2 α

4

3∑

i=1

(κi − κq(i,1,3))(κq(i,1,3) − κq(i,2,3))

sin2(βi−βq(i,1,3)

2 ) sin2(βq(i,1,3)−βq(i,2,3)

2 )

We can also find a more coordinate free form of formula (II.6). We reformulate theorem
II.6:

(II.7) κ2
c = sin6(α)

3∑

i=1

(κi − κq(i,1,3))(κq(i,1,3) − κq(i,2,3))
(1− 〈ni, nq(i,1,3)〉)(〈nq(i,1,3), nq(i,2,3)〉 − 1)

We used that:

1− 〈ni, nj〉 = 2 sin2(α) sin2

(
βi − βj

2

)
,

an identity that follows from (II.2). We also have the following:
Proposition II.7. It holds κc = 0 iff. κi = κj for 1 ≤ i, j ≤ 3.
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Proof. In view of a theorem on contact, see theorem III.33 or [vM03], it will be enough
to prove the theorem in the case where the base manifolds are spheres. The theorem then
follows from the long calculation below or from the proof of theorem I.3. ¤

II.4. Higher derivatives: Torsion

Theorem I.3 says that the conflict set with the three spheres has zero torsion. We are
interested in computing in general the torsion of the conflict set when l = n = 3. To
compute the torsion we need the Frenet-Serret equations, see [Spi], vol. 2. The Frenet-
Serret equations can be applied once we know the first and second normal to the conflict
set.
We contend that the first normal to the conflict set is

(II.8) nc = κ1e× (n2 − n3) + κ2e× (n3 − n1) + κ3e× (n1 − n2)

This is proven by using the polar coordinates and comparing each term in the cyclic sum to
the corresponding terms in

pre(∇e
tc
‖tc‖ )

We can also use a lemma:
Lemma II.8. If 〈u, v〉 = 0 then

pru(w × v) =
〈w, u〉
‖u‖2 u× v and u× (u× v) = −‖u‖2v

Proof. Set u = (0, 0, 1). ¤

We can apply this lemma to verify the assertion of equation (II.8). Let v = n2 − n3, u = el

and w = t1. Then
pre(κ1t1 × (n2 − n3)) = κ1 sin α e× (n2 − n3)

which in view of (II.1) proves (II.8).
To find the third vector in the Frenet frame - up to sign - we take the outer product:

bc = nc × e

Using e× (e× (ni − nq(i,1,3))) = nq(i,1,3) − ni we can write:

bc = κ1(n2 − n3) + κ2(n3 − n1) + κ3(n1 − n2)

This further entails that ‖bc‖ = ‖nc‖. Recalling the Frenet-Serret equations ( see [Spi] )
the derivative we are interested in is

∇e
bc

‖bc‖ = −τc
nc

‖nc‖
We can now compute this derivative and the torsion

∇e
bc

‖bc‖ =
‖bc‖2∇ebc − 〈bc,∇ebc〉bc

‖bc‖3 = −τc
nc

‖nc‖
This leads to

τc = −〈∇ebc, nc〉
‖bc‖2
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As a first step we will derive some expression for ‖bc‖2.

‖bc‖2 =
3∑

i=1

(κi − κq(i,1,3))2 + 2 cos(βi − βq(i,1,3))(κq(i,1,3) − κq(i,2,3))(κq(i,2,3) − κi)

= −4 sin2 α

3∑

i=1

sin2

(
β1 − βq(i,1,3)

2

)
(κq(i,1,3) − κq(i,2,3))(κq(i,2,3) − κi)

=
κ2

c‖tc‖2
sin4 α

The derivative of interest is thus
∇ebc = sin α(κ1(κ2t2 − κ3t3) + κ2(κ3t3 − κ1t1) + κ3(κ1t1 − κ2t2)

+∇eκ1(n2 − n3) +∇eκ2(n3 − n1) +∇eκ3(n1 − n2))

Now in this derivative we encounter terms of the form ∇eκi. Such terms embody two
variations. One is the change of curvature on the wavefront. The other one is the distancing
between the point on the conflict set and the corresponding basepoint. Heuristically we feel
that the last influence should have no effect on the conflict set. The curvature of the conflict
set should only depend on the relative position of the base manifolds.
Note that by only taking into account the distance variation we have:

∇eκi = ∇e
1
Ti
≈ −∇eTi

T 2
i

= −κ2
i∇eTi = −κ2

i cosα

Here we have used the notation Ti for the distance between the point under consideration
on the conflict set and the center of the Meusnier sphere of the surface Mi at the basepoint
on Mi. Because we are at regular points this distance is never zero. Taking both variations
into account we thus have:

∇eκi = −κ2
i cos α + sin α∇tiκ

′
i

Here κ′i is the normal curvature of the traced out curve on the wavefront. There seems to
be no obvious expression for its derivative.
Remark II.9. The meaning of the term Dtiκ

′
i is as follows. It is the derivative of the normal

curvature along the basecurve on the equidistant at p. The relation between normal curva-
ture and normal curvature on an equidistant is clear. At distance d the normal curvature
is

κ

1 + dκ
Where their derivatives are concerned this is much less the case. Let us start by clarifying
how the 3-jet of a hypersurface determines the derivative of the normal curvature.
In case of an immersion that up to a quadratic form looks like

(s, t) 7→ (s, t,
1
6
(As3 + 3Bs2t + 3Cst2 + Dt3))

and a curve with tangent (cos µ, sinµ) the derivative is

A cos3 µ + 3B cos2 µ sinµ + 3C cosµ sin2 µ + D sin3 µ.

This means that - as was to be expected - if two surfaces have 2 contact and 4 contact in
the direction ~v curves in that direction on the surfaces have equal derivative of the normal
curvature.
The relation between the derivative of the normal curvature at the base manifold and at its
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equidistant is most conveniently found by just using curves in R2. If we want a curve with
prescribed derivative of the curvature α at 0 we can take

γ : t 7→ (t,
κ

2
t2 +

α

6
t3)

At distance d its derivative of the normal curvature is
α

(1 + dκ)3

We write the derivative of bc as a sum of three components:
∇ebc = sinα(κ1(κ2t2 − κ3t3) + κ2(κ3t3 − κ1t1) + κ3(κ1t1 − κ2t2))

− cosα(κ2
1(n2 − n3) + κ2

2(n3 − n1) + κ2
3(n1 − n2))

+ sin α(∇t1κ
′
1(n2 − n3) +∇t2κ

′
2(n3 − n1) +∇t3κ

′
3(n1 − n2))

I1 + I2 + II

With some perseverance we obtain 〈I1 + I2, nc〉 = 0. We thus have

〈∇ebc, nc〉 = 〈II, nc〉 = sin α‖tc‖(κ1(∇t2κ
′
2 −∇t3κ

′
3)+

κ2(∇t3κ
′
3 −∇t1κ

′
1) + κ3(∇t1κ

′
1 −∇t2κ

′
2))

Consequently
Theorem II.10. With notations as above the torsion of the conflict set is given by:

τc = ± sin5 α

‖tc‖κ2
c

(κ1(∇t2κ
′
2 −∇t3κ

′
3) + κ2(∇t3κ

′
3 −∇t1κ

′
1) + κ3(∇t1κ

′
1 −∇t2κ

′
2))

Remark II.11. Compare this formula to a classical formula for the torsion of a space curve
with nonzero curvature κ and a unit parameterization c(t) ( see [Spi] )

τ =
1
κ2
〈d c

d t
× d2 c

d t2
,
d3 c

d t3
〉

We see that the term 1
κ2

c
is natural in this respect.

II.5. Higher dimensional analogues

The same differentiation techniques can be used to determine the curvature of l surfaces in
Rl. The trouble is that it is less clear what angles and geometrical data other than just the
normals we should take in order to get useful formulae.
The tangent to the conflict set is

tc =
l∑

i=1

(−1)(i+1)(l+1) ×l−1
j=1 nq(i,j,l)

If we differentiate tc wrt. arclength we obtain

∇etc =
l∑

i=1

(−1)(i+1)(l+1)(∇eni)×l−2
j=1 (nq(i,j,l) − nq(i,j+1,l))

Here we have written again:

e =
tc
‖tc‖ ,

and we have used the formula
∇eni = κiti sin α
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We know that the first normal in the Frenet frame ( up to sign and length ) to the conflict
curve is

nc =
l∑

i=1

(−1)(i+1)(l+1)κie×l−2
j=1 (nq(i,j,l) − nq(i+1,j,l))

This means that we might also calculate the curvature in the following way:

κc =
〈∇etc, nc〉
‖nc‖‖tc‖

It is also remarked that proposition II.7 generalizes to higher l = n.

II.6. An example: three disjoint spheres

Conflict sets are very difficult to calculate, both algebraically and numerically. Here we
will present an example with three surfaces in R3 in order to have a non-trivial example
of the situation encountered in theorem II.6, in which we can actually compute explicitly a
parameterization of the conflict set. Our example is so typical that the calculations we do
to compute the curvature almost provide a new proof of (II.6).
The example we are talking about is the example of three disjoint spheres in R3 with
outward pointing normals. Their conflict set can be explicitly calculated if we make one
further assumption: we will demand that the convex hull of their centers is a triangle with
acute angles only.
Lemma II.12. Let p1, p2, p3 be three points in R3, such that their convex hull is a triangle with
acute angles. These points are in general position wrt. to linear subspaces of R3. Coordinates
can be so chosen that mutual distances are preserved and p1 = (b1, 0, 0), p2 = (0, b2, 0),
p3 = (0, 0, b3).

Proof. Through each pair of points there passes a sphere, so that the two points are poles
of the sphere. The three spheres have one point of intersection because the three points
are in general position. This point of intersection is chosen to be the origin O. The lines
through O and pi will be the three coordinate axes. ¤

If the centers of the spheres do not span up a triangle with acute angles such a coordinate
representation is not possible. In that case one could revert to the following more general
representation. If we have n points in Rn that lie in general position this is a n(n−1)

2
dimensional space. Coordinates for it can be written




b11 b12 · · · · · · 1
b21 b22 · · · 1 0
...

...
. . .

...
...

bn−1,1 1 · · · 0 0
1 0 · · · 0 0




Proof is by induction. For n = 2 the statement is clear.

II.6.1. A parameterization for the conflict set. We will continue with the diagonal
representation of 3 points. We choose the three points as centers of mutually disjoint spheres
with radii ri. The mutual disjointness can be achieved with a condition on the radii:

ri + rj <
√

b2
i + b2

j
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We know that the conflict set of these spheres with outward normals lies in a plane. For the
sake of brevity we will write this conflict set as Mp,r. The equations for the lift of Mp,r to
R4 are

x0 = ‖x− pi‖ − ri 1 ≤ i ≤ 3

They can be rewritten in algebraic form:

(x0 + ri)2 = ‖x− pi‖2

It seems that these equations will add another algebraic component to the conflict set. They
do but this component will be just another conflict set, namely the one with the orientations
reversed.
We will frequently use x̄ = (x0, x) for a point in Rn+1 whose projection to Rn is x. In this
section n = 3. It is also useful to introduce a quadratic form of sign (1, 3) on R4 namely

‖x0, x‖−1 = x2
0 − ‖x‖2

and the corresponding form

〈(x0, x), (y0, y)〉−1 = x0y0 − 〈x, y〉
The unique plane through the points p1, p2, p3 is given by

(II.9)
3∑

i=1

xi

bi
= 1

Lemma II.13. If q lies on Mp,r then its reflection through the above plane also lies on the
conflict set.

Proof. The reflection through the plane (II.9) is an isometry that maps spheres centered
at pi to themselves. The reflection thus leaves the conflict set Mp,r also invariant. ¤

The intersection of this plane with the conflict set is a point α. The point lifts to a point
ᾱ = (α0, α) in R4. Here α0 is the “time” at which this component of starts appearing. So
we have for ᾱ that

‖(α0 + ri, α− pi)‖−1 = 0 i = 1, · · · , 3 and
n∑

i=1

αi

bi
= 1

From the equations we can find two solutions for ᾱ. The solutions take the form

αi = bi
fi ± gi

√
D

2Ni
i = 1, · · · , 3

Here D is a discriminant.

D =
(
b2
1b

2
2 + b2

1b
2
3+ b2

2b
2
3

) (
b2
1 + b2

2 − (r1 − r2)
2
)

×
(
b2
1 + b2

3 − (r1 − r3)
2
)(

b2
2 + b2

3 − (r2 − r3)
2
)

The equation D = 0 corresponds exactly to the degeneracy condition in the previous chapter,
in the last section. If D = 0 then we will have for instance that

b2
1 + b2

2 = ‖p1 − p2‖2 = (r1 − r2)2

so that
±‖p1 − p2‖ = r1 − r2
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In this case the conflict set is reduced to a line, but by our previous demand this is impossible.
The condition corresponds exactly to the two cones in 4-space having 2-contact. For i =
1, · · · , 3 the nominator Ni is

(
b2
1b

2
2 + b2

1b
2
3 + b2

2b
2
3

) (
b2
1b

2
2 + b2

1b
2
3 + b2

2b
2
3 − b2

3(r1 − r2)
2 − b2

2(r1 − r3)
2 − b2

1(r2 − r3)
2
)

The most obvious geometrical significance of the term

F = b2
1b

2
2 + b2

1b
2
3 + b2

2b
2
3

is that the surface of the triangle spanned by the pi is
1
2

√
b2
1b

2
2 + b2

1b
2
3 + b2

2b
2
3

This can be proven using Archimedes formula.
The other term is

E = b2
1b

2
2 + b2

1b
2
3 + b2

2b
2
3 − b2

3(r1 − r2)2 − b2
2(r1 − r3)2 − b2

1(r2 − r3)2.

In fact this term introduces no new geometry, it is in the ideal generated by

(b2
1 + b2

2 − (r1 − r2)2, b2
2 + b2

3 − (r2 − r3)2, b2
3 + b2

1 − (r3 − r1)2)

This can be checked by computing a standard basis. Or - a little less obvious - one can
remark that if we write di,j = b2

i + b2
j − (ri − rj)2 that

E = −d2
1,2 + d2

2,3 + d2
3,1

4
+

d1,2d2,3 + d2,3d3,1 + d3,1d1,2

2
The fi are

f1 = b1(b2
1b

2
2 + b2

1b
2
3 + b2

2b
2
3)(b

2
2 + b3

3 − (r2 − r3)2)(b2
1 + (r1 − r2)(r3 − r1))

f2 = b2(b2
1b

2
2 + b2

1b
2
3 + b2

2b
2
3)(b

2
3 + b3

1 − (r3 − r1)2)(b2
1 + (r2 − r3)(r1 − r2))

f3 = b3(b2
1b

2
2 + b2

1b
2
3 + b2

2b
2
3)(b

2
1 + b3

2 − (r1 − r2)2)(b2
3 + (r2 − r3)(r3 − r1))

The gi are

g1 = r1(b2
2 + b2

3)− r2b
2
3 − r3b

2
2

g2 = r2(b2
3 + b2

1)− r3b
2
1 − r1b

2
3

g3 = r3(b2
1 + b2

2)− r1b
2
2 − r2b

2
1

We remark that all fi and gi are in the ideal generated by (d1,2, d2,3, d3,1 and that also
b2
1b

2
2 + b2

2b
2
3 + b2

3b
2
1 is in this ideal. In fact fi can be expressed in terms of the generators of

the ideal. We have

f1 =
d1,2d2,3 + d2,3d3,1 − d2

3,1

2

f2 =
d2,3d3,1 + d3,1d1,2 − d2

1,2

2

f3 =
d3,1d1,2 + d1,2d2,3 − d2

2,3

2
The gi can be expressed as multiples of the differences ri − rq(i,1,3) and the di,j .

α0 =

√
Fd1,2d2,3d3,1 +

∑3
i=1(ri + rq(i,1,3))(b2

q(i,2,3)(ri − rq(i,1,3))2 − b2
i b

2
q(i,1,3))

2E
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If again, di,j 6= 0 then each of the two components calculated can be parameterized with a
parameterization

σ̄(t) = (σ0, σ) = (α0, α) + (β0, β)(cosh(t)− 1) + (γ0, γ) sinh(t)

The γ vector will be orthogonal to the β vector, and the β vector will lie in the plane defined
by the points p1, p2, p3. We thus have the relations:

〈β, γ〉 = 0
n∑

i=1

βi

bi
= 0(II.10)

Furthermore as at t = 0 the spheres will be disjoint we will have to assume that γ0 = 0. Once
we have found the solutions for ᾱ we can use these to find the parameterization. Namely,
writing u for cosh(t)− 1 and v for sinh(t),

‖(α0 + β0u + γ0v + ri, α + βu + γv − pi)‖−1 − ‖(α0 + ri, α− pi)‖−1 = 0

and we get using the 〈·, ·〉−1 inner product.

(II.11) 〈(2α0 + 2ri + β0u + γ0v, α− pi + βu + γv), (β0u + γ0v, βu + γv)〉−1 = 0

Now instead of v we can also use −v in this equation. Adding the two we get

2〈(α0 + ri, α− pi) + (β0u, βu), (β0u, βu)〉−1 + ‖(γ0v, γv)‖−1

What we now do is to insert several values of u, v in order to obtain a simpler system of
equations, one that separates the questions of finding β and γ. We can use the values:

u = 1, v =
√

3 u = 2, v =
√

8

The

(II.12) 2u〈(α0 + ri, α− pi), (β0, β)〉−1 + u2‖β̄‖−1 + v2‖γ̄‖−1 = 0

This is only a rank 2 system of equations, because v2 = u2 + 2u. We thus conclude a set of
equations:

(II.13) 〈(α0 + ri, α− pi), (β0, β)〉−1 − ‖(β0, β)‖−1 = 0 i = 1, · · · , 3

We now take the identity (II.10) and the first of these sets to find the β̄ vector. From the
same source we obtain the

‖(β0, β)‖−1 + ‖(γ0, γ)‖−1 = 0

This does not determine γ but we have that γ is a multiple of (b−1
1 , b−1

2 , b−1
3 ) and that from

(II.11 ) we can also conclude - now by subtracting the equation for v from the one for −v:

〈(α0 + ri + β0u, α− pi + βu), (γ0, γ)〉−1 = 0

This gives rise to
〈(γ0, γ), (β0, β)〉−1 = 0

So that γ0 = 0 - which was to be expected.
One might remark that a solution for β̄ is constructed from ᾱ, of which there are two. Also
the equations for β̄ are quadratic so that you would expect four solutions for β̄. In fact this
is not a problem. For each solution ᾱ we have only one non-zero β̄ and the solutions for the
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two ᾱ differ only by a sign change. This agrees with the geometry.
Our results are that

(II.14) ‖β‖2 =
d1,2d2,3d3,1(b2

1b
2
2 + b2

2b
2
3 + b2

3b
2
1 − E)

4E

and that

(II.15) ‖β̄‖−1 =
d1,2d2,3d3,1

4E

Furthermore

β0 =

√
Fd1,2d2,3d3,1

2E

β1 = −b1(r1(b2
2 + b2

3)− b2
3r2 − b2

2r3)
√

d1,2d2,3d3,1

2E
√

(b2
1b

2
2 + b2

2b
2
3 + b2

3b
2
1)

= −b1g1

√
d1,2d2,3d3,1

2E
√

F

β2 = −b2(r2(b2
3 + b2

1)− b2
3r1 − b2

1r3)
√

d1,2d2,3d3,1

2E
√

(b2
1b

2
2 + b2

2b
2
3 + b2

3b
2
1)

β3 = −b3(r3(b2
1 + b2

2)− b2
1r2 − b2

2r1)
√

d1,2d2,3d3,1

2E
√

(b2
1b

2
2 + b2

2b
2
3 + b2

3b
2
1)

Note that the directions of the β and γ vectors can also be found from the proof of theorem
I.3 . It seems useful to check whether the two results obtained from different reasonings do
indeed coincide, as they should.
According to the proof of theorem I.3 the normal vector to the plane in which the conflict
set lies in is - if defined:

(II.16)
p1 − p2

r2 − r1
− p1 − p3

r3 − r1

All cyclic permutations of (II.16) are also allowed, but these are just collinear. Taking the
outer product of the vector (II.16) and the vector ( 1

b1
, 1

b2
, 1

b3
) we obtain the direction of the

β vector.
In figure II.2 the two components of the conflict set of three spheres are depicted.

II.6.2. The curvature. We can compute the curvature of the conflict set of the three
spheres by using the parameterization. Once this has been done we compare the outcome
with the outcome of (II.6). These should be the same.
The curvature of this curve will only depend on the β and the γ coefficients. In fact it will
only depend on their euclidean norms. If a curve in R2 has parameterization (B(cosh(t) −
1), C sinh(t)) its curvature is

κ(t) =
BC

(
B2 sinh2(t) + C2 cosh2(t)

) 3
2

Here we will have that
B = ‖β‖ C = ‖γ‖

because the conflict set is in fact a plane curve.
As before it is more convenient to consider the square of the curvature.

κ2
c(t) =

‖β‖2‖γ‖2
(‖β‖2 sinh2(t) + ‖γ‖2 cosh2(t)

)3 =
‖β‖2‖γ‖2
‖σ′(t)‖6
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Figure II.2. The conflict set of three spheres

So that for the curvature we only need to determine the euclidean lengths of the β and γ
vectors in R3. However this expression can still be considerably simplified. In the above we
have seen that

(II.17) ‖(β0, β)‖−1 + ‖(γ0, γ)‖−1 = 0

and that we have for geometrical reasons:

γ0 = 0

(This is because time will only increase or decrease on one component.)
We have obtained the formula for the curvature in terms of the bi and the ri but for the
formula to be useful we would like to obtain this formula with other parameters. The first
of these are the Ti, the distances from the point on the conflict set to the three centers of
curvatures.

T 2
i = ‖α + uβ + vγ − pi‖2 = (α0 + ri + uβ0)2

Now we note that we also have Ti − Tj = ri − rj .
We strive for a representation in terms of these distances and some angles. Denote tc the
tangent to the conflict set and for further simplicity the parametrization of the conflict set
in R3 will be written:

σ(t) = α + βu + γv

We also denote ni the normal from the “center of curvature” to the conflict set, thus:

ni =
σ(t)− pi

Ti

It is clear that

(II.18) σ′(t) = βv + γu + γ

Both vectors tc and σ′(t) lie along the conflict set.
We now calculate the inner product 〈σ′(t), ni〉
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Lemma II.14. 〈σ′(t), ni〉 = ‖σ′(t)‖ cosα = vβ0

Proof.

〈σ′(t), ni〉 = ‖σ′(t)‖ cosα

= 〈σ − pi

Ti
, βv + γu + γ〉

=
1
Ti
〈α + βu + γv − pi, βv + γu + γ〉

=
1
Ti

(〈α− pi, βv〉+ uv‖β‖2 + uv‖γ‖2 + v‖γ‖2)

Now we use the identity (II.17) which is in fact:

β2
0 = ‖β‖2 + ‖γ‖2

Consequently:

=
1
Ti

(〈α− pi, βv〉+ uvβ2
0 + v‖γ‖2)

=
1
Ti

(
(α0 + ri)β0v + uvβ2

0

)

=
1
Ti

(α0 + uβ0 + ri)vβ0 = vβ0

In this last calculation we used that

〈α− pi, vβ〉+ v‖γ‖2 = 〈α0 + ri, vβ0〉
which is a straight consequence of (II.13) and (II.17). ¤

We try to find the sine of the angle α. We note that

‖σ′(t)‖2 = ‖β‖2v2 + ‖γ‖2(u + 1)2 = β2
0v2 + ‖γ‖2

We combine the above with the lemma to find

‖σ′(t)‖2 sin2 α = ‖γ‖2

We can use this to further simplify the expression for κc.

(II.19) κ2
c = sin2 α

‖β‖2
‖σ′(t)‖4

We now want to check whether formula (II.19) agrees with the previous calculations. First
of all we check our description of the tangent spaces.
The lines from the pi to σ meet the spheres around the pi in points qi.

qi =
ri

Ti
(σ − pi) + pi = σ − (α0 + β0u)ni

They span up a simplex with the point σ.
Lemma II.15. The median starting from the vertex σ is the tangent line to the conflict set.

Proof. From an analysis of the tangent space to the conflict set in Rn of k hypersurfaces we
know that σ′(t) lies along n1×n2 +n2×n3 +n3×n1. This last vector should be orthogonal
to qi − qj = (α0 + β0u)(nj − ni). Indeed, the outer product is zero. ¤
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This median is in itself again a conflict set of the tangent planes to the spheres at the points
qi. The center of the circumradius of the points (q1, q2, q3) is the intersection of this median
with the plane through (q1, q2, q3). We would like to calculate this radius. The conflict set
projects on each sphere. The projection is in each case a circle. For a fixed σ the tangent
line is

σ′(t)− 〈σ′(t), ni〉ni

One can easily prove ( using a cosine formula ) that the distance from qi to qj is
√

d2di,j

TiTj

where d = α0 + β0u.
Somewhat more work is involved in comparing (II.19) and (II.6). We recall that for four
vectors in R3 we have the following identity

〈a× b, c× d〉 = 〈a, c〉〈b, d〉 − 〈a, d〉〈b, c〉
With this we can calculate the cosine of the angles βi − βj that are the angles between the
planes spanned by σ′(t), ni and σ′(t), nj .

〈σ′(t)× ni, σ
′(t)× nj〉 = ‖σ′(t)‖2〈σ − pi

Ti
,
σ − pj

Tj
〉 − ‖σ′(t)‖2 cos2 α

On the other hand using (II.2) we have:

〈σ′(t)× ni, σ
′(t)× nj〉 = ‖σ′(t)‖2 sin2 α cos(βi − βj)

We combine the two to obtain

cos(βi − βj) =
〈ni, nj〉 − cos2 α

sin2 α

And 1− cos(βq(i,1,3) − βq(i,2,3)) is

(II.20)
1− 〈nq(i,1,3), nq(i,2,3)〉

sin2 α

We also write

sin2(
β1 − β2

2
) =

1− cos(β1 − β2)
2

=
1− 〈n1, n2〉

2 sin2 α

=
T1T2 − 〈σ − p1, σ − p2〉

2T1T2 sin2 α

=
2T1T2 − ‖σ − p1‖2 − ‖σ − p2‖2 + b2

1 + b2
2

4T1T2 sin2 α

=
d1,2

4T1T2 sin2 α

Now we switch back to the formulas in paragraph II.3

‖tc‖2 =
1

4 sin2 α

d1,2d2,3d3,1

T 2
1 T 2

2 T 2
3
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And we also recalculate

(∇e~tc)21 + (∇e~tc)22 = sin4 α
b2
1(r2 − r3)2 + b2

2(r3 − r1)2 + b2
3(r1 − r2)2

T 2
1 T 2

2 T 2
3

Using the previous identities for ‖β‖2 and ‖γ‖2 in equations (II.14) and (II.15) it follows
that the curvature formula (II.19) agrees with the result obtained in (II.6).



III The conflict set as a wavefront

III.1. Some symplectic and contact geometry

The equidistants and focal sets we have encountered in the previous chapter can be studied
from a slightly more abstract point of view, that of symplectic geometry. It turns out
that this is a very fruitful approach. In this chapter we start to apply this theory to the
geometry of conflict sets. A standard introduction to symplectic geometry is [Arn86]. See
also [Dui96].

III.1.1. Lagrangian manifolds and symplectic manifolds. A symplectic manifold
is a manifold with a closed non-degenerate 2-form ω on it. Cotangent bundles T ∗X are
symplectic manifolds. On them there is defined a canonical 1-form σ such that ω = d σ. If
X = Rn the canonical 1-form is σ =

∑
ξi dxi and ω =

∑
d ξi ∧ dxi.

Definition III.1. A submanifold L of T ∗X is called Lagrangian if the restriction of ω to
TL is 0 and dim L = n. If in addition the restriction of σ =

∑
ξi d xi to TL is zero then L

is a conic Lagrangian manifold.
From a conic Lagrangian manifold we can always remove the zero section of T ∗X → X, the
resulting manifold will still be a conic Lagrangian manifold.
For local considerations we can put X = Rn. There are several ways to construct Lagrangian
submanifolds of T ∗Rn.
• Generating functions: Divide the index set {1, · · · , n} into two disjoint parts I and J .

Let S : Rn → R be a real-valued function: S = S(xI , ξJ). Then {(x, ξ) ∈ T ∗Rn | xJ =
∂S/∂ξJ ξI = −∂S/∂xI} is lagrange.

• Phase functions: Let F (x, s) : Rn+k → R be such that a ds F has a regular value at
0. Then (ds F )−1(0) is an n-dimensional submanifold of Rn+k whose image under the
mapping (x, dx F ) is an immersed Lagrangian submanifold of T ∗Rn.

All Lagrangian submanifolds of T ∗Rn can be constructed in both ways, at least locally. The
two representations are connected by the following. If L is represented around (x0, ξ0) ∈
T ∗Rn by S(xI , ξJ) then there is a phase function F (x, s) = S(xI , s) + 〈s, xJ 〉 that also
represents L.

III.1.2. Legendrian manifolds and contact manifolds. A contact manifold is a
manifold M with a contact structure. The contact structure is defined using a 1-form σ,
appropriately called the contact form.
The contact form σ is to satisfy two demands. The derivative d σ is not degenerated on
the hypersurfaces in the tangent space of M that result from σ = 0. From this condition
it already follows that the manifold has to be odd-dimensional. Indeed, non-degenerate 2-
forms only exist on even-dimensional spaces. So the tangent space to the contact-manifold
has odd dimension, say 2n + 1.
The second condition is that the 1-form is maximally non-integrable. In earthly terms this
is equivalent to saying that σ ∧ (d σ)n is a volume form.
It will also be equivalent to an integral manifold of σ having maximal dimension n− 1.
The contact structure on M is the hyperplane subbundle kerσ of TM .
Definition III.2. Submanifolds of contact manifolds that are integral manifolds of maximal
dimension of kerσ are called Legendrian submanifolds.
Let the contact manifold be fibered such that each fiber is a Legendrian submanifold of the
contact manifold. We will only consider such fibered contact manifolds.

29
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The most important example of such a contact manifold is the following. Let N be any
manifold. At a point q of N consider the set of all hyperplanes through the origin in the
tangent space TqN . This is a projective space PT ∗qN . To construct a field of hyperplanes
on the manifold PT ∗N consider a point (x1, ..., xn, ξ1; ...; ξn) on it. This point defines a
hyperplane in the tangent space of the base manifold N . This plane lifts to an n − 1
dimensional plane in the 2n − 1 dimensional tangent space to the total space PT ∗N in
(x1, ..., xn, ξ1; ...; ξn). Join this plane with the vertical directions and one obtains a field of
hyperplanes in T (PT ∗N). This field of hyperplanes defines a contact structure.
It is verified that each fiber of the fibration PT ∗N 7→ N is an integral manifold of the contact
structure. Indeed, all tangent directions to fibers are vertical directions. They always lie in
the hyperplanes of the contact structure.
We have thus made PT ∗N into a fibered contact manifold. Two other examples of contact
manifolds are important.

• J1(N): Every germ is defined by its function value z and derivative y in a point x. The
1-form σ = d z− y dx defines a 1-form on J1(N). This 1-form defines a contact structure
because σ ∧ (d σ)n defines a volume form.

• ST ∗N : If we coorient each contact element in PT ∗N we obtain a double covering of that
space. This is ST ∗N .

We have the following generalization of the Darboux lemma

Lemma III.3. Every contact manifold is locally contactomorphic to J1(Rn), for some n.

As an example we take PT ∗Rn. Around a point in PT ∗Rn coordinates can be written

(q1, · · · , qn, p1; · · · , pn−1; 1).

Thus there is a local contactomorphism to J1(Rn−1). In these coordinates the contact form
will be d qn −

∑n−1
i=1 pi d qi.

As with Lagrangian manifolds Legendrian manifolds can also be constructed using both
generating functions and phase functions. Before getting to this point we have to explain
both symplectization and contactization.

III.1.3. Symplectization. Symplectization is a canonical construction that associates
to a contact manifold V a symplectic manifold and to a Legendrian submanifold L a La-
grangian submanifold Λ.
The contact form that determines the field of hyperplanes in the tangent space is determined
up to a multiple. Instead of d z − p d q we might as well write λ d z − λp d q. Here λ is some
independent variable 6= 0.
The form (d(λp d q))n+1 is indeed a volume form so that R× V is a symplectic manifold. If
L is a Legendrian submanifold of V then Λ = R×L is lagrange in R×V . Infact, Λ will not
just be lagrange, Λ will be conic lagrange.

Example III.4. Let L be a Legendrian submanifold of PT ∗Rn. The symplectization of
PT ∗Rn will be T ∗Rn. The n − 1 dimensional Legendrian manifold is send to a conic La-
grangian manifold.

III.1.4. Contactization. Contactization is a canonical way of constructing a contact
manifold out of a symplectic one. First we notice that on the symplectic manifold there is
defined the canonical 1-form σ. We take the direct product of R with the contact manifold.
This is an additional coordinate z. Lagrangian submanifolds Λ carry over to Legendrian
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Figure III.1. Field of hyperplanes that makes a cusp smooth.

ones by an integration
z = ∫ σ = ∫ ξ dx

This is how we go from T ∗Rn to J1(Rn,R).

III.1.5. Constructions with phase functions. In section III.1.1 we have seen how
to use phase functions to construct Lagrangian submanifolds of T ∗Rn. There are essentially
two ways of constructing Legendrian submanifolds from phase functions.
The first construction is connected with contactization. Take a Lagrangian Λ submanifold
of T ∗Rn. Let Λ be given by a phase function F (x, s). If ds F has a regular value at 0 then
(dsF )−1(0) 3 (x, s) 7→ (x, dx F (x, s)) has a Lagrangian manifold in T ∗Rn as an image ΛF .
The contactization process now gives a Legendrian submanifold in the contactization of
T ∗Rn, that is J1(Rn). This submanifold is given by the image of:

(ds F )−1(0) 3 (x, s) 7→ (x, F (x, s), dx F (x, s))

In this way we have constructed a Legendrian submanifold starting from what is a phase
function in the Lagrangian sense.
The second construction is connected with symplectization.
Definition III.5. If we have a phase function such that F, ds F (x, s) has a regular value in
0 then it is called non-degenerate.
Remark III.6. Except in isolated cases ( e. g. in subsection IV.2.3 ) this is what we will
mean by a non-degenerate phase function.
The image LF ⊂ PT ∗Rn of

(III.1) (F (x, s), ds F )−1(0) 3 (x, s) 7→ (x, dx F (x, s))

is n− 1 dimensional and isotropic. We map

(III.2) R− {0} × LF → T ∗Rn

or
R>0 × LF → T ∗Rn

by
(τ, q, p) 7→ (q, τp)
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the image of which is a conic Lagrangian manifold and can be interpreted in the first case
as a submanifold of PT ∗Rn and in the second case as a submanifold of ST ∗Rn.
There is another way of looking at this. We can regard F (x, s) as a family of (oriented) hyper-
surfaces in TRn+k: for each (x0, s0) ∈ Rn+k we have the hyperplane dx,s F (x0, s0)(δx, δs) =
0 in the tangent space T(x0,s0)Rn+k. The ones that project as hyperplanes in TRn are those
that have ∂F

∂s (x0, s0) = 0. From the requirement that (F, ds F ) has a regular value at 0 it
follows that we can always write locally

F (x, s) = xn − F̃ (x1, · · · , xn−1, s)

so that indeed a Legendrian submanifold is constructed, either in PT ∗Rn or in ST ∗Rn.

III.1.6. Note on terminology. Now that the notions “conic Lagrange”, “Legendre”
and “Lagrange” have been clearly established we will for the sake of readability start using
phrases such as: “... hence C is conic lagrange in X ... ” , when we mean to say that
there exists a conic Lagrangian manifold L ⊂ T ∗X such that the projection of L to X is C:
πXL = C In this sort of phrases it does not matter very much whether C is conic Lagrange
or Legendre, hence we will use both terminologies. What is meant will always be clear from
the context.

III.1.7. Canonical relations. From one conic Lagrangian manifold one constructs a
new one by means of “a section and a projection”. This idea is made precise by the notion
of a canonical relation. For canonical relations we refer to the book [Hör85] , pages 289 et
seq., in particular theorem 21.2.14.
Definition III.7. A canonical relation between two symplectic manifolds (S1, ω1) and
(S2, ω2) is a Lagrangian submanifold of (S1 × S2, π

∗
1ω1 − π∗2ω2).

By π1 and π2 we mean the projections π1 : S1 × S2 → S1 and π2 : S1 × S2 → S2.
Here are a few ways to construct canonical relations:
• A Lagrangian submanifold N of (S1×S2, ω1+ω2) gives rise to a canonical relation between

S1 and S2 by the accent mapping ′:

(N)′ = {x1, ξ1, x2, ξ2 ∈ S1 × S2 | (x1, ξ1, x2,−ξ2) ∈ N}
• If S2 is a point a canonical relation between S1 and S2 is any Lagrangian manifold of S1.
• If f : S1 → S2 is a symplectomorphism, then the graph of f is a canonical relation between

S1 and S2.
The composition of two maps can be done via their graph. If we have f : S1 → S2 and
g : S2 → S3 symplectomorphisms then the graph of their composition is

πS1×S3(gr(f)× gr(g) ∩ S1 ×∆(S2 × S2)× S3) ⊂ S1 × S3

This is also how canonical relations are composed.
Theorem III.8. Let Si, i = 1 · · · 3 be three symplectic manifolds. Let G1 be a canonical
relation between S1 and S2 and G2 one between S2 and S3. If G1 × G2 intersects S1 ×
∆(S2)×S3 transversally then the image G3 under the projection S1×S2×S2×S3 7→ S1×S3

is a canonical relation between S1 and S3. We call this the composition G1 ◦G2 of G1 and
G2.
In our applications we will usually apply this theorem there where S3 is a point. So we use
the next proposition, that rephrases the demand in the theorem of Hörmander.
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Proposition III.9. Let G1 be a canonical relation between S1 and S2 whose projection
to S2 is an immersion and let G2 be a canonical relation between S2 and a point. Then
the composition G1 ◦ G2 is a canonical relation , and thus a Lagrangian manifold in S1, if
π2(G1) t G2.

Proof. We need that

(III.3) G1 ×G2 t S1 ×∆(S2)

This intersection is contained in the graph of the projection π2 : G1 → G2. We have that
(III.3) holds iff.

gr(π2) t G1 ×G2

this in turn is true iff.
π2(G1) t G2

¤

III.1.8. The Gauss map. The space of oriented lines in Rn can be realized as the
symplectic manifold T ∗Sn−1. Namely if ` is a directed line in Rn then this line has a
direction v ∈ Sn−1.
The direction v determines a hyperplane through the origin:

H` = {x ∈ Rn | 〈v, x〉 = 0} ⊂ Rn

The hyperplane H` can be identified with the tangent plane TvSn−1, to be identified with
T ∗v Sn−1 through the Legendre mapping. The intersection point of H` and ` determines thus
a point in T ∗v Sn−1. The normal to an oriented (M,~n) hypersurface in Rn is a directed line.

v

Sn−1

~n
`

M

H`

Figure III.2. Construction of space of directed lines

We thus have a map N∗M 7→ T ∗Sn−1. As a map ~n : M → Sn−1 it is known as the Gauss
map. The image of this map is Lagrangian in T ∗Sn−1, see [Arn90].
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Theorem III.10. There is a canonical relation G between T ∗Sn−1 and T ∗Rn \ {0} such
that its composition with any conic Lagrangian manifold in T ∗Rn \ {0} yields a Lagrangian
submanifold of T ∗Sn−1. In particular, the composition of G with the conormal bundle N∗M
of a submanifold M ⊂ Rn yields a Lagrangian submanifold of T ∗Sn−1 that coincides with
the image of the Gauss map.

Proof. We write (v, µ) for coordinates on T ∗Sn−1. They are really coordinates on T ∗Rn

but we will always have 〈v, µ〉 = 0 and ‖v‖ = 1 so that they can be used as coordinates on
T ∗Sn−1. The canonical symplectic form is d v ∧ dµ.
Consider the following subset G of T ∗Sn−1 × (T ∗Rn \ 0)

{(v, µ, x, ξ) | v =
ξ

‖ξ‖ , µ = x− 〈x, ξ〉ξ
‖ξ‖2 , ‖ξ‖ = C}

( Here C > 0 is some constant. )
The subset G mimicks exactly the geometric construction that associates to a point on a
conormal N∗M a directed line in T ∗Sn−1. Our proof will consist of two steps:
• that G is a canonical relation from T ∗Rn \ 0 to T ∗Sn−1

• that conic Lagrangian manifolds are exactly those that can be pulled back to T ∗Sn−1 by
G.

Step 1. Remark that instead of ω2 =
∑n

i=1 dxi ∧ d ξi we can take any multiple λω2 of ω2

as a symplectic form, because ω2 = 0 on a tangent space iff. a nonzero multiple of it is zero.
Both forms give the same structure in the tangent space.
Accordingly if we prove that λω2 = d v ∧ dµ on every TpG we have shown that G is a
canonical relation, between T ∗Sn−1, d v ∧ dµ and T ∗Rn \ {0}, ω2.
We are to prove that for two tangent vectors (δv, δµ, δx, δξ) and (δv′, δµ′, δx′, δξ′) at p =
(v, µ, x, ξ) we have

λ

n∑

i=1

δxiδξ
′
i − δx′iδξi =

n∑

i=1

δviδµ
′
i − δv′iδµi

We first get rid of the v coordinates.

v =
ξ

‖ξ‖ ⇒ δvi =
δξi

C

So that we are left with:

(III.4)
n∑

i=1

(
λδxi +

δµi

C

)
δξ′i =

n∑

i=1

(
λδx′i +

δµ′i
C

)
δξi

The next candidates for removal are the µ coordinates:

δµi = δxi − 〈x, ξ〉
C2

δξi − ξi

C2




n∑

j=1

ξjδxj + xjδξj




= I + II + III(III.5)

The terms coming from III inserted in each side of (III.4) annul because they are multiples
of

∑
ξiδξi. The terms from II are identical at both sides of (III.4). Finally choose λ = −1

C .
Step 2: G is a canonical relation. Its projection to T ∗Rn is ‖ξ‖ = C. The projection is an
immersion. We can apply proposition III.9: if L ⊂ T ∗Rn intersects ‖ξ‖ = C transversely we
have that via G we can define in T ∗Sn−1 an “image of the Gauss map”. But L t {‖ξ‖ = C}
amounts to saying that L is conic lagrange. ¤



III.1. SOME SYMPLECTIC AND CONTACT GEOMETRY 35

Remark III.11. Though probably known to experts we have not found this Gauss canonical
relation for arbitrary conic Lagrangian manifolds in the literature.

III.1.9. Wavefront from a submanifold. In the sequel we will encounter a distance
function on a C∞ manifold X. If X = Rn and we use the standard euclidean metric it
is clear what is meant. In other cases where we define a distance function by means of a
Hamiltonian we need to impose rather strong conditions on X and the Hamiltonian H.

Definition III.12. A homogeneous Hamiltonian is a function on the slit cotangent bundle
T ∗X \ 0 that is homogeneous of degree 2 in the coordinates of the fiber of T ∗X \ {0} 7→ X.
In other words, it is the continuous assignment to each fiber of a function homogeneous of
degree 2.

Example III.13. • Any finsler metric on X gives rise to a homogeneous Hamiltonian.
• If gij(x) is the matrix of a Riemannian metric on X a homogeneous Hamiltonian is

H : (x, ξ) 7→
∑

i,j

gijξiξj

Throughout this chapter and the next we will assume

• 1 that all our Hamiltonians are C∞. In physics this will not always be the case. For
instance, on the border of two different media there is refraction. Here the Hamiltonian
will not be C∞.

• 2 that the quadratic form
∂2H

∂ξ2

is non-degenerated, for all x, ξ.

To contrast our approach with others we explicitly remark that our quadratic Hamiltonians
include pseudo-Riemannian metrics.

Definition III.14. For any function K : T ∗X → R the Hamiltonian vectorfield vf(K) is
defined by

(III.6) ω(vf(K), ·) = − dK

The Hamiltonian vectorfield vf(K) has an induced exponential mapping

expK : T ∗X × R→ T ∗X

The map expK(x, ξ, t) is called the Hamiltonian flow.
Take any conic Lagrangian submanifold L of T ∗X \ 0. Because H is homogeneous in the
fiber coordinates the intersection L ∩H−1(1) is transversal. For a fixed t = t0 we can flow
out L ∩H−1(1) with the Hamiltonian vectorfield of H. The image is

expH(L ∩H−1(1), t0)

is isotropic and of dimension n− 1.
Remark III.15. Note that it does not matter much whether we flow out an isotropic mani-
fold by the Hamiltonian vectorfield of H or by vf(Hp). From equation (III.6) we can deduce
that the one vector vf(Hp) is a multiple of the other vf(H) when restricted to H = 1.
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If we also “multiply the fibers” of expH(L ∩H−1(1), t0)

R>0 × T ∗X → T ∗X (λ, x, ξ) → (x, λξ)

we obtain a map
L 7→ Lt = expRH(L, t)

that sends conic Lagrangian submanifolds to conic Lagrangian submanifolds. In particular,
we may apply expRH to the fiber T ∗x0

X over x0 of T ∗X \ 0. Denote

S(x0, t) = expRH(T ∗x0
X, t)

With the assumptions we make S(x0, t) is a C∞ manifold. Note that the manifold S(x0, t) is
not necessarily symmetric or connected. The manifolds S(x0, t) are smooth. Their projection
to X is not always smooth.
We will now make an additional assumptions about the pair X, H.
• 3 The integral curves of vfH are defined for all t ∈ R.
In case H is a Finsler metric the integral curves of vf(H) are geodesics. Thus, the assumption
amounts to saying that X is complete, see [BCS00]. This assertion is called the Hopf-Rinow
theorem.
Consider the integral

(III.7) A = A(x0, x1) =
∫

Γ

ξ dx

where Γ is a curve in T ∗X∩{H = 1} that makes this action stationary and whose projection
to the X space goes from x0 to x1. The solution curves to this problem are locally uniquely
defined due to the two assumptions above. Thus the integral A depends only on x0 and x1

- and on the energy-level H = 1 chosen.
The manifolds S(x0, t) are level sets of the function x 7→ πX(A(x0, x)). This makes A(x0, x1)
the perfect candidate for a distance or time function, as will be shown in the next section.
The function A(x0, x1) is C∞ on X ×X \∆. We will also call it the work function.
It is the analogue of ‖x0 − x1‖ in the euclidean case.
Our last and final assumption is:
• 4 For any pair x0 and x1 there is at most one curve Γ as above.
Now we have assembled all we needed for our analysis. The S(x0, t) are defined for all x0

and t by the third assumption and their projection to X is smooth by the fourth assumption.
Sadly there is a catch here: these demands are very strong. When X = Rn and we use the
standard Riemannian metric they are trivially satisfied. There is one other well-known case
where these assumptions are satisfied. We cite the Cartan-Hadamard theorem.
Theorem III.16. If X is a simply connected complete Riemannian manifold with all sec-
tional curvatures negative or 0 then any two points can be joined with a unique geodesic.
The exponential map exp: TpM → X is a diffeomorphism for every p ∈ X.
The Cartan-Hadamard theorem also holds in the finsler setting. It singles out an exceptional
situation because already when X = Sn our assumptions are no longer satisfied because
closed geodesics abound there. This is clearly not what we want.
We are thus led to contemplating whether we can do a little more. For instance we could
impose our conditions in some open subset of X ×R. So if X = Sn then we could leave out
say the north-pole {0} and consider for each x ∈ Sn \ {0} only those times for which the
north pole is not attained. However Sn \ {0} can be spread out and in that case it will look
just like Rn and such additional time and space restrictions will certainly not ease notation.
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Instead we note that if we have on Rn a quadratic Hamiltonian independent of x then all our
demands are satisfied. Such quadratic Hamiltonians are often called translation invariant.
In the case where H =

∑
gij(x)ξiξj it is possible to choose local coordinates such that

(III.8)
∂gij

∂xk
(0) = 0

Thus in some sense H does not depend on x here. For a proof of this assertion, see [Hör85],
part III, appendix C. We conclude that nearly all quadratic Hamiltonians are near to trans-
lation invariant ones.
We will now turn our attention to wavefronts not just from a point, but from a submanifold
M of X with its accompanying Hamiltonian H the wavefront of M at time t.
Definition III.17. For γ ∈ Emb(M, X) define

WF(t,M) =
⋃

s∈M

S(γ(s), t) ⊂ M × T ∗X

The singular values of the projection of WF(t,M) to T ∗X are called the wavefront Σ(t,M)
of M at time t.
The wavefront Σ(t,M) ⊂ T ∗X is thus defined as an envelope, and not as a flow-out. The
following lemma relates the flow-out and the envelope.
Lemma III.18 (Huygens principle).

Σ(t, M) = expRH(N∗M)

If M ⊂ X is cooriented and a hypersurface and H is positive definite the manifold N∗M ∩
{H = 1} has two components, each corresponding to one sign of the orientation. We could
so speak of Σ+(t,M) and Σ−(t,M), assuming t is positive.
Example III.19. Take X = R2 and H = ξ2

1 − ξ2
2 then the “distance” from p0 = (x0, y0)

to p1 = (x1, y1) is
√
|(x0 − x1)2 − (y0 − y1)2|, if we choose energy levels ±1. Indeed, some

points cannot even be connected, for instance the origin and (1, 1). However, our four
assumptions are satisfied. In figures III.3 and III.4 we see the envelopes for different values

Figure III.3. Fronts for ξ2
1 − ξ2

2 = −1

of the energy level. Below are all the wavefronts from different points. The envelopes are
above.
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Figure III.4. Fronts for ξ2
1 − ξ2

2 = 1

Several articles among which [IPS00] deal with pseudo-Riemannian metrics to investigate
questions in generic differential geometry. With our definition of distance we do not need to
distinguish between the case of pseudo-Riemannian geometry and the case of Riemannian
geometry.
We repeat that the combination of the work function A with an embedding γ allows us to
produce a globally defined non-degenerate phase function F (x, s) = A(x, γ(s)) for Σ(t,M).
This will be essential in the sequel.
In the literature one finds the assertion that the existence of a global non-degenerate phase
function implies some conditions on the cohomology of the ambient manifold, see for instance
[Zak84], p. 2733. In this way the conclusion of the Cartan-Hadamard theorem is not so
surprising.

III.1.10. Quadratic Hamiltonians and the Legendre transform. We have al-
ready seen that the integral curves of the Hamiltonian vectorfield vf(H) correspond to
geodesics. We would like to explain in some detail the relation between the Hamiltonian
viewpoint and the more traditional geometric viewpoint. For the geometry we refer to
[BCS00]. The main change that we make is that we do not require that our “metrics” are
positive definite.
The Hamiltonian dynamics take place in the cotangent space and the differential geometry
in the tangent space. There is a pairing between the two:

T ∗x X × TxX → R (ξ, v) 7→ ξ(v)

For a fixed v ∈ TxX we can look for critical values of the function

ξ(v)−H(x, ξ)

These critical values are attained there where

(III.9) v =
∂H

∂ξ
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Because

det(
∂2H

∂ξ2
) 6= 0

we know that (III.9) defines a local diffeomorphism from T ∗X to TX. It is the Legendre
transform. When v is the Legendre transform of ξ we write v = ξ[.
The critical value is uniquely determined by the Legendre transform and we can introduce
the Lagrangian L.

L(x, v) = extr
ξ∈T∗x X

(ξ(v)−H(x, ξ))

If v = ξ[ then with (III.9) we have:

L(x, v) = H(x, ξ)

If we have a finsler metric F on TX we can put

L(x, v) =
1
2
F2(x, v)

Example III.20. The case with Riemannian metrics permits more explicit comparisons
between H and L. As usual denote gij a Riemannian metric. We have H = 1

2 〈gijξ, ξ〉. And
the Lagrangian is L(x, v) = 1

2 〈gijvi, vj〉. The Legendre transform is

v = gijξ

The inverse of the Legendre transform can be used to obtain from the canonical 1-form on
T (T ∗X) a form on T (TX)

ξ dx ⇒ ξ[ d x

When restricted to the surface L(x, v) = 1 this form is sometimes known as the Hilbert
form. We denote it α[. Contrary to what is done in [BCS00] the form we introduce here
does not have the property that it is invariant under rescaling of the v coordinate, we do
not care because we fix the manifold over which we work.

α[(x, λv) = λα[

The Hilbert form can be used just as the integral
∫

ξ dx to obtain extrema of path length.
With Riemannian metrics we carry out the following calculation.

∫

Γ

ξ dx =
∫

Γ′
gijvi d x

Here Γ is the curve from (III.7) and Γ′ is the image of Γ under the Legendre transform.
Denote the length of a curve γ : [a, b] → X as

Lb
a =

∫ b

a

√
gij

d γi

d t

d γj

d t
d t

whilst the energy is

Eb
a =

∫ b

a

gij
d γi

d t

d γj

d t
d t

It follows that the extremum of the integral of ξ d x is both equal to the length and the
energy of the curve, because πX(Γ) is unit parameterized.
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III.1.11. The big wavefront. There is one special kind of wave front that we still
need to investigate. This is the big wavefront, sometimes also called the graph of the time
function.
To define it take a submanifold M ⊂ X, where X satisfies all four assumptions stated in
section III.1.9. The union of all wavefronts Σ(t,M) as a subset of R × T ∗X is Legendrian
submanifold of

J1(X,R) = R× T ∗X

with contact form d x0 −
∑

ξ dx. We can view J1(X,R) as a coordinate patch of PT ∗(X ×
R). We can apply the symplectization and obtain from the union of the Σ(t,M) a conic
Lagrangian manifold in T ∗(X × R). This is the big wavefront N∗Mh.
Let us show another way to define the big wavefront. Denote 0R the zero section of T ∗R.
We observe that 0R ×N∗M ⊂ T ∗(X ×R) \ 0 is a conic Lagrangian manifold in T ∗(X ×R).
Again, in particular 0R × T ∗x0

X is a conic Lagrangian manifold.
Lemma III.21. Let H : T ∗X → R be a Hamiltonian, positively homogeneous of degree 1. Let
φt : T ∗X × R → T ∗X be the corresponding flow. The map Ψ: T ∗(X × R) → T ∗(X × R)
given by

(III.10) (x, ξ, t, τ) Ψ−→ (φt(x, ξ), t, τ −H(x, ξ))

preserves the symplectic form.

Proof. The map Ψ is symplectic iff.

ω(d ·,d ·′) = ω(·, ·′)
We write p = (x, ξ), and thus

dp,t,τ φt(δp, δt, δτ) = dp φtδp + vf(H)δt

Writing this out we thus need to prove that

ω((dp φtδp + vf(H)δt, δt, δτ −∇Hδp), (dp φtδp′ + vf(H)δt′, δt′, δτ ′ −∇Hδp′))

= ω(dp φtδp + vf(H)δt, dp φtδp′ + vf(H)δt′)

+ ω((δt, δτ −∇Hδp)(δt′, δτ ′ −∇Hδp′))
= I + II

equals ω((δp, δt, δτ), (δp′, δt′, δτ ′)). We calculate part I.

I = ω(dp φtδt, d′p φtδt′) + ω(vfHδt, d′p φtδt′)

+ ω(dp φtδt, vf(H)δt′, ) + δtδt′ω(vf(H), vf(H))

= ω(δp, δp′) + ω(vf(H)δt, dp φtδp′)− ω(vf(H)δt′, dp φtδp)

= ω(δp, δp′)

Next we calculate part II. Because

II = ω((δt, δτ)(δt′, δτ ′))

the proof is complete. ¤

Remark III.22. In our case we have a quadratic Hamiltonian but on the intersection

0R × T ∗x0
X ∩H = 1
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we can take
√

H and apply Ψ from the lemma to get an isotropic manifold of dimension n in
T ∗(X ×R). Its projection to X ×R is already the big wavefront. To get a conic Lagrangian
manifold we multiply the fibers. As before this gives us the big wavefront.
When a fixed orientation ~n is given and H takes on only positive values - as in the case of
a Riemannian metric - the intersection {H = 1} ∩ N∗M contains two components. There
is the side corresponding to n in {H = 1} ∩ N∗M and a second side. We may decide to
flow out only one of these and in such a way obtain a big wavefront we’ll call N∗M b. The
projection of this to X × R is what was studied in chapter one.
However, for the local considerations that follow this distinction is not relevant.

III.2. The conflict set via a canonical relation

In this section we apply the notion of a canonical relation to conflict sets in order to prove
that the conflict set has a Legendre singularity if a certain transversality condition is satisfied.

III.2.12. Definition of conflict set. As in the previous section we have the following
setup: Let Mi, i = 1, 2 be two smooth manifolds of dimension n − 1, equipped with an
orientation ni. Suppose that by γi : Mi 7→ X , i = 1, 2, the manifolds are smoothly embedded
in a smooth manifold X of dimension n. Also let Hi : X 7→ R, i = 1, 2 be two homogeneous
Hamiltonians.
Definition III.23. The conflict set of two submanifolds M1,M2 ⊂ X relative to two qua-
dratic Hamiltonians H1,H2 : T ∗X → R is the set

C = {x ∈ X | ∃t ∈ R x ∈ πX(Σ(t,M1)) x ∈ πX(Σ(t,M2))}
The set C is the projection of the intersection of big wavefronts, in the way we have encoun-
tered it in chapter 1.
Just as with the wavefronts there is a phase function defined on the whole of X for the
conflict set C of two submanifolds of X. It is given by

F (x, s1, s2) : X ×M1 ×M2 → R
F (x, s1, s2) = A1(γ1(s1), x)−A2(γ2(s2), x)

Here A(γi(si), x) is the work function for the Hamiltonian Hi.

III.2.13. A transversality condition. In the theorem below we will employ the no-
tation:

(III.11) T ∗∆(X l) \ 0 = {(x1, · · · , xl, ξ1, · · · , ξl) ∈ T ∗(X l) \ 0 | xi = xj i 6= j}

Theorem III.24. If the flow out of (N∗M1×N∗M2)′∩((H1−H2)−1(0) by H1−H2 intersects
T ∗∆(X ×X) transversally then the conflict set is a conical Lagrangian submanifold of T ∗X.

Proof. In the setting of theorem (III.8) we choose S1 = T ∗∆, S2 = T ∗(X ×X) and S3 a
point. The canonical relation in S1 × S2 we choose is

G1 = {(x1, ξ1, x2, x3, ξ2, ξ3 | x1 = x2 = x3 ξ1 = ξ2 + ξ3}
We will now choose an appropriate Legendrian submanifold in S2 so that we can apply
proposition III.9.
The manifolds N∗M1 and N∗M2 are two conical Lagrangian submanifolds in T ∗X. Apply
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the accent mapping ′ to the product N∗M1 ×N∗M2. The non-degeneracy of the Hamilto-
nians implies that {H1(x1, ξ1) = H2(x2, ξ2) 6= 0} is a hypersurface in T ∗(X ×X). If we flow
out the intersection

(N∗M1 ×N∗M2) ∩ {H1(x1, ξ1) = H2(x2, ξ2) 6= 0}
by the Hamiltonian vectorfield of H1 −H2 we stay inside the hypersurface

{H1(x1, ξ1) = H2(x2, ξ2) 6= 0}.
Call the flow-out N . The conclusion of the theorem follows if we take the composition
G1 ◦N . ¤

Thus we have a very general criterion under which the conflict set resulting from two homo-
geneous Hamiltonians is Legendrian.

III.2.14. Examples, I. Stated as in theorem III.24 the criterion is not very com-
putable. To obtain a computable criterion we first have to restrict our attention to a com-
putable situation. One of the few situations in which we can calculate wavefronts is in Rn.
To ( locally ) find equations for a wavefront we take as a phase function F the squared
distance from x to γ(s). A phase function for the conflict set is

F (x, s1, s2) = ‖x− γ1(s1)‖2 − ‖x− γ2(s2)‖2
= F1(x, s1)− F2(x, s2)

so that the equations for a conflict set are

F (x, s1, s2) = F2(x, s2)− F1(x, s1) = 0
∂F1

∂s1
= 0

∂F2

∂s2
= 0

Now the demand that F is non-degenerate phase function wrt. both s1 and s2, so that the
matrix

(III.12)




∂F
∂x

∂F1
∂s1

−∂F2
∂s2

∂2F1
∂s1∂x

∂2F1
∂s2

1
0

− ∂2F2
∂s2∂x 0 −∂2F2

∂s2
2




has maximal rank.
Because we can write

F (x, s1, s2) = 2〈x, γ2(s2)− γ1(s1)〉+ ‖γ1(s1)‖2 − ‖γ2(s2)‖2

the matrix (III.12) can be written at points of the conflict set:

K =




γ2(s2)− γ1(s1) 0 0
−γ̇1(s1) 〈γ̇1(s1), γ̇1(s1)〉 − 〈x− γ1(s1), γ̈1〉 0
−γ̇2(s2) 0 〈γ̇2(s2), γ̇2(s2)〉 − 2〈x− γ2(s2), γ̈2〉




The rank rkK of K is bounded from below by

1 + rk
(

∂2F1

∂s2
1

)
+ rk

(
∂2F2

∂s2
2

)

A few remarks are in order:
• The rank rkK has to be at least 1+dim M1 +dim M2 for the conflict set to be Legendrian

at x.
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• The first n columns of the matrix are K linearly independent: if γ1(s1) 6= γ2(s2) the
vector γ2(s2)− γ1(s1) cannot lie in the tangent plane of M1 at γ1(s1). Suppose this were
the case. Then

(III.13) 〈x− γ1(s1), γ2(s2)− γ1(s1)〉 = 0

for some x on the conflict set. Because x lies on the conflict set we would also have

(III.14) 〈x− γ1(s1), x− γ1(s1)〉 = 〈x− γ2(s2), x− γ2(s2)〉
Adding (III.13) and (III.14) we get that

〈x− γ1(s1), x− γ2(s2)〉 = 〈x− γ2(s2), x− γ2(s2)〉
and thus, γ1(s1) = γ2(s2) which is impossible. On the other hand γ1(s1) = γ2(s2) can be
avoided because the conflict set does not change when we move both manifolds M1 and
M2 by the same distance. We can use this argument only locally but then we are only
looking locally.

• The square matrices

ds2
i
Fi = 〈γ̇i(si), γ̇i(si)〉 − 〈x− γi(si), γ̈i〉

have maximal rank if the wavefront of Mi at x is smooth. Note that the wavefront might
well be C1 at points where d2

si
Fi does not have maximal rank. In fact the equation

det(d2
si

Fi(x, si)) = 0 defines the focal surfaces of Mi. The relationship between the
singularities of the map Fi(x, si) and the geometry of Mi is investigated in [Por01].

In chapter V we will apply the singularity theory of Lagrangian and Legendrian mappings
to the problem of conflict sets. There it is always good to keep the matrix K in mind.

III.2.15. Generalization to three surfaces and more. The previous construction
worked to obtain the conflict set of two submanifolds M1, M2 of an ambient manifold X. It
also generalizes to the case where we have l ≤ n submanifolds of X.
We will use the big wavefronts from section III.1.11. Let

(III.15) P =
l∏

i=1

N∗Mh
i ⊂ (T ∗(X × R))l

Theorem III.25. The conflict set of the Mi is Legendrian when

P t T ∗∆
(
(X × R)l

)

Proof. We consider a canonical relation in T ∗X × T ∗R× (T ∗X × T ∗R)l.

G1 = {(ȳ, η̄, x̄1, ξ̄1, · · · , x̄l, ξ̄l) | ȳ = x̄i i = 1, · · · , l η̄ =
l∑

i=1

ξ̄i}

To check that G1 is a conic canonical relation we need to show that it is a conic Lagrangian
manifold wrt. to the form η̄dȳ −∑l

i=1 ξ̄ix̄i. This is the case.
The manifold P can be pulled back to T ∗X × T ∗R if the conditions in theorem III.8 are
fulfilled. I.e. we are to have a transversal intersection

G1 × P t T ∗X × T ∗R×∆
(
(T ∗X × T ∗R)l

)

This intersection is transversal iff.

(III.16) P t T ∗∆
(
(X × R)l

)
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Let Lh be the conical Lagrangian manifold that is the pull back of P by G1.
We proceed to pull Lh back to T ∗X. The canonical relation we use for this is

G2 = {(x, ξ, ȳ, η̄) | x = πX ȳ π∗Xξ = η η0 = 0}
Again we have that upon applying proposition III.9

(III.17) G2 × Lh t T ∗X ×∆(T ∗(X × R)) ↔ W t Lh

where
W = {(ȳ, η̄) | η0 = 0}

The proof will be complete with the following lemma. ¤

Lemma III.26. P t T ∗∆
(
(X × R)l

) ⇒ W t Lh

Proof. Suppose that we did not have W t Lh. Because W is a hypersurface that would
mean that at some point p in Lh the tangent space TLh would be contained in TW . So it
would hold

(III.18) 〈(0, 0, 0, δη0), ~w〉 = 0, ∀~w ∈ TLh

Let J denote the usual complexification mapping. In local coordinates we can write:

ω(v, w) = 〈v, J(w)〉
As J maps δy0 to δη0 the equation (III.18) becomes

ω((0, 0, δy0, 0), w) = 0, ∀w ∈ TpL
h

with ω being the canonical symplectic structure. But Lh is Lagrangian, so we would have
that this vector (0, 0, δy0, 0) ∈ TLh. But that is clearly impossible. ¤

It is verified that in the case k = 2 the above construct is the same as the one with the
accent mapping.
We have that x̄i,0 = x̄j,0. The construction with W implies that we have a fixed energy
level, so that x̄i,0 is the “time traveled”, i.e. x̄i,0 = Ai(x, γi(si)). When k = 2 there is thus
just one equation:

A1(γ1(s1), x)−A2(γ2(s2), x) = 0

Here we have the same phase function as the one we got with the accent mapping. As a
consequence the constructions are identical.

III.2.16. Examples, II. Let F (x, s) be a non-degenerate phase function for a Leg-
endrian submanifold of PT ∗X. Suppose we want to construct the corresponding conical
Lagrangian manifold with a phase function. We can pick λF (x, s). Indeed it holds - pro-
vided that λ 6= 0 - that

F = 0, dsF = 0 ⇔ dλ,s(λF ) = 0.

With this in mind we can start composing any number l ≤ n of Legendrian submanifolds of
T ∗X. Let {Fi(x, si)}l

i=1 be their phase functions, we can consider the following

(III.19) F = λ1(F1 − F2) + λ2(F2 − F3) + · · ·+ λl−1(Fl−1 − Fl)

as a phase function. Here (λ1, · · · , λl−1) lies in a conical subset of Rl−1 \ {0}. Properly
speaking we are not composing Legendrian submanifolds, but phase functions. These phase
functions are determined - as we have seen in the above - by a Hamiltonian, a submanifold
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of the ambient manifold X and the fixed energy level H = 1 chosen.
For a phase function we could also have used the less symmetric

F = (F1 − F2) + λ1(F2 − F3) + · · ·+ λl−2(Fl−1 − Fl)

It is instructive to calculate the matrix of derivatives

(III.20) dx,λ1,··· ,λl−1,s1,··· ,sl

(
dλ1,··· ,λl−1,s1,··· ,sl

F
)

there where

dλ1,··· ,λl−1,sl,··· ,sl
F = 0

or equivalently

(III.21) Fi = Fi+1,
∂Fi

∂si
= 0, i = 1, · · · , l

Thus the matrix (III.20) evaluated at the points of the conflict set defined by (III.21) looks
like

(III.22) K =




γ2 − γ1

...
γl − γl−1

0 0

−λ1γ̇1

−(λ2 − λ1)γ̇2

...
λl−1γ̇l

0

λ1 d2
s1

F1 0 · · · 0
0 (λ2 − λ1) d2

s2
F2 · · · 0

...
...

. . .
...

0 0 · · · −λl−1 d2
sl

Fl




If the matrix has maximal rank, that is l−1+
∑

dim(Mi), then the conflict set is Legendrian.
We can see that the λi do not matter a great deal, we can simply eliminate them from the
matrix (III.22).
Let us analyze this matrix again in the way such matrices are analyzed in [Por01].

• The first column block contains the derivatives wrt. the x variable. These are n indepen-
dent vectors, so that if the lower right block of the matrix III.22 has rank l−1−n+l(n−1)
then the conflict set is Legendrian. In particular it is Legendrian when it is smooth.

• We can see that when there is one umbilic - i. e. d2
s1

F = 0 - and the other wavefronts
are smooth that we then have a Legendrian singularity at the conflict set. This is in
concordance with the remarks above about non-Legendrian singularities. The matrix K
looks like 


γ2 − γ1 0 0
−γ̇1 0 0
γ̇2 0 − d2

s2
F2




We might as well forget the middle column. Then it is clear from the lemma that the
rank of this K is n + rk d2

s2
F2, when γ2(s2) and γ1(s1) do not fall together - something

which can be avoided. Because the second wavefront was regular at the conflict set we
can conclude here that the conflict set is Legendrian.

• On the other hand if rk d2
s2

F2 < n−1 the conflict set will have a non-Legendrian singularity.
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• Another example is where l = n = 3. This is the simplest case with three hypersurfaces.
Here the matrix K looks like:



γ2 − γ1 0 0 0 0
γ3 − γ2 0 0 0 0
−γ̇1 0 d2

s1
F1 0 0

−γ̇2 0 0 d2
s2

F2 0
γ̇3 0 0 0 d2

s3
F3




Disregarding the column with zeroes this is a 8× 9 matrix. Let us first consider the first
three columns. They are independent. Now if two of the wavefronts are smooth at the
conflict set we can have the third one singular and obtain a singular space curve.

• The relation between caustics and wavefronts is that singular points of the wavefronts
lie on the caustic. For the conflict set and the caustics of the base manifolds we have
something similar. If a point on the conflict set is singular then not all the d2

si
Fi can have

maximal rank. This means that singular points of the conflict set lie on the caustic of one
the manifolds. The singular points of the conflict sets lie on a codimension n − l set on
each caustic.

Example III.27 (Birth and death of a component). Conflict sets are hard to calculate,
both numerically and algebraically. Thus we have to restrict our attention to a very simple
situation. Already this simple situation leads to some interesting conclusions.
Take

γ1(s) =
(

s,
1
2
s2

)
and γ2(t) = A(φ) (γ1(t)− b)

thus γ2 is just an affine transform of γ1. We know that non-Legendrian points occur when
the rank condition fails. The rank condition fails when the conflict set, the caustic of γ1 and
the caustic of γ2 meet. These are three curves and for them to meet we see from the matrix
that we need a one parameter family. Different families can be fabricated: we could choose
variations in γ1 or γ2 , or we could vary H1 and H2, that is we vary the metrics associated
to γ1 and γ2. We will take

Fz = (1 + z)‖x− γ1(s)‖ − (1− z)‖x− γ2(t)‖
The quickest way to calculate the conflict set in this case is by repeated use of resultants.
For z = 0 we get figure III.5. In the middle of figure III.5 we see a separate component.
We will show how it comes to existence through the non-Legendrian point, and why it has
exactly four cusps. When z = 8/10 the picture looks very different, see figure III.6 Here the
component is not born yet. For the region inside the two caustics another four cusps need
to be born. But this is about to happen, just below and just above the cuspidal point of
the caustic of γ1 there are two curve segments of the conflict set. When they have shifted
through this cuspidal points the four cusps will be there. Just as with wavefronts cusps
are born in pairs. This is what has happened in figure III.7. One now sees the cusps on
the right side moving towards the intersection of the caustic of γ1 and γ2. They will meet
there at the same time. At this point the separate component is born. Over there the two
Legendrian manifolds corresponding to the wavefronts of γ1 and γ2 become tangent to each
other. It can be traced that it dies indeed at the other point where the caustics of γ1 and
γ2 intersect.
The transition described here is not entirely new in the literature. As a purely local phe-
nomenon it is described in [BG86]. The A2

2 case on p. 195 is the same as we have here. We
will return to the A2

2 case in the next chapter, see figure V.4.
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Figure III.5. z = 0: The curves γ1 and γ2 ( thick black line ), together
with their evolutes ( thin black line ) and the conflict set ( thick grey line
) .

Figure III.6. z = 8/10: The curves γ1 and γ2, together with their evolutes
and the conflict set.

Figure III.7. z = 5/10: The curves γ1 and γ2, together with their evolutes
and the conflict set.
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Figure III.8. Left z = 2/10 and right side z = 35/100

Remark III.28. In the calculations carried out in the previous example resultants were much
faster then elimination of the s-variables by Groebner bases. This has been our experience
with a lot of examples. With two surfaces in R3 we have not seen the end of Groebner
basis elimination or resultant methods even with fairly fast computers. The fastest of these
systems [GPS01] would run for days without ending.

III.2.17. Further section and projection. All considerations in this subsection will
be purely local, hence take X = Rn for simplicity. Consider a Legendrian submanifold L of
T ∗Rn \ 0. At each (x0, ξ0) ∈ L we can consider the dimension of Tx0,ξ0L∩Tx0π

−1(x0). This
fiber dimension is an upper semi continuous function on L. Because the fiber dimension is
integer valued there is some open neighborhood U of (x0, ξ0) such that on a dense subset of
U ∩L the fiber dimension takes on a single value. This number is the type of the Legendrian
submanifold at (x0, ξ0). If the type is 1 the Legendrian submanifold we have is of general
type.
The Legendrian manifolds we encounter if l > 2 are not of general type. Their fiber di-
mension is at regular points l − 1. We wish to show how we can apply the section and
projection procedure to realize the conflict set as a Legendrian manifold of general type,
or more generally how to realize a Legendrian manifold of higher type, as a Legendrian
manifold of general type.
Thus let L be a Legendrian manifold of type l − 1 > 1 in T ∗Rn. For a vector v in T0Rn we
consider in T ∗Rn the hypersurface

Wv = {(x, ξ) ∈ T ∗Rn | ξ(v) = 0}
By Sard’s theorem for almost all v we have

(III.23) Wv t L

We have seen in the above ( equation (III.17) ) that (III.23) implies that we can project
immersively L along the direction v. The projection of L along v to T ∗Rn−1 gives rise to a
Legendrian manifold in πv(L), it will be of type l − 2. This process can be repeated until
we have a Legendrian manifold of general type. We summarize.
Theorem III.29. A conic Lagrangian manifold of type l − 1 > 1 near (0, ξ) in T ∗Rn can
be sectioned and then projected immersively to a Legendrian manifold of general type in
T ∗Rn−l+2.
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III.3. Surjectivity of the jet mapping

In this section we will prove that the condition which assures that the conflict set has
a Legendre singularity is generically satisfied under perturbations of the base manifolds.
There are two ways of going about proving this. In this section we prove the genericity of
the maximal rank criterion (III.22) for phase functions In the next chapter we prove the
genericity of the criterion (III.16).

III.3.18. Maximal rank criterion. Recall from [Hir94] that a residual set in a topo-
logical space is a countable intersection of open and dense subsets. The space of C∞ mappings
from Mi to X equipped with the Whitney topology is a Baire space, meaning that countable
intersections of open and dense sets are still dense. Hence residual sets lie dense.
For our purposes it is convenient to introduce the space Emb(M, X). It is the space of closed
embeddings of the hypersurface M in X. Again from [Hir94] we know that the space of
closed embeddings is open in the space C∞(M, X).
Theorem III.30. Let Mi be l closed compact hypersurfaces X. For a residual subset of em-
beddings in ⊕l

i=1 Emb(Mi, X) with the Whitney topology the conflict set only has Legendrian
singularities.
In the above we have made four assumptions on our Hamiltonian such that for each of the
Ai(x, y)

(III.24)
∂Ai

∂y
6= 0

Moreover, because the Hamiltonians are non-degenerate we will also have

det(
∂2Ai

∂y2
) 6= 0

Let each of the γi depend on an additional parameter ei ∈ Rn. So every embedding is
replaced by a family of embeddings: γi = γi(si, ei).
In the euclidean case we take translations of the γi, there γi has the form γi(si, e) = γi(si, 0)+
e. In the general case we assume that near any point coordinates can be chosen such that
for si near si,0 and small e such that we can write in these coordinates:

γi(si, e) = γ(si) +
∂γi

∂e
e + O(‖e‖2)

and
∂γi

∂e
(si,0, 0) = In

Let us cite lemma 3.2. in [Mat70b].
Lemma III.31 (Lemma V.3.2.). Let U be a submanifold of a manifold W . Let F be a
topological space and j : F → C∞(V, W ) a mapping, where V is a manifold. Suppose that for
each f ∈ F there exists a continuous mapping φ : (E, e0) → (F, f), where E is a manifold
and e0 ∈ E, such that the mapping Φ: E × V → W (defined by Φ(e, v) = jφ(e)(v) ) is C∞
and transversal to U . Then

{f ∈ F | j(f) is transversal to U}
is dense in F.
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We want to apply the lemma to our present situation, where we need to prove theorem
III.30.
Take

F = ⊕l
i=1 Emb(Mi, X)

We need to prove that the matrix K from (III.22) generically has maximal rank. Hence the
graph of

(III.25) x, s1, · · · , sl → F1 − F2, · · · , Fl−1 − Fl,
∂F1

∂s1
, · · · ,

∂Fl

∂sl

is to intersect its zero-level transversally. We have to fill in that U is the zero-level. So U is

{x, s1, · · · , sl, 0, 0, · · · , 0}
in

X ×M1 × · · · ×Ml × Rl−1 × (
Rn−1

)l

The simplest way to get a map Φ: E×V → W transverse to U ⊂ W is to make Φ submersive.
Let

V = M1 × · · · ×Ml ×X

and let E be (Rn)l

The map Φ will be the graph of (III.25), where the Fi are the distance functions

Fi = Ai(x, γ(si, ei))

If the map Φ is submersive then for a dense subset of ⊕l
i=1 Emb(Mi, X) the maximal rank

criterion is fulfilled and the conflict set is generically Legendre.
To show that the map Φ is submersive we need to show that the matrix of derivatives

dx,e,s (F1 − F2, · · · , Fl−1 − Fl, ds1 F1, · · · dsl
Fl)

has rank l − 1 + l(n− 1). ( We have written s = (s1, · · · , sl) and e = (e1, · · · , el) )
It will be enough to show that

(III.26) dx,e (F1 − F2, · · · , Fl−1 − Fl, ds1(F1), · · · , dsl
(Fl))

has the required rank l−1+l(n−1). Thus we are to calculate a number of partial derivatives

dx,ei(Fj − Fj+1) and dx,ei(dsj (Fj))

because of these partial derivatives the matrix in (III.26) is composed. We find:

dx(Fj − Fj+1) =
∂Aj

∂x
− ∂Aj+1

∂x
Here

∂Aj

∂x
is the normal to the front from Mj .

dei(Fj − Fj+1) =
∂Aj

∂y

∂γj(sj , ej)
∂ei

− ∂Aj+1

∂y

∂γj+1(sj+1, ej+1)
∂ei

Above we chose our families so that in local coordinates
∂γi(si, ei)

∂ei

is the identity matrix. Hence

dej (Fj − Fj+1) =
∂Aj

∂y
= dy Aj dej+1(Fj − Fj+1) = −∂Aj+1

∂y
= −dy Aj+1
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The next partial derivatives to calculate are

dx(dsj (Fj)) = dx(
∂Aj

∂y

∂γj(sj , ej)
∂sj

) =
∂2Aj

∂x∂y

∂γj(sj , ej)
∂sj

and

dej
(dsj

(Fj)) = dej
(
∂Aj

∂y

∂γj(sj , ej)
∂sj

) =
∂2Aj

∂y2

∂γj(sj , ej)
∂ej

∂γj(sj , ej)
∂sj

+
∂Aj

∂y

∂2γj(sj , ej)
∂ej∂sj

We can further assume that the derivative

(III.27)
∂2γj(sj , ej)

∂ej∂sj

are arbitrarily small. The rank of a matrix does not change if we add another arbitrarily
small matrix to it. Hence to determine whether the matrix (III.26) has maximal rank we can
assume (III.27) is zero. It is noted that if (III.27) is zero then the perturbation of γj(sj , ej)
near γj(sj , 0) is very nearly a translation along the geodesics.
Another simplification is that by adding columns the maximal rank criterion becomes that

dx,e (F1 − Fl, · · · , Fl−2 − Fl, Fl−1 − Fl, ds1(F1), · · · , dsl
(Fl))

should have maximal rank. Filling in all the partial derivatives we get that
(III.28)



dx A1 − dx Al . . . . . . . . . . . . dx Al−1 − dx Al
∂2Aj

∂x∂y
∂γj(sj ,ej)

∂sj
. . .

∂2Aj

∂x∂y
∂γj(sj ,ej)

∂sj

dy A1 0 · · · 0 ∂2A1
∂y2

∂γ1(s1,e1)
∂s1

· · · 0
0 dy A2 · · · 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−dy Al − dy Al · · · − dy Al 0 · · · ∂2A2
∂y2

∂γl(sl,el)
∂sl




should have rank l−1+l(n−1). In the matrix (III.28) there are n+nl rows and l−1+l(n−1) =
nl − 1 columns. Hence there are more rows than columns.
The matrices d2

y Ai dsi γi all have rank n − 1, moreover with dy Ai they form a set of n
independent vectors in Tγ(sj ,0)X. Thus, the rows n+1 to n+(n−1)l, i.e. those corresponding
to dej , j = 1, · · · , l − 1 are independent and so are the n− 1 vectors

∂2A2

∂y2

∂γl(sl, el)
∂sl

Thus the lower nl rows of (III.28) make that the columns of (III.28) are independent. This
is what we needed to prove.
Now we have only proven the statement of theorem III.30 for basepoints γj(sj) with a point
x on the conflict set. To make the statement global we need to cover X×M1×· · ·×Ml with
compact submanifolds, as is done in the proof of the Mather transversality theorem, propo-
sition 3.3 in [Mat70b]. The countable intersection of dense subsets of ⊕l

i=1 Emb(Mi, X)
will still be dense.
For the openness we can thus assume that the Mi are compact and that we need only consider
that part of the conflict set that lies in a compactum Xo ⊂ X. On these the perturbation of
the matrix (III.28) can be made uniformly small over the compactum Xo × (×l

i=1Mi). The
proof of III.30 is complete.
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III.4. k-jets of base manifolds determine k-jets of conflict sets

In this section we establish some results that were already imminent in the theorems of
chapters one and two. We will apply the concepts introduced at the beginning of this chapter
to the subject of chapter 1. In chapter 1 we concluded that in Rn with the euclidean metric
away from caustics propagating waves retain their contact.
Let M and N be hypersurfaces in a manifold X. Suppose p ∈ M ∩N . Let V be a linear
subspace of TpM . Recall the definition of k-contact from chapter 1 ( Definition I.5 ). We
modify it a little bit to read:

Definition III.32. M and N have k-contact, with k > 0 in the direction V ⊆ (TpN ∩TpM)
if there is a third manifold L with TpL = V and such that L has (k)-contact with both M
and N .

Instead of V we consider a sequence of subspaces {Vi}i=1,··· ,m each strictly contained in the
other:

∅ ( V1 ( · · · ( Vm ⊂ TpM

with to each Vi associated an integer

k1 > k2 > · · · > km > 0

We call this a numbered flag V = {Vi, ki}i=1,··· ,m. Two submanifolds M and N of X have
contact along V if for each 1 ≤ i ≤ m M and N have ki-contact in the direction Vi. Such a
definition encompasses the notions above.
Contact is retained under diffeomorphisms. If we have a diffeomorphism φ from X, p to Y, q
then φ(M) and φ(N) have k contact in the direction φ∗V iff. M and N have k-contact in
the direction V .
Let the conflict set be regular at a point p. At p we have l wavefronts originating from
Mi, qi that have arrived there after time t. For simplicity we assume t = 0 and qi = p for
i = 1, · · · , l. The conflict set is a manifold Mc and there is a projection πi : TpMc → TpMi.
In this way a numbered flag V of TpMc projects to numbered flags (πi)∗V in each of the
TpMi.
The lemmata in the proof of theorem I.2 can now be refined to read:

Theorem III.33. Let in addition to the above there be given

• Ni with TpNi = TpMi such that Mi have at p contact along the numbered flag (πi)∗V and
• Nc, germ at p of the conflict set of the Ni.

Then Nc and Mc have contact along V.

Proof. It is enough to prove this for k contact in a direction V ⊂ TpMc. Denote, as in
chapter 1, Mh

i for the big wave front. As before, there are three steps to take. Step 1,
corresponding to lemma I.9. Near p Mi ×R and Ni ×R have, as submanifolds of X ×R k-
contact in the direction Wi = πiV ×T0R. For small t the map Ψi : t, x 7→ πX(exp(tvf(Hi))), t
is a diffeomorphism. Thus their images Mh

i and Nh
i have k contact in the directions Ψ∗i Wi .

Step 2, corresponding to lemma I.10. Choose submersions Fi for the Mh
i at p. Then each

of the Nh
i individually has a k-contact along ∩l

i=1Ψ
∗
i Wi with Mh

c , which we know to be a
transversal intersection because we were assuming to be at a regular point of the conflict
set. Now take for Mh

c an immersion and for the Nh
i submersions. Then it follows that Nh

c

has k contact along ∩l
i=1Ψ

∗
i Wi with Mh

c .
Step 3, corresponding to lemma I.11. Because the vectorspace ∩l

i=1Ψ
∗
i Wi lies in general
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position wrt. the projection to TpX Nc will have k-contact in the direction π(∩l
i=1Ψ

∗
i Wi) ⊂

TpX. ¤





IV Canonical relations for other geometrical
constructions

IV.1. Introduction

In this chapter we will further exploit the concept of canonical relation and show how it can
be used to create

• center sets,
• pedals and orthomtics, and
• billiards.

We will start by treating a few concepts that are in some sense dual to conflict sets. To
understand the duality for the concept of center sets recall that in the construction of the
conflict set by means of a canonical relation we looked at the diagonal in the base of the
projection

(
T ∗Rn+1

)l → (
Rn+1

)l

When defining the center set below we will look at the diagonal in the fiber, i.e. we will look
where the coordinates ξ in each of the fibers T ∗Rn → Rn are equal.
Kites, defined below, are in some sense dual to the conflict set because they describe tangents
to the lifted conflict set.
However, it is noted that neither center sets nor kites are really dual to the conflict set: one
cannot construct conflict sets directly from kites or center sets.
In the second section we will prove that the center set is generically Legendrian. We will
prove anew the same statement for conflict sets, but in another way as promised in the
previous chapter.
In the third section we recall the notion of orthomtic and pedal curve, as they are described
in the book [BG92]. The orthomtic is a hypersurface defined using a point - mostly the
origin - and another hypersurface conveniently called the mirror. The mirror is the conflict
set of the orthomtic and the origin. The orthomtic turns out to be a reversed conflict set.
We also briefly touch upon the subject of billiards as described in [Tab95]. Our main
objective is to show how a curvature formula used in the theory of billiards and in another
form found in [BW59] is really the formula we found in chapter 1.

IV.2. “Dual” curves: kites, centers and normal chords

In this section we define a few more sets measuring what is in the middle. Here we meet more
applications of the method where canonical relations represent a geometrical construction.
All our constructions are in Rn. They can also be carried out in other spaces than Rn, for
instance in symmetric spaces.

IV.2.1. Centers and centroids. In Rn all tangent planes can be identified with each
other. Hence the equations

(IV.1) T ∗(1,1)R
2n \ 0 = {(x1, ξ1, x2, ξ2) ∈ T ∗Rn × T ∗Rn | ξ1 = ξ2 6= 0}

make sense on T ∗R2n \ 0. The intersection
(
T ∗(1,1)R

2n \ 0
)
∩ (N∗M1 ×N∗M2)

55
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describes those points x1 on M1 and x2 on M2 so that M1 and M2 have parallel tangent
planes. Instead of considering the pair x1, x2 we can consider the midpoint of the line
segment connecting the two.
Definition IV.1. The midpoints of the segments connecting two points, one on a manifold
M1 ⊂ Rn and another on M2 ⊂ Rn, and having parallel tangent planes form the center
set.
Theorem IV.2. If

(IV.2) T ∗(1,1)(R
n × Rn) t N∗M1 ×N∗M2

then the center set is Legendrian.

Proof. Let S1 be T ∗Rn. Equip S1 with coordinates (y, η). Let S2 be T ∗(Rn×Rn). Equip
S2 with coordinates (x1, x2, ξ1, ξ2).
Let G1 ⊂ S1 × S2 be

(IV.3) G1 = {(y, η, x1, ξ1, x2, ξ2) | y =
x1 + x2

2
η = 2ξ1 ξ1 = ξ2 6= 0}

A straightforward calculation shows that G1 is a canonical relation. If we compose this
canonical relation with N∗M1 ×N∗M2 ⊂ S2 we will get the center set. Apply proposition
III.9 to obtain the desired conclusion. ¤

Remark IV.3. In contrast to conflict sets one can calculate center sets in many cases.
For instance, the graph of a function f whose derivative is invertible and any other curve
non-vertical curve γ leads to a simple calculation of conflict sets. The tangents should be
parallel, so we have

〈(1, f ′), J(γ′)〉 = f ′γ′x(t)− γ′y(t) = 0
From this we can solve x because f ′ is invertible. Filling this in in(

1
2
(x + γx(t)),

1
2
(f(x) + γy(t))

)

we get a curve. In figure IV.2.1 we see such a center set. The function f is the parabola.
Its derivative is invertible.

Figure IV.1. Two center sets.

As with conflict sets we can consider the centre set of more than two submanifolds. This
will be the centroid set.
In Rl consider the enlarged simplex

∆l :
l∑

i=1

ti = 1
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The ti are the components of a weight vector. Fix such a weight vector.

Definition IV.4. The weighted locus

y =
l∑

i=1

tixi

of l-tuples of points (x1, · · · , xl) where the tangent planes to the l surfaces Mi are parallel,
form the centroid set.

Criteria for when the centroid set is Legendrian are easily written down. Consider the
canonical relation

(IV.4) G1 = {y =
l∑

i=1

tixi ηti = ξi} ⊂ T ∗Rn × (T ∗Rn)l

If we compose this with a product of the {N∗Mi}i=1,··· ,l we get the centroid set with weights
ti 6= 0.

Proposition IV.5. The centroid set is Legendrian when

×l
i=1N

∗Mi t T ∗(1,··· ,1)R
nl

Proof. Immediate from (IV.4) and proposition III.9. ¤

In general the centroid set will have dimension n− 1.

Figure IV.2. A centroid set of three surfaces

IV.2.2. Centroids in certain symmetric spaces. Instead of y =
∑l

i= tixi we can
consider a more general relation.

(IV.5) y = Y (x1, · · · , xl).

where Y = Y (x1, · · · , xl) is a function from X1 × · · · ×Xl to X0 such that the matrices ∂Y
∂xi

are invertible. The relation y =
∑l

i= tixi is a special case of relations (IV.5).
From the relation (IV.5) we construct G1.

(IV.6) G1 = {(y, µ, x1, ξ1, · · ·xl, ξl) | y = Y (x1, · · · , xl) ξi =
∂Y

∂xi
µ}
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The manifold G1 is a canonical relation between T ∗Rn and (T ∗Rn)l. Because this is a purely
local notion a canonical relation like G1 can also be defined between the cotangent bundle
T ∗X0 of an n-dimensional manifold X0 and

T ∗X1 × · · · × T ∗Xl

where X1 to Xl are all n-dimensional manifolds. Clearly the condition under which the
more general centroid set is Legendrian is that

N∗M1 × · · · ×N∗Ml t T ∗d Y (X1 × · · · ×Xl)

where we denoted

T ∗d Y (X1 × · · · ×Xl) = {x1, ξ1, · · · , xl, ξl |
(

∂Y

∂xi

)−1

ξi =
(

∂Y

∂xj

)−1

ξj}

The previous considerations thus enable us to generalize the centroid set to other manifolds
than Rn. Let X be a Lie group with a bi-invariant metric. Recall from [Mil63] §21, that
on a Lie group with a bi-invariant metric there exists for every point x ∈ X an involutive
isometry σ(x, ·) : X → X which in group notation reads y → xy−1x.
Such isometries make X into a symmetric space. Among the many examples of Lie groups
with a bi-invariant metric are the spheres Sn = SO(n + 1)/SO(n).
We can now use the canonical relation (IV.6) with l = 2 and X0 = X1 = X2 = X. Two
choices for Y are interesting for our purposes:
• Y (x1, x2) = σ(x1, x2) i.e. x2 is reflected on Y (x1, x2), this is the relation we will meet

further on when discussing the billiard transformation on the space of rays,
• x2 = σ(y, x1), in Rn this relation is (IV.3).

IV.2.3. Normal chords. Instead of the midpoints of the segment joining two points
with parallel planes we can also consider the coinciding normals themselves.
For this construction we will make essential use of the Gauss map. Suppose we apply the
Gauss map νG componentwise to

N∗M1 × · · · ×N∗Ml

We then obtain

(IV.7) νG(N∗M1)× · · · × · · · νG(N∗Ml) ⊂ ×l
i=1T

∗Sn−1

We defined the center set using parallel tangent planes. The tangent planes at p1 ∈ M1 and
p2 ∈ M2 coincide when we can find ξ ∈ N∗

p(1)M1 that is also in N∗
p(2)M2, that is when the

normals at p1 and p2 coincide.
Coinciding normals can thus also be found using the “diagonal in the base” T ∗∆(Sn−1)l of
T ∗(Sn−1)l.
Definition IV.6. The normals at points xi of the centroid form the normal chord set.
For the centroid set we have the result analogous to theorem III.25.
Proposition IV.7. The normal chord set is Legendrian if

(IV.8) νG(N∗M1)× · · · × νG(N∗Ml) t T ∗∆(Sn−1)l

Returning to the case l = 2 note that the normals are not the chords connecting two points
on the center set. In fact we have three objects:
• the normals at the xi,
• the normal to the center set, and
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• the chords connecting the x1 and x2.
One might ask whether the first and the second are the same and what these have to do
with the chords connecting x1 and x2. We will now only answer the first part of the question
and leave the answer to the second part of our question to the next subsection.
Suppose x1 ∈ M1 and x2 ∈ M2, with normals ξ1 and ξ2 respectively.
If we first compute the normal chord set

(x1, ξ1, x2, ξ2)
νG×νG→ (

ξ1

‖ξ1‖ , · · · ,
ξ2

‖ξ2‖ , · · · )

and then take the diagonal we get the same value as when we first take the center set and
then map to T ∗Sn−1. The same happens with l surfaces, If we have (xi, ξ) ∈ N∗Mi and
take the center set, we get (

1
l

∑
xi, ξ

)

in T ∗Rn. When applying the Gauss map we get
(

ξ

‖ξ‖ ,
1
l

∑
xi −

〈 1l
∑

xi, ξ〉
‖ξ‖ ξ

)

On the other hand if we first apply the product of Gauss maps νG× · · ·× νG to the product
of Legendrian submanifolds N∗M1×· · ·×N∗Ml and afterwards take the centroid set we get

(
ξ

‖ξ‖ ,
∑

xi − 〈∑xi, ξ〉
‖ξ‖ ξ

)

which is up to a factor l the same thing.
In other words the diagram

T ∗Rn × · · · × T ∗Rn
tT∗(1,··· ,1)R

nl

//

νG×···×νG

²²

T ∗Rn

νG

²²
T ∗Sn−1 × · · · × T ∗Sn−1

tT∆S(n−1)l

// T ∗Sn−1

commutes. Properly speaking the arrows do not really represent maps: in the diagram
the upper row is the pull-back from proposition IV.5. The lower row is the pull-back from
proposition IV.7.
Hence the first and the second items are the same. We summarize
Proposition IV.8. The normal to the center set is the normal singled out by the normal
chord set. If either of the transversality conditions (IV.2) or (IV.8) holds then the normal
chord set is Lagrangian and the center set is Legendrian.
Remark IV.9. For the normal chord set we can write down maximal rank criteria as we
did for the conflict set in section III.2.14. A phase function for the image of the Gauss map
is

Fi : Sn−1 ×Mi → R
(v, s) 7→ 〈v, γ(s)〉(IV.9)

The image of the Gauss map is described by

(IV.10)
∂Fi

∂s
= 0
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To get a maximal rank criterion under which the normal chord set is Lagrangian we use as
in III.2.16 a special phase function:

F1(v, s1) + F2(v, s2)

And the maximal rank criterion that is equivalent to the transversality in (IV.8) is that the
matrix

dv,s1,s2 (ds1,s2 F )
has maximal rank where

ds1,s2 F = 0
If so, the normal chord set is Lagrangian. If one chooses local coordinates on Sn−1, as is
done in [BGM82], this is a nicely computable criterion.

IV.2.4. Centers as wavefronts, chords as caustics. We still need to make sense
of the relationship between the normal chords and the lines from x1 to x2. These lines form
an n− 1 dimensional family. They remind us of the normals to a hypersurface. Normals to
a hypersurface have the caustic as an envelope.
Consider the

R×
(
T ∗Rn × T ∗Rn ∩ T ∗(1,1)(R

n × Rn)
)
→ R× Rn

(t, x1, ξ, x2, ξ) → (t, tx1 + (1− t)x2)
(IV.11)

The points `(x1, x2) that are the image of

t → tx1 + (1− t)x2

form a line. The envelope of the lines `(x1, x2) are the singular points of the projection that
is the last arrow in

R×
(
T ∗Rn × T ∗Rn ∩ T ∗(1,1)(R

n × Rn)
)
→ R× Rn → Rn

(t, x1, ξ, x2, ξ) → (t, tx1 + (1− t)x2) → tx1 + (1− t)x2

Definition IV.10. The image of R × N∗M1 × N∗M2 in R × Rn under (IV.11) is the big
center set. The projection of its singular points to Rn we will call the center caustic.
The center set is the intersection of the big center set with the plane t = 1

2 . Trivially one
has:
Proposition IV.11. If the intersection (IV.2) is transversal then the big center set is Leg-
endrian in (J1Rn, dt−∑n

i=1 ξi dxi) Hence in that case the center caustic is Lagrangian.
If we fix t we get a curve like the center set, some sort of relative center set. Thus we have
the following correspondences

big center set big wavefront
center set wavefront

center caustic caustic
These concepts are illustrated in figure IV.3. At the right hand side of this figure we see a
zoomed in version of the caustic at the center point. It can be calculated that the center
caustic in the picture does not have any other singularity than ordinary cusps. The center
caustic of M1 and itself is known as the center symmetry set. This center symmetry set has
been studied by many authors, two recent advances are [Jan96] and [GH99].
Generalizations of this construction to l > 2 hypersurfaces are straightforward. Let us briefly
indicate how to proceed.
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Figure IV.3. Left hand side: the projection of the big center set, right
hand side:zoom in to the singular point of the caustic

Take l hypersurfaces in Rn, the centroid set is n − 1-dimensional. Its cuspidal edges are
n− 2 dimensional. In Rl consider once more the enlarged simplex

∆l :
l∑

i=1

ti = 1

and for every l-tuple (x1, · · · , xl) of points in Rn map ∆l to Rn by

t1, · · · , tl 7→ t1x1 + · · ·+ tlxl

In this way we have a map from
∆l × (Rn)l 7→ Rn

Apply the map to the intersection in proposition IV.5. In this way for each point on the
corresponding centroid you get an l− 1-plane. So we have an n− l + 1-parameter family of
l− 1-planes. Its envelope will be n− 1 dimensional. This envelope is the center caustic of l
hypersurfaces in Rn. To generalize the notion of a big center set note that it will appear in
product of Rn and Rl. As each l-tuple (t1, · · · , tl) determines a point in Pl by

t1, · · · , tl 7→ [1; t1; · · · ; tl]

it is slightly more natural to consider the big center set as a subset of PT ∗Pl × T ∗Rn , with
canonical 1 form π∗1α− π∗2(

∑
ξi d xi).

IV.2.5. Kites. For a moment let us refocus attention to the simple case of two curves
in R2 equipped with the euclidean metric. In figure IV.4 we see the image of two circles and
their conflict set augmented with a number of kites. The kites consist of the normals from
the basepoints to the conflict set as well as the tangent lines to the base points. The curve
traced out by the intersection of the tangent lines is a straight line. In figure IV.5 we see the
same construction, though now carried out with two circles contained in each other. There
also a straight line is obtained.
Definition IV.12. Let p be a regular point on the conflict set of two curves. The locus of
the intersection points of the two tangent lines to the basepoints form the kite curve.
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Figure IV.4. Oriented conflict sets and some kites

Figure IV.5. Kite curve of two circles contained in eachother

Remark IV.13. The kite curve can have very bad singularities: think of the kite curve of
two lines. This will be a curve not at all: it is a point, namely the intersection of the two
lines.

Example IV.14. The kite curve of any curve and a line will be contained in the line.

We will now describe a generalization of the kite curve to the case of n hypersurfaces in Rn.
In that case with a regular point on the conflict set there are n tangent planes intersecting
in a single point. Thus there is also a kite curve.
In figure IV.6 another way of obtaining the kite curve in this case is pictured. Here we have
constructed big wavefronts, and thus constructed a lifted conflict set πn+1L

h in Rn+1. The
developable surface of tangents to πn+1(Lh) intersects the plane x0 = 0. The intersection
coincides with the kite curve.

Proposition IV.15. The kite curve is a section of a developable surface.

It is possible to extend the kite curve over the singularities of πn+1L
h where there are at

each point of πn+1L
h n linearly independent normals. The extension is most conveniently

done with the help of the big wavefronts N∗Mh
i ( or N∗M b

i ) though we have to take care
to use the distance and not its square. Denote ȳ a coordinate in Rn+1. If ȳ is on a tangent
line to πn+1L

h we have the following relations

(IV.12) 〈ȳ − x̄i, ξ̄i〉 = 0 i = 1, · · · , l
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x0-axis

x̄

yM1

M2

πn+1L
h

πnLh

Figure IV.6. The construction of the kite curve.

The section of the developable surface we are interested in is y0 = 0. The relations (IV.12)
become

(IV.13) 〈y − xi, ξi〉 = x0ξ0,i i = 1, · · · , l

This construction shows that with n spheres in sufficiently general position the kite curve is
a line, because the intersection of the big wavefronts will lie in a plane.
The definition of the kite curve as a section of a developable surface has several disadvantages.
From chapter 2 we know that the curvature of the conflict of n surfaces in Rn vanishes iff.
all the curvatures at the basepoints are equal. If the curvature of the conflict set is zero
then so is ( see chapter 1 ) the curvature of the lifted conflict set. Thus in that case the
lifted conflict set is a space curve in R3 with zero curvature. The kite curve is a section of
its tangent developable.
Let us now see what happens to the kite curve if the curvature of the conflict set is zero,
when n = l = 2. The lifted conflict set is a space curve in R3. A space curve in R3 looks like

γ(s) = (s,
κs2

2
+ a1s

3 + · · · ,
κτs3

6
+ b1s

4 + b2s
5 + · · · )

According to [Shc84] the singularities of the dual start where τ = 0. If κ = 0 then the
singularities of the dual fall outside of the classification presented in [Shc84].
For the lifted conflict set τ = 0 happens for instance when the derivative of the curvature
on one base manifold equals the derivative of the curvature of the other base manifold. In
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that case the kite curve is not singular, as the example of two circles shows.
The kite curve is singular when κ = 0, this happens when the curvatures at the basepoints
are equal. But in that case the singularities of the dual immediatly no longer form part of
the list of [Shc84].

IV.3. Genericity of the transversality condition

Once again we have Mi, i = 1, · · · , l in an ambient manifold X. Let there also be l quadratic
Hamiltonians on T ∗X, satisfying the demands from III.1.9. The images Ψi(N∗Mi × 0R)
are the big wavefronts, see section III.1.11. The transversality condition under which the
conflict set of M1, · · · ,Ml is Legendrian is (III.16). The transversality is a generic property,
according to theorem III.30. Here we will prove the genericity directly, i. e. we will not use
the maximal rank criterion, we will prove the genericity of (III.16) directly. We will however
assume that our Hamiltonians come from pseudo-Riemannian metrics.
Theorem IV.16. Under perturbations of l− 1 of the basepoints the transversality condition
is satisfied for a residual subset of

⊕l
i=l Emb(Mi, X).

Proof. The perturbations are as in the proof of III.30

γi(si) = γi(si, 0) 7→ γi(si, ei), i = 1, · · · , l

where
∂γi(0, 0)

∂e
= In and

∂2γi(0, 0)
∂ei∂si

= 0

Thus we can look at the family
x1, ξ1, · · · , xl, ξl, t1, τ1, · · · , tl, ξl, δx1, · · · , δxl−1 7→

Ψt
1(x1 + δx1, ξ1, t1, τ1), · · · ,Ψt

l(xl + δxl, ξl, tl, τl)

This should be transversal to T ∗∆(X × R)l. It will be enough to show that

×l
i=1πXΨt

i

is transversal to ∆ ⊂ X l. This in turn makes it clear that is enough to show that

πXΨt(γ(s, e), ξ, t, τ)

is a submersion. Locally πX ◦Ψt looks like

γ(s, e) + t
∂H

∂ξ

in Rn. The derivative wrt. e is

(IV.14) In + t
∂H

∂x∂ξ

We work locally and can choose normal coordinates, as in equation III.8 in which it will
hold that at (x0, ξ0).

∂gij,l

∂x
= 0 or

∂Hl

∂x
= 0

So the derivative in (IV.14) is simply the unit matrix I. The rest of the proof is identical to
the proof of III.30. ¤

Now we return to the centre set and the centroid set. The criterion for these to be Legendre
is in proposition IV.5.
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Theorem IV.17. For a countable intersection of open and dense subsets of
l⊕

i=1

Emb(Mi,Rn)

the center set is Legendrian ( and the normal chord set therefore Lagrangian )

Proof. We need a covering {Uα} of M1 × · · · ×Ml and in each {Uα} perturb the tangent
space a little, as indicated in figure IV.7. It is enough to prove that, if ~ni is the map that
assigns the normal to Mi, that the map (~n1, · · · , ~nl) is transverse to the diagonal. We will
first show that locally families exist that are indeed transverse to the diagonal. Denote by

Figure IV.7. The map φr,A,p=γ(s′) ◦ γ(s)

φr,A,p, r ∈ R, A ∈ SO(n,R), p ∈ Rn

a diffeomorphism, which is the identity on Rn where we are outside the sphere of radius
2r round p and equal to q → A(x − q), inside a circle of radius r round q. Now compose
an embedding γ : M → Rn with the map φr,A,p(α) and we will get a map that in some
environment U ′

α of of p(α) ∈ M is submersive. Looking at a product φr,A,q(α)◦γ1, φr′,A′,p(α)◦
γ2 we see that in a neighborhood Uα the transversality condition is satisfied. Indeed, at p(α)
the normal looks like A~n.
One can pick a countable number of points p(α) so that the Uα cover M1 × · · · ×Ml. ¤

IV.4. “Reversed” sets: billiards and orthomtics

Several authors, notably Bruce & Giblin & Gibson [BG92] and [BGG83], Tabachnikov
[Tab95] have studied geometrical constructions that can be generalized by means of canon-
ical relations. In this section we want to show how close these constructions are to some
form of “reversed conflict set”. Most of the material here is sketchy and serves mainly to
illustrate that the conflict set is far from an isolated problem.

IV.4.6. Some constructions of curves in the plane. We will start with the sim-
plest context: a curve γ in the plane R2. Fix a point in the plane and call it the origin O.
The curve γ will be the mirror for rays coming from O. Denote ~n a unit normal to γ.
Definition IV.18 (Orthomtic). The orthomtic of γ and O is the curve defined by

O + 2〈γ(t)−O,~n〉~n.
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Definition IV.19 (Pedal curve). The pedal curve of γ and O is the curve defined by

O + 〈γ(t)−O,~n〉~n.

Conflict and center sets are related to orthomtics and pedal by the following proposition.
Proposition IV.20. The curve γ is contained in the conflict set of the orthomtic of γ and
the origin O. The pedal curve is the center set of the origin and the orthomtic.

Proof. Clear from the definitions. ¤

We can define wrt. to the mirror γ and the origin O a kite curve. We provide a definition of
the kite curve with the drawing IV.8. A practical formula for drawing the kite curve starting
from the pedal is

kite(γ) = pedal(γ) +
( 〈J(γ −O), γ′〉

〈γ −O, γ′〉
)2

(pedal(γ)− γ)

In the above formula J is the usual complexification mapping.
Two other curves can also be defined, see figure IV.8 for a drawing of the billiard curve and
the contrapedal curve wrt. to a parabola. Where in the definition of the pedal curve one
lets down the segment γ−O onto the normal ~n to γ, in the definition of the contrapedal we
let down the same segment γ −O to the tangent vector ~t = γ′/‖γ′‖.
Definition IV.21 (Billiard curve). The billiard curve of γ and O is the curve defined by

O + 2〈γ(t)−O,~t〉~t.
Definition IV.22 (Contrapedal curve). The contrapedal curve of γ and O is the curve
defined by

O + 〈γ(t)−O,~t〉~t.

Billiard¾

Contrapedal¾

γ -

Pedal -

Orthomtic -

Kite¾

Figure IV.8. Pedal, Orthomtic, Kite, Contrapedal, Billiard

Let us now turn to a comparison between some existing results and results on the conflict
set.
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• The origins of the curvature formula. The curvature formula (I.8) is in fact a very old
formula. We can trace it back to a classic book in geometrical optics: the book [BW59].
There on p. 173 we find the formula we find in chapter 1, and more. Also, the formulas
I.9 and I.10 are already written there. To establish the connection between conflict sets
and ray systems in optics consider figure IV.9. On the left side rays from a circular arc
hit a curved mirror. On the right side we see the same rays from a circular arc but now
in the setting of conflict sets.

Figure IV.9. Left: incoming rays ( dashed lines ) reflected to outgoing
rays. Right: the mirror is a conflict set.

• Singular points of pedal and orthomtics. All these curves and the relations between them
form a rich object of study. For instance it is well-known that the pedal curve has a
singularity where the curvature of the mirror γ is zero, hence where γ has an inflection.
Thus the orthomtic also has a singular point where γ has an inflection, and vice versa.
It can be derived also from the curvature formula that the orthomtic has a singularity
when the mirror γ has an inflection. We proceed as follows: suppose that the mirror γ has
an inflection κ = 0 at p ∈ γ. The curvature formula says that that if this is the case, the
wavefront coming from the orthomtic has the same curvature ‖p−O‖−1 as the wavefront
coming from the origin O. This means that at distance ‖p− O‖ the orthomtic meets its
own caustic, which is what we needed to show.

• The billiard is a symplectic transformation. In the drawing IV.8 we have introduced
a billiard curve. The billiard curve defined here is not exactly the billiard studied in
[Tab95]. In [Tab95] the author studies the transformation on the space of rays induced
by the reflection. The billiard in that sense is a map

(IV.15) Billiard: T ∗S1 → T ∗S1.

It turns out that the graph of the billiard is a canonical relation between T ∗S1 and
T ∗S1. Tabachnikov proves this directly using coordinates. We can prove the assertion
in the general case where the mirror is embedded in Rn in at least two ways. Firstly,
the billiard transformation on the space of rays is an instance of the construction with
symmetric spaces indicated in section IV.5. Secondly, if we can prove that the orthomtic



68 IV. CANONICAL RELATIONS FOR OTHER GEOMETRICAL CONSTRUCTIONS

is Legendrian we have also proven in view of theorem III.10 that the transformation on the
space of rays preserves the symplectic form. In the next section we will derive a maximal
rank criterion, (IV.19) under which the orthomtic is Legendrian.

• Contrapedal. The following are immediate, though they can also be obtained by a lenghty
explicit calculation.

Proposition IV.23. The contrapedal curve is the center set of the origin and the
billiard.

Proposition IV.24. The billiard curve and the contrapedal are singular where the
evolute of the mirror contains the origin.

We will include another picture. Figure IV.10 beautifully illustrates the wavefront
nature of the billiard: when the origin is the cuspidal point of the caustic the billiard and
the contrapedal have a 4/3 Lipschitz smoothness point. When the origin lies on a smooth

Figure IV.10. Billiard and contrapedal ( both grey ) , rays ( finely dashed
) , caustic ( roughly dashed ), and the mirror ( solid, black )

part of the caustic the the contrapedal has a cusp.
The pictures here were made with a minor modification of the software available with the
book [Gra93].

IV.4.7. Higher dimensional analogues and generalizations. With the exception
of the kite curve the pedal, the contrapedal and the billiard and the orthomtic have straight-
forward generalizations to the n-dimensional case, where the mirror is a hypersurface in Rn.
It is not hard to see that the corresponding statements remain true:
• the mirror is contained in the conflict set of the origin O and the orthomtic,
• the pedal is the center set of the orthomtic and the origin,
• the contrapedal is the center set of the billiard surface and the origin,
• the pedal surface is singular where the mirror has zero Gaussian curvature
• the contra pedal surface is singular at the origin when the origin lies on a focal surface of

the mirror,
Our main interest lies in the obvious generalization: replace the origin by some Legendrian
submanifold LO, cut LO with {H = 1}, follow the rays up to the mirror, and follow the
reflected ray ( billiard ) or its opposite ( orthomtic ), during the same amount of time.
The rays from the origin form a beam. If we replace the origin by some suitable LO we can
get a parallel beam. This clearly has some optical significance.
With rays from the origin O replaced by rays from LO do the statements above still hold? In
particular, under which conditions is the transformation on the space of rays, induced by the
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reflection symplectic, or in other words, when is the “reversed” conflict set, the orthomtic,
Legendrian?
Let us first deduce a maximal rank criterion. A practical criterion is easily established.
Under the condition that

F (x, s) = ‖x− γ(s)‖2 − ‖γ(s)‖2

defines a non-degenerate phase function, the orthomtic of the mirror γ and the origin O is
Legendrian. Replace the origin with the rays that are normals from a submanifold µ(t). For
a parallel bundle µ(t) is linear and for a point source µ(t) is constant.
A phase function for the orthomtic is:

F (x, s, t) =
1
2
‖x− γ(s)‖2 − 1

2
‖γ(s)− µ(t)‖2

For the orthomtic to be Legendrian we need that the matrix

(IV.16) K(F ) = dx,s,t(F, ds,t F )

has maximal rank where (x, s, t) ∈ Σ(F ) , i.e. when F = 0 , dsF = 0, dtF = 0. The
singularities of the orthomtic are inspected with the matrix

(IV.17) d2
s,t F.

If µ(t) is an embedded hypersurface, (IV.17) is a (2n− 2)× (2n− 2) matrix.
The matrix K(F ) becomes

K =




dx F 0 0
dx ds F d2

s F ds dt F

dx dt F dt ds F d2
t F




To evaluate it note that if we write

F1(x, s) =
1
2
‖x− γ(s)‖2 and F2(x, t) =

1
2
‖x− µ(t)‖2

that it follows
F (x, s, t) = F1(x, s)− F2(γ(s), µ(t))

but also

(IV.18) F (x, s, t) = F1(x, s)− F1(µ(t), s)

We will now calculate d2
s(F ). To this end we write a Monge form for the mirror γ(s), i.e.

γ(s) = (s,
1
2
〈IIγs, s〉)

We also use that the vector from µ(t) − γ(s) is mirrored through the tangent plane to the
mirror to x−γ(s). Denote φ the angle between x−γ(s) and the tangent plane to the mirror
γ. The derivative d2

s F then evaluates to

2 sin(φ)‖x− γ(s)‖IIγ .

The derivative ds dt F = γ̇T µ̇ and d2
t F becomes the second fundamental form of the wave-

front at γ(s) coming from the source surface µ(t).

(IV.19) K =




x− γ 0 0
ds γ 2 sin(φ)‖x− γ(s)‖IIγ γ̇T µ̇

0 γ̇T µ̇ (Iµ − ‖µ(t)− γ(s)‖IIµ)−1 IIµ



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Equation (IV.19) is important when dealing with the singularities of the orthomtic. As said
a parallel bundle is one with d2

t µ = 0 whilst dt µ also written as µ̇ is a constant n by n− 1
matrix. Hence the matrix K for a parallel bundle becomes:

(IV.20) K =




x− γ 0 0
ds γ 2 sin(φ)‖x− γ(s)‖IIγ γ̇T µ̇
0 γ̇T µ̇ 0






V Classification of singularities

V.1. Introduction

Throughout the previous chapters we have often encountered the view that the conflict set
of l hypersurfaces is the projection of the intersection of their big wavefronts. In chapter
one we used this view to prove Cj-smoothness at regular points. In chapter three we used it
to formulate a criterion (III.16) under which the conflict set is Legendrian. In this chapter
we will apply the same technique to classifying singularities of conflict sets.
We will first of all have to study the big wavefront somewhat more closely. Secondly we look
at the intersection, and lastly at the projection.
Our object is to first show that the big wavefront can be stratified in some suitable way.
The stratification will contain bad strata and good ones. The good strata will have low
codimension, and the bad strata will have high codimension.
As before, we have an embedding of a hypersurface into an ambient space: γ : M 7→ X. As
a subset of X × R the big wavefront is given by

(V.1) F (x, s) = A(x, γ(s))− x0 = 0
∂F

∂s
= 0

We will stick with the four assumptions on X and H of subsection III.1.9, so that F is a
globally defined non-degenerate phase function.
Below we will define the notion of codimension for a germ. Doing so allows us to define for
every x̄ = (x0, x) and s.

codim(x̄, s) = codim(F (x, ·))
The codimension might well be infinite. For our purposes it will be enough to consider small
codimensions ≤ 6. Germs of finite codimension are finitely determined. So we can fix some
N for which the germs of codimension N are V -equivalent iff. there N -jets are V -equivalent.
Also for the codimension ≤ 6 orbits we know that these are “simple”, their orbits in the jet
space are submanifolds and finitely many. Now suppose that the map

(x̄, s) → jN (x0 − F (x, s)) ∈ JN (M)

is transverse to the structure of simple orbits A. The pullback of the structure A exists in
X × R×M and inherits the nice structure.
This structure projects with injective differential to the big wavefront in X×R. To ensure a
transversal intersection of the projection of the pulled back orbits of A. we will also impose
a multi-transversality condition.

(x̄, s(1), · · · , s(p)) → (p)j
N (x0 − F (x, s)) ∈ (p) JN (M)

A set of codimension ≥ 7 on the big wavefront is not included in this structure.
Now suppose that we have l of these big wavefronts. It is necessary that the structures of
orbits ≤ 6 intersect transversely, and that the intersection does not include any bad strata.
The maximal codimension of simple strata is 6. If we want only those in the intersection
we have to impose n− l ≤ 4. Thus the range of nice dimensions is n− l ≤ 4. In these
dimensions the conflict set only has combinations of the well-known ADE singularities.
From our reasoning it is also clear that outside this nice range there is going to be trouble.
Indeed, suppose we extended our stratified structure to codimensions > 6. Here moduli
arise and the constant codimension stratum is no longer a union of finitely many orbits in
the jet-space.
In this chapter we first present some generalities on stability of Legendrian embeddings and

71



72 V. CLASSIFICATION OF SINGULARITIES

then we apply these to the big wavefronts and the conflict set. We take some time to explain
these generalities, in order to arrive at a practical criterion for Legendrian stability stated
in theorem V.15.
In the last section of this chapter we carry out some calculations that exhibit the singularities
of conflict sets with n − l ≤ 4 as certain singularities of wavefronts in Rn−l+2. We analyse
the combinations of ADE singularities there and exhibit the singularities of the conflict set
as non-versal unfoldings of singularities of higher codimension.
Thus if we start with stable big fronts in general position the singularities of the conflict set
are not necessarily V -stable. This is due to the fact that we allow only perturbations of the
base-manifolds and not of the conflict set itself. We always keep a separation between the
variables si.
Let us mention one more rather surprising consequence of our results, already pointed out
in the introduction. The generic singularities of the conflict set of n hypersurfaces in X,
with dim X = n, are A2

1 and A2. Locally we always have the picture:

Figure V.1. Generic local forms of conflict sets of n surfaces in X.

V.2. Stability of Legendrian immersions.

V.2.1. V-equivalence. Let S be some non-empty finite subset of Rk. We can speak
of germs of C∞ functions at S. Such germs form a ring C∞(S). If S consists of a single point
s0 this ring is local. If S is a finite set we have

C∞(S) = ⊗s∈SC∞(s)

Definition V.1. Two germs of maps f1 and f2 in C∞((Rk, S),Rt) are called V -equivalent if
there are germs of diffeomorphisms h and H that make the following diagram commutative:

Rk, S
gr(f1)

//

h

²²

Rk × Rt, S × f1(S)
proj

//

H

²²

Rk, S

h

²²

Rk, S
gr(f2)

// Rk × Rt, S × f2(S)
proj

// Rk, S

Remark V.2. Some authors do not use the term V -equivalence , but instead speak of
contact-equivalence or K-equivalence. The same notion was discussed in chapter 1 of this
thesis.
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We specialize further to where t = 1.
Attached to a germ f ∈ C∞(s0) is its tangent space Tf to the orbit of f under the action
of V-equivalence. The tangent space Tf is an ideal in the ring C∞(s0):

(V.2) Tf = (f) +
(

∂f

∂si

)
,

where “+” is a summation of ideals. The codimension of a germ is the codimension of the
ideal Tf , that is it is the dimension of the quotient space Qf

(V.3) Qf =
C∞(s0)

Tf
codim f = dim Qf

The codimension of a germ f might well be infinite. For instance if f(s1, s2) = s2
1s2 is the

germ at zero of a function on R2 then the ideal Tf does not contain sk
2 for all k ≥ 1. So

all of the monomials sk
2 are required as a basis for the quotientring Qf . However if the

codimension of f is finite then Qf ∼ Qg as C∞(s0) algebras is equivalent to f
V∼ g.

Our definition of “codimension” has the property that a quadratic form in the “s” variables
has codimension one. This is a little unusual but natural in our case.
Denote M(s0) the unique maximal ideal in C∞(s0). We can define the ring Jr(s0) of jets
of order r by setting:

Jr(s0) =
C∞(s0)
Mr+1(s0)

The projection maps the ideal Tf to Jr(s0). As an image we obtain Trf . We set

dr = dim
Jr(s)
Trf

The sequence dr is non-decreasing with upper bound codim(f). Consequently there is some
minimal number r0 for which r > r0 ⇒ dr0 = dr. We’ll call it ρ(f).

Definition V.3. A map germ f is called finitely V -determined if there exists a r0 ∈ N such
that for every other germ g:

r ≥ r0, jrf = jrg ⇒ f
V∼ g

We have - [Mat70a], theorem 3.7 - that f is finitely determined iff. codim(f) < ∞.
Functions that do not have a critical point are locally V -equivalent to a linear form. This is
codimension 0. If there are critical points we find quadratic forms in codimension 1. After
that we look at ternary forms, and so on. Up to codimension 6 there are only finitely many
orbits in C∞(s), those are the ADE singularities. From codimension 7 there are infinitely
many orbits with the same codimension.
Germs of codimension < 7 are determined by their 7-jet as a look at the ADE list shows.
So a closed part of J6(s0) can be Whitney stratified by the simple orbits.

V.2.2. Unfoldings wrt. V-equivalence.

Definition V.4. An unfolding of a germ f ∈ C∞((Rk, S), (Rt, T )) consists of a ( germ of a
) parameter manifold Rn, 0 and a function F : Rk ×Rn, S × {0} → R×Rn, f(S)× {0} such
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that g|Rk×{0} ≡ f and

Rk × Rn, S × {0}
proj

%%JJJJJJJJJ
F×id

// Rt × Rn

proj
ÄÄ~~

~~
~~

~~

Rn

commutes.
Next, we will consider t = 1. Morphisms between two unfoldings F to F ′ are germs of maps
that make the following diagram commutative:

(V.4) Rn′+k,
{0} × S

id×gr(F ′)
//

h

²²

Rn′+k+1

H

²²

proj
// R

n′+k,
{0} × S

h

²²

proj
// R

n′ ,
0

h′

²²

Rk,
S

@@¢¢¢¢¢¢¢

ÁÁ
==

==
==

=
Rs+1

BB¦¦¦¦¦¦¦¦¦¦¦

¿¿
::

::
::

::
::

:
Rk,
S

@@¢¢¢¢¢¢¢

ÁÁ
==

==
==

=

Rn+k,
0× {S}

id×gr(F )
// Rn+k+1

proj
//
Rn+k,
{0} × S

proj
//
Rn,
0

If h is the unfolding of a diffeomorphism on (Rn+k, {0} × S) then the two unfoldings are
said to be isomorphic. If h′ is a diffeomorphism then the two unfoldings are equivalent. If
we have a map h′ : Rn′ → Rn then we can form the induced unfolding h∗F :

h∗F : Rn′ × Rk → R h∗F = F ◦ (h, id)

The unfolding is called trivial if it is isomorphic to the unfolding (x, s) → (x, f(s)). If the
codimension of the germ f is < ∞ there is a universal object. A versal unfolding F has
the property that every other unfolding F ′ of f is isomorphic to an induced unfolding of F .
If F has the minimal number of parameters among those unfoldings having this universal
property then it is called miniversal.
The above diagram is unnecessarily complicated. If we write

H : Rn′+k+t → Rn+k+t H = (Hn,Hk,Ht)

h : Rn′+s → Rn+k h = (hn, hk)

we can derive relations betweens these maps.

hn(x′) = h′(x′) Hk(x′, s) = hk(x′, s) Hn = h′(x′)

So that the diagram (V.4) reduces to a relation between F and F ′, nl.

H(x′, s, F ′(x′, s)) = (h′(x′), hk(x′, s), F (h′(x′), hk(x′, s)))

In particular, this shows that F ′(x′, s) and F (h(x′), s) are V-equivalent and that we conse-
quently have an identity ( see [Mat70a] )

A(x′, s)F (h′(x′), hk(x′, s)) = F ′(x′, s)

where A : Rn′+k → R is some smooth map.
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V.2.3. Legendrian embeddings and V -equivalence. A Legendrian embedding is
an embedding of an n-dimensional manifold in a contact manifold of dimension 2n+1, such
the image is an integral manifold of the contact structure. As such we can speak of germs of
Legendrian manifolds at some point in a fibered contact manifold. The singularities of their
projections can be classified up to maps from the contact manifold to itself that preserve
the fibering and the contact form.
For these germs we have the following,
Lemma V.5. If Ψ: PT ∗X → PT ∗X is a diffeomorphism that preserves the fibering and the
contact form then Ψ = g∗ for some diffeomorphism g : X → X.
Such germs of Legendrian manifolds are conveniently constructed with non-degenerate phase
functions, as we saw in the previous chapter. Non-degenerate phase functions are special
cases of unfoldings. If two non-degenerate phase functions are V -equivalent as unfoldings
then they determine equivalent Legendrian manifolds. We want to show that the converse
holds.
Let F (x, s) : Rn+k → R be a non-degenerate phase function for a Legendrian manifold. If

rk
∂2F

∂s2
= i

then we can apply the parametric Morse lemma to write F in the form

F ′(x, s′) + Q(s′′) #s′′ = i rk
∂2F ′

∂s′2
= 0

where Q(s′′) is a non-degenerate quadratic form. We will find that the corresponding Legen-
drian manifolds LF and LF ′ are the same. The new phase function has a minimum number
of variables.
Remark V.6. The operation of adding an auxiliary s variables as opposed to the reduction
carried out above is called a “doubling” of the hypersurface F = 0. The terminology stems
from the fact that in the complex domain {u2 = F (x, s)} is a double cover of {F = 0} under
the projection x, s, u 7→ x, s.
Having minimized the number of s variables by elimination of successive doublings of the
hypersurface F = 0 we also have to touch upon the subject of suspension. Namely if

L → T ∗X → X

is the germ of a Legendrian immersion and ]− a, a[ is some open interval then also

L×]− a, a[→ T ∗(X×]− a, a[) → X×]− a, a[

is for any a > 0 the germ of a Legendrian immersion. As for the image in X, an example
would be a cusp in X becoming a cuspidal edge in X×]− a, a[.
This occurs when h′ in (V.4) is a submersion, i.e. when some parameters are trivial in the
unfolding. Submersions can be written locally in the form (x, x′) 7→ x. The restriction
of (x′, s) 7→ (x′, dx′F ) to {x′, s | F (x′, s) = ds F ′ = 0} is then a suspension of the map
(x, s) 7→ (x, dx F ) restricted to {x, s | F (x, s) = ds F (x, s) = 0}.
If F and G are isomorphic as unfoldings then they are linked by a fibered equivalence.

(V.5) F (x, s) = A(x, s)G(x̃(x), s̃(x, s))

where A, s̃ and x are to satisfy the usual requirements, namely s̃(0, s) = s, x̃ is a diffeomor-
phism and the smooth map s̃(s, x0) is for every x0 a diffeomorphism. If also F defines a
germ of a Legendrian submanifold then G also defines a germ of a Legendrian submanifold
which is equivalent to LF .
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Theorem V.7. Let F ∈ C∞(x0, s0) unfold some f ∈ C∞(s0) and let G be another unfolding
of f such that F , G are non-degenerate phase functions and LF and LG are equivalent
Legendrian manifolds, then F and G are isomorphic as V-unfoldings after possibly carrying
out a number of doublings of the hypersurfaces F = 0, G = 0.

This is a purely local theorem. We can speak of Rk instead of M and of Rn of X.
Two expositions of the proof of this theorem, in [Zak76] and [AGZV85] reduce the theorem
to the corresponding one for Lagrangian submanifolds of T ∗X: any two non-degenerate
phase functions near (x0, s0) ∈ Rn+k defining the same Lagrangian manifold and having the
same signature ∂2F

∂s2 are R+-equivalent as unfoldings.
We will proceed as in the proof of the Lagrangian version of V.7. First of all, we may assume
that

∂2F

∂s2
= 0

Secondly, we may also assume that the number of “s”-variables in F is equal to the number
of “s”-variables for G.
Thirdly, we may assume that LF = LG: they are equivalent via a diffeomorphism x̃ : Rn, 0 →
Rn, 0, instead of G we can consider G(x̃, s).
Let us start by proving a lemma, mimicked from [Hör71]. As before denote Σ(F ) =
(F, ds F )−1(0).

Lemma V.8. There is diffeomorphism from Rn+k, (x0, s0) to itself that maps Σ(F ) to Σ(G)
and that preserves the fibering Rn+k → Rn.

Proof. For this consider the map Rn+k → Rn+1+k × Pn−1:

(V.6) Rn+k 3 (x, s) → x, F, ds F, [dx F ]

We claim that when restricted to Σ(F ) this is a diffeomorphism onto its image LF ⊂ PT ∗Rn.
Call the map in (V.6) jF . It holds that (jF )∗δs = 0 implies δs = 0, because F is a non-
degenerate phase function.
Hence there exists a map

ΨF : (x, u, w, [ξ]) → s ∈ Rk

such that (ΨF ◦ jF )(x, s) = s. For the non-degenerate phase function G we have similar
maps jG and ΨG.
Mingling the two maps we claim that a diffeomorphism from Rn+k to Rn+k is

(V.7) x, s 7→ x, ΨG(jF (x, s))

That (V.7) is a diffeomorphism follows when we calculate

ds(ΨG(jF (x, s))) = du(ΨG ◦ jF ) ds F + dw(ΨG ◦ jF ) d2
s F + d[ξ](ΨG ◦ jF ) ds dx F

which in (x0, s0) ∈ Σ(F ) reduces to

ds(ΨG(jF (x, s))) = d[ξ](ΨG ◦ jF ) ds dx F

Thus (V.7) is a diffeomorphism. We have

(x0, ΨG(jF (x0, s0))) ∈ Σ(G) iff. (x0, [dF (x0, s0)]) ∈ L,

which is equivalent to (x0, s0) ∈ Σ(F ). ¤
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We are now in a position where we can assume near (x0, s0) Σ(F ) = Σ(G), and LF = LG.
Besides F and G also Ft(x, s) = tF (x, s) + (1− t)G(x, s). is an unfolding. It should also be
a non-degenerate phase function for LF . This need not be the case for if F (x1, x2, s1, s2) =
x1 + s2

1 + s2
2 + s5

2 and G(x1, x2, s1, s2) = x1 + s2
1 − s2

2. Then Σ(F ) is Σ(G) and LF , LG are
also identical but still Ft will not be a non-degenerate phase function for t = 1

2 .
We will show that this is the only complication that can occur.

Lemma V.9. Assume that there are a minimum number of variables, i. e. that ∂2F
∂s2 = 0.

Then ∂2G
∂s2 = 0 and Ft(x, s) is a non-degenerate phase function for every t.

Proof. Because LF = LG, possibly after multiplying G with some non-zero function, we
have on Σ that dx F = dx G. Thus on Σ the function F −G vanishes to second order. The
fact that F is a non-degenerate phase function means that we can use F and ds F as k + 1
of the n + k coordinate functions in Rn+k. It follows that we can write F −G as

(V.8) G(x, s)− F (x, s) =
∑

0≤i,j≤k

1
2
aij(x, s)φi(x, s)φj(x, s)

where

A = (aij)1≤i,j≤k φ0(x, s) = F (x, s) φi(x, s) =
∂F

∂si

Differentiating twice one obtains on Σ

d2
s G = d2

s F + A d2
s F d2

s F

Thus d2
s F (x0, s0) = 0 implies d2

s G(x0, s0) = 0. In the same way we have dx ds F (x0, s0) =
dx ds G(x0, s0). Thus for every fixed t the function Ft(x, s) = tF (x, s) + (1 − t)G(x, s) is a
non-degenerate phase function. ¤

We have assembled the ingredients for a proof of theorem (V.7).

Proof of theorem V.7 . We will use what normally is called the homotopy method.
For an exposition of this see the “lemme de réduction” in [Mar76].
Consider the equation

AtFt(x, st(s, x)) = F (x, s)
Differentiation wrt. to t yields

(V.9) At(F −G) +
∂A(t, s, x)

∂t
Ft + Ξ(x, s, t)Ft = 0

where Ξ(x, s, t) is a vectorfield

Ξ(x, s, t) =
k∑

i=1

∂si(t, s, x)
∂t

∂

∂si

We have already seen in the above that F −G annuls to second order on Σ, but Σ = Σ(Ft)
as well. Thus we have an expression as in (V.8). This means that we can solve (V.9) and
find the vector field Ξ and the function dt A.
Hence F and G are contact equivalent as unfoldings. ¤

Henceforth we will study the stability of the unfolding F . It is the same as stability of the
diagram L → PT ∗X → X.
The theory of stability of unfoldings wrt. V -equivalence and stability of Legendrian immer-
sions proceeds as the theory of stability of unfoldings wrt. to R+ equivalence and stability of
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Lagrangian immersions. Proofs of these statements can be obtained by doing exactly what
is described in [Dui74]. We will not do this completely but will concentrate on giving a
criterion for global stability of a V -unfolding. It is our aim to show that in dimensions ≤ 6,
i. e. dim X ≤ 6, generic embeddings of compact manifolds give rise to wavefronts that are
Legendre-stable.
Definition V.10. If an unfolding F of a function f is such that there exists a neighborhood
U of F in C∞(X ×M,R) so that G ∈ U implies F V-equivalent as unfolding to G, then we
say that F is stable.
With S ⊂ M we denote some finite subset of M , in other words a point (s(1), · · · , s(p)) of
M (p).
Proposition V.11. If the unfolding F is stable then the graph of

X ×M (p) p jr F−→ (p) Jr(M,R)

is transversal to every X × M (p) × O for every orbit O of the action of V -equivalence on
functions in (p) Jr(M,R)

Proof. This is proposition 2.1.2 in [Dui74]. Take an arbitrary orbit O ⊂ (p) Jr(M).
Unfoldings whose graphs are transversal to an orbit lie dense. Let F be stable then a nearby
unfolding G is V -equivalent to F and G can be chosen to lie transverse to O.
We have

F (x, s(i)) = A(x, s(i))G(x̃(x), s̃(x, s(i)))
near x0, S. The mappings x̃, s̃ and A define near x0, (p) jr F (x0, S) a diffeomorphism jx̃,s̃,A

from X × (p) Jr(M) to itself that preserves the manifolds X ×O.
The diffeomorphism also maps the graph of (p) jr G to the graph of (p) jr F . Hence the graph
of (p) jr F lies transverse to the manifolds X ×O. ¤

The orbits have a tangent space and the graph of (p) jr F has a tangent space. That the
orbits lie transverse to the graph of (p) jr F can near x, S be expressed as an algebraic
criterion: the tangent space to the orbit at x0, p j(r) F (x0, S) can be determined if we look
at f(s) = F (x0, s). If we multiply this by something close to the identity, say 1 + εg(s), we
get

(V.10)
∂

∂ε
((1 + εg(s))f(s))|ε=0 = g(s)f(s)

If we allow diffeomorphisms close to the identity we get

(V.11)
∂

∂ε
(f(s + εs))|ε=0 = s

∂f

∂s

so that the tangent space to the orbit in (p) Jr(S) is

C∞(x, S)(F ) +M(S)
∂F

∂s
+M(S)r+1

The tangent space to the graph of (p) jr F

C∞(x, S)
∂F

∂s
+ R

∂F

∂x
+M(S)r+1

Thus stability of an unfolding implies the algebraic criterion that at x, S:

(V.12) ∀r C∞(S) = C∞(S)
(

F,
∂F

∂s

)
+ R

(
∂F

∂x

)
+M(S)r+1
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The proof that the converse holds is a standard argument, which we will not repeat in detail.
The first step is to call an unfolding inf-stable if

(V.13) C∞(M ×X) = C∞(M ×X)
(

F,
∂F

∂s

)
+ C∞(X)

(
∂F

∂x

)

Equation (V.13) implies (V.12). If (V.12) holds for sufficiently large r and x, S the inverse
application can also be established. This needs an application of the Malgrange-Mather
preparation theorem in the way we use it in the next paragraph to determine how large r
needs to be.
The second step is to recover stability from (V.13) . This inverse statement is the one known
as “infinitesimal stability implies stability”.

V.2.4. Local stability of the unfoldings. We indicate how the Malgrange-Mather
theorem is usually used to eliminate tails.
Let (x0, s0) ∈ Rn+k. Local stability of an unfolding F : Rn+k → R at (x0, s0) is defined as
follows.

(V.14) C∞(s0) =
k∑

i=1

∂F

∂si
(x0, ·) · C∞(s) + C∞(s0) · F (x0, ·) +

n∑

j=1

R · ∂F

∂xj
(x0, ·) +M(s0)r+1

holds as an identity between ideals for some r ≥ n.
Theorem V.12. The identity (V.14) is satisfied iff. the identity

(V.15) C∞(x0, s0) = C∞(x0, s0) · TF (x0, ·) +
n∑

j=1

C∞(x0) · ∂F

∂xj

holds.
Remark V.13. Let f : (X, p) → (Y, q) be some C∞ map between two manifolds. This in-
duces a map f∗ : C∞((Y, q),R) → C∞((X, p),R). Both these rings are local by the Hadamard
lemma, see [Mat70a] lemma (1.4). The map f∗ makes every C∞((X, p),R) module into an
C∞((Y, q),R) module. The Malgrange Mather preparation theorem answers the following
question: “When is a module A that is finitely generated over C∞((X, p),R) finitely gener-
ated over C∞((Y, q),R)?”. This is the case if

A

f∗M((Y, q))A

is a finite-dimensional vectorspace over R. Again, see [Mat70a], theorem (1.10). An appli-
cation which shows the multiple usages of this theorem can be found in [GG73], example
(B) to theorem (3.6).

proof of theorem (V.12). Let B be the R-“module”.
n∑

j=1

R · ∂F

∂xj

and let A be the module
C∞(s0) · TF (x0, ·).

Let C = C∞(s0). Saying that A+B = C is saying that (V.15) holds. We consider D = C/A.
This is a finitely generated C∞(s0) module. We want it to be finitely generated as an R-
“module”, where the generators should be the ones we have for B. We will use theorem
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(3.10) from [GG73] , which states that this is the case iff. the projections of these generators
in

D′ =
D

Mn+1(s0)D

generate the module D′. This is an equivalent statement to (V.14). ¤

V.2.5. Equisingularity manifolds. We set forth to translate (V.12) into a geometric
criterion.
Let us pose for sufficiently large r.

Er(x0, s0) = {(x, s) | jr
sF (x, s) ∈ O} ⊂ X ×M

where O is the orbit of jrF under the action of V -equivalence. This orbit is a manifold near
x0, s0. Also the graph of

(V.16) x, s 7→
(

F,
∂F

∂s
, · · · ,

∂rF

∂sr

)
∈ jr(M)

is of course a smooth manifold.
If the graph of (V.16) intersects the orbit O transversely the equisingularity manifolds are
indeed submanifolds of dimension n + k − codimO. For sufficiently large r the intersection
no longer depends on r.
The tangent space to the orbit is

(V.17) jr


C∞(s0)F (x0, ·) +

k∑

j=1

M(s0)
∂F

∂sj
(x0, ·)




To determine codimO in Jr(s0) for sufficiently large r we need to calculate

codimO = dimR
C∞(s0)

M(s0)r+1 + C∞(s0)F (x0, ·) +
∑k

j=1M(s0) ∂F
∂sj

(x0, ·)

= dimR
C∞(s0)

M(s0)r+1 + C∞(s0)F (x0, ·) +
∑k

j=1 C∞(s0) ∂F
∂sj

(x0, ·)

+ dimR
M(s0)r+1 + C∞(s0)F (x0, ·) +

∑k
j=1 C∞(s0) ∂F

∂sj
(x0, ·)

M(s0)r+1 + C∞(s0)F (x0, ·) +
∑k

j=1M(s0) ∂F
∂sj

(x0, ·)
= codim(f) + k

Proposition V.14. If the graph of (V.16) hits the orbit O of f in Jr(M) transversally then

• the equisingularity manifolds are smooth and of codimension codim(f) + k in Rn+k ,
• the equisingularity manifolds project immersively to Rn.

Proof. In view of the above, only the last statement remains to be proved.
We will show that if the vector (0, δs) lies in the tangent space to E(x0, s0) then it is zero.
The vector (0, δs) lifts to Jr(k) by the graph of (V.16). So the lift of the vector is

k∑

j=1

jr
(

∂F

∂sj
(x0, ·)

)
δsj
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This vector should lie along the tangent space of the orbit O. Taking into account the
equation for the tangent space (V.17) we ask that:

k∑

j=1

∂F

∂sj
(x0, ·)δsj ∈ C∞(s0)F (x0, ·) +

k∑

j=1

M(s0)
∂F

∂sj
(x0, ·) +M(s0)r+1

Here r can be made large, say r > codim(f) and this will imply that the δsj are all zero.
We conclude that the projection of the E(x0, s0) to X is immersive. ¤

The equisingularity manifolds corresponding to codimension 1 are defined in Rn+k by ds F =
0 and F = 0. This is just Σ(F ). Regular points on the wavefront are thus always of
codimension 1. The wavefront is at regular points EX = πX(E(x0, s0)) - where πX is the
projection from X ×M → X. The codimension of EX in X is exactly the codimension of f
if the orbit of f is hit transversally by the unfolding F .
This situation is different to what happens in the Lagrangian case with the R+-equivalence.
There the definition of codimension is such that the points with codimension one form the
caustic. Most points of the Lagrangian manifold have codimension 0.
We come to the theorem which relates the equisingularity manifolds and the local stability
to global stability. This theorem provides the practical criteria by which one decides whether
stability holds.

Theorem V.15. Let F ∈ C∞(X × M) be such that the map Σ(F ) → X is proper ( and
hence finite to one ) F is a stable iff.

• F is locally stable at every (x, s) ∈ X ×M
• For a fiber (x, s(1), · · · , s(p)) of Σ(F ) → X the projections of equisingularity manifolds to

X at each (x, s(i)) intersect transversally at x ∈ X.

Let us indicate the differences between this theorem and the theorem on Lagrangian stability
that is stated in [Dui74], proposition 2.2.4.
These are the usual criteria for global stability. For instance in the result on generic mappings
from the plane to the plane one asks that the curves along which folds occur intersect
transversally.
The Lagrangian version of the theorem on global stability contains a third demand, namely
that

• Affine independence. The dx F (x, s(i)) for i = 1, · · · , p are affinely independent, as
linear operators on the tangent space to intersection of the equisingularity manifolds.

This demand though a little technical has a geometric interpretation. The vector dxF may
be tangent to the caustic. This will happen for instance on the regular part of a focal sheet
from a surface in Rn. Hence two sheets of the caustic may come to lie as in figure V.2: the
equisingularity manifolds ( here the regular part of focal sheets ) intersect transversally.
Intuitively we see that this is not a stable situation. From the proof of proposition 2.2.4 in
[Dui74] we can also conclude that it is not globally stable.
However in the Legendrian case it is not necessary to impose a similar demand. By definition
equisingularity manifolds in X cannot have codimension 0 in the Legendrian case. As vectors
dx F (x, s(i)) it follows from the non-degeneracy condition on F that they are normals to the
wavefronts and hence to the equisingularity manifolds. So if the equisingularity manifolds
in the Legendrian case intersect transversally then as vectors the dx F (x, ¦) are linearly
independent.
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dx F (x0, s
(1)
0 ) = − dx F (x0, s

(2)
0 )

Figure V.2. Two sheets of caustic

Proof of theorem V.15. We have seen that stability is equal to (V.12) at all x, S. Thus
we have to check that the conditions in the theorem imply (V.12) and vice-versa.
The tangent vectors δx in Vi = TEX(x0, s

(i)
0 ) are those that

n∑

i=1

∂F

∂xi
(x0, ·)δxi ∈ C∞(s(i)

0 )F + C(s(i)
0 )

∂F

∂s
(x0, ·) +M(s(i)

0 )r+1

Thus

(V.18) δx →
n∑

i=1

∂F

∂xi
(x0, ·)δxi

is a map from Rn to C∞(s(i)
0 ), and also to

(V.19) Wi =
C∞(s(i)

0 )

C∞(s(i)
0 )F + C(s(i)

0 )∂F
∂s (x0, ·) +M(s(i)

0 )r+1

These maps are surjective due to the local stability.
In this way the tangent space Vi to each equisingularity manifold is the kernel of a map
Rn → Wi. The Vi intersect transversally iff.

(V.20) Rn 3 δx → W1 ⊕ · · · ⊕Wp

is surjective. Indeed if the map in (V.20) is surjective the dimension of its kernel is n
minus the sum of the dimensions of Wi. Thus the codimension of the kernel is the sum of
the dimensions of the Wi , hence the sum of the codimensions of the F (x0, ·) at the s

(i)
0 .

This is exactly the dimension that the intersection of the Vi should have in order to have a
transversal intersection of the equisingularity manifolds.
On the other hand, if (V.20) is surjective then the criterion (V.12) holds. ¤

V.3. Statement and proof of the main theorem

In this section we will assume some knowledge of stratifications. A standard reference is
[GWdPL76].
Consider Jr(s0) the space of r-th order jets of functions at s0 ∈ M . The action of V -
equivalence divides Jr(s0) into orbits. Denote W r(s0,m) the set of jets whose codimension
is > m. For N ≤ min(6, n) the complement Jr(s0) \W (s0, N) has only finitely many strata.
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The set W (s0, N) is an algebraic set and this algebraic set has some Whitney stratification
also that can be refined to fit together nicely with the stratification of the complement.
Strata with codimension ≤ N correspond to finitely many orbits of the V -action. These
are called the good strata, denote them B. Together with the algebraic stratification {B of
W (s0, N) that fits with B we have thus stratified Jr(s0).
Proposition V.16. For a generic embedding of a compact manifold the big wavefront
Mh

i = πn+1(N∗Mh
i ) has a Whitney stratified subset that consists of of equisingularity sub-

manifolds of codimension at most N = min(n, 6). The strata correspond to singularity types
of individual fronts. In particular, if n ≤ 6 the strata miss only isolated points on the big
wavefront.

Proof. Again write F (x, s) = A(x, γ(s)). The phase function for the big front is G(x̄, s) =
x0 − F (x, s). Consider

(V.21) X ×M 7→ X × Jr(M,R), (x, s) 7→ x, jr(G)

At each (x̄0, s0) the map is generically transverse to the stratification, because of the de-
mands we put on our distance function in section III.1.9.
As before with the equisingularity manifolds the strata project immersively to X × R. To
get the strata to project in general position we would need that all strata that are above x0

together intersect the diagonal stratification transversally. That is if

(x̄0, s
(i)
0 ) ∈ πn+1(Lh), i = 1, · · · , p

then we want

(V.22) (x̄, s(1), · · · , s(p)) 7→ (jrs G(x, s(1)), · · · , jrs G(x, s(p)))

to be transverse to the diagonal stratification D(pJ
n(M)). That this all works is again due

to the fact that our distance functions have a nowhere zero first derivative.
Now, because M is compact, there are only a finite number of points above one x̄0. Thus if
we prove the multitransversality for p = n+1 we have proven the multi transversality for all
p. In that case the stratification of the part determined by the good jets can be refined. ¤

Remark V.17. Note that our transversality requirements come in two steps corresponding
to the maps (V.21) and (V.22).
Remark V.18. The distance functions F (x, s) = A(x, γ(s)) are for compact manifolds M
in C∞pr (M ×X). The function space C∞pr (M ×X) consists of those functions for which the
projection of the surface

Σ(F ) = {F = 0,
∂F

∂s
= 0} ⊂ M ×X

to X is a proper map. It is in this space that we have the genericity results for Legendrian
and Lagrangian mappings, cf. theorem V.15.

V.3.6. Generic intersection of l big fronts. Let us now consider l conic Lagrangian
manifolds N∗Mi in T ∗X. These can be mapped to give l big wavefronts manifolds N∗Mh

i

in T ∗(X × R). Returning to conflict sets our object of interest is the intersection:

(V.23) N∗Mh
i × · · · ×N∗Mh

i t T ∗∆(X × R)l

The partial stratification of each of the big wavefronts is dependent on some integer N . We
can arrange this N to be such that in the intersection (V.23) there are only good strata.
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Theorem V.19. Suppose n− l ≤ 4. For a residual set of embeddings in
⊕l

i=1 Emb(M, X)
the intersection V.23 and hence the conflict set only has combinations of simple singularities.
If #A1 is the number of smooth big fronts in the intersection.
• singularities of conflict sets appear in generic n−l parameter families of fronts in Rn−#A1 ,

if l −#A1 = 2 and
• in generic σ(n− l)- parameter families of fronts in Rn−l+2, if l −#A1 > 2.
It holds σ(2) = 2, σ(3) = 6 and σ(4) = 12. The list of singularities of conflict sets is finite
for n− l ≤ 4. If n− l > 4 we expect moduli.

Proof. For the same reasons as in the proof of proposition V.16 the stratifications of the
bigfronts can be made to intersect transversally. This is the third transversality criterion we
impose.
Suppose the big fronts meet at some point (x0, x). To find the highest codimension singu-
larity we can encounter we assume that l − 1 of the N∗Mh

i project to X × R as a smooth
hypersurface. Suppose the remaining one has at (x0, x) a codimension µ singularity. Then
the stratum on which it lies will have codimension µ. Adding codimensions we should have
in the generic case that

(l − 1) + µ ≤ n + 1
Rewriting this, we obtain

µ ≤ n− l + 2
For µ ≤ 6 we have only simple stable singularities. Thus if n− l +2 ≤ 6, that is n− l ≤ 4, is
in the domain of the nice dimensions. On the other hand if n− l > 4 we will encounter strata
of codimension higher then 5. It follows that n− l ≤ 4 is the domain of nice dimensions.
The fourth and last criterion we require for the proof of our main theorem, has to do with
projection of the intersection (V.23) to X. We want this projection to be a map with regular
intersections.
We ask that the p-fold projection

π(p) :
(
Rn+1

)(p) → (Rn)p

is transverse to the diagonal stratification when restricted to the intersection of the big
fronts. This is also achieved with first order perturbations.
Once we know that the stratified big wavefronts intersect transversally we want to determine
what sort of singularities occur in the finite list we have. We need to prove our claim that
estimates the number of parameters needed to produce the fronts from the finite list in
Rn−l+2 . The estimate will follow from a codimension and modality count, to be carried out
in the next section. ¤

V.4. Geometrical description of different cases

A “local model” for a singularity is a universal unfolding for it. Local models for all the
simple singularities are well-known. A front with an A3 singularity can for instance be made
with s4

1 + x1s
2
1 + x2s1 + x3. The fronts that we consider are big wavefronts. The singular

points on them that we are considering have a tangent space to the stratum on which they
lie of dimension at least one. This means, see the list of examples 6.4 in [Arn76], that
the time function is a trivial parameter in the unfolding for the big wavefront. Locally the
non-degenerate phase function for the big fronts that we are considering can be written:

x0 = F (x, s)



V.4. GEOMETRICAL DESCRIPTION OF DIFFERENT CASES 85

where F (x, s) is a versal unfolding from the ADE list.
However there is more than one big wavefront. What we know of the big wavefronts is that
their equisingularity strata intersect transversally. Hence we can use these equisingularity
strata to define coordinates.
For the description of these singularities the main distinction is the difference n−l. Indeed, if
(µ1, µ2, · · · , µl) is the list of codimensions then we seek µi with 1 ≤ µi and

∑l
i=1 µi ≤ n+1.

Those µi that are 1 correspond to smooth hypersurfaces. This is because the A1 singularity
is just a Morse function and the unfolding is

G1 : x0 = s2
1 + x1

The equations G1 = 0 and ds G1 = 0 imply x0 = x1. Because of the transversal intersection
of the equisingularity manifolds x1 can be discarded as a coordinate. Every A1 singularity
presents a reduction of n and l by 1.
If n− l is fixed then for arbitrary n a certain number of parts in the partition have to be 1.
Let k be the number that is > 1, thus at least 2 . It follows that 2k + (l − k) ≤ n + 1 so
that a maximum of n− l + 1 codimensions is > 1. The others are 1. In the following list of
codimensions we have already eliminated the A1 possibilities.

n− l = 0 If n = l then at most 1 of the µi is > 1. So the only case to consider is l = 1.
We can have only two cases: (1), (2).

n− l = 1 At most 2 of the codimensions are > 1. So it is enough to consider n = 3, l = 2.
In addition to the above combinations we will have: (2, 2) and (3).

n− l = 2 The relevant dimensions are: n = 5, l = 3. The new cases are: (4), (3, 2) and
(2, 2, 2).

n− l = 3 Dimensions: n = 7, l = 4. New cases: (5), (4, 2), (3, 3), (3, 2, 2), (2, 2, 2, 2)

n− l = 4 Dimensions: n = 9, l = 5. New cases: (6), (5, 2), (4, 3), (4, 2, 2), (3, 3, 2),
(3, 2, 2, 2) and (2, 2, 2, 2, 2).

For each of the strata there are only a limited number of singularities, from the ADE list.
The conflict set has dimension n− l +1. The codimension of a singularity on a generic front
of dimension n− l + 1 is maximally n− l + 2. If we look at the above list we see that on the
conflict set the codimension can add up to 2(n− l + 1).

V.4.7. n − l = 0. If n − l = 0 the singularities of the conflict set are the generic
singularities of 2-dimensional fronts. Those are A1, A2

1 and A2. Note the marked difference
with the case of symmetry sets. Their list - see p. 168 of [JB85] - contains two more normal
forms, namely A3 and A3

1.
The A3 is an “endpoint”. One can imagine conflict sets where this happens. One could
take M1 = M2, but this is surely no generic situation. The singularity A3

1 happens when a
symmetry set on the big wavefront of a curve M1 in R2 gets cut by a smooth big wavefront.
In the case of symmetry sets the big wavefronts all come from one curve and there are thus
three branches meeting. On the conflict set A3

1 is the sum of A2
1 and A1, thus there will only

be two branches meeting.

V.4.8. n− l = 1. If n− l = 1 the codimension can add up to 4. The cases to consider
are A2A2, A2

1A2, A2
1A

2
1. All other singularities are just those of generic 2-dimensional fronts.

Pictures are partly in [JB85]
The A2A2 singularity is a generic projection of two transversely intersecting cuspidal edges
in R4. These cuspidal edges can intersect in two ways. This is indicated in figure V.3. One
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way is that only a point remains, another way is where the adjacent A1 strata intersect. To

Figure V.3. Scheme of the two ways in which A2 and A2 can intersect

obtain a picture we will take two copies of our previous example

G1 : x0 = s3
1 + x1s1 + x2 G2 : x0 = s3

2 + x3s2 − x2

We take tangent spaces to the strata at x = 0. For F = s3+As+B the variety determined by
(F, ds F ) = 0 is A3

27 + B2

4 = 0. Thus the A1 stratum of G1 is determined by B = x2−x0 = 0.
The A2-stratum is A = B = 0 , thus x2 − x0 = x1 = 0. For G2 we have the A1-stratum
x2 + x0 = 0 and the A2 stratum x3 = 0. At zero these intersect transversally. We project
the intersection along the time axis x0 to R3. The surface we get is in figure V.4. This

Figure V.4. The A2A2 surface

surface is also known as D+
4 if we view it as a metamorphosis of a wavefront in R3. Recall

that a metamorphosis is a one dimensional family of fronts, see[Arn90]. The name D+
4 is

chosen because the surface is also obtained with an unfolding

(V.24) G1 −G2 = s3
1 − s3

2 + x1s1 − x3s2 + 2x2

The unfolding G1 −G2 is not a versal unfolding. If we want to unfold the D+
4 germ s3

1 + s3
2

with a V-versal unfolding we need 4 parameters. In the unfolding G1 − G2 the term s1s2

misses.
The picture D+

4 is in [AGZV85], §22. In [JB85] it is on p. 174.
We proceed to discuss the differences between the list of singularities of symmetry sets in



V.4. GEOMETRICAL DESCRIPTION OF DIFFERENT CASES 87

[JB85] and our list. Again for symmetry sets the list is larger. There are the endpoints
D±

4 . As mentioned in the introduction they do not occur on conflict sets. We do have A4
1

because we have to consider 1 parameter metamorphoses. On the symmetry set A4
1 appears

as the intersection of
(
6
2

)
planes. On the conflict set two planes are not present. Confirm

also the picture 3 in the introduction.
On both the conflict set and the symmetry set we have A2

1A2. The A2
1A

2 singularity is on
the level of big fronts an intersection of a segment of a symmetry set with a cuspidal edge
of a big front. On the conflict set it looks as the right hand side of V.3.
The picture the authors of [JB85] mention as A1A3 we do not have because in our case only
a suspension of A3 can occur on one big wave front. The other big wavefront is a hyperplane
that cuts the suspension of A3 transversely. Such an intersection is a normal swallowtail,
which Bruce et. al. mention as A4.

V.4.9. n− l = 2. If n− l = 2 we need at least n = 4 and l = 2 to obtain an interesting
new local model. Indeed the case (4) has A4 and D±

4 and suspensions of the cases that occur
with n− l = 1. So the first really new case is (3, 2). On this stratum we have amongst others
A3A2. This is a metamorphosis of a 3-dimensional front. Some sections of this surface are
in figure V.5. In one them we actually see a swallowtail meeting a cuspidal edge. For A3A2

Figure V.5. Sections of A3A2
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we have the same illustration of our main theorem as with A2A2. The A3A2 singularity can
happen when n− l = 2 thus n = 4 for the first time.
Suppose we make an A3 with x0 = s4

1 + x1s
2
1 + x2s1 + x3. The tangent space to the A1

stratum of the front is x0 = x3. For the A2-stratum and A2
1 add x2 = 0 and for A3 add

x1 = 0.
We need an A2 that transversally intersects these. We can choose it to be x0 = s3

2+x4s2−x3

. The unfolding which we obtain is again not versal. It occurs in a 2-parameter family. We
see this from the unfolding:

(V.25) s4
1 + x1s

2
1 + x2s1 + 2x3 − s3

2 − x4s2

A two dimensional family in which this unfolding exists is made by augmenting x5s
2
1s2 and

x6s1s2. Adding x5s
2
1s2 and x6s1s2 to (V.25) we get an unfolding of an E6-germ.

The remaining interesting case if n− l = 2 is A2A2A2. Here n = 5 and the surface itself is
three dimensional. To get a universal unfolding we have to find three A2 unfoldings that lie
in general position.
We could take G1 : x0 = s3

1 + x1s1 + x4 and G2 : x0 = s3
2 + x2s2 + x5 and G3 : x0 =

s3
3 + x3s3 − x5. We have to verify that at 0 the big wavefronts Gi lie transverse to each

other. This is done in the same way as above.
The intersection can be projected along the x0 axis at first. In the above we have proven
that in addition to the time axis there must exist some other direction in which we can
project. To determine it we will use the fact that the conflict set in the nice dimensions is
locally Whitney stratified. Hence at the singular point we consider we can try to compute
the tangent space.
The conflict surface can be parameterized in the following way: x1 = −3s2

1, x2 = −3s2
2,

x3 = −3s2
3 and x4 − x0 = 2s3

1, x5 − x0 = 2s3
2, −x5 − x0 = 2s2

3. The projection along the
x0 surface results in x5 = s3

2 − s3
3 and x4 = 2s3

1 − s3
2 − s3

3. In 0 the limit of tangent spaces
to the A1A1A1 stratum is thus δx1, δx2 and δx3. Thus we could take any direction except
those to project along.
Let us determine an unfolding. In Rn = R5 the unfolding is still an unfolding of a multigerm,
that is two copies of the A2A2. Two parameters will be missing in this unfolding. We can
project still further down to R4. A generic section and projection is δx5, in the x1, x2, x3, x4

space this unfolding is

F = 2G1 −G2 −G3 = 2s3
1 − s3

2 − s3
3 + 2x1s1 − x2s2 − x3s3 − 2x4

The germ 2s3
1−s3

2−s3
3 is a T333 germ. Thus we have some sort of answer to a question posed

by T. C. Wall in [Wal77]. He asked for “some geometrical discussion of the higher order
singularities”. In a way such a geometrical discussion is already present in [AGZV85]. Here
we obtained an interpretation of T333 as a falling together of three cuspidal edges.
All pictures here were obtained with the help of the software [GPS01]. Sections of the
A2A2A2 surface apperently are too singular to be depicted. In the next subsection we will
also no longer be able to obtain the right pictures.
The T333 germ we get is contained in the list of wavefronts listed in [AGZV85], §21.8. The
case we have is mentioned as 0P

0
8 . As a wavefront it occurs generically in R7. Here we

encounter it in R4. We summarize as follows:

Proposition V.20. If n − l = 2 then the Legendrian singularities occur in at most 2
parameter families in R4.
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V.4.10. n − l > 2. After the previous longer treatments of examples we will now be
brief. If the singularities on the individual wavefronts correspond to germs fi then the sin-
gularity of the conflict set is the germ

∑
fi. ( In the A2A2A2 case the fi were s3

1, s3
2 and

s3
3. )

Our definition of codimension was not the usual one. What most authors call the codimen-
sion we will call the multiplicity. It is

dimR
C∞(s0)

C∞(s0)
(

∂f
∂s

)

All the germs we consider are quasi-homogeneous, hence we have:
Lemma V.21.

codim(
l∑

i=1

fi) =
l∏

i=1

codim(fi)

Proof. As the fi can be given a normal form where they are quasi-homogeneous. If their
weights are (α1, · · · , αcorank(fi)) then their multiplicity is

corank(fi)∏

i=1

(
1
αi
− 1

)

The germ
∑

fi associated to the conflict set thus has as multiplicity the product of the
multiplicities of fi. But in the case of quasi-homogeneous germs the multiplicity equals the
codimension ( i. e. Milnor and Tjurina number coincide. ) ¤

The general picture sketched above for the examples A2A2, A2A3 and A2A2A2 is that the
big wavefronts can be assumed to have l − 1 equations

x0 = f1(s1) + x1 + R1(x, s1)
· · ·

x0 = fl−1(sl−1) + xl−1 + R2(x, s2)

x0 = fl(sl)− x1 + Rl(x, sl)(V.26)

Here the Ri have no x-variables in common. The si-variables look like

si = (si,1, · · · , si,corank(fi))

In Ri we will meet at least corank(fi) different x-variables.
The Ri split up in terms linear and non-linear in si. We have for instance:

R1 = xls1,1 + · · ·+ xl+corank(f1)−1s1,corank(f1) + S1(x, s1)

The terms linear in s1 assure that the rank condition is not violated. The term S1 has none
of the x coordinates that appear in the linear terms. The total s1 degree of the S1 term is
strictly higher than 1, i. e. S1(x, s1) contains no terms linear in the s1. For the other Ri we
have a similar normal form. No two of the Ri have any x-variables in common.
A normal form as in (V.26) assures that all the equisingularity manifolds intersect trans-
versely.
The non-versal unfoldings we obtain always contain for all s variables the terms xisi. Also
they contain the constant term. When studying the versal unfolding one distinguishes be-
tween the basis elements ei and the elements Ji. The Ji are those monomials that do not
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affect the multiplicity, their weighted degree is ≥ 1. In our non-versal unfolding the mono-
mials Ji do not occur. The number of monomials #J is called the inner modality.
If we then carry out n− l + 1 section and projection steps - as described in section III.2.17
- we get a non-degenerate phase function with germ

∑
fi at x = 0.

Let us compare the versal unfolding of the germs
∑

fi to the non-versal unfolding we get.
We will take the liberty of speaking of “the basis” for a versal unfolding even though there
is no unique or canonical basis.
Following §13.2 in [AGZV85] the number #J of monomials J is equal to the modality,
for the quasi-homogeneous germs that we have. Hence an upper estimate for the number
of parameters necessary for a wavefront to occur in a family is the codimension minus #J .
Hence if we know that a conflict set is a front in Rn−l+2, the number of parameters to obtain
such a front is less or equal to

codim(
∑

fi)−#J − (n− l + 2)

V.4.11. n− l = 3. With l = 2 and thus n = 5 we have as a first case the (4, 2) stratum.
This leads to at least three cases: (D±

4 , A2) and (A4, A2). We have to study the D±
4 versal

unfolding. Unfoldings for the umbilics D±
4 are:

D+
4 : 0 = s3

1 + s3
2 + As1s2 + Bs1 + Cs2 + D

and
D−

4 : 0 = s3
1 − 3s1s

2
2 + A(s2

1 + s2
2) + Bs1 + Cs2 + D

The limit of the tangent planes at 0 ∈ R4 to the wavefronts is D = 0. Big wavefronts we
could choose in order to have transversal intersections of strata are

D−
4 : x0 = s3

1 − 3s1s
2
2 + x1(s2

1 + s2
2) + x2s1 + x3s2 + x4

A2 : x0 = s3
3 + x5s3 − x4

The germ s3
1−3s1s

2
2−s3

3 has codimension 8. The corresponding conflict set is a hypersurface
in R5.
The number of J-polynomials is in (D±

4 A2)-cases 1. We see that the (D±
4 A2) arise in

2-parameter families of fronts in R5. Note that though D+
4 A2 results in the same germ

as A2A2A2 they have non-isomorphic unfoldings and thus according to theorem V.7 their
wavefronts are not diffeomorphic.
On the (4, 2)-stratum we also have (A4A2). The germ we get is s5

1−s3
2. This is still a simple

singularity, namely E8. Its codimension is 8. Here there are no J polynomials. We need 3
parameters.
The following case is (3, 3). It also occurs in R5. The germ becomes s4

1 +s4
2. Its codimension

is 9. This is the singularity X9 as the modality is 1 it will first occur generically as a 7-
dimensional front in R8. Hence we need a 3 parameter family in R5.
In R6 we will meet (3, 2, 2) for the first time. The germ is s4

1 + s3
2 + s3

3. It has codimension
12. Its modality is 1. Hence this singularity happens in 12 − 1 − (3 + 2) = 6 parameter
families in R5.
In R7 we find a corank 4 singularity (2, 2, 2, 2). It has codimension 16. Hence there are
five elements of the basis of a versal unfolding whose weight is equal to or exceeds 1. The
monomials J1 to J5 are

s1s2s3, s2s3s4, s1s3s4, s1s2s4, s1s2s3s4
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Hence the modality is 5 and this singularity happens in 16 − 5 − 5 = 6 parameter families
of fronts in R5.
Proposition V.22. If n − l = 3 then singularities of the conflict set happen in at most 6
parameter families of fronts in R5.

V.4.12. n− l = 4. The first new case is (5, 2). Here we have a corank 3 germ for D5A2.
We also have corank 2 with A5A2. In both cases the modality is 1 and the codimension 10.
Hence these occur in 3 parameter families of fronts in R6. The germ we call D5A2 is also
known as Q10 in the list of Arnold.
Then comes n = 7 with (4, 2, 2). We can have three different triples of strata: A4A2A2

and D±
4 A2A2. The codimension here is 16. The germ A4A2A2 has modality 2. The germ

D±
4 A2A2 has modality 5. Hence we expect A4A2A2 in 8 parameter families of fronts in R6

and for D±
4 A2A2 we need 5 parameters in R6.

A different corank 4 case comes with n = 8 and (3, 2, 2, 2). This has codimension 24. It
is of weighted degree 1 with weights (α1, · · · , α4) = (1/4, 1/3, 1/3, 1/3). The basis of the
local algebra contains 6 monomials that are of weighted degree ≥ 1. Hence we see that this
singularity happens in 12 parameter families of fronts in R6.
Finally, there is the most singular one, which has codimension 32 with n = 9 and l − 2 = 5
We calculate the stratum for which the multiplicity remains constant. This consist of 16
basis vectors in the local algebra. In this case n− l = 4 and n− l + 2 = 6 so that another 6
parameters are missing.
Proposition V.23. If n − l = 4 then the singularity of the conflict set appear in at most
12-parameter families in R6.



List of notations

H Homogeneous Hamiltonian, page 35
J Complexification mapping, page 44
Lh Lifted conflict set, see equation (III.16), page 44
M1, · · · ,Ml l hypersurfaces in an ambient manifold, page 1
Mc Conflict set in Rn, page 1
Mh

i Big wavefront in Rn × R, page 7
N∗Mh

i Big wavefront in T ∗(X × R)., page 40
Qf Local algebra, page 73
T ∗∆(X)l Diagonal in the fiber., page 41
T ∗(1,1)R

2n \ 0 Diagonal in the base, see equation (IV.1), page 55
X Ambient manifold of dimension n in which the hypersurfaces Mi reside, page 35
C∞(S) Ring of germs of functions at finite set S ⊂ M , page 72
C∞(s0) Ring of germs of functions at s0 ∈ M , page 72
Σ(t,M) Wavefront at time t emanating from M , page 37
x̄ Coordinates (x0, x) in ambient space ×R, page 21
II Fundamental two-form, page 1
In n× n identity matrix., page 49
K Rank matrix, page 45
Tf Extended tangent space, page 73
vf(K) Hamiltonian vectorfield, page 35
di,j Signed distance between curvature ( kissing ) spheres, page 10
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Samenvatting in het nederlands

Wat voorkennis

Stel dat van een oppervlak in de ruimte een golffront komt - het kan om licht gaan, of
om geluid. Is het oppervlak een ellipsoide en breidt de golf zich uit naar buiten dan blijft
het golffront steeds glad. Volgt de golf zijn weg naar binnen dan ontstaan er interferentie
patronen. Het golffront krijgt vanaf een zeker tijdstip zelfdoorsnijdingen en scherpe kanten.
Beschouw alle golffronten op alle tijden tezamen. De scherpe kanten van al die golffronten
vormen de caustiek of de fokale verzameling van de ellipsoide. De zelfdoorsnijdingen
vormen de symmetrieverzameling.
Het is gemakkelijk in te zien dat de symmetrieverzameling van een parabool een halve lijn
is. De caustiek van een parabool is al een gecompliceerder verzameling. Een golffront dat
van een parabool vertrekt en naar binnen beweegt is in eerste instantie nog glad. Echter na
korte tijd al ontstaat er een knik in het golffront. Die knik gaat over in een zelfdoorsnijding
en twee scherpe kanten. De ontwikkeling van het naar binnen bewegende golffront is dus:

. De scherpe kanten laten een spoor na dat zelf ook weer een scherpe kant
heeft.
Een scherpe kant van een oppervlak of een kromme heet ook wel een singulier punt of een
singulariteit. Zelfdoorsnijdingen heten ook wel multi-singulariteiten. De singulariteit
op de caustiek en die op het golffront komende van een parabool heet een cusp, of spits. Al
deze cuspen kunnen glad afgebeeld worden op de kromme y3 = x2.
Neem een willekeurig oppervlak en beschouw een golffront dat zich uitbreidt: hoe kunnen
de singuliere punten eruit gaan zien? Het antwoord op deze vraag is eenvoudig: hoe je maar
wilt. Dat is als volgt in te zien.
Neem een willekeurig vreemd oppervlak met allerhande zelfdoorsnijdingen en scherpe kan-
ten. Plaats op ieder punt van dat oppervlak een bol met straal 1. De gezamenlijke rand,
of omhullende van al die bollen, is ook weer een oppervlak. Laat nu van de omhullende
een golffront vertrekken. Dan is de golf na tijd 1 weer terug op het willekeurig gekozen
oppervlak, met de willekeurige scherpe kanten.
Met wat meer moeite kan min of meer hetzelfde aangetoond worden voor de symmetriever-
zameling en de focale verzameling. Ieder willekeurig gekozen oppervlak met ingewikkelde
scherpe kanten en zelfdoorsnijdingen kan optreden als symmetrieverzameling of caustiek. Er
lijkt geen enkele beperking te zijn. Het is des te verbazingwekkender dat, mits de dimensie
van de ruimte waarin de golf zich voortplant kleiner dan 7 is, er in redelijk sterke zin slechts
een stuk of tien soorten singulariteiten op golffronten bestaan.
Voor dit sterke resultaat over golffronten is het nodig een precies begrip te hebben van wat
een golffront is. Ieder gollfront beweegt zich voort. Op ieder punt van een golffront is er
dus een goed gedefinieerde richting, die niet aan het gollffront mag raken. Aan de andere
kant is er de ruimte waarin het golffront zich voortplant, uitbreidt. Voeg nu aan ieder punt
van deze ruimte alle richtingen toe waarin een golffront zich kan voortplanten. De nieuwe
ruimte is de eenheidslengte coraakbundel. Een golffront kan gekarakteriseerd worden als de
projectie van een bepaald type glad oppervlak in die eenheidslengte coraakbundel. Deze
speciale gladde oppervlakken in de eenheidslengte coraakbundel heten Legendre variëteiten.
Op de omslag van dit proefschrift staat een Legendre-variëteit voor de spits.

95



¾ O

¾ A

¾ B

A′

B′

C

©©©*

O′

D1

D2

E1

E2

The geometry of conflict sets

Martijn van Manen

Uitnodiging
voor het bijwonen van de
openbare verdediging van
mijn proefschrift getiteld

“The geometry of conflict sets”

op maandag 8 september 2003
om 12.45 in de

Senaatszaal van het
Academiegebouw,

Domplein 29 te Utrecht

Na afloop is er een
receptie.

Martijn van Manen
Bickersgracht 56-II

1013 LG
Amsterdam

T
h
e

g
e
o
m

e
try

o
f
co

n
fl
ict

se
ts

M
a
rtijn

v
a
n

M
a
n
e
n



96 SAMENVATTING IN HET NEDERLANDS

Conflictverzamelingen

Een conflictverzameling is de verzameling van punten die op gelijke afstand liggen van een
aantal gegeven oppervlakken. Conflictverzamelingen in het vlak zijn het gemakkelijkst voor
te stellen. De conflictverzameling van twee lijnen bestaat uit weer twee lijnen. De conflict-
verzameling van een cirkel en een lijn is een parabool, de conflictverzameling van twee cirkels
is een aantal hyperbolen en/of ellipsen. Bekijk figuur I.1 voor wat voorbeelden.
Laat nu n de dimensie zijn van de ruimte X waarin gladde hyperoppervlakken M1 tot Ml

liggen. Neem tevens voor het gemak aan dat de ruimte waarin de oppervlakken liggen niet
gekromd is. Noem de conflictverzameling van M1 tot Ml in X Mc.
In het algemeen bestaan conflictverzamelingen uit een aantal oppervlakken. Voor ieder punt
q van de conflictverzameling ligt er een aantal punten op Mj die basispunten heten. De nor-
maal vanuit een basispunt op Mj loopt door het punt q op de conflictverzameling. Voor
ieder basispunt op ieder van de Mj is die afstand gelijk.
Het is ook mogelijk algemener afstandsfuncties toe te laten. Dan staat bijvoorbeeld de af-
stand tot q vanaf basispunten op Mj als λj

λi
tot de afstand vanaf basispunten op Mi. In

formules uitgedrukt:
λj

λi
afst(pi, q) = afst(pj , q)

waar pi een basispunt op Mi is en pj een basispunt op Mj . Door deze verhoudingen te
varieren ontstaat er een hele familie conflictverzamelingen.
Het voornaamste resultaat van dit proefschrift beschrijft de aard van een conflictverzameling
van niet al te speciale oppervlakken. Het blijkt dat gegeven afstandsfuncties en “generieke”
basis oppervlakken Mi conflictverzamelingen de bovengenoemde “Legendre”-eigenschap, ka-
rarakteristiek voor golffronten, hebben en dat als het verschil n − l tussen de dimensie n
van de omhullende ruimte X en het aantal oppervlakken l niet meer dan 4 is er op zulke
generieke conflictverzameling op gladde equivalentie na slechts eindig veel verschillende sin-
gulariteiten bestaan. We bewijzen dus een analogon van de bekende classificatiestellingen
voor golffronten, brandpuntverzamelingen en symmetrieverzamelingen.
In het vlak komt in bovenstaande familie van conflictverzamelingen slechts in gëısoleerde
gevallen een niet Legendre punt voor.
Naast dit grotere resultaat worden er in dit proefschrift tal van kleinere en eenvoudiger
dingen bewezen. In hoofdstuk 4 komen allerlei generalisaties en variaties op het begrip con-
flictverzameling aan bod. In de hoofdstukken 1 en 2 worden een aantal krommingsformules
bewezen.

Twee meetkundige constructies m.b.t. tot conflictverzamelingen

Om na het tohu-bohu van de vorige paragraaf de niet-ingewijden toch nog een beetje een
idee te geven van de zaken die in dit proefschrift aan de orde komen noem ik nu hier nog
twee constructies, die beide iets zeggen over de krommingsformules van de eerste twee hoofd-
stukken.
Uit de geometrische optica is een formule bekend die beschrijft waar het brandpunt van een
in een spiegel gereflecteerde stralenbundel komt te liggen, indien gegeven zijn de hoek van
inval van de stralenbundel en de kromming van de spiegel.
De transformatie van een stralenbundel in zijn gereflecteerde is iets wat vaker bestudeerd
wordt in de wiskunde. Meetkundig gezien is er weinig verschil tussen een lichtstraal die
een spiegel raakt en een biljartbal die de rand van de biljarttafel raakt. Zo bestaat er een
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uitgebreide hoeveelheid wiskundige theorie over kaatsende biljartballen en de baan die ze
afleggen op een biljarttafel.
Om de baan van de gereflecteerde lichtstraal te bepalen construeert men het virtuele beeld
van de lichtbron achter de spiegel. Dit virtuele beeld geniet in de wiskunde enige bekendheid
als de “orthomtic”. In een omgekeerde wereld is de spiegel de conflictverzameling van de
lichtbron en het virtuele beeld. De formule uit de geometrisch optica blijkt dus iets te zeggen
over de kromming van conflictverzamelingen.
Een maat voor de kromming van een kromme is één gedeeld door de straal van de best
rakende cirkel. Een cirkel met straal 2 heeft bijvoorbeeld een constante kromming van een
half. We gaan nu uitgaande van de lichtbron en het virtuele beeld de best rakende cirkel
aan de spiegel ofwel de conflictverzameling construeren, m.a.w. uitgaande van twee objecten
gaan we de best rakende cirkel aan de conflictverzameling construeren.
Dat blijkt te kunnen met een klassieke constructie, die van de harmonische dubbelverhou-
ding. Hoe dat werkt is te zien in de figuur op de achterkant van dit boekje. Het punt O′

ligt op de conflictverzameling van de twee gestippelde cirkels want er is een cirkel met mid-
delpunt O′ die raakt aan beide gestippelde cirkels. De normaal aan de conflictverzameling
is de lijn die de hoek tussen de twee normalen vanuit A en B naar O′ in tweeën deelt.
Laat nu de punten A en B neer op de normaal aan de conflictverzameling als in de figuur
aangegeven. Dan ontstaan er op de normaal aan de conflictverzameling drie punten. Het
vierde punt C is nu het unieke punt zodanig dat de paren (A′, B′) en (O′, C) de harmoni-
sche dubbelverhouding hebben, i.e. A′C/A′O′ = −B′C/B′O′. De cirkel met middelpunt C
door O′ blijkt de best rakende cirkel aan de conflictverzameling te zijn, zoals gegeven door
genoemde formule uit de geometrische optica. In het eerste hoofdstuk van dit proefschrift
staan formules die het algemene n-dimensionale geval behandelen.
Het punt C kan ook geconstrueerd worden met behulp van inversie. Neem de cirkel c door
A′ en B′ met middelpunt op de lijn A′B′. Inversie door een cirkel of door een bolschil is
de afbeelding die alles binnenstebuiten keert: het middelpunt gaat naar oneindig, de cirkel
of bolschil zelf blijft op zijn plaats en andere punten worden afgebeeld als in onderstaande
figuur.

A′

O′ B′ C

De definitie van in-
versie: het beeld
onder inversie van
O′ is C en vice-
versa

De tweede constructie die aan bod komt gaat meer over het behandelde in hoofdstuk 2.
In dat hoofstuk staan formules die de best rakende bol vinden in het geval dat er drie ba-
sis oppervlakken in R3 zijn. In de figuur .1 zien we de eenvoudigste constellatie met drie
basisoppervlakken. In dit geval blijkt het mogelijk om met inversie in te zien wat de conflict-
verzameling is. Laat de drie bollen uitdijen tot een punt waar twee van de drie bollen raken.
In dat punt waar twee van de drie bollen raken plaatsen we een vierde bolschil waardoor
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Figuur .1. Drie bollen: wat is de conflictverzameling?

we de drie bollen inverteren. Als we dat doen ontstaat figuur .2. De inversie afbeelding is

Figuur .2. Dezelfde drie bollen, nu gëınverteerd

een gladde één-op-één afbeelding buiten het centrum van de bolschil waardoor de inversie
plaatsvindt. Dat betekent in het bijzonder dat de beelden van elkaar rakende objecten elkaar
raken. Een vijfde bolschil die raakt aan de drie bolschillen van figuur .1 heeft als beeld dus
een bolschil die raakt aan de twee vlakken en de bol in figuur .2. Maar het middelpunt van
de vijfde bolschil is een punt van de conflictverzameling. Dus is het beeld onder inversie van
de conflictverzameling een cirkel die zweeft tussen de twee vlakken en draait om de bolschil
van figuur .2. De conflict verzameling zelf is dus ook een kromme die in een vlak ligt, voor
een plaatje zie figuur II.2.
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Goddijn die mij wees op de inversie door een bol.
The past few years would have been a lot less fun without students and staff at the faculty.
In particular those who shared my fate have been very pleasant collegues: Abadi, Arno, Bar-
bara, Bob, Christian, Ellen, Franziska, Hil, Jordan, Luis, Lennaert, Lorna, Menno, Mischja,
Pepijn, Pieter, Quintijn, Roderik, Taoufik, Tobias and all the others too. I also thank my
roommates Greg, Marco, Theo and Yaroslav.
Van mijn vrienden hebben velen een enthousiast verhaal over onbegrijpelijke wiskunde
danwel geweeklaag over iets begrijpelijks aangehoord. Hun bijdrage werd zeer op prijs
gesteld. Laat dit boekje tevens een waarschuwing zijn aan alle ouders over de ernstige ge-
volgen als men de boeken van zijn kinderen steeds maar vergoedt.
Michiel, kijk! Je staat in een boekje, daar waar je vader had moeten staan.
Souki, entre les lignes t’as ajouté beaucoup.
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