
CHAPTER 6

The Application of Catastrophe Theory

Insofar as mathematics is about
reality, it is not certain, and insofar
as it is certain, it is not about reality.

ALBERT EINSTEIN

abstract The understanding of the behaviour of critical points under the influence of blurring opens
the ability of investigation of the deep structure of Gaussian scale space images. The mathematical
framework of catastrophe theory can be used to describe the various different types of events that can
occur. For that purpose we investigate the generic and non-generic annihialtions of critical points, as
well as the creation of them. We show how this knowledge can be exploited in a scale space hierarchy
tree for the purpose of pre-segmentation. We clarify the theory with an artificial image and a simulated
MR image.

6.1 Introduction

The presence of structures of various sizes in an image demands almost automatically a collection of
image analysis tools that is capable of dealing with multiple scales simultaneously. Various types of
multi-scale paradigms have been developed [220]. They can be divided into two groups: linear and
non-linear scale spaces.

6.1.1 Scale Space

The concept of (linear) scale space has been introduced in the Western world by Witkin [249] and Koen-
derink [139]. They showed that the natural way to represent an image at finite resolution is by convolving
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it with a Gaussian of various bandwidths, thus obtaining a smoothened image at a scale determined by
the bandwidth. This approach has lead to the formulation of various invariant expressions – expressions
that are independent of the coordinates – that capture certain features in an image at distinct levels of
scale [53, 65, 76, 77, 78, 79, 80].

Under convolution with a Gaussian features are blurred and their locations change as a function of
scale, as long as they remain well-defined. To avoid this a much as possible, non-linear scale spaces have
been introduced, in which e.g. the blurring on parts with a high gradient (i.e. edges) is much smaller than
in the rest of the image [75, 211, 245].

Multi-scale approaches are nowadays becoming more and more common and are being integrated
with methods using PDEs, variational approaches and mathematical morphology [1, 27, 68, 73, 102,
106, 122, 193, 197].

6.1.2 Deep Structure

We focus on linear Gaussian scale space. This has the advantage that each scale level only requires
the choice of an appropriate scale; and that the image intensity at that level follows linearly from any
previous level. It is therefore possible to trace the evolution of certain image entities over scale. The
exploitation of various scales simultaneously has been referred to as deep structure by Koenderink [139].
It pertains to information of the change of the image from highly detailed – including noise – to highly
smoothened. Furthermore, it may be expected that large structures “live” longer than small structures (a
reason that Gaussian blur is used to suppress noise). The image together with its blurred version was
called “primal sketch” by Lindeberg [170, 171, 174]. Since multi-scale information can be ordered, one
obtains a hierarchy representing the subsequent simplification of the image with increasing scale. In one
dimensional images this has been done by several authors [124, 128, 129, 244], but higher dimensional
images are more complicated as we will discuss below.

6.1.3 Related Work

An essentially unsolved problem in the investigation of deep structure is how to establish meaningful
links across scales. This linking can be region-wise, that is: all points that belong to a certain region are
identified with that region and are connected to a similar region at a larger scale, cf. multi-scale watershed
segmentation [82, 122, 204, 205, 207]. A disadvantage is that one firstly needs to define these regions.

Another way is to link points if they satisfy some constraint. Vincken et al. [152, 240, 242] built the
so-called hyperstack, based on a linear scale space, but with linking essentially based on the “affection”
between two potentially corresponding points. It appeared that this line of approach also worked well if
non-linear scale spaces were used. A drawback of the hyperstack is the counter-intuitively linking in a
fine-to-coarse direction.

A well-defined and user-independent strategy is obtained by linking points that satisfy a topological
constraint. This approach has been used in 2-D images by various authors [99, 168, 230]. They linked
extrema, but noticed that sometimes new extrema occurred, disrupting a good linking.

This creation of new extrema in scale space has been studied in detail by Damon [45, 46, 47], proving
that these creations are generic in images of dimension larger than one. That means that they are not
some kind of artifact, introduced by noise or numerical errors, but that they are to be expected in any
typical case. This was somewhat counterintuitive, since blurring seemed to imply that structure could
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only disappear, thus suggesting that only annihilations could occur. Damon, however, showed that both
annihilations and creations are generic catastrophes. Whereas Damons results were stated theoretically,
application of these results were reported in e.g. [98, 154, 168, 170].

The main consequence is that in order to be able to use the topological approach one necessarily
needs to take into account these creation events. This has been done in previous work by Kuijper et
al. [157, 161, 162].

Apart from the aforementioned catastrophe points (annihilations and creations) there is a second type
of topologically interesting points in scale space, viz. scale space critical points. These are spatial critical
points with vanishing scale derivative. This implies a zero Laplacean in linear scale space. Although
Laplacean zero-crossings are widely investigated (the “Laplacean of Gaussian” as edge-detector), the
combination with zero gradient has only been mentioned occasionally, e.g. [98, 144, 168].

Several authors investigated the shape of iso-intensity manifolds [98, 113, 139] in scale space. Ob-
viously, at annihilations some structure disappears. However, these points are not the only special points
in relation to the iso-intensity manifolds as we showed in [157]. In contrast, in [157] we proved that the
critical points in scale space also form special points as these define so-called critical iso-intensity man-
ifolds, i.e. iso-intensity manifolds with self-intersection encapsulating an extremum, see Section 6.2.4.

Scale space critical points, together with annihilations and creations allow us to build a hierarchical
structure that can be used to obtain a so-called pre-segmentation: a partitioning of the image in which
the nesting of iso-intensity manifolds becomes visible.

6.1.4 Aim

In the aforementioned articles [157, 161, 162] we also showed that it is sometimes desirable to use higher
order (and thus non-generic) catastrophes to describe the change of structure. It has a direct relation to
the hierarchy tree and the pre-segmentation, in the sense that two or more regions can be endowed with
the same critical iso-intensity manifold. In this chapter we describe these catastrophes in scale space and
show the implications for both the hierarchy tree and the pre-segmentation.

In section 6.2 theory on Gaussian scale space, catastrophe theory and a brief outline of the hierarchy
tree is given. Catastrophes in scale space in generic coordinates and their effects on the hierarchy are
discussed in section 6.3. We give some applications in section 6.4 and end with a summary and discussion
in section 6.5.

6.2 Theory

In [157] we presented a uniquely defined hierarchical structure describing a scale space image. In section
6.2.4 we shortly outline the basic steps. In order to understand the essential elements, we define a
Gaussian scale space in section 6.2.1. The structure depends on the evolution of spatial critical points as
the scale changes. The locations of these points in scale space form one dimensional manifolds, the so-
called critical curves, containing two types of special points. The first type is formed by the scale space
saddles, discussed in section 6.2.2. The second type are the catastrophe points, presented in section 6.2.3.



84 Chapter 6. The Application of Catastrophe Theory

6.2.1 Gaussian Scale Space

Definition 14 L(x) denotes an arbitrary n-dimensional image. We will refer to this image as the initial
image.

Definition 15 L(x; t) denotes the (n+ 1)-dimensional Gaussian scale space image of L(x).

The Gaussian scale space image is obtained by convolution of an initial image with a normalised
Gaussian kernel of zero mean and standard deviation

√
2t:

L(x; t) = G(x; t)⊗ L(x) =

∫
1√

4πt
n e
− |x−y|2

4t L(y) dy .

Consequently, L(x; t) satisfies the diffusion equation:

∂tL(x; t) =
n∑

i=1

∂2

∂x2
i

L(x; t)
def
= ∆L(x; t) . (6.1)

Here ∆L(x; t) denotes the Laplacean. Differentiation is now well-defined, since derivatives of the image
up to arbitrary order at any scale are obtained using

∂

∂xi
L(x; t) =

∂

∂xi
(G(x; t)⊗ L(x)) =

(
∂

∂xi
G(x; t)

)
⊗ L(x).

That is, an arbitrary derivative of the image is obtained by the convolution of the initial image with the
corresponding derivative of a Gaussian.

Definition 16 Spatial critical points, i.e. saddles and extrema (maxima or minima), at a certain scale t0
are defined as the points at fixed scale t0 where the spatial gradient vanishes: ∂

∂xi
L(x; t0) = 0 ∀i, that

is, ∇L(x; t0) = 0. We will refer to these points as spatial critical points to distinguish them from scale
space critical points, see Definition 19.

The type of a spatial critical point is given by the eigenvalues of the Hessian H , the matrix with the
second order spatial derivatives, evaluated at its location.

Definition 17 The Hessian matrix at a certain scale t0 is defined by H def
= ∇∇T L(x; t0), where each

element of H is given by

Hi,j =
∂2

∂xi∂xj
L(x; t).

The trace of the Hessian equals the Laplacean. For non-degenerate critical points at maxima (minima)
all eigenvalues of the Hessian are negative (positive). At a spatial saddle point H has both negative and
positive eigenvalues.

Since L(x; t) is a smooth function in (x; t)-space, spatial critical points are part of a one dimensional
manifold in scale space by virtue of the implicit function theorem.

Definition 18 A critical curve is a one-dimensional manifold in scale space on which ∇L(x; t) = 0.

Consequently, the intersection of all critical curves in scale space with a plane of certain fixed scale
t0 yields the spatial critical points of the image at that scale.
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6.2.2 Scale Space Saddles

Definition 19 The scale space saddles of L(x; t) are defined as the points where both the spatial gradient
and the scale derivative vanish: ∇L(x; t) = 0 and ∆L(x; t) = 0.

In Definition 19 we used Eq. (6.1). Note that it describes the critical points of L(x; t) in scale
space. In [157] it is proven that these points are indeed always saddle points, a result of the well-known
maximum principle.

Definition 20 The extended Hessian H of L(x; t) is matrix of second order derivatives in scale space
defined by

H =

(
∇∇TL ∆∇L
(∆∇L)T ∆∆L

)
.

Here∇∇TL is the Hessian.

Note that the elements ofH are purely spatial derivatives. Again, this is possible by virtue of the diffusion
equation, Eq. (6.1).

The fact that scale space critical points are always saddles implies that the extended Hessian has both
positive and negative eigenvalues at scale space critical points. Furthermore, in [157] we have proven
that if the intensity of the spatial saddle points on a critical curve is parametrised by scale, scale space
saddles are in fact the extrema of the parametrisation.

6.2.3 Catastrophe Theory

The spatial critical points of a function with non-zero eigenvalues of the Hessian are called Morse crit-
ical points. The Morse Lemma states that at these points the qualitative properties of the function are
determined by the quadratic part of the Taylor expansion of this function. This part can be reduced to the
Morse canonical form by a slick choice of coordinates.

If at a spatial critical point the Hessian degenerates, so that at least one of the eigenvalues is zero, the
type of the spatial critical point is not defined.

Definition 21 The catastrophe points ofL(x; t0) are defined as the points where both the spatial gradient
and the determinant of the Hessian vanish: ∇L(x; t0) = 0 and detH(x; t0) = 0.

The term catastrophe was introduced by Thom [238, 239]. It denotes a (sudden) qualitative change
in an object as the parameters on which this object depends change smoothly. This behaviour was
already known by the terms perestroika, bifurcation and metamorphosis. The name catastrophe theory
was suggested by Zeeman [255] to unify singularity theory, bifurcation theory and their applications and
gained wide popularity. A thorough mathematical treatment on singularity theory can be found in the
work of Arnol’d [5, 6, 7, 8, 9, 10]. More pragmatic introductions and applications are widely published,
e.g. [29, 81, 91, 184, 212, 255].

The catastrophe points are also called non-Morse critical points, since a higher order Taylor expan-
sion is essentially needed to describe the qualitative properties. Although the dimension of the variables
is arbitrary, the Thom Splitting Lemma states that one can split up the function in a Morse and a non-
Morse part. The latter consists of variables representing the k “bad” eigenvalues of the Hessian that
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name nickname CG PT
A2 Fold x3 λ1x
A±3 Cusp ±x4 λ1x+ λ2x

2

A4 Swallowtail x5 λ1x+ λ2x
2 + λ3x

3

A±5 Butterfly ±x6 λ1x+ λ2x
2 + λ3x

3 + λ4x
4

D+
4 Hyperbolic Umbilic x2y + y3 λ1x+ λ2y + λ3x

2

D−4 Elliptic Umbilic x2y − y3 λ1x+ λ2y + λ3x
2

D±5 Parabolic Umbilic x2y ± y4 λ1x+ λ2y + λ3y
2 + λ4x

2

Table 6.1: Description of non-Morse critical points for maximal 4 different perturbation parameters.
Each contain a catastrophe germ (CG) and corresponding perturbation term (PT).

become zero. The Morse part contains the n − k remaining variables. Consequently, the Hessian con-
tains a (n − k) × (n − k) sub-matrix representing a Morse function. It therefore suffices to study the
part of k variables. The canonical form of the function at the non-Morse critical point thus contains two
parts: a Morse canonical form of n − k variables, in terms of the quadratic part of the Taylor series,
and a non-Morse part. The latter can by put into canonical form called the catastrophe germ, which is
obviously a polynomial of degree 3 or higher.

Since the Morse part does not change qualitatively under small perturbations, it is not necessary
to further investigate this part. The non-Morse part, however, does change. Generally the non-Morse
critical point will split into a non-Morse critical point, described by a polynomial of lower degree, and
Morse critical points, or even exclusively into Morse critical points. This event is called a morsification.
So the non-Morse part contains the catastrophe germ and a perturbation that controls the morsifications.

Then the general form of a Taylor expansion f(x) at a non-Morse critical point of an n dimensional
function can be written as (Thom’s Theorem):

f(x;λ) = CG(x1, . . . , xk) + PT (x1, . . . , xk;λ1, . . . , λl) +
n∑

i=k+1

εix
2
i , (6.2)

where CG(x1, . . . , xk) denotes the catastrophe germ, PT (x1, . . . , xk;λ1, . . . , λl) the perturbation germ
with an l-dimensional space of parameters, and in the Morse part εi = ±1. In Table 6.1 the germs of the

generic families in l parameters, with l ≤ 4, are listed. In 2D these form, together with A±1
def
= ±x2± y2

and taking D+
4 and D−4 together as D±4 , the so-called Thom’s seven.

These germs are the starting point of the infinite set of so-called simple real singularities, whose

catastrophe germs are given by the infinite series A±k
def
= ±xk+1, k ≥ 1 and D±k

def
= x2y ± yk−1, k ≥ 4,

and the three exceptional singularities E6
def
= x3 ± y4, E7

def
= x3 + xy3, and E8

def
= x3 + y5. The germs

A+
k and A−k are equivalent for k = 1 and k even.

Catastrophes and Scale Space

In Definition 21, the number of equations defining the catastrophe point equals n + 1 and therefore it
is over-determined with respect to the n spatial variables. Consequently, catastrophe points are gener-
ically not found in typical images. In scale space, however, the number of variables equals n + 1 and
catastrophes occur as isolated points.
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Although the list of catastrophes starts very simple, it is not trivial to apply it directly to scale space
by assuming that scale is just one of the perturbation parameters.

For example, in one-dimensional images the Fold catastrophe reduces to x3 + λx. It describes the
change from a situation with two critical points (a maximum and a minimum) for λ < 0 to a situation
without critical points for λ > 0. See e.g. Figure 6.1 in Section 6.3.1 for an example of such an annihi-
lation sequence. This event can occur in two ways. The extrema are annihilated for increasing λ, but the
opposite – creation of two extrema for decreasing λ – is also possible.

In scale space, however, there is an extra constraint: the germ has to satisfy the diffusion equation.
Thus the catastrophe germ x3 implies an extra term 6xt. On the other hand, the perturbation term is given
by λ1x, so by taking λ = 6t scale plays the role of the perturbing parameter. This gives a directionality
to the perturbation parameter, in the sense that the only remaining possibility for this A2-catastrophe in
one-dimensional images is an annihilation.

In higher dimensional images also the opposite – i.e. a Fold catastrophe describing the creation of
a pair of critical points – is possible. Then the perturbation λ = −6t with increasing t requires an
additional term of the form −6xy2 in order to satisfy the diffusion equation, see Definition 22.

The transfer of the catastrophe germs to scale space has been made by many authors, [45, 46, 47,
72, 126, 128, 129, 130, 131, 154, 157, 161, 162, 170, 174], among whom Damon’s account is probably
the most rigorous. He showed that the only generic morsifications in scale space are the aforementioned
Fold catastrophes describing annihilations and creations of pairs of critical points. These two points
have opposite sign of the determinant of the Hessian before annihilation and after creation. All other
events are compounds of such events. It is however possible that one may not be able to distinguish these
generic events, e.g. due to numerical limitations, coarse sampling, or (almost) symmetries in the image.

Definition 22 The scale space catastrophe germs are defined by

f A(x; t)
def
= x3

1 + 6x1t+Q(x; t) ,

fC(x; t)
def
= x3

1 − 6x1t− 6x1x
2
2 +Q(x; t) .

The quadratic term Q(x; t) is defined

Q(x; t)
def
=

n∑

i=2

εi(x
2
i + 2t),

where
∑n
i=2 εi 6= 0 and εi 6= 0 ∀i.

Note that the scale space catastrophe germs f A and fC, and the quadratic term Q satisfy the diffusion
equation. The germs fA and fC correspond to the two qualitatively different Fold catastrophes at the
origin, an annihilation and a creation respectively. From Definition 22 it is obvious that annihilations
occur in any dimension, but creations require at least 2 dimensions. Consequently, in 1D signals only
annihilations occur. Furthermore, for images of arbitrary dimension it suffices to investigate the 2D case
due to the Splitting Lemma.

The Annihilation Germ

Spatial critical points at any scale t for f A follow directly from∇fA(x; t) = 0:
{

3x2
1 = −6t

2εixi = 0, i ≥ 2
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Then the critical curve is parametrised by (±
√
−2t, 0, . . . , 0; t), t ≤ 0. At the origin a catastrophe takes

place. The determinant of the Hessian is given by detH = cx1, with the constant c = 3 · 2nΠn
i=2εi.

So two critical points with opposite sign approach the origin as t increases to zero. Note that trH =
6x1 +

∑n
i=2 2εi, which is generically non-zero at catastrophe points. This explains the constraints on the

εi in Definition 22.

The Creation Germ

The creation germ is a bit more complicated. Spatial critical points at any scale t for f C follow from
∇fC(x; t) = 0: 




3x2
1 − 6x2

2 = 6t
2x2(ε2 − 6x1) = 0

2εixi = 0, i ≥ 3

Since we look in the neighbourhood of the origin, we take x2 = 0. Then the critical curve is parametrised
by (±

√
2t, 0, . . . , 0; t), t ≥ 0. At the origin a catastrophe takes place. The determinant of the Hessian

is given by detH = cx1(ε2 − 6x1) − 12cx2
2, with the constant c = 3 · 2nΠn

i=3εi, so two critical
points with opposite sign leave the origin as t increases from zero. Note that this catastrophe is a Fold
catastrophe since it describes the creation of two critical points, although there is a striking resemblance
to the description of the Elliptic Umbilic catastrophe. Furthermore, the description of the catastrophe is
essentially local: If t is taken too large, the (non-generic) degeneration of the Hessian at x1 = 1

6ε2 has to
be taken into account. We will elaborate on these items in Section 6.3.

6.2.4 Scale Space Hierarchy

From the previous section it follows that each critical curve in (x; t)-space consists of separate branches,
each of which is defined from a creation event to an annihilation event. We set #C the number of creation
events on a critical path and #A the number of annihilation events. Since there exists a scale at which
only one spatial critical point (an extremum) remains (see Loog et al. [182]), there is exactly one critical
path with #A = #C , whereas all other critical paths have #A = #C + 1. That is, all but one critical
paths are defined for a finite scale range.

One of the properties of scale space is non-enhancement of local extrema. Therefore, iso-intensity
manifolds (isophotes in 2D) in the neighbourhood of a spatial extremum at a certain scale t0 move
towards the spatial extremum at coarser scale until at some scale t1 the intensity of the extremum equals
the intensity of the manifold. The iso-intensity surface in scale space forms a dome, with its top at the
extremum at scale t1. Since the intensity of the extremum is monotonically in- or decreasing (depending
on whether it is a minimum or a maximum, respectively), all such domes are nested. Retrospectively,
each extremum branch carries a series of nested domes, defining increasing regions around the extremum
in the input image.

In [157] we have proven that these regions are uniquely related to one extremum as long as the
intensity of the domes does not reach that of the so-called critical dome. The latter is formed by the iso-
intensity manifold with its top at the extremum and containing a scale space saddle (see section 6.2.2)
that is part of the same critical curve. An example of a critical dome and its related critical curve is
shown in Figure 6.6 in Section 6.3.2.
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In this way a hierarchy of regions of the input image is obtained, which can be regarded as a kind
of pre-segmentation. It also results in a partition of the scale space itself. Details can be found in
[157, 161, 162].

The crucial role is played by the scale space saddles and the catastrophe points. As long as only
annihilation and creation events occur, the hierarchy is obtained straightforwardly. However, sometimes
higher order catastrophes are needed to describe the local structure, viz. when two or more catastrophes
happen to be almost incident and cannot be segregated due to coarse sampling, numerical imprecision,
or (almost) symmetries in the image. In the next section we describe these higher order events.

6.3 Scale Space Catastrophes and Scale Space Saddles

In this section we discuss the appearance of catastrophe events in scale space and the effect on scale
space saddles. Firstly, results on one-dimensional images are given, because in this particular case scale
space saddles coincide with catastrophe points. Secondly, multi-dimensional images are discussed.

6.3.1 1D Images

In 1D images the critical iso-intensity manifolds (or separatrices) are given by the isophotes through the
catastrophes points, since these points are identical to the scale space saddles: H = Lxx and Lt = ∆L =
Lxx. At such points the extended Hessian, Definition 20, reads

H =

(
0 Lxxx
Lxxx Lxxxx

)
.

It is generically non-zero at scale space saddles and detH = −L2
xxx < 0. In one dimensional images

only cuspoid catastrophes (the Ak-type of Table 6.1) occur, of which we will discuss the Fold A2 and the
Cusp A3.

Fold Catastrophe

The generic annihilation is called a Fold and is defined by (see Definition 22 and further)

L(x; t) = x3 + 6xt .

The only perturbation parameter is given by t after the identification λ1 = 6t. The intensity for increasing
scales is shown in Figure 6.1. It has a scale space saddle if both derivatives are zero, that is,

{
Lx = 3x2 + 6t = 0
Lt = 6x = 0

So it is located at the origin with intensity equal to zero. The determinant of the extended Hessian
equals −36, indicating a saddle. A possible parametrisation of the critical curve is (x(s); t(s)) =
(±
√
−2s; s), s ≤ 0 and the corresponding parametrised intensity reads P (s) = ±4s

√
−2s, s ≤ 0,

see Figure 6.2a.
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Figure 6.1: Fold catastrophe for increasing scales a) t=-1: Two extrema. b) t=0: Catastrophe at the origin.
c) t=1: No extrema.
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Figure 6.2: a) Parametrised intensity of the Fold catastrophe. b) 1+1D intensity scale space surface of the
Fold catastrophe in (x, t, L(x; t)) space. c) Segments of b), defined by the scale space saddle intensity.

The critical dome is given by the isophotes L(x; t) = 0 through the origin, so (x; t) = (0; t) and
(x; t) = (x;−1

6x
2). Figure 6.2b shows isophotes L = constant in the (x; t, L(x; t))-space, where

the self-intersection of L = 0 gives the annihilation point. This isophote gives the separatrices of the
different parts of the image. The separation curves in the (x; t)-plane are shown in Figure 6.2c. For
t < 0, four regions exist, for t > 0 two remain (compare to Figure 6.1a-c).

At the catastrophe point the isophotes of the scale space saddle form a pitchfork. Due to the causality
principle it has 3 branches downwards and only one upward, i.e. at the scale space saddle four separate
regions change to two separate regions. Locally the isophotes are described by L(x; t) = Lxt(

1
6x

3 +

xt)
def
= 0, so the horizontally traversing branches of the scale space saddle isophote necessarily have

branches given by t = − 1
6x

2, describing the disappearance of two regions.

Cusp Catastrophe

Although all catastrophes are generically described by fold catastrophes, one may encounter higher order
catastrophes, e.g. due to numerical imprecision or symmetries in the signal, for instance when a set of
two minima and one maximum change into one minimum, but one is not able to detect which minimum
is annihilated.

The first higher order catastrophe describing such a situation is the Cusp catastrophe. The scale space
representation of the catastrophe germ reads ±(x4 + 12x2t+ 12t2), the perturbation term was given by
λ1x + λ2x

2, see Table 6.1. Obviously, scale can fulfil the role of the perturbation by λ2. Therefore the
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Figure 6.3: Parametrised intensity of the Cusp catastrophe a) ε = 0 b) 0 <| ε |� 1
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Figure 6.4: Critical paths in the (x; t)-plane. a) ε < 0 b) ε = 0 c) ε > 0 d) detection of the critical
paths around the origin with uncertainty represented by the oval.

scale space form is given by

L(x; t) =
1

12
x4 + x2t+ t2 + εx,

where the two perturbation parameters are given by t for the second order term and ε for the first order
term. Scale space critical points are given by

{
Lx = 1

3x
3 + 2xt+ ε = 0

Lt = x2 + 2t = 0

If ε = 0 the situation as sketched above occurs. The catastrophe takes place at the origin, where two
minima and a maximum change into one minimum for increasing t. At the origin also Lxxx = 0, result-
ing in a zero eigenvalue of the extended Hessian. Note that this degeneration is automatically induced
by the Cusp catastrophe. The parametrised intensity curves (L1(0; s) = s2,∀s and L2(±

√
−6s; s) =

−2s2, s ≤ 0) are shown in Figure 6.3a. Note that at the bottom left the two branches of the two minima
with equal intensity, given by L2, coincide. The case 0 <| ε |� 1, where a morsification has taken
place, is visualised in Figure 6.3b. This Figure shows the remaining Fold catastrophe of a minimum and
a maximum (compare to Figure 6.2a), and the unaffected other minimum.

It is this splitting that may not be discernible in practice, although it is the generic situation. De-
pending on the value and sign of ε one can find the three different types of catastrophe shown in Figure
6.4a-c. With an uncertainty in the measurement they may coincide, as shown in Figure 6.4d, where the
oval represents the possible measure uncertainty.

With the degeneration of the extended Hessian at the origin if ε = 0, also the shape of the isophotes
changes as shown in Figure 6.5. Since one eigenvalue is zero, the only remaining eigenvector is parallel
to the x-axis. So there is no critical isophote in the t-direction, but both parts pass the origin horizontally.
Consequently, three regions disappear. Furthermore the annihilating minimum cannot be distinguished
from the remaining minimum.
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Figure 6.5: Critical isophotes in the (x; t)-plane. a) ε < 0 b) ε = 0 c) ε > 0

Higher Order Cuspoids

One can easily verify that higher order Cuspoids, Ak, k > 3, correspond to the annihilation of k regions
simultaneously. Morsification per perturbation parameter leads toAl, l < k catastrophes, and a complete
morsification yields only Fold catastrophes.

6.3.2 n-D Images, n > 1

In higher dimensions the structure is more complicated, since generically scale space saddles do not
coincide with catastrophe points. For n-D images, n > 1, it suffices to investigate scale space critical
points in 2+1D, since the first seven elementary catastrophes can locally be written in 2 dimensions.
Apart from the in one dimension determined cuspoid catastrophesAk causing annihilations, also umbilic
catastrophes Dk occur, requiring 2 variables (see Table 6.1). The first two types are the hyperbolic D+

4

and the elliptic D−4 umbilic catastrophes.

If we assume Lyy = −Lxx so that ∆L = 0, the extended Hessian, Definition 20, becomes

H =



Lxx Lxy Lxt
Lxy −Lxx Lyt
Lxt Lyt Ltt


 .

The determinant is −Ltt
(
L2
xx + L2

xy

)
+ Lxx

(
L2
xt − L2

yt

)
+ 2 LxtLxyLyt and the trace simplifies

to Ltt. Both are generically non-zero.

In this section we subsequently describe the scale space representations in 2+1D of the cuspoid
catastrophes A2 and A3, and the umbilic catastrophes D+

4 and D−4 , together with their morsifications,
the appearances of scale space saddles and the possibilities with respect to the degeneration ofH.

Fold Catastrophe

The first type of catastrophes is given by the Fold catastrophe, which follows directly from Table 6.1 and
Eq. (6.2) and was given in n-D in Section 6.2.3:

L(x, y; t) = x3 + 6xt+ α(y2 + 2t), (6.3)
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Figure 6.6: The critical curve contains a catastrophe point (bright dot) and a scale space saddle (dark
dot). The iso-intensity surface through the scale space saddle contains two parts touching each other at
the scale space saddle. One part is dome-shaped and intersects the critical curve at the top of the dome.

where α = ±1. Positive sign describes a saddle – minimum annihilation, negative sign a saddle –
maximum annihilation. Without loss of generality we take α = 1. Then





Lx = 3x2 + 6t
Ly = 2y
Lt = 6x+ 2

detH = 12x
detH = −72,

so the catastrophe takes place at the origin with intensity equal to zero and the scale space saddle is
located at (x, y; t) = (− 1

3 , 0;− 1
18) with intensity − 1

27 . The surface L(x, y; t) = − 1
27 through the scale

space saddle is shown in Figure 6.6. It has a local maximum at (x, y; t) = ( 1
6 , 0;− 1

72): the top of the
extremum dome. Recall that the coordinates have no quantitative significance.

The iso-intensity surface through the scale space saddle can be visualised by two surfaces touching
each other at the scale space saddle. One part of the surface is related to the extremum corresponding to
the scale space saddle. The other part encircles some other segment of the image. The surface belonging
to the extremum forms a dome. The critical curve intersects this surface twice. The saddle branch has an
intersection at the scale space saddle, the extremum branch at the top of the dome, as shown in Figure
6.6.

A parametrisation of the two branches of the critical curve is given by

(x(s), y(s); t(s)) = (±
√
−2s, 0; s), s ≤ 0.

The intensity of the critical curve reads L(s) = 2s ± 4s
√
−2s, s ≤ 0 (with ∂st = 1 and ∂sL =

∆L · ∂st = 2 ± 6
√
−2s). The scale space saddle is located at s = − 1

18 , the catastrophe at the local
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Figure 6.7: Intensity of the critical curve, parametrised by a) the x-coordinate and b) the t-coordinate.
Both showing at the origin an annihilation, at the minimum the scale space saddle.

maximum, the connection of the two intensity-curves, s = 0. These points are visible in Figure 6.7a as
the local minimum of the parametrisation curve and the connection point of the two curves, the upper
branch representing the spatial saddle, the lower one the minimum.

Note that an alternative parametrisation of both branches of the critical curve simultaneously is given
by (x(s), y(s); t(s)) = (s, 0;− 1

2s
2). Then the intensity of the critical curve is given by L(s) = −2s3 −

s2. Now ∂st = −s and ∂sL(s) = −6s2 − 2s = (6s+ 2)(−s) and the latter is still equivalent to ∆L · ts.
The catastrophe takes place at s = 0, the saddle at s = − 1

3 . These points are visible in Figure 6.7b as the
extrema of the parametrisation curve. The branch s < 0 represents the saddle point, the branch s > 0
the minimum.

Cusp Catastrophe

With the similar argumentation as in the one-dimensional case it is also interesting to investigate the
behaviour around the next catastrophe event. The higher-dimensional cusp catastrophe in scale space
follows directly from Table 6.1 and Eq. (6.2). It is the 2-D scale space extension of the catastrophe
discussed in section 6.3.1 and is defined by

L(x, y; t) =
1

12
x4 + x2t+ t2 + α(2t+ y2) + εx

where, again, α = ±1. If ε 6= 0 a fold catastrophe results. Then




Lx = 1
3x

3 + 2xt+ ε
Ly = 2αy
Lt = x2 + 2α+ 2t

detH = 2α(x2 + 2t)
detH = 4α(2t− x2).

The critical curves in the (x; t)-plane at ε = 0, y = 0 are shown in Figure 6.8a. They form a so-called
pitchfork bifurcation at the origin, the catastrophe point.

Critical points are on the curves given by (x(s), y(s); t(s)) = (0, 0; s) and (x(s), y(s); t(s)) =
(±
√
−6s, 0; s), s ≤ 0.

The intensities are given by L1(s) = L(0, 0; s) = s2 + 2αs with its extremum at s = −α and
L2(s) = L(±

√
−6s, 0; s) = −2s2 + 2αs, s ≤ 0. The latter has an extremum at s = 1

2α. Since s ≤ 0,
these scale space saddles only occur if α < 0. It is therefore essential to distinguish between the two
signs of α.
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Figure 6.8: a) Critical paths. b) Critical paths with the zero-Laplacean curve (thin), the catastrophe point
(dark) and the scale space saddle (bright) if α > 0. c) Intensity of the critical paths. The part bottom-left
represents two branches ending at the catastrophe point. The intensity takes a local minimum at the scale
space saddle

Figure 6.9: 2D Surface trough the scale space saddle at a Cusp catastrophe, α > 0.

The Case α > 0 For positive α, the curve (x, y; t) = (0, 0; s) contains saddles if t < 0 and minima
if t > 0. The other curve contains minima on both branches. At the origin a catastrophe occurs, at
(x, y; t) = (0, 0,−α) a scale space saddle, see Figure 6.8b. The intensities of the critical curves are
shown in Figure 6.8c; The two branches of the minima for t < 0 have equal intensity. The iso-intensity
manifold in scale space forms a double dome since the two minima are indistinguishable, see Figure 6.9.

A small perturbation (0 <| ε |� 1) leads to a generic image containing a Fold catastrophe and thus
a single cone. However, as argued in section 6.3.1 this perturbation may be too small to identify the
annihilating minimum. We will use this degeneration in Section 6.4 to identify multiple regions with one
scale space saddle.

The Case α < 0 If α is negative, the curve (x, y; t) = (0, 0; s) contains a maximum if t < 0 and a
saddle if t > 0, while the curve (x, y; t) = (±

√
−6s, 0; s), s < 0 contains saddles. Now 3 scale space

saddles occur: at (x, y; t) = (0, 0;−α) and (x, y; t) = (±
√
−3α, 0; 1

2α), see Figure 6.10a. The corre-
sponding intensities are shown in Figure 6.10b, where again the intensities of the two saddle branches
(and thus the scale space saddles) for t < 0 coincide.
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Figure 6.10: a) Critical paths (thick curves) with zero-Laplacean (thin curve),the catastrophe point (dark)
and scale space saddle (bright points) if α = −1. b) Intensity of the critical paths. The part bottom-left
represents two branches ending at the catastrophe point. The intensity has local extrema at the scale
space saddles. c) Critical paths (thick) with α < 0 , 9ε2 < −16α3, zero-Laplacean (thin), catastrophe
point (dark) and scale space saddles (bright).

Figure 6.11: 2D iso-intensity manifold trough the scale space saddles a) at t = − 1
2 and b) at t = 1

The iso-intensity surfaces through the scale space saddles are shown in Figure 6.11. The scale space
saddles at t = 1

2α both encapsulate the maximum at the t-axis. The scale space saddle at t = −α is void,
i.e. it is not related to an extremum. This is clear from the fact that there is only one extremum present.

If a small perturbation (0 <| ε |� 1) is added the three scale space saddles remain present in the
generic image. Their trajectories in the (x; t)-plane are shown in Figure 6.10c. Now a Fold catastrophe
is apparent, but also a saddle branch containing two (void) scale space saddles, caused by the neighbour-
hood of the annihilating saddle-extremum pair.

Degeneration of detH The extended Hessian degenerates if its determinant vanishes, i.e. if 4α(2t −
x2) = 0. This implies 2t = x2. Then Lx = 0 reduces to 4

3x
3 + ε = 0. For ε = 0 the degeneration

takes place at the origin, that is, at the cusp catastrophe. But then x = 0, t = 0 and Lt = 0 implies
α = 0, which is non-generic. For other arbitrary values of ε, Lt = 0 implies x2 = −α, so it is located at
(x, y; t) = (−sgn (ε)

√−α, 0,−1
2α), where α < 0 and 9ε2 = −16α3.

This special value is located at the non-annihilating saddle branch where the two scale space saddle
points coincide, i.e. where the saddle branch touches the zero-Laplacean. This case is non-generic, since
the intersection of the critical curve and the hyper-plane ∆L = 0 at this value is not transverse. This
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value describes the transition of the case with two void scale space saddles to the case without scale space
saddles: For | ε |< 4

3

√
−α3 two void scale space saddles occur on the non-annihilating saddle branch

as shown in Figure 6.10c. For | ε |> 4
3

√
−α3 none occur since the saddle branch does not intersect

the zero-Laplacean. In other words: a Fold catastrophe in scale space occurs, regarding two scale space
critical points (i.e. saddles) with different signs of detH and controlled by the perturbation parameter ε.

Hyperbolic Umbilic Catastrophe

The hyperbolic umbilic catastrophe germ is given by x3 + xy2. Its scale space addition is 8xt. The
perturbation term contains three terms: λ1x + λ2y + λ3y

2. Obviously scale takes the role of λ1. The
scale space hyperbolic umbilic catastrophe germ with perturbation is thus defined by

L(x, y; t) = x3 + xy2 + 8xt+ α(y2 + 2t) + βy

where the first three terms describe the scale space catastrophe germ. The set (α, β) form the extra
perturbation parameters. Then





Lx = 3x2 + 8t+ y2

Ly = 2xy + 2αy + β
Lt = 8x+ 2α

detH = 12x(x+ α)− 4y2

detH = −128(x+ α).

One can verify that at the combination (α, β) = (0, 0) four critical points exist for each t < 0. At t = 0

the four critical curves given by (x, y; t) = (±
√
−8

3 t, 0; t) and (x, y; t) = (0,±
√
−8t; t) annihilate

simultaneously at the origin (see e.g. Kalitzin [130]). This is non-generic, since this point is a scale space
saddle and also detH = 0.

Morsification takes place in two steps. In the first step one perturbation parameter is non-zero. If
α 6= 0 and β = 0, the annihilations are separated. At the origin a Fold catastrophe occurs with critical

curves (x, y; t) = (−
√
−8

3 t, 0; t). On one of these curves both a scale space saddle at (x, y; t) =

(−α
4 , 0;−3α2

128 ), and the other catastrophe at (x, y; t) = (−α, 0;− 3
8α

2) are located. At the latter the
critical curves (−α,±

√
−3α2 − 8t; t), t < −3

8α
2 annihilate in a (non-generic!) Cusp catastrophe.

If α = 0 and β 6= 0, the double annihilation breaks up into two Fold annihilations with symmetric
non-intersecting critical curves. A scale space saddle is not present.

Finally, if both α and β are non-zero, this complete morsification results in the generic case with two
critical curves, each of them containing a Fold annihilation. One the two critical curves contains a scale
space saddle, located at (x, y; t) = (− 1

4α,−
2β
3α ;−3α2

128 −
β2

18α2 )

The extended Hessian degenerates for x = −α. Then it follows from Lt = 0 that x = α = 0, and
from Ly that then also β = 0, which is a non-generic situation.

Elliptic Umbilic Catastrophes

The elliptic umbilic catastrophe germ is given by x3 − 6xy2. Its scale space addition is −6xt. The
perturbation term contains three terms: λ1x + λ2y + λ3y

2. Obviously scale takes the role of λ1. The
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scale space elliptic umbilic catastrophe germ with perturbation is thus defined by

L(x, y; t) = x3 − 6xy2 − 6xt+ α(y2 + 2t) + βy (6.4)

where the first three terms describe the scale space catastrophe germ. The set (α, β) form the extra
perturbation parameters. Now





Lx = 3x2 − 6t− 6y2

Ly = −12xy + 2αy + β
Lt = −6x+ 2α

detH = 12x(α− 6x)− 144y2

detH = −72(α− 6x).

The combination (α, β) = (0, 0) gives two critical points for all t 6= 0 on the critical curves
(x, y; t) = (0,±√−t; t), t < 0 and (x, y; t) = (±

√
2t, 0; t), t > 0. At the origin a so-called scatter

event occurs: the critical curve changes from y-axis to x-axis with increasing t. Just as in the hyperbolic
case, in fact two Fold catastrophes take place; in this case both an annihilation and a creation.

The morsification for α = 0, β 6= 0 leads to the breaking into two critical curves without any
catastrophe: detH = 0 implies x = y = 0, but then Ly = β 6= 0.

The morsification for α 6= 0, β = 0 leads to only one catastrophe event at the origin: the Fold
creation. The sign of α determines whether the critical curve contains a maximum – saddle pair or a
minimum – saddle pair. Without loss of generality we may choose α = 1. For the moment we assume
β = 0 to compare this case with the Fold annihilation. Then the generic creation germ is defined as

L(x, y; t) = x3 − 6xt− 6xy2 + y2 + 2t (6.5)

The scale space saddle is located at (x, y; t) = ( 1
3 , 0; 1

18) and its intensity is L( 1
3 , 0; 1

18) = 1
27 . The

surface L(x, y; t) = 1
27 has a local saddle at (x, y; t) = (− 1

6 , 0; 1
72), see Figure 6.12. At creations newly

created extremum domes cannot be present, which is obvious from the non-creation of new level-lines.
Whereas annihilations of critical points lead to the annihilations of level-lines, creations of critical points
are caused by the rearrangement of already existing level-lines.

This fact becomes clearer if we take a closer look at the structure of the critical curves. The critical
curve containing the creation is given by (x, y; t) = (±

√
2t, 0; t). The other critical curve given by

(x, y; t) = (1
6 ,±

√
1
72 − t; t) represents two branches connected at the second catastrophe, see Figure

6.13a. This point is located at (x, y; t) = ( 1
6 , 0; 1

72), is an element of both curves and obviously degener-
ates the extended Hessian. At this point two saddle points and the created extremum go through a Cusp
catastrophe resulting in one saddle. Note that ignoring this catastrophe one would find a sudden change
of the extremum into a saddle point while tracing the created critical points. Obviously this catastrophe is
located between the creation catastrophe and the scale space saddle. The latter therefore does not invoke
a critical dome around the created extremum.

The intensity of the creation pair is given by L(s) = 2s ± 4s
√

2s, s ≥ 0, the intensity of the other
pair by L(s) = 1

216 + s, s ≤ 1
72 . The intensities of both paths are shown in Figure 6.14a. A close-up

around the catastrophe points is given in Figure 6.14b.
Note that the intensity curve at the bottom-left of Figure 6.14a-b contains two saddle branches with

equal intensity. Figure 6.14b shows that at the catastrophe in the origin two curves are created. The
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Figure 6.12: Iso-intensity surface of the scale space saddle of the creation germ.
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Figure 6.13: Critical curves of Eq. (6.4) with α = 1 in (x, y; t)-space. a) β = 0: Degeneration at the
connection of the two critical paths b) 0 < ‖β‖ < 1

32

√
6: Morsification with two catastrophes on one of

the critical curves. c) ‖β‖ > 1
32

√
6: Morsification without catastrophes on the critical curves.
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Figure 6.14: a) Intensities of critical paths, β = 0. b) Close-up at both catastrophes, β = 0. c) Intensities
of critical paths, β = 1

24

√
2. d) Close-up at both catastrophes, β = 1

24

√
2.

saddle curve (the left curve) remains, the extremum one (the lower curve) is annihilated at the second
catastrophe with one of the two saddle branches with equal intensity. The other saddle branch continues
and contains a scale space saddle.

A complete morsification by taking 0 < ‖β‖ � 1 resolves the scatter. It can be shown that the
Hessian has two real roots if and only if ‖β‖ < 1

32

√
6. At these root points subsequently a creation and

an annihilation event take place on a critical curve as shown in Figure 6.13b. If ‖β‖ > 1
32

√
6 the critical

curve doesn’t contain catastrophe points, see Figure 6.13c.
If we take β = 1

24

√
2 the creation is approximately at (0.013,−0.032;−0.00094) and the annihi-

lation is at (x, y; t) = (1/12,−1/24
√

2; 0). The intensity curves at this situation are visible in Figure
6.14c-d. Figure 6.14c shows that the two saddle curve have different intensities and do not coincide.
One curve doesn’t contain catastrophes, but only one scale space saddle. The other curve contains two
catastrophes. A close-up around the catastrophes is shown in Figure 6.14d.

Due to this morsification the two critical curves do not intersect each other. Also in this perturbed
system the minimum annihilates with one of the two saddles, while the other saddle remains unaffected.
The scale space saddle remains on the non-catastrophe-involving curve. That is, the creation – annihila-
tion couple and the corresponding saddle branch are not relevant for the scale space saddle and thus the
scale space segmentation.

The iso-intensity surface of the scale space saddle due to the creation germ does not contain a dome-
shaped surface connected to some other surface, but shows only two parts of the surface touching each
other at a void scale space saddle, recall e.g. Figure 6.12.

Higher Order Umbilics

One can verify that of the higher order Umbilic catastrophes, D±k , k > 4, the D+
k describe the various

annihilations in two dimensions, the compound of (several) Fold catastrophes. The D−k introduce com-
plicated scatter-like behaviour which also morsify into Fold catastrophes, but now a combination of both
annihilations and creations.

6.3.3 Morsification Summary

All non-Fold catastrophes morsify to Fold catastrophes. The morsification gives insight in the structure
around the catastrophe point regarding the critical curves and the scale space saddles. In one dimensional
images, catastrophes and scale space saddles coincide. Therefore, at higher catastrophes the extended
Hessian necessarily degenerates. These catastrophes, however, give insight in the case where more than
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Figure 6.15: 2D test images a: Artificial image built by combining two identical blobs and additive noise.
b: 181 x 217 artificial MR image.

two critical points are involved in a complicated annihilation or at several annihilations at almost the
same scale space position, without having the ability of distinguish between the Fold pairs.

In higher dimensional images, the cuspoid catastrophes (the Ak) give the same insight, but also
allow the assignment of a scale space saddle, and consequently a scale space segment, to more than one
extremum. Furthermore the morsification of the Cusp catastrophe showed that it is generic to encounter
scale space saddles that are not connected to some dome shaped iso-intensity manifold: the so-called
void scale space saddles.

The morsified D−4 catastrophe describes the creation of two critical points and the annihilation of
one of them with another critical point. So while tracing the critical branches of a critical curve both an
annihilation and a creation event are traversed.

6.4 Applications

In this section we give some examples to illustrate the theory presented in the previous sections. To
show the effect of a cusp catastrophe in 2D, we firstly take a symmetric artificial image containing two
Gaussian blobs and add noise to it. This will make the non-generic symmetric image generic, but in a
sense “almost non-generic”. This image is shown in Figure 6.15a. Secondly, the effect is shown on the
simulated MR image of Figure 6.15b. Note that also in this case an almost symmetric, thus non-generic,
situation occurs. This image is taken from the web site http://www.bic.mni.mcgill.ca/brainweb.

6.4.1 Artificial Image

Of the noisy image of Figure 6.15a, a scale space image was built containing 41 scales ranging expo-
nentially from e

10
8 to e

20
8 . The calculated critical paths are presented in Figure 6.16a. Ignoring the paths

on the border, caused by the extrema in the noise, the paths in the middle of the image clearly show the
pitchfork-like behaviour, typical of a non-generic Cusp catastrophe, recall Figure 6.4. Note that since
the symmetric image is perturbed, instead of a cusp catastrophe a fold catastrophe occurs. The scale
space saddle on the saddle branch and its intensity define a closed region around the lower maximum,
see Figure 6.16b. For details on how the hierarchy and the segmentation is obtained, cf. the algorithm
presented in [157]. However, if the noise were slightly different, one could evidently have found the
region around the upper maximum instead. Knowing that the image should be symmetric and observing
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Figure 6.16: Example of a Cusp catastrophe: a: Critical paths in scale space. b: Segment according to a
Fold catastrophe. c: Segment according to a Cusp catastrophe.
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Figure 6.17: a) Image on scale 8.4 b) Segments of the 7 extrema of a, assuming that only generic
catastrophes occur, which is the actual case in fact. c) Idem, with the iso-intensity manifold of S1

chosen equally to S3, i.e. after changing the label of a generic event into a non-generic one.

that the critical paths indeed are pitchfork-like, it is thus desirable to label the catastrophe as a Cusp
catastrophe. Then the scale space saddle (and its intensity) defines the two regions around both involved
extrema, see Figure 6.16c. This image one would rather expect given Figure 6.15a.

6.4.2 Simulated MR Image

Subsequently, we took the 2D slice from an artificial MR image shown in Figure 6.15b. The scale space
image at scale 8.37 with the large structures remaining is shown in Figure 6.17a. Now 7 extrema are
found, defining a hierarchy of the regions around these extrema as shown in Figure 6.17b. In this case is
it visually desirable to identify a region to segment S1 with more or less similar size as region S3. This
is done by assigning a Cusp catastrophe to the annihilation of the extremum of segment S3, in which the
extremum of segment S1 is also involved. Then the value of the scale space saddle defining segment S3

also defines an extra region around the extremum in segment S1. This is shown in Figure 6.17c, reflecting
the symmetry present in Figure 6.17a. We note that in this example several creation – annihilation events
occurred, as described by the morsification of the D−4 catastrophe.
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6.5 Summary and Discussion

In this chapter we investigated the (deep) structure on various catastrophe events in Gaussian scale space.
Although it is known that pairs of critical points are annihilated or created (the latter if the dimension
of the image is 2 or higher), it is important to describe the local structure of the image around these
events. The importance of this local description follows from its significance in building a scale space
hierarchy. This algorithm depends on the critical curves, their catastrophe points and the space space
saddle points. We therefore embedded the mathematically known catastrophes as presented in section
6.2 in the framework of linear scale space images.

Firstly, annihilations of extrema can occur in the presence of other extrema. In some cases it is
not possible to identify the annihilating extremum due to numerical limitations, coarse sampling, or
symmetries in the image. Then the event is described by a Cusp catastrophe instead of a Fold catastrophe.
This description is sometimes desirable, e.g. if prior knowledge is present and one wishes to maintain the
symmetry in the image. The scale space hierarchy can easily be adjusted to this extra information. We
gave examples in section 6.4 on an artificial image and a simulated MR image. We discussed the A3 and
the D+

4 for this purpose, but the higher order catastrophes in the sequences Ak, k > 3 and D+
k , k > 4

can be dealt with in a similar fashion.
Secondly, the morsification of theD−4 catastrophe was discussed, showing the successive appearance

of a creation – annihilation event on a critical curve. This doesn’t influence the hierarchical structure nor
the pre-segmentation, but is only important with respect to the movement of the critical curve in scale
space. We showed that this appearance heavily depends on the morsification parameters.

The theory described in this chapter extends the knowledge of the deep structure of Gaussian scale
space. It embeds higher order catastrophes within the framework of a scale space hierarchy. It explains
how these events can in principle be used for segmentation, interpreted and implemented, e.g. if prior
knowledge is available.
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