
PROS

AUTOMATIC PROSODIC SENTENCE ANALYSIS,
ACCENTUATION AND PHRASING

FOR DUTCH TEXT-TO-SPEECH CONVERSION

Hugo Queue and René Kager

FINAL REPORT

januari 1990

SPIN/ASSP Report nr. 17

Research Institute for Language and Speech
Rijksuniversiteit Utrecht

Trans 10, NL-3512 JK Utrecht
the Netherlands

1

CONTENTS

1. INTRODUCTION

2. PROSODIC STRUCTURE: THEORY

1

3

3. AUTOMATIC PROSODIC ANALYSIS 4
3.1 introduction 4
3.2 from text to PSS 6

3.2.1 introduction 6

3.2.2 word labeling 7

3.2.3 prosodic domains 8

3.2.3.1 Int domains 8

3.2.3.2 Phi domains 9
3.3 from PSS to prosody 10

3.3.1 phrasing 10

3.3.2 accentuation 11

3.3.2.1 theory 12

3.3.2.2 algorithm 13

3.3.2.2.1 rhythmic deaccentuation 13

3.3.2.2.2 deaccentuation of 'given' information 14

3.3.2.2.3 verb accentuation 14

4. IMPLEMENTATION
4.1 introduction 17

4.2 design 17

4.3 the lexicon 19

4.3.1 word forms 19
4.3.2 lexical information 19

4.4 data structures 21
4.4.1 sentence: double-linked list 21
4.4.2 lexicon: trie 21

4.5 auxiliary modules 22
4.5.1 general routines 22
4.5.2 string routines 25
4.5.3 pointer routines 27
4.5.4 lexicon routines 27
4.5.5 user commands 29
4.5.6 monitor 29
4.5.7 input and output 30

5. EVALUATION 32
5.1 comparison with natural prosody 32
5.2 perceptual evaluation of PROS output 34
5.3 error analysis 35

-..-1-.-..---

6. AUXILIARY PROGRAMS 36
6.1 procedure within DS 36
6.2 partial prosodic analysis 36
6.3 context matching during prosodic analysis 38
6.4 divergence between PROS output files 39
6.5 command procedures 40

7. REFERENCES 41

8. PUBLICATIONS 43

APPENDICES
1. analysis rules in PROS 45
2.1 features in PROS lexicon 79
2.2 contents of PROS lexicon 81

A

VOORWOORD

Gedurende het hier beschreven onderzoek, alsmede bij de verslaglegging daarvan,
hebben we van velen inspiratie, hulp en adviezen ontvangen. De volgende personen
willen we daarvoor bedanken:

Vincent van Heuven, Marcel van den Broecke, Bert Schouten en Sieb Noote-
boom, die als begeleiders bij dit onderzoek betrokken waren;
Renee van Bezooijen, voor de door haar uitgevoerde perceptieve evaluatie;
Philip Bloemendal, voor het inspreken van het spraak-materiaal;
Sidonne Bos, Eldrid Bringmann, Yvonne van Holsteijn, Mariken ter Keurs,
Jeroen Reizevoort en Ton Veenhof, die ons als student-assistenten veel werk uit
handen hebben genomen;
de (huidige en voormalige) leden van de themagroepen 'Taalkundige Analyse en
'Prosodie', voor de vele discussies en raadgevingen tijdens de voortgang van het
onderzoek;
Henny Bekker (Facultaire Automatiseringsdienst), die de noodzakelijke
computer-faciliteiten verzorgde;
Ad Aerts (MediaSystemen, Haarlem), voor de grote bestanden kranteberichten
die hij ons regelmatig leverde;

Utrecht, januari 1990

1

1. INTRODUCTION

Adequate prosodic cues make a sentence easier to perceive and to comprehend
(e.g. Collier and 't Hart 1975; Wingfield 1975; Nooteboom, Brokx and De Rooij
1978; Cutler 1982; Nooteboom 1985; Cutler and Clifton 1984; Nooteboom and
Kruyt 1987). Using prosodic cues, the listener can extract the linguistic structure of
the message. Pauses between (linguistically) coherent word groups, for example,
help the listener in three ways (Scharpff and Van Heuven 1988). Firstly, word seg-
mentation is facilitated, because pauses coincide with word boundaries; the positive
marking of these word boundaries in the speech stream reduces the ambiguity with
regard to word segmentation. Secondly, the continuous speech signal is divided into
coherent word groups or "chunks" of acoustic-phonetic information, which increases
the intelligibility of the speech signal. Thirdly, the listener is provided with some
extra processing time between these coherent word groups. Likewise, accentuation
guides a listener's attention to the words which are considered important by the
speaker, and which are acoustically most reliable.

These perceptual functions of sentence prosody become even more important
when the speech signal is less redundant, providing fewer segmental cues to the in-
tended speech sounds, words, and meaning. Obviously, artificial speech (such as the
output of a text-to-speech conversion system) lacks the normal degree of acoustic-
phonetic redundancy, because it is not known which (and how) phonetic details
should be implemented. Consequently, correct prosodic cues may significantly im-
prove the perception and comprehension of synthetic speech. Text-to-speech sys-
tems should aim at producing a natural sentence prosody, in order to compensate for
their reduced speech quality.

In the production of natural speech, several prosodic phenomena depend on the
intended phrasing of a speech utterance: a linguistic boundary may be marked by
means of an appropriate F0 movement (Collier and 't Hart 1975; Cooper and
Sorensen 1977), a silent interval (Goldman-Eisler 1972), lengthening of the preced-
ing speech sounds (Klatt 1975, 1976), blocking of coarticulation and sandhi (Cooper
and Paccia-Cooper 1980), etc. These phenomena can be seen as phonetic correlates
of the abstract notion "phrase boundary". Together, they indicate the intended divi-
sion of the speech utterance into phrases.

Similarly, several prosodic phenomena depend on the accent of a word, i.e., its
relative prominence. A speaker can convey this word prominence by means of ap-
propriate F0 movements (Collier and 't Hart 1975), in combination with higher in-
tensity (Lehiste 1970), longer duration (Klatt 1975, 1976), and less vowel reduction
(of the stressed syllable within the accented word; Koopmans-Van Beinum 1980).
Again, these phenomena can be seen as phonetic correlates of the more abstract
notion "accent" (Nooteboom and Kruyt 1987).

Thus, various phonetic aspects of sentence prosody depend (to a great extent) on
the abstract linguistic notions phrasing and accent. From these latter two, a text-to-
speech system can (in theory) derive many suprasegmental phenomena in the output
speech: segmental durations, location and duration of silent intervals, F0 movements
(e.g. Van Wijk and Kempen 1985), vowel reduction, intensity pattern, sandhi and

2

coarticulation, etc. Consequently, a high-quality text-to-speech system should at-
tempt to establish both abstract prosodic phenomena, and to 'interpret these into cor-
rect suprasegmental phenomena.

In natural speech, the produced (abstract) phrasing and accentuation are assumed
to be related to the linguistic structure of an utterance. According to nonlinear
phonological theory, sentence prosody does not depend directly on the syntactic sur-
face structure, but rather on the related prosodic sentence structure (Nespor and Vo-
gel 1982, 1986; Gee & Grosjean 1983; Selkirk 1984, 1986). In addition, focus
structure and thematic structure 1 also affect the abstract prosody of a sentence
(Gussenhoven 1984; Baart 1987).

Extending this line of though, we assume that accentuation and phrasing can
both be derived from the prosodic sentence structure, provided that focus informa-
tion and thematic structure are taken into account. To illustrate matters, our view of
the various levels of sentence prosody is represented in Figure 1.

Figure 1: Three levels of sentence prosody.

linguistic:

abstract prosody:

phonetic prosody:

prosodic structure, focus structure,
thematic structure

phrasing and accentuation

segmental durations, F0 movements,
pausing, intensity, vowel reduction,

coarticulation, sandhi, etc.

The algorithm PROS, which is described in this report, aims at establishing the
'abstract prosody' for text-to-speech conversion. Phrasing and accentuation are de-
rived from the prosodic sentence structure, in combination with focus information
and thematic sentence structure. Firstly, a hybrid prosodic sentence structure is es-
tablished (hence PSS). Although the resulting structure comes close to the prosodic
sentence structure proposed by Nespor and Vogel (1982, 1986; explained below in
more detail), thematic relations are also taken into account: separate thematic con-
stituents (viz. Predicates, Arguments, Modifiers) usually correspond to separate
prosodic domains. Subsequently, accentuation and phrasing are derived by means of
this sentence structure (as well as by means of additional information) and inserted
as abstract prosodic markers into the text sentence. The algorithm is intended as one
of the many components in a Dutch text-to-speech system (Te Lindert, Doedens,
and Van Leeuwen 1989). Other components convert the output (viz. 'abstract
prosody') to adequate phonetic prosody: on the basis of the PROS output, 'silence'
segments are inserted in the phoneme string, and the F0 contour is calculated ('t Hart
and Collier 1975; Van Wijk and Kempen 1985).

1 The thematic sentence structure specifies which semantic constituents function as Predicate,
Argument and Modifier [=Condition] (Gussenhoven 1984).

3

2. PROSODIC STRUCTURE: THEORY

From many languages, it is known that sandhi rules (i.e., rules of phonological
adjustment between words) have their own specific domains of application. These
domains are not necessarily isomorphous to syntactic constituents. Among others,
Nespor and Vogel (1982, 1986) and Selkirk (1984, 1986) have made proposals as to
the mapping between syntactic constituents and prosodic domains. Two prosodic
domains attested in this sense are the phonological phrase (Phi) and the intonational
phrase (Int). These domains are part of a hierarchical tree structure, viz, the prosodic
sentence structure (PSS).

In the definition of these domains, the distinction between content words and
function words plays a crucial role. Content words (CWs) carry the main semantic
load of a sentence (lexical words': Nouns, Verbs, Adjectiva and Adverbs). This
class is extendable: new words are almost always CWs [e.g., English aspirin (N) or
Dutch jofel (A)]. Function words (FWs) express the relations between the content
words ('non-lexical words': Prepositions, Conjunctions, Complementizers, Copula,
etc.). FWs have hardly any independent meaning; the class of FWs is fixed.

In languages such as English and Dutch, the Phi domain (or phonological
phrase) is built around a lexical head, i.e., a CW which is the head of a syntactic
constituent. It includes left-hand specifiers of the lexical head (either CWs or FWs),
as well as all left-hand FWs. The (final) lexical head of each Phi is the prosodic
head; this word plays an important role in accentuation (see section 3.3. below).

The next higher prosodic constituent is the Int domain (or intonational phrase).
This constituent is constructed by grouping adjacent Phi domains. Hence, a whole
Phi domain is always contained within a single Int domain. In addition, however,
important syntactic breaks are also respected. In general, each syntactic constituent
which is attached to any S-node (in the syntactic surface structure) establishes a sep-
arate Int domain. Consequently, [1] displaced syntactic constituents, [2] (most) sub-
ordinate clauses, and [3] parentheticals, are all separate Int domains.

the following example, the Phi and Int domains are illustrated in a flat repre-
ser mi (where '##' indicates an Int-boundary, and '#' a Phi-boundary). These ex-
ar learly demonstrate that prosodic domains do not necessarily correspond to
s constituents.

1 ## Kasyapa's great war elephant # turned aside
to avoid # a patch # of marshy ground

de computer # spreekt # tot de bemanning
op de betweterige # en begrijpende toon
die we kennen # uit de zachte sector

domains tend to be of equal length, and their length increases in faster
:count for these effects, separate rules restructure the prosodic domains.
-ule joins a Phi consisting of only the lexical head to the Phi to its left,
yntactic conditions. Very short Int's can be eliminated by merging them
Int's, and very long Int's are broken down into shorter ones.

4

3. AUTOMATIC PROSODIC ANALYSIS

3.1 introduction
According to the linguistic theory described above, the prosodic structure is de-

rived from the syntactic (surface) sentence structure. If a text-to-speech system
needs to perform a prosodic analysis, then a syntactic analysis is also necessary (see
Figure 2).

Figure 2: Linguistic method for deriving the prosodic sentence structure (PSS)
from an intermediate syntactic surface structure.

sentence text

syntactic analysis

syntactic structure

prosodic analysis

L.

prosodic sentence structure

prosodic interpretation

phrasing, accentuation

However, this linguistically motivated method cannot be applied to automatic
prosodic sentence analysis. Firstly, there is no algorithm for syntactic analysis
(parser) available which performs satisfactorily for our purposes. Such a parser must
be able to analyse any text, at a speed which exceeds the average speaking rate. This
task requires a large set of syntactic rules, as well a large lexicon. At this moment,
such a system is not (yet) available for Dutch.

Secondly, if such a parser did exist, it would run into great difficulties when
analysing syntactically ambiguous sentences like the following:

(2a) I (have mown) (the lawn with the flowers)
(2b) * I (have mown) (the lawn) (with the flowers)

(3a) * het was (ondanks de luchtverversing door de tv-lampen) (snikheet)
(3b) het was (ondanks de luchtverversing) (door de tv-lampen snikheet)

These analyses differ with respect to the syntactic and thematic relations be-
tween the constituents (which themselves are identical in both analyses). Solving
this type of ambiguity requires a semantic and pragmatic analysis; the parser must
'know' that one cannot use flowers to mow a lawn, and that TV lights produce heat
rather than fresh air. Again, no system exists for this type of sentence analysis.

1

4.

L.

1.

1.

5

In order to bypass these parsing problems, we have attempted to derive the
prosodic sentence structure directly, i.e. without exhaustive syntactic analysis. In
other words, the prosodic domains (Phi and Int) are not established along the lines
described above (viz, via an intermediate syntactic analysis). Instead, the PSS is de-
rived directly from the orthographic input sentence, by rules which do not refer to a
sentence's syntactic structure. Consequently, the resulting PSS can only approximate
the theoretical prosodic structure, since not all relevant syntactic information is
available for the prosodic analysis. Our approach is illustrated in Figure 3 below.

Figure 3: Alternative method for deriving the prosodic sentence structure (PSS) di-
rectly from an input sentence.

sentence text
L.

prosodic analysis

prosodic sentence structure

prosodic interpretation

phrasing, accentuation

Some syntactic information, however, is of vital importance for a correct
prosodic analysis. For example, the main verb (or verb group) in a sentence must be
identified. This word (group) establishes a Predicate constituent, which should cor-
respond to a separate Phi domain (Gee and Grosjean 1983). In Dutch, this Phi do-
main may separate the subject and object arguments of the predicate. Likewise, sub-
ordinate sentences must be identified, because they usually establish separate Int do-
mains (see section 2). In section 3.2.1. below, we will argue that the information re-
quired for prosodic domain construction can often be derived from the syntactic
word class.

As a first step, then, the words constituting the sentence must be provided with a
syntactic label. Subsequently, the PSS is derived from both the orthographic input
sentence (text string), and from the syntactic labeling of its constituent words. Fi-
nally, phrase boundaries and accents are derived from the PSS, as well as from the
syntactic word labeling. A full listing of all rules (in quasi-SPE format) is given in
Appendix 1.

6

3.2 from text to PSS
3.2.1 introduction

Two types of syntactic information are indispensable for prosodic sentence ana-
lysis. Firstly, lexical heads must be identified. This is achieved by identifying each
word as either CW or FW. In theory, each last CW preceding an FW (or sentence
boundary) constitutes a lexical/prosodic head. The CW-or-FW status of a word is
determined by means of lexical lookup, in a lexicon which contains all Dutch FWs
(554 entries). In addition, the lexicon contains another 300 CWs which behave
anomalously for one reason or another. For all words, the syntactic word class is
also specified. This syntactic labeling serves two purposes: it is used for (1) deter-
mining the syntactic labels of the words not found in the lexicon, and (2) the con-
struction of prosodic domains, as explained below. See section 4.3. for more details
on this lexicon.

Secondly, syntactic phrasing may be relevant for prosodic domains. Conse-
quently, the syntactic phrasing must be known. In order to establish prosodic do-
mains, however, an exhaustive syntactic analysis appears to be superfluous: it is not
necessary to determine the structural relations between the words in a sentence. Re-
turning to (1), for example, it is not necessary to decide which is the internal struc-
ture of the subject NP:

(1a) (Kasyapa's (great (war elephant)))
(lb) (Kasyapa's ((great war) elephant))
(lc) ((Kasyapa's (great war)) elephant)

Instead, it suffices to determine that these four CWs together establish a single
constituent, which in turn establishes a separate Phi domain. This information can be
derived from the syntactic class of the words in (1):

(1) Kasyapa's great war elephant # turned aside ...

A N N # V A

The Noun elephant and the inflected Verb turned cannot belong to the same syn-
tactic constituent, as the Noun cannot be a specifier to an inflected Verb. Hence,
elephant must be the lexical head of the constituent preceding the Verb turned; i.e.,
the two words must belong to separate syntactic constituents. Since both words are
lexical heads of syntactic constituents, they cannot both belong to the same Phi do-
main. Consequently, a Phi boundary must separate these two words.

In more general terms, our approach is based on the fact that within a syntactic
constituent, some possible sequences of syntactic labels are allowed, while others
are not. If constraints on the possible label sequences are violated, then we may as-
sume a syntactic boundary. Hence, syntactic constituency can be derived from the
sequence of syntactic word labels, similar to the approach of O'Shaughnessy (1989).
Not all syntactic boundaries, however, are equally important for the PSS. For the
purposes of sentence prosody, it generally suffices to demarcate syntactic con-
stituents which are respected by prosodic domains, while ignoring other syntactic
structures.

7

3.2.2 word labeling
If an input word is found in the lexicon (mentioned in section 3.2.1. above), then

syntactic label(s) is (are) copied from the lexicon. Words which are not found in this
lexicon are given the prosodic label CW. Subsequent syntactic labeling concentrates
on these CWs. During several tests, it was established that ca. 53% of the word to-
kens (in a large corpus of newspaper text) were found as FW in the lexicon.

Firstly, syntactic labels are generated on the basis of formal properties of the
CW string. In the future, the syntactic label(s) for each word will be provided by a
separate morphological parser (Baart and Heemskerk 1988; Heemskerk 1989),
rather than by the following rules of thumb. At this moment, the generation of syn-
tactic labels is triggered by e.g. affixes and orthographic conventions, as illustrated
by the following rules (the symbol "I" indicates ambiguity; ":" indicates a sub-clas-
sification; "*" represents any character string):

(4) Undef > (VERB:INFL) / * dt
het huis brandt (VERB)
"the house burns"

(5) Undef -4 (UNDEF)I * (t,te,de)
(VERB:INFL)

hij hoopte te komen (VERB)
"he hoped to come"
de hoogte van de bergen (UNDEF)
"the height of the mountains"

(6) Undef -4 (NOUN:PLUR)I * en
(VERB:(INFLIINF))

de bomen vangen wind
"the trees catch wind"

(7) Undef > ADV * (lijk,ig,zaam)

Secondly, words with multiple syntactic labels (either words with labels from
the lexicon, or CWs, with multiple labels generated by rule) must be disambiguated.
Once again, this is done on the basis of restrictions on label sequences: linguistically
motivated disambiguation can only be achieved when taking account of the context.

Two rules below illustrate this 'filtering' of the syntactic labels generated. Rule
(8) employs a linguistic constraint on word sequences: an inflected Verb may not be
preceded by an Article. Rule (9) employs a statistical constraint: Prepositions are
usually followed by Nouns, rather than by Verbs. Such probabilistic observations
are based on our analyses of large corpora of newspaper text.

(8) XIVERB --+ X ART
de bakken (NOUN)
"the trays"

/

/

/

/

8

(9) NOUNI NOUN / PREP
VERB

vogels broeden in nesten (NOUN)
"birds breed in nests"
hij wil zich daar in mengen (wrong: VERB)
"he wants (to) himself there in mingle"

(10) NOUNI NOUN POSS.PRON
VERB

ze knipt mijn haren maandelijks (NOUN)
"she cuts my hairs monthly"
niemand kan mij knippen als zij (VERB)
"nobody can me cut like she"

In addition, orthographic conventions guide the selection of syntactic labels: a
word containing a hyphen is a compound, hence labeled as Noun; strings containing
digits are labeled as Numeral; words starting with a capital (not sentence-initial) are
proper names rather than Verbs; words longer than 13 characters are probably
Nouns (e.g. wapenhandelaren) rather than long Verb strings (a Verb like her-
programmeren is relatively rare), etc.

In the future, the disambiguation rules are to be refined and extended, since the
morphological parser will generate a greater number of multiple syntactic labels, for
a greater number of words, as compared to the rules of thumb described above.

3.2.3 prosodic domains
In section 3.2.1. above, we have explained that our prosodic domains are demar-

cated (i.e., prosodic boundaries are inserted in the sentence) on the basis of restric-tions on the possible sequences of syntactic and prosodic word labels. Lower
prosodic domains are strictly enclosed within higher domains: they cannot straddle
the boundaries of higher domains ("strict layer hypothesis"; Nespor and Vogel
1986). In order to achieve this hierarchy, we start by demarcating the higher Int do-
mains. Subsequently, Phi domains are demarcated within these Int domains. Note
that this procedure deviates from the theoretical construction of prosodic domains
(e.g. Nespor and Vogel 1982, 1986).

3.2.3.1 Int domains

Several rules demarcate Int domains by identifying subordinate clauses. As ex-
plained before, these rules insert an Int boundary between two adjacent words which
cannot both belong to the same clause (as may be deduced from their syntactic la-
bels).

At this point, it must be noted that our object language, Dutch, is an SOV lan-
guage, where the inflected Verb takes the final position in subordinate clauses, and
the second position in main clauses. English, by contrast, is an SVO language. Con-

-4

) /

9

sequently, some generalizations in our rules are allowed in Dutch, while they do not
apply to English.

Below follow some examples of rules inserting Int boundaries, on the basis of
syntactic word labels. Rule (11) demarcates the end of a subordinate clause (with fi-
nal Verb). Rule (12) is an example of a rule demarcating the beginning of a subordi-
nate clause, while (13) demarcates two juxtaposed sentences; it is determined from
the right-hand context of the Conjunctive word whether this word links two sub-
clauses (and not two other constituents). The English examples only serve to illus-
trate the principle.

(11) 0 -4 IntBound / (VERB:1NFL) (VERB:INFL)
omdat het geen haast had ## deed ik het later
"because it no hurry had ## did I it later"
the colours of the frescoes he painted ## look fresh and unfaded

(12) 0 IntBound / (VERB:PART) (NOT (VERB))
hij is erin geslaagd ## om dit goed weer te geven
he has succeeded ## in representing this correctly
hij heeft beloofd ## morgen te komen

(13) 0 IntBound / (COM) { (VERB:INFL)}

(FW))
hij snoof het stuifmeel op ## en kreeg direkt hooikoorts
hij spreekt in losse woorden ## of in een babytaaltje
he picked up a stone ## but hesitated to throw it away
Them excused himself ## and he left the room

Other rules delimit Int domains on the basis of orthographic punctuation, such as
comma's, quotes and parentheses. Some caution is required, however, because not
all instances of these punctuation signs correspond to Int boundaries:

(14) is het geen kwestie van (taal)tolerantie om te kiezen voor "jij"?

In addition, there are also rules which demarcate complex ('heavy') sentence-ini-
tial constituents (mostly subject NPs).

3.2.3.2 Phi domains

For the demarcation of Phi domains, the same principle is applied as in the case
of Int domains: insert a Phi boundary between two adjacent words which cannot
both belong to the same Phi domain (see section 3.2.1.).

The most important of these rules uses the fact that the prosodic head of a Phi is
always its rightmost lexical item. Usually, this head is a CW. FWs always belong to
the prosodic head on their right-hand side, i.e., FWs belong to the right-hand Phi
domain (see section 2.). Hence, a Phi boundary may be assumed between a CW
(which is the prosodic head of the left-hand Phi domain) and a following FW (which
is a specifier of the right-hand prosodic head):

-4

10 -

(15) 0) Phi Bound/ (CW) (Fw)
she prunes # the red roses # in her garden

Of course, this requires additional rules for Phi domains whose prosodic head is not
a CW, but rule (15) correctly identifies the majority of Phi domains.

Another rule aims at demarcating verbal clusters (i.e. predicates) as separate Phi
domains, as in (16) below. This is motivated by (1) the fact that the verbal cluster
may separate subject and object arguments, corresponding to separate prosodic do-
mains, and (2) the special accentuation behaviour of verbal clusters (see section
3.3.2. below).

(16) only my sister # wants to go skating # in the summer

The above rules for Phi boundary insertion leave long strings of non-verbal CWs
intact, i.e., such strings are not divided into multiple prosodic domains. Of course,
this may be incorrect in cases where the CWs belong to separate thematic con-
stituents, such as (17). Therefore, another rule (18) splits these CW strings, by in-
serting a prosodic boundary before an Adverb, which is usually not a specifier to its
left-hand neighbour:

(17) ik drink # over het algemeen liever sterke koffie

FW FW N/CW Adv/CW Adj/CW N/CW

(18) 0 Phi Bound/ (ADv)
ik drink # over het algemeen # liever sterke koffie

Finally, some of the resulting Phi domains (e.g., those containing only an FW
prosodic head) are merged with their left-hand neighbour.

3.3 from PSS to prosody
In the second part of our algorithm, abstract prosodic phenomena are derived

from the PSS (constructed by the first part, described in section 3.2. above). At this
moment, the PSS is used only to determine phrase boundaries and accentuation, as
mentioned in section 1. In theory, however, it is also possible to derive other aspects
of the output sentence prosody from the PSS, such as phonological sandhi pheno-
mena.

3.3.1 phrasing
At this moment, the PSS is used directly to split the input sentence into separate

phrases. Each resulting Int boundary becomes manifest as a prosodic break, which is
realised in the output synthetic speech as a pause (250 ms) accompanied by an ap-
propriate F0 movement. This procedure, however, results in disfluency in the speech
output, thus inhibiting (rather than facilitating) correct perception of the synthetic
speech. Apparently, too many breaks are present in the speech stream, and the pho-
netic means by which they are realised may be too strong. To improve this situation,

+

-

two solutions are being investigated in a follow-up research project (SPIN/ASSP
PROS2, by Arthur Dirksen).

Firstly, the number of Int boundaries can be reduced, by means of the restruc-
turing of Int domains (as mentioned in section 2.). In other words, two adjacent Int
domains are collapsed into a single one, by rules deleting the intermediate Int
boundary. Like other tasks performed by our algorithm, this restructuring should be
guided by theoretical considerations:

-obligatory Int boundaries (e.g. those based on orthographic punctuation) must be
maintained;
shorter Int domains (in terms of number of words and syllables) are more prone
to collapsing;
the resulting Int domains should be of approximately equal length;

-restructuring depends (to a certain extent) on the syntactic functions of the Int
domains involved; a possible hierarchy could be the following (boundaries or-
dered from 'heavy' to 'light'):
[1] boundaries resulting from orthographic punctuation (non-restrictive relative

clauses, appositions, etc.);
[2] boundaries following a heavy sentence-initial constituent (introductory sub-

clauses, complex NPs, etc.);
[3] boundaries preceding a sub-clause which functions as sentence modifier

(often beginning with omdat, om te);
[4] boundaries preceding a sub-clause which functions as argument to the Verb

(often beginning with dat);
[5] boundaries preceding a restrictive relative clause (often beginning with die);
[6] boundaries preceding an extraposed constituent (often a PP).
Secondly, the phonetic realisation of Int boundaries as prosodic breaks in the

output speech could be differentiated, depending on the 'weight' of the Int boundary,
as well as on the length and function of the corresponding Int domains. Relatively
weak Int boundaries may be realised by phonetic means which are perceptually less
salient, e.g. prepausal lengthening rather than F0 movements.

3.3.2 accentuation
A fitting intonation contour of a sentence can be derived automatically (at least,

in the case of Dutch), if phrase boundaries and accents are known ('t Hart and Col-
lier 1975; Van Wijk and Kempen 1985). In this section, we will describe how ac-
cents can be derived from the PSS. The result is an abstract word property: either
plus or minus accent. This property becomes manifest primarily by intonational
means, but also in segmental durations, intensity, vowel reduction, etc. (Nooteboom
and Kruyt 1987; see also section 1).

The accentuation component of our algorithm attempts to imitate several theo-
retical aspects which are known to affect accentuation. These factors will be dis-
cussed first; subsequently, our approach in accentuation is discussed.

- -

- 12

3.3.2.1 theory

Firstly, FWs seldom receive accent. It is a consequence of their FW status that
they have a reduced prominence, and are usually left unaccented (Kruyt 1985).

Secondly, in Dutch, the prosodic head (i.e., last CW in Phi domain) is the word
which receives integrative accent. An accent on this prosodic head lends promi-
nence to the domain as a whole, and not only to the 'carrier' word (Baart 1987).

Thirdly, discourse context, specifically the distinction between 'given' and 'new'
information, strongly influences accentuation (Fuchs 1984). A domain must be un-
accented if it refers to information which is (supposed to be) already 'given' to the
listener ('known', 'old'). Usually, only domains introducing 'new' information are ac-
cented (by means of an integrative accent), as demonstrated below:

(19a) he came # by CAR
(19b) his car # was BLUE

Kruyt (1985) and Terken (1985) have confirmed the role of this distinction be-
tween 'given' and 'new' in accentuation. Apparently, listeners rely on this distinction
for their understanding of the spoken utterance (Terken and Nooteboom 1987).

Fourthly, the thematic relations between prosodic domains play an important
role (Gussenhoven 1984; Baart 1987). As an example, consider the accentuation of
the predicate (i.e., prosodic domain corresponding to the main verb or verbal group).
Even if it refers to new information, this word (group) is usually not accented (20).
Under two conditions, however, the predicate must be accented.

if the predicate is not adjacent to (any of) its argument(s); this may happen if a
non-argument constituent (sentence modifier, adverbial phrase) intervenes be-
tween the predicate and its arguments, as in (21).
The relevance of the modifier status of the intervenient can be inferred from
comparing met de bloemen (20b) and met de machine (21). Neither are argu-
ments to the predicate, but only the latter one is a sentence modifier, while the
former ont depends syntactically on het gazon (yielding a complex argument
het gazon met de bloemen).
if all of the arguments of the predicate are unaccented; this may happen if the
arguments convey given information, or if they contain only FWs, as in (22).

(20a) ik heb # het GAZON # gemaaid
(I've # the lawn # mown)

(20b) ik heb # het gazon # met de BLOEMEN # gemaaid
(I've # the lawn # with the flowers # mown)

(21) ik heb # het GAZON # met de MACHINE # GEMAAID
(I've # the lawn # with the machine # mown)

(22) (hoe is het met het gazon?)
ik heb # het gazon # GEMAAID
ik heb # het # GEMAAID

(how is the lawn?)
(I've # the lawn # mown)
(I have # it # mown)

Finally, rhythmic factors influence accentuation. The occurrence of multiple
adjacent accents is avoided. In such cases, one of the accents is removed (23b) or

-

- 13 -

shifted to a different word (24b) (see Kager and Visch 1988, Visch 1989 for a
lengthier discussion).

(23a) de HEFTIG PROTESTERENDE BUREN
(23b) de HEFTIG protesterende BUREN

(the fiercely protesting neighbours)

(24a) hij heeft # de hele NACHT # GELEZEN
(24b) hij heeft # de HELE nacht # GELEZEN

(he has # the whole night # read)

3.3.2.2 algorithm

Our accentuation rules attempt to imitate the theoretical account of accentuation
discussed above. In addition, the rules refer to the PSS (section 3.2.3.), as well as to
the syntactic word labeling (section 3.2.2.).

Firstly, CWs are accented. Two types of words are excluded from this ac-
centuation, viz, verbs and semantically 'empty' words (e.g. gulden "guilder"). In ad-
dition, some idiosyncratic words are also accented (e.g. nooit "never"). The two
types of anomalous words are listed in the lexicon.

Obviously, this procedure yields too many accents. Subsequently, two types of
rules strip CWs of their accent, under conditions where an accent is known to be
wrong: [1] rhythmic deaccentuation, [2] deaccentuation of words conveying 'given'
information. In addition, [3] Verbs (or verb groups) are accented in some specific
contexts.

3.3.2.2.1 rhythmic deaccentuation

In order to obtain rhythmic accentuation patterns, the middle one of three adja-
cent accented CWs is de-accented. Both the PSS and the syntactic word labeling are
taken into account: all three words must belong to a single Phi domain, and they
must belong to certain sequences of syntactic categories:

(25) QuantNum X Noun
drie duizend boeken (three thousand books)
zeer lage temperatuur (very low temperature)

(26) Adverb Adj Noun
evenwijdig lopende spoorlijnen (parallel running tracks)
zeer verbaasde toeschouwers (very amazed spectators)

Note that these conditions are stricter than one would expect on the basis of (23,
24), in order to avoid incorrect over-applications. In the future, more contexts could
be added to trigger rhythmic deaccentuation.

.

- 14 -

3.3.2.2.2 deaccentuation of 'given' information

The second type of rule de-accentuates words which can safely be assumed to
convey given information. Although the scope (window) of our algorithm is limited
to a single sentence of the input text, the rules can nevertheless infer whether words
in the sentence under analysis have occurred before. Deictic qualifiers (such as dit,
deze "this", dergelijke, zulke "such", etc.) imply that the following term conveys
information which has already been introduced ('given'). Any words following this
cue word in the same Phi domain are de-accented, as indicated by (27):

(27a) he came # by CAR
(27b) he has BORROWED # this vehicle # from a FRIEND

Two groups of deaccentuating ('known') qualifiers are distinguished, for reasons
related to verb accentuation. Both the first (28) and the second group (29) trigger de-
accentuation of subsequent words within the Phi domain in which they occur. Note
that the second group contains all words ending in -ere, i.e., all inflected forms of
Adjectives in comparative. Obviously, the basis of this rule type (as well as of the
inclusion of *ere words in the set of deaccentuating qualifiers) is probabilistic.
Errors occur in a minority of cases, but examples like (30) certainly represent the
majority:

(28) die (if Pronoun), dat (if Pronoun), dit, deze, dergelijk(e), zulk(e),
menig(e), meeste, zo'n (unless followed by Numeral)

(29) ander(e), huidig(e), volgend(e), vorig(e), overige, evenmin, beide, el-
ders, dezelfde, diezelfde, eenzelfde, zelfde, *ere

(30a) het GEVOLG # van zulke temperaturen # is VRESELIJK
(30b) ONDERZOEK # heeft # de hogere sterfkans # BEWEZEN

In addition, de-accentuation of 'given' information is applied in a few specific
contexts: epitheta before a proper name, sentences following (in)direct speech quo-
tation (in newspaper text, these 'trailing' sentences usually start with zo or aldus
"according to"), and unit measures following a numeral. The examples below illus-
trate these rules.

(31) queen BEATRIX # is the SUCCESSOR # of princess JULIANA

(32) de DIEF # heeft BEKEND ## aldus een woordvoerder
(the thief # has confessed ## according to a spokesman)

(33) UTRECHT # lies # FOURTY kilometers # from AMSTERDAM

3.3.2.2.3 verb accentuation

Under certain conditions, the predicate (verb group) must be accented, as dis-
cussed in section 3.3.2.1. above. This is required if a sentence modifier intervenes
between the verb (group) and its arguments, or if all of the arguments are un-

- 15 -

accented (or [-focus], in the words of Gussenhoven 1984 and Baart 1987) -- or
simply absent.

The rules which accentuate a Verb work on single CW Verbs, as well as on
longer sequences of Verbs, of which the first CW is accented. In addition, the rules
work on complex Verbs, of which the stem and particle can occur separately. Stem
and particle occur together only in participles (34a)2. But in infinitive constructions,
the infinitive marker te can be interposed (34b), whereas in inflected forms in
Dutch, the inflected stem [in second position in main clause] may be far away from
the particle [in the 'original' clause-final position], as in (34c). An interesting prop-
erty of these separable verbs is that the particle is accented, even if the stem is far
away (34b,34c):

(34a) ik heb # mijn MOEDER # VANDAAG # OPGEBELD
(I've # my mother # today # phoned)

(34b) ik heb GEPROBEERD # mijn MOEDER # VANDAAG # OP te bellen
(I've tried # my mother # today # to phone)

(34c) ik beide # haar # VANDAAG # OP
(I phoned # her # today # -)

The accentuation of these separable Verbs is identical to other Verbs, and incor-
rect non-accentuation of the particle part of separable Verbs is accordingly a serious
error. However, particles are often identical to Prepositions (e.g. the ambiguous op
in (34)). This presents difficulties in detecting verbal particles. Some can be identi-
fied because they occur immediately before the infinitive marker te (34b); others
may be identified because they occur in clause-final position (34c), hence cannot
introduce a PP, and hence cannot be Prepositions. The rules to be discussed below
treat these 'stranded' clause-final particles as Verbs, so that they can carry the accent
of separable Verbs.

The first rule accentLates the verb (group) after an Adverb (35) or adverbial
phrase. The verb (group) must be followed by an Int (or sentence) boundary. This
serves to guarantee that the verb is syntactically clause-final and not clause-medial,
where it would typically be followed by (and hence, be adjacent to) an argument.
The rule can detect adverbial phrases consisting of PPs through their initial Preposi-
tion. That is, PPs starting with e.g. ondanks, sinds3 are used as sentence modifiers
(36a), rather than as constituents within an NP. In addition, 'locative' PPs (in fol-
lowed by a proper name) also qualify as sentence modifiers (36b).

(35) hij heeft # het GAZON # VANDAAGAch, # GEMAAID
(he has # the lawn # today # mown)

2 Dutch orthography requires that the two parts of the separable verb are written as a single word
in these cases.

3 'Adverbial' Prepositions are : door ("through, by"), met ("with"), na ("after"), ondanks ("in
spite of"), per ("per"), sinds ("since"), tijdens ("during"), via ("via"), volgens ("according to"), we-
gens ("because or), zonder ("without").

16 -

(36a) hij heeft # het GAZON # ondanks de REGEN # GEMAAID
(he has # the lawn # in spite of the rain # mown)

(36b) de SPION # werd # in ROTTERDAM # GEARRESTEERD
(the spy # was # in Rotterdam # arrested)

If the predicate is accompanied by an un-accented argument, then the predicate
(verb group) must be accented. Since the deictic specifiers (28) indicate un-accented
terms, we can employ these cues to arrive at a more adequate accentuation of CW
Verbs, as in (37). However, only one subset (28) of deaccentuating specifiers trig-
gers Verb accentuation. We have found that the other type of deaccentuating speci-
fiers (29) frequently takes the integrative accent in an argument + predicate con-
struction, as in (38).

(37) de ZEEHONDEN # hebben # deze lage temperaturen # OVERLEEFD
(the seals # have # these low temperatures # survived)

(38) ze heeft # de VOLGENDE trein # genomen
(she has # the next train # taken)

Likewise, the verb (group) is accented if its (object) argument is a Pronoun, as in
(39) (Pronouns are un-accented because they are FW, and because the Pronoun usu-
ally refers to a term which has already been introduced). Finally, the verb (group) is
accented if there is no object argument; this can be assessed from the fact that the
verb is preceded by a single Phi domain (40a) which does not contain any Pronouns
(cf. (40b)).

(39) de ZEEHONDEN # hebben # het # OVERLEEFD
(the seals # have # it # survived)

(40a) de ZEEHONDEN # zijn GESTORVEN
(the seals # have died)

(40b) dat ik mijn ZUSTER # heb ontmoet
(that I my sister # have met)

-

4. IMPLEMENTATION

4.1 introduction
The program PROS generates accentuation and phrasing for Dutch orthographic

text, via the prosodic sentence structure. From a functional viewpoint, this means
that a sentence from the input text is provided with two types of markers:
(a) accents: which words are to be accented in a spoken version of the sentence;
(b) phrases: the boundary positions between major prosodic phrases.

The input of PROS consists of a string of characters (graphemes), which can be
read either from the terminal keyboard or from an external text file. The input text is
automatically divided into sentence units. The output consists of a string of charac-
ters (graphemes), enriched with accentuation and phrasing markers. Words carrying
accent are put out (by default) in uppercase characters; prosodic boundary markers
are inserted between major phrases in the output grapheme sequence. Output is
written both to the terminal screen and to an external text file.

PROS is written in VAX-Pascal (v3.4 and higher), running on a VAX 111750 or
microVAX 2000 under VAX/VMS (v4.3 and higher). Since the program modules
contain constructs which are specific to the (non-standard) VAX-dialect of Pascal,
minor adjustments are necessary in order to run PROS on other systems. Total size
of the source code (including comments) is 485 kByte; the executable code amounts
to 116 kByte (excluding the lexicon, which is to be stored in on-line memory during
run-time).

4.2 design
The primary task of the program PROS is performed by (routines declared in)

the actual analysis modules. These analysis rules are described in more detail in
section 6.5. below. The analysis routines require additional auxiliary routines, which
take care of tasks such as opening and closing files, reading and writing sentences,
initializing variables, etc.

The analysis modules, however, are also used by other programs which use the
same rules for deriving sentence prosody [these programs are described in chapter
6]. Consequently, two types of auxiliary routines are to be discriminated: (1) those
necessary for the prosodic analysis routines, and (2) other program-specific
(auxiliary) routines. The former routines are declared at a higher level (viz, in the
global environment) as compared to the latter routines (viz, in the main program).

As a further complication, the analysis routines are not called directly from
within the main program PROS. Instead, a (globally declared) routine PROSODIE is
called. The declaration of this routine PROSODIE in a separate module makes it
possible to modify the flow of prosodic analysis in an easy way, without altering
(and re-compiling) the main program itself (and its dependent modules).

In summary, the modules constituting the program PROS are grouped as fol-
lows: .

- 18

(1) global environment (global CONST, TYPE, VAR and routine declarations,
shared with auxiliary programs):

--PROS_ENV
(2) modules with prosodic analysis routines (shared with auxiliary programs):
--LABEL_WORDS, ADJ_FWLABELS, ADJ_VERBLABELS, ADJ_LABELS,

-INSERT_BOUNDS, ADJ_BOUNDS,
-SELECT_ACCENTS, SELECT_VERBACCS, ADJ_ACCENTS;

(3) modules with auxiliary routines (shared with auxiliary programs):
ALGROUTS, LEXTRIEROUTS, POINTROUTS, STRINGROUTS,

-LEESSCHRIJF4;
(4) main program (global CONST, TYPE, VAR and routine declarations, specific

for each program; implementation of main program):
-PROS (or other stand-alone program from the PROS family);

(5) modules with auxiliary routines (specific for each program):
-GLOBALROUTS, INITIALIZE, OPTIONS;

(6) module containing routine PROSODIE (specific for each program):
-PROSODIE.

The internal dependence between these modules is controlled by the 'inheriting'
of information in higher-level modules (by means of the VAX-Pascal attributes
ENVIRONMENT and INHERIT). The dependence relations between the above six
groups of modules are illustrated in Figure 4 below.

Figure 4: Dependence relations (as specified by VAX-Pascal directives
"ENVIRONMENT' and "INHERIT") between six groups of modules, together
constituting the program PROS for prosodic sentence analysis, phrasing and
accentuation.

(1)
PROS_ENV

(2)
shared analysis

routines

(3)
shared auxiliary

routines

(5)
specific auxiliary

routines

4 Module LEESSCHRIJF is not used by the auxiliary program PROS_DS (discussed in section
6.1).

(4)
PROS

(6)
PROSODIE

-

19 -

The module groups (1-3) (see above) are to be found in a logical directory
usr$prosenv, which must have been defined before compiling and linking any of
the modules.

4.3 the lexicon
4.3.1 word forms

The lexicon Pros Lex (see Appendix 2.2. for a full listing) was originally derived
from the Dutch ULEX lexicon (Van den Broecke, Aerts, Reizevoort, Veenhof,
Lammens and Elstrodt 1987). As a first approximation, words which qualified as
FW (considering their syntactic label in ULEX) were selected. Thus, the lexicon
contained all Dutch Articles (N=5), Prepositions (N=60), Pronouns (N=80), Con-
junctives and Complementizers (pooled N=48). For these 193 word types, Van den
Broecke et al. (1987) report a pooled token frequency of 36% in newspaper texts.
This first lexicon was modified in several ways:

Adverbial FWs were added to the lexicon [e.g. daar, er "there].
In Dutch, new Complementizers [waar+Prep] and Adverbs [daar + Prep, er +
Prep, hier + Prep] can be constructed. Not all combinations of the "root" with a
Preposition were included in the ULEX lexicon. If such a word occurred regular-
ly in the newspaper text corpus, then it was included in the ProsLex lexicon.

-For verbal FWs, the infinitive, participle, and all inflected (past and present)
forms were added to the lexicon. A total of 31 Verbs5 were considered as se-
mantically empty (un-accentable), and hence as FWs.

-Content words (CWs) were included in the lexicon (with their appropriate syn-
tactic label), if they behave anomalously with regard to phrasing and/or accentu-
ation (e.g. because they are part of an idiomatic expression in which no prosodic
boundary may be interposed, or because the CW may not be accented).

-Particles of separable Verbs (e.g. toe as in toe+zenden) were stored with a new
syntactic label (Satellite), unless the particle was already stored as a Preposition
(e.g. op as in op+bellen).

--For some words, the syntactic label was adjusted, in order to arrive at a labeling
which was more relevant for our purposes. For example, the label of beide
"both" was changed from Pronoun to Numeral, since this word usually functions
as a numeric quantifier in NPs.

4.3.2 lexical information
As has been explained before, each entry (word form) in the lexicon is provided

with [1] a syntactic label (and for some labels, [2] an additional sub-label). More-
over, [3] the FW or CW status ("prosodic label") of a word is indicated by means of

5 blijken, blijven, doen, gaan, geven, gooien, halen, hebben, hoeven, houden, komen, krij-
gen, kunnen, laten, leggen, liggen, lijken, maken, moeten, mogen, nemen, staan, vinden, vragen,
werpen, willen, worden, zetten, zijn, zitten, zullen.

-

20 -

another label. This was necessary because there is no 1:1 relation between syntactic
and prosodic labels: Verbs and Adverbs can be found in both CW and FW cate-
gories. Finally, it is indicated [4] whether accentuation of a word is either free (as
for most CWs), obligatory (as for emphatic words, e.g. altijd "always") or forbidden
(as for most FWs, and some CWs). Ambiguous words are signalled by a double en-
try with different labels. All labels are coded as digits in the lexicon, which are re-
converted by PROS into 'enumerated type' labels, according to the coding scheme
below.

Table 1: Coding scheme for labeling in PROS lexicon.

label value meaning sub value meaning

[1] 0 VERB > [2] 0 (undefined)
Synt 1 NUMeral SbV 1 PV ("inflected")

2 SATellite 2 PARTiciple
3 COMPlementizer 3 INFinitive
4 ARTicle
5 PREPosition
6 PRONoun
7 CONJunctive
8 ADVerb
9 (undefined) > [2] 0 (undefined)

SbUnd 1 NOUN
2 ADJective

[3] 0 Content Word
Pros 1 Function Word

[4] 0 (free)
Acc 1 +accent ("obligatory" accent)

2 -accent ("prohibited" accent)

[5] 0 (not used)

In addition to these four labels, additional lexical features may be specified for
an entry in the lexicon6. These features function as "triggers" to specific analysis
rules in PROS. Thus, the rules themselves do not refer to lexical items (word
strings), but only to lexical features. For example, an analysis rule which refers to
personal pronouns in its context does not enumerate all these pronouns. It is merely
verified whether the word in question is provided with the appropriate lexical fea-
ture ^X, with which all personal pronouns in the lexicon are specified.

The lexical features and their "meaning" are listed in Appendix 2.1; the PROS
lexicon itself (word form strings, 4 label digits, and lexical features) is given in Ap-
pendix 2.2.

6 Lexical features are indicated in this report with a caret (A): ^61 = feature number 61.

- 21 -

4.4 data structures
4.4.1 sentence: double-linked list

The program PROS processes orthographic sentences. These sentences must be
available on-line for inspection and manipulation. Each word of the input sentence is
stored in a separate word record; word records are interconnected into a dynamic
"double-linked list" by means of pointers. Hence, the 'scope' or 'window' which
PROS has on the input text is only one sentence. Relations (between words) across
sentences cannot be established, although they may be relevant for accentuation and
phrasing (as explained above). In module PROS_ENV, word records and pointers
are declared with the following (variant) fields:

TYPE

Wijzer_Type = ^WordRec_Type
WordRec_Type = RECORD

Word :word string, max 30 chars
Acc :boolean, word accented
Synt :syntactic class label

SubVerb : synt sublabel
SubUndef: synt sublabel

Pros :prosodic class label
LexFeats:array of feature digits
Ambigu :boolean, word ambiguous

Altl : features option 1
A1t2 : features option 2

Prevw :pointer to previous word record
Nextw :pointer to next word record
END;

VAR
First, Current, Last : Wijzer_Type ;

Upon reading a sentence from the input text, new pointers are created and ap-
pended following the last record in the double-linked list. Punctuation marks
(period, quotes, comma, hyphen, parentheses, question mark, space) are interpreted
as word delimiters, and usually treated as words (period, exclamation mark and
space are never treated as words; hyphens and quotes are treated as a word only un-
der special conditions). During prosodic analysis, new records (with prosodic
boundaries as word strings) are inserted between word records in the double-linked
list. After prosodic sentence analysis, the output sentence (content of the double-
linked list) is written to the output devices. Finally, the existing double-linked list is
deleted, and a new loop begins.

4.4.2 lexicon: trie
Upon initialisation, the external lexicon is read from a text file (with logical

name Pros Lex) into a memory-resident trie structure (Knuth 1973). This structure
consumes relatively little memory, and allows fast retrieval of stored words. Each
record contains one character, as well as pointers to adjacent records. The actual
storing, and searching routines are adopted from Lammens (1989). Figure 5 below

- 22 -

illustrates this trie structure. Note that six words (totalling 33 characters) can be
stored in 17 one-character nodes. With larger lexicons, the reduction in memory re-
quirement is even greater.

Figure 5: Schematic representation of a lexicon with trie structure, containing the
words "bel, beland, beul, circa, circuit, circus" are stored. Boldface characters indi-
cate that a word terminates with that character.

[root]---b---e---1---a---n---d
1 1

1 u---1
1

c---i---r---c---a

1

u---i---t

In module PROS_ENV, the records in the lexicon trie are declared with the fol-
lowing fields:

LexNodeWijzer_Type=
LexNodeRec_Type

4.5 auxiliary modules
4.5.1 general routines

"LexNodeRec_Type
RECORD

Character
Terminal
Yes
No
LexFeats
Ambigu

Altl:
Alt2:

END

:character in node
:boolean, end word
:pointer to next char
:pointer to alt char
:array of feature digits
:boolean, ambiguous
features option 1
features option 2

function JaNee
(Prompt:LongString_Type; Default:BOOLEAN)
: BOOLEAN;

Asks the user a Yes/No question, with prompt as prompting text and default
as default response; response "y(es)" returns TRUE, "n(o)" returns FALSE.

function LeesDigit
(Prompt:LongString_Type; Default:Digit_Type)
: Digit_Type;

Asks the user for a digit response 0..9, with prompt as prompting text. This
digit may be an option number from a menu. The (default) response is the
return value.

-

- 23 -

procedure Inq_Open_File
(VAR inqfile:TEXT; nwf:BOOLEAN;
prstring:LongString_Type; dfstring:LongString_Type) ;

Inquires for RMS file name, with prstring as prompting text. Open logical
file inqfile with this RMS name, either as a new (write) file or as an old
(read) file, depending on nwf. Dfstring contains the default RMS file specifi-
cation.

function ExistWord
(search:Digit_Type; neighbour:BOOLEAN;
SyntLab:SyntMark_Type; ProsLab:ProsMark_Type)
: BOOLEAN ;

Verifies whether a word matching the partial word specification (i.e., a word
with fields Synt = syntlab and Pros = proslab) exists, either preceding
(search=1) or following (search=2) the parameter word x^ in the sentence.
Parameter neighbour indicates whether the word must be a direct neighbour
of the parameter word. Syntlab and proslab are tested in conjunction, i.e.,
both must match for the same word. The parameter values Syntlab=Undef
and proslab=NN match with every word specification for Synt and Pros, re-
spectively.

function NrSubseqWords
(SyntLab:SyntMark_Type; ProsLab:ProsMark_Type; x:Wijzer_Type)
: PosInt ;

Investigates how many subsequent word records, with labels syntlab and
proslab, can be found from parameter pointer x onwards (including x^).
Syntlab=UNDEF and ProsLab = NN match any field in the records). This
function returns a positive integer.

function Known Constituent
(VAR x:Wijzer_Type; search:Digit_Type)
: BOOLEAN ;

Decides whether the constituent (word record list) containing the parameter
pointer x (or the adjacent constituent in the search direction) qualifies as a
"known" constituent, i.e., starting with a word introducing "known", "given"
or "old" information.
If the function result is TRUE, then x is set to as to point to the "Known-
Qualifier" word, otherwise it is set to NIL. Search direction: 1 = LEFT/Back,
2 = RIGHT/Forward.

function UnSpecified
(z : LexFeats_Type)
: BOOLEAN ;

Verifies whether cells 1..5 (corresponding with fields Synt, Pros, SubVerb-
or-SubUndef, Accent) of the feature array z are un-modified (with default
values).

- 24

function Cvt_Feat_Synt_ _
(x : LexFeats_Type)
: SyntMark_Type ;

Converts the digit code in cell [1] of array x to syntactic code (enumerated
type).

function Cvt Feat SubVerb
(x : LexFeats_Type)
: VerbSub_Type ;

Converts the digit code in cell [2] of array x to sub-verb syntactic code.

function Cvt Feat SubUndef
(x : LexFeats_Type)
: UndefSub_Type ;

Converts the digit code in cell [2] of array x to sub-undef syntactic code.

function Cvt Feat Pros_ _
(x : LexFeats_Type)
: ProsMark_Type ;

Converts the digit code in cell [3] of array x to prosodic code.

function FeatValue
(x:LexFeats_Type; N-FeatNr_Type)
: BOOLEAN ;

Verifies whether the feature array X contains a non-zero value in cell number
n, i.e., whether the array of features contains a positive flag for the lexical
feature with number n.

procedure SelectVariant
(VAR x:WordRec_Type; s:SyntMark_Type) ;

For an ambiguous word (passed as parameter x), this routine selects one of
the two feature variants (Alt1 or A1t2), viz, the one corresponding with field
Synt=s. Thus, the word is set to s if this syntactic label is one of its possible
ambiguities. If syntactic label s is not present in either one of the ambigui-
ties, nothing happens.

procedure Message
(nr:errnr_type; parstr:LongString_Type) ;

Displays a Warning or Error message which corresponds to the parameter
value nr. For some messages, the parameter string parstr is inserted in the
output message (e.g. containing the current focus word).

procedure Init AfkList ;
Initializes the global array AfkList with the following highly frequent Dutch
abbreviations, together with their solutions: "bijv, by, dr, drs, hr, ing, ir, mej,

-

_ _

_ _

25

mevr, mw, prof, enz, etc, ma, di, din, wo, woe, do, don, vr, vrij, za, zat, zon7,
rnr, tel, st".

procedure Define ScreenOutPut ;

Asks user for a value of global variable screenmode, which controls screen
output of the analyzed sentences. Possible values are I [no screen output], 2
[sentence word strings only, no labels], 2 [word strings and labels], 4
[proportion of input file which has been processed]. Value 4 is not allowed if
PROS works in interactive mode (DataFileys$input).

procedure Define Monitor Status;
Sets up monitor breakpoints (watchpoints) in the derivational process, by
calling global routine SetMonitor, and asks user for a value of global vari-
able moniall, which controls whether non-applications are also to be moni-
tored.

procedure Initialize;
Sets global counters to zero; initializes breakpoints (module names); initia-
lizes abbreviations list (by calling routine Init_AfkList); defines breakpoints
(by calling routine Define_Monitor_Status; defines global variable applall
(which controls whether non-applications of each rule must also be regis-
tered); opens input and output files; defines screen and file output formats.

4.5.2 string routines

function Centre
(String:LongString_Type; Letter:CHAR)
: LongString_Type ;

Returns a text line (80 chars) with string in the centre, surrounded by letter.
function Vowel

(ch:CHAR)
: BOOLEAN;

Verifies whether parameter character ch corresponds to any of the vowel
phonemes, i.e., whether ch belongs to the character set [A,E,I,O,U,Y,
a,e,i,o,u,y].

function Cons
(ch:CHAR)
: BOOLEAN;

Verifies whether parameter character ch corresponds to any of the consonant
phonemes, i.e., whether ch belongs to the character set [A..Z, a..z] -
[A,E,I,O,U,Y, a,e,i,o,u,y].

7 The abbreviation zo for zondag was removed from this list, since this string occurs frequently
as a normal word at the end of a sentence (followed by a period, which suggests erroneously that zois used as an abbreviation).

--

- 26

function Same Word
(word 1 ,word2: WordString_Type)
: BOOLEAN;

Verifies whether the two parameter word strings words are identical
(ignoring case differences).

function Hoofdletter
(word:WordString_Type)
: BOOLEAN ;

Verifies whether parameter string word starts with a capital (uppercase char),
e.g. in case of proper names.

function CapString
(VAR word:WordString_Type)
: WordString_Type;

Returns a word string, which is the uppercase equivalent of the parameter
string word. This is used to indicate word accentuation.

function DelBlanks
(y:LongString_Type)
: LongString_Type ;

Returns the input text line y, in which all blanks are deleted.

function OffSet
(word,target: WordString_Type)
: BOOLEAN;

Verifies whether string word contains string target as its offset, i.e., whether
word ends with target; this routine is used to detect inflectional suffixes in
word strings.

function Onset
(word,target: WordString_Type)
: BOOLEAN;

Verifies whether string word contains string target at its onset, i.e., whether
word starts with target, this routine is used to detect prefixes in word strings.

function WordListMember
w:WordString_Type; L:WordList_Type)

: BOOLEAN ;
Verifies whether word string w occurs in the array L of word strings.

(

-

- 27

4.5.3 pointer routines

function Walk
(VAR x:Wijzer_Type)
: BOOLEAN;

Sets parameter pointer x to its righthand neighbour, viz, the next record in
the list (if there is a next one); returns FALSE if x now equals NIL, other-
wise returns TRUE.

procedure Append_Rec
(VAR x:Wijzer_Type) ;

Adds a new record at the end of the linked list, viz, after the pointer para-
meter x, and sets default field values for this new record. The new record is
not linked with any records following x.

procedure Insert Rec
(VAR f,c:Wijzer_Type) ;

Inserts a new record in the linked list (starting with f) before the parameter
pointer c, sets variable c to this new record, and sets default field values for
this new record.

procedure Delete Rec
(VAR f,c:Wijzer_Type) ;

Deletes the record to which c points from the linked list (starting with f), and
sets pointer c to the record preceding the deleted one.

procedure Reverse Recs
(VAR f,c,l:Wijzer_Type) ;

Reverses the relative position of records (A) CA.prevw and (B) C, unless CA
has no predecessor. The output parameter is a pointer to the identical posi-
tion in the list, now pointing to a record containing data A instead of B. Pa-
rameter F points to the first record in the double-linked list, L points to thelast one.

procedure Delete_List
(VAR x:Wijzer_Type) ;

Deletes all records in the sentence (double linked list) from x^ onwards, in-
cluding parameter pointer x, and dispose of pointers (make memory free).

4.5.4 lexicon routines

procedure Init LexTrie ;

Builds a trie structure, reads word strings and word label digits from lexicon
(text) file, and stores both in trie. This procedure results in a memory-resi-
dent lexicon trie, with characters as nodes, and global variable LexRoot as
root pointer. Number of words, ambiguous words, characters and nodes are
reported.

-

- 28 -

procedure Store
(VAR word:WordString_Type; features:LexFeats_Type) ;

Stores string word with lexical features in the lexicon trie. This routine re-
sults in a lexicon trie structure in which word has been added as a path, with
its word labels stored in the last record of that path. Called by routine
Init_LexTrie.

procedure Sub_Store
(VAR LexNode:LexNodeWijzer_Type) ;

Stores one character of word (from routine Store) in lexicon trie, adjusts
counters. If word is now fully stored (end-of-word reached), then its features
are stored in the current (terminal) trie node [by calling routine Translate].
Otherwise, the next character of word is stored, by calling calling Sub_Store
recursively, with the appropriate [matching or non-matching] next LexNode
as parameter.

procedure Translate
(ft:LexFeats_Type; VAR x:LexNodeRec_Type) ;

Stores the feature array ft in trie node x (last node of word path). For non-
ambiguous words, features are stored in field LexFeats; if this field is already
specified, then the current features specify an ambiguity: field Ambigu is set
to TRUE, field LexFeats is copied to Altl, ft is stored as A1t2. Called by
routine Sub_Store.

function ZoekLex
(VAR InWord_Rec:WordRec_Type)
: BOOLEAN;

Searches for the word string from parameter record inword_rec in the lexi-
con trie; if the word string corresponds to a path in the trie (i.e. word found),
then the additional word features are copied to inword_rec (fields Synt, Pros,
Ambigu, Accent, LexFeats, (Altl, A1t2)). The return value indicates whether
the search has succeeded or failed. Since the lexicon contains lowercase
characters only, the input string is first converted to lowercase.

procedure Sub Found
(VAR LexNode:LexNodeWijzer_Type);

Establishes whether the current character from the input word matches the
data-field (char) of the current node LexNode in the lexicon trie, and calls
Sub_Found recursively with the appropriate pointer field of LexNode^ (YES
or NO match) as new parameter. If (current char is last in input word string)
and (LexNode^ has field Terminal set to TRUE), then the input word is
found: the result for function ZoekLex is set to TRUE, and the word data
fields are copied from LexNode^ to InWord_Rec^.

- 29

4.5.5 user commands

procedure Options
The PROS interactive user can enter the command mode, by typing an as-
terisk (*) as first character of the input line, followed by a command charac-
ter. The asterisk triggers routine Options, which executes the user's com-
mand. The following commands are implemented:

: toggle Monitor watchpoints (call routine Set Monitor)
: enable writing of word Labels to file

(redefine global boolean variable ExtendedOutFormat)
NL : disable writing of word Labels to file

(redefine global boolean variable ExtendedOutFormat)
: new Input file (close input file; call routine Inq_Open_File)

O : new Output file (close output file; call routine Inq_Open_File)
: change Screen output (redefine global variable Screen Mode)
: Display program settings

(display enabled watchpoints and values of global variables)
: display processing Counters (call routine Write_Statistics)
: spawn new Process
: Help on command options (display command menu)

4.5.6 monitor

procedure SetMonitor ;
Enables or disables monitor watchpoints for each analysis module, according
to the user's response. The responded boolean values are stored in a global
array. If a watchpoint is enabled for a given module, then the application of
each analysis rule within that module is logged in a "monitor file" (and op-
tionally, its non-application as well), and the sentence contents are written to
this file, both befo:e and after the module has been applied. If no monitor file
exists yet, it is opened by calling routine Inq_Open_File.

procedure Application
(naam:LongString_Type; toegepast:BOOLEAN; boodschap:LongString_Type);

For statistical reasons, an array is created, in which each rule is represented
by a record containing its name, frequency of application (sentence matches
with rule context specification) and non-application (sentence does not
match rule context). This routine adjusts the appropriate counter by calling
local routine Applied (the "fail" counter is only adjusted if global variable
ApplAll has value TRUE). Input parameter toegepast specifies whether the
rule has been applied. This enables you to determine how often a rule fails or
succeeds. If a monitor watchpoint has been enabled for the current module,
then message string boodschap is logged to the monitor file.

-

,

M
L

S

D

C
P
H

30

procedure Write Statistics_
Writes processing statistics to output file and terminal. Counters are imple-
mented for the following objects: sentences, words, FWs, CWs, prosodic
boundaries, constituents (between-boundary word strings), orthographic
puntuation marks, accents on CWs, accents on FWs, application frequency
per rule, CPU time consumption since last initialization. Ratios between
some of these counters are also calculated and output.

4.5.7 input and output
The routines in this module refer to the following module-local constants:

AlphaSet = [a..z, A..Z], MunSet = [0..9], PunctSet = [,.-:;'()?!]+<blank>.

procedure LeesZin
(VAR tf:TEXT; VAR F,L:Wijzer_Type) ;

Reads an orthographic sentence from input text file f into double linked list
of word records, starting with F and ending with L. This is done by creating
new word records (with default field values), and calling routine LeesWoord,
until the end of sentence is detected. Subsequently, any words consisting of
non-printable characters are deleted, and the resulting number of words is
counted.

procedure LeesWoord
(VAR tf:TEXT; VAR x:Wijzer_Type) ;

Reads a single word from text file '', and stores this word string in a data
field of record x". Called by routine LeesZin. If the end of the sentence is
detected, and the control variable EOZin (declared in LeesZin) is set to value
TRUE, so that LeesZin stops appending word records. An End-of-Sentence
is detected if :
(a) a word is followed by a question mark of exclamation mark;
(b) a word is followed by a period, unless (bl) the word is a single uppercase
character (initial of a proper name, part of abbreviation), (b2) the word con-
tains only digits8, or (b3) the word is an abbreviation which is stored in the
global array AfkList [in which case the word is expanded to its full equiva-
lent].
Question mark, exclamation mark, brackets (parentheses), comma, semi-
colon, and colon are stored as separate words in the sentence [since these
may correspond to prosodic boundaries]. Hyphens and quotes within a word
string are considered as part of that string (as in zo'n, FNV-er); otherwise
they are stored as a separate word.

8 In this case, the period is appended to the word if more digits follow the period; these follow-
ing digits are read from f and also appended.

- -

31 -

procedure SchrijfZin
(VAR ReportFile:TEXT);

Writes the word strings of the (word records in the) sentence double linked
list to text file ReportFile (which can also be the terminal screen).

procedure ShowZin
(String:LongString_Type; MarkCurr:BOOLEAN; VAR ToFile:TEXT);

Writes the contents of the word records in the sentence double linked list to
the text file ToFile. All data fields are printed: Word(=string), Synt,
(SubVerb), Pros, Acc. For ambiguous words, both feature sets (of the two
alternatives) are output. The sentence is preceded by header message string;
parameter MarkCurr controls whether the current word in the sentence
should be highlighted.

procedure Progress;
Reports what fraction of the input text file which has been processed. This
can be useful if Pros processes large text files or runs in batch mode. The
fraction is calculated by means of global variables WordCount and FileSize
(supplied by user).

procedure DisplayFile
(fn:LongString_Type);

Opens a temporary text file with RMS name fn, writes its contents to the ter-
minal screen [user may request repeated display], and closes the file.

-

32

5. EVALUATION

As explained in chapter 1, the PROS algorithm aims at establishing the correct
'abstract sentence prosody', viz, accentuation and phrasing. It is assumed that these
aspects (or, more properly, the appropriate phonetic correlates of these aspects)
make synthetic speech more natural and intelligible. In order to evaluate whether our
algorithm achieves this aim, two methods are possible. First, we can compare the
PROS output with the accentuation and pausing as produced by a human speaker.
Ideally, there should be no difference between the two; any differences found should
not disturb the semantic and pragmatic equivalence between the natural and syn-
thetic versions9. Secondly, the PROS output can be evaluated from a perceptual
viewpoint, viz, by investigating whether synthetic speech provided with accents and
pauses derived by means of the PROS algorithm, is more natural and intelligible
than some other type(s) of (prosody in) synthetic speech.

5.1 comparison with natural prosody
In order to evaluate our rules for prosodic analysis, a comparison was made be-

tween natural speech, and the accents and pauses produced by our PROS algorithm.
The natural speech was produced by a professional speaker, who read aloud several
texts, the majority of which were originally written as radio news bulletins (and
hence, meant to be read aloud). In total, the material consisted of 10766 words [5273
CWs, 5493 FWs] in 600 sentences, grouped into 43 texts. Recordings were made at
the Institute for Perception Research (IPO) in Eindhoven. The recordings were tran-
scribed with respect to accents and prosodic boundaries by the two authors (and oc-
casionally, by a third transcriber). If all transcribers agreed, then a word was consid-
ered to be accented, otherwise not. The results in Tables 2 to 5 below show the
degree of convergence (agreement) between the human speaker and the PROS algo-
rithm. These results are only of limited value, however, since a considerable amount
of variation is allowed with respect to 'abstract prosody'. A difference in phrasing
and/or accentuation between man and machine does not imply that the machine (the
PROS algorithm) has been wrong. The sentence pair (41) below illustrates this vari-
ation: both versions are equally acceptable, and roughly equivalent. For the sake of
clarity, we will nevertheless use the term error for such discrepancies from the natu-
rally produced prosody.

(41a) een aantal ONDERZOEKERS meent overigens ## dat deVRAAG ##
of passief meeroken SCHADELIJK is ##

al LANG positief kan worden BEANTWOORD

9 One could discriminate between obligatory and optional accents and pauses; differences should
be limited to the optional accents and pauses.

- -

- 33

(41b) een AANTAL onderzoekers MEENT overigens ## dat de vraag
of PASS1EF MEEROKEN SCHADELIJK is ##
al lang POSITIEF kan worden beantwoord

Table 2: Comparison between the numbers of (possible) prosodic boundaries, as
realised by a human speaker and by the PROS algorithm. In total, 10766 [word
boundaries] minus 599 [sentence boundaries] = 10167 [intra-sentence word bound-
aries] were compared.

HUMAN SPEAKER
realised not realised total

realised 845 497 1342
PROS not realised 474 8351 8825

total 1319 8848 10167

The data in Table 2 show that PROS predicts 64% of the 'human' prosodic
boundaries correctly, and that the same decision is taken in 90% of all relevant cases
(error rate 10%). This result remains about the same if we ignore those prosodic
boundaries in the PROS output which are taken from orthographic punctuation in
the input (e.g. comma's and parentheses; N=627)10.

Table 3: Comparison between the numbers of accented words as produced by a
human speaker and by the PROS algorithm.

HUMAN SPEAKER
+acc -acc total

PROS
+acc 3434 852 4286
-acc 739 5741 6480

total 4173 6593 10766

With regard to accentuation, the agreement is 85% if all words are pooled. In
this connection, it must be noted that the two error types (in Table 3) are not inde-
pendent. Since accents usually occur in a rhythmic pattern, 'incorrect' accentuationof one word corresponds to an 'incorrect' non-accent on a neighbouring word, as ex-emplified in the fragments een aantal onderzoekers meent and al lang positief in(41) above.

In section 3.3.2.1. above, it was explained that FWs are seldom accented. CWs,
on the other hand, allow more accentuation variation. Consequently, the agreement
in accentuation (as observed in Tables 4 and 5) is considerably higher for FWs
(94%) as compared to CWs (77%).

10 Assuming that these boundaries were also realised by the human speaker.

34

Table 4: Comparison between the numbers of accented function words (FWs) as
produced by a human speaker and by the PROS algorithm.

HUMAN SPEAKER
+acc -acc total

+acc 90 28 118
PROS -acc 326 5049 5375

total 416 5077 5493

Table 5: Comparison between the numbers of accented content words (CWs) as
produced by a human speaker and by the PROS algorithm.

HUMAN SPEAKER
+acc -acc total

PROS
+acc 3344 824 4168
-acc 413 692 1105

total 3757 1516 5273

5.2 perceptual evaluation of PROS output
Van Bezooijen (1989) has evaluated the PROS output from a perceptual per-

spective. Eight texts (total 24 sentences) and eight isolated sentences were fed into
the PROS algorithm [version 01-nov-1988]. The output abstract prosodic markers
were converted into phonetic prosody (most notably, pitch accents) in diphone
speech. In addition, three control conditions were created:
--random: the same number of accents as produced by PROS (N=274) were dis-

tributed at random over the CWs in the text [low control];
subjects: beforehand, subjects were asked to indicate the accentuation which
they considered to be optimal; a word in the stimulus material was accented if 7
out of 12 subjects agreed [high control 1].
natural: a word was accented if a professional human speaker (viz, the same as
mentioned above) had accented that word, as agreed by three out of four tran-
scribers [high control 2].

These four accent versions of each sentence were then presented to listeners. Their
task was to rate the accentuation of each sentence on a 10-point adequacy scale.
Results are summarised in Table 6 below. From these results, Van Bezooijen (1989)
concludes that PROS produces sufficiently adequate accentuation, although the
PROS output is still defective in several respects.

- -

35 -

Table 6: Mean scores on a 10-point adequacy scale, averaged over 32 sentences
and 12 listeners, for four accentuation conditions.

random PROS subjects natural
4 . 6 6 . 0 7 . 7 7 . 4

5.3 error analysis
The majority of the 'errors' (divergences between naturally produced prosody

and the PROS output) can be ascribed to one of the following factors.
labeling: An incorrect syntactic word label (e.g. Noun instead of Verb) may yield

an incorrect insertion of prosodic boundaries; inappropriate accentuation
may result from either the incorrect word label or the incorrectly demarcated
prosodic domain. In the follow-up research project, ample attention is dedi-
cated to a solution for this problem, by means of (a) label generation by
means of morphological analysis, and (b) improved syntactic disambigua-
tion, using more advanced parsing techniques.

syntax: As explained before, prosodic domains should respect important syntac-
tic and thematic constituents. A considerable amount of phrasing and accen-
tuation errors are due to a violation of this restriction. The phrasing errors are
usually rather serious, e.g. incorrect demarcation of subordinate clauses.
Such phrasing errors may also propagate into subsequent accentuation errors.

given/new: Any accentuation algorithm should detect which words convey informa-
tion which is already 'given' to the listener, and then de-accentuate these
words. The means which PROS employs to this end are clearly insufficient,
since the scope of the algorithm is limited to a single sentence. This defi-
ciency is responsible for the majority of the accentuation errors. Firstly, in-
correct accents are assigned to the 'given' words; secondly, the predicate
(verbal constituent) is incorrectly not accented. In future versions of PROS,
several possible solutions to this problem will be investigated (e.g. using a
buffer of previously encountered CWs).

remaining:The remaining phrasing and accentuation errors are due to a variety of
causes, the most important of which are: (1) idiomatic expressions [yielding
idiomatic phrasing and accentuation], (2) incomplete specifications in the
PROS lexicon, (3) pragmatically motivated accentuation, which can only be
produced with sufficient non-linguistic knowledge. It is in the nature of
things, however, that this latter type of error cannot be solved. Hopefully, no
algorithm will ever be able to equal human speakers with regard to their
knowledge beyond the horizon of linguistics.

-

36

6. AUXILIARY PROGRAMS

6.1 procedure within DS
In order to include PROS in a text-to-speech system (viz. the IPO system, based

on diphone concatenation; see Van Rijnsoever 1988), our algorithm was imple-
mented as a Pascal procedure (rather than as an independent program), to be called
by the main program DS. As explained in section 4.2, this procedure shares the
PROS environment and several modules with the main version of PROS. Some ad-
justments were required, however, in the modules which inherit declarations from
the PROS routine itself. The most important changes from the program (described in
chapter four) are discussed below.

Firstly, an environment file contains those definitions which are necessary for
compatibility with the IPO routines. The VAX/VMS logical name DSenv must be
equivalent with this environment file DS. Secondly, module PROS was changed, so
that PROS was implemented as the following procedure:

procedure Pros
(InString:Str, VAR OutString:Str) ;

The data type Str is defined in envirnonment file DS. This procedure con-
verts In String (read by DS) to a double-linked list (see section 4.4.1), per-
forms prosodic analysis on this sentence (or executes a user command), and
writes the resulting sentence to Out String (to be output by DS). If In String is
empty (length zero), then PROS is initialized: global variables are initialized,
the lexicon is read into memory, abbreviations are defined, etc.

Thirdly, routines for reading and writing sentences were changed, since this version
of PROS communicates with character strings (rather than with text files). These
routines (viz. STRING_TO_LIST and LIST_TO_STRING) are declared in module
Comm Routs, which replaces module LeesSchrijf. Fourthly, minor adjustments were
made in the program-specific modules Global Routs, Initialize and Options. Several
command procedures are available for compiling, linking and testing these DS-ver-
sions of the PROS modules.

6.2 partial prosodic analysis
In some cases, it can be useful to break up the prosodic sentence analysis into

several parts, which can be performed independently. An auxiliary version
PROSPART has been created, which divides the prosodic analysis into three partial
sub-analyses:
[1] -word labeling (Label_Words, Adj_FWLabels, Adj_VerbLabels, Adj_Labels);
[2] -prosodic phrasing (boundary insertion; Insert_Bounds, Adj_Bounds);
[3] -accentuation (Select_Accents, Select_VerbAccs, Adj_Accents).

- -

- 37 -

Each partial analysis works independently from the others; the user can specify
which part(s) of the analysis is (are) required".

For each sub-analysis, the input sentence is passed on by the previous sub-analy-
sis, if it was selected. Otherwise, input is read from a text file (for part [1]) or from a
file containing word definitions (for other sub-analyses). Likewise, for each sub-
analysis, the output sentence is passed on to the next sub-analysis, if it was selected.
Otherwise, output is written to the standard PROS output text file (for part [3]) or as
word definitions to a special file (for other sub-analyses).

The word definition files are a powerful tool, since intermediate results can be
written to this file, corrected by hand, and fed as "perfect" input to subsequent sub-
analyses. Thus, errors in an "early" stage do not propagate throughout the prosodic
analysis; this allows for better evaluation of the rules contained in the three sub-
analyses.

These word definition files require a very restricted format, with one word on
each line, starting in the first column. Sentences are separated by means of one (1)
empty line. Information from the data fields of the word records (which together
constitute the sentence double linked list) is stored in this file as follows ["_" de-
notes a blank, "9" denotes any digit 0..9, the field Ambigu is not written as TRUE'
or 'FALSE', but as a digit where 0=FALSE, 1=TRUE]:

(TRUE: 99999_^99_^9299_99999_^9299_A9_)
Word_Ambigu_ ((VERB: SubVerb_)) _Pros_Acc_99999_^92"99

(FALSE: Synt_ (UNDEF: SubUndef_)

The array of lexical features contains 100 cells. The first 5 of these are always speci-
fied, since they contain the codes for word labels (data fields Synt, SubSynt, Pros,
Acc; see sections 4.3.2 and 4.4.1). These first 5 features must always be read from
(written to) the word definitions file [indicated by "99999" above]. The remaining
cells are used for additional lexical features. These features are not all specified in
the word definitions file12. Instead, the rank numbers of the enabled features (flags)
are written to this file, preceded by a caret (A). For ambiguous words, both possible
feature arrays (Alt! and A1t2) are specified, followed by the values of fields Pros,
Acc, and the features in array Lex Feats. Some annotated examples of word defini-
tions follow below:

met 0 PREP FW FALSE 50101 ^53 ^55 ^59 ^72 ^87
word ambigu synt pros acc 5feats ---more-features---

bemoeilijkt 0 VERB PART CW FALSE 01000
word ambigu synt subverb pros acc 5feats -no-more-feats-

zijn 1 03100 60100 ^61
word ambigu Altl: 5feats -no-more-feats- A1t2: 5feats -more-feats-

11 The program has been designed for separate or "adjacent" partial analyses (e.g. [1], [1+2],
[2+3]). Violation of this assumption (with partial analyses [1+3]) may yield unexpected results. An
analysis with all three sub-analyses ([1+2+3]) is equivalent to the original PROS program, which per-
forms this task more efficiently.

12 This would result in a zero for each disabled feature.

- 38

Upon initialization, PROSPART opens the usual input and output files, and asks
which sub-analyses are to be selected. If appropriate, the program asks for an input
word definitions file [if first part not selected] and/or output word definitions file [if
last part not selected].

This program shares the environment and many global routines with the original
PROS program, as explained in section 4.2. The most important changes in the pro-
gram-specific modules were the following:
PROSPART: routines Receive List and Send List added; these determine whether

the sentence must be read from (written to) the standard input (output) text file
[by shared routines LeesZin (SchrijfZin), cf. section 4.5.7], or from (to) the word
definitions input (output) file;

Global Routs: routines GetZin and PutZin added; GetZin reconstructs a double-
linked list (sentence) from word definitions read from file; PutZin writes a sen-
tence to a word definitions file;

Options: module deleted; this program does not support user commands.

6.3 context matching during prosodic analysis
The program PROSCON performs a standard prosodic analysis. In addition,

however, the intermediate sentence representation can be scanned for a user-sup-
plied target context, after each prosodic analysis module. Let us assume, for exam-
ple, that we want to know which word(s) precede an Int boundary followed by an in-
flected Verb. This target context can be roughly described as follows:

wordl word2 word3
Word: ? IntBound *

Synt: ? * VERB:INFL
Pros: ? PC FW,CW
Acc: I -acc *

Amb: ? FALSE FALSE

After each analysis module, the program verifies whether any fragment of the sen-
tence double linked list corresponds to this context specification. In order to decide
this, the context must be matched against each word record in the sentence repre-
sentation. If a match has been found, then the actual instantiation of the target con-
text (and optionally, the whole sentence) is written to the output file.

In this program, words in the context double linked list are declared as follows
(note that multiple labels can be specified for each word in the target context):

TYPE ContextWijzer_Type - pointer to ContextWordRec_Type
ContextWordRec_Type = RECORD

Word: word string (max 30 chars)
Synt: SET OF syntactic labels
Pros: SET OF prosodic labels
Acc: boolean: word accented
Ambigu: boolean: ambiguity allowed
LexFeats: array of feature digits
Prevw: pointer to previous word
Nextw: pointer to next word

-

- 39 -

The matching procedure contains several steps. Firstly, it is checked whether the
sentence representation contains sufficient words (from the current word under in-
spection onwards) to match the target context. This prevents full evaluation of e.g. a
three-word context against the last two words of a sentence -- which would never
produce a succesful match with the target context. Secondly, for each word in the
context specification, the values of the syntactic and prosodic labels 13, and the ac-
cent value are checked against the corresponding word in the sentence representa-
tion. Finally, the two word strings are matched, using a "wildcard" procedure. If the
latter two steps yield a positive result for each word in the target context, then the
matching procedure also yields a positive result (viz. boolean value TRUE).

This program has been a very powerful tool in the development of prosodic
rules, since it enables the user to find specific word sequences, in the appropriate
PROS format, in large text corpora. From the example above, for example, it can be
deduced how often a sentence starts with an introductory sub-clause, and how often
this sub-clause is properly demarcated by the PROS algorithm.

6.4 divergence between PROS output files
The program DIVERGENTIE compares two output files produced by PROS, and

lists the sentences which deviate between the two files to an output text file. This
program was used mainly to compare PROS output with a (hand-corrected) "ideal"
output version. A divergence is established if (1) the boundary between words is not
identical [blank character, Phi boundary, or Int boundary], or if (2) the accentuation
of a word differs [as indicated by its typecase].

The first (reference) file may only contain PROS output, without any of the
standard heading and trailing information normally. The second file, on the other
hand, must contain a header and a line of asterisks before the PROS output starts, as
well as a line of asterisks and a trailer (statistics) after the output text. Formats of
the two files are schematized below. In both files, the PROS output must be pro-
duced with the "short" output option (PROS variable ExtendedOutFormat
=FALSE), so that only word strings are written, and no syntactic and prosodic la-
bels. Accentuation must be encoded by a word being written entirely in uppercase.
Each word must be followed by a blank character, even if it is the last word on a line
of text. Output sentences must be separated by an empty line14.

13 For the syntactic label, this evaluation yields a positive result if (a) the actual value of the sen-
tence word is contained in the set of possible values in the context word, (b) one of the possible val-
ues of the context word is UNDEF [matching all actual labels], or (c) the sentence word is ambiguous,
but the feature code of one of the alternatives corresponds to one of the possible syntactic labels in
the context word. For the prosodic label, the evaluation proceeds likewise, although with different
values and labels.

14 By default, PROS produces output which matches all these requirements.

- 40

Figure 6: Schematized formats of the two PROS output files, as required by
program DIVERGENTIE.

file I (reference)

(corrected) PROS output

file 2 (output)

header

PROS output

trailer (statistics)

Both input files can be provided with a comment string (maximum 80 characters),
which clarifies the contents of each file:

filel: hand-corrected version (21 nov 1989)
file2: new version with updated accent rules (23 nov 1989)

These comments are written to the output file whenever appropriate. In the output
file, differences can optionally be highlighted (by means of escape characters which
change the terminal's video settings). In the output file, statistics are given for the
number of
(1)-superfluous prosodic boundaries [not present in filel, but present in file2],
(2)-missing prosodic boundaries [present in filel, but not present in file2],
(3)-superfluous accents [words -accent in filel, but +accent in file2],
(4)-missing accents [words +accent in filel, but -accent in file2].

6.5 command procedures
The logical directory usr$prosenv contains some command procedures which

facilitate the construction of PROS.
PAS_PROS compiles all source modules for the programme PROS, stores the com-

piled object modules in a library (usr$prosenv:ProsLib.OLB), and finally
deletes the object modules.

LINK_PROS links the objects to construct an executable version of PROS.
CH_PROS combines these two procedures: first the editor is called to modify the

source code of a module, the resulting updated Pascal module is compiled,
stored in the object library Pros Lib, procedure LINK_PROS is called (optional),
the resulting program PROS is executed (optional), and finally this program is
(optionally) stored in an "open" directory, to be used by others.

-

- 41 -

7. REFERENCES

BAART, J.L.G. (1987) Focus, Syntax, and Accent Placement: towards a rule system for the deriva-
tion of pitch accent patterns in Dutch as spoken by humans and machines. disserta-
tion Rijksuniversiteit Leiden.

BAART, J.L.G., and J.S. HEEMSKERK (1988) The problem of ambiguity in morphological analysis
for a Dutch text-to-speech system. In: Proceedings SPEECH '88 (7th FASE Sym-
posium), Edinburgh 1988. 3:959-65.

BEZOOLJEN, R. van (1989) Evaluation of an algorithm for the automatic assignment of sentence
accents in written text. [Utrecht Stichting Spraaktechnologie]. SPIN-ASSP Report;9.

BROECKE, M.P.R. van den, A. AERTS, J. REIZEVOORT, T. VEENHOF, J. LAMMENS, and M.
ELSTRODT (1987) Type- and token-frequencies of wordclasses, phonemes and
phoneme pairs in Dutch, Progress Report Institute of Phonetics Utrecht (PRIPU)
12(1):1-15.

COLLIER, R., and H. 't HART (1975) The role of intonation in speech perception. In: A. Cohen and
S.G. Nooteboom (eds.) Structure and Process in Speech Perception. Berlin,
Heidelberg, New York: Springer. Communication and Cybernetics; 11. 107-21.COOPER, W.E., and J. PACCIA-COOPER (1980) Syntax and Speech. Cambridge MA: Harvard
University Press.

COOPER, W.E., and J.M. SORENSEN (1977) Fundamental frequency contours at syntactic bound-
aries, J. Acou.st. Soc. Am, 62:683-92.

CUTLER, A. (1982) Prosody and Sentence Perception in English. In: J. Mehler, E.C.T. Walker, and
M. Garrett (eds.) Perspectives on Mental Representation: experimental and theo-
retical studies of cognitive processes and capacities. Hillsdale NJ: Lawrence Erl-baum Ass. 201-16.

CUTLER, A., and C. CLIFTON (1984) The use of prosodic information in word recognition. In: H.
Bouma and D.G. Bouwhuis (eds.) Attention and Performance. volume X: Control
of Language Processes. London: Lawrence Erlbaum Ass. 183-96.

FUCHS, A. (1984) 'Deaccenting' and 'default accent'. In: D. Gibbon and H. Richter (eds.) Intonation,
Accent and Rhythm. Berlin: Walter de Gruyter.

GEE, J.P., and F. GROSJEAN (1983) Performance structures: a psycholinguistic and linguistic ap-
praisal, Cognitive Psychology 15:411-58.

GOLDMAN-EISLER, F. (1972) Pauses, clauses, sentences, Language and Speech 15:114-21.
GUSSENHOVEN, C. (1984) On the Grammar and Semantics of Sentence Accents. Dordrecht, Cin-

naminson NJ: Foris. Publications in Language Sciences; 16.
't HART, J., and R. COLLIER (1975) Integrating different levels of intonation analysis, J. Phonetics

3:235-55.
HEEMSKERK, J. (1989) Morphological parsing and lexical morphology. In: H. Bennis and A. van

Kemenade (eds.) Linguistics in the Netherlands 1989. Dordrecht, Providence RI:
Foris. AVT Publications; 6. 61-70.

KAGER, R., and H. QUEN6 (1987) Deriving prosodic sentence structure without exhaustive syntac-
tic analysis. In: J. Laver and M.A. Jack (eds.) Proceedings European Conference
on Speech Technology, Edinburgh 1987. Edinburgh: CEP Consultants. 1:243-46.KAGER, R., and H. QUEN6 (1989) A sentence accentuation algorithm for a Dutch text-to-speech
conversion system. In: H. Bennis and A. van Kemenade (eds.) Linguistics in the
Netherlands 1989. Dordrecht, Providence RI: Foris. AVT Publications; 6. 101-109.KAGER, R., and E. VISCH (1988) Metrical Constituency and Rhythmic Adjustment, Phonology
5(1):21-71.

KLATT, D.H. (1975) Vowel lengthening is syntactically determined in a connected discourse, J.
Phonetics 3:129-40.

KLATT, D.H. (1976) Linguistic uses of segmental duration in English: acoustic and perceptual evi-
dence, J. Acoust. Soc. Am. 59(5):1208-21.

- 42 -

KOOPMANS - van BEINUM, FJ. (1980) Vowel Contrast Reduction: an acoustic and perceptual
study of Dutch vowels in various speech conditions. dissertation Universiteit van
Amsterdam.

KAGER, R., and E. VISCH (1988) Metrical constituency and rhythmic adjustment, Phonology 5:21-

71

KNUTH, D. (1973) The art of computer programming. volume 3: Sorting and searching. Reading
MA: Addison-Wesley.

KRUYT, J.G. (1985) Accents from speakers to listeners: an experimental study of the production and
perception of accent patterns in Dutch. dissertation Rijksuniversiteit Leiden.

LAMMENS, J. (1989) From text to speech via the lexicon. [Utrecht]: Stichting Spraaktechnologie.
SPIN-ASSP Report; 7.

LEHISTE, I. (1970) Suprasegmentals. Cambridge MA, London: M.I.T. Press.
LINDERT, E. te, CJ. DOEDENS, and H. van LEEUWEN (1989) Spraakmaker-I . [Utrecht Stich-

ting Spraaktechnologie]. SPIN-ASSP Report; 11.
NESPOR, M., and I. VOGEL (1982) Prosodic domains of external sandhi rules. In: H. van der Hulst

and N. Smith (eds.) The Structure of Phonological Representations I. Dordrecht:

Foris. 225-255.
NESPOR, M., and I. VOGEL (1986) Prosodic Phonology. Dordrecht Foris. Studies in Generative

Grammar, 28.
NOOTEBOOM, S.G. (1985) A functional view of prosodic timing in speech. In: J.A. Michon (ed.)

Time, mind, and behavior. Berlin: Springer. 242-52.
NOOTEBOOM, S.G., J.P.L. BROKX, and JJ. de ROOLI (1978) Contributions of Prosody to Speech

Perception. In: W.J.M. Levelt and G.B. Flores d'Arcais (eds.) Studies in the Per-

ception of Language. Chichester: John Wiley. 75-107.
NOOTEBOOM, S.G., and J.G. KRUYT (1987) Accents, focus distribution, and the perceived

distribution of given and new information: an experiment, J. Acoust. Soc. Am.
82:1512-24.

O'SHAUGHNESSY, D.D. (1989) Parsing with a small dictionary for applications such as text to
speech, Computational Linguistics 15(2):97-106.

RIJNSOEVER, P.A. van (1988) From text to speech: User manual for Diphone Speech program DS.
[unpublished] IPO Handleiding; 88.

SCHARPFF, P.J., and VJ. van HEUVEN (1988) Effects of pause insertion on the intelligibility of
low quality speech. In: W.A. Ainsworth and J.N. Holmes (eds.) Proceedings 7th

FASE Symposium (Speech'88), Edinburgh. volume 1: 261-68.
SELKIRK, E.O. (1984) Phonology and Syntax: the relation between sound and structure. Cambridge

MA, London: The M.I.T. Press.
SELKIRK, E.O. (1986) On derived domains in sentence prosody. In: CJ. Ewen and J.M. Anderson

(eds.) Phonology Yearbook. volume 3. 371-405.
TERKEN, J.M.B. (1985) Use and function of intonation: some experiments. dissertation Rijksuniver-

siteit Leiden.
TERKEN, J., and S.G. NOOTEBOOM (1987) Opposite effects of accentuation and deaccentuation

on verification latencies for Given and New information, Language and Cognitive
Processes 2(3/4):145-63.

VISCH, E.A.M. (1989) A Metrical Theory of Rhythmic Stress Phenomena. dissertation Rijksuniver-
siteit Utrecht.

WINGFIELD, A. (1975) The intonation-syntax interaction: prosodic features in perceptual process-
ing of sentences. In: A. Cohen and S.G. Nooteboom (eds.) Structure and Process in

Speech Perception. Berlin, Heidelberg, New York: Springer. Communication and
Cybernetics; 11. 146-56.

WIJK, C. van, and G. KEMPEN (1985) From Sentence Structure to Intonation Contour. In: B.S.
Miller (ed.) Sprachsynthese: zur Synthese von natarlich gesprochener Sprache aus

Texten und Konzepten. Hildesheim: Georg Olms. 157-82.

- 43 -

8. PUBLICATIONS

R. KAGER and H. QUEN6 (1987) Deriving prosodic sentence structure without exhaustive syntactic
analysis. In: J. Laver and M.A. Jack (eds.) Proceedings European Conference on
Speech Technology. Edinburgh: CEP Consultants. volume I: 243-46.

R. KAGER (1988) Plaatsing van zinsaccenten en pauzes in spraak. In: M.P.R. van den Broecke (ed.)
Ter Sprake: spraak als betekenisvol geluid in 36 thematische hoofdstukken. Dor-
drecht, Providence RI: Foris. 416-27.

H. QUEN6 (1989) Sprekende Computers, Toegepaste Taalwetenschap in Artikelen 33(1):89-94.
R. KAGER and H. QUEN6 (1989) A sentence accentuation algorithm for a Dutch text-to-speech

system. In: H. Bennis and A. van Kemenade (eds.) Linguistics in the Netherlands
1989. Dordrecht, Providence RI: Foris. AVT Publications; 6. 101-109.

H. QUEN6 and R. KAGER (1989) Van tekst naar prosodic, Informatie 31(7/8):570-76.
H. QUEN6 and R. KAGER (1989) Automatic accentuation and prosodic phrasing for Dutch text-to-

speech conversion. In: J.P. Tubach and JJ. Mariani (eds.) Proceedings European
Conference on Speech Communication and Technology (Euro Speech '89). Edin-
burgh: CEP Consultants. volume I: 214-17.

APPENDIX 1 : ANALYSIS RULES IN PROS

René Kager and Hugo Quend, 25 october 1989
(c) SPIN/ASSP - RUU/OTS/Fonetiek

NOTATIONAL CONVENTIONS:

(A,B)
(A)L..H

(A)
"X"
<X>
<X>kY>

*
%
^X
A[i]...B[i]

either A or B
number of occurences of A must range between Low
and High
A is optional; equivalent to (A)0..1
X is a character string
X is a label or property
word is ambiguous, label/property is either X or Y
sub-label Y is nested under main label X
any character/word, including none
any character/word, excluding none
X is a word feature from the lexicon
conjunctive conditions: A and B must both be true

A[i]...B[j]
"A,B"
<A,B>
<AIB>
<A:B>

disjunctive conditions: either A or B must be true
= "A","B"
=
= <A>kB>
=

In the examples, the relevant part is printed in italics; accentuated
words are printed in CAPITALS. Where necessary, a plus (+) or
minus (-) sign indicates whether a rule has applied at a particular
position within the example. Empty positions (e.g. resulting from
deletions) are marked with an asterisk (*).

<X>:<Y>

46

MODULE LABEL_WORDS:

1. Lex Labels:

-) <'spec'>

condition: if word found in lexicon

'spec' involves data fields Ambigu,LexFeats, and (if Ambigu=TRUE) lexical feature arrays Altl, A1t2. if word
found in lexicon and Ambigu=FALSE, then data fields Synt, (SubVerb, SubUndef), and Pros are specified in ac-
cordance with the lexical feature array LexFeats.

2. StrongPV_Format:

<Undef> <CW> -+ <undeflVerb:PV> <CW> / * "dt" 1

(<VV> ("tte,dde") ("n")}}

set syntactic label VERB (unambiguous) for all syntactically unmarked content words which (by rule) must be
inflected verbs, those words can be detected by the special orthography which results from concatenation of
stem and flexion morpheme, yielding an otherwise illegal character combination, words matching this rule are
also given the verb-specification <PV> ('PersoonsVorm', i.e., inflected VERB).
-het huis brand+t
-zij hoe+dd+e zich voor hoe+d+e+n

3. SoftPV_Format:

<Undef> <CW> --) <UNDEFIVerb:PV>

add syntactic label VERB for all
can be detected by final morphemes
-de man koop+t een boek

---hij st+ond te praten

<CW> / * ("%t,de,te"

("b,t,v,w,z") "ond" 1

syntactically unmarked content words which are inflected verbs. inflection
"t,de,te".

{

)

(

/

4. SoftInf Format:

{Verb>} [1] <CW> (Verb>) [1] <VERB:Inf> <Cw> / * { <cons> "en"
(Undef>)[2] (Undef>)[2] %% "aan" 1

add syntactic label VERB with sub-specification INF for words ending in morpheme "en". this morpheme can also
indicate a plural noun; the requirement for a CONS character before "en" blocks matching of "dien,zien" etc.
but leaves e.g. "aaien" unmarked.
--wij blev+en drie dag+en

5. Soft Pan_Format:

<X><CW> w <xlVerb:Part><Cw>
/ ((<Prep>)) {"ge,be,ver,ont"} ((%)2..8 1 ("d,en" }

1<Sat> } (((%)2..7 <voc>) [U]
NOT^53 (((%)2..7 ("p,k,f,s"))[1])

{((%)2..6 "ch") (1]) i("t")[1])

condition: label <X> = I <Verb,Undef>)

- -de koning werd ver+rad+en
--de winkel was uit+ver+koch+t
-hij vond het wel (-)be+s+t

6.Cornp_Fonmat:

<x> -0 <X1Comp> { <Prep>"dat" 1

("waar"<Prep> I

condition: word must be NOT ambigu, NOT found in lexicon

set syntactic label COMP for complementizers, especially for all words that introduce a subordinate clause.
--ik schrijf een boek na+dat ik jarig ben

7. Num_Digits:

<X> <CW> -4 <Num> <CW> / ("0..9")1..k

(

-÷
)

/

- 48

condition: word must be NOT ambigu, NOT found in lexicon; k = number of characters in word

set syntactic label NUM for all syntactically unmarked content words which consists only of digits
--hij blijft 68 dagen

8.1shun_SubString:

<x> <cw> <Num> <Cw> / * ("twee,drie..tien,elf,twaalf,der,veer,
twin,tach,tig,honderd,en,duizend,
miljoen,miljard,half,tal")1..k

condition: word must be NOT ambigu, NOT found in lexicon

set syntactic label NUM for all syntactically unmarked content words which consists exhaustively of ortho-
graphic substrings representing numeral morphemes.
--hij blijft drie dagen
-de elf zit te zeven op het j+acht

--de acht+en+tach+tig+duizend inwoners

9. Adv_Fonnat

<UNDEF> <CW> -+ <ADV> <CW>
NOT ("een, het") (* ("lijk(er),ig,isch,baar,end,zaam,dag,middag,

(<ART,PREP>) avond,nacht,morgen,ds,loos,daar,hier")
"onge" * ("t,d,en")

(* ("%")4..k ("eel,aal,ief")
}

1 2

conditions: word must be NOT ambigu, NOT found in lexicon; focus is second word in above specification

set syntactic label ADV for adverbia, which can be recognised by special adverbial suffixes, detection of AD-
Verbia can be useful for phi-construction and accentuation, target word may not be preceded by PREPosition or
ARTicle.
-als ik sportief rij

--ik drink over het algemeen steeds koffie

-9

(

-

10. Adj_Format:

<UNDEF> <CW> <UNDEF:ADJ>
{"een,het"} * { "end,isch,air,ent,ant,lijk,ig")

I <ART> 1

2

conditions: word must be NOT ambigu, NOT found in lexicon; focus is second word in above specification

MODULE ADJ_FWLABELS :

This module dis-ambiguates words which are specified as ambiguous in the lexicon, e.g. "dat,zijn". Disambigua-
tion requires that the adjacent words are disambiguated as far as possible; some elementary disambiguation is
therefore performed by the first two routines. Within this module, the rule ordering is very sensitive. Ingeneral, routines are ordered according to their context requirements: disambiguation requiring little contextinformation is performed first. Cases for which syntactic label information from surrounding words is neces-sary, are disambiguated as late as possible; this syntactic information may itself be unreliable. Disambigua-tion is performed by calling a global routine (SelectVariant), with the intended resulting word properties asinput parameters.

11. NonVerb_over_Undef:

<UNDEF> 1 <X> <X>
NOT<{VERB,UNDEF1>

if one of the two variants is UNDEF, and the other variant is neither <Verb> nor <Undef>, then select theother variant. This is more or less an artefact of our strategy to store "new" alternatives (esp. ADV,NUM) assyntactic variants, instead of immediately "overwriting" the default UNDEF label. VERB disambiguation is per-formed by more advanced routines.

12. SubUndef over_NoSubUndef:

<UNDEF1>
I <UNDEF2> -4 <UNDEF2>

NOT <1NOUN,ADJ1> <1NOUN,ADJ}>

1

)

.

50

if both variants are syntactically UNDEF, then select the variant to which additional sub-labels are attached.

13.1. VERB_if VerbCues:

"zijn" -4 <PRON> ([NIL])

<PRON> 1 <VERB:INF>
(<PREP>

sentence-initial "zijn" cannot be VERB, must be PRON. this rule hypergeneralises for Yes/No-questions. after a
genuine PREP (no SATellite), "zijn" is assumed to be a modifier PRON within the PP: [PREP "zijn" NP]PP.
-hij wil de beste van +zijn klas -zijn

13.2. VERB_if VerbCues:

"zijn" -4 <VERB:INF> / { [NIL]
<PRON> 1 <VERB:INF>

(<VERB:PART>
(<PC>, <FW> 1

{ <ADV>, <NUM>

one of the specified righthand contexts is sufficient to make "zijn" a VERB. ADV,NUM must be unambiguously
known (cf. rule NonVerb-over-Undef).
-hij wil de beste zijn [NIL]
-hij wil de beste zijn, maar haalt het niet <PC>
-hij wil de beste zijn maar haalt het niet <FW>

--hij wil de beste zijn geweest maar haalt het niet <Verb:PART>
-hij wil de beste van -zijn klas +zijn

13.3. VERB_if VerbCues:

"zijn"
<PRON> 1 <VERB:INF>

-4 <PRON>

default (context-free) disambiguation if previous routines have failed to work.

1

)

-

}

/

-

14.1. Num_before_Partitive:

"een." <ART1NUM> -3 <NUM> / ^52

[NIL]

disambiguate "een" as NUMeral, if it is followed by a partitive construction, referring to quantities. in-dicators for partitive constituents (e.g. "der") are marked with feature ^52 in the lexicon.

14.2. Num_before_Partitive:

"een" <ART1NUM> -+ <ART> /

default disambiguation if previous rules have failed to work.

15.1. Pron_before_FW:

"het" <ART1PRON> <PRON> [NIL])

<FW> }

"het" cannot be used as ARTicle in sentence-final position. the structure of NP constituents (with "het"=ART)requires the next word to be NOUN,ADJ, or ADV. such words are seldom FW, so the presence of a following FW in-
dicates that "het" must be PRONoun rather than ARTicle, this rule hypergeneralises for eg. "HET ZEER zwaargetroffen land"

15.2. Pron_before_FW:

"het" <ART1PRON> -* <ART> /

default disambiguation if previous rule has failed to work.

16.1. Prep_before_ART:

"gezien" <PREP>1<Verb:PART> -) <PREP> / (<ART> 1

1 ^61)

1)

1 1

-4
(

(

/

- 52

disambiguate "gezien" as PREP or VERB:PART. this rule requires that the syntactic class of following

"een,het,zijn" is known, so the rule must be ordered after Num_Before_Partitive ("een"), Pron_Before_FW

("het"), and Verb_if_VerbCues ("zijn"). Feature "61 indicates possessive pronouns.

16.2. Prep_before_ART:

"gezien" <PREP>1<Verb:PART> --) <VERB:PART> /

default disambiguation if previous rule has failed to work.

17. Pron_before_FWVerb:

"dat" <COMP1PRON> <PRON>

- -maar +dat is wijsheid achteraf

(<VERB,FW> I

18. Pron_after_PronCue:

"dat" <COMP1PRON> --) <PRON> / (<VERB,FW> 1 ([NIL] 1

("zijn") (NOT(<ART,PRON>))

1 ^66 1 ("het,er",^21) 1

- -maar nu is +dat wijsheid achteraf
-dat hij +dat liever doet
-het- kan ook blijken -dat de mensen niet komen"
-hij belooft mij -dat niemand zal komen"

19. Pron_before_PC:

("het,dit,dat") <PRON1X> <PRON> ([NIL] 1

{ <PC>)

words cannot be used as ARTicle ("het") or COMPlementizer ("dat") in these contexts.

-+

-+ /

20. Pron_between_PREPCONJ_CW:

("dat")[1] <COMPIPRON> -3 <PRON> f<PREP,CONJ>) (<CW>) [2]
("die") ("om") [1]

- (PREP,CONJ) + "dat" + CW
+ "dat" + *

(PREP,CONJ) + "die" + CW

words "die,dat" must be pronominal instead of Complementizer, if they occur between PREP-or-CONJ and CW. This
is based on a count of all occurrences of "die,dat", showing that the majority of the <PRON> interpretation
occurs when preceded by a preposition. (low-freq) hypergeneralization as in example (3) is taken for granted.
-in dat geval
-en die man zei toen
-ik loop de winkel in die schoenen verkoopt (wrong)

21. Pron_after_COMP:

("dat,die") <COMPIPRON> -+ <PRON> (<COMP>)

<COMPIX> 1

22. Comp_after_CompCue:

"dat" <COMPIPRON> -3 <COMP> (<ADV,PREP,PRON>)

23. Undef after_COMP:

NOT("dat,die") <COMPIUNDEF> -+ <UNDEF> / I <COMP>)

(<COMPIX>)

ambiguous "dat,die" may not be set to UNDEF, but to PRON. for these two words, special contexts apply. there-
fore, they are excluded here and treated separately in routine Pron_after_COMP.

(

"om"

(

/

- 54 -

24. Comp_between_VERB_FW:

"of" <COMPIX> <COMP> <VERB> { <FW>
(<FWIFW> 1

25. Default_CONJ:

"of" <CONJ1X> <CONJ>

default disambiguation if the previous rule has not been applied (X=COMP) . this rule must be ordered before
Default_COMP, because "of" must be CONJunctive by default.

26.1. Conj_after_COMMA:

"maar" <CONJIADV> <CONJ>

26.2. Conj_after_COMMA:

"maar" <CONJIADV> <ADV> /

n

ambiguous "maar" is only used as CONJ (with preceding IntGrens) if it it preceded by a comma ",". otherwise,
used as ADV (modifier), and hence no preceding IntGrens inserted.

27.1. Comp_before_PRONART:

"wat" <COMPIPRON- <COMP> (<ART,PRON>)

("het" 1

27.2. Comp_before_PRONART:

"wat" <COMPIPRON> <PRON> /

this rule must be ordered before Default_COMP, because "wat" must be PRONoun by default.

-4 /)

-4

-4

-4

-4

n

-4 /

28.Ikfault_ODIVIP:

<cornolx> -4 <COMP>

default disambiguation if the previous rules have not been applied, this rule prevents ambiguities involving
COMP to be output. this rule must be ordered after Default_Conj ("of") and Comp_before_PronArt ("wat").

MODULE ADJ-VERBLABELS:

this module processes words for which a second label VERB has been specified in Label_Words, resulting in
ambiguous words, because label rules over- and under-generalize, and because lexical ambiguities can be ex-
pected, the following rules use contextual information to disambiguate the syntactic word labeling of verbs.
finally, remaining ambiguities are resolved by assuming the VERB label to be correct by default. Rules 31..42
are called by a local routine (NegFilter). This routine disambiguates a word as UNDEF if one of the filtering
routines has applied.

29.Verb_After_ER_Adv:

<X1VERB> -+ <VERB> nern*
<ADV,FW>

this rule must be ordered PRIOR to NegFilter\TwoCWs. it is a separate routine, since this rule should work be-
fore the rules called by NegFilter rules: it is a "positive" rule (resolving ambiguities as VERB).
--hij wil dat ik de groente erin gooi
---ze hadden ertoe besloten weg te gaan

30.1. InfFilter:

<CW> <X1<VERB:INF>> <VERB:INF> / "te"

disambiguate words with INF sublabel as VERB:INF, if preceded by "te"

30.2. InfFilter:

NOT "*en" -3 <UNDEF>
<X>1<VERB>

- 56

VERBs with sublabels <PV> or <PART> are incorrectly labeled after "te"; assume that VERB label is wrong and
disambiguate as UNDEF (after "te" follows either VERB:INF or UNDEF:ADJ).

31.Caps:

<X1VERB>) <X> / <capital> *

words which begin with a capital can not be verbs, but must be a proper name. no exception for sentence-ini-
tial words, because these are rarely VERBs (only in Yes/No-questions).

32. Samenstelling:

<X1VERB> --> <X> / 111*-*11

a word containing a hyphen is a compound, which is seldom VERB.

33.1):KaANW

<X1VERB> -3 <X> / "%"(14) "*"

words longer than 13 characters are probably compound NOUNs; VERBs are usually shorter, this filter produces
errors in VERBs like "herprogrammeren", but filters many wrong VERB labels in eg. "wapenhandelaren" etc.

34. Noun Cues:

<X1VERB> -4 <X> / (NOT ^81)[1] f <Art,Conj,Comp> 1

("en")[2] f <PREP>[1] }

(<NUM>[2] }

{ "13)

"te"

-

/

some ambiguous words must be plural nouns, because the preceding word can only (or mainly) precede nouns in
Dutch. lexicon feature "81 indicates [+R] words (eg. "er,daar,hier"); "13 indicates NUMeral nouns "geen, aan-
tal", etc.

-wij bleven drie +dagen
--hij heeft het ergens uit -gehaald
--hij bleef er in -hangen "81 + PREP + <X1VERB>

35.F14Ndons:

<X1VERB> -9 <X> / [NIL] [1] "*%<cons>e"
NOT "*Iije"
I NOT <cap>*
("*s(ch)e"
("*"[1]

if the preceding word ends in "e", that word is (probably) an inflected adjectivum, and the target word is the
plural noun it is related to -- instead of VERB, all two-letter words ending in "e" in Dutch are (FW) article,
preposition or pronomen personale, which CAN precede VERBs, therefore, it is required that the preceding word
contains three or more characters. "de" and "te" block the VERB label in other rules.
--nu komen de vette +jaren
-ben je -belazerd
-door de gemeente Ede -uitgekozen

--de Olympische +gedachte

36. PossPron:

<X1VERB> <X> / <PRON> "61

words preceded by an unambiguous pronomen possessivum can not be VERB, but must be plural nouns. Lexical fea-
ture "61 marks possessive PRONouns.
-ze knipt mijn haren maandelijks

)

1

)

58 -

37. TwoPossVerbCWs:

<X1VERB> <CW> -9 <X> / (<XIVERB>,<VERB>)
<CW>

in a sequence of two CWs both syntactically ambiguous (with one of the alternatives being VERB), the first one

has been mislabeled and should be plural noun <UnDef>. this rule is statistically motivated, not based on any

linguistic fact.

38. PrevArtPart:

<X1VERB> <X> / <ART> <VERB:PART>

if the <Verb:PART> is preceded by an ARTicle, then this PARTiciple is used as an adjective, the target word is

a plural NOUN, head of an NP.
-de verboden vruchten smaken het lekkerst

39.PlurNoun_INGEN:

<X1VERB> 0 <X> / "*<V>*ingen"

the target word must be a plural noun if it contains (a) a PLURAL suffix "en", preceded by (b) a nomi-
nalisation <NOUN> suffix "ing". the preceding vowel <V> is required, since a stem syllable must precede the

offset.
-dat in Frankrijk +verkiezingen worden uitgeschreven
-hij- kan het niet laten +aanwijzingen te geven
-hij wil ons -dwingen

40. PrevArtAdj:

<X1VERB> <X> / <ART> * { "end,isch,air,ent,ant,lijk,ig" }

if the preceding word is an adjective
icle, then the target word is a noun,
--een smoezelig vest
-een sociaal-democratisch nest

(which can be deduced from its adjective suffix) and preceded by an ART-
head of an NP, instead of a VERB.

-

41. PrevAdv:

<X1VERB> <X> ^82

if the target word is preceded by an
(probably) an adjective or noun, instead
-in een heel hecht verband
-dat ik me aan zoiets minder hecht

42. TwoCWs:

<X1VERB> <X> / NOT (comma,^62}
<Y1CW>

intensifying adverb (lexical feature ^82) then the target word is
of a VERB.

(wrong)

<CW>

statistically speaking, CW/VERBs seldomly occur before CWs. there are two exceptions: after a comma, or after
a nominative=subject pronoun (lexical feature ^62).

43. Verb_after_PronSubj:

<xly> <VERB:PV> / [NIL] (<PC>) ^62

a special problem occurs in detecting uninflected (stem) VERBs, which can not be detected on formal proper-
ties. however, such VERBs MUST occur in the second word position in the sentence, if the first is a one-word
pronominal subject. if so, then the following word must be VERB, regardless of its properties. only the PRO-
Noun "het" may be be excluded from the lefthand context. in order to accomodate direct speech, quotes <PC> may
precede this first pronomen.
-'ik +snij mezelf in de vingers', sprak de kok

44. PV_over_PART:

<VERB:PV> I <VERB:PART> -3 <Verb:PV> / {"be*,ge*,ver*,ont*"}"t"

the <PART> sublabel may have been added incorrectly (in module Label_Words) for words which are mor-
phologically ambiguous <PVIPART>. the <PV> label is preferred in those cases. this preference must be made ex-
plicit, since by default the last-one-added of the two variants is selected, if variants are identical (both
VERB in this case). this last-one-added variant would otherwise be the (less frequent) <PART> variant.

/

-4

)

45. Cash_VERBs:

<X1VERB> <VERB>

60

default disambiguation for ambiguous VERBs, after previous rules have been applied.

MODULE ADJ_LABELS:

adjustement of the syntactic labeling of words which can only be disambiguated AFTER previous disambiguation
routines, the previous routines provide the necessary context for this module. in addition, existing labels

are modified.

46.1. Undef after_VERB:

"dan" <ADV1UNDEF> -* <UNDEF> <VERB>

UNDEF = voegwoord van vergelijking.

46.2. Undef after_VERB:

"dan" <ADV1UNDEF> <ADV> /

default disambiguation if the previous routine has not been applied.

47. Nouns_UNDEF:

<UNDEF> -* <UNDEF:NOUN> / (("15")14 "*")

<CW> ("*" ("heid,ie(s),je(s),
sel(s),ing(en)") 1

add a sub-label NOUN to UNDEF words, if they have the proper format for NOUNs.

-4

-+

/

48. Plural_UNDEF:

<UNDEF>) <UNDEF:NOUN>
^99 ("*ingen,*jes,*sels")

("*en" NOT<NUM>
((NOT"<cap>*")[1]

"*<C>s") [1] I

add a sublabel NOUN and add lexical feature ^99 (indicating plural) to UNDEF words, if they have the proper
format for plural NOUNs. <C>=<Consonant>.

49. Adj_UNDEF:

"*e" <UNDEF> <UNDEF:ADJ> /
NOT("ie,*ee,
*oe,*je,te")

NOT<FW>

following word must belong to same NP as ADJective, hence following word cannot be FW.

MODULE INSERT_BOUNDS:

this module inserts prosodic boundaries (ZinsGrens=#### , IntGrens=### , PhiGrens=##) between words in the
sentence.

50. Zins_Around_Sentence:

0 ZinsGrens <PC> ([NIL]

f *

* 1

[NIL])

insert utterance boundaries before the first word and after the last word of the sentence.

---)

nikUles/

/

51.1/2Infl:

V2Infl -4 TRUE / (NOT"te") [1]

- 62 -

<Verb>
(<PV>,<Inf>[1])

determine whether focus word is Verb in second position (i.e., inflected verb, main VP).

52. Int_After_Verbauster:

0 IntGrens <PC> <VERB> NOT <Verb>
NOT V2Infl (<CW>,<FW>)

insert an intonational boundary between a verbal cluster which terminates a subordinate clause (hence: exclude
inflected VERBs, called V2Infl's), and a following non-VERB.
-ik- vroeg hem te komen ### met al zijn vrienden

--zij heeft erin toegestemd ### een plan te schrijven
-ze- vertelde me te hopen ### morgen terug te komen

53.Int_Replace_PC:

* <PC> IntGrens <PC> { "punctuation marks"

change punctuation marks "(-;:,)" to intonational boundaries, single- or double-quotes (ASCII 34,39) are ex-

cluded from this replacement!

54.W_Befint_annp:

(0 0 IntGrens <PC>

(<PC> NOT-ZinsGrens I

NOT (<COMP,CONJ>) <COMP>
NOT "dat"

(NOT<PREP>) [1] (NOT^31)[1]

separate nested/subordinate clauses (indicated by COMPs) from context. consecutive COMPs or CONJunctiva are
grouped in the righthand constituent, by blocking insertion between them, the conjunctive contexts prevent S-

)-0

}

/

/

bars to be separated from the PREP with which they form a PP (Prep + Sbar). exclude the COMP "dat"; these
cases are treated separately (see rule Int_before_DAT below).
-ik bezoek mijn broer ### die in Amsterdam woont
-ik vraag ### of (-) wie de schoen past hem aantrekke
-ik vraag ### welke deur ik moet openen
-ik vraag door (-) welke deur ik moet lopen"

55. Int_Before_DAT:

0 --) IntGrens <PC> / (<VERB:PV><CW>)(1) "dat"
(<COMP>)[2]

"dat" may have 'missed' its correct COMP label, because the context may still have been ambiguous at the time
of disambiguation. therefore, one context in which "dat" is most often COMP is still explicitly checked in
this routine, as condition [1].
-de man ontkende IMP dat hij gek was
-de man ontkende uitvoerig flit dat hij gek was

56. Int_Before_CONJ_Const:

0 * IntGrens <PC> NOT<PC> <CONJ> (<FW>,<VERB>)

this rule insert intonational boundaries before a conjunctive ("en,maar,want..") which introduces a juxtaposed
sentence. this context with CONJ linking two juxtaposed sentences can be selected by requiring either an FW or
a VERB following the CONJ as some statistics have revealed.
-hij wil brood ### en<CONJ> loopt<VERB> dus naar de bakker

--hij staat op ### en<CONJ> bij<FW> de bakker koopt hij een brood

57. Int_Between_Verbs:

0 --) IntGrens <PC> / <VERB> <VERB>
(NOT<Part>)[1] (NOT<FW>) [2]
<cw>[3] <PV>[4]

--

- 64

NO insertion: <VERB:PART> <VERB,FW>
<VERB,FW> <VERB:PV>

insert an IntGrens between subordinate clause (ending in VERB) and main clause (starting with VERB), in order
to demarcate the two clauses.
--de voorraden die ons resten ### blijken onvoldoende
--wat mij gebeurd (-) is ### benauwde me vreselijk

58. Int_Before_ExtraConst:

0 -+ IntGrens <PC>
(Verb>)l..n f<Verb>,<PREP>) { <Conj,Prep>

NOTA53

this rule inserts intonational boundaries before an extraposed constituent, i.e. a constituent following the
main clause of the sentence. application of this rule is excluded in the following context:

ZinsGrens + X + <Verb>
where X represents a single word : if the main clause only consists of a one-word subject and one verb, then
there is no need for strong prosodic demarcation from the second part of the sentence (Gee & Grosjean 1983).
at least one verb must precede the rule focus (either directly = in lefthand context, or indirectly), i.e.,
the focus must follow a nuclear sentence.
-de man koopt ### en verhuurt goederen

59. Int_Before_INFConst

0 -+ IntGrens <PC> NOT (ZinsGrens) <PREP> ("te" 1

(IntGrens I A54 { <PREP>)

this rule inserts intonational boundaries before a "beknopte bijzin"; prepositions which can start such a con-
struction are marked with feature A54 in the lexicon.
-hij steekt over ### zonder uit te kijken

--hij steekt over ### om te kijken

Y

)

/

60. Int_Before_DAN:

0 -3 IntGrens <PC> "dan"
<UNDEF>

the word "clan" is lexically ambiguous, as either ADV or UNDEF ("voegwoord van vergelijking", comparative pro-
noun). the latter case results in non-application of Int_Before_ExtraConst, which is not correct, therefore,
this rule inserts an IntGrens before this latter type of "dan" <UNDEF>. "dan" is set to <UNDEF> by module
Adj_FWLabels iff preceded by <VERB>.
-dat de auto sneller om de hoek rijdt ### dan rechtuit

61. Phi_Before_FW:

0 -+ PhiGrens <PC> <CW> <FW>
NOT<Verb>

this rule accounts for most of the boundary insertion, and follows directly from prosodic domain theory. head
of any prosodic domain is the nuclear constituent content word, and function words on the lefthand side (for
Dutch) are included in the domain, in other words, a phi boundary is to be inserted between a content word and
a following function word, since the latter belongs (with its following content word) to a different prosodic
domain.

-de auto ## met drie deuren H zonder ramen

62.Phi_Around_VerbString:

0 -+ PhiGrens <PC> / +a<Verb> -a<Verb>
NOT <PC> NOT <PC>

for several reasons (see text), VERBs are to be grouped in one domain, closed off by phi boundaries.
-ik ## wil gaan schaatsen lit op het ijs

--de man ## koopt #1 een boek

63. Phi_Before_Adv:

0 PhiGrens <PC> <CW> <ADV>-4 /

I

66

sometimes the preceding rules generate a long string of CWs, all belonging to one prosodic domain, this rule
(and others) provides some means to split one long prosodic domain into smaller ones by inserting phi bound-
aries at major breakpoints, viz. before ADVerbs (usually NOT complements to the LEFThand constituent).
- -ik drink ## over het algemeen ## steeds koffie

64. Phi_After_Plural:

0 PhiGrens <PC> <UNDEF:NOUN>
("%")4 "*"
<CW>
^99

NOT<VERB>
<CW>

this rule also provide means to split a long prosodic domain into two phi domains, it is assumed that plural
nouns establish the head of a prosodic domain (which includes preceding FWs), and a boundary can be inserted
after this head, plurals are detected by module Adj_Labels; indicated by feature ^99.
-dat de daken(+) ## kapot waren
-dat de Amerikanen(+) ## honger hebben
-dat het Nederlands(-^99) moeilijk is

65. Phi_After_Name:

0 PhiGrens <PC>
NOT(ZinsGrens)

(IntGrens NOT"s(e)"

analogous to Phi_After_Plural, this rule
tals. the name is considered to be an NP
-dat Cicero ## zelfmoord pleegde
-dat Hollandse (-) kaas lekker is

66. Phi_After_Noun:

0 PhiGrens <PC>

NOT("<cap>*")
<PC> }

inserts a phi boundary after a string of words which begin with capi-
head. again nationality adjectiva are excluded.

<UNDEF:NOUN>

--) /

)
/

) (

-

-

--o

-
-

"<cap>."

analogous to Phi_After_Plural, this rule inserts a phi boundary after a noun (indicated by nominal suffixes),
functioning as NP head. NOUNs are detected by module Adj_Labels

MODULE ADJ_BOUNDS:

this module adjusts the strength and location of prosodic boundaries, insertion rules occasionally generate
boundaries at incorrect places, sometimes as a result of rule interaction, the situation is corrected in this
module.

67. NoPhi_After_FW:

PhiGrens 0 <FW>
NOT<VERB>

(nonverbal) FWs can never establish the head of a prosodic domain, therefore, they have to cliticize to the
righthand domain, by means of boundary deletion.
--ik * was verbaasd ### over ons succes

68. NoPhi_Before_FWInt:

PhiGrens 0 <Fw> (ZinsGrens,IntGrens)

if an FW establishes a prosodic domain on its own, it should cliticize to its lefthand adjacent domain, by
means of boundary deletion.
--dat de obers ## boos * zijn 1## om niets

)

/

- 68

69. NoInt_Within_Idioms:

IntGrens -4 0 / (1) "om" "te"
(2) "aan" "toe"
(3) "af" "en" "toe"
(4) "tot" "en" "met"
(5) "nu" "en" "dan"
(6) "van" "binnen" "uit"
(7) "van" "buiten" "uit"

delete prosodic boundaries within idiomatic expressions which belong to a single domain.

70. NoInt_Before_IsoPrep:

IntGrens -4 PhiGrens / (<PREP,SAT>) (ZinsGrens,IntGrens)

an Int-boundary may be inserted between a VERB and its following particle (e.g. by Int_Before_ExtraConst).
this rule changes this boundary to a Phi-boundary; this enables for future accentuation of the particle, thisrule must be ordered BEFORE NoInt_Before_FinalFWs, as otherwise the latter rule would delete the boundary pre-ceding the verbal particle (thus blocking future accentuation).

71. NoInt_Before_FinalFWs:

IntGrens PhiGrens (<FW>)l..n ZinsGrens

a sequence of sentence-final FWs is not a separate prosodic I-domain, but must be cliticised to its precedingdomain, at least one FW must occur in the righthand target context.

72. NoInt_After_V2:

IntGrens -4 PhiGrens IntGrens (<VERB>)1..n <PREP>

this rule corrects a hypergeneralisation of rule Int_Before_ExtraConst, which inserts an IntGrens between VERBand PREP. this boundary is incorrect if the PREP introduces an adverbial PP, while a subordinate sentence isused as subject. the subject sentence is indicated by IntGrens preceding the string of VERBs; at least oneVERB must follow the IntGrens in the lefthand target context.

--) /

/

--de bibliotheek ### die 20 miljoen kostte III wordt gesloten #1 wegens stakingen

73. NoInt_After_Prep:

IntGrens -* 0 / <PREP>
^53

the PREPositions with feature ^53 (in the lefthand context) can never be verbal particles, consequently, these
words should constitute a single domain with the following NP, by means of deleting the erroneous boundary.
-ik hou niet van * bietjes
-ik kan niet zonder * zei de man (wrong)

74. NoInt_After_IsoPrep:

IntGrens -3 0 IntGrens f<PREP,SAT>1

let the 'isoprep' (particle,satellite) cliticise to the righthand domain, i.c. verbal cluster.
--hij belooft ### mee * te komen

75. Clit_VerbPron:

1 2 2 1 <VERB>
PhiGrens A(63,881

an object or subject personal pronomen (indicated by feature ^63 for pers.pron., feature ^88 for "er") belongs
prosodically to the VERB domain, therefore, the positions of the phi boundary and this pronomen are inter-
changed.

--ik was * hem ## te vlug af"

76. ComplexSubjNP:

<PC> -* IntGrens <PC> X Y Z <VERB>
NOT(<VERB,COMP>)

the unspecified context X+Y+Z must contain either (a) 3 or more CWs, or (b) 2 CWs and 2 or more PhiBounds (2CWs, each constituting a separate Phi domain), in order for this rule to apply. preceding VERB or COMP indi-

/

/

70

cates a subordinate clause, instead of subject NP. the effect of this rule is that a single subject NP con-
stituting more than 1 Phi domain is raised to the Int level, by changing the boundary to IntGrens. internal
PhiBounds in the subject NP are not deleted.
- -de roodbruin getinte zomerjurken III zijn uiterst populair
-de woordvoerder ## van het ministerie flit deelde mee

77. Purge_DoubleBounds:

<PC> 0 (<PC>) (<PC>)

delete the weakest of two adjacent boundaries, if both boundaries have the same strength (viz, length in
chars) then the second one is deleted, this rule corrects anomalies created by incorrect rule interactions.
in some PROS programmes, periods and question marks (sentence terminators) are included as words in the sen-
tence linked list, these sentence terminators are not deleted: <PC> NOT IN [".?"].

MODULE SELECT_ACCENTS:

78. Set_LexAccs:

if the target word has previously been found in the lexicon, then the word features ^1..^5 have been copied
from the lexicon to the word data field LexFeats[1..5]. feature ^4 - LexFeats[4] indicates the accentuation
status of this target word, this routine translates the feature value '1' to the value 'TRUE' for the data
field ACCentuation.

79. Acc_IsoPrep:

<-acc> <+acc> / f<ADV,PRON,PREP>) (PhiGrens) (IntGrens)

(<PREP,SAT>) (<VERB,NUM> I {ZinsGrensl
NOT{"te,van") NOT^81

this rule accentuates stranded particles (PREPositions) at righthand domain edge. the particle is NOT accentu-
ated if the preceding word has feature ^81 ("er,daar,hier," etc).

-4

-4

/

-ik neem er drie +MEE ilia
--ik zit hier -mee

80.Acc_CWs:

<-acc> -+ <+acc> / <CW>, NOT<VERB>

default accentuation of non-VERBal CWs. accents are removed by subsequent rules in module Adj_Accents.

81. Acc_Num:

<-acc> -+ <+acc> / <NUM>

accentuate each NUMeral
- -de +TWEE van Breda
-dan krijg je er +TWEE"

82.Acc_Supedatives:

<-acc> -+ <+acc> / "*ste"
NOT<VERB>

accentuate each superlative (either ADJective or ADVerb); these can be recognised by the suffix "st(e)" and a
syntactic label which is NOT <VERB>.
--de MOOISTE koningin aller TIJDEN
-ik- vind SNELLE AUTO'S het LEUKSTE"

--hij -danste de SAMBA

83. Acc_Between_ConjInt:

<-acc> -4 <+acc> / <CONJ> (IntGrens)
f<CW,FW>1 (ZinsGrens)

#111

-72-

84. Acc_PrepPRON:

<PRON> <-acc> 0 <+acc> <PREP>
^64 ^55

sometimes, a PREP and personal PRONoun establish an adverbial PP (modifier) . in these cases, the PP must be
accentuated (on the PRON) . feature ^55 indicates PREPositions starting adverbial PPs; feature ^64 indicates
personal PRONs

85. Acc_LocPrep:

"b*en" <-acc> 0 <+acc> / "naar"
<PREP> <PREP>

accentuate the PP formed by ["naar" + locative PREP]; this PP functions as adverbial PP.
--ik loop naar +BINNEN

86. Acc_EENS:

"eens" <-acc> 0 <+acc> / ("mee,niet,voor")[l]
("met" (NOT<PC>)()..n) [3]

87. Acc_EEN:

"een" <-acc> -4 <+acc> "de"

88. Acc_AL:

"al" <-acc> 0 <+acc> <PRON>
^42

("per,in")[2]

/

/

/

89. Acc_PRON:

<PRON> <-acc> -+ <+acc> "wat"
(^64,"dat")

accentuate PRON if preceded by "wat" and followed by marked VERB.
-maar wat DAT betreft
-maar wat MIJ aangaat

MODULE SELECT_VERBACCS

90. Acc_VerbCluster:

(((I<PREP>))()..n 1 <PREP>[1] }) "te"[1]) <VERB> (Verb>)()..m <VERB>
() NOT("om, <CW> <FW>

door,zonder"))

f<SAT> 1
I <SAT> 1

1 2 3

a 'verbal cluster' is accentuated with the priorities given in the specification. if the cluster contains a
particle (PREP or SAT; PREP must be followed by "te"), then this particle (last in sequence of parti-
cles/prepositions) is accentuated (1) . else, the routine searches for the first CW in the verbal cluster, and
accentuates this VERB/CW (2) . if there is no CW in the cluster, the last VERB/FW is accentuated (3).
this routine aborts if an accent has been given to any word within the verbal cluster: a cluster can contain
maximally one accent. the last step (3) is optional, and can be controlled by an input parameter OBL in the
call of this routine. if OBL=TRUE, then an accent within the cluster is obligatory, and the routine should put
an accent on VERB/FWs if there are no particles or VERB/CWs. otherwise (OBL=FALSE), FWs are not to be accentu-
ated, and if the cluster contains VERB/FWs exclusively, the cluster does not get any accent.
--het is lekker om de korst ## OP te eten #### (Prep)
-hij heeft het boek ## TERUG gegeven #### (Sat)

-dat hij zijn afspraak ## VERGETEN heeft ### (CW)

-hij vroeg ons ## vandaag ## te KONEN #### (FW)

^7

- 74 -

91.Adv_VerbAcc:

Acc_VerbCluster / <ADV> (<PC>)

a verbal cluster is accentuated if it is preceded by an ADVerb; this is a modifier of the VERB cluster, not an

accentuable argument.
OBL:=FALSE (see comments above)
--hij vroeg ons ## VANDAAG ## DOOR te werken ####

92.Inuuns_VexbAcc:

Acc_VerbCluster / ZinsGrens (NOT<PC>)
(NOT<PRON>)1..n

(<PC>) (IntGrens 1

(ZinsGrens)

a verbal cluster is accentuated if it stands between an I-initial Phi domain

cluster is I-final) . in those cases, the 'X' domain is probably the subject of

cluster, which is to be accentuated, this subject domain must be simple (no

contain any PRONouns; in the latter case the 'X' domain could be the object of

- OBL:=FALSE (see comments above).
--#### de CHINESE STUDENTEN #1 willen +UITGEVOERD zien III wat hen beloofd is

-tilt dat de man ## zijn<PRON> MOEDER ## -op wilde bellen

(X) and an IntGrens (i.e., the

the following (transitive) verb
internal structure) and may not
the following verbal cluster.

93. AccCues_VerbAcc:

Acc_VerbCluster / "91 (<PC>)

the words in the lefthand context are all labeled as UNDEF. nevertheless, they constitute (the final part of)

an adverbial phrase (modifier), which triggers accentuation of the following verbal cluster.

OBL:=FALSE (see comments above).
--we hebben maanden DOORGEWERKT

94. NoAccInt_VerbAcc:

Acc_VerbCluster (IntGrens) (<-acc>)()..n

(ZinsGrens)

(<-acc>)0..n (IntGrens)
(ZinsGrensl

III

/

11)11)"

if the I-domain containing the verbal cluster contains no accents, then the verbal cluster is to be accen-
tuated.

OBL:=FALSE (see comments above).
-#### je +ZIET ### dat hij +GEKOMEN is ####

95. AdvLocPP_VerbAcc:

(Acc_Verbcluster) {<PREP>} (NOT PhiGrens)1..n (PhiGrens) fIntGrens)
((##)(<PREP,SAT>)###*) ^55 (ZinsGrens)

NOT"te,van" ("in")[1] (ART) "<cap>*"[1]

some constituents are formally PPs, but used as an adverbial component (modifier) to the verbal cluster, in
those cases, like in Adv_VerbAcc, the following cluster must be accentuated, this also includes cases where
the preceding PP is a locative constituent, indicating the place of action.
-dat ik volgens hem ## +GEZONDIGD heb ####
-dat ik in Rome /I +GEZONDIGD heb ####
-dat ik in zijn ogen ## -gezondigd heb ####"
-ik bel Jan #1 na donderdag 11 +OP ####

96. BZ_PronObj_VerbAcc:

Acc_VerbCluster / NOT ZinsGrens <PRON> PhiGrens (IntGrens,ZinsGrens)

accentuate the verbal cluster in subordinate clauses ('BZ') if the argument/object of the verb (lefthand con-
stituent) is a pronominal constituent. exclude sentence-initial PRONs, these may be subject constituents.
- -dat ik hem +GESPROKEN heb ####
-#### hij -spreekt flit met niemand tilt"

97.HZ_PronObj_VerbAcc:

Acc_VerbCluster <PRON>/ PhiGrens (IntGrens,ZinsGrens)

accentuate the verbal cluster in main clauses ('HZ') if the argument-or-object of the verb (righthand con-
stituent) is a pronominal constituent.
-(Pill* de man ## +BEWEERT ## iets ####"

/

-

-
-

76

98. KnownArg_VerbAcc:

Acc_VerbCluster
(Known_Constituent (##))[1] { { ZinsGrens,IntGrens) }[1]

{ (##) Known_Constituent) 1[2]

accentuate the verbal cluster if the object is 'known' (such object domains are deaccentuated in the following
module). in effect, accent shifts from this object (NP) to the verbal cluster, this rule also correctly ap-
plies on subject NPs (Phi domains), if the sentence is intransitive [NP<known> + VP + ###*]. for

'Known_Constituent' see routine below.
-dat ik zulke dingen It +GEZEGD heb tIlt [1]

-de minister II(+ONTKENDE #1 deze geruchten #### [2]

-deze machines It +HAPEREN tilt

99. Known_Constituent:

Known_Constituent -4 TRUE
(NOT<PC>)n (NOT<Verb>)n ("die,dat")<Pron>) (NOT<Verb>)n (NOT<PC>)n

^21

("zo'n") [1] 1 (NOT<Num>)[1]

- "zulke boekjes" (TRUE)

"zo'n soort" (TRUE)

"zo'n drie soorten" (FALSE)

MODULE ADJ_ACCENTS:

100. DeAcc_KnownCWs:

<+acc> <-acc>

/ (NOT<PC>)n (Known_Constituent) ()1..n
f "ere" 1 NOT<VERB>
(^22 (<CW>

(NOT<PC>) n

(

(

-*

/

-
-

/

deaccentuate all CWs (VERBs excluded) following a 'known-qualifier', until the following boundary. this rou-
tine mimicks the observation that 'given' information is not to be accentuated. cf. rule Known_Constituent
above.

-dat hij zulke boekjes LEEST

101. DeAcc_Trailer:

<+acc> <-acc> IntGrens ^84 ()1..n (ZinsGrens,IntGrens}

trailing sentences (starting with a word with feature ^84 "aldus,zo", etc.) are to be deaccentuated. the word
itself is also deaccentuated.
--#### geld stinkt ### aldus de bank ####"

102. DeAcc_SecondLexAcc:

<ADV> <+acc> -3 <-acc> / <+ACC>
^4^5 ^4^5

<ADV,FW>

if two adjacent words <FW,ADV> have an accent (feature ^4) which is derived from the lexicon (feature AS),
then the second one must be deaccentuated.

+HELEMAAL -niet

103. DeAcc_liangmat:

<+acc> -* <-acc> / <CW>
*"ende" <+ACC>

NOTI<Num>,"*e"1

-een EVENWIJDIG rijdende GOEDERENTREIN

104. DeAcc_Epitheton:

^93 <+acc> -+ <-acc>
<UNDEF><CW>

(#5)

11<cap>*11

(##) <CW>
<+ACC>
NOT<Verb>

-+ /

(44)

78

deaccentuate epitheton (UNDEF^93), if followed by proper name.
- -#### premier LUBBERS ## HUICHELDE ###

105. DeAcc_Unit_after_NUM:

^95 <+acc>-+<-acc> (<NUM> } (PhiGrens) (<CW>)

(^13) { ^52 1

DRIE gulden TWINTIG
ENKELE guldens van de HONDERD

106. DeAcc_Hangmat_NUM:

^11 <+acc>)<-acc> <NUM> <CW>
NOT<VERB>

DRIE miljoen SCHAPEN

107. DeAcc_Hangmat_NP:

<CW><+acc>-4<-acc> ^82

de ERG verweerde MUREN

<+acc>

-

/

--

-

APPENDIX 2.1 : FEATURES IN PROS LEXICON

0. VERB

^06
^07
^08

FW_Before_Te
Wat_X_Betreft
Direct_Verb

1. NUMERAL

A I 1

A 1 2

^13

Numeral_A
Numeral_B
Numeral_C

5. PREPosition

^50
A51

^52
A53

^54
A55

^56
n57

^58
"59

Infinit_Mark
NonPrep_Sat
Partitive_Prep
NonParticle_Prep
EllipsZin_Prep
AdvPP_Prep
Direction_Prep
Van_Prep
Locative_Prep
PostP_Expr

2. QUALIFIER 6. PRONOUN
^21 Known_Quall ^61 Poss_Pron
^22 Known_Qual2 ^62 Subject_Pron
^23 Universal_Qual ^63 Person_Pron
^24 Deacc_Enige ^64 StrongObject_Pron
^25 Negative_Qual ^65 Dat_Pron
^26 Zo_Dat_Acc ^66 StrongSubject_Pron
^27 Partitive_Qual
^28 Accent_Wel
^29 NoComp_Comp 7. CONJunctive

3. COMPL

^31 Wh-Comp
A33 Dat_Comp
^34 Om_Comp
^35 Wat_Comp

4. ARTICLE

^41 After_DE
^42 A fter_AL
^43 Impers_Pron

Definite_Art
^45 Initi_P_Expr

A44

^71 Complex_Prep2
^72 Complex_Prep3
^73 Complex_Prep4
^74 Complex_Prepl
^75 EN_Conj
^76 MAAR_Conj
^77 Compl_Prep5

8. ADVERB
^81 [+R]_Adv
^82 Intensifier_Adv
"83 Comparative_Adv
A84 Trailer_Adv
A85 WEL_Adv
^86
^87
^88
A89

EENS_Accl
EENS_Acc2
Er_Pron
Adverb_Prep

80

9. UNDEFINED

^91 Temporal_NP_Kern
^92 Quant_NP_Kern
^93 Epitheton_Noun
^94 Dummy_Noun
^95 Deacc_Qual_Noun
^96 MidPP_Noun
^97 Deacc_GANG
^98 Deacc_Def Art

- -

APPENDIX 2.2 : CONTENTS OF PROS LEXICON

Function words are printed in boldface; each word is followed by a 4-digit syntactic code
(explained in section 4.3.2), optionally followed by additional lexical features (explained
in section 4.3.2 and in Appendix 2.1).

a 5010 51 53 behulp 9000 96

aan 5010 56 59 74 beide 1001 22

aangaande 5010 beiden 6000

aangaat 9002 07 bekend 2010

aangezien 3010 ben 0110

aanging 9002 07 beneden 5010 53 77 89

aanleiding 9000 96 benevens 5011 53

aantal 1002 13 bent 0110

aantallen 1002 13 bepaalde 9000

aanzien 9000 96 beschikking 9000 96

ab 5010 53 best 8000

acht 1001 11 bestrijding 9000 96

achter 5010 beter 8000

af 2010 51 71 77 betreffende 5010 53

afdeling 9000 betreft 9002 07

afloop 9000 96 betrekking 9000 96

afwachting 9000 96 betrof 9002 07

al 8010 bevordering 9000 96

aldus 8010 84 bezig 2010

aleer 3010 bezit 9000 96

alhoewel 3010 bij 5010 56

alle 1001 23 bijna 8001 25

alleen 8000 bijvoorbeeld 8010

alles 6010 binnen 5010 77 89

als 3010 45 bleef 0110

alsmede 7010 bleak 0110

alsof 3010 bleken 0110

alsook 7010 bleven 0110

althans 8010 blijf 0110

altijd 8000 blijft 0110

alvorens 3010 blijk 0110

ander 9001 22 blijkbaar 8010

andere 9001 22 blijken 0310

anderen 9000 blijkens 5010 53

anders 8000 blijkt 0110

ante 5010 53 blijven 0310

anti 5010 53 bond 9000

april 9000 91 boven 5010 77 89

attentie 9000 96 bovendien 8000

augustus 9000 91 buiten 5010 77 89

avond 9000 91 98 burgemeester 9000 93

beetje 8010 buurt 9000 99

behalve 5011 53 circa 5010 53

behoeve 9000 96 club 9000

behoud 9000 96 Con 5010 53

behoudena 5011 53 contra 5010 53

- 82 -

daar 8010 81 doen 0310

daaraan 8010 doet 0110

daarachter 8010 dolgraag 8000

daaraf 8010 dollar 9000 95

daarbij 8010 door 5010 54 55 56

daardoor 8010 doordat 3010

daarheen 8010 drie 1001 11

daarin 8010 duizend 1001 //

daarmee 8010 duizenden 1001 12

daarnaar 8010 dus 8010

daarom 8010 echt
echter
een

8001 82

daaronder 8010 8010 76

daarop 8010 1001 11

daarover 8010 een 4010

daartegen 8010 eenmaal 8010

daartoe 8010 cents 8010

daaruit 8010 eenzelfde 9001 22

daarvan 8010 52 eerst 8000

daarvoor 8010 eeuw 9000 91

dag 9000 91 93 eeuwen 9000 91

dagen 9000 91 eigen 9000

dan 8010 73 eigenlijk 8010

dan 9010 73 elders 9001 22

dat 3010 26 32 elf 1001 11

dat 6010 21 elk 9001 23
datgene 6010 lkaar 6010

de 4010 42 44 elkander 6010

december 9000 91 elke 9001 23

deden 0110 en 7010 71 72 73

deed 0110 enige 1000

deel 9000 27 enkel 1000 13

degene 6010 enkele 1000 13

degenen 6010 er 8010 81

den 4010 eraan 8010
der 4010 52 erachter 8010

dergelijk 9002 21 eraf 8010

dergelijke 9002 21 erbij 8010

dergelijks 9000 erdoor 8010

derhalve 8010 erg 8001 82

deze 6012 21 41 ergens 8010 81

dezelfde 9001 22 erheen 8010

dicht 9000 erin 8010

die 3010 42 armee 8010

die 6010 21 ernaar 8010

diegene 6010 eram 8010

dientengevolge 8000 eronder 8010

diezelfde 9001 22 erop 8010

dikwijls 8000 rover 8010

ding 9002 52 ertegen 8010

dingen 9000 ertoe 8010

directeur 9000 93 eruit 8010

dit 6010 21 A2 ervan 8010 52

doch 7010 ervoor 8010

doctor 9000 93 even 8010

doe 0110 evenals 7010

igt;gIsI

- 83 -

eveneens 8000 gevraagd 0200 09

evenmin 8001 22 geweest 0210

eventueel 8010 geweten 0210

ex 5010 53 gewild 0210

februari 9000 91 gewoon 8010

federatie 9000 geworden 0210

feit 9000 94 geworpen 0210 08

ga 0110 gezegd 0200

gaan 0310 gezet 0210 08

gaat 0110 gezeten 0210

gaf 0110
9000

gezien 0210

gang 97 gezien 5010 53

gauw 8000 gij 6010

gaven 0110 ging 0110

ge 6010 gingen 0110

gebied 9000 gisteren 9000 91

gebieden 9000 goed 8000

gebleken 0210 gooi 0110 08

gebleven 0210 gooide 0110 08

gebrek 9000 96 gooiden 0110 08

gebruik 9000 96 98 gooien 0310 08

gedaan 0210 gooit 0110 08

gedurende 5010 53 graaf 9000 93

geef 0110 graag 8000

geeft 0110 graden 9000 95

geen 1001 13 25 82 gram 9000 95

gegaan 0210 gravin 9000 93

gegeven 0210 gros 9001 27
gegooid 0210 08 gulden 9000 95

gehaald 0210 08 haal 0110 08

gehad 0210 haalde 0110 08

geheel 9000 haalden 0110 08

gehouden 0210 haalt 0110 08

gekeken 0200 09 haar 6010 61 63

gekomen 0210 had 0110
gekregen 0210 hadden 0110
gekund 0210 halen 0310 08

geleden 8010 half 1001 13
gelegd 0210 08 halfweg 5010 53
gelegen 0210 halverwege 5010 53
gelegenheid 9000 96 hangend 5010 53
geleken 0210 hangenda 5010 53
gemaakt 0210 heb 0110
gemeente 9000 hebben 0310
gemis 9000 96 hebt 0110
gemoeten 0210 heeft 0110
gemogen 0210 heel 8001 82
genomen 0210 heen 2010
gereed 2010 heer 9000
gestaan 0210 helaas 8000
geval 9002 92 helemaal 8000
gevallen 9002 92 helft 9001 27
geven 0310 hem 6010 63 64
gevolg 9000 96 hen 6010 63 64
gevonden 0210 heren 9000

64

17;

"2

'4;

"T,T,11

- 84

het 4010 42 44 iets 6010
het 6010 43 ik 6010 62 63 66
hetgeen 3010 timers 8010
hetwelk 3010 in 5010 56 58
hetzij 3010 indien 3010
hield 0110 ineens 8000
hielden 0110 ingaande 5010 53
hier 8010 81 ingang 9000 96
hieraan 8010 ingeval 3010
hierachter 8010 ingevolge 5010 53
hieraf 8010 inmiddels 8010
hierbij 8010 instantie 9002 92
hierdoor 8010 inter 5010 53
hierheen 8010 intra 5010 53
hierin 8010 intussen 8010
hiermee 8010 inzake 5010 53
hiernaar 8010 is 0110
hierom 8010 jaar 9000 91 95
hieronder 8010 januari 9000 91
hierop 8010 jaren 9000 91 95
hierover 8010 Je 6010 62 63
hiertegen 8010 jegens 5010 53
hiertoe 8010 jij 6010 62 63 66
hieruit 8010 jou 6010 63 64
hiervan 8010 jouw 6010 61
hiervoor 8010 juist 8000
hij 6010 62 63 66 juli 9000 91
hoe 3010 jullie 6010 62 63 64
hoedanig 3010 juni 9000 91
hoef 0110 kan 0110
hoefde 0110 keek 0100 09
hoefden 0110 keer 9002 91
hoeft 0110 keken 0100 09
hoeveel 3010 kennis 9000 96
hoeveelheden 9000 kijk 0100 09
hoeveelheid 9000 kijken 0300 09
hoeven 0310 kijkt 0100 09
hoewel 3010 kilo 9000 92 95
hoezeer 3010 kilometer 9000 95
honderd 1001 11 klaar 2010
honderden 1001 12 klasse 9000
hoogte 9000 96 kom 0110
hoop 9000 96 komen 0310
hopelijk 8000 komt 0110
houd 0110 kon 0110
houden 0310 konden 0110
houdt 0110 koning 9000 93
huidig 9001 22 koningin 9000 93
huidige 9001 22 krachtens 5010 53
hun 6010 61 kreeg 0110
ie 6010 63 kregen 0110
ieder 9001 23 krijg 0110
iedere 9001 23 krijgen 0310
iedereen 6010 krijgt 0110
iemand 6010 kun 0110

66

- 85 -

kunnen 0310 meestal 8000
kunt 0110 meeste 9001 21 27
kwam 0110 mei 9000 91
kwamen 0110 mekaar 6010
kwart 9001 27 man 6010 62 63
laat 0110 meneer 9000
lag 0110 menig 9001 21
lagen 0110 menige 9001 21
land 9000 menigeen 6010
lang 8000 mensen 9000
langs 5010 53 met 5010
laten 0310 53 55 59 72
leden 0100 meteen 8000
leden 9000 meter 9000 95
leek 0110 mevrouw 9000
leg 0110 08 middag 9000 91
legde 0110 08 middel 9000 96
legden 0110 08 midden 9010
leggen 0310 08 mij 6010 63 64
legt 0110 08 mijn 6010 61
leiding 9000 96 miljard 1001 //
leken 0110 miljarden 1001 12
lid 9000 miljoen 1001 11
liet 0110 miljoenen 1001 12
lieten 0110 minder 8001 82
lig 0110 minister 9000 93 98
liggen 0310 ministerie 9000
ligt 0110 minstens 8001 25
lijk 0110 minuten 9000 95
lijken 0310 misschien 8010
lijkt 0110 mita 3010
los 2010 mocht 0110
m'n 6010 61 mochten 0110
maak 0110 moest 0110
maakt 0110 moesten 0110
maakte 0110 moot 0110
maakten 0110 moeten 0310
maal 9002 91 mogen 0310
maand 9000 91 morgen 9000 91
maanden 9000 91 na 5010 55
maar 7010 naam 9000 96
maar 8010 naar 5010 53 56
maart 9000 91 naardien 8010
maatschappij 9000 naarmate 3010
mag 0110 naast 5010 53 56
maken 0310 nabij 5010
man 9000 98 nacht 9000 91
manier 9002 92 nadat 3010
manieren 9002 92 nagedachtenis 9000 96
mate 8000 nam 0110
MEI 6010 63 name 9000 96
mede 8000 namelijk 8010
medewerking 9000 96 namen 0110
roes 2010 51 86 namens 5010 53
meer 8001 82 natuurlijk 8010

87

- 86 -

nauwelijks 8001 25 overstaan 9000 96
neem 0110 paar 1002 13
neemt 0110 pas 8010
neer 2010 per 5010 52 53 55
negen 1001 11 personen 9000
nemen 0310 pleats 2010
nergens 8011 81 plaats 9000 96 98
net 8001 25 premier 9000 93 98
neven 7010 president 9000 93
nevens 5010 53 prins 9000 93
niemand 6010 prinses 9000 93
niet 8001 25 86 procent 9000 92 95
niets 6010 professor 9000 93
niks 6010 provincie 9000 98
noch 7010 raad 9000
nochtans 8010 reeds 8010
nodig 2010 reeks 1002 13
nog 8010 rest 9001 27
nogal 8010 rond 5010
nooit 8000 rondom 5010 53
nopens 5010 53 ruim 8001 25
nou 8010 's 8010
november 9000 91 samen 8001 25
nu 8010 73 samenwerking 9000 96
nummer 9000 seconden 9000 95
o.a. 8010 sedert 5010 53
ochtend 9000 91 september 9000 91
of 3010 32 serie 1002 13
of 7010 sinds 5010 53 55
ofschoon 3010 sint 9000 93
oktober 9000 91 slechts 8010 25
om 5010 53 54 sommige 9000
omdat 3010 300A 8010
omstreeks 5010 53 soort 9000
omtrent 5010 53 soorten 9000
ondanks 5011 53 55 sta 0110
onder 5010 staan 0310
ondertussen 8010 staat 0110
ongeveer 8012 25 stad 9000 98
onlangs 8000 steeds 8000
ons 6010 63 64 stichting 9000
onze 6010 61 stond 0110
ooit 8010 stonden 0110
ook 8000 straks 8010
op 5010 56 strijd 9000 96
opdat 3010 't 4010
opeens 8000 te 9010 42 51 53
open 9000 tegen 5010
opnieuw 8000 tegenover 5010 53
over 5010 56 telken 4010
overal 8011 81 telkens 8000
overeenkomstig 5010 53 talker 4010
overeenstemming 9000 96 ten 4010 45
overige 9001 22 teneinda 3010
overigens 8010 tenminste 8001 25

58

2
2

2 2 2 2 2

0.

:1 2 222 2 22 2 222g2

ET:

- 87

tenslotte 8010 vier 1001 //
tenzij 3010 vijf 1001 11
ter 4010 45 vind 0110
terecht 2010 vinden 0310
terug 2010 vindt 0110
terwijl 3010 volgend 9001 22
tevens 8000 volgende 9001 22
tevoren 8000 volgens 5010 53 55
tevreden 9001 volstrekt 8000
tezamen 8001 25 vond 0110
thans 8010 vondan 0110
tien 1001 // voor 5010 86
tientallen 1001 12 vooral 8000
tijdens 5010 53 55 vooraleer 8010
toch 8000 voordat 3010
toe 2010 51 71 74 voort 2010
toen 3010 voorzover 3010
toen 8010 vorig 9001 22
ton 9000 95 vorige 9001 22
tot 5010 53 59 72 vraag 0100 09
totdat 3010 vraag 9000 09 94
trouwens 8010 vraagt 0100 09
tussen 5010 53 vragen 0300 09
twaalf 1001 // vragen 9000 09
twee 1001 11 vrij 2010
type 9000 vrijwel 8010
u 6010 vroeg 0100 09
uit 5010 56 77 vroeg 8000
uitgezonderd 5011 53 vroegen 0100 09
uren 9000 91 95 vroeger 8000
uur 9000 91 95 vrouw 9000 98
uw 6010 61 waar 3010 81
vaak 8000 waaraan 3010
valt 0110 waarbij 3010
van 5010 waarbinnen 3010

52 53 56 59 77 97 waarboven 3010
vanachter 5010 53 waarbuiten 3010
vanaf 5010 53 waarde 9000 96
vandaan 2010 waardoor 3010
vanonder 5010 53 waarin 3010
vanuit 5010 53 waarlangs 3010
vanwege 5010 53 waarmee 3010
vast 2010 waarna 3010
veel 8001 82 waarnaar 3010
vele 1001 13 waarnaast 3010
ver 8000 waarnevens 3010
verband 9000 96 waaram 3010
verdachte 9000 98 waaramtrent 3010
vereniging 9000 waarondar 3010
vermits 3010 waaronderdoor 3010
versus 5010 53 waarop 3010
vervanging 9000 96 waarover 3010
vervolgens 8010 waaroverheen 3010
via 5010 53 55 waartegen 3010
vial 0110 waartegenover 3010

:1212, '::' '-r,g

, 11111111;0>

- 88 -

waartoe 3010 zeer 8001 82

waartussen 3010 zeg 0100

waaruit 3010 zeggen 0300 84

waarvan 3010 zegt 0100 84

waarvoor 3010 zei 0100 84

waarzonder 3010 zeiden 0100 84

wanneer 3010 zelden 8000

want 7010 zelf 9000

waren 0110 zelfde 9001 22

was 0110 zelfs 8001 28

wat 3010 31 zelve 9000

wat 6010 35 zes 1001 11

we 6010 62 63 zet 0110 08

weer 8010 zette 0110 08

weet 0100 06 zetten 0310 08

weg 2010 zeven 1001 11

wegens 5010 53 55 zich 6010 63

wel 8010 zichzelf 6010

weliswaar 8010 zits 0110

walk 3011 31 zien 0300 06

walks 3011 31 ziet 0100 06

wellicht 8010 zij 6010 62 63 66

ward 0110 zijn 0310

warden 0110 zijn 6010 61

werp 0110 08 zit 0110

werpen 0310 08 zitten 0310

werpt 0110 08 ZO 8010 26 84

weten 0300 06 zo'n 9010 21 25 26

wethouder 9000 93 zoals 3010

wie 3010 31 zodat 3010

wierp 0110 08 zodra 3010

wierpen 0110 08 zogeheten 9000

wij 6010 62 63 66 zogenaamd 9000

wijl 3010 zogenaamde 9000

wijze 9002 92 96 zoiets 6010

wil 0110 zolang 3010

wilde 0110 zormin 3010

wilden 0110 zonder 5011 53 54 55

willen 0310 ZOO 0110

Wilt 0110 zouden 0110

wist 0100 06 zover 8010

wisten 0100 06 zowat 8010

word 0110 zowel 8010

worden 0310 zul 0110

wordt 0110 zulk 9002 21

z'n 6010 61 zulke 9002 21

zaak 9000 98 zulks 6010

zag 0100 06 zullen 0310

zagen 0100 06 zult 0110

zake 9000 96

zaken 9000 97

zal 0110
zat 0110
zaten 0110

ze 6010 62 63

2 ,r,

,,,, 22,', 2

ttt

