Index

P_4-free, 30
eMC3 algorithm, 86

adjacent, 9, 11
Alarm dataset, 75
ancestor, 11
ancestral set, 11, 19
aperiodicity, 81
arc, see directed edge
association rules, 100

Bayes factor, 83
Bayesian Network, 5
Bayesian score metric, 44
boundary, 9

candidate-generating ratio, 83
chain, 19
 graph, see chain graph
 maximal, 19
child, 11
CI restriction, 7
clique, 9
closure, 9
collapsability, 31
collision vertex, 11
conditional independence, 3, 5
confidence, 100
convergence, 81
 diagnostics, 86
counts, 45
covering relation, 19
cycle, 11
 directed, 11
 undirected, 9
d-separation, 13
DAG, see acyclic directed graph

model, see graphical Markov model
moral, 11
transitive, 19
data mining, 1
DEC model, see graphical Markov model
decomposable score metric, 55
descendant, 11
distribution
 Dirichlet, 46
 multinomial, 45

edge
 covered, 61
 directed, 11
 undirected, 9

EG model, see graphical Markov model
envelope, 23
 minimal, 23
equivalent DAGs, 14
generating function, 37
GMM, see graphical Markov model
graph, 9
 chain, 15
 chordal, 9
 P_4-free, 30
 complete, 9
decomposable, see chordal graph
directed, 11
 acyclic, 11
 null, 38
 undirected, 9
graphical Markov model, 5–42
 acyclic directed DAG, 11–15
decomposable DEC, 9–10
 essential graph EG, 15–18
 labeled tree TCI, 21–35
lattice LCI, 18–21
graphoid, 8

Hasse diagram, 19
HCMC algorithm, 75
hyperparameters, 46

immorality, 11
inclusion
 boundary, 66
 boundary condition, 66
 order, 62
irreducibility, 81
itemset, 100
 frequent, 100

join-irreducible element, 19

lattice, 19
 finite distributive, 19
LCI model, see graphical Markov model
leaf, 23
legal move, 55
lift, 101
likelihood, 46

Mambo algorithm, 103
marginalization, 31
market basket analysis, 122
Markov blanket, 102
Markov equivalence, 14, 29, 61
Markov property, 8
 chain graph global, 18
 chain graph local, 18
 chain graph pairwise, 17
 directed global, 12
 directed local, 12
 directed pairwise, 12
 undirected global, 10
 undirected local, 10
 undirected pairwise, 10
 lattice conditional independence,
 20
 tree conditional independence, 26
MC³ algorithm, 80
MCMC method, 80
meet, 26

path, 26
mobility, 89
moral ancestral set, 27
moralize, 12
moving, 56
neighborhood, 55, 61
non-descendant, 11
parent, 11
 set, 11
path, 11
 directed, 11
 undirected, 9
poset, 19
 ancestral, 19
precollapsability, 34
prior law, 46
probability function, 46
proposing, 56
pruning, 34
pseudo-counts, 46
RCAR, 71
recursive factorization, 52
root, 23

scoring function, 43
search strategy, 43
semi-graphoid, 8
separation, 9
simplicial
 collection, 33
 vertex, 33
skeleton, 11
smallest ancestral set, 11
structural learning, 43
subgraph, 9
 induced, 9
subtree, 23
subtree acyclic digraph, 12
sufficient statistics, 47
support, 100
 rule, 100
symmetric candidate-generating density, 83

TCI model, see graphical Markov model
TDAG, 19
traversal operator, 43, 55
traversing, 56

tree, 22
 homeomorphically irreducible, 31
 rooted, 23

Web Mining, 111
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-1</td>
<td>DEGAS - An Active, Temporal Database of Autonomous Objects</td>
<td>Johan van den Akker</td>
</tr>
<tr>
<td>98-2</td>
<td>Information Retrieval by Graphically Browsing Meta-Information</td>
<td>Floris Wiesman</td>
</tr>
<tr>
<td>98-3</td>
<td>A Contribution to the Linguistic Analysis of Business Conversations</td>
<td>Ans Steuten</td>
</tr>
<tr>
<td></td>
<td>within the Language/Action Perspective</td>
<td></td>
</tr>
<tr>
<td>98-4</td>
<td>Memory versus Search in Games</td>
<td>Dennis Breuker</td>
</tr>
<tr>
<td>98-5</td>
<td>Computerondersteuning bij Straftoemeting</td>
<td>Eduard Oskamp</td>
</tr>
<tr>
<td>99-1</td>
<td>Physiology of Quality Change Modelling: Automated modelling of Quality</td>
<td>Mark Sloof</td>
</tr>
<tr>
<td></td>
<td>Change of Agricultural Products</td>
<td></td>
</tr>
<tr>
<td>99-2</td>
<td>Classification using decision trees and neural nets</td>
<td>Rob Potharst</td>
</tr>
<tr>
<td>99-3</td>
<td>The Nature of Minimax Search</td>
<td>Don Beal</td>
</tr>
<tr>
<td>99-4</td>
<td>The practical Art of Moving Physical Objects</td>
<td>Jacques Penders</td>
</tr>
<tr>
<td>99-5</td>
<td>Empowering Communities: A Method for the Legitimate User-Driven</td>
<td>Aldo de Moor</td>
</tr>
<tr>
<td></td>
<td>Specification of Network Information Systems</td>
<td></td>
</tr>
<tr>
<td>99-6</td>
<td>Re-design of compositional systems</td>
<td>Niek Wijngaards</td>
</tr>
<tr>
<td>99-7</td>
<td>Verification support for object database design</td>
<td>David Spelt</td>
</tr>
<tr>
<td>99-8</td>
<td>Conception and Analysis of a Multi-Agent Mechanism for Discrete</td>
<td>Jacques Lenting</td>
</tr>
<tr>
<td></td>
<td>Reallocation</td>
<td></td>
</tr>
<tr>
<td>2000-1</td>
<td>Perspectives on Improving Software Maintenance</td>
<td>Frank Niessink</td>
</tr>
<tr>
<td>2000-2</td>
<td>Prototyping of CMS Storage Management</td>
<td>Koen Holtman</td>
</tr>
<tr>
<td>2000-3</td>
<td>Sociaal-organisatorische gevolgen van kennisstechnologie; een</td>
<td>Carolien Metselaar</td>
</tr>
<tr>
<td></td>
<td>procesbenadering en actorkerspektief</td>
<td></td>
</tr>
<tr>
<td>2000-4</td>
<td>ETAG, A Formal Model of Competence Knowledge for User Interface</td>
<td>Geert de Haan</td>
</tr>
<tr>
<td></td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>2000-5</td>
<td>Knowledge-based Query Formulation in Information Retrieval</td>
<td>Ruud van der Pol</td>
</tr>
<tr>
<td>2000-6</td>
<td>Programming Languages for Agent Communication</td>
<td>Rogier van Eijk</td>
</tr>
<tr>
<td>2000-7</td>
<td>Decision-theoretic Planning of Clinical Patient Management</td>
<td>Niels Peek</td>
</tr>
<tr>
<td>2000-8</td>
<td>Sensitivity Analysis of Decision-Theoretic Networks</td>
<td>Veerle Coupé</td>
</tr>
<tr>
<td>2000-9</td>
<td>Principles of Probabilistic Query Optimization</td>
<td>Florian Waas</td>
</tr>
<tr>
<td>2000-10</td>
<td>Knowledge Database Management System Design</td>
<td>Niels Nes</td>
</tr>
<tr>
<td></td>
<td>Considerations, Algorithms and Architecture</td>
<td></td>
</tr>
<tr>
<td>2000-11</td>
<td>Scalable Distributed Data Structures for Database Management</td>
<td>Jonas Karlsson</td>
</tr>
<tr>
<td>2001-1</td>
<td>Qualitative Approaches to Quantifying Probabilistic Networks</td>
<td>Silja Renooij</td>
</tr>
<tr>
<td>2001-2</td>
<td>Agent Programming Languages: Programming with Mental Models</td>
<td>Koen Hindriks</td>
</tr>
<tr>
<td>2001-3</td>
<td>Learning as problem solving</td>
<td>Maarten van Someren</td>
</tr>
<tr>
<td>2001-4</td>
<td>Conjunctive and Disjunctive Version Spaces with Instance-Based</td>
<td>Evgueni Smirnov</td>
</tr>
<tr>
<td></td>
<td>Boundary Sets</td>
<td></td>
</tr>
<tr>
<td>2001-5</td>
<td>Processing Structured Hypermedia: A Matter of Style</td>
<td>Jacco van Ossenbruggen</td>
</tr>
<tr>
<td>2001-6</td>
<td>Task-based User Interface Design</td>
<td>Martijn van Welie</td>
</tr>
<tr>
<td>2001-7</td>
<td>Diva: Architectural Perspectives on Information Visualization</td>
<td>Bastiaan Schoenhage</td>
</tr>
<tr>
<td>2001-8</td>
<td>A Compositional Semantic Structure for Multi-Agent Systems Dynamics</td>
<td>Pascal van Eck</td>
</tr>
<tr>
<td>2001-9</td>
<td>Towards Distributed Development of Large Object-Oriented Models</td>
<td>Pieter Jan ‘t Hoen</td>
</tr>
<tr>
<td></td>
<td>Views of Packages as Classes</td>
<td></td>
</tr>
<tr>
<td>2001-10</td>
<td>Modeling and Simulating Work Practice BRAHMS: a multiagent modeling</td>
<td>Maarten Sierhuis</td>
</tr>
<tr>
<td></td>
<td>and simulation language for work practice analysis and design</td>
<td></td>
</tr>
<tr>
<td>2001-11</td>
<td>Knowledge Management: The Role of Mental Models in Business Systems</td>
<td>Tom M. van Engers</td>
</tr>
<tr>
<td></td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>2002-01</td>
<td>Architecture-Level Modifiability Analysis</td>
<td>Nico Lassing</td>
</tr>
<tr>
<td>2002-02</td>
<td>Modelling and searching web-based document collections</td>
<td>Roelof van Zwol</td>
</tr>
<tr>
<td>2002-03</td>
<td>Database Optimization Aspects for Information Retrieval</td>
<td>Henk Ernst Blok</td>
</tr>
<tr>
<td>2002-04</td>
<td>The Discrete Acyclic Digraph Markov Model in Data Mining</td>
<td>Robert Castelo</td>
</tr>
</tbody>
</table>