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CHAPTER 1

Introduction

This thesis is (mostly) about making maps. Specifically, it is concerned with
the problem of automating the placement of names on them. Maps are a very
convenient means of presenting all kinds of information in a way that is easily
understood. Making a good map is hard, though. There is a limit on the amount
of information one can display in a fixed area, because beyond a certain point the
map will become unreadable. The art of map making lies in providing as much
relevant information as possible, while keeping the map easy to use. Displaying
all the objects (ofeature3 on the map is not always feasible. Sometimes unim-
portant features have to be removed, or merged with other features on the map.
On the other hand, important features may need to be exaggerated to enhance their
visibility. However, just displaying all the geometry is not enough to make a us-
able map. The user also needs a way of identifying the features. Usually, this is
done by writing the name of each feature next to it.

We can divide the features in three classes, based on their dimension. There
are zero-dimensional features callpdint featureslike cities and small sym-
bols. Then there are one-dimensional features, like highways and rivers, which
are calledine featuresFinally, there are two-dimensional features such as coun-
tries and lakes, which are known agea features.Note that this classification
depends on scale, since a city can be a point feature on a small-scale map, but on
a large scale it is best classified as an area feature. A feature can have a name;
the graphical depiction of the name on the map is call&abel. The process of
putting labels near their features is callatlel placemensee Figuré 1]1).
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Figure 1.1: The map-labeling problem.

Label placement is usually done manually by cartographers, who spend much
time on it. It is both a craft and an art, since a map should be both practical and
aesthetically pleasing. A practical map has labels which are easy to read, clearly
associated with their features, and easy to spot. The overall impression should be
harmonious, balanced, and not too crowded.

Although cartographers can make great maps, there is a neadtfimated
label placement. It becomes increasingly the case that maps are generated on
demand, with the use of a computer, which means that labels have to be placed
automatically. Geographical information systems (GISs) are software systems
which can store a huge amount of geographical data, and allow the user to analyze,
process, and view the data. When the final result is presented as a map, it has
to be completely computer-generated. Storing hand-crafted maps is simply not
possible, since the user can select and combine which information to display in
many different (and unpredictable) ways, creating any map he likes. Therefore,
automated label placement is a desirable capability of a GIS, since without names
it can be hard to make sense of a map.

In cartography, the label-placement problem is typically expressed using a
large number of rules. These rules are almost all local in nffutea label
satisfies these rules, then its quality is high. A good map has labels for each of
which the quality is high. Furthermore, label placement can also be seen as an
optimization problem.Such problems are defined bycast functionwhich has
to be optimized (either maximized or minimized). The cost function is used to
evaluate the map as a whole, contrasting with the previous view where the scope
of a rule is local. We will say more about these two perspectives on the hardness
of the problem shortly.

Genetic algorithms (GAs) are heuristic solvers for optimization problems.
Based on the theory of Darwinian evolution, they are able to “evolve” solutions

*A few global cartographic rules exist, such as the rule that labels in dense areas should be
“centrifuged” outwards.
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using a process similar to adaptation in biology. A GA uses a population of so-
lutions from which it selects the best ones: in a maximization problem, those
for which the cost function gives high values. From these the next population is
generated, by altering and combining them. This two-step cycle (selection and
generation) is iterated until the population is converged (all members are very
similar). The best member of the final population is the solution returned by the
algorithm. Hopefully, it is close to optimal.

In this thesis we will explore the possibilities of labeling maps using genetic
algorithms. When applied to map labeling, the solutions of a GA will be labelings
for a given map. A good labeling places as many labels as possible that are not
intersected by other labels. But a good labeling also places each label well with
respect to its surroundings. For example, if a city is adjacent to a coastline, its
label is best placed in the water. The GA should be able to handle both aspects of
the problem.

The goals of this thesis are to study the use of GAs to solve the map-labeling
problem, and the application of theoretical insights about GAs to a real-world
problem. Paralleling these two goals, the thesis is aimed at two different audi-
ences, broadly divided in those with a cartographic interest and those interested in
GAs.

Readers with a background in cartography can find a new approach to solve the
map-labeling problem. Other GAs that try to solve the propane knowrt8107.79
but we try to surpass them by offering a framework for reliably and efficiently
solving the problem in a more general setting. We will describe a GA that can
label point and line features (and it should be relatively easy to incorporate area
features). Special care has been taken to make the GA flexible and easily ex-
tendible with additional constraints, without resorting to a weighted cost function.
In fact, our techniques are more broadly applicable than just the map-labeling
problem, and we describe in one chapter how GAs can be applied to other GIS
problems, like line simplification and certain generalization tasks.

Researchers in the field of genetic algorithms can find something of their lik-
ing, too. We will design a GA based on GA theory. However, we will also take
care to make the GAractical. We try to minimize the number of arcane param-
eters that have to be tuned or set beforehand, keep the cost function simple, and
provide a way to easily extend the problem with additional cartographic rules. Our
faithful application of theoretic principles allows us to give a theoretical analysis
of the scale-up behavior of our GA. We devote an entire chapter to this analysis,
in which evidence is given that the GA described is efficient. We also describe an
extension of the classical GA—the geometrically local optimizer—that acts as a
source of building blocks and combats the disrupting effect of crossover.

*These GAs are described in detail in ChaEler 3.
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We will make few assumptions about prior knowledge; map labeling and GAs
will be explained in sufficient detail (in this chapter and Chapter 2) to understand
later chapters. However, some basic knowledge about statistics is assumed in
Chaptef 4.

The remainder of this chapter is organized as follows. First, in Sgctipn 1.1, we
explore the map-labeling problem in more detail. We give an overview of different
variants, discuss why the problem is hard, and then describe the relevant literature.
In Section[ I.p we argue why GAs are an interesting candidate for solving the
problem. We end the chapter by giving an outline of the thesis, and describing our
main results.

1.1 Map labeling

The map-labeling task can contain many aspects which can add to the complex-
ity of the problem. For example, different instances of the problem can include
different kinds of feature. Some problems only deal with point features, for ex-
ample labelings of drill sités¥'11%(where a measurement has to be shown next
to the location) or statistical plots (where data is printed in a scatter plot). Other
problems, such as graph labeli®ginclude line features. The full cartographic
problem has to deal with all three kinds of features: point features, line features,
and area features.

The problem can also have a time constraint. For example, for dynamically
generated map¥ where a user is quickly changing the region of interest, there is
little time to generate the labeling. Other problems, such as the production of pa-
per maps, allow for a considerable amount of time (and computational resources)
in order to obtain a final result that looks good.

Another source of variety is the number of labels for a feature. For point
features usually a single label suffices, but for some problems there is a need to
place multiple label¢&":>3This happens, for example, with multi-lingual maps,
or when labeling a mountain peak with both its name and its elevation. For line
features it is sometimes required to repeat labels, spread out over the feature.

The features themselves can have different priorities, which influences the la-
beling®8 Different cities can differ in importance due to their size. Also, different
types of feature can be assigned different priorities. For example, the roads on the
map can be more important than the cities. Labels of features with a low priority
should not obstruct the labels of high-priority features.

The problem can be further complicated by the shape of the label. Often, the
label is considered to be an axis-parallel rectangle in which the name of the feature
is written, but sometimes curved labels are allowed. Instances where the labels are
circles®®%or square®® have been studied too. A practical extension to the fixed-
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sized rectangle is thelastic labelas introduced by Iturriaga and Lubf&where

the label can have different shapes depending on how the name of the feature is
written. Long names can be split over multiple lines, which results in a differently
shaped label.

Additionally, the placement model—the specification of the candidate posi-
tions for a label—used is a factor of importance. For point features there often is
a standard placement model, where a label can be placed in four (or sometimes
eight) predefined positions. Other models have more freedom in the placement of
the label. For example, in the problem studied by HifS¢he placement of labels
is only constrained by the fact that a label should touch (but not overlap) a circle
around the point feature. The sliding-label model, introduced by Kreveld®¥al.,
is similar; it only constrains the placement of the label by the requirement that it
should touch the point feature. There are no standard placement models for line
and area features, since those features can differ in shape considerably.

Furthermore, the requirements on the output can differ. On geographical maps,
the dimensions of the labels are usually given, and we are concerned with placing
the maximal number of labels that do not intersect other labels. Another possibil-
ity21¢ s to find the maximal size of the labels, under the condition that all labels
have to be placed.

Lastly, there is an interesting connection between the map-labeling problem
and thename-selectioproblem. The latter problem, also callseitiement selec-
tion,20%18js concerned with finding a subset of features on the map, when it is not
feasible to label all features. Selection of an appropriate subset can be tricky, since
one needs to deduce how important a certain feature is in relation to its surround-
ings and the use of the map. Name selection can be done before labeling, in which
case only the names of the selected features have to be placed. However, there is
no guarantee that it is possible to label all selected features without intersecting
labels. On the other hand, name selection may be too selective and remove too
much. It makes sense, therefore, to integrate map labeling and name selection.

In this thesis we focus on the case of cartographic maps, where the number of
non-intersecting labels should be maximized. Labels will be rectangles of fixed
dimensions (but they can be different for each label). We will develop an algo-
rithm that handles both point and line features. For point features, we will use a
placement model with fixed positions. No such placement model exists for line
features, so we will describe a procedure that generates candidate positions. We
will discuss a way to integrate name selection with the labeling process, and in
the case of line features we will study the problem of placing multiple labels for
a single feature. We will also describe a flexible approach to add cartographic
constraints. This is exemplified by adding preferences for the positions of point-
feature labels and categorizing the features of the map in different levels of im-
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portance. For example, the label of a major city should not be omitted in favor of
the label of a small town.

The application we have in mind is where a user of a GIS creates an (unla-
beled) map, then presses a button to label it, and finally prints it on paper. This
means that the speed of the algorithm is not our main concern, although we will
take care to make the algorithm run efficiently. It also means that we avoid as
much as possible the use of parameters that are difficult to set by the user of the
GIS. Examples of such parameters are parameters specific to the GA (like the
probability of crossover) and weighting factors in the cost function.

We expect the input of our algorithm to consist of a list of features classified
by type. Also, thescaleof the map—the ratio between real-world coordinates
and map coordinates—has to be specified. Figure 1.2 demonstrates some of the
elements of the maps that we want to mgkeifferent levels of importance (in-
dicated for cities by font size), preferred positions for point-feature labels, and
multiple labels (with appropriate spacing) for line features.

Why is map labeling so difficult? The difficulty of the problem stems from the
following two factors.

Firstly, even basic instances of the problem have been proven to be NP-hard.
An example is the problem where the number of non-intersecting labels has to
be maximized, given a set of point-features whose labels can be placed in one
of four fixed position®3:2%.28 NP-hardness proofs for other instarte&104.47
were found also.

The second reason why map-labeling is hard, is that many additional con-

point-feature label the top-right position is the best placement, not considering
the surroundings of the feature. On the other hand, if the label were separated
from its feature by a river when placed there, the position is considered not so
good. This kind of constraints are almost always very local in nature. We will
refer to them as the “cartographic rules”, although strictly speaking the combina-
torial part also deals with a cartographic rule (“a label should not obscure another
label”). We can divide the cartographic rules in three clas%eassociationvis-

ibility, andaesthetics Association rules express the fact that the user of the map
should be able to associate clearly the label with its feature. Therefore, the label
should be placed near its feature. A visibility rule states that a label should be
clearly visible on the map. For example, a label should not be placed on a back-
ground with low contrast. The third class, aesthetics, is concerned with how nice

*The map was made usingjose = 12, &ar = 30, Emedium= 80000, &mega= 250000, and
medium scale. We discuss the constatsiium Emegain SectiorE]Z on pa@?, the constants

Eclose Efar IN Sectior@ on paqup& and the scale in Sen 6.2 oe 144.
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the label looks. An example of such a rule is that a curved label should not have
too many inflection points.

Some cartographic rules are relatively strict (“a line-feature label should be
repeated at suitable intervals”), others are less important (“a point-feature label
should preferably be placed in the top-right corner”). Rules also often conflict
with each other, and require a suitable compromise to be found.

Previous work

A lot of research has been done on various instances of the map-labeling problem.
Initially, the main focus was on satisfying the cartographic rules as they were writ-
ten down by cartographers like ImH&f Alinhac? and Youlitt€ This resulted in
many rule-based systems (for example by Doerschler and Frééarahby Jones

and CooRY), which performed backtracking when a label could not be placed
without breaking the rules. At the same time, heuristics like the label-repulsion
method of Hirsch? and integer programming with relaxations by Crorifegnd
Zorastetl! were devised. Later, NP-hardness proofs for the basic map-labeling
problem were given independently by Marks and Shi€béato and Imai® and
Forman and Wagné£ Still, Verweij and Aardai®® showed that they could solve
instances with up to 950 point features optimally before the required computation
time became too demanding. Recently, much research has been done in applying
heuristic combinatorial problem solvers to the map-labeling problem. Methods
like simulated annealing (by Christensen et3J. evolutionary algorithms (by
Djouadit® Verner et al1%! Raidl\”® and Preuss), and tabu search (by Yamamoto

et altl?), known for successfully solving other hard combinatorial problems, were
able to find good solutions for instances of the point-feature map-labeling prob-
lem. They usually focused on finding labelings with as few overlapping labels as
possible, and mostly disregarded the other cartographic rules that add to the com-
plexity of the problem. Heuristics for maximum independent set were applied
(first by Agerwal and Kreveld,and recently by Strijk et &2:8/:10§ to the same
problem and compared favorably with other methods. They too disregarded other
rules.

Edmondson et ak3 however, extended the simulated-annealing approach of
Christensen et af by using a cost function that sums a large number of mea-
surements of different cartographic rules. They also considered line features with
a single label and area features, making their algorithm a general one. Another
general approach that considered all types of feature was given by Wagner and
Wolff.2 They reduced the problem to a constraint-satisfaction problem by using
the features as variables, the candidate positions as their domains and overlaps be-
tween positions as constraints. This method is general in the sense that it can also
solve problems with line and area features, provided that candidate positions for
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the label are calculated. Additional cartographic rules seem difficult to express.
Kakoulis and Tolli3? described a method which formulates the problem in graph
theory, after which a bipartite matching algorithm is applied. They assign each
candidate position a cost (which can express its adherence to cartographic rules)
and minimize the total cost. The method can handle all feature types, but again
it seems difficult to add additional constraints (except by incorporating them into
the cost function).

In developing a general algorithm for the map-labeling problem, a difficult
task is to combine cartographic rules with the combinatorial problem of maximiz-
ing the number of non-intersecting labels. As stated above, they are essentially
very different. The combinatorial aspect is global, whereas the cartographic rules
are mostly local in nature. All the algorithms that were successful in solving the
combinatorial part did so by using a cost function that counted the number of non-
intersecting labels. A possible method for dealing with the cartographic rules is
to simply express them in the cost function. The cost function, however, evaluates
the whole map, and therefore is global in nature. For example, the cost function
for the most basic problem (maximizing the number of non-intersecting point-
feature labels) can be expressedas(x) = freg(x). Here, the cost function uses
a functionfree(-) that counts the number dfee (non-intersecting) labels. The
parametex denotes the solution that is evaluated. Next we can add the constraint
that point-feature labels have preferred positions (with the top-right position as
the best). This is expressed using the funcpeef(-), which measures how well
all labels are placed with respect to the preference in positions.

How should the functiopref(-) be combined with the functidineg(-)? Multi-
attribute utility theory (MAUT$® provides a framework in which different at-
tributes of a system can be combined to yield a utility function that captures the
interactions between the attributes. For the map-labeling problem, the attributes
are measurements of properties of the labeling, pitef(-) andfree(-). The cost
function is the utility function that combines these attributes in the MAUT frame-
work. Informally, the framework dictates that attributes for whidde-offscan
be made can be expressed using an additive function. A trade-off means that the
decrease of one attribute can be compensated by the increase of another, yielding a
solution which is equally good. In such a case, the cost function would be a sum-
mation of the subfunctions. Under other circumstances, it may be necessary to
use more complicated forms, like a multiplicative function such as the following:
feostX) = (L —wy) f1(X) - (1 —wp) fa(X).

For our example, a complication that arises is that in most cases one usually
wants the number of free labels to be maximal, and does not want to make a
trade-off between free labels and preferred positions for the labels. The combi-
natorial aspect of the problem has the highest priority, and should not be affected
by the application of the cartographic rules. For attributes that measure different
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cartographic rules, the trade-off condition seems more appropriate. The MAUT
framework can, in those cases, probably help to design a sensible utility function.

In any case, in literature, it is customary to use an additive function to combine
multiple cartographic rules. We will follow this practice to keep our examples
familiar and intuitive. Note that we don’t use cost functions consisting of multiple
subfunctions ourselves—we handle the cartographic rules in a different way, as
explained later. Additionally, the following discussion applies equally well to
other kinds of combination of subfunctions.

The cost function is thus extended with the new constraint by summing the
result of both functions. A problem is that every constraint needs a weighting
factor to balance the priorities of the constraints. In our example, the number of
free labels is more important than the number of labels in a preferred position.
The resulting cost function takes the following formigosyX) = wy - free(x) +ws, -
pref(x). The constante;,w, are the weighting factors used. These weights have
to be set to sensible values, which is not a trivial task. For example, Edmondson
et al. used such a cost function in whieh = 40 andw, = 1. They say: “Suitable
values for the weights were created intuitively and refined empiric&llyThey
have to be set by trial and error, that is, by running the algorithm many times
and evaluating the output. Each time the map has to be evaluated by hand, by
looking at it, to see if all constraints are balanced properly. Even if one succeeds
in setting the weights to good values, they are dependent on the maps used as test
data. Different maps may yield unexpected results. Adding another constraint can
therefore be very difficult.

Finding a good way to combine cartographic rules with the combinatorial as-
pect of the problem was an important goal when we designed the GA described in
this thesis. In the next section we will discuss the reasons for considering GAs to
solve map-labeling problems.

1.2 GAs for map labeling

In this thesis we will explore a new approach to the automated map-labeling prob-
lem that uses genetic algorithms (GAs). GAs are powerful, combinatorial prob-
lem solvers based on the theory of Darwinian evolution. We will discuss how GAs
work in more detail in Section 2.1.

GAs are a promising candidate for solving the map-labeling problem. Two
relevant characteristics of the map-labeling problem, and indeed of a lot of GIS-
problems in general, are:

e The problem constraints can be viewed as belonging to different classes.
As described in Sectidn 1.1, the map-labeling problem has a clear global



1.2 GAs for map labeling 11

combinatorial part and also has a part that deals with more local constraints.
Since both parts have different kinds of constraints, they should be treated
differently.

e The structure of the problem is determined by the geometry of the features
and the labels. Placing a label near a feature is possible when the labels of
surrounding features don’t get in the way. Features which are further away,
however, have less influence on the placement of the label.

These characteristics match well with GAs, as will be explained shortly. There
are several reasons why it is interesting to investigate the use of GAs for solving
the map-labeling problem.

GAs are powerful and flexible problem solvers. The map-labeling problem is
hard in a combinatorial sense, so it makes sense to use a technique that is capable
of solving hard problems. When the problem size becomes large we have to use
a heuristic like genetic algorithms, simulated annealing or tabu search, to avoid
an exhaustive search that takes too much time. GAs have shown to be successful
in many different problem domains and have been used to solve various hard
problems.

The clear geometrical structure of the map-labeling problem, as described
above, provides another reason to use GAs. This property translates nicely to
thelinkage(see Sectioh 2]1) of a problem. A GA finds good solutions by combin-
ing the best parts of other solutions. Exactly what a “part” (also calledilding
blocK) is, is determined by the linkage of the problem. Building blocks in the map-
labeling problem are spatially local regions, and this information can be exploited
in the design of a GA that searches for good solutions efficiently.

Finally, solving a hard combinatorial problem invariably requires a lot of com-
putational effort. GAs are no exception to this rule. Fortunately, GAs are algo-
rithms whose population-based nature makes them easy to paratte@itese to
linear speed-ups can be achieved this way, provided that the evaluation of the cost
function is the most time-consuming part of the algorithm.

A difficulty with using GAs for the map-labeling problem seems to be that all the
cartographic rules have to expressed by using a cost function that is a combination
of weighted subfunctions. The disadvantages of that approach were discussed
before, in Sectiof I]1. We show that this is not necessary, and develop a GA
where the cost function is deliberately kept simple; it only counts the number
of free (non-intersecting) labels. The division of the problem constraints in two
different classes is reflected in the design of our GA. The combinatorial constraint
is expressed in the fitness function and is handled by the normal operation of the
GA. All other constraints are handled in a novel operator, the geometrically local
optimizer.
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1.3 Main results and overview of thesis

As stated earlier, the goal of this thesis is twofold: to solve the map-labeling
problem with genetic algorithms, and to use theoretical insights into the way GAs
work for the design of a GA for a real-world problem. Our main contributions are
thus as follows.

Firstly, we develop a GA capable of solving the map-labeling problem. We
will start with the basic problem of maximizing the number of non-intersecting
point-feature labels. Comparisons with existing algorithms show that our GA
gives equally good, or better, results than the current state-of-the-art. We will then
add additional constraints; for example, we show how to have preferred positions
for labels, how to enforce that important cities always get labeled, and how to
do integrated name selection. We will start with randomly generated data, but
will also use real-world data of portions of the USA. The GA will be extended to
handle both point and line features. The latter can have multiple labels. This is
one of the few algorithms that allows for multiple labels for line features.

We tried to build a GA that ipractical in that one can actually envision it
being used in a GIS. We imagine that users just want to press a button and let the
system label their map, and therefore the GA should integrate well in a GIS and
a minimum of parameters should be set. Our GA differs from more conventional
GAs in that we tried to avoid using a weighted cost function (the cost function
gives a measure of how well a map is labeled).

Secondly, the other main theme of this thesis is the use of theoretical insights
into how GAs work for the design of GAs for real-world problems. Theory should
help the design of GAs for practical problems: a GA designer should try to apply
the lessons from theoretical analysis, and not rely too much on craftsmanship.

The design of the map-labeling GA is founded on the identification of the so-
called building blocks of the problem, and recognizes the need to obtain good
mixing, minimize disruption, and avoid genetic drift and hitchhiking—see Chap-
ter[d for an explanation of these and other concepts from GA theory. This results in
a GA that is robust in the sense that it reliably finds solutions for the map-labeling
problem, and is extendible with new constraints. In fact, the techniques are useful
for more problems with a geometrical structure, and we show how to apply them
to two other GIS-problems (line simplification and a certain generalization task).

Adding more cartographic rules to the problem is done by modifying the geo-
metrically local optimizer, a new operator that is introduced to explicitly generate
candidates for building blocks. Building blocks in the map-labeling problem are
geometrically local regions of the map which have a good labeling. Thus, a new
cartographic rule can be expressed by adding it to the geometrically local opti-
mizer.

We used theoretical models for the population size (the gambler’s-ruin model)
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and the number of generations before convergence to describe the scale-up be-
havior (the relation between input size and computational cost) of our GA. These
models have been able to predict the scale-up behavior of GAs for artificial prob-
lems quite accurately. As far as we know, this is the first time they are applied
to analyze a GA for a real-world problem. We were able to satisfy the conditions
for these models largely because of our use of the geometrically local optimizer.
For example, one of the most important conditions states that the fithess function
should be additively decomposable (see Segtion]2.1.4,[page 23). Since we were
able to keep the fitness function simple by putting the cartographic rules in the
geometrically local optimizer, this condition holds for our GA.

The rest of this thesis is organized as follows. We start by providing a tutorial
on GAs in Chaptefr]2 for those for whom GAs are new or who want a refresher.
A GA for the “basic” point-feature map-labeling problem (without the additional
cartographic constraints) is designed in Chalpter 3. In this chapter we describe the
core of the GA, which we designed carefully to make it robust and extendible.
We also introduce the geometrically local optimizer, which is used to incorporate
cartographic rules into the algorithm, and discuss its advantages. From this result,
we continue in three different directions.

Firstly, we discuss the efficiency of the GA in Chagter 4. The scale-up be-
havior of any algorithm is very important for its practical significance. We show
that the GA has quadratic scale-up behavior, which means that doubling the in-
put of the algorithm requires four times the amount of computational effort. As
stated above, this is, as far as we know, the first time that GA theory has been
successfully applied to describe the behavior of a GA for a real-world problem.

Secondly, in Chaptér 5, we present a framework to design GAs for GIS prob-
lems. We show how the techniques we used to design the GA for point-feature
map labeling, which were derived from theoretical insights, can be used in a
broader context. We extend the GA for point labeling in several ways to demon-
strate how to incorporate additional cartographic rules. We also present two other
GIS problems (line simplification and a generalization task) as case studies of our
approach.

Lastly, in Chapte[ |6, we expand our framework for map labeling by adding
another feature type. We extend our GA to also handle line features with multiple
labels that are placed at proper intervals along the line feature.

We conclude in Chaptéf 7.

Parts of this thesis have appeared elsewh&&92.101.28.99
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CHAPTER 2

Genetic Algorithms

In the following chapters we will develop several GAs. In this chapter, some
understanding of the way GAs work is provided. This background knowledge is
given here for those who do not possess it, or who do not mind a quick refresher.
Readers that are already familiar with GAs may want to skip this chapter.

A genetic algorithm is a heuristic solver for optimization problems. Its inspira-
tion comes from the theory of Darwinian evolution by means of natural selection.
The interest in biology by computer scientists can easily be understood. In bi-
ology incredibly complex structures have arisen that are capable of solving the
problems inherent to life and survival very well. Biologists have also identified
the mechanism that leads to these remarkable feats of problem solving: evolu-
tion by means of natural selection. Computer scientists on the other hand have
encountered problems that are so hard that it is believed that no fast (polynomial
time) algorithm can be found that solves them optimally. They are in need of
ways of (approximately) solving such problems in a reasonable amount of time.
It seems interesting, therefore, to apply the highly successful mechanism of natu-
ral evolution to computer-science problems. Today, several typegotdtionary
algorithmare known, for example genetic algorithms, evolution stratégies?
and evolutionary programmirtg:2€ In this thesis, we will use genetic algorithms,
as originally described by Hollarfd. Good textbooks on GAg:24.5%a|so cover
the material from this chapter.

This chapter is organized as follows. First, in Secfion 2.1, we will introduce
the basic genetic algorithm. It consists of several components, which will be

15



16 Genetic Algorithms

discussed in turn. In Sectign 2.2, we will briefly introduce some theory on GAs
that explains why GAs are able to solve many problems efficiently.

2.1 The algorithm

In biology, organisms have to compete for scarce resources in order to survive.
For example, consider a number of trees competing for sunlight. A tree which
grows taller than other trees can expose its leaves to more sunlight and will be in
a better position to reproduce itself. This tree is said tditber than other trees.
Assuming environmental conditions are equal for all the trees, the relative height
of a tree is determined by its genetic blueprint: its DNA. Since fitter (taller) trees
reproduce more, this genetically determined trait of growing high is propagated
through the population of trees. In a few generations, a tree will, on average, be
taller than its ancestors. Over time organisms will become progressively fitter,
until the environment changes (humans start breeding bonsai trees) or a physical
boundary is reached (trees can only grow so large until they collapse under their
own weight).

Another essential ingredient of evolution is the introduction of new traits. This
happens when DNA is copied and a mutation (a random change) occurs. If the
mutation is beneficial it is likely to propagate through the population. Traits can
also be combined in a single individual by swapping pieces of DNA in the process
of reproduction. This is called crossover.

Summarizing, the key elements of Darwinian evolution are the following:

e Traits (like height, shape of foliage, etc.) are genetically determined and
can be passed on from parents to offspring.

e Certain traits are important for the success in reproduction. In the competi-
tion for limited resources an organism can be more or less fit, compared to
other organisms of the same species. The process of selective reproduction
as a result of differences in fitness is calfetural selection

e There is a source of genetic variation that produces new traits. Mutation
introduces random variation, and crossover provides new combinations of
genes.

Organisms with the best traits are able to reproduce more, and pass the traits on
to their offspring. New traits are continually introduced and subsequently sub-
jected to natural selection. As a result, traits that are beneficial get propagated
through the population, and the species evolves towards a state of adaptation to its
environment.



2.1 The algorithm 17

Even though this view of natural evolution is much simplified, it serves as
an introduction to thartificial evolutionas used by a GA. In a GA, not organ-
iIsms, but solutions for a certain problem evolve. As a running example of a very
simple problem, we consider the following, artificial problem. Givey Binary
variablesx; .. -Xzn,, We want to maximize the number of paiqsximp such that
Xi = Xi+n,- We will call this problem thecorresponding-bits problentince it is
so simple—setting all bits to 1, for example, gives an optimal solution—it will
not distract us from demonstrating how it can be solved using a genetic algorithm.
(Good problems to solve with a GA are usually combinatorial in nature, and have
a search space with a complex structure. A GA to solve this problem would,
obviously, be overkill.)

The problem is formulated usingast functionthat attributes a cost (to be
maximized or minimized) to evergolution of the problem. A solution gives a
settingof the problem variablef the cost function. A setting is an assignment
of values to the problem variables. Note that a solution doesn’t have to be optimal.
For our running example, the cost function becorfgs(x) = zin:”lmatcr(xi , xi+np),
wherex denotes a solution andatch(x;, Xj) = X - Xj + (1 —x;) - (1 —X;j). An op-
timal solutionx* hasfcest(X*) = np.

In artificial evolution we use the cost function to specify fitness and call it the
fitness functionlt is possible that the problem specifies constraints on the settings
the problem variables may have. If a solution fulfills these constraints, it is called
feasible

To make artificial evolution work, similar elements as for natural evolution are
needed:

e A solution is encoded, for example as a string of values, similar to DNA.
Offspring is made by copying parts of the strings from the parents.

e Each solution has a certain fitness, which specifies how well the solution
solves the problem. Selection is mimicked explicitly using a selection scheme,
which chooses the individuals with the highest fitness for reproduction.

e Genetic variation is provided by mutation and crossover operators similar
to those of natural evolution.

Following the analogy with biology, we call the string of values that specifies a
solution achromosoméa strand of DNA) consisting of a number génes Each
gene stores one from a finite number of values cadlégles The fithess of such
a solution is given explicitly by the fitness function.

A GA evolves a population of solutions by repeated selection and mating. Se-
lection picks individuals out of the population for which the fitness function yields
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a relatively high result. These individuals are placed in an intermediate popula-
tion called themating poo) which has the same size as the original population.
Selection is done with replacement. As a result, very fit individuals may have
multiple copies in the mating pool. The members of the mating pool are “mated”
by combining their genes using the operators crossover and mutation. Crossover
distributes the genes of the parents over the children. Mutation randomly chooses
a gene on an individual and stores a random allele there. Two (different) members
of the mating pool are randomly chosen and removed from the pool. They are
then mated, and produce two children. After all children from all pairs of parents
are generated, they constitute a new population that replaces the old population.

The quality of the solutions in the population will progressively get better with
subsequent iterations. Eventually, the population will haweverged as a result
of selection all individuals in the population are similar in quality and hardly any
progress is made. If the GA is designed correctly, the best solution from the final
population should be near optimal.

We will refer to the analogy with natural evolution at various points in this
chapter to make concepts intuitively clear. It should be understood, however, that
the analogy should not be taken too far. For example, in biology a population
is almost always largely converged and well adapted to its environment. Further
adaptation occurs when the environment changes and a new niche is discovered.
In artificial evolution the environment (simulated by the fitness function) is static
and the GA terminates when the population is converged.

Pseudocode for a genetic algorithm is given as Algorithm 1, which takes as
input the population siza, the probabilityPr. that crossover is performed, and
the probabilityPry, that mutation is performed. The size of the populatiis
assumed to be even. Since many researchers have been inspired by natural evolu-
tion differently, there are many variants of the genetic algorithm. Our description
of the GA is based on the algorithm as developed by Hofthadd discussed by
Goldberg®? This algorithm uses the following subfunctions:

INITIALIZE (ind): Initialize an individual.

SELECT(Pop): Select an individual from the populati¢top with above-average
fitness.

CROSSOVEKp1, p2): Perform crossover op; and p», yielding childrenc; and
Co.

MUTATE(ind,g): Mutate gene in the solutionind.

TERMINATE(Pop): Evaluate the state of the population and decide whether to
stop the algorithm.
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1: generatd®opwith n chromosomes N
. Construct initial
2: for ind € Pop do } ooulation
3:  INITIALIZE (ind) Pop
4: repeat
5. Poppat<— 0 N
6. repeat Fill mating pool
7 ind «SELECT(Pop) with selected
8: addind to Popy, ¢ individuals
9: until |Popy.d = |Pop /
10:  Pop<0 \
11:  repeat
12: randomly choose and remove two
individuals pz, p2 from Popy, 4t
13: with probability Pr; do Generate new
{C1,C2} —~CROSSOVER P, P2) population from
14: otherwise:c; « p1; C2 <+ P2 mating pool
15: for child € {c1,c,} do
16: for each gengin child do
17: with probability Pr,, do MUTATE(child, g)
18: addchild to Pop
19:  until |Popyad =0 ’

20: until TERMINATE(Pop)
21: report best individual ifPop

Algorithm 1: The standard genetic algorithm.
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All parts of the algorithm are further explained in the following subsections. We
first need something to evolve, so the algorithm starts by generating and initializ-
ing a new population. How to set the population size discussed in Subsection
[2.1.1. Each solution in the population is a string of values (see Subsgction 2.1.2).
After a solution is generated, it has to be initialized to give it proper settings (see
Section 2.1.8). What follows is the main loop in which a population evolves to
a new population. First, a mating pool is filled with highly fit individuals from
the old population. A fitness value is given by the fitness function, discussed in
Subsectiof 2.714. How individuals are selected is described in Subsectidn 2.1.5.
Parents are paired by randomly choosing two members of the mating pool. Par-
ents can either produce exact copies of themselves, or perform crossover (see
Subsection 2.1]6) to yield a new combination of their genes in their children. The
offspring can subsequently be mutated (see Subsectionj 2.1.7), before they are
placed in the new population. After some time, the population will only contain
solutions which are very much alike, and little progress is made. A termination
criterion that evaluates the state of the population then signifies the main loop
should end. The choice of termination criterion depends on what the user wants.
Examples of termination criteria are a limit on the amount of computation, a goal
for the fitness of the best solution in the population, or a measure of convergence.
The latter can be done by examining the differences in fitness in the population,
or by following the increase in fithess over time.

The following subsections will explain the various components of the genetic
algorithm in more detail. Descriptions will, for the sake of simplicity, appeal to
intuition, and will be exemplified with the corresponding-bits problem. In Section
[2.9, more formal concepts will be introduced.

2.1.1 Population size

The population size determines the amount of information the GA can exploit.
Each member of the population is a solution, and each solution is a point in the
search space. A larger population means the GAs view of the search space is
more detailed, and deductions about its structure are more likely to be correct. In
other words, larger populations are likely to give better final solutions. On the
other hand, maintaining a large population takes a lot of computational effort. A
trade-off has to be made between the quality of final solutions and the amount of
computation one is willing to do. Since a GA deteriorates gracefully in the quality
of its solutions, there is some slack in the setting of the population size.

How does one set the population size? In general, three different methods are
used to set the population size for a specific run of the GA:

1. Reckoning: the user gets a feel of how large the population size should be,
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simply based upon experience when using the GA. This is by far the most
common method.

2. Analysis: by modeling the dynamic interactions of the algorithm one can
find a population-sizing equation which gives recommendations on the size
of the population. Examples of this method are in papers by Goldberg et
al’*9 and Harik et aft® While this would seem to be the ideal solution, doing
the analysis is very hard due to the complex behavior of genetic algorithms.
As aresult, analysis has so far only been done of GAs for artificial problems
with known properties. One of the contributions of this thesis is to perform
the first such analysis for a GA solving a real-world problem (namely the
map-labeling problem)—see Chagjtér 4.

3. Adaptive sizing: a method that completely eliminates any user interaction
is adaptive population sizing. Examples of this approach are described in
papers by Smith and SmuéaSawai and Kiz& and Harik and Lob&?
Especially the last method can be directly applied as an immediate, off-
the-shelf solution to avoid setting the population size. It works by running
multiple GAs with different population sizes in parallel. GAs with smaller
population sizes get more computation time, until GAs with larger popu-
lations find better solutions. In the worst case, the time complexity of the
number of evaluations becom&s= O(EqptlogEqpt), WhereEqp: denotes
the number of evaluations that a GA using an optimally sized population
would take/=:62

2.1.2 Encoding

One of the first decisions that has to be made in the design of a GA, is what
encoding to use. As described before, solutions are encoded as chromosomes,
strings of genes which can hold any of a finite number of alleles. Solutions give
settings for the problem variables, and it has to be decided how to store a solution
as a string of values. How long should the string be? Which alleles can be stored
at a gene? How are genes and problem variables related? The set of alleles the
encoding will use is called thalphabetof the solution. The cardinality of the
alphabet is the number of alleles. An encoding can be as simple as a concatenation
of the problem variables, or as elaborate as coding a tree structure in a string of
integerse! In the problem of matching corresponding bits, each problem variable
can be encoded by a single gene that stores a bit. The encoding becomes a bit
string of 2np genes long, with the alphabat= {0,1}.

The choice of the encoding is important for the success of the search of the
GA. There exists an interdependency between the choice of the encoding and
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the design of the operators that act on it (especially crossover). Depending on
the crossover operator used, it is probably a bad idea to use an encoding for the
corresponding-bits problem that follows the same ordering as for the problem
variables. We have pairs of two variablgsandx;n,, that depend on each other,
because they have to match. If the same ordering is used in the encoding, then
there are always, — 1 genes between two genes that “belong together”. It is
likely that crossover will transfer their settings to different children. This will
become more clear when we discuss crossover. For now, it is sufficient to realize
that variables that have a mutual dependency should be kept close together in the
encoding. Therefore, we encode a solution for the corresponding-bits problem as
a string of corresponding pairs that have to match: X1X1+nj, - - - XnpX2n, -

The building block hypothes?s states that GAs find good solutions by com-
bining smaller parts calletuilding blocks Such a part consists of only a few
genes with (near-)optimal settings, and gives a large contribution to the fithess
of the chromosome. It is crucial to the success of the search that these parts are
inherited by the children, since that is what makes them fit. If crossover, for ex-
ample, splits a building block that existed in a single parent over two children, the
building block is lost. The encoding and crossover should be designed together,
to ensure good inheritance of building blocks. In the running example, a building
block is a combination of a matching combination of bits. In other words, build-
ing blocks consist of specific combinations of genes with specific values. We will
discuss this in more detail in Section2.2.

A nice property that the encoding can have is when it only expresses feasible
solutions. If that is not possible, the GA needs other ways to cope with infeasible
solutions.

2.1.3 Initializers

The initializer provides the initial population, which will evolve during the course
of the GA. A good initial population has to be diverse, to give the GA as much raw
material to process as possible. The population is often generated by providing
randomly chosen alleles for all genes, for each chromosome in the population.
An intuitive way of looking at GAs is by picturing the search space as a
landscape. Thétness landscapes derived from the search space, with an ad-
ditional dimension. The additional dimension is used for giving each search point
a “height”, its fithess value. If the encoding has two genes, the fithess landscape is
a surface in a three-dimensional space with mountains, ridges, pits, and valleys. In
a maximization problem, Bncal optimumis a point where all points in the neigh-
borhood are lower (their fithesses are smallerglébal optimumis a point with
a height greater than or equal to all other points. The GA tries to find a highest
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point on the landscape.

Since there usually is no a-priori knowledge about the location of the largest
peak in the landscape, the initial population has to cover the whole landscape to
make sure enough information about all regions in it is provided. Using these
points, the GA deduces where the highest regions are, by selecting solutions with
above-average fitness. Crossover and mutation provide new points to guide the
search.

If the problem is defined with constraints that make certain regions of the
search space infeasible, the initializer has to take care that each solution is feasible,
or the GA will have to cope in some other way with infeasible solutions.

The initializer can also be seen as a source of building blocks. Additionally,
these can be formed during the course of the algorithm, which becomes more
likely if the initializer provided enough variation.

A proper initialization for the running example is done by generating a ran-
dom bitstring. These random bitstrings will contain building blocks, generated
by chance, at different places. The task of the GA is to bring the building blocks
together in a single individual.

2.1.4 Fitness function

A GA uses a cost function to evaluate how good a solution is. In GA terminol-
ogy, the cost function is called the fitness function. Note, however, that the fithess
function is not necessarily completely determined by the problem definition. For
example, a GA might deal with infeasible solutions by includingeaalty func-

tion in the fitness function, to reduce their fithess. For most problems, the major
part of computation in the standard genetic algorithm is spent in evaluating the
fitness function. Therefore, it is important to design the fitness function such that
it can be evaluated efficiently.

A special kind of fitness function is thadditively decomposable function
(ADF). Such a function can be expressed as the summation of the contributions
of the parts of the solution. More precisely, the function is a summation of partial
fitness functions that only depend on a few genes each. For example, given a so-
lution X = x1X2X3X4Xs, the functionfst(X) = f1(XaXox3) + f2(XoXsXa) + f3(X3XaXs)
is an ADF. If the different functiond;(-) all depend on different genes, the ADF
is calledseparable If each partial fithess function is defined over the same range,
the ADF is calleduniformly scaled

Note that the ADF is different from the fitness function with weighting fac-
tors that we described in Sectipn]l.1 on pgge 9, which uses subfunctions that all
provide a global measure of the solution, whereas the ADF uses subfunctions that
depend on only a few genes. The properties of an ADF will prove essential to the
analysis given in Chaptgf 4.
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Figure 2.1: The effect of selection on a normally distributed population.

The fitness function for the running example of matching corresponding bits
takes as input the encoding we described in Seftion|2.1.2, and is therefore different
from the cost function given beforef(x') = 5;°, matchx};_;,X5). Note that
this is a separable, uniformly scaled ADF.

2.1.5 Selection schemes

A GA uses a selection scheme to give a bias to good solutions in the population.
In nature, the same thing happens when organisms compete for a limited resource.
Those that are best equipped for obtaining the resource have a better chance to re-
produce. In a GA this competition has to be simulated in the selection scheme.
Selection can be characterized by the strength of the bias it gives to good solu-
tions. This is called theelection pressurdt varies between randomly choosing
an individual (zero pressure) and always selecting the best individual (maximal
pressure). A balance between these two extremes has to be struck.

Selection pressure can be quantified by specifyingébection intensitylf p
andoy are the mean and the standard deviation of the fitness of the population at
generatiort, respectively, angise is the mean fitness of the selected individuals,
then the selection intensityat generation is defined &5' (see Figurl):

_ Hsel— Mt
Ot ’

It

If the selection intensity; is equal for allt, it is just denoted and the se-
lection pressure is called constant. Note that for a population whose population
is normally distributed with zero mean and unit standard deviation, the selection
intensity is equal to the expected fitness of the selected individuals.

Fitness-proportionate selectiéhgives each individual a probability for selec-
tion that is proportional to its fitness. For example, if there are only three members
in the population, with fitnesses of 1, 1, and 2, the former two have a 25% chance
of being selected, while the latter individual has a 50% chance of being selected.
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One problem with this scheme is that it is sensitive to the actual fithess values
used. As a result, when fitness values become more similar (at the end of the run),
the selection pressure drops. The opposite effect occurs at the start of the run,
where a superior solution can get an overly large bias, causing the GA to converge
prematurely.

Another well-known selection scheme, call@dirnament selectigt works
by holding a competition among several randomly chosen members of the popula-
tion. The one with the highest fithess wins and is selected. This method has con-
stant selection pressure, because instead of using differences in absolute fitness
values, it uses differences in ti@nking of fithesses. As a result, it avoids the
problem with variable selection pressure of fitness-proportionate selection. The
strength of the selection pressure can be tuned by making the tournament size (the
number of individuals taking part in the competition) smaller or larger. A problem
with this scheme (which also occurred with fitness-proportionate selection) is that
the genes of a particularly good individual can be lost if it produces inferior chil-
dren that will not get selected in the next generation. One way to preserve highly
fit individuals (also calleelitism®) is to copy the best individuals from the old
population to the new population.

In this thesis we will mostly use thelitist recombination scheni® This
scheme combines selection, recombination (that is, crossover), and replacement.
The GA no longer explicitly calls a procedure for selection, but takes the form of
Algorithm[3, which takes as input the population sizand the probabilityPry,
that mutation is performed. Parents are randomly chosen from the population,
with no bias. Crossover produces two children. From this family of four—two
parents and two children—the two best ones are chosen and replace the parents.
In the case of ties, children precede parents. The selection pressure results from
the biased replacement. See Fidure 2.2 for an example where one child replaces a
parent.

This selection scheme has the following advantages:

e The scheme is conceptually simple, easily implemented, and simplifies the
structure of the GA.

e It preserves good solutions by having elitism on the family level.

e The parametelPr;, which denotes the probability that crossover is applied,
is set to 10, because there is no danger of losing fit par@nts.

e The selection pressure is constant and can be tuned by using tournament
selection for one pareft.

“The parametePr. is further discussed in Sectigns 2]1.6 (page 28) and|2.2.2 [page 33).
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1. generatd’opwith n chromosomes Construct initial
2: for ind € Pop do } ooulation

3:  INITIALIZE (ind) Pop

4: repeat

5. randomly choose two individuals;, p2 \

from Pop

6: {c1,Co} < CROSSOVERP1, P2) Elitist

7. for child € {c1,c2} do recombination
8: for each gengin child do

9: with probability Pr,, do MUTATE (child, g) scheme
10: replaceps, p2 with the best two from

{p17 p2701702} ’

11: until TERMINATE(Pop)
12: report best individual ifPop

Algorithm 2: Genetic algorithm with elitist recombination.

Parents Children
wEl E N mEESE

¢¢¢ ¢]—[

H N HEEEENNEE
H EEEEEN (I T [ []

Best two of family replace parents.

Figure 2.2: Elitist recombination, with building blocks darkly shaded. The num-
bers denote the fitness of the strings.
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The selection pressure of a selection scheme should be carefully set. A selection

lection pressure is set too logenetic driff/ will take over the convergence of

the population. Genetic drift is essentially a random walk with absorbing barriers.
Because with zero selection pressure samples are randomly chosen from a finite
set, stochastic effects will build up until the population has converged, by chance,
to a single individual.

The other extreme—a selection pressure that is too high—is just as bad. A
disproportionate large bias is given to a solution that has above-average fitness.
Presumably, that solution had a higher fithess because it contains a building block.
Then why is it so bad to have a high selection pressure? Firstly, in order to
allow crossover to produce new combinations of building blocks, the diversity
of the population should not be depleted too quickly. It takes some time to ex-
change building blocks and propagate them through the population, and conver-
gence should not be reached before a near-optimal solution has been constructed.
Secondly, the solution that was selected may contain a building block, but it can
also contain parts that are inferior. These inferior parts will be propagated with the
building block because they are on the same string, and fithess evaluation is on the
level of strings. This is calletiitchhiking®® since the inferior part travels along
with the building block. The effect is stronger when different building blocks have
widely different fitness contributiors.

2.1.6 Crossover

Selection onlyexploitsthe information present in the population. The GA also
needs a mechanism of obtaining new informatiexp{oratior), which can subse-
quently be exploited. Exploration is done by the operators crossover and mutation.
With crossover, we hope that each parent possesses a part of the optimal solution,
which will be combined in the children. Another word for crossovereisombi-

nation In biology, crossover occurs by swapping pieces of chromosomes. This
inspired the one-point crossover operdtolt is depicted in Figur3 (top). The
one-point crossover randomly chooses a point on the string, and swaps the parts
of the parent strings before that point. Two-point crosstv&? (in the middle of

the figure) is similar, but uses two randomly chosen points. Uniform crosSover

(at the bottom of the figure) tosses a coin for each gene and swaps the genes de-
pending on the outcome.

Which crossover is best? It depends on the structure of the problem. As
we explained when we discussed the encoding, some genes “belong together”
because their optimal values should be transfered together. After initialization,
the building blocks are dispersed in the population. Somehow all building blocks
have to end up together in a single individual to compose a (near-)optimal solution.
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Parents Children
(55 0 0 S g I
One-point crossover: |¢|¢|¢| T I}E
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0 e I 0
Two-point crossover: |¢|¢|¢| | |¢|¢|¢|
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Figure 2.3: Crossover operators.

Crossover has to perform two goals at once, which can be contradictory. Firstly,
it has tomix* the building blocks. Children become better by inheriting building
blocks from both parents. Mixing is the shuffling of the building blocks present
in the parents to get new combinations in the children. Secondly, it has to do this
with minimal disruption If a building block is composed of two genes and each
gene is distributed to a different child, then it is possible that the building block
is not present in either child; the building block is said to have been disrupted.
Different crossover operators make different assumptions about the structure of
the problem. One-point crossover preserves building blocks well (provided that
their genes are close together in the encoding), but mixes rather slowly. It also has
a positional bias against genes that are far apart. The first and the last gene will
almost always end up in different children. Two-point crossover is similar to one-
point, but alleviates that problem. Uniform crossover mixes very aggressively, but
can also be very disruptive.

Disruption could be minimized if it was known which genes, together, make
up a building block. For example, when a building block consists of a single gene,
uniform crossover can never disrupt it, and is therefore the best choice, since it has
the best mixing properties. In our running example with corresponding bits, the
two genes that encode the matching bits “belong together”. They can hold four
values, and there exist two building blocks: the setting where both bits are set, and
the one where both bits are cleared. Unfortunately, in realistic problems it is often
not known which bits belong together (the so-calielage.

The purpose of the parameter. is to tune the amount of mixing and dis-
ruption that occurs due to crossover. Crossover should be applied often enough
to make sure good mixing occurs, but not too much to avoid unnecessary disrup-
tion. Empirical studie¥:83suggest values betweerétnd 09. When we use the
elitist recombination (ER) scheme, however, we can safelyPgeto 1.0. In the
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ER-scheme, elitism (the preservation of good individuals) is built in by the biased
replacement. This means that a disrupting crossover can produce an inferior child,
but the child will not replace the parent.

2.1.7 Mutation

Another mechanism for exploring the search space is given by mutation. Each
gene is mutated with probabilifyry,. This is done by storing a randomly chosen
allele at the gene. Mutation is intended to provide diversity and reintroduce possi-
bly lost alleles. Diversity can be used in crossover to create new building blocks.
Additionally, mutation can get lucky and create a building block immediately.

The trade-off that has to be made to Bet, is between the benefit of “getting
lucky” and the disruptive effect mutation usually has (whenitisn’t lucky). Since a
GA works with a population, a little disruption is acceptable because the disrupted
part will probably also occur in some other individual. A good valueRo, is
1/1 /8= wherel denotes the length of a chromosome (the number of genes).

For our running example, we can use bit flipping as the mutator. A gene is
mutated by flipping (changing from 0 to 1 and vice versa) the bit that it holds.

2.2 Theory

The previous section introduced the genetic algorithm and discussed its various
components. Some ideas about the workings of the GA were introduced, for
example the concepts of building block, mixing and disruption. In this section, we
will investigate deeper why GAs work and look at these matters more formally.

We start by introducing the concepts of schemata and partitions. This makes it
possible to define linkage. Linkage determines what GAs “should be” processing—
that is, which combinations of genes should be protected against disruption during
crossover. After that, we discuss the schema theorem, which states what a GA ac-
tually is processing. The goal of GA design is to make these two perspectives
match.

2.2.1 Schemata and linkage

A chromosome is a string of genes, each of which stores one from several possible
alleles. More formally, we can define a chromosome as a string of values taken
from an alphabe#:

Definition 1 Chromosome
A chromosomés a stringx € A, where A is called the alphabet and | denotes
the length of the chromosome.
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If we want to talk abousimilar chromosomes, we need a way of specifying simi-
larity. This is done with @chemgschematan plural). Schemata are strings of the
same length as the chromosomes. They use the same alphabet, but extended with
the “don’t care’-character, denoted by “#”. A chromosomatchesa schema

when for each gene, they either have the same allele or the schema has the special
value “#” for that gene.

Definition 2 Schema
A schemas a strings € (AU {#})!. A chromosome matches a schensif,
forall 1<i<I|,we have: x=s5ors =#.

For example, given a binary alphabet, the chromosome 010110 matches the schema
01##10. A schema can also be seen as defining a set that holds the chromosomes
that match it. The fitness of a schema is defined as the average fitness of all the
strings that match it.

Schemata can be further classifiegartitions

Definition 3 Partition
A partitionis a stringp = {F,#}'. A schema matches a partitiomp if, for all
1<i<I|, wehave: eitherp=FandscA,orp=s=*%#

A partition is also a set that holds the collection of schemata that match it. The
character F” denotes a fixed position, where an element of the original alphabet
is used. A schema matches a partition when they have the special value “#” for
exactly the same genes. For example, the partitt### holds the following

four schemata: O0####, O1####, L0####, and 11####. The idea of a partition
is useful to formalize what before was called “a part of the solution” or a “subso-
lution”.

Obviously, many different partitions of an encoding can be considered. The
guestion is which ones are important. In the previous section, we have demon-
strated with the running example of corresponding bits that some genes “belong
together”. When this is the case, we say that these gendislead The concept
of linkage can be formalized using the so-called Walsh decomposiigh2%.98
For example, consider the corresponding-bits problem, when the number of pairs
is one (p = 1). Recall that the encoding consists of two bits, which can hold four
values: 00, 01, 10, and 11. Using a Walsh decomposition, any fitness function
that is defined on two genes can be rewritten in the following form:

fit(Xx2) = o+
@1 - Sign(xz) +
@ - sign(Xy) +
@3- sign(xy) - sign(xz) ,
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X1 | Xo ffit (X1 X2)

0|0 |wm+mm+mp+taz=1 wo =3
O|1|wg—w1+wr—aw3=0 =0
10| amwt+tor—wp—w3=0 =0
11 |op-o—apt+az=1 5= 3

Table 2.1: The corresponding-bits problem fop = 1. Left: chromosomes and
their fitnesses. Right: the Walsh coefficients.

with

. 1 ifx=0
S'gn(x):{ ~1 ifx=1.

The constantgy are specific for a certain fitness function and are called the
Walsh coefficientsThey signify the linkage between genes. Table 2.1 shows the
fitnesses of the strings, expressed as the sum of the Walsh coefficients. Note that
w3 = % which shows that there is a non-linear interaction between the first and the
second gene. For a chromosome of lerigtte fithess function is a summation
of 2' terms, where each term contains a Walsh coefficient. However, if there is
no linkage between genes, the Walsh coefficient is zero. A full treatise of Walsh
decompositions and linkage is beyond the scope of this thesis. What is important
to remember is the intuition behind linkage, namely that genes are linked if their
optimal setting can only be found by looking at them together, as a result of the
non-linear interactions between genes.

This helps us in understanding why problems can be difficult. Good solutions
are found by searching for the best schemata defined over genes that are linked
together. However, linkage can be weak or strong. If it is weak, a relatively small
fitness contribution can be sacrificed by allowing schemata defined on weakly
linked genes to be disrupted during crossover. The cost is that the final solution
found will be worse, but it will be found faster. Suppose, for example, that the
user is only satisfied with the optimal solution. It is possible that the only way this
solution can be found is when schemata defined over all genes of the chromosome
are not disrupted during crossover. In this extreme case, there is linkage between
all genes, and chromosomes have to be kept intact. In other words, crossover
can not be applied and we have to resort to enumerative search. Such problems
are often called needle-in-a-haystack problems. If, on the other hand, the user
is satisfied with a sub-optimal solution, the groups of genes which have to be
considered collectively shrink in size. The main power of a GA comes from the
fact that it can quasi-independently search for the best schema in all partitions
defined over genes which are strongly linked. We will exemplify these ideas in
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Chaptell #, where we look at the problem of finding a suitable population size,
given a specified measure of required quality.

Finding the linkage of an encoding can be hard. Educated guesses about the
linkage can influence the choice of one of the standard crossovers. If more insight
in the structure of the problem exists, the crossover operator can be designed to
belinkage respectingby mixing on the boundaries of the partitions defined over
strongly-linked genes. If no relevant domain knowledge exists a priori, one can
attempt to learn the linkag®:2%.41.38.23nd exploit it with a linkage-respecting
Crossover.

2.2.2 The schema theorem and adequate mixing

Theschema theorens a fundamental theorem that gives insight in the way a GA
works. It offers a different perspective on the GA by considering how it processes
schemata (instead of chromosomes):

Theorem 1 Schema theoreff

Let s(t) be the number of chromosomes matching a schemageneration
t, let ¢(s,t) be the growth rate of the schema in generation t due to selection,
and lete(s,t) be the decay rate of the schema in generation t due to disruption
by crossover and mutation. Then the following holds for every sclseim#he
population:

S(t+1) >s(t)-g(st)-e(s,t).

The schema theorem states that the number of chromosomes matching a schema
will increase due to the effect of selection if the schema has above-average fitness,
but it will decrease as a result of the disruptive effects of crossover and mutation.
The inequality in the formula results from the fact that crossover can not only
disrupt the schema, but it can also form new chromosomes matching the schema.
The theorem holds for all schemata present in the population, in parallel. In other
words, the number of chromosomes matching a certain schemaaevédhséaf the
following holds (dropping identifiers for schema and generation for simplicity):

p-e>1.

The final solution found by the GA is composed of highly-fit schemata that
were processed during the run of the algorithm. These so-daligding blocks
are highly-fit, to be picked up by selection, and are composed of only a few genes,
to avoid disruption. They get propagated through the population, as predicted
by the schema theorem. Theilding block hypothests states that, eventually,
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these building blocks come together in a single individual, resulting in a solution
that should be close to optimal. This happens when the building blocks that the
GA processes are the best schemata of partitions defined over genes with strong
linkage. Such schemata guide the search towards a good solution. This condition
is satisfied when the crossover operator respects the linkage by trying to keep
linked genes together.

Careful reading of the above definition of building blocks (highly fit, unlikely
to be disrupted) reveals a discrepancy with the intuitive notion of building blocks
as we have used them until now (a “part of a (near-)optimal solution”). We im-
plicitly assume the GA is designed well, and that the linkage of the encoding is
respected by the crossover operator. As a result, we use these two explanations
of a building block interchangeably, although it only holds when two conditions
hold. Firstly, the GA uses a linkage-respecting crossover. Secondly, the GA is
able to mix fast enough.

An additional condition that needs to be satisfied in order to find good solu-
tions, is thatmixing of building blocks is donedequately? In a GA with no
crossover or mutation, selection will eventually have filled the population with
copies of a single individual. That individual may contain one or two building
blocks, but it is unlikely that it is the optimal solution. The other building blocks
needed were present in other individuals that didn’'t get selected. The exchange
of building blocks during crossover, where building blocks from different par-
ents end up in the same child, is called mixing. Mixing is adequate when building
blocks are exchanged quickly enough to be able to converge to a (sub-)optimal so-
lution containing building blocks from all partitions that are defined over strongly-
linked genes. The amount of mixing can be tuned with the paran®etefthe
probability of crossover). IPr¢ is low, few building blocks are mixed, but dis-
ruption is low. IfPr¢ is high, more building blocks will be mixed but the amount
of disrupted building blocks increases. If selection pressure is high, mixing has to
occur faster because there is less time before the population is converged. There-
fore, Pr¢ is also dependent on the selection pressure.

The question in GA-design is how to find an encoding and suitable operators
such that building blocks are mixed adequately, disruption is minimized, all in as
little time as possible. Knowledge about the linkage of the encoding can be used
to design a crossover that mixes the elements of the right partitions and avoids
disrupting building blocks.
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CHAPTER 3

A GA for point-feature map labeling

In this chapter we will develop a genetic algorithm for the basic map-labeling
problem:

The basic map-labeling problem:

Given arenseg; point features on a map. Each point feature has a label
of fixed dimensions, and can place its label in one of four positions
(see Figurd 3]1): the top-right, top-left, bottom-right and bottom-
left position. Produce #abeling for the point features, which as-
signs a position to each label, maximizing the total number of non-
intersecting labels.

| se |
| 1 |

Figure 3.1: The four-position placement model.

This instance of the problem has been shown to be NP#&#12% We will
not consider any other cartographic rules, although we will compare our GA
against a simulated-annealing algorithm for the case of integrated name selec-
tion (where labels can be deleted and no intersections should remain). However,

35
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since it is our goal to eventually offer an algorithm that solves map-labeling prob-
lems that include cartographic rules, we will design the GA such that it is easily
extended with additional rules. How the GA can be extended and generalized will
be discussed in Chaptgrs 5 grjd 6. When comparing with the GA by Verner et
al.20% we use the eight-position model, in which the four positions of Figure 3.2
are added to the four-position placement model.

[ o 1
:'PQ:

Figure 3.2: The additional four positions for the eight-position placement model.

In order to fully appreciate the design decisions we will make (most notably
the inclusion of an extra operator), we take a bit of a round-about route to our
destination. First, in Sectidn 3.1, we will treat the problem like a black box: we
pretend we do not know anything about the structure of the problem. As can
be expected, this leads to a less than optimal GA. This GA will exemplify the
difficulties in design that need to be overcome. In Sedtioh 3.2, we will analyze
why the first attempt fell short, to gain an understanding of the problem. Standard
GA theory (as described in Chapfér 2) is used for the analysis. We will also look
at other GAs for the same problem, and see how they cope with the difficulties.
Finally, we present our own approach, based on the insights that we achieved in
the previous discussion. Sectjon]3.3 is devoted to a comparison of our algorithm
with other algorithms from literature. In Sectipn [3.4, we discuss the potential
of the algorithms to be used in a realistic setting (in a GIS, for example). We
conclude with Sectioh 3.5.

3.1 Asimple GA

In the absence of any knowledge about the structure of the problem, one can use
the standard GA, described by Holl&idand in Sectiol). It uses fitness-
proportionate selection and one-point crossover. Suitable valud®rfdiprob-
ability of crossover) andPry, (probability of mutation) were found in empirical
studiest®83.70.5 | ater studie§2*3%.112%reveqled that fitness-proportionate se-
lection needed a scaling method or should be replaced with a selection scheme
with constant selection pressure like tournament selection. Twolfdfhand
uniform crossover were invented and were found, under certain circumstances,
to yield good performance.

The first GA developed in this thesis is a simple GA for the basic map-labeling
problem. We will review the various design choices and examine the standard
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options available. The reader is referred to Chapter 2 when unfamiliar concepts
are encountered.

Encoding. The only prerequisite for the encoding is that it is composed of a
string of values over some finite alphabet. In the case of map labeling, an encoding
suggests itself almost immediately: a chromosome with a gene for each point
feature, and an allele for each label position (see Figure 3.3). The alphabet is
A={12 3,4}, where 1 stands for a label in the top-right position, 2 for a label in
the top-left position, 3 for a label in the bottom-left position, and 4 for a label in
the bottom-right position.

ﬂ:]

A

D

[1]a]2]4]2]

Figure 3.3: The encoding for a map.

| f—

Initialization.  The initializer should produce solutions which cover the search
space well. Here, we simply choose a random allele for every gene in every chro-
mosome. Since no infeasible labelings exist, the solution will always be feasible
and no special action is required.

Fitness function. We want to maximize the number of non-intersecting labels.
A labeling with many non-intersecting labels is better than one which has less.
Therefore, for the fitness function we can simply use the number of labels in the
labeling that are not intersected by any other label. The function, to be maximized,
becomesfsi(X) = fregx), wherefreg(x) is the number of non-intersecting labels,
andx is a solution. For example, the fitness of the small map in Figufe 3.3 is 3.

Selection. Next, we have to choose a selection method. Selection fills a mating
pool with individuals that will produce the next population. Retéiat fitness-
proportionate selection has variable selection pressure, so we do not expect good
performance without a scaling method. Therefore, tournament selection is prob-
ably the best choice. We will try both selection schemes. The next question is

*See Sectiop 2.15 on pagd 24.
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what the selection pressure should be. Fitness-proportionate selection derives its
selection pressure from the distribution of fitness values in the population. For
tournament selection, we use a tournament size of two, which usually gives good
results.

Crossover. After selection, the mating pool is paired and for each pair it is de-
cided whether crossover should be applied. This is done with a probabiky pof

if no crossover is performed, exact copies of the parents are made. Values for
Prc that are generally regarded to be acceptable range fréno@.9. We choose
Prc=0.7.

Nothing can really be said about which crossover is better, if one doesn’t know
anything about the structure of the problem, as captured by the linkage of the en-
coding (explained in Chaptgf 2). Each crossover works well for different encod-
ings and therefore for different problems. Therefore, we just have to try them out
and pick the one with favorable performance.

Mutation. On the children (or copies) that result from crossover, mutation is
then applied with a probability d®r, for each gene. Mutation is performed by
randomly choosing an allele and storing it at the gene. A suitable valuerfor

is % wherel is the length of the chromosome. In our cdse,ng. On average,
one gene gets mutated in every chromosome in the new population.

Results

To quantitatively evaluate the performance of the GA, we use artificial maps with
known properties. The maps used were randomly generated by placing 1000 cities
on a square grid with a side length of 650 units. To remove boundary effects the
map was folded into a torus. The cities had labels with dimensions of 30 by
7 units. Each city was placed on the map by randomly selecting a location for
its point. If the label of the point can be placed in one of its positions without
intersecting other labels, it is placed. Otherwise, we systematically search for
another point where it is possible to place the label. Starting with the location that
was randomly selected, points are examined in order of increasing x-coordinate.
At the right edge of the map, the x-coordinate is reset to zero and the y-coordinate
is increased. Similarly, at the bottom edge of the map, the y-coordinate is reset to
zero.

After all points and their labels were placed, all labels were removed, and the
GA was used to find a new labeling. This way we were certain that it was possible
to place all labels without intersecting other labels, and that the optimum was
always the number of cities on the map. See Figure 3.4 for an example of such a
map.
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Figure 3.4: An example of a map with 1000 points where all labels can be placed.
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In Figure[ 3.5, the results of four different versions of the simple GA are plot-
ted. The population size for all GAs was 200. The GAs differ in the selection
scheme used (tournament selection, or fithess-proportionate selection), and the
crossover used (one-point or uniform crossover).

The figure shows the quality of the solution against the amount of computa-
tional effort spent by the algorithm. The former is measured as the percentage
of non-intersecting labels (recall that it is guaranteed that it is possible to place
all labels without intersections). The latter is measured in terms of the number
of label-intersection tests performed by the algorithm; practically all the time the
GA was running was spent doing label-intersection {§&ach run of the GA was
terminated when it converged (the average fitness of the population was equal to
the fitness of the best individual), or when a limit of computational expense was
reached. The limit used was 400’ label-intersection tests. Each graph in the fig-
ure shows the average of five runs on five different maps each (25 runs in total), in
order to keep statistical significance. Each of those runs records the average fitness
of the population at regular points in time with the amount of label-intersection
tests that have been performed up to these points. At the end of the runs, the pop-
ulation was largely converged; the fithess of the best individual in the population
differed about % from the average fitness. For example, at the end of a typi-
cal run of the GA using uniform crossover and tournament selection the average
fithess was 8382 (that is, on average a solution placed 321labels without
intersections). The best individual at that point had fithess 834. The standard
deviation of the final solutions is shown at the end of each graph.

Several interesting observations can be made of Fjgufe 3.5. The most striking one
is that no GA is able to find a solution close to the global optimum (1000 cities
labeled, or 100%). Also interesting are the differences in the performance of the
GAs. As was expected, fithess-proportionate selection does not work well without
a scaling method. The difference between the crossover operators is significant for
the GAs using tournament selection: the GA using uniform crossover performs
better than the GA using one-point crossover.

Summarizing, the best GA we can make using standard techniques still per-
forms poorly. Additionally, we notice that the choice of crossover operator can
have a great impact on the performance of the GA. It is time to use the theoretical
insights into how GAs work, to understand these differences and design a GA that
gives better results.

*Note that a conflict for a city was checked by performing label-intersection tests between the
label of the city and the labels of neighboring cities, the so-called rivals (discussed later). As a
result, the same label-intersection test is performed twice for a pair of labels.
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Figure 3.5: Comparison between different versions of the simple GA using dif-
ferent selection schemes (tournament and fithess-proportionate se-
lection) and different crossovers (one-point and uniform crossover).
Prc = 0.7 andPr,, = 0.001 .
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3.2 Applying theoretical insights

The previous section deliberately turned a blind eye to theoretical insights into
how GAs work (specifically concepts like building blocks, mixing and disruption).

It employed a straight-forward approach, by applying the “standard” arsenal of
operators. Often the situation is like this, when one doesn’t have any idea about
the structure of the problem. The use of GAs can then be an attractive option
to pursue, because they are good at exploiting the structure present, even when
the designer has no idea what it looks like. Note that a problem always needs to
have some structure, from which inductions can be made, otherwise one has to
resort to random searéf. To obtain better performance, we have to incorporate
our knowledge about the structure of the problem into the GA. This will help the
algorithm to search better.

3.2.1 Analysis of the simple GA

Since we treated the map-labeling problem as a black box when we designed the
simple GA, let’s now inspect its structure to understand why the GA did not work
so well. A point on the map has to place its label where it does not intersect other
labels. Therefore, the placement of the label depends on the positions of other
labels in the neighborhood. It depends less on labels that are some distance away.
It follows that if a label does not intersect other labels in the parent map, then it
is probably advantageous to transfer it (during crossover) to a child together with
the labels in its immediate vicinity. A good solution will be composed of such
patches of labels that are placed well with respect to each other.

o

Figure 3.6: Cities p andqg are rivals, bufp andr are not.

To make this more formal, we define two points torbvals if their labelscan
intersect. See Figufe 3.6 for an examplerival groupis a certain point, called
the central point together with its rivals. A good placement of labels for a rival
group can be consideredailding blockfor the GA. Or, more accurately, the rival
relationship defines thimkageof the encoding (which genes “belong together”,
see Section 2] 2] A GA finds good solutions by combining such building blocks.

*Actually, it is more accurate to say that the rival relationship is a good assessment of the true
linkage of the encoding. We will discuss this further in Secfiof 5.1 on page 106.
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If one parent contains a building block for a certain region, and the other parent
contains a building block for another region, we would like crossover to produce
a child which contains them both. This exchange of building blocks is called
mixing and is one of the fundamental mechanisms of the GA. Since rival groups
overlap, it is inevitable that some rival groups will get split over both children
after crossover. For example, suppose pgqiit a rival of pointp, andp has no
other rivals. A parenx contains corresponding gengsandxy. Pointsp andq
together form a rival group, and their genes can therefore store a building block.
After crossover, the value ir, can be copied to the first child, and the value in
Xq can be copied to the second child. Assuming the first child holds another value
for Xq (and similarly for the other child), the building blockdssrupted

In order to make the GA find a good solution, it has to mix building blocks
and minimize the amount of disruption. We can now interpret the results of the
simple GAs and understand why they performed so poorly. Both crossovers used
by the simple GAs (one-point and uniform) have different mixing and disruption
properties, which are intimately bound to the encoding used. We will discuss
one-point crossover first.

The encoding used stores a labeling as a list of label positions. Two adja-
cent genes correspond with cities that can be anywhere on the map. One-point
crossover works under the assumption that genes that are adjacent belong together
(are linked). As a result, one-point crossover is biased to keep certain combina-
tions of genes together. Unfortunately, it is very unlikely that the corresponding
cities are actually near each other, and therefore the bias is inappropriate. We can
demonstrate this more clearly by slightly altering the input of the algorithm. In-
stead of feeding it a random list of cities, we provide as input a list that is sorted
on their x-coordinate. In the case of ties, the sorting is done on the y-coordinate.
Now it makes more sense to transfer adjacent genes together, since they are more
likely to be near each other on the map. However, crossover is still handling a
two-dimensional problem in a one-dimensional way. The results improve (see
Figure[3.7), but the end result is still poor.

Uniform crossover works under the assumption that the linkage between each
pair of genes is equal. It mixes very aggressively, and it is hoped that the amount
of disruption will still be acceptable. In the case of map labeling, a rival group
will very likely be distributed over both children. The probability of a rival group
being transfered intact decreases exponentially with the size of the group. On the
maps used to compare the simple GAs, each point has on average roughly seven
rivals. Therefore, uniform crossover is very disruptive.

It is important to realize how the GA gets supplied with building blocks and
what happens to them. In Figure 3.8, we show four runs of different GAs, that dif-
fer in their crossover (one-point or uniform) and their setting=igy, (either 0001,
as before, or @00). Prc was kept at 0. The runs with one-point crossover show
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Figure 3.7: The same GA using one-point crossover on a random and a sorted
list. Also shown is the GA with uniform crossover. Selection scheme
is tournament selectio®r. = 0.7, Pr,, = 0.001 .
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that mutation largely supplies what crossover mixes; if mutation is turned off,
premature convergence occurs. This happens because one-point crossover mixes
quite slowly, so the population converges rather fast. This effect is less notice-
able with uniform crossover, as can be observed in the figure. Uniform crossover
mixes harder, and is able to combine the building blocks that were present after
initialization.
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Figure 3.8: The interplay between mutation and crossover. Selection scheme is
tournament selection.

3.2.2 Other GAs

It is also helpful to see how other GAs that try to solve the map-labeling problem
cope with the problems sketched above.

Three other GAs that solve the map-labeling problem are known: the GAs by
Djouadi€ by Verner et alt®’ and by Raidi®® We will not discuss the GA by
Djouadi in this thesis, since he uses rather unorthodox methods and does not give
results which can be used to compare against.

In the light of the analysis of the previous subsection, it is interesting to see
how the GAs of Verner et al. and Raidl cope with the problems of disruption
and obtaining good mixing. Both algorithms report good performance, similar or
slightly better than the simulated-annealing algorithm of Christensen et al. We
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will say more about the latter study in Sectjon|3.3, where we will discuss compar-
isons with the GAs.

The GA of Verner et al.

The GA of Verner et al. uses fithess-proportionate selection and the same genera-
tional replacement scheme that was described in Chiapter 2 (shown in Algorithm
[1 on pagé 19). The encoding is the same as described in Secfion 3.1. The fitness
function (to be minimized) is a sum of several subfunctions:

ffit(X) = wy - overlap(x) +wsz - area(x) — ws - distFactx) + wjy - pref(x).

The number of overlapping labels is measuredbgriag-) and the total area
of all overlapping labels is given bgrea(-). The functiondistFac{-) measures
thedistance factoof a point feature with an overlapping label, defined as the sum
of distances from the center of its label and the centers of the labels from the four
nearest features. The distance factor of a point feature with a non-intersecting
label is zero. The last subfunctiopref(-), gives a measure of quality for the
placement of the label with respect to the preferred positions. The weighting
factorsws ...w, were empirically set.

Crossover occurs with probabilir. = 0.9. After crossover, mutation stores
a randomly-chosen allele in a randomly-chosen gene with a probability of 0.1.
The crossover operator battles disruption by usmagkingto preserve building
blocks. Each chromosome has a bit stringnaisk associated with it. A bit is set
to 1 for a specific gene if the corresponding point has a good labeling. A labeling
for a point is consideregdoodwhen the label does not intersect another label, and
the point is not aneighborof a point with an intersecting label. Otherwise, the
labeling is considered bad. A neighbor of a pgins defined as one of the four
points that are closest to (using the Euclidean metric). Note the contrast with
our use of arival, where the number of rivals of a point is related to the density of
the map.

Crossover is performed by looking at a random bit mask and the two masks of
the parents (see Figure B.9). For every location an allele is copied to a child from
either the first or the second parent, depending on the mask. If the mask of the
first parent signifies that the location is good, the contents are copied to the first
child. If the mask of the second parent signifies a bad location, the contents of the
first parent is also copied to the second child. If the masks of both parents signify
a bad location, the random bit mask determines whether to copy from the first or
the second parent. The procedure is symmetric for the other child. So if a location
is considered good in one parent and bad in the other parent, both children get the
information from the same parent.
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olol 1l ol 1 Mask from parent 1 (p,, 1 means “good”)

ol ol 1 11 o0 Mask from parent 2 (p,)

1ol -1 -1 - Random bitmask (‘-> means that the value is irrelevant)
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Py | Py | P2 | P2 ]| Py Child 2 inherits from...

Figure 3.9: The crossover operator of the GA by Verner et al.

This scheme, although very exploitive, works quite well. Results are given in
Section] 3.B. If masking is turned off, the crossover is simply uniform crossover
and performance drops. It is clear that knowledge about the structure of the prob-
lem is used to make the GA work well. It is used when it is decided whether an
allele should survive crossover, which depends on the placement of the labels of
close-by points. Disruption is reduced by preserving good labelings.

The GA of Raidl

The GA of Raidl uses tournament selection and an incremental replacement scheme.
In this scheme, an iteration starts with selecting two parents. Crossover is applied
with probability Prc. If no crossover is performed, two copies are made of the
parents. The resulting individuals are immediately placed back in the population,
replacing the worst individuals. The encoding is again the same as described in
Sectior] 3.]L.. The fitness function (to be minimized) is expressed as follows:

fiit(X) = overlapx) + _IzlnormPref(xi) ,

wherenormPref(-) gives a penalty for the position of a label, drid the length of

the chromosome. The penalty is normalized, which means that the improvement
of the fitness by placing an intersected label in a free position is never less than the
penalty for that position. This way the GA also optimizes for position preferences,
without degrading the number of free labels. Note that the use of weighting factors
is carefully avoided.

Uniform crossover is always applied, and mutation is applied with probability
0.01 for each newly created individual. Mutation stores a randomly-chosen allele
at a randomly-chosen gene.

The disruption of uniform crossover is repaired by usithgcal optimizer The
local optimizer examines all the labels of the map and, if possible, moves each to
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a more desirable position. If the label intersects another label, any position where
the label can be placed freely is more desirable. A position is also more desirable
when it is more preferred in the order of positions.

3.2.3 A GA conforming to theory

We can improve on the simple GA from Sectjon|3.1, by applying the insights from
the preceding discussion. We have to ask ourselves the following questions:

¢ What do building blocks look like in the map-labeling problem?
e How can good mixing of building blocks be assured?

e How is disruption of building blocks minimized?

e How can we keep the fitness function simple?

We will start with the last point first, since it has consequences for the design of the
rest of the GA. We will return to the other points when we discuss the crossover
operator.

The GA uses the same encoding, and the same initializer, as before.

Fitness function

As described in Sectidn 1.1, a good labeling is able to place many free labels and
adheres to cartographic rules. The most important aspect is combinatorial, namely
to maximize the number of non-intersecting labels. This aspect is global in nature
and requires a global evaluation of the map. The cartographic rules are of a more
local nature. In this chapter we concentrate mainly on the combinatorial aspect
and try to develop a GA that can solve it well. However, our goal is to use the GA
to solve map-labeling problems that also contain cartographic rules. We need to
consider at this point how we can facilitate adding such rules later on.

As we saw in Sectiop 1].1, a straightforward technique is to express the car-
tographic rules in the cost function. The best example of this approach is the
simulated-annealing algorithm of Edmondson etgkuch a function could have
the following form(]

feost(X) = Wa - f1(X) +wz- fa(x) +...,

where fj(x) provide global measures of different cartographic rules. We will
first discuss the problems with using a cost function containing many subfunc-
tions, and then propose an alternative.

*As discussed in Chap@ 1, other forms are possibly better. However, the additive form is the
one most commonly used.
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Since cartographic rules are local in nature, they present problems when they are
evaluated globally using the cost function. When a local rule is added to the com-
binatorial constraint in the cost function, it can deteriorate the combinatorial part,
that is, it can cause fewer non-intersecting labels to be placed. The contribution
from a function measuring a cartographic rule can make up for the decrease of the
contribution from the function enforcing the combinatorial aspect. One can try
to avoid this by using a large weight for the most important rules. Unfortunately,
in a GA, large differences in fithess contributions may lead to hitchhiking. When

a rule is locally hard, it becomes especially inappropriate to put it in the global
evaluation measure. For example, making sure a capital is always labeled is hard
to express in a global measure.

A genetic algorithm is particularly sensitive to the effects of a large summa-
tion of subfunctions, since it doesn’t use neighborhood search. The simulated-
annealing algorithm of Edmondson et al. is an example of an algorithm that uses
neighborhood search. It tries to move a single label to a new position and then
evaluates the difference in quality according to its cost function. Since the rest of
the map stays the same, their contributions to the cost cancel out. The difference
in quality can be calculated by only looking at the local changes. For example, if
the cost function only counts the number of free labels, the change in cost can be
deduced by looking at the surrounding labels of the changed label and checking
whether their status has changed. It is not necessary to check all the labels on
the map. In a genetic algorithm, a solution can be very different from its parents.
Therefore, the whole fitness function has to be evaluated to calculate its fitness.
The contributions of all the subfunctions are blended in a single fithess measure.
There is the danger of degrading the combinatorial aspect to improve on aesthetic
rules.

There are other problems with using a cost function with multiple subfunc-
tions, that arise both with simulated annealing and genetic algorithms. To start,
finding suitable values for the weighting factors is hard. The weights have no
meaning in themselves, so they have to be set by repeatedly running the algorithm
on the same map with different weights. Then the map has to be inspected (by
hand) to see whether the algorithm did a good job. Evaluation of a whole map for
the effect of a single weighting factor is difficult, since all factors are blended into
one. Even when no inspection by hand is neededttinismgof the weights takes
a lot of time. In addition to the loss of computational resources, this makes it dif-
ficult to change the problem definition by adding a cartographic rule. It requires
recalibrating all the weights or the whole algorithm has to be revised.

Additionally, tuning makes the algorithm only suitable for a particular type of
map. The weights become specific for the maps on which the algorithm was ran
when it was tuned. Running the algorithm on other maps (of a different type, a
different scale, or a different density) may produce inferior results. The tuning
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of the weights is typically done on small maps, to minimize the amount of time
needed to complete a single run.

These problems can be exemplified by the study of Verner® as described
before, they propose the following fithess function:

ffit(X) = wy - overlapx) + ws - area(x) — ws - distFacx) + wy - pref(x).
After introducing this fitness function they make the following remark:

“The wy factor in the fitness function was not used in our analysis.
The various combinations of values for, wo andws were arrived at
by numerougrial and error testing to determine the best combination
to use.”
(Verner et alt%’ emphasis added and notation changed)

As Verner et al. demonstrate, tuning the weighting factors takes a lot of time. This
time is spent in calibrating the GA itself; no problem is yet being solved. This
would be acceptable if it only had to be done once. Verner et al. derive values of
1, 0, Q0001 forwq, wo, andws respectively from runs done on small mapsg (

was always set to 0). Then they look at a more dense map:

“Dataset R500 proved to be a very interesting problem. ... In
this example av3 value of 000001 was used to keep the factor in line
with the weight of the other parameters.”

(ibidem)

Unless one wants to do a lot of runs under nearly identical circumstances—an un-
likely event in real GIS-use where users generate very different maps for different
uses—a new tuning phase is needed for every fresh problem. This dramatically
increases the time needed to solve a given problem.

We propose an alternative way of enforcing the cartographic rules. The fithess
function should only express the combinatorial aspect. The cartographic rules
are expressed in a new operator, the geometrically local optimizer. It has limited
scope, and improves the labeling in its scope according to the cartographic rules.
The GA gets provided with locally optimized pieces of the map (building blocks)
and constructs a globally good map. Therefore, we will use the following fithess
function:

frit(x) = free(x),
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wherefreg(x) counts the number of non-intersecting labels in solutioBy keep-
ing the fitness function simple, we avoid the use of weighting factors that are
needed to combine the combinatorial constraint with the cartographic rules. As a
result, the design of the GA requires no tuning phase, which is a major advantage.
Additionally, this function has the important property that it is additively de-
composable (see Sectipn 2]1.4 on page 23): it can be expressed as a summation
of partial functions which only depend on a few genes each. This property makes
the analysis in Chaptél 4 possible. We will keep using this fithess function in
Chapter$ b and| 6, were we extend the GA to handle cartographic rules and add
line features to the problem. The geometrically local optimizer, which will han-
dle the cartographic rules, will be discussed below, after discussing the crossover
operator.

Rival crossover

The experiments with the simple GA from Sect[on|3.1 show that one-point and
uniform crossover by themselves both don’t work well for the map-labeling prob-
lem. The GAs by Verner et al. and Raidl demonstrated that GAs using these
crossovers can still perform well, provided that an additional mechanism is used—
a masking technique in the GA of Verner et al., and a local optimizer in the case of
the GA of Raidl. We choose a different approach, and design our own crossover
that has the desired properties of good mixing and little disruption.

We would like to have something that mixes as hard as uniform crossover, but
is much less disruptive. We observed in Secfion 3.1 that the position of a label is
most influenced by the positions of the labels of its rivals. It is therefore reasonable
to assume that two genes are linked when their corresponding cities are rivals. We
will try to keep linked genes together during crossover. Our crossover is similar
to uniform crossover, except that it works on the level of rival groups, instead of
individual cities. We construct erossover masthat determines which genes get
transfered to which child. The crossover mask is a bit string, of the same length as
a chromosome. If a bit in the crossover mask is 1 for a certain location, the allele
stored at the gene with the corresponding location is copied from the first parent
to the first child, and the second parent donates its allele to the second child. If
the bit is O, the first child inherits the gene from the second parent, and the second
child inherits from the first parent. If we use a random bit string as a crossover
mask, we obtain uniform crossover.

We start with a crossover mask filled with 0’s. We repeatedly choose a point on
the map and set its bit and the bits of its rivals in the crossover mask to 1. We keep
doing this until the amount of 1's exceeds the amount of 0's. This way we transfer
approximately half the map to each child, in order to obtain good mixing. We
battle disruption by transferring whole rival groups. Unfortunately, rival groups
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overlap, so a lot of rival groups will still be disrupted. Still, this is a good first step.
We can see in Figufe 310 that the new crossover, cellaticrossover, improves

on uniform crossover. Note that in this figure, we use tournament selection. Recall
that a run is terminated when either the average fitness in the population is equal
to the fitness of the best individual, or the limit of computational expensel@0
label-intersection tests) is reached. Rival crossover performs better, because it is
less disruptive, while still mixing well.

Also shown in the figure is a run with rival crossover, where mutation has been
turned off. Recall that we looked at the effect of mutation on GAs using uniform
and one-point crossover in Subsecfior] 3.2 (see F[gufe 3.8 or page 45). The effect
of turning off mutation was less pronounced for the GA using uniform crossover,
because it was able to mix the building blocks supplied in the initial population.
Figure[3.10 shows that the effect of turning off mutation for the GA using rival
crossover is similar as for the GA using uniform crossover.
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Figure 3.10: Comparison of rival with other crossovers. Selection scheme is tour-
nament selectiorRr. = 0.7.

Why do we use rival groups of this size? Alternatively, we could, for example,
use rival groups composed of a certain point, its rivals, and the rivals of the rivals.
Or we could go even one step further. In Figure B.11, the results of four different
GAs are shown, using different sizes for their rival groups. Note that mutation is
turned off, because we want to isolate the performance of the crossover operator.
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If the size is zero, the rival group is composed of a single point. It is similar to
uniform crossover. It is not the same, since rival crossover always transfers about
half of a parent to a child, while the proportion of the parent that uniform crossover
transfers to a child is binomially distributed. If the size of the rival groups is one,
we get the regular rival crossover. As the size increases, the patches which are
copied from the parents get larger. The selection scheme used is again tournament
selection.

The GA with size zero produces a result slightly inferior to the GA using size
one, and takes more computation time. Sizes which are too large result in a drop
in performance. This is to be expected, since with larger rival groups, genes are
mixed less well. We can conclude that a rival size of one is best. Disruption is
still quite high, though, which has a negative impact on the quality of the solu-
tions found. To resolve this, we introduce a new operator: the geometrically local
optimizer.
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Figure 3.11: Comparison between different rival group sizes. Selection scheme
is tournament selection. On the left. = 1.0 andPr, = 0.0 . On
the right,Pr. = 0.7 andPr,, = 0.0 .



54 A GA for point-feature map labeling

Geometrically local optimizers

Rival crossover mixes well, but is still very disruptive. In order to get good solu-
tions, we need to repair disrupted building blocks. This is done witlyé&oenet-
rically local optimizer(or GLO). It is applied to every point on the map that is the
central point of a possibly disrupted rival gréi(see Figure 3.32). Using the rival
relation, we can give a good estimate of timkageof the encoding (which spec-
ifies which genes “belong together”): two genes are linked if their corresponding
points are rivals. When two genes that are linked inherit alleles from different par-
ents, there is the possibility of disruption. Therefore, the GLO is applied to every
gene that inherited its allele from pargmt and is linked to a gene that inherited
from parentp, (or vice versa). The GLO is applied to these points in the order in
which they occur in the input.

Parents: :| :| E
—_— —
l |
|
v !
Children: \ . E\ ‘/:I
_— —

Figure 3.12: After crossover, the geometrically local optimizer is applied to
points (indicated with arrows) that may be part of a disrupted rival
group. In Figurg 3.7]3, slot filling is applied to the point indicated
with the largest arrow.

The GLO checks whether the label of the point it is applied to intersects an-
other label. If this is the case, it then uses a procedure csithédilling to improve
on the local labeling of a city and resolve conflicts. Slot filling views all possible
candidate label positions atts which can be assigned attributes corresponding
with their status on the map (see FigQre 3.13, which shows the application of slot
filling to the point in Figuré 3.7]2 that is indicated with the largest arrow). A slot
can be in two statessMPTY andFULL. EMPTY signifies that no label of the ri-
vals of the point is intersecting the candidate position corresponding with the slot.
FULL signifies the opposite, and shows that the label of the point would intersect

*Recall that a rival group consists of a central point and its rivals (sege 42).
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another label when placed there. After determining the status of all slots, a free
slot is picked at random and the label of the point is placed in the corresponding
label position. If no free slot is available, the label remains in its initial position.

EMPTY |FULL -----f-------

FULL FULL L i ®
"o

- T A *

Figure 3.13: Slot filling. Top: original situation. Middle: assignment of status to
slots. Bottom: label has been moved to a free position.

How well does this strategy work to reduce disruption? In Figure]3.14, we
have compared three different GAs. They all use rival crossover and tournament
selection. The first one uses slot filling as geometrically local optimizer. The
second GA uses a different procedure: the label (of the point corresponding to the
gene the GLO is applied to) is moved to a random position, and the change is kept
only if it improved the fitness of the solution. The last GA uses a geometrically
local optimizer that does nothing after the check for a conflict, and serves as a
point of comparison. All GAs have mutation turned off to show the effect of
the GLO on the performance of rival crossover. As we can see, the use of a
geometrically local optimizer, and slot filling in particular, dramatically improves
the performance of the GA. Indeed, the quality of the solution increases from less
than 80% when no GLO is applied, to more than 99% when slot filling is used.

The use of a GLO does have a price, because label-intersection tests have to
be performed when checking for a conflict, during slot filling, and after a random
repositioning to check whether the labeling has improved. This can be observed
by comparing the GA with rival size 1 from Figyre 311, and the GA with the GLO
which does nothing after the conflict check from Figure B.14. The difference in
the amount of computation is due to the fact that the GA using the GLO has to
spent label-intersection tests to check whether the label considered by the GLO is
intersected by another label.
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Figure 3.14: GA using different GLOs. Crossover is rival, selection scheme is
tournament selectio®r. = 1.0, andPr, = 0.0 .

The geometrically local optimizer is characterized by the facts that it has very
limited scope, and that it tries to improve the part of the solution in its scope.
This scope is geometrically determined: in this case it consists of a point and its
rivals. Moving labels that intersect another label to a free position is an obvi-
ous example where the geometrically local optimizer improves the solution. We
will see in Chaptef |5 how cartographic rules can be incorporated using the geo-
metrically local optimizer. This will demonstrate that improvements can be more
subtle, because the GLO doesn’t necessarily require the quality of the solution to
be quantified. For example, locally it can be decided, if there is room, to place a
label in the most preferred position, without having to quantify this. This is an im-
portant difference with the method of expressing cartographic rules as additional
functions in the fitness function.

The effect of the geometrically local optimizer on the way the GA works can
also be discussed in terms of building blocks. The genetic algorithm needs a
supply of building blocks that will eventually be combined in a single individual.
Sources of building blocks are typically the initializer and the construction of a
building block by chance, due to crossover or mutation. The geometrically local
optimizer is another source of building blocks, which is made possible by our
knowledge about the (geometric) structure of the problem.
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Note the difference between the GLO and a “normal” local optimizer. A local
optimizer is a procedure that finds a better point by looking in the neighborhood of
the search point on the fitness landscape. Our use of “local” refers to the locality
in the geometry of the problem. Of course, the combined applications of the GLO
on certain points after crossover is a local optimizer in the usual sense. Note the
resemblance with the approach used in the GA of Raidl (see Séctioh 3.2.2, page
AD).

Normally, a GA experiences a bias towards solutions with high fitness values,
as a result of selection. In the GLO, certain configurations of labels are changed
in other configurations, introducing a new bias in the search process. As a result,
we have to be careful when we design the GLO that it acts in concert with selec-
tion. For example, if the geometrically local optimizer would move labels from
free positions to intersecting ones, it would have a bias opposite to the one from
selection. Fortunately, for the map-labeling problem we can decide with reason-
able confidence which configurations are good and which are bad, just by looking
at the local situation.

Another important point in the design of the GLO is that the GA should be
able to construct a good solution using the locally good configurations generated
by the GLO. The GA will need some choice in the configurations it can combine.
Hence, the GLO should be careful to produce configurations with enough varia-
tion, so that enough diversity is kept in the population. Since the geometrically
local optimizer is applied to rival groups with their labels in different configura-
tions, this won’'t normally be a problem.

Summarizing, the uses of the geometrically local optimizer are:

e It makes it possible to exploit the knowledge about the structure of the prob-
lem.

e It can repair rival groups which were disrupted during crossover.
e It generates building blocks.

e |t facilitates adding cartographic rules to the problem, while keeping the fit-
ness function simple. This has the important benefit that the fithess function
remains additively decomposable.

Selection scheme

We use thelitist recombination scher€2¢to perform selection. In this scheme,
two parents are randomly chosen from the population. Crossover is always per-
formed, and two children are generated. From this family of four, the two best
individuals replace the parents in the population. In the case of ties, children
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precede their parents. The advantages of the elitist recombination scheme were
discussed in Subsectipn 21.5 (page 25). The selection pressure can be tuned by
holding a tournament for one of the parents. We use the scheme described above,
which gives reliable results. The selection pressure that the standard elitist recom-
bination scheme uses is equal to that of tournament selection using a tournament
size of twg2i9419%

We empirically demonstrate the usefulness of the scheme in Higure 3.15. A
GA using elitist recombination is compared with similar GAs using tournament
selection, and different settings fBr. andPrn,. The GAs all use rival crossover
and the geometrically local optimizer. The GA using elitist recombination finds
a slightly better solution in less time than the other schemes, due to its elitist
strategy.
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Figure 3.15: Comparison of the elitist recombination scheme with tournament
selection. The GAs use rival crossover and the geometrically local
optimizer. Note that the scale for the percentage of non-intersecting
labels is between 90 and 100.

Overview of the GA

We propose a GA that uses the elitist recombination scheme, rival crossover, and
the geometrically local optimizer. We ugg. = 1.0 andPr;; = 0.0. We do not
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use mutation in its traditional form. Instead, the geometrically local optimizer
explicitly tries to create improvements to geometrically local parts of the solution.
Our fitness function is deliberately kept simple to avoid tuning, and only counts
the number of non-intersecting labels.

How well does this GA perform, compared to the simple GA we described in
the previous section? As can be seen in Figure|3.16, the new GA is able to find
significantly better solutions. The next step is to compare our GA against other
methods from literature.
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Figure 3.16: The new GA compared with the simple GA.

3.3 Comparison with other techniques

In the previous section, we presented a genetic algorithm to find good solutions
for the map-labeling problem. It is based on known GA-theory, leading to a GA
that performs well. In this section we compare the resulting GA with methods
from literature that reported good results.

A comprehensive study that compared various different map-labeling algo-
rithms on a class of randomly generated maps was performed by Christensen et
al14 First, they argued that algorithms using a rule-based approach that performed
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back tracking®>%could never be computationally efficient, due to the combinato-
rial explosion that is inherent of NP-complete problems. They then considered the
following algorithms, which represented the state-of-the-art at the time (1993):

e Greedy algorithms: to test a “greedy” approach, a rule-based algorithm was
used, but no back-tracking was performed when a label intersection could
not be resolved.

e Hirsch’s algorithm: Hirscf provided a heuristic based on a system of mu-
tually repulsing labels, in which a minimal-energy state is sought.

e 0/1 integer programming: Zorastéf 118formulated the problem as a 0/1
integer-programming problem, which subsequently was solved using La-
grangian relaxations.

¢ Random placement: maps with a random placement, on which no optimiza-
tion was done, were used as a baseline to compare against.

They proposed two algorithms of their own devise:

e Gradient descent: this hill-climbing algorithm considered all possible alter-
ations that could be made to a solution, choosing the best one. The algo-
rithm terminated when no improvements could be made. Several variants
of this method were tested, which differ in the amount of look-ahead (sub-
sequent alterations) they had. More look-ahead enabled the algorithm to
avoid local optima, at a computational cost.

e Simulated annealing: since they recognized the combinatorial nature of
the problem, they employed simulated annealing, a heuristic combinatorial
problem solver, to find solutions for the map-labeling problem. It is able to
avoid local optima by not always choosing the best option available. In fact,
the solution is allowed to become worse at times. A detailed discussion of
simulated annealing is given lafér.

For the comparisons Christensen et al. used randomly generated maps. Each
map consisted of a grid of fixed dimensions (792 units by 612 units) on wikigh
points were placed. Each point possessed a label of fixed dimensions (30 units by
7 units). They used maps that were progressively more dense, by ranging
from 100 to 1500. An example of such a map with 500 points is shown in Figure
[3.17. Note that beyond a certain point it becomes impossible to place all labels
on the map without intersections. In this aspect they differ from the maps we

*Edmondson et & later extended this algorithm to include more cartographic rules.
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Figure 3.17: An example of a map with 500 points, as used by Christensen et al.

3.3 Comparison with other techniques

Note that some irresolvable intersections remain.
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Figure 3.18: Results from the paper by Christensen etall.

used until now. The problem they studied was the basic map-labeling problem, in
which the number of non-intersecting labels has to be maximized, and each label
can be placed in one of four positions. The results are given in 3.18. They
concluded that simulated annealing gave superior results in terms of quality.

Verner et all%! proposed a genetic algorithm for the basic map-labeling prob-
lem, and compared it with the simulated-annealing algorithm of Christensen et
al. They report favorable results. We will compare our GA with the algorithm of
Christensen et al. and their algorithm.

Recently, several new algorithms have been proposed that focus on the basic
map-labeling problem: the GA by Raiéfl the tabu-search heuristic by Yamamoto
et al.114 and heuristics for maximum independent set by Strijk &&l:108We
did not have the opportunity to perform experiments that compare our GA with
these algorithms. All algorithms report similar, or slightly better results than sim-
ulated annealing. The genetic algorithm we propose also produces results with the
same quality as simulated annealing. It is therefore also important to look beyond
the combinatorial aspect of the map-labeling problem, and discuss how one can
incorporate cartographic rules in a map-labeling algorithm. We will postpone this
discussion until Sectidn 3.4.

Another, equally important property of any algorithm is its scale-up behavior:
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how does the required amount of computation relate to the input size? We discuss
the scale-up behavior of our GA in Chagtér 4.

map size 100 150 200 250 300 350
our GA 150 150 150 150 150 150
GA of Verneretal.| 200 250 250 250 400 400

map size 400 450 500 750 1000 1500
our GA 150 150 150 300 500 1000
GA of Verner etal.| 400 400 400 400 500 1500

Table 3.1: Population sizes used by the GAs for the different maps.

The population sizes used for the genetic algorithms are given in [Table 3.1.
The population sizes for the GA of Verner et al. are the same as they used, except
for the map with 1500 points. They did not experiment with such maps, so we
chose a population size which is certainly large enough. The population sizes
for our GA were intuitively chosen (the “reckoning” method discussed in Section
[2.1.1 on pagé 20). It is unlikely that they are optimal. We will return to the
question of finding a good population size in Chapter 4.

An interesting property of the randomly generated maps Christensen et al. used
is that they can be decomposed into separate problems, which can be solved in-
dependently. As described before, the placement of a label of a point depends on
the placement of the labels of its rivals. Since they depend on the lab#isiof
rivals, the rival relationship connects points which may need to be considered
collectively to find the optimal solution. As such, it induces a graph:

Definition 4 Rival graph

Therival graphof a map of points P is the graph G- (P,E) which has a node
for each point pc P. There exists an edg&p; € E when the pointsjmnd p
are rivals.

The separate problems mentioned above correspondcawthected components

in the graph. A connected component is a set of nodes in the graph for which there
exists a path between each pair of nodes in the set. The connected components of
the map from Figurg 3.17 are shown in Figure 8.19.

The map-labeling problem can be solved by breaking down the rival graph into
its connected components and solving these independently, afterwards merging
the results. We did not use this property, and always solve the entire map as one
problem. Our reasons for this are as follows:
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e The algorithms we compare our algorithm with (simulated annealing and
the GA of Verner et al.) also did not solve connected components indepen-
dently. Comparisons with these algorithms are clearer if we use the same
conditions those algorithms used.

e Our genetic algorithm does not find better solutions if the problem is split
into small components. The GA benefits from solving each component sep-
arately in terms of speed only.

¢ In Chaptef B, we extend the map-labeling problem to include line features
as well. Line features can span a large portion of the map, and will have
many rivals. Therefore, the map will very likely contain very few connected
components. Including an optimization that will be useless in the future
would be bad design.

e As the map density increases, the number of connected components de-
creases. As a result, the benefits of solving each connected component in-
dependently are quickly lost when the maps get more dense. This would
make comparing the results on sparse maps with those on dense ones more
difficult.

The kind of maps that we used before, in which it was guaranteed that all labels
can be placed, have practically no separate components. For example, the map
from Figure[ 3.4 contains three separate components, of sizes 998, 1, and 1; only
the two points in the top right have no rivals.

In the remainder of this section we present the results of the comparisons. We will
start by comparing our GA with the simulated-annealing algorithm of Christensen
et al., followed by a comparison with the GA of Verner et al. We end the section

by a comparison in the running times of all algorithms considered.

Simulated Annealing

The process of heating a metal until it melts and then slowly cooling it until it so-
lidifies is calledannealing The atoms in the metal start to move randomly because
of the heating, and if the cooling is done sufficiently slow, the atoms crystallize
in a highly ordered structure. If the cooling is done too fast, the crystallization is
not done homogeneously, and the metal is less structured (which means it is less
strong).

An analogy of annealing can be used to devise an algorithm, which is thus
calledsimulated annealing? Like with a genetic algorithm, we need a cost func-
tion and a way to encode a solution. Unlike a genetic algorithm, which works
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with a population of solutions, simulated annealing only uses one solution. We
start with a randomly generated solution. We repeatedly alter a randomly chosen
part of the solution, and see if the solution has become any better. If it has, the
change is kept and another iteration is started. If it is worse, a choice should be
made. Either the change is discarded, on the grounds of it degrading the solution,
or it is kept, on the grounds of it giving a possible way to escape a local optimum.
This choice is made according to a certain probability. This probability is depen-
dent on a variable which models the temperature of the process. At the start of the
run, the temperature is high: the system is in a random state. The probability of
keeping a change for the worse is high. During the run of the algorithm, the tem-
perature is lowered sufficiently slowly and the probability of keeping a bad change
converges to zero. In the end, only good changes will be kept. It is now the hope
that the solution has avoided local optima and has found the global optimum. The
speed at which the temperature is lowered is calleditimealing schedule

Simulated annealing for the basic map-labeling problem can be done by sim-
ply repositioning a label at each iteration and observing the change in the cost

function—the number of intersecting labels. If the solution has become worse,
the change is kept with probabiligr = e~ T whereAE is the additional number

of intersecting labels and is the temperature. For high temperatures, we have:
limt_Pr=¢e%=1.0. For low temperatures, we reach: {ipgPr =e~* = 0.0.

The simulated-annealing algorithm we implemented is the one described by
Christensen et & It works as follows. The initial value of T is chosen such
thatPr = % when there is one additional intersecting lalddt (= 1). After 2Q¢eat
alterations, the temperature is decreased by 10%. It is also decreased immediately
if the last 5xe4; alterations were accepted, and occurred at the same temperature.
The algorithm continues until the temperature has been decreased 50 times. Addi-
tionally, it stops immediately if the last PR ; alterations at the same temperature
were all rejected. The final solution is given as output of the algorithm.

We first compare simulated annealing (or SA) against our GA for the basic map-
labeling problem using the four-position placement model. Figurg 3.20 shows the
guality of the labelings both algorithms found for maps of different sizes. Each
data point in the graphs is the average of five runs, each conducted on a different
map of the same size. Since the GA derives much of its power from the use of the
geometrically local optimizer, we also included a variant of simulated annealing
that employed it. Instead of randomly choosing a new location for the label of
a given point, slot filling is applied to the point. As a result, no changes for the
worse can occur, which is necessary for simulated annealing to optimize well.
The figure shows that the GA and normal SA find maps of similar quality, but SA
using the geometrically local optimizer has poor performance.

We also compared both algorithms for two other variants of the map-labeling
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problem. In Figurg 3.21, the results are shown when both algorithms use the
eight-position placement model. In Figure 3.22, comparisons are shown of the
performance of the algorithms on the problem which included integrated name
selection. This was done by extending the placement model with an extra position,
indicating the label has been removed. Previously, two intersecting labels did not
contribute anything to the overall cost (or fitness). Now, one of the two can be
deleted, freeing the other. Initialization of the initial solutions for both algorithms
was done as before, by choosing a random position for every label on the map. The
“deleted” position was not used. For simulated annealing, no other adjustments
were necessary. For the GA, we alter the geometrically local optimizer. It is
applied when the label intersects another label, or when the label is deleted. In the
slot filling procedure, when the label can not be moved to a free slot, it is deleted.

In both the case of the eight-position model, and the case of integrated name
selection, the genetic algorithm slightly outperforms simulated annealing. This
gives an indication that the genetic algorithm is more robust in the sense that
it copes better with changes in the problem definition. However, it should be
noted that there is a substantial difference in the running times of the algorithms
(see also Figurg 3.24 on page 72). For the densest maps, simulated annealing
was able to find the solution quicker than the genetic algorithm. An annealing
schedule is a trade-off between the amount of computation and the quality of the
solutions. Therefore, one could change the cooling schedule of the simulated-
annealing algorithm, and lower the temperature more slower. The algorithm may
find better solutions with a more time-consuming cooling schedule. However,
Christensen et al. say that they “found the particular choice of annealing schedule
to have a relatively minor affect on the performance of the algorithm” (Christensen
et all9). Therefore, we did not experiment with cooling schedules.

The GA of Verner et al.

The GA of Verner et al. was described in Secfior] 3.2 (see pajge 46). We imple-
mented two variants of their algorithm. The firstimplementation faithfully follows
the directions in their description of the algorithm. Unfortunately, we were unable
to reproduce the reported results. We found that we could improve the perfor-
mance of our implementation if we changed the algorithm slightly. Recall that a
labeling for a point is considered “good” if the label of the point is not intersected,
and additionally the labels of the four closest neighbors are not intersected. The
second implementation considered a labeling for a point to be good if the label of
the point is not intersected. Labels of neighbors can intersect.

In Figure[3.28, we show the results of our GA, the results reported by Verner et
al., and our two implementations of their GA. Again, each data point in the graphs
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is the average of five runs, each conducted on a different map of the same size.
Note that all algorithms used the eight-position placement model, as suggested by
Verner et al. We observe that our second implementation matches the reported
results most closely.

The results of our GA are better than the results reported by Verner et al. How-
ever, we have to be cautious about drawing conclusions because the algorithms
were not run on exactly the same maps. The maps were randomly generated, so
while the maps used by Verner et al. are very similar to our maps, they are not ex-
actly alike. Note that the results given for the simulated-annealing algorithm (in
Figure[3.2D on pagde 68) also deviate slightly from the results reported by Chris-
tensen et al. (shown in Figufe 3]18 on pagg 62); the results in Higure 3.20 are
slightly better. However, even if it were necessary to apply the same correction to
the results of Verner et al., our GA would still be competitive.

Running times

When comparing different algorithms, one is primarily interested in the quality of
the solution an algorithm finds. However, this can only be meaningful when seen
in relation to the amount of time it took to find those solutions. We can provide
a rough indication of the way computational effort is related to the quality found.
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Figure] 3.24 shows the amount of label-intersection tests performed to find the so-
lution for a given map size, for all algorithms discussed. Note the logarithmic
scale for the amount of label-intersection tests. Measuring label-intersection tests
allows us to compare the genetic algorithms (a population-based approach, requir-
ing global evaluations of a map) with simulated annealing (an algorithm using a
single search point, and capable of doing local evaluations). The figure doesn’t
show results for maps with 1500 points, since we were not able to reliably count
the number of label-intersection tests, due to overflow of the counter in some ex-
periments. In addition, recall that we used very large population sizes for the GAs,
which is of course a disadvantage for the GA. Better running times for the GA can
be obtained by using smaller populations—see Chapter 4.

As the maps get more dense, the problem becomes more complex. As a result,
we don't expect a map with double the number of features to require twice the
amount of computation, due to the added complexity. For maps coitistant
density, we show in Chaptgf 4 that the GA has quadratic scale-up behavior: a map
twice as large takes four times as much computation time.

Comparing the running times of simulated annealing with those of our genetic
algorithm, we see that SA takes less time on the densest maps. We may conclude,
therefore, that it is the algorithm of choice when one wants to solve the basic map-
labeling problem on very dense maps. In reality, the map-labeling problem is more
complex and multi-faceted. A deciding factor in the choice of algorithm for a map-
labeling problem is how well the algorithm is extendible with new cartographic
rules. We will discuss this in the next section.

3.4 Discussion

As described in the Chapter 1, there are two reasons why the map-labeling prob-
lem is hard:

e The basic, combinatorial problem has a large, complex search space.

e The problem can include many cartographic rules of a local nature. A good
labeling strikes a balance between these rules.

In this chapter, we have concentrated on the combinatorial part of the problem,
and have developed a genetic algorithm for the basic map-labeling problem. We
have shown that it finds good solutions and is competitive with other map-labeling
algorithms. We didn’t consider any cartographic rules, but we designed the GA
specifically with their incorporation at a later stage in mind. In Chdpter 5, we will
show how the GA can be extended with cartographic rules.
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Similarly, “SA’ refers to the simulated-annealing algorithm, “SA, 8
pos.” to the variant using the eight-position placement model, and
“SA, name sel.” to the variant with name selection. “Vern. GA’
refers to our implementation of the GA by Verner et al. “Vern. GA,
no neighbors” refers to our implementation of their GA which does
not use neighbors (see the discussion on pape 67).
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In order to be a viable solution for the map-labeling problem, an algorithm
should berobust That is, it should be possible to integrate the algorithm in a
geographical information system (GIS), where it can be used transparently by the
user of the GIS, and easily extended by the maintainer of the algorithm. This
means, for example, that we have to be careful in introducing parameters that are
difficult to set, likePr¢, Prm, and the population size. We have handled these
parameters in a number of wayBr. can safely be set to.Q thanks to the elitist
recombination scheme, aRd,, was set to @ because its role has been taken over
by the geometrically local optimizer. The population size remains as a parameter
which has to be set, but there is an intuitive relation between this parameter and
the running time of the GA. Using a small population size gives poor solutions, in
little time. Using a large population gives better solutions, which takes more time.
However, if desired, one can adopt one of the adaptive population-sizing schemes
mentioned in Section 2.1.1 (see page 21). In the next chapter we will explore the
topic of choosing a good population size further.

It is also important to avoid a tuning phase, for all the reasons mentioned in
Sectior] 3.23 (on page |49): the cartographic rules can degrade the combinatorial
rule, evaluating a map is hard, tuning takes time, and it makes the algorithm inflex-
ible. We managed to keep our fitness function simple by using the geometrically
local optimizer, in which we will incorporate the cartographic rules.

Summarizing, in order to be robust, the following properties should hold:

e It should be possible to extend the definition with additional constraints
(cartographic rules) without dramatic changes to the algorithm or much loss
of quality.

e The number of parameters that are difficult to set, Rkg Pry,, and weight-
ing factors should be kept at a minimum.

¢ No tuning should be necessary.

How robust are other algorithms for map labeling? It is hard to give a general
answer to that question, but we would like to draw attention to the necessity of
making the algorithm extendible with additional cartographic rules. We briefly
discussed in Chaptéf 1 the simulated-annealing algorithm of Edmondson et al.,
which added rules by using multiple functions in the cost function. We sum-
marized the problems with that approach above. We have proposed a new tech-
nique for incorporating additional rules—the geometrically local optimizer—that
provides an elegant way to combine combinatorial optimization with enforcing
cartographic rules. It seems difficult to incorporate the same technique in other
algorithms. The GA uses a population to maintain a set of different candidates
for any locally bounded region (say, a rival group). It would be interesting to see
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whether algorithms which don’t use a population could be extended with the geo-
metrically local optimizer. Recall, however, that the straightforward inclusion of
the GLO in the simulated-annealing algorithm did not work very well (see Figure
320 on pagg §8).

The general technique we described in this chapter is applicable to more prob-
lems that have a geometrically determined structure. We will discuss the tech-
niques more formally in Chaptéf 5. There, we will also show how cartographic
rules can be incorporated in the map-labeling GA, and how a GA for two dif-
ferent GIS-problems (line simplification and a certain generalization task) can be
designed.

3.5 Conclusion

We described a GA that provides high-quality solutions for the basic map-labeling
problem. We compared the GA against other algorithms that reported high-quality
solutions for the same problem. It was found that the GA performed as well as, or
better than the best known algorithms. In terms of speed the simulated-annealing
algorithm outperformed the GA on the densest maps. The basic map-labeling
problem only includes the combinatorial aspect of the full map-labeling problem.
However, the GA was designed with the inclusion of additional cartographic rules
at a later stage in mind. We will explore these possibilities in Chapter 5. In
Chaptef #, we will show that our GA has quadratic time complexity on maps with
bounded density.



CHAPTER 4

Scale-up behavior of the GA

In Chaptef B, we described a GA that finds good solutions for the basic map-
labeling problem. In this chapter, we will investigate the relation between input
sizel and the amount of computational efféit required to find a solution of
sufficient quality. This is called thecale-up behavioof the algorithm. The
amount of computational effort the GA spends is the product of the number of
fitness evaluationk and the time needed to perform a single fithess evaluation
&it. W = E - ;. In the case of the map-labeling GA on maps of fixed density,
the latter is easy to compute: in the fitness function each label on the map is
checked for an intersection in constant time. Therefore, the total time needed for
a single fitness evaluation & = O(l). We will show that forE the relation is

also linear; that isE = O(l). As a result, the total scale-up for the map-labeling
GA is quadraticW = O(1?).

The number of fithess evaluatioBss also the product of two factors: the pop-
ulation size and the number of generations it takes to converge. These two factors
also influence the quality of the final solution. For example, population sizing is
a trade-off between solution quality and computational resources: one does not
want the population to be too small and get bad solutions, but also does not want
it to be too high and make the algorithm inefficient. The selection pressure deter-
mines the speed of convergence, but pushing too hard may be detrimental to the
solution quality. Therefore, the two main questions to be answered are the follow-
ing. Firstly, what is thecritical population size needed to obtain a certain level
of quality for the final solution? Secondly, using a GA with a critical population

75
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size, how many generations are needed before the population is converged?

In general, it is quite hard to answer these questions. Population sizing is usu-
ally done by trial and error. For real-world problems, often little is known about
the scale-up behavior. For abstract problems, however, interesting results have
been obtained. For instance, a number of stté:&%>%.5show that for GAs with
a rank-based selection scheme, a separable, uniformly scaled, additively decom-
posable fithess functidiiand a suitably-sized population, the number of gener-
ations until convergence ®(v/1), wherel is the size of the problem instance.
Furthermore, the gambler’s-ruin mo#épredicts that the critical population size
for GAs under similar assumptions @+/1) as well. So far, these models have
only been investigated using artificial problems.

Our GA for the map-labeling problem was designed with the theoretical in-
sights of these models in mind, in order to make the GA efficient and scalable. In
this chapter, we will investigate whether the assumptions that underly the models
are not violated too much for the predictions to hold for our GA. In Se¢tion 4.1,
we examine the model for predicting the number of generations until convergence
and the gambler’s-ruin model, to study their underlying assumptions. We proceed
(in Sectior] 4.P) by checking whether these assumptions hold for our GA. It turns
out that, partly because of our use of the geometrically local optimizer, many of
these conditions are indeed satisfied. This leads us to expect that the models are
applicable, which we then verify experimentally in Secfior} 4.3. Indeed, our exper-
iments show that both the optimal population size and the number of generations
until convergence scale roughly @éy/1), leading to a linear scale-up for the total
number of fitness evaluations. We continue in Sedtioh 4.4 with a discussion and
conclude in Section 4.5.

4.1 The models

For the number of fithess evaluatioBsthe following holds:
E=n"-t*,

wheren* is the critical population size needed to obtain a solution of a certain
guality, andt™ is the number of generations until convergence when the GA uses
a population that is sized large enough n*). Both factors §* andt*) therefore
determine the scale-up behavior of the number of fithess evaluations spent by the
GA.

The remainder of this section examines the models that resulted from the
research from othe®®:22.71.8.40.95\\je extract the underlying assumptions and

*See Sectio 2.1.4 on paQe| 23 for explanations and definitions of “separable”, “uniformly
scaled”, and “additively decomposable function”.
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will check in the next section whether they hold for the GA that solves the map-
labeling problem. We start in Subsection 4]1.1 with the convergence model, as-
suming the population size is adequately sized. Subsectior] 4.1.2 will cover the
gambler’s-ruin model, which relates the critical population size to a certain level
of quality and the input size.

4.1.1 Determination oft*

There have been several studie®®9%:50n the convergence characteristics of
GAs that solve the bit-counting problem, which is to find a bitstring of length
| with the maximal number of 1's. The bit-counting problem has the following
fitness function:

fit(X) = u(x),
where
u(x) = the number of 1's irx.

The bit-counting problem is a very useful problem to study because its prop-
erties (for example the distribution of fitness values in a randomly-generated pop-
ulation) can be calculated exactly. Furthermore, it has building blocks of only one
gene, which means that no disruption can occur. Using uniform crossover, almost
perfect mixing can be obtained. Mixing is callpdrfectwhen no correlations be-
tween genes—introduced by selection—remain after crossover. The bit-counting
problem serves as a idealized model of how GAs based on selection and recom-
bination function. We postpone these considerations until later, and start with
deriving the number of generations to obtain convergence to the optimal string,
assuming a suitably-sized population. The following discussion is based on the
papers by Mihlenbein and Schlierkamp-VooséhThierens and Goldbef&,and
Back®

The GA that will solve the bit-counting problem uses a selection scheme
with constant selection pressure, uniform crossover, and no mutation. Selection
schemes for which the analysis holds are rank-based, such as tournament selection
and the elitist recombination scheme, but not fithess-proportionate selection. Uni-
form crossover is used because no disruption can occur, and it mixes the building
blocks well. Crossover is always applidelrc. = 1.0.

Recall from Sectiof 2.1]5 that the selection intensitg defined as follows

(see Figuré 2]1 on page|24):

| — Usel— U (1)

o) (4.1)
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where e is the mean fitness of the selected individuals, afid ando(t) are

the mean and the standard deviation of the population at generatespectively.
Crossover does not change the proportion of 1's in the population, so the mean of
the fitness of the new populatiqn(t + 1) is equal touse. Equatior] 4.]L can then

be rewritten as

ut+1)—ut)=1-o(t). (4.2)

The selection intensity depends on the selection schetfdor example, for
tournament selection with a tournament size of tl/vf@,\/iﬁ.

Under the assumption of perfect mixing, the population fitness is binomially
distributed, which can be approximated well with a normal distribution. The mean
and variance of this distribution are as follows:

pe=1-prop(t), (4-3)
c?(t) =1 - prop(t)(1 - prop(t)), (4.4)

whereprop(t) is the proportion of genes at generatighat have the optimal value
(namely 1), and is the length of the chromosomes. Equation$ 4.3arjd 4.4 can be
plugged into Equatioh 4.2 to yield:

pmm+b—mw®:$pmmmxrmmmn- .5)

Equatior] 4.5 can be approximated with a differential equation:

dpr;)tp(t) — %\/prop(t)(l— prop(t)). (4.6)

Solving Equatiof 4]6, we obtain:

prop(t) = %(l+ sin(%t +arcsin(2prop(0) — 1)) .

The population is totally converged at generatiowhenprop(t*) = 1. Hence,

1 I
—t=—t"+c, 4.7
wherec = arcsin(2prop(0) — 1). Extractingt* from Equation 4.]7 gives:
Gr—ovi

t*:l—:oM).
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For arandomly initialized populatiopyop(0) = % and arcsi(2prop(0) —1) =
0, givingt* = Y1
Miller and Goldber§® extended this research by considering noisy fitness func-
tions. Furthermore, they also applied the model to more complex problem do-
mains. They derived equations for domains in which the mean and the standard
deviation of the fitness distribution can be expressed as functions of the proportion
of converged building blocks. The more complex domain of so-caltettate-
nated trap functionsvas approximated using the prediction for an extension of
the bit-counting problem.

The concatenated trap-function problem is defined as follows. Chromosomes
use a binary alphabet and dre- k- mlong, wheremis the number of trap func-
tions andk is a constant. For example,kf= 4, a trap function has the following
form:

4if u(Xjr1 j+a) =4
3if U(Xi+1 .I+4) =0
frap(Xit1.iva) = ¢ 2if U(Xiz1.iva) =1
1if U(Xi+1 _|+4) =2
Oif u(Xjt1.i+a) =3

In the general case,teap functionis defined as

K if u(Xit1.ivk) =K _

Trap functions withk > 3 have also been callatkceptive functicsi-’* be-
cause information from lower-order partitions (defined over less khganes)
leads away from the optimal schema. In order to find the optimal schema of the
partition defined on the genes that are input to the trap function, schemata in the
partition should not be disrupted during crossover. In other words, there exists
strong linkage between those genes.

The fitness function for the concatenated trap-function problem is a concate-
nation ofmtrap functions:

m—1

fit(X) = S frrap(Xike1 ikik) -
| I; | |

Each trap function is defined d&egenes and introduces linkage between those
genes. The optimal solution can be found by combining the best schema of each
partition defined over linked genes. For exampléd,# 4 andm = 2, these parti-
tions are simplyFFFRE#H# and ####FFF. The optimal solution 11111111 can
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be found by searching the best schema in each partition (namely, the schemata
111 1#### and ####11111) and combining them.

The concatenated trap-function problem is representative for a whole class
of problems that haveounded difficulty That is, a problem can be solved by
combining the best schemata of partitions of bounded size. In the more general
case, the fitness function is assumed to be a separable, uniformly scaled, additively
decomposable function; the fitness function can thus be expressed as follows:

m-1
fie(X) = ) fi(Xi1,% 2. Xik),
2,

where partial functiond; are defined on at mo&tgenes, withk < |. Addition-

ally, the functionsfi(-) all depend on different genes and have the same range. The
bit-counting problem is the most simple instance in this class of functions. The
fitness functions discussed in this chapter are all additively decomposable. The
requirement of separability can be relaxed by modeling the interactions between
different partitions as noise. Miller and Goldberg showed that adding small levels
of noise to the fitness function added a constant to the number of generations until
convergence. Therefore, as long as the linkage between genes from different par-
titions is weak, the model gives a good approximation. The case where a fitness
function is “almost” separable is callsg@mi-separableAn additively decompos-

able function is defined as semi-separable if each gene is input to only a small,
bounded number of partial fithess functions.

Miller and Goldberg found that their prediction of the convergence behavior
for the concatenated trap function closely matched experimental results. This
indicates that the predictiorf = O(+/1) holds for all problems that satisfy the
following assumptions:

e The fitness function is semi-separable, uniformly scaled, and additively de-
composable.

e The selection scheme is rank-based.

e Mixing is perfect: no correlations remain between genes of different parti-
tions after crossover.

e There is no disruption of building blocks.

The accuracy of the prediction depends on how well the GA adheres to these
assumptions. When the assumptions are not seriously violated, we can expect the
prediction still to be quite good.
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Note that for the case where the fitness function is exponentially scaled (in-
stead of uniformly), similar studi€%2/ show that the number of generations is
linear with respect to the input size:= O(l).

It is also assumed that the population size is large enough and contains suffi-
ciently many building blocks. We will look at this requirement next.

4.1.2 Determination ofn*

In this section, our goal is to derive an equation for the critical populationngize
needed to solve a problem of input lendgtlgiven some required level of quality
for the final solution.

The issue of determining* was investigated by Goldberg et '&.who pro-
vided a model of the GA based on statistical decision making. Assuming that the
GA would find the best solution if the search progressed in the right direction af-
ter the first generation, they obtained a population-sizing equation. Drawbacks of
this approach were that it did not model the way a GA can recover from decision
errors (explained later) and did not include a building block supply model. Harik
et al“? extended the model by integrating the so-called gambler’s-ruin model and
a building-block supply model into the previous model. The following discussion
follows the papers by Goldberg et3®land Harik et af’

We again assume that the fitness function is separable, uniformly scaled, and
additively decomposable. The assumption of an additively decomposable fithness
function allows us to appeal to the Central Limit Theorem and assume that the
fitness of the population is normally distributed. Another consequence of the use
of an ADF is that we can look at the growth of the optimal schema in a single
partition. The GA should converge to a population where all individuals match
the same, optimal schema for that partition. During the run, all partitions are
searched in parallel. The influence of the contributions to the overall fithess from
other partitions can not be ignored. Instead, it is modelezbateral noise An
example will make this more clear.

Suppose we have two schemagg= 1111#..#, ands; = 0000#. .#. The
schemasyy, is the schema with the largest fithess contribution from that partition.
From now on, we will call this schema thmiilding blockof the partition under
consideration. The inferior schensais called the competitor. On average, we
expect that a comparison between a chromosgggenatchings,, and a chro-
mosomex. matchings; is decided in the favor ofy,. As a result, the schema
Sy IS propagated. However, due to the contributions of the other partitions (the
noise), it is possible that@ecision erroris made: the chromosome containing the
competitor is chosen. In Figufre 4.1, the fitness distributions are shown of the two
schemata. The figure shows that the average fitness of the chromosomes matching
Sb, denoted byf ., is larger than the average fitness of the chromosomes match-
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Figure 4.1: The two distributions corresponding with the schengtands,y, of
a certain partition, and their mearfig, and f.. Solutionsxpp, Xi,
matchsy, and solutions, X, matchs.

ing s, denoted byf.. The difference between these two averadgg.— f, is

called thesignal However, it is possible to have two chromosomfs x; such

that fsit (Xg,,) < fit(Xc), due to the fitness contributions from the other partitions. In
that case, a chromosome containing the competitor will be chosen and a decision
error is made.

Now consider a fixed partition. We will start by deriving an equation for the
probability that the correct decision is made for that partition, for a single com-
petition. We will conservatively assume that a competition takes place between
a building blocksy,, and an other schenms in the partition that has the next-
highest fithess contribution. We denote the signal between these schemata with
d = f,,— f.. We will then look at a population-sizing model that views the search
of the GA as a series of competitions.

The probability of making the correct decision

First, we show that the standard deviations of both distributions depicted in Fig-
ure[4.] (corresponding withy, ands;) are equal. Since the fitness function is
additively decomposable, it can be expressed in the following way:

m—1
fit(x) = ; fi(xi) .

Both schematasf, ands:) are elements of the same partitipnwhich corre-
sponds to one of the functiorfgxj) and is defined over the gengs The noise
that both schemata face comes from the contributions frormthél. other func-
tions. The fitness function is a separable and uniformly scaled ADF, therefore
the distributions of fithess contributions of all the functidi;) have the same
standard deviation, denoted agait. The variance of the fithess function is the
sum of the variances of the partial functions. However, the genes of the schema
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Figure 4.2: The distribution of the difference between two random samples from
the distributions from Figure 4.1. The shaded area is the probability
of making a decision error.
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Sob (Or &) are fixed, so the variance of the distribution of fithess values of chro-
mosomes matchingyy, (or So), denoted bys?, is the sum of the variances of the
m— 1 remaining functions. Hence,

2 2
0% = (Mm—1)0paq-

We can calculate the probability th&k(xp,) < fit(xg) for randomly chosen
Xpp Xe by using the distribution oflifferencesthat is, frit(Xp,) — frit(xe) (Sshown
in Figure[4.2). The mean of this distribution is the difference in means of the two
schema distributions, and its variance is the sum of their variances. The probabil-
ity of a decision erroPre(r is the probability that the difference in fithess between
two randomly chosen chromosomes is less than zero (the shaded area in Figure
4.2).

In Figure[4.B, the cumulative distribution function of the distribution of dif-
ferences is shown together wite,,. The probabilityPryx of making thecorrect
decision, which equals-1 Prg, is also shown in the figure. Because of the sym-
metry of the distributionPrq is equal to the probability that the difference is less
than 2. The value ofPrqy, can now easily be found by normalizing to a normal
distribution and using the cumulative distribution function of the standard normal
distribution. We thus obtain the following result:

2d—d d
Proc= o762 = U 2im—Dopan’
whered®(-) is the cumulative distribution function of the standard normal distri-
bution with zero mean and standard deviation of one.

The gambler’s-ruin model views the search of a GA in a single partition as a
series of competitions which progresses until either all individuals matglor
they all matchs.. The outcome is dependent on the population size and the initial
number of building blocks in the population. We will look at the latter point next,
before returning to the gambler’s-ruin model.
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Figure 4.3: The cumulative distribution function of the distribution of differ-
ences, shown in Figufe 4.2.

The building-block supply model

The initial number of building blocks is denotggl Next, we obtain a lower bound
on the expected value &§. A simple building-block supply model assumes each
element of the partition is equally likely to be (randomly) created in initialization.
Therefore, conservatively assuming that only one element of the partition is a
building block, the expected number of building blocks in the initial population of
sizenis:

n

Xo=—,
A

wherek is the number of genes of the building block, dA¢dldenotes the cardi-
nality of the alphabet.

The gambler’s-ruin model

The gambler’s-ruin model derives its name from the following analogy. A gambler
plays a game in a casino (against the house) in which she can bet a certain amount
of money. She starts with an initial amount of cash, and keeps on going until either
the house is broke, or she has lost all her money. There is a certain probability
Prwin she wins a game, earning a fixed amount of money; with probability 1
Prwin she loses, costing her the same amount. The outcome of a series of bets
can only be the ruin of either the gambler or the house. The expected outcome
depends on the financial reserve of the house, the starting capital of the gambiler,
and the probability she wins a bet.

For our purposes, a gambler will represent the number of chromosomes in the
population that match the optimal schema of a certain partition. The gambler’s-
ruin model is a one-dimensional random walk between absorbing barriers, corre-
sponding with the loss of the building block (no building blocks left; called the
depletion barriey and the existence of the building block in all individuats (
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Figure 4.4: The gambler’s-ruin model.

building blocks in the population; called tisaturation barrie). The walk starts

at xo, the number of building blocks in the initial population. Each competition
advances the walk to either the saturation barrier (the chromosome with the build-
ing block wins the competition, which increases the number of building blocks),
or the depletion barrier (a decision error, which decreases the number of build-
ing blocks). Figurg¢ 414 depicts the situation after initialization, before the first
competition.

Before discussing how to calculate the probability that the saturation barrier is
hit by the gambler, we pause to reflect on the selection scheme of the GA. After
all, that is how it is decided who will win the competition. The gambler’s-ruin
model only considers the effect of selection, under the assumption that mixing
is perfect. Mixing of building blocks is called perfect when no correlations re-
main between genes of different partitions after crossover. The situation in which
the concept of competitions is represented most naturally is in an incremental GA,
where selection is performed by picking four different individuals and holding two
tournaments. This is demonstrated in Figure 4.5. During the selection phase, two
competitions take place. Each competition is a tournament between two randomly
chosen individuals from the population. One chromosome in each competition
contains a building block, the other does not. In the competition at the bottom,
a decision error is made: the chromosome with the building block loses the tour-
nament. It is assumed that crossover mixes perfectly and does neither disrupt nor
create building blocks. After crossover, the two children replace the losers from
the competitions. As a result, if a chromosome containing a building block loses a
competition against a chromosome containing a competitor, the number of build-
ing blocks decreases by one. If it wins the competition, the number of building
blocks increases by one. In the figure, there was one loss and one gain, so the net
resultis zero. The gambler’s-ruin model matches this selection scheme. However,
the experimental results presented by Harik et al. show that the more conventional
generational replacement scheme also agrees well with the model. As a result, we
can assume that any selection scheme with constant selection pressure suffices.
This implies a rank-based selection scheme, such as tournament selection or the
elitist recombination scheme.

We now turn to the question of determining the probabHityn) of the gam-
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Figure 4.5: Selection in an incremental scheme. Building blocks are shaded. One
iteration proceeds by subsequently doing selection, crossover, and re-
placement.

bler hitting the saturation barrier using a population of siz&ortunately, this is
a known result from random-walk literatuée:

1-P
L Cpr)™

T 1-Progn
1— ( ProrkOk)n

Here Prqk is the probability of making the right decision, as calculated be-
fore. Note that for our purposes, the depletion barrier need not be absorbing—that
is, building block formation is allowed—sinder(n) can then serve as a lower
bound. Assuming no disruption of building blocks occurs, the saturation barrier
is absorbing. The probabilitr(n) for a single partition can be used to calculate
the outcome of all the partitions searched in parallel. Hence, the following holds
for nconw the number of partitions that converge to the building block:

E[ncon = M- Pr(n), (4.9)

wheremis the total number of partitions artf-] denotes the expected value.

Given a measure of desired quality= “%”V that denotes the expected frac-
tion of found building blocks, we can find the critical population size to obtain that
result. Extractingh from Equatiorj 4.9, assuming a binary alphabet, and approx-
imating Prqk gives the following approximation of a population-sizing equation
(Harik et al#9):

Pr(n) = (4.8)

(1-a) Oparty/T(M—1) .

k—1
n~—-2""In
d

(4.10)
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Note that limy;1In(1— a) = —o. In other words, finding the optimal solution
with absolute certainty requires an infinite population size. This is only to be
expected, since a GA is a stochastic algorithm. Harik et al. performed experiments
to test their model on various domains, including the concatenated trap-function
problem with overlapping partitions (they share genes). They found that the model
gave a good estimate of the relation between the quality of solutions (expressed
in ) and the population size. The good results on the domain with overlapping
partitions show that the assumption of separability of the fithess function can be
relaxed to semi-separability.

To find the relation between input sikand the optimal population size, for a
certain level of quality (for example (87), we observe th&, opart, andd are
constants antl= ©(m). Hence, given some, we have

wheren* is thecritical population size needed to find a solution with the required
level of quality.

This holds for every GA that adheres to the assumptions of the gambler’s-ruin
model. These assumptions are now restated for convenience:

e The fitness function is semi-separable, uniformly scaled, and additively de-
composable.

The order of partitionsk, is a fixed constant, witk < I.

All building blocks are present in the initial population.

The selection scheme is rank-based.

Mixing is perfect: no correlations remain between genes of different parti-
tions after crossover.

e There is no disruption of building blocks.

Note that these assumptions subsume the assumptions from the convergence
model. In the next section, we will check each assumption to see whether it holds
for the map-labeling GA.

4.2 Adherence of assumptions

In order to apply the theoretical models térandn*, we need to check their as-
sumptions and see if they hold for the GA for map labeling described in Chapter 3.
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In the case of map labeling there are certain higher-order relations—defining par-
titions over many genes—which have to be considered in order to find the optimal
solution. Since map labeling is an NP-complete problem, this is only to be ex-
pected. We hypothesize that by restricting ourselves to low-order relations—the
rival group relations—we are still able to find close to optimal solutions. This
hypothesis will be experimentally verified in the next section.

The map-labeling GA described in Chagtér 3 is designed with the same the-
oretical insights in mind that underlie both models. The fitness function is kept
additively decomposable. The rival-group relationship defines the partitions in
which the optimal schemata are searched. Crossover is made to be linkage re-
specting. Disruption is minimized by using the geometrically local optimizer,
which makes partitions semi-separable. The fitness function can be expressed as
a semi-separable ADF:

Nfeat

fhit(X) = ; free(x;), (4.11)

wherex; denotes the genes corresponding to the rival group of'tihéeature.
Therefore, we expect the assumptions to hold for our GA.

We will now check each assumption that underlies the models discussed in the
previous section.

The fitness function is additively decomposableEquation 4.1f1 shows the fit-
ness function can be expressed as an ADF. Note that this is a result of
the fact that we can avoid placing penalty functions in the fithess function.
Penalty functions can be avoided by placing additional constraints in the
geometrical local optimizer instead of the fitness function. Of course, the
structure of the problem allows an additively decomposable fitness function.

The order of partitions, k, is a fixed constant, withk < I: The partitions in the
map labeling problem (rival groups) are not of fixed order, but the largest
rival group can be taken as a conservative estimate. Moreover, the size of
rival groups does not vary too much (on the dense maps used in the experi-
ments, cities have on average about six or seven rivals, with a maximum of
14 rivals).

The fitness function is uniformly scaled: Each partial function can contribute
either zero or one to the overall fithess. Therefore, the fitness function is
uniformly scaled.

The fitness function is semi-separableEach gene occurs in a bounded number
of rival groups, since the number of rivals is bounded. Therefore, each gene
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is input to a bounded number of partial functions, and the fitness function is
semi-separable.

All building blocks are present in the initial population: Since building-block
formation is possible, and indeed very likely to happen, this requirement
can be relaxed.

The selection scheme is rank-basedThis requirement is met by using either
tournament selection or the elitist recombination scheme. We will exper-
imentally test the predictions for both selection schemes.

Mixing is perfect: Rival crossover can be seen as a kind of uniform crossover on
the level of the building blocks. As a result, we can be reasonably confident
that mixing is performed adequately.

No disruption of building blocks takes place: In practice, some disruption takes
place but is minimized due to the use of the geometrically local optimizer
with the effect that it has a marginal influence on the behavior of the algo-
rithm. Since building blocks can be disrupted, the saturation barrier is not
absorbing. However, a gambler that reached the saturation barrier will with
high probability stay in its proximity.

We conclude that we can be reasonably confident that none of the underlying as-
sumptions is seriously violated. Therefore, we expect to see the scale-up behavior
predicted by the models. The next section is devoted to experimentally putting
this expectation to the test.

4.3 Results

Experimental data was gathered by running the GA on randomly generated maps.
These maps are similar to the maps described in Sectign 3.1 orf page 38. Re-
call that those maps were square, and embedded on a torus (to remove boundary
effects). They were generated by repeatedly selecting uniformly at random a lo-
cation for a point and its label on the torus, making sure the label did not overlap
other labels. Then the labels were removed and the GA was used to find a place-
ment for the labels again. This way we were certain that it was possible to place
all labels without intersecting other labels, and the optimum was always the num-
ber of cities on the map. The density of the map—the average number of points
in a certain area—remains equal for all maps. Therefore, maps with more points
are bigger. The density of the maps can be related to the density of a map used
in Chapteff B. Recall that those maps had dimensions of 650 by 650, and label
dimensions of 30 by 7; the maps we use here are basically of the same density as
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those maps with 1000 points, of which an example was shown in Higure 3.4 on
pagd 3%

In the remainder of this section, functions will be fitted to data by using the
Levenberg-Marquardt algorithm for non-linear least-squares fi¢fingith the
data points weighted by their standard deviation.

We present the experimental verifications in a number of steps. First, we in-
vestigate the influence of selection pressure. One of the most critical assumptions
of the models is that mixing is perfect. If the selection pressure is too high, this
assumption is clearly violated. We then look at how the gambler’s-ruin model can
be fitted to our experimental data. This allows us to derive the critical population
size. The number of generations to converge for a GA using the critical popula-
tion size can subsequently be found. We show that the functions predicted by the
models can be fitted well to the experimental results. Finally, the total, minimal
number of function evaluations can be derived and is shown to be linear in the
input size.

Selection pressure

We start by investigating the selection pressure. A selection pressure which is
too low will introduce genetic drift, but a selection pressure which is too high
causes hitchhiking and premature convergence. We performed experiments to
find the optimal tournament size for the tournament selection scheme. The GA
used a population size of 200, which, as will become apparent from the other
experiments, is large enough. The termination criterion used for all runs was
convergence of fitness, that is, the average fitness becomes equal to the fitness
of the best individual. The GA was run five times with different seeds for the
random-number generator on five different maps of 1000 points. The average of
those twenty-five runs was used as a data point.

The results are shown in Figyre 4.6. As can be seen in the figure, the optimal
tournament size seems to be two or three, since with larger tournaments the quality
begins to drop too much. We used a tournament size of two in all following
experiments.

Use of the gambler’s-ruin model

Since we have argued that the assumptions are not significantly violated, we
should be able to apply the gambler’s-ruin model to describe the behavior of the
GA for map labeling. Equatign 4.8 gives us the probabifityn) a certain gam-
bler hits the saturation barrier. We hawe= ns.5t gamblers running in parallel

*Actually, the density of the maps from this chapter is slightly less (equal to the density of a
map from Chapt3 with 940 points), because the maps were generated from different parameters.
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Figure 4.6: Influence of different selection pressures for tournament selection. At
the top, the average number of generations is shown. At the bottom,
the average fitness is shown.
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in the GA (wherengeg; is the number of features). Each partition corresponds
with a rival group. The optimal schema of the partition will place the label of the
central point of the rival group in a free position. Given a population sjzbe
fitnessfst(x*(n)) of the final solutionx*(n) is equal to the number of partitions
that converge to the optimal schema (given by EquationB2(&sonj = m- Pr(n)).
Therefore, the following holds for the expected fitness of the final solution when
a population size of is used:

E[fit(X"(n)) = E[Ncon = Nfeat- Pr(n), (4.12)

wherePr(n) is as given in Equation 4.8, arf|-] denotes the expected value.

For maps of sizexeq € {200,500,100Q0 1500 2000 400Q 7000 10000 we
ran the GA with population size € {10,30,50,100110,200}. The GA was
run three times with different seeds for the random-number generator on three
different maps of the same size. The average of those nine runs was used for
further computation.

The experimental data for maps of 10000 points is shown in F[gufe 4.7 (note
that the figure is scaled to make 1 the optimum). To this data we fitted Equa-
tion[4.12. The closeness of the fit shows that the gambler’s-ruin model gives a
reasonably close approximation of the relation between population size and the
quality of the final solution. All experiments were also done for the elitist recom-
bination scheme, which we used as the selection scheme in Chapter 3. Experi-
mental results for maps with 10000 points are given in Figure 4.8 (again, note that
the figure is scaled to make 1 the optimum). Note that the fit shown for elitist
recombination is better than the one for tournament selection.

The experimental critical population size

The critical population size for each map of a certain size is found by fitting Equa-
tion[4.12 to the experimental data and using the function to find the point where
the fithess was 97% of the optimum. Since it is guaranteed that all labels can
be placed without intersections, the optimumigy; labels placed. The critical
population size can be calculated as

n>k — f_1(097 nfeat) 5

wheref~1(-) denotes the inverse of the fit of Equatjon 4.12. Since Equption 4.12
is monotone, we do not need to calculate the inverse, but can use a simple binary
search to find the result.

The critical population size is calculated in this way for each map size. The
results are plotted in Figufe 4.9, where a square root function is fitted to verify
the prediction of the gambler’s-ruin model. This prediction, which states that
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Figure 4.7: Fit of gambler’s-ruin prediction to data for maps with 10000 cities.
The GA used tournament selectid®r; = 1.0, Pr, = 0.0. Note that
the figure is scaled to make 1 the optimum.
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Figure 4.8: Fit of gambler’s-ruin prediction to data for maps with 10000 cities.
The GA used the elitist recombination schefg,= 1.0, Pr,, = 0.0.
Note that the figure is scaled to make 1 the optimum.
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Figure 4.9: Critical population size for a quality of 97% of the global optimum.
Shown is experimental data with the fit of the predicted function, for
tournament selection and the elitist recombination scheme.

the relation between critical population sizé and problem length should be
n* = O(v/1), is confirmed. Also it is clear that very small population sizes are
sufficient.

We also tried the same experiments with elitist recombination instead of tour-
nament selection as the selection scheme. The results are also shown if Figure 4.9
and show the same scale-up behavior. Note that elitist recombination succeeds in
finding solutions of the same quality but can use smaller populations than tourna-
ment selection.

The number of generations

The number of generations needed to converge, when the population is equal to
the critical population size, is obtained in a similar fashion. The critical popula-
tion sizen* has already been calculated. To perform an interpolation, we need
a function that fits the experimental data reasonably well. We use the function
f(x) = O(—1/x). After fitting the function to the data, the critical number of gen-
erationst™ is given ag* = f(n*). This is done for each map size, and the results
are shown for both selection schemes in Figure]4.10. The number of generations
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Figure 4.10: Run time in number of generations of GA when using critical popu-
lation size. Shown is experimental data with the fit of the predicted
function, for tournament selection and the elitist recombination se-
lection scheme.

for the elitist recombination scheme, an incremental replacement scheme, is cal-
culated by dividing the number of recombinations by half of the population size.
The experimental results are shown with a fit to a square root. The prediction of
t* = O(v/1) is confirmed.

Total amount of computational effort

Since the number of fitness evaluationgis- t* - n*, it follows thatE = O(l) (the
number of evaluations scales up linearly with the problem size). In Fjgurég 4.11
the required number of evaluations for a given map size—the optimal population
size times the number of generations until convergence—is plotted, and a linear
function is fitted to it.

Figure[4.1] shows that the GA using tournament selection, compared with
the GA using elitist recombination, requires more computational effort to obtain
the same level of quality. Tournament selection also gives less reliable results,
because the spread of the final solutions is larger than with elitist recombination.
We now give two possible explanations for this phenomenon.
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Figure 4.11: The scale-up behavior of the number of fithess evaluations is linear.

The GA using tournament selection uses a generational replacement scheme,
whereas the GA using elitist recombination uses an incremental replacement scheme.
The gambler’s-ruin model most naturally matches an incremental scheme, which
may explain that elitist recombination gives a better match.

The GA using tournament selection didn’t use elitism of any kind, whereas
elitist recombination introduces elitism on the family level. Elitism has the effect
of protecting against the loss of good individuals by chance. Therefore, the GA
using elitist recombination produces a more reliable result.

4.4 Discussion

In this chapter, we have shown that two important models from literature can be
applied to the GA for the map-labeling problem: the assumptions that underlie
both the convergence model and the gambler’s-ruin model were not seriously vio-
lated. We verified the predictions of the models experimentally. We were mainly
interested in the relation between the size of the input and the amount of compu-
tation needed to obtain a certain level of quality. It would also be interesting to
study the amount of computation needed when the density of the maps increases.
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To this end, Equatiopn 4.10 can be restated as follows:
n=0(2¢.v/m). (4.13)

We now observe thd, the size of a partition in the GA for the map-labeling
problem, is presumably closely correlated to the size of the rival groups. Equation
[4.13 therefore implies an exponential scale-up of the number of fitness evaluations
when the density of the map increases. A further indication that this expectation
may be correct is given by the experiments from Chapiter 3, where the density
increased when more points were placed on the map. Higurg 3.24 op page 72—
note that this figure uses a logarithmic scale for the number of label-intersection
tests—suggests an exponential scale-up.

We used artificial maps in this chapter, because it made comparisons easier. It was
guaranteed that the maps could be labeled without any remaining intersections, so
the fraction of the optimum found could easily be calculated. Maps of real carto-
graphic data are more diverse. They often differ in density at different parts of the
map and are normally not as dense as our artificial maps. We can conservatively
assume that the largest rival group dictates the population size. However, since the
rival groups are quasi-independent, that would mean that for large portions of the
map an over-sized population is used. We could lower the population size, with
the risk of sacrificing the quality of the relatively rare portions of the map that are
most dense. Again we are looking for a trade-off in efficiency and the quality of
the solution.

In Chaptef B, it was shown how to incorporate integrated name selection into the
GA. Map-labeling problems for which such a GA would be useful are maps with
many features, of which only a fraction can be placed. Since the GA that uses
integrated name selection does not seem to violate any of the assumptions any
more than the normal GA for map labeling, we expect that the models used in this
chapter can also be applied in this case.

4.5 Conclusion

In this chapter, we investigated the relation between input size and computational
effort for the map-labeling GA described in Chagtér 3. The input consisted of
uniformly dense, artificially-generated maps, for which it was guaranteed that a
labeling existed in which all labels could be placed. The input size was varied
by increasing the dimensions of the map and adding more points. To gain insight
into the relation between input size and computational effort we used two models
from literature. The population-sizing model predicts that the critical population
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sizen* needed to find solutions with a specified quality is related to the input size
| asn* = O(v/1). The convergence model predicts that for a GA using the critical
population size, the average number of generatiovrsrelated to the input side

ast* = O(V1).

The models were examined to investigate the assumptions that underlie them.
We argued that these assumptions hold for the case of the map-labeling GA, in
part as a result of the use of the geometrically local optimizer. We proceeded by
experimentally verifying the predictions. Both predictions were affirmed.

The number of fitness-function evaluatidass the product of the number of
generations and the population size. As a corollary of the predictions from the
models we can conclude that the relation between the number of fithess evalua-
tions and input size is lineaE = O(l). The total computational effow/ is the
product of the number of fitness evaluations and the time to perform a single fit-
ness evaluatioes;: W = E - e, with et = O(l). Therefore, the scale-up—the
relation lz)etween the amount of computational effort and input size—is quadratic:
W =0O(l9).
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CHAPTER 5

A design framework for GIS problems

In Chaptef B, we designed a GA to solve the problem of point-feature map label-
ing. We applied several principles from theory to make the GA efficient. This
allowed us to study the scale-up behavior of the GA in Chapter 4. In this chapter,
we will formalize the techniques that were used, and show how they fit in a gen-
eral framework for solving problems with a geometrical structure. We will live
up to our promise to show how to extend the map-labeling GA to handle carto-
graphic rules, and give results on real cartographic data. We will also apply this
framework to two other problems that may arise in automated cartography.

When we want to design usable GAs that solve algorithmic problems arising in
automated cartography, what are the characteristics that have to be taken into ac-
count? On the other hand, what properties can help us to construct an efficient
algorithm?

Firstly, GIS problems often involve many aspects. For example, the combi-
natorial aspect of the map-labeling problem makes it hard, but additional aspects
that satisfy aesthetical or presentation demands, may need to be considered too.
Therefore, it is important that the additional constraints can be easily included in
the algorithm. GAs are known to be open to adding constraints by incorporating
them in the cost function. This method becomes impractical, however, when the
number of extra constraints increases beyond just a few (see the discussions in
Sectior{ 1.]L on padg 9 and in Subsecfion 3.2.3 on pajge 49). Our method uses ge-
ometrically local optimizers to offer a way of including additional constraints by

101
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enforcing them on a local scale.

Secondly, to be practical, the GA should integrate well with the GIS and be
user-friendly. In other words, if the GA requires excessive tuning or the setting
of many parameters, it is of limited use. We also discussed this in S¢ctipn 3.4,
where we argued that an algorithm for a GIS problem has to be robust—that is, it
should be possible to integrate the algorithm in a GIS, where it can be used trans-
parently by the user, and easily extended by the maintainer of the algorithm. In
order to achieve this, we’ll adopt the following approach. We separate the combi-
natorial aspect from all other aspects and handle the latter in a geometrically local
optimizer. This keeps the fithess function simple and additively decomposable,
and avoids the problem of tuning the weighting factors in the cost function. We
believe that this allows for a pragmatic approach to solve hard GIS problems.

The use of a geometrically local optimizer makes it easy to extend the GA
with additional constraints. However, the GA should not only be flexible, but also
efficient. Fortunately, the design of efficient genetic algorithms for GIS problems
is eased by the geometrical nature of the problems. As a result, the structure of
the problem (more precisely, the linkage of the encoding) is often quite clear. The
GA is able to exploit this information by using a linkage-respecting crossover and
the use of the geometrically local optimizer.

In this chapter, we will outline a framework for solving a class of hard GIS
problems. Our goal is to present a flexible method that can be applied to problems
where the linkage is reasonably clear. The GA is able to find good solutions by us-
ing a linkage-respecting crossover, and is flexible as a result of the customizability
of the geometrically local optimizer. Therefore, it can be considered a useful tool
to get good solutions for hard problems with reasonable demands on design time.
Note that it is not our intention to present a “magic bullet” that is guaranteed to
work best for all GIS problems, but rather to show how a good trade-off between
design time and solution quality can be reached.

The GA for the map-labeling problem that we described in Chagter 3 demon-
strates the general technique. It will serve to exemplify the general framework to
solve GIS problems, which we present in Secfior) 5.1. We then apply the frame-
work in three case studies, which were chosen to best show the various advantages
of the framework. The first case study, described in Seftign 5.2, extends the map-
labeling problem with cartographic rules, and studies the application of the GA on
real-world cartographic data. It shows how the framework is applied and demon-
strates its flexibility.

The second case study is discussed in Se¢tign 5.3, and deals with line sim-
plification. It exemplifies how to avoid infeasible solutions. An extra criterion
(avoiding “spikes”) was added to the basic problem, as an additional example of
the flexibility of our approach. The GA outperforms the well-known algorithm
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of Douglas and Peuckét, but also the algorithm of Imai and i, which both
needed post-processing to deal with the extra criterion.

In Section 5.4, we treat the last case study, which concerns a generalization
task where a minimal subset of points has to represent a large set of points. It
illustrates (once again) why it is better to use a geometrically local optimizer in-
stead of constructing a complex cost function. We compare our GA to two greedy
algorithms, and show that it finds better solutions.

We continue with a discussion in Sectlon]5.5 and conclude in Sdctibn 5.6.

5.1 A general algorithm for GIS problems

The GA for the map-labeling problem from Chapter 3 illustrated all the techniques
we will formalize in a framework in this section. Recall that the encoding con-
sisted of a chromosome with a gene for every point feature, and each gene stored
one allele. The four possible alleles corresponded with the four label positions
(see Figur¢ 3|3 on page]37). Initialization was done by assigning a randomly
chosen allele to every gene.

The key components of the GA were the following:

e The fitness function expressed only the combinatorial aspect of the problem.
(For the map labeling problem, it counted only the number of free labels.)

o All other aspects—the “soft” constraints—were handled with the geometri-
cally local optimizer. (For the map-labeling problem, these were the carto-
graphic rules.)

¢ Insights about the linkage of the encoding (which expresses the structure of
the problem) were derived from the geometrical properties of the problem.
(In the GA for map labeling, it was assumed genes were linked if their
corresponding points were rivals.)

e Crossover was constructed to be linkage-respecting. It performed a kind of
uniform crossover on the level of building blocks. (The GA for map labeling
performed crossover on the level of rival groups.)

¢ Disruption was minimized by using the geometrically local optimizer, which
was applied to each gene that was linked to a gene which inherited its allele
from a different parent. The geometrically local optimizer acted as a source
of building blocks, allowing us to sé®r,, = 0.0. (For the map-labeling
problem, slot filling tried to resolve label intersections after crossover.)
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e The elitist recombination scheme was used, which allowed for a GA in
whichPrc = 1.0.

These ideas can also be used for other hard problems encountered in a GIS that
have the same characteristics as map labeling (consisting of many aspects, and
with linkage that is geometrically determined). We will now formalize these ideas

in a general framework.

The general algorithm is an incremental GA and is given in Algorithm 3. In
this algorithmn denotes the population size, dndenotes the number of genes in
a chromosome. To start the search, the first population is generated and initialized,
to make sure it contains feasible solutions and covers the search space well. The
main loop follows, which is iterated until BERMINATE(Pop) returnsTRUE, after
which the best individual of the population is reported. The main loop applies the
elitist recombination scheme: parents are randomly chosen, children are created,
and from this family of four the two best replace the parents. In the case of ties,
children precede the parents. Children are made as follows. First, a crossover
maskM is generated, which specifies which genes have to be copied from which
parent to which child. Linked genes are placed together in the mask to make the
crossover linkage-respecting. This mask is a set which is initially empty. To this
set, genes are added until the number of genes in the set is more than half the total
number of genes on the chromosome. Genes are added by randomly selecting
a gene (which may already be in the set) and placing it, together with linked
genes, in the set. Next, the gis constructed, which holds all the genes on a
chromosome which are not M. These sets are used to perform complementary
crossover, which generates the children. The notatholu(x;) < parent;) is
used to denote that the allele of geqaérom parentis copied to gene; of child.

After crossover, the sd is constructed, which contains all the genes which may
be part of a disrupted building block. The GLO is applied to these genes in both
children; the procedure EPAIR(:) ensures the solution becomes feasible again,
and LOCALSEARCH(-) tries to make the solution better.

Compared to Algorithmi]2 on page |26, the functibROSSOVEK:) has dis-
appeared; it is explicitly given in the algorithm. Crossover uses the function
LINKED(-) to construct a linkage-respecting crossover mask. Additionally, in-
stead of MUTATE(:), the geometrically local optimizer is used. Note that the
functionality of the geometrically local optimizer has been divided into two func-
tions: REPAIR(-) and LOCALSEARCH(+).

In the algorithm, the following subfunctions are used:

INITIALIZE (ind): Initialize the individuaind, making sure it is a feasible solution
which satisfies all problem constraints.
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1. generatd®opwith n chromosomes
2: for ind € Pop do

3:

4.

a

10:
11:

12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:

24

INITIALIZE (ind)
repeat
randomly choose two different individuals
p1, p2 from Pop
M«—0
while [M| < 31 do
choose at random a gere
M —MuU{x}
for all genes«j such that LINKED(pz,Xi,Xj) do
M— MU {Xj}
P — all genes of a chromosome that are noin
for x;, € M do
C1(X) < P1(Xi) ; C2(X) < P2(xi)
for x, € P do
C1(Xi) < P2(Xi) 5 C2(Xi) < p1(X)
Bv <—all genes irM that are linked to a gene A
Bp <—all genes irP that are linked to a gene M
B+~ ByUBp
for child € {c1,c,} do
for x; € B do
REPAIR(child, x;)
LoCALSEARCH(child, x;)
replaceps, p2 with the best two from{ ps, p2,c1,C2}

25: until TERMINATE(Pop)
26: report best individual ifPop

Algorithm 3: GA for GIS problems.

|

—

N

Construct initial
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ER Scheme —
step 1

Build crossover
mask

Perform
crossover

Geometrically
local optimizer

ER Scheme —
step 2
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LINKED(ind,x;,x;j): Check if gene; is linked to gene; in individual ind, and
returnTRUE or FALSE. This function expresses the assessment of the
designer about the linkage of the encoding.

REPAIR(INd, X): Resolve any constraints for gergethat make the solutiomd
infeasible.

LOCALSEARCH(Ind,x;): Perform local search on gemxgin order to make the
solutionind better, or at least not worse.

TERMINATE(Pop): ReturnTRUE when the algorithm should be stopped, &aadsE
otherwise.

Note that the function INKED(-) expresses thassessmertf the designer about

the linkage of the encoding, which may or may not be correct. An educated guess
about the linkage that is close to the true linkage is vital to the success of the
algorithm. The true linkage can usually not be determined. Recall from Sec-
tion that any fitness function can be expressed as the suhterfy®s, which

each contain a Walsh coefficient. The linkage between any combination of genes
corresponds with a single Walsh coefficient. The strength of the linkage is quan-
tified by the magnitude of the coefficient. If there is no linkage, the coefficient
is zero. Calculating all coefficients is too time consuming. Even procedures that
approximate the most significant Walsh coefficiéA®/ have a considerable com-
putational cost. Fortunately, in GIS problems, as we will see, it is often easy to
make a reasonable guess about the linkage. The next sections cover three case
studies, which will exemplify how the framework can be used to solve hard GIS
problems.

5.2 Point-feature map labeling

The first case study revisits the map-labeling problem, and adds three cartographic
rules to it. It gives us the opportunity to show how the framework is used. In ad-
dition, it shows one of the main strengths of the framework: the ease at which
additional constraints can be handled by a GA that originally solved a simpler
problem. In this section, we will mainly be concerned with modifying the geo-
metrically local optimizer to handle the additional cartographic rules. In doing
this, we can rely on common-sense intuitions about what constitutes a good label-
ing in a local sense. Global optimization is handled by the normal mechanism of
selection and recombination, which requires no changes. No tuning of weighting
factors is needed either. As such, the point-feature map-labeling problem clearly
demonstrates the flexibility of the framework.
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The map-labeling problem was stated in its basic form in Chapter 3: given a
setP = {p1, P2, ..., Prey Of POiNts which can place their labels in one of four
positions, find a labeling such that the number of non-intersecting labels is max-
imized. The GA for point-feature map labeling can be reformulated in terms of
the framework described in the previous section. The encodiagiXz . . . Xney,
is a chromosome afies; gENes long, using the alphabkt= {1,2,3,4}, corre-
sponding with label positions. The fitness function is simply the number of non-
intersecting labelsfs;;(x) = free(x). There exists linkage between two genes if
their corresponding points are rivals.

The components of the framework are filled in as follows:

INITIALIZE (ind): Randomly choose an allele for each geneph
LINKED(ind,x;,xj): Geness andx; are linked if the pointg; andp; are rivals.

REPAIR(ind, x;): Since all possible solutions are feasible, no action is required by
this function.

LOoCALSEARCH(INd,X;): If point p; has an intersecting label, slot filling is per-
formed on gene;.

The remainder of this section will incorporate the following cartographic rules
into the GA:

Order of preference for label positiondVhen possible, place a label in the fol-
lowing order of desirability: top-right, top-left, bottom-left, and bottom-
right.

Different priorities for cities Depending on the size of the city, it is placed in one
of the following classes of increasing importane®ALL, MEDIUM,
or MEGA. In addition, the capital is classified as a mega city. The
importance of the city is shown by the size of the label.

Integrated name selectioWhen there is not enough room to place all labels,
select and delete appropriate labels. A label should not be deleted to
make room for the label of a less important city.

Additionally, we will test the algorithm on real-world geographical data of cities in
the USA. The classification of the cities depends on thresheggumandéemega

If the number of inhabitants of a city is less thag.qium the city is classified as
SMALL. Ifitis betweenemediumandémega the city is classified asieDIUM. If it

is more tharemega the city is classified asiEGA. The choice of the thresholds
Emedium EmegalS discussed later.
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Recall that the slot-filling procedure from Chapftér 3 works as follows. Slot
filling views all possible candidate label positionsshsts which can be in two
states:EMPTY andFULL. EMPTY signifies that no label of the rivals of the point
is intersecting the candidate position corresponding with the slatL signifies
the opposite, and shows that the label of the point would intersect another label
when placed there. After determining the status of all slots, a free slot is picked at
random and the label of the point is placed in the corresponding label position. If
no free slot is available, the label remains in its initial position.

The classification in different priorities is reflected in the states used in the
slot-filling procedure. Instead of having the stamsPTY and FULL, we now
have the stateEMPTY, SMALL, MEDIUM, andMEGA. The order is important,
because the label of a large city should take precedence over the label of a small
city. To make the following discussion less cumbersome, we will use the concepts
of class (of a city) and status (of a slot) interchangeably, although there is no class
EMPTY.

The GA handles all cartographic rules stated above in the geometrically local
optimizer (in the function bCALSEARCH(-)), although an alteration tall TIALIZE ()
will be needed later.

Consider the labeling corresponding to a child resulting from crossover. The ge-
ometrically local optimizer (GLO) is applied to cities that have a rival which was
transfered from the other pargiPlacing the label in a preferred position can be
done with only a slight alteration: instead of randomly choosing®@RTY slot,
choose among themPTY slots in order of preference. For example, if the label
can be placed in the top-left and bottom-right position without intersecting other
labels, it is placed in the top-left position because it is more preferred. In Chapter
[3, we already briefly mentioned how integrated name selection is performed: if
all slots had statusuLL, the label was deleted. We will have to change this to
take the different priorities of cities into account. A label should not be deleted if
a less important label could be deleted to make place for it. To achieve this, we
try to place a label in a number of steps.

We start by assigning each slot the class of the most important city whose
label intersects the corresponding position (see Figufe 5.1). If no label intersects
a position, the slot is assigned the stamns,TY. Now, suppose we are trying
to place the label of @amMALL city. First, we try to place the label in &amPTY
slot. If no EMPTY slot exists, the label is deleted. Next, suppose the feature is
aMEDIUM city. Again, we first try to place the label in @amPTY slot. If this
is not possible, we try to place the label insaALL slot. Note that the label

*It would be more correct to say that the GLO is applied to each gene in a child which was
linked to another gene whose contents was copied from the other parent, where linkage is deter-
mined by the rival relationship of the corresponding features.
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Figure 5.1: Determination of the status of each slot.

will be intersected by themALL label, but we assume ttevaLL label will be
moved or deleted at some later point. If8@ALL slot exists (in other words, all
positions are intersected by labels of rivals thathae®ium or MEGA), the label
is deleted. The same process occurs for=sA city, except that, in addition, it
is tried to place the label in mEDIUM slot before deleting it. The algorithm for
LOCALSEARCH(-) is summarized in Algorithrp|4.

1: For each of the four possible slots fqr determine its status. If the slot is not
intersected by any other label, the status of a sleMeTY. Otherwise, the
status of the slot is the class of the most important city whose label intersects
the slot.

2. Determine the lowest status in any of the slots. If this status is higher than, or
equal to the status afd, then delete the label @fid; otherwise place its label
in one of the slots with the lowest status.

Algorithm 4: LOCALSEARCH(Ind, X;)

The only remaining question is which of the slots with the lowest status is
chosen in the second step of Algoritfifn 4. An initial attempt is to just place the
label in the first slot that has the required status. Slots are checked for their status
in the order of preferred positions. There are two problems with this approach:

1. The solution can become worse, because the label may be placed such that it
intersects a formerly free label. For example, in Figuré 5i2£ai1um label
is placed in assMALL slot and causes the total number of non-intersecting
labels to decrease. Fortunately, this is easy to remedy: of all slots with
the lowest status we only choose from those that yield the highest overall
fitness.
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MEDIUM F——m—m—m——@ -~ )

Figure 5.2: First problem with the first attempt to extend slot filling: the fitness
can go down when a label is moved to another slot.

lab

SMALL . MEGA
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Figure 5.3: Second problem with the first attempt to extend slot filling: a label
can force another label to unnecessarily stay deleted.
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2. Placing a label may cause a deleted label never to be placed back, even
when there exists a better configuration in which it can be placed without
intersections. For example, in Figyre]5.3, lalsd was moved to a slot
which waseMPTY, but contains a poinp with a deleted label. As long as
the label stays in that position, the deleted labepafan never be placed
back, because in all positions it will interséab. Since the labelb could
be placed somewhere else, allowing the deleted label to be placed back, this
Is unwanted behavior.

The second problem is more difficult to solve than the first one. Note that selection
favors solutions in which the labels of important cities are deleted. The label of
a MEGA city is likely to be much larger than the label ofsmALL city (since it

is written in a larger font), so more labels can be placed by deletingn A

label and placing multiplesmALL labels. The GLO has to make sure that the
local configurations of labels that are subjected to selection respect the ordering
in priorities of the cities. That is, if the geometrically local optimizer ensures that
no labels of important cities are deleted in favor of labels of less important cities,
the final solution will be good. FamEGA cities, the problem is easily solved: we
just never delete labels ofEGA cities. In the case afiIEDIUM cities, however, we

can not do this, since their labels may have to be deleted to make rooms éox
labels. Therefore, we make sure that from suitable slots, a choice is made from
the slots with the minimal number of deleted points with status equal or larger
to the point that the GLO is applied to. This way, when possible, it is avoided
to place a label in a position that completely covers a point with a deleted label.
For example, in Figurg 5.3, there are t®®PTY slots the label can be placed

in. The minimal amount of deleted points that have higher or equal class than
the point with labelab for these two slots is zero, so the bottom-right position
is chosen, thereby avoiding the position which would cover the point with the
deletedvEDIUM label. The algorithm for choosing the proper slot is summarized
in Algorithm|[5.

1: For each of the slots with the lowest status, count the number of deleted points
in the slot whose status is higher than or equal to the statgs of

2: Of the slots for which this number is minimized, take the one that yields the
highest fitness. If there is more than one with highest fitness, take the slot
with the highest preference.

Algorithm 5: CHOOSESLOT(ind, x;)

Note that there is another small change compared to the GLO described in
Chaptef B. Inthe GLO described there, we checked for an intersection or a deleted



112 A design framework for GIS problems

Chicagd Chicago
Chicagd 'Chicago

Figure 5.4: The placement model for point-feature labels is adjusted to align the
baseline with the feature.

label before applying the slot-filling procedure. Here, we always apply the GLO
to ensure the cartographic rules are enforced. Similarly, we have to use a different
initializer to ensure the GLO is always applied to each point at least once. There-
fore, after assigning each gene a random allele, the GLO is applied to all genes in
random order.

Using the framework, cartographic rules can be added to the problem defini-
tion by adapting the geometrically local optimizer. The GLO allows for a search of
high-quality solutions, without the need to explicitly quantify quality. By choos-
ing the order in which the rules are applied in the GLO, the designer can express
her expertise about the (local) quality of solutions. For example, given a local
situation with a capital and two small cities, we know that a labeling which places
the label of the capital without intersections is best. Contrast this with the method
of a cost function as a combination of subfunctions. Such a function would need a
subfunction counting the number of small-city labels, a subfunction counting the
number of labels of capitals, and weighting factors to combine the two subfunc-
tions such that the cost function yields goods results.

5.2.1 Results

Figure[5.5 illustrates the output of the described GA (the marked regions will be
discussed later). The input consisted of 2380 cities in the USA, with their name,
coordinates and number of inhabitants. The cities were classified according to
€medium@nd Eémega Which have to be set by the user of the algorithm. We used
Emedium= 100000 andtmega= 800000. An exception was made for Washington,
DC (with approximately 640000 inhabitants), the capital of the USA, which was
also considered ®EGA city. Using this classification, there are 2221ALL
cities, 147MEDIUM cities, and QMEGA cities. In the figureSMALL cities have
font size 10 MEDIUM cities have font size 14, andEGA cities have font size 20
(absolute sizes are different in the figure due to scaling). Note that the placement
model for the point features is changed slightly to align the baseline of the name
with the point feature (see Figure b.4).

It is useful to compare Figufe 5.5 with Figyre|5.6, the result of the GA with
the GLO from Chaptelr|3. It shows that few important labels are placed when
the GLO does not respect the division in classes. As stated earlier, this is to be



113

5.2 Point-feature map labeling

"1sop A3
IWEBTAso[qen [e10)
eueeafer AIASUMOIG" SIPOIQ]

o[epiopne | tomqmuw_a_wfé Oituag s Uo VI

YOBIE OIA o1uoptioIUSpLIg nsuy) sndio)) srassury

QAuIoq[d) sauoUNQENH puepog DY sseq aie

OpUBLI(ysaIoys maraire] BUOPESEUAIY [[1Ag .o_m d
0BOg puUOUL L0 QLITRIRIAL ! I
:omm%ﬁw%mswmw P LiyBu g FlOODSUA uolsno M Em_%oua/x ueg z
S Judr o
1 A S0k sz OIQOIN - AIIASKINEFOITRE v 509 EISIA BLOIS

uey) 2LIPUBXI[Y" U{Jn ojog  BSSIp| se[Snoc =
YBUUBARS, (5qsoimg — AOAL P T™ n:ogc___w..cowm:m. O%®M Suopqy, wzo%:w. Osed _m.zuoﬂro wmﬁ_ uosonr o4 nHOMOﬁQ ueS

UOSPETL yyjfn, uosyore % spe
UMOJFI000) | o ._Wom_m< UOIBIN 5episalog _L:%Enu. w.—wﬁﬁﬁm—. Surag Bsowe fPAST Qﬁmo&< eSO odWwy, oy [eUY eiuesg
yoeog oA " mieoo eiuenyy yooqqnT Tomsoy XTUAOYJIePUs[Djourdpft (5
BIQUIN[OYY  [[9MS0 Pleygayg oD UIOATEIN ueouncy, . BUS .mmﬁMn w
RELIEA S N —— _.%%m mesot 20y O[T SmIV onbrenbnqy  gueg 10 P S9[asUY SO]
3 : . ; Ay S
_ " norsug ALY JMOISHIS s1oZoy *DIZMPOOA\ uo1SunIE UOSIOpPUSH" g Swut
sy A oueoy PIASUBAT  proySundg %ﬁﬂ% POEM 15 a3pogy ML G mpony sasoap v OUSPH onyy 25OF UES
UOYBUIYSEA s s, P S, oo 2 61304 a0 opraogo pusigroasioue uog
1or0 LIPUBXI[Y  suo udel.0 puag skey : poomiono) A0 uosie LN
q, . k £<COH%NQ d d vIOINY uowmry ! Q0UY
JuI0d s1owog AdUIpUAAPUT  "BYIdO], " syredg oop ey
ez dﬂﬁﬁ@@.@ﬁ&& Sk [0 uomopibiag AT u[odur| vowdugt POOMMLT onoiq L)1y e J[eg "M Suppoy
MHO% MIN]J uosidreq coamsm.mtbmﬁ it hd 5 &£ LI09d .nmoo_nxwo1m:>m:mm-9.§£ puey P P12A0Rur[oD) 10 _:Ec:omucnw@mo Breory®aIng
E&ﬁmm._c;cms_e_m.cscss. LI .fOHﬂOQ .meoﬁﬂmu sowry EUEWO BgsHoog AR 1T ypSof WD Eﬁmmwmz_; R ——
U0)SOGHuipeay %Edn:aﬂ m%h_mmmﬁz Eo.ﬁma.mﬁﬁoad oy COHAEA  *ar) xnorg Todsey - Bmomz el UHAL ssed ey
puB[IOd UINOSPULRIOA 13153190 3 20001 WILT~ UOSIPBIATUORIPPIN  £oT MLV Siled XnoIg SIvd OWPlagn G pduteN eg s00
wsnBnVIICE mpiog . yamgsierg A5 ostanvag, 21°d 3 plyoNgIIoIEmO T TR 10 pidey sanqxayf ORPIED %,mm.w&:am wm, 7
103ueg vuaSseAr m sourtiouay, w:omﬁocc—u\/@:%m JRW[[IM oy duad \ SIS apragg otaro dur Hmmoﬁwumﬂmm_éﬂm
ruadry” eqeuRosH : E.us_ﬁv%sﬁmcuovwgﬂ o sSurg . n:ﬂmm_._ :%ﬁﬁw@r e puB[IOJtionosLag
: ] )5 ST g SToSERI[eNU
a|s] anbsoxd* anonbreA® Jorxdng™anbor) o:‘_\wmrmmﬂmmé? .cmwsmﬁmomc&o_ﬂ RNOSSTAT Bmm% A Cursn-..mxsd meW_w‘_uN Henue0
BIUISIAT ._.F_Eom-mfom puein s[led 1ea1d  SUQQY,p 190, QOENMOQWEuvaEOON,H
JOUlA" OISIIM Qunepf [redsiest, 10qIey yed  SeleSuy uog
I

Figure 5.5: A labeling for the cities of the USA, using the new GLO. (The circles

are used in the discussion on page|117.)
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Figure 5.7: A labeling for the cities of the USA, using data with aBIALL cities.
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expected, because labels of important cities are larger. Another useful comparison
is with Figure[5.¥, which is the result of the GA when aMALL cities were
removed from the input. If the geometrically local optimizer correctly respects the
priorities of the cities, both figures should display the same numbmieaium

cities placed. Unfortunately, this is not entirely the case; moeeium labels

are deleted than is necessary. From these observations we draw the conclusion
that our approach is largely successful in combining the cartographic rules with
the combinatorial aspects of the problem. However, a more sophisticated GLO is
needed to avoid deleting too many important labels.

Next, we will compare the GA with a local-search algorithm (LSA). It is pos-
sible that the GLO introduces such a strong bias in the search of the GA that the
combinatorial aspect of the problem is not adequately addressed anymore. In that
case, the GA should perform no better than the LSA, which only performs local
search. The GA uses a population size of 200 and the termination criterion is as
follows. If the last 500 recombinations do not improve the average fitness of the
population by one, the run is ended. The local-search algorithm repeatedly tries
to improve a single solution. In each iteration, it applies the geometrically local
optimizer to every point on the map in random order. If the LSA has run for 50
iterations without making any improvement, it performestart—that is, it gen-
erates a random solution (using the same initializer as the GA) and starts again. Its
final solution is the best solution it found during the entire run. The total length of
the run is the maximal amount of time the GA spends under the same conditions.

After each run, post processing was done to resolve remaining intersections,
although this was never necessary for the runs with integrated name selection.
The post-processing step repeatedly chose a label that intersected other labels and
deleted it, until all labels were either deleted or without intersections. The label
which was deleted was chosen in the following way. If theresanaLL cities
that have an intersecting label, the label of the city thamMaLL and has the most
intersections is chosen. If there aresmALL cities, but there ar®EDIUM cities
with intersecting labels, the label of the city thatM&DIUM and has the most
intersections is chosen. Finally, if there are omBGA cities left with intersecting
labels, the label of th&1EGA city that has the most intersections is chosen for
deletion.

Table[5.1 shows the number of cities for the three maps, divided by class and
whether they were deleted. The notat@wg:s« denotes the averagevg of the
runs, which standard deviation sfl. The table shows the results for the GA and
for the LSA, both with and without integrated name selection. For the GA, each
entry in the table is the average of ten runs. The table shows that the GA using
the new GLO is successful in finding good solutions which respect the additional
cartographic rules. However, the difference between the input set with and without
SMALL cities shows that there is still room for improvement of the GLO. Itis also
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clear that the use of integrated name selection gives better results than the post
processing heuristic. Furthermore, the results of the GA are better than the results
of the LSA. This illustrates that the map-labeling problem can not be solved using
a powerful GLO alone. The combinatorial difficulties need to be addressed as
well. The application of the framework to the map-labeling problem demonstrates
how both combinatorial and soft constraints of the map-labeling problem can be
handled by a problem solver.

In Figure[5.%, some artifacts can be observed (the enumeration refers to the circles
on the map):

1. The labels are tightly packed, because each label is the bounding box of the
city name. In the figure, this is clearly demonstrated by the cities Dishman
and Moscow. Their labels do not intersect, but only barely. To avoid placing
the names of cities too near each other, one can make labels slightly larger
by introducing a buffer of space around the text. It becomes easier to asso-
ciate the name of a city with the feature, at the expense of a decrease of the
total number of labels placed.

2. In the figure, the name of the city is not properly aligned with the point
feature. This happens because the top-right corner of the bounding box is
placed at the coordinates of the point feature. A similar problem occurs
when the symbol for the point feature (a little square) overlaps the label. A
more detailed label model (for example, the join of the bounding boxes of
the individual letters), or a more careful positioning of the label can resolve
these problems.

3. Atfirst glance, it is not immediately clear which city in the figure bears the
name “Gilette”. This kind of ambiguity should be avoided. This problem
can also be resolved by making the labels slightly larger.

Note that these artifacts are the result of the specification of the input of the al-
gorithm, not the design of the GA itself. The GA tries to find a solution that
maximizes the number of non-intersection labels. The input specifies what the
positions of the labels can be. In the case of point features, a simple, four-position
placement model was used. In Chapter 6, line features will be added to the input
of the GA, and it has to be specified beforehand what the candidate label positions
are.

5.3 Line simplification

The next case study concerfise simplification which is the problem of re-
moving some of the points of a polyline while maintaining approximately the
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Table 5.1: Comparison between GA and LSA under differing conditions.
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Simplification
Line

Figure 5.8: Simplifying a line with distance from the original line less than

same shape. See Figdre]5.8 for an example. Several algorithms exist for line-
simplification problems, such as the iterative refinement heuristic of Douglas and
Peucker! and the graph algorithm of Imai and . These heuristics usually
give satisfactory results. In some cases, however, unwanted artifacts occur which
make the simplified polyline look unnatural. One of those artifacts is the existence
of “spikes” (small angles) in the simplification. In this section we show that the
framework is flexible enough to deal with such additional demands on the shape
of the simplification, whereas extending existing algorithms is not so straight-
forward. In addition, this case study will demonstrate the use of the procedure
REPAIR(-) that will keep solutions feasible during the run of the GA.

We consider the following variant: we are given a polyline (that is, a sequence
of Npoints PoINts, with line segments drawn between successive points) and a pa-
rametere. The polyline is denote® = p1pz... pn,, The line segments do
not intersect each other except when they share an endpoint. The goal is to find a
polyline using a subset of the original points (this subset mustinclude the start and
end point), such that the number of points is minimal and the maximum deviation
of the simplified line from the original line is smaller thafi]

The maximum deviation is defined as the maximum, over all pgintsf the
Euclidean distance gf; to the line segment on the simplified line tisatnplifies
(see below) that point (see Figire]5.9).

A point that participates in the simplified line is callegharticipant. We say

*Note that the ordering of the points in the polyline is significant. That is, a simplification like
P1...Pi---Pj- - Pnyoims Wherei > j is not allowed.
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Figure 5.9: The deviation of a point on the original line (thin) from the simplified
line (bold).

Pj
Dy
Di
Py
Figure 5.10: The bold segment simplifies poings, px, pi, andpj, but none of
the other points.

that a pointpy is simplifiedby segmenpip; (see Figure 5.10) if:
e pj andpj are participants,
o i <k<]
e there is no participany such that <1 < j.

The encoding that we use consists of a gene for every point. For a gene, there
are two possible alleles, corresponding to whether the point is a participant or
not; the alphabet is binary. The fitness function counts the number of participants.
During crossover we want long line segments (possible building blocks) to be
transfered as a whole. There is linkage between two genes if their corresponding
points are simplified by the same segment.

To demonstrate how one can incorporate additional constraints, we require
that all angles in the simplification are larger than a certaiffor example 60
degrees). The exception is when the two segments that make the angle also occur
in the original line.

Next, we fill in the components of the framework:

INITIALIZE (ind): Choose at random alleles for all genes. To resolve conflicts that
make the solution infeasible, traverse all genes in random order and
apply REPAIR(ind, x) to them. When the solution is feasible, again
traverse all genes in random order and apphclaL SEARCH(Ind, X;)
to them to get a better solution.
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Simplification with spike

Original line — @ —
After application of CHECKANGLE(-)

Figure 5.11: The application of @ECKANGLE(:) to remove spikesd = 60°).

LINKED(ind,x;,xj): As explained above, gengsandx; are linked if p; and p;
are simplified by the same segment. Note that this linkage can change
whenever the individual changes.

REPAIR(ind, x;): If there is a conflict, it must be becaupgis at distance greater
than or equal t@ from the closest point on the segment that simplifies
pi. Making p; a participant solves the problem, but a recursive call on
all genes linked to is necessary. To avoid spikes (two consecutive
segments with a small angle), the procedureeCKANGLE(X;) is
called whenp; is a participant.

LocALSEARCH(Ind, x): The simplification can be improved f; is a partici-
pant and can be removed from the simplification without making the
solution infeasible. If this is possiblg; is made a simplified point.

CHECKANGLE(X): If the angle between the two segments joining at ppjns
smaller than a given angle, rearrange the simplification (see Figure
[5.17). This is done by first turning all points that are simplified by the
two segments into participants, and then removing points in a random
order when it is possible (i.e. they are redundant as a participant and
removal does not create spikes).

5.3.1 Results

Several line-simplification algorithms are known, such as the iterative refinement
method of Douglas and Peuckéand the graph algorithm of Imai and . We
will briefly describe both algorithms:
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Douglas-Peucker algorithm: The algorithm by Douglas and Peucker starts with
a simplification consisting of the single segment that connects the start and
endpoint of the line. This simplification will probably contain a point that is
further away from the segment than the maximally allowed deviatioro
resolve this, the simplification is recursively refined. From the points that
are simplified by the segment, the one with the largest deviation is chosen.
The segment is then replaced by two new segments, from the endpoints of
the original segment to the chosen point. The new segments are refined until
the deviation of all points is less than the maximally allowed deviation.

The Douglas-Peucker algorithm can generate many redundant points that
can be removed without making the simplification invalid. In the experi-
ments described further on, we extended the algorithm by applying, in ran-
dom order, IOCALSEARCH(-) to all points of the simplification that was
found by the Douglas-Peucker algorithm.

Imai-Iri algorithm: The algorithm by Imai and Iri casts the simplification prob-
lem in a graph model and computes the shortest path to find a valid sim-
plification with a minimal number of points. First, a directed graph is con-
structed. The node set of the graph contains all the verpcesthe poly-
line. There exists an ai@j, pj), fori < j, when the deviation of the points
that are simplified by the segmepipj is less thare. After construction
of the graph, the shortest path fropa to pn,,, is found by performing
breadth-first search, starting ;3. This path corresponds with a simplifica-
tion which is guaranteed to have the minimal number of points.

Unfortunately, both algorithms deal strictly with generating a simplification with
a minimal number of points, and have no provision for other constraints such as
avoiding spikes.

To illustrate the performance of our GA, we compared against the algorithm
of Douglas and Peucker and the algorithm by Imai and Iri. The latter gives an
optimal result when there are no additional constraints. To remove spikes, we
applied GHECKANGLE(:) to all participants of the simplifications the algorithms
found.

The algorithms were run on twenty randomly-generated lines similar to the
one shown in Figurg 5.8. The procedure that generated the polyline is recursive
and starts with a straight line segment from coording@8) to (800,800). A
random deviatiord is calculated using a Gaussian distribution. The line seg-
ment is split in two new segments by adding a new point that is distdnce
from the midpoint of the original segment. The new segments are the input for
the next recursion step. This process continues until the polyline contains 500
points. As a final step, the line is made intersection-free by reversing chains
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Figure 5.12: Resolving an intersection between segmems, 1 and PPy 1-

of segments where an intersection occurred. For example, if segmpenis
and PxPkr1 intersect, the polylinep; ... pipi+aPit2- - Pk—1PkPk+1- - Prooins 1S

changed tq1... PiPkPk—1- - Pi+2Pi+1Pk+1 - - - Prgoins (S€€ Figure 5.32).
The GA was run five times on each line, and the average was used to compare

against the other algorithms.

The results are shown in Figure 513 (where= 60° and e = 40) and Fig-
ure[5.14 (wherex = 90° ande = 20). The GA generally finds better solutions,
thanks to its capability of handling all constraints during the run. Results for var-
ious values ofx ande are shown in Tablg 5 2. The notatieng:ss denotes the
averagevgof the number of points in all (twenty) simplifications, which standard
deviation ofsd. The table shows that the GA is outperformed slightly by the algo-
rithm of Imai and Iri wheno = 0. In that case, spikes are always allowed and the
result of the Imai-Iri algorithm is guaranteed to be optimal. When the spike con-
straint becomes more importamt becomes larger), the GA starts outperforming
the Imai-Iri algorithm.

The algorithm by Imai and Iri can be extended to build a graph containing only
connections which do not produce spikes. It would then again yield an optimal
result. However, this is a non-trivial task that becomes harder with every constraint
that is added. For example, it is possible that a simplification that is generated by
the algorithms intersects itself. An additional constraint on the output can be
that the simplification is free of self-intersections. It is not clear how to alter
the algorithm of Imai and Iri to avoid intersections in an efficient manner. For the
GA, we can modify the GLO to resolve intersections when they occur, in a similar
manner as was done for the spike example. This makes the framework much more
flexible and conceptually simpler.
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Figure 5.13: Comparison between

algorithms for line simplificatian £ 60°,

€ = 40).

o 0 10 60 90
£ — 20: GA | 4621116 46.01118 54.6:141  76.5:201
- -l | 43.6+102 44.0+103 64.5+153 113 7+210
D-P | 66.9+133 685+134 884+187 1361i239

o 0 10 60 90

¢ — 40: GA | 189146 19.0:147 217159 292499

- -l | 185+47 187451 27.6+05 76.2+259

D-P | 29.0:59 29.8i63 41.4:102 9241103

Table 5.2: Results of the simplification algorithms for differenanda. (“GA” is
the genetic algorithm, “I-I" is the algorithm by Imai and Iri, and “D-P”
is the algorithm by Douglas and Peucker.)
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Figure 5.14: Comparison between algorithms for line simplificatian € 90°,
e =20).

5.4 Generalization while preserving structure

The last case study concergeneralization while preserving structunehich is
the problem of generalizing a given set of objects while maintaining its charac-
teristics. When on a large-scale map not all features can be shown, a subset of
features should be found that expresses more or less the same information. The
study will demonstrate that the framework allows us to keep our cost function
simple by enforcing feasibility of solutions in the geometrically local optimizer.

The specific problem we study deals with point features: from these points
a minimal subset ofepresentativeshould be chosen such that no two represen-
tatives are too close to each other, and every point which is not a representative
is close to a representative. The problem is similagltsteringproblems?? in
which points are grouped according to some similarity criterion. We formalize our
problem as follows. The input consists of a Baif points, and two parametets
andg;, with &, > &. Find the smallest subsBtC P such that:

1. For every two representativesg € Rwe havedistancép,q) > & .

2. For every poinp € P there is a point € R such thatistancép,q) < &,.
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Points
Representatives .

Figure 5.15: A set of points which is represented by a small subset. The solid
circle has radiug, and contains all the points represented by the
bold point. The dashed circle has radaissand should contain only
one representative.
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Figure 5.16: If &, < &, a feasible solution may not exist. In this example, neither
point can be represented by the other point, but they can not both be
representatives.

See Figuré 5.15 for an example. Note that we assgynes;, to ensure a feasible
solution exists. In Figurg 5.16, a trivial example is given of a problem where
&n < & and no feasible solution exists. The two points are too far apart to represent
each other, but too close to both be representatives.

This problem has the interesting property that it has two equally important
constraints. How can we build a GA that solves this problem? There are now two
kinds of conflicts: representatives that are too close together and normal points
that are too far from a representative. One approach is to define a penalty function
for each type of conflict and combine them to give the fitness of the individual,
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which should be minimized to 0. However, this would only produce feasible
solutions and not the optimal solution. So we add yet another subfunction to the
fitness function which counts the number of representatives, also to be minimized.
Our fitness function now has the following form:

fit(Xx) = wq - numRepConflictx)+
wo - numNormConflicts)+
W3- numRepx)

HerenumRepConflicts) is the number of representatives that are too close to
another representativeumNormConflicts) is the number of normal points that
are too far from a representative, amamRep-) gives the number of representa-
tives in the solution. We also need to use weighing-factarsv,, andwg which
have to be tuned to balance the effect of the three constraints on the overall fitness.
However, the fitness-function has become unnecessary complicated. There is an
easier way to do it.

We do not let the GA search in the whole search space of all possible sets of
representatives, of which many will violate several constraints. Instead, we start
with feasible solutions, and maintain the property of feasibility throughout the
run, by using the operatore®AIR(-). As a result, the fitness function can simply
be the number of representatives:

fiit(X) = numRegx),

which is to be minimized. For the encoding, we use a gene for every point, and
two alleles corresponding to whether the point is a representative or not.

We can fill in the framework to obtain our GA. Before we do so, however, we
have to decide what the linkage of the encoding is in this problem. What consti-
tutes a building block and has to be preserved during crossover? First, we define
a neighborof a pointp to be a point that is within distancg from p. Again,
the linkage is determined by geometry. A building block consists of a representa-
tive and “close-by” representatives. More precisely, two points are linked if they
are neighbors or have a common neighbor. In other words, if there is agoint
which is both a neighbor gb and a neighbor of, thenp is linked withr. See
Figure[5.17.

Next we fill in the components of the framework:

INITIALIZE (ind): We have to take care that the solution is feasible after initial-
ization. Therefore, after assigning to all genes the value specifying
that the point is not a representative, all genes are traversed in random
order and the procedureeRAIR(ind, X;) is applied to each gene.
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o] /.
.
, '.

Figure 5.17: Points connected with a dashed line are neighbors. poglinked
with pointsq andr, but not withs.

LINKED(ind,x;,xj): The genes; andx; are linked if their corresponding points
are linked.

REPAIR(INd, x;): There are two cases:

1. A conflict arises when the point corresponding to the gene
is a representative, and it is too close to another representative.
This can be resolved by making the point a normal point. For
neighbors of the point, new conflicts can arise and therefore
REPAIR(ind, ;) is applied to all geneg; corresponding with
the neighbors of the point.

2. A conflict can also arise when the point corresponding to the
genex; is a normal point and no representative is nearby. In
this case, we can make the point a representative. $ijise,,
no other representatives are close-by, so this does not cause any
new conflicts.

LOCALSEARCH(INnd,X;): In this example no local search is performed.

The recursion in RPAIR(-) is guaranteed to terminate. Figlire 5.18 shows the
transitions a point can make during multiple applications aPRR(-). A nor-
mal point with a conflict is always turned into a representative without a conflict.
Likewise, a representative with a conflict is always turned into a normal point
without a conflict. It is possible that a point that turned from representative to nor-
mal causes a formerly conflict-free, normal point to have a conflict. This happens
when the point was represented by the point which was just turned into a normal
point. In this case, the transition from normal point without a conflict, to a normal
point with a conflict occurs. However, after the point is turned into a representa-
tive without a conflict, it need not be changed again. Thus, a point can experience
a maximum of three transitions.
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Figure 5.18: State diagram of a point during multiple applications &FRIR(-).
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Note that a good solution spreads the representatives evenly to cover the input
points. If more representatives are wanted where the map is dense;, tethe,
could be derived from the local density.

54.1 Results

We generated twenty random maps similar to Figure]5.15. Each map was created
by randomly choosing twenty “capitals” on a grid of 1000 by 500 units. Each of
the capitals also contains a random weight to specify how important it is. Points
were added to the map by trying to place them near a capital, until the total number
of points was 1000. The decision to place a point near a capital was made by
flipping a coin biased with the weight of the capital. It was then tried to place
the following point near the next capital, starting again with the first one after the
twentieth. The location of a point, when placed, was calculated using a Gaussian
distribution for both the x- and the y-coordinate, centered at the capital. The
resulting map gives a more interesting input than just randomly dispersing points.

We ran the GA five times on those maps and compared the average run against
two heuristic methods one may think of when confronted with the problem. The
GA was ran with a population size of 150. The two heuristics work as follows:

Greedy 1: First, all points are sorted on their distance from the centroid of the
pointsf| The centroid is the point whose coordinates are the averages of the
coordinates of all the points. Then, starting with the point closest to the
centroid, they are examined in this order. If the point is not represented yet,
it is made a representative.

*We also experimented with a left-to-right ordering, without observing significant differences.
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Figure 5.19: Comparison between algorithms for generalizatign=£ 50, & =
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Greedy 2: This heuristic starts with a list of the points sorted on their number
of neighbors. The point which has the largest number of unrepresented
neighbors is chosen and becomes a representative, after which the list is
updated. This process continues until the list is empty.

The results of this comparison are shown in Figure]5.19 and Fjguré 5.20, illus-
trating that the GA performs better than the two other heuristics on every input.
However, the running times of the algorithms differ much: both the greedy algo-
rithms took about three of four seconds to terminate, whereas the time to complete
a run of the GA ranged from 90 to 200 seconds. On the other hand, it should be
taken into account that the GA was not optimized for speed. For example, it is
unlikely that the population size is optimal.

5.5 Discussion

As mentioned in Chaptéi 1, a problem solver for hard problems in a GIS context
has to have the following properties:

1. The problem solver should be capable of giving close to optimal solutions.
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Figure 5.20: Comparison between algorithms for generalizatien=t 30, & =
20).

2. It should be possible to extend the problem definition with additional con-
straints.

3. The problem solver should integrate well with the GIS and be user-friendly.

The first property basically states that when simple, greedy methods fail, a more
powerful problem solver is needed. In cases where the problem is combinatorially
hard, trying to find a fast (polynomial time) algorithm that guarantees to give the
optimum is an infeasible approach. Therefore an algorithm such as a genetic
algorithm, simulated annealit®¥§,or tabu searct should be used to find good
solutions in a reasonable amount of time. Genetic algorithms have been used in
industry to solve other practical problems, and have proven to be powerful as well
as flexible.

The use of geometrically local optimizers in our GA makes it easy to adapt the
GA when additional constraints are added to the problem. In a GIS context, this is
a major advantage compared to the use of other problem solvers. Most extensions
are local requirements to satisfy aesthetical demands. As such, they should not be
put in the fitness function but in the geometrically local optimizer. Putting them in
the fitness function introduces the need for weighting parameters, which requires
a tuning phase. The GA would have to be run many times before the weighting
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parameters can be set to appropriate values, after which it can only be run on
data which resembles the tuning data. Using geometrically local optimizers, the
designer of the GA can decide what is good in a local setting, and let the GA

construct from these local solutions a solution that is close to the global optimum.

No weighting parameters will be needed.

The third property is satisfied by avoiding tunable parameters as much as pos-
sible. Since the GA will be used by people who do not have much (if any) experi-
ence with GAs, it should be avoided that the user has to set parameters such as the
probability of crossover. The only parameter in the proposed framework which
has to be set by the user is the population size, which determines the amount of
computational effort that is allocated to the GA. It may be desirable to allow the
setting of this parameter. Since the GA gracefully deteriorates in the quality of its
solutions, the setting of the population size is a measure for the trade-off between
the quality of the final solution and the response time of the algorithm. In other
words, if the user wants a solution fast and accepts a lower quality, she can set a
low population size. When a high-quality solution is needed, the user sets a high
population size and lets the computer run for a night to produce the output. Alter-
natively, the adaptive population sizing techniques mentioned in Séctiof 2.1.1 on
pag€ 2L can be employed to find good solutions without the need for the user to
set the population size.

Note that the framework generalizes the techniques—based on theoretical
insights—that we used to design the map-labeling GA. In Chapter 4, we were able
to investigate the scale-up behavior of that GA. We showed that the assumptions
of theoretical models were not seriously violated, which resulted in the prediction
of a linear scale-up for the number of fithess evaluations. This prediction was
confirmed. We expect that the GAs that are designed by applying the framework
have the same characteristics as the map-labeling GA. That is, we expect that they
satisfy the assumptions of the models and exhibit the same scale-up behavior. The
scale-up behavior is important when the algorithm is integrated in a GIS, because
it has to function reliably under all circumstances.

Summarizing, we described a framework in which the structure of the problem
needs to be expressed in a functiommkeD(-). When the structure is geometri-
cally determined, as is often the case for GIS problems, this is easy to do. The
resulting GAs use a crossover which is linkage-respecting, and a geometrically
local optimizer for including additional problem constraints and enforcing feasi-
bility. We think these GAs are a useful tool for GIS developers since:

1. They are capable of solving problems that involve vast, complex search
spaces.

2. They are flexible and extensible.
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3. They are practically usable in a GIS since they are not limited to a specific
problem and no parameters need to be tuned.

Other problems that may lend themselves to this approach are:

¢ the coloring of countries on a map, where neighbors should have different
colors and the total number of colors used should be minimal,

e political redistricting (accumulating areas into larger districts such that the
resulting districts are as fair a representation of the whole as possible), and

e outline simplification of buildings (maintaining approximately the same
shape using less points, while preserving right angles in corners and avoid-
ing intersections).

5.6 Conclusion

We have proposed a framework for solving hard problems arising in GISs with
GAs. Such problems can contain many additional constraints besides the con-
straint that makes the problem combinatorially hard. In addition, the structure
of a problem is often geometrically determined, which means the linkage of the
encoding can be assessed with reasonable confidence. In the framework, the link-
age is expressed using a separate function, which is used by the GA to make the
crossover linkage-respecting. The framework is flexible in that additional prob-
lem constraints can be incorporated in the GA by extending the geometrically
local optimizer. As a result, an efficient GA—which finds good solutions in a
reasonable amount of time—can be designed quickly.

Three case studies exemplified different aspects of the framework. The first
case study showed how the map-labeling problem can be extended to a more real-
istic problem instance with more cartographic rules. The second case study, line
simplification, showed that even an optimal algorithm can perform poorly after the
addition of a new constraint, whereas the GA is more flexible. It also exemplified
how to deal with infeasible solutions. Generalization while preserving structure,
the third case study, also demonstrated how to handle infeasible solutions with
the geometrically local optimizer. Additionally, it showed how to keep the fitness
function simple.



134 A design framework for GIS problems



CHAPTER O

Point and line feature labeling

In Chaptell B, we developed a GA for labeling point features. It was extended
with several cartographic rules in Sectjon|5.2. We will now examine the problem
of labeling a map that also includes line features. While applications using maps
containing only point features exist, for example, labeling a map with measure-
ments, geographical maps usually contain line and area features as well. In order
to offer a general approach for solving the map-labeling problem, we should be
able to deal with them too. Here, we extend the GA to handle both point and
line features. We will return to the question of how to deal with area features in
Sectior 6.1.

Line features are different in a number of ways from point features, and the GA
has to be adapted accordingly.

Firstly, finding a placement model for the label is not as easy for line features
as it was for point features. For point features there were four fixed positions
which are generally considered to be good placements. No such fixed set of po-
sitions exists for line features, since each line feature differs in shape. Several
guidelines are used to specify a good position for a label (see for example the
articles by Imhof:® Alinhac® and Youli®). In general, a label has to be near
the line feature and follow its direction to be associated easily with the feature.
On the other hand, if the line feature changes direction a lot (it is “wiggly”), the
label should not have a lot of inflection points, since this would make the label
less readable. Since there is no a-priori placement model, a procedure has to be
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devised that generates candidate positions for a line-feature label that adhere as
much as possible to these guidelines.

Secondly, a line feature spans a much larger part of the map than a point fea-
ture. For any line feature, the label should be quickly found, starting from any
vertex of the line feature. Therefore, it is sometimes necessary to repeat labels
for the same line feature. As a result, a way of determining the correct number of
labels of a line feature is needed. Furthermore, between labels of the same feature
proximity constraintdave to be enforced: the labels should be neither too close
nor too far from each other.

The rest of this chapter is organized as follows. Before we discuss the alterations
to the GA, we explain how distances are measured and how the proximity con-
straints are defined in Sectipn6.1. Then, in Sedtioh 6.2, we describe how the GA
is adapted to cope with line features; this involves alterations to the initializer (to
place multiple line-feature labels which satisfy the proximity constraints) and the
geometrically local optimizer (the slot-filling procedure of Secfion 5.2 is extended
to yield valid labelings for line features). Experimental results are presented in
Sectior] 6.8. A discussion of the progress made thus far is given in Sgctjon 6.4.
The chapter concludes with Sectjon|6.5.

6.1 Measuring distances and proximity constraints

As stated above, we will need to enforce proximity constraints between labels of
the same line feature. How these constraints are defined exactly will be explained
in this section. Before we can do this, however, we will need to be able to measure
the length of the line feature, and distances along it.

Measurements of a line feature. We start by explaining how the length of the
line feature is determined. The most straightforward solution, summing the length
of all the segments of the polyline, will yield very different results depending on
how wiggly the line feature is. In Figufie 6.1, two line features are shown. The
feature below is more wiggly (and longer) than the one above, whereas they are
comparable in length with respect to the label. To circumvent this problem, we
calculate the simplification of the polyline and measure along the simplification.
We use the Douglas-Peucker algorithm (as described in Subsection 5.3.1 on page
[1217), using a maximally allowed deviation equal to the height of the labéle

useh since line features on a large scale can have coarser simplifications, thus
making the simplification scale-dependent. The length of the line feature is now
simply the summation of the lengths of the segments of the simplification.
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ed River

ed River

Figure 6.1: The line feature below is more wiggly—and, therefore, longer—than
the one above.

The next difficulty is how to measure distances along the line feature: given
two labels placed near the line feature, how can we measure the distance between
them? Each label ianchoredto the polyline at a certain vertex of the polyline.
How the anchor is determined will be explained in Section $.2.1 (see[page 141).
The distance between two labels is the distance between their two anchors, minus
the width of the label (see Figure 6.2). What remains is to measure the distance
between two anchors. For this, we again use the simplification of the line feature.
Note that we use the same simplification as before, in order to keep the measure-
ments constant. As a result, the anchor might not be a vertex of the simplification.

The distance between two anchors on the simplification is the summation of
the lengths of the segments of the simplification between the anchors. When
the anchor is not a vertex of the simplified polyline, the point on the simplify-
ing segment is used that is timeappingof the anchor on the simplifying seg-
ment. This is best explained with an example. In Fidureé 6.3, the dark grey
segments belong to the simplification, and we want to measure the distance
between anchorg; and p;. The distance betweep and p; is measured as
length(p{ pi+1) + length( pi+1p’j), wherep/ and p’j denote the mapping of points
pi and pj, respectively, onto the polyline. In the example of Figurg @g3is
already on the simplification, so we hapﬁa: p; To calculate poing;, the seg-
ments between anchops_3 (the previous vertex of the simplification) arpg, 1
are mapped to the segment that simplifies them. This is done in such a way that the
relative proportions in length of the four mapped segmeptsz0i—2, Pi—2Pi—1.

Pi—1Pi, andpipi1) are maintained.

Proximity constraints. The purpose of the proximity constraints is twofold.
Firstly, it ensures that the map does not become too crowded (by enforcing a min-
imal distance between labels). Secondly, it ensures that the user of the map does
not have to look too long to find the label of the feature (by enforcing a maximal
distance between a label and any point on the line feature). The latter aspect is,
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distance
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Piv1

Figure 6.3: Measuring with a vertex that is not part of the simplification (drawn
bold and grey).

of course, dependent on the way the user looks for the label. For example, he can
examine the whole feature and look for nearby labels, or perhaps he immediately
looks for a label in the same color as the feature. Here, we assume the user has
seen a part of the line feature and is tracing it until he encounters the label. In this
case the length of the (simplified) line feature that was inspected before finding
the label is crucial.

There are two proximity constraints. The first one is calledcibseness con-
straintand it makes sure the labels are not placed too close to each other.

Definition 5 Closeness constraint
For any two labels lapand lalky, we have

distancélaby,laby) > egjose h,
whereggoselS a constant set beforehand, and h is the height of the label.

The other proximity constraint is called tltever constraintend it ensures that
each point on the line feature is near some label, that is, the whole feature is
covered.

Definition 6 Cover constraint
For any point p on the line feature, there should be a label lab with

distancep,lab) < &, - h,
wheregg,, is a constant set beforehand, and h is the height of the label.

Note that by usindp the proximity constraints become dependent on scale, ensur-
ing smaller distances on maps of smaller scales. All distances are measured along
the simplification of the polyline, as explained above.
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6.2 The GA

The GA which we designed for the point-feature map-labeling problem had the
following characteristics:

1. Each feature possessed the same number of candidate positions.
2. Each feature could have only one label.

3. All labelings were feasible by definition, because every candidate label po-
sition was allowed.

When we add line features to the problem, these properties change:

1. Line features can differ in shape and we want to have the freedom to place
the label anyway near the line feature we like. Therefore, we need more
candidate positions for long line features than we do for short ones.

2. Labels of a line feature have to be repeated if the line feature is very long,
so features can have multiple labels. These labels should not be placed too
close to each other, or to far from each other.

3. With the addition of the proximity constraints, not every labeling is feasible
anymore. For example, if a label is placed in a certain position and another
label is placed in a position which is too close, the solution is not feasible.

Overview of the GA. We maintain our definition of a rival (that is, two features
are rivals if their labels can intersect), but it should be noted that different kinds
of features can be rivals too. For example, a point feature can be a rival of a line
feature.

The encoding we use is an extension of the one that was used for the point-
feature labeling GA. A chromosome is a string of genes, where each gene stores
the positions of the labels of a feature on the map. For a point feature, the gene
just stores a single label position, as before. For a line feature, the gene can hold
the positions of multiple labels. This way, the labels of a single feature are kept
together, ensuring that crossover does not make the labeling infeasible.

Initialization for point features is the same as in Secfion 5.2. For line features
the proximity constraints have to be enforced, so a different method is needed for
initialization.

Crossover is essentially the same as for the point-feature labeling GA: we
repeatedly choose a feature and its rivals (a rival group), and transfer the selection
from the parents to the children. Since a line feature can span a large piece of
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the map, it can also have many rivals. This is reflected in the linkage of the
encoding, where relatively large groups of genes can be linked. With the point-
feature problem, the solution consisted of building blocks of more or less the
same size. Now we can have building blocks which are large (corresponding with
line features), combined with those which are small (corresponding with point
features).

The fitness function counts the number of conflicts. A conflict is defined as
either a label intersection, or a label deletion. Note that this fitness function is
conceptually identical to the fitness function from Chapjer 3 and S€ctipn 5.2.

The selection scheme is not changed: the GA still uses the elitist recombina-
tion scheme.

The geometrically local optimizer still uses slot filling, but has to be adjusted
to enforce the proximity constraints.

In the next subsections, we discuss the procedure for finding candidate label
positions (Subsectidn 6.2.1), the calculation of the number of line-feature labels
(Subsectiori 6.2]2), initialization (Subsection 6.2.3) and the geometrically local

optimizer (Subsection 6.2.4).

6.2.1 Finding candidate label positions

Since there is no a-priori placement model for line feature labels, we need to
calculate candidate label positions for each line feature. We choose a discrete
placement model, since this extends the GA most naturally from the point-feature
case.

Given a polyline, candidate positions for the line-feature label have to be found
such that:

e Each candidate position is close to the line feature and follows its direction.
¢ No candidate position intersects the line feature.

¢ All candidate positions together cover the line feature, such that a label can
be placed more or less anywhere near the line feature.

For simplicity, we consider the line feature in isolation. As a result, it is possible
that candidate positions can intersect other features. This can easily be avoided,
but requires a more complicated implementation. We will say more about this
later (in Section 614).

In the map-labeling literature, several approaches have been proposed to gen-
erate good candidate positions for line feati#eé&*23 The algorithms by Wolff
et al.11° and Barrault and Lecord®yield curved labels, which are difficult to
implement. Since the combinatorial complexity of the problem is not dependent
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on the shape of the labels, straight labels suffice for our research. For the same
reason, we are not interested in finding the absolutely best-looking positions pos-
sible. Instead, we try to investigate the problems associated with the search for a
good map, given a certain search space.

The algorithm by Edmondson et%l.also calculates candidate positions for
line-feature labels, but it is not guaranteed that these positions cover the whole
line feature. In addition, the positions can intersect. Edmondson et al. only placed
a single label for each line feature, so their algorithm sufficed for their purposes.
Since we want to place multiple labels, their approach can not be adopted. Our
method of generating potential label positions (from which the candidates are cho-
sen) is similar to theirs, though.

We propose the following heuristic, which is easy to implement, satisfies the
requirements stated above, and worked well in our experiments.

We want to generate candidate label positions for every vertex of the line feature,
ensuring the whole line feature will be covered with labels. To do this, we need
a way to deduce the local direction of the line feature, so that we can place the
candidate position in the same direction. To start, we will generate many potential
label positions. Not every label position that was generated will be equally nice.
To differentiate between label positions, we therefore need a measure of quality.
Based on this measure, we pick the candidate label positions that will be used by
the GA. These issues are discussed in the following paragraphs.

Deduction of the local direction and generation of initial baselines. To cover
the whole line feature with labels, we will generate a candidate label position for
every vertex of the polyline. However, if a segment is very long, no positions will
be generated because there is no vertex in the middle of the segment. Therefore,
we make sure that the lengths of all segments of the polyline are less or egual to
We do this by examining the segments of the polyline and breaking up segments
longer tharw into equal-length subsegments of length at nvasiVe will call the
polyline, after long segments have been broken upextended polyline

For each vertex, we generate one or mioigal baselines, which will serve
as the starting point for the baseline of the label. These initial baselines have to
follow the local direction of the line feature.

Given a verteXp;, we deduce the local direction of the line featurg;dty tak-
ing another vertey; (with j > i) of the extended polyline which is “close”. Two
vertices are “close” when the Euclidean distance between them is bounded from
below byw and from above by\®&, wherew is the width of the label. The segment
Pip;j is the initial baseline, and poim is its anchor,which we mentioned in Sec-
tion[6.1. The initial baselingip; is said tospanthe segmentgipi (1, . .., Pj_1P;-
See Figur¢ 6]4 for an example of a vertex and its initial baselines. Note that, since
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./\H‘Q/\/‘
Figure 6.4: The initial baselines (drawn bold) of a certain verfgx

each segment of the extended polyline has length less or equakioleast one
vertex that is “close” will always be found.

This method succeeds in deriving the local direction of the polyline fairly
well. In our experiments, we found that we obtained acceptable results with real-
world data of very wiggly rivers like the Mississippi. The initial baselines can’t
be used directly, since then the labels, when placed, would intersect the polyline.
Therefore, the next step will be to move the initial baseline away from the polyline
and generate the label position.

Derivation of potential label positions. To avoid that the label position will
intersect the polyline, we translate the initial baseline perpendicular to itself until
it does not intersect the part of the line feature it spans anymore. We do this for
both directions and thus obtain tvebifted baselineésee Figur¢ 6]5). The label
position on the top of the line feature is constructed by using this shifted baseline
directly. The position below can not be used directly, since then the label would
still intersect the line feature. Therefore, the shifted baseline is translated some
more for the distance of the height of the label. Note that we only consider the
part of the polyline that is spanned by the initial baseline when we perform the
translation. It is still possible that another part of the line feature intersects the
potential label position after it was generated. After generating the label position,
we check for an intersection. The position will not be considered as a candidate
label position if an intersection occifs.

Now that we have generated many potential label positions, we have to select the
best ones to be used by the GA. To do this, we first need a measure of goodness.

Measure of quality. We assign to each label position a measure of quality which
describes how well the label is positioned with respect to the line feature. Our pri-
mary concern is that each part of the label is close to the line feature, to obtain
a good association between the label and the feature. A label that hugs the line
feature is better positioned than a label which is some distance from the feature,
or at an angle with it. To compute a quality for a label position, we are going

“Note that, at this point, we could check for intersections with other features on the map, too.
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"_initial baseline

*_shifted baseline

Figure 6.5: Translation of the initial baseline.

to look at the distance between the polyline, and the shifted baseline of the label
position—see Figurie 6.6. We measure the distance of the babebrtbose seg-
mentsssi;1...Sj that are spanned by the initial baseline. Long segments should
have a larger impact on the quality than small ones, so we weight each segment
with the length of the segment and normalize with the total length of the segments.
Thus, we define the quality of a label position as follows:

51 distancés,, b) - length(s,)
3 ki length(s)

quality of label position=

wherelength(s) just calculates the Euclidean distance between the endpoints of
the segmens, anddistancés;, b) calculates the Euclidean distance between seg-
mentss; andb).

Using this measure of quality, we are able to distinguish good label positions
from bad ones, and we can proceed with the selection of the ones that are going
to be used by the GA.

Selection of label positions. We are now ready to provide the candidate label
positions of the line feature that will be used in the GA. All potential label posi-
tions (two for each initial baseline) are sorted on quality. The best one is returned
as a candidate position. The remaining positions are inspected to see if they in-
tersect with the position which was just chosen, in which case they are removed
from the list. We remove these positions to avoid that a lot of label positions are
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Figure 6.6: The quality of a label position.

chosen that have a similar quality and position, because they are all placed on the
same, straight piece of the polyline. We can not just use all label positions, since
the performance of our GA drops when a line feature has very many candidate
positions. Also, choosing a cut-off value for the quality (to avoid choosing bad
positions) can be difficult. By removing intersecting positions, the heuristic is
forced to choose the next label on a different part of the polyline.

We keep picking candidates and removing intersecting positions until the listis
empty. The chosen candidate positions will cover the whole line feature well since
a) each vertex on the extended polyline is likely to generate several potential label
positions, b) vertices are never more than a distaneeagart, and c) intersecting
positions are removed from the list. This selection method does not guarantee
to maximize either the total amount of quality of the candidate positions, or the
number of candidate positions, but the results are sufficient for our purpose.

The heuristic is successful in providing candidate positions that are reasonably
well positioned. Of course, more sophisticated methods would be able to find
positions which look nicer, for example by using curved labels, a better quality
measure and an improved selection method. This does not fundamentally change
the combinatorial characteristics of the problem, however.

Figure[6.7 shows examples of the application of this heuristic. All candidate
positions of (a part of) the Mississippi river are shown, for three different scales
of the map. In this chapter, we perform experiments on maps of three scales:
the small scale, the medium scale (twice as large as the small scale), and the
large scale (three times as large as the small scale). The Mississippi serves as a
good example, since it contains parts which are relatively straight, but also parts
which change direction a lot. The picture shows that the method is insensitive to
quick changes in direction and succeeds in capturing the local direction of the line
feature. Furthermore, it produces acceptable results for a wide range of scales.
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Figure 6.7: Results of the heuristic that calculates candidate label positions for a
part of the Mississippi river.
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1: for segment line do

2:  if lengthlsegment> w then

3 split segmenin smaller segments with lengthw
4: list—0

5. for pointp; € line do

6: for pointpj € linewith j >i do

7 if length(pip;) > wand lengthpipj) < 2w then
8 generate initial baselingp;

9: generate two shifted baselines

10: use the shifted baselines to generate two label positions
11: add the two positions tlist

12: while list not empty do

13:  best—element oflist with highest quality

14:  reportbestas a candidate position

15:  remove all positions frontist that intersecbest

16:  removebestfrom list

Algorithm 6: Finding label position candidates.

The heuristic is summarized as pseudo code in Algorithm 6. In the algorithm,
h andw denote the height and the width of the label, dné denotes the line
feature.

6.2.2 The number of labels for a line feature

Each line feature must have a certain number of labels placed. If there are too
few, the user of the map has to spend too much time searching for the label before
he knows the name of the line feature. If there are too many, the map becomes
unnecessarily crowded. So the question is: given a certain line feature, how many
labels should it have? Clearly, this is dependent on the scale of the map, since a
river which takes up only a small piece of the map needs less labels than a river
which spans the whole map. For simplicity, we assume there is an ideal, scale-
dependent distanag which is just the right trade-off between crowdedness and
the time the user is searching. Ideally, labels would be placed evenly spaced, and
with a distance ofl between them (see Figyre 6.8). For our experiments, we use
d = 2¢e.0se- h. Recall that the closeness constraint specifies that labels should be
more thanegose: h apart. This value is more-or-less arbitrary (chosen because
it produced good results), but that does not really matter. We are interested in
providing the techniques needed to label maps with a GA. The optimal value can
be set by the user of the GA, if necessary. The ideal distance can not exceed the
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Figure 6.8: Coverage of line feature by labels and space.

two borderline cases that are given by the proximity constraints, though. Thus,
we should haveggse- h < d < &5, - h, which implies thakg,, > 2¢egi0se

Next we show how to use the ideal distartt® calculaten;, the number of
labels to be placed. Suppose we have a line feature that has a (simplified) length
of I on which we will placen, labels, evenly spread. The total length of the line
feature is consumed by the labels (given by their width) and the space between
them. Assuming the space between two labels can be exdcthe following
equation holds:

l=n-w+(n+1)-d.

In reality, it will seldom be possible to place the labels such that the space
between two labels is exacttly Therefore, we round, up to the smallest integer.
Substituting ford and rearranging terms we get:

n = [ | — 2&ci0se- h-‘
W+ 2¢gj0se h |

Whether it is actually possible to place this many labels depends on the can-
didate label positions that were calculated and the values of the proximity con-
straints. However, since the heuristic we use to calculate candidate positions was
able to provide a position for every part of the line feature, this is not a problem
when the values fogose andesy, are reasonable.

We would like to stress that the use of a GA does not make it necessary to fix
the number of labels beforehand. In the next section, we discusshiabels
can be placed without violating the proximity constraints. As will become clear
in that section, it is also possible to use a GA which keeps the number of labels
for a line feature variable.

6.2.3 Initialization

We now have two essential ingredients to do initialization for line features: the
feature has a number of candidate positions and we know the number of desired
labelsn,. Initializing a line feature provides it with a feasible labeling, which
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Figure 6.9: Constraints on the distance between two labels.

< Eparh

Figure 6.10: Constraints on the distance between the first vertex and the first la-
bel.

means we have to place thelabels such that the proximity constraints are not
violated. Since the candidate positions cover the whole line feature, we can be rea-
sonably certain such a labeling exists if the constants of the proximity constraints
are properly set. That is, the values ®f,se and &5, should not be too small.

If eq0se@nd, henced is too small, the required number of labels that have to be
placed near the line feature becomes too largeg,lfis too small, it may not be
possible to place the labels such that the whole line feature is covered. Of course,
the values fokeose and &, should also satisfy aesthetical demands. A value for
£close Which produces good-looking labelings is, in our experience, always large
enough. For the maps we tested our algorithm on, a valeg,dhat is larger than
approximately BeqoseWas large enough to always find a labeling.

The proximity constraints can be violated in two ways. The first case occurs
when the distance between two consecutive labels is too large or too small (see
Figure[6.9). The other case occurs when the distance between the first vertex of
the line feature and the first label (or the last vertex and the last label) is too large
(see Figuré 6.70).

The problem is to placg, labels that avoid these cases. We will first attempt
a naive method, examine its shortcomings, and improve on it to find a more satis-
factory method.

We denote the candidate positions &aycy, ..., Cn,, Wherenc is the number
of candidates for the line feature. The candidate positions are ordered by their
anchors, which is the left-most vertex that defined their initial baseline, as was
described in Subsectign 6.2.1, on page|141. The anchors are ordered using the
ordering of the vertices of the polyline. Two candidates that use the same anchor
(one on top of the line feature and the other one below) are ordered arbitrarily.

For now, we ignore the number of labelsthat have to be placed, and only
concern us with producing a labeling that satisfies the proximity constraints. We
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Figure 6.11: An example where the first attempt for initialization does not pro-
duce a feasible labeling.

can try to do so by starting on one end of the line feature, and place labels until
we reach the end of the line feature. The first label has to be placed at a candi-
date position that is near enough the first vertex of the polyline. Other than that
requirement, the candidate position can be chosen freely. The next label has to
be placed such that it is not too close to the label which was just placed, but also
not too far. It is placed at a randomly chosen candidate position that adheres to
these constraints. We thus proceed until we reach the end of the line feature, and
stop when the last label placed is near enough to cover the last vertex of the poly-
line. We now have a labeling where all labelings are neither too close nor too far
from each other, and every vertex of the line feature is close enough to some label.
Thus, the labeling satisfies the proximity constraints.

Actually, we can not be really certain that the labeling produced satisfies the
proximity constraints, since it is possible that the method got stuck (see Figure
[6.17). In the figure, a label was placedcat The distance between the label and
the extreme point is still too large, so another label should be placed. The only
available positiondj) can not be used, however, since a label placed there would
be too close to the first label. However, for reasonable valuegRf &, and
w this problem does not arise. A bigger problem is that, since we ignored the
required number of labels, there is no guaranteerthiaibels are placed. We can,
of course, use a kind of back tracking to systematically try out all combinations,
but that would be much too costly. Instead, we will extend this method to deal
with these two problems, but first we state the problem more formally. To do this,
we use a graph (the so-callednstraint graph that expresses when a label can be
placed, depending on the candidate positions already used. In the graph, there is
a node for each candidate label position. There is an arc between two nodes when
labels that are placed at the corresponding positions do not violate the proximity
constraints. We also add nod®egat, Neng for the extreme points. There is an arc
from ngiart to another node when the corresponding label is close enough to the
first vertex of the polyline. Similarly, there is an arc from a nodadg when the
corresponding label is near enough to the last vertex of the polyline.

Definition 7 Constraint graph
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Theconstraint grapls = (V, A) of a given polyline is a directed graph, defined
as follows:

e The node set V consists of all the candidate label positiprg the line
feature, and two additional nodeg;s: and nung that correspond to the first
and the last vertex of the line feature.

e There is an arqc;, cj) € A whenggose- h < distancéci,cj) < &g - h.

e There is an ardnstar, Gi) € A when distand®start, Gi) < &ar - h, and an arc
(Ci,Nend) € A when distance;, pend) < &ar - h, where gart and pung are
respectively the first and the last vertex of the line feature.

All distances are measured along the simplification of the line feature.

Figure[6.12 shows an example of a line feature and its candidate label positions
(top of figure), together with the constraint graph for that feature (middle of fig-
ure).

As an example, we describe the naive method, presented earlier, with this
graph. We start atsiait. We choose at random one of the outgoing arcs from this
node. We follow the arc to a nodip From this node, we again choose an arc at
random, and proceed to the next node. We keep doing this until we can follow no
more arcs. We hope we have now arrived at nogg, meaning the labeling is
feasible.

The problem now is to find a path fromyat to neng Of lengthny + 1. This
is done by deriving fronG a new graphG* (the so-calledpath graph)that will
express all possible paths@

Definition 8 Path graph
The path graphG* = (V,A*) for a given constraint graph G= (V,A) is a
directed, weighted multigraph, defined as follows:

e The graph uses the same node setV as G.

e If there is a path ©;...neng Of length? in G, then there is an ar¢c;, ¢;)
with weight? in G*.

In Figure[6.1P (bottom)G* is shown together with the line feature a@d
Note that there can be multiple arcs between two nodes (hence, it is a multigraph),
albeit with different weights.

We can now solve our problem by looking for an arc from nogg;: with
weightn, + 1. If one exists, we randomly choose one and find the next node.
By definition, this node will have at least one arc with weight We can again
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Figure 6.12: A line feature with its candidate positions, the constraint graph
and the path grapG6*.
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Figure 6.13: Building the path grapis*.



152 Point and line feature labeling

randomly choose such an arc, and eventually will end upgfa. The nodes

from this path (exceptsiart andneng) correspond with candidate positions. If we
place labels at them, we produce a randomly generated, feasible labelmng of
labels, which concludes the initialization. (Placing a variable number of labels—
as discussed in Subsectijon 6]2.2—can be done by choosing an outgoing arc of
Nstart With arbitrary weight, and tracing a pathng,qin the same way as described
above.)

The path graplG* can be build in an iterative fashion, startingrgty and
ending withngtat. We will add one node and its outgoing arc at a time, using
and the part oG* already built. After we add nodg to G*, we examine nodeg
in G, and follow each outgoing arc. Suppose such an arc ends inajotiehere
exists an outgoing arc fromy in G* with weight/, we can add an arc frogj to c;
with weight/+ 1 in G*. A special case occurs when nagjas actually nodeeng.

In that case, an arc of weight 1 is added from nod® nodengng See Figure
[6.13 for an illustration of how the graph is built. If no path is found, the algorithm
exits with an error. The initialization procedure for line features is summarized
as pseudo code in Algorithin 7, which takes as input a list of candidate positions
C1...Cn., and the required number of labels

[y

constructG
deriveG* from G
choose at random an outgoing arc with weight 1 from ngtat in G*
if no such arc existshen
exit with an error
else
trace path taeng, choosing arcs with appropriate weight at random
for each node; in the path, exceptingstart andneng do
place a label in position;

Algorithm 7: Initialization of a line feature.

6.2.4 Geometrically local optimizer

Conceptually, the geometrically local optimizer will work the same as described in
Section} 5.P. It still uses slot filling and classifies the candidate positions depending
on the surrounding features. Then, it will place the label of the feature it is applied
to at the most favorable position. However, with the inclusion of line features, we
need to address two issues.

Firstly, when a label of a line feature is moved, it is possible that the labeling of
the line feature becomes infeasible. Therefore, care has to be taken that candidate
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positions that violate the proximity constraints are not chosen.

Secondly, it has to be decided what kind of status line-feature labels have
compared to the labels &fMALL, MEDIUM and MEGA cities. Which label is
more important? How should conflicts be resolved?

The geometrically local optimizer thus proceeds as follows. It will try to move
each label of the feature in random order. First, it classifies the slots (which cor-
respond with candidate positions) with the most important label that intersects it.
Positions that should not be used (because they make the labeling infeasible) are
classified differently. Then, it tries to place the label of the feature it is applied
to at a candidate position such that the labeling of the local region improves. If
necessary (and the feature is a point feature), it deletes the label.

Classifying candidate label positions. The first step in the slot-filling proce-
dure gives each slot its state, which is determined by the label of the most im-
portant feature that intersects the position. As before, we have the siatey,
SMALL, MEDIUM andMEGA. We add a state that signifies a line-feature label is
intersecting the positionL(NE), and a state that signifies the candidate position
should not be used at aliNFEASIBLE). We use the latter state to disregard those
positions that would make the labeling infeasible. Next we describe how we can
find the slots that need to be assigned the statBSASIBLE.

We learned in Section 6.2.3 that finding a feasible labeling is equivalent to
finding a path of length, +1 in the constraint grap®, starting anhstat and ending
atngng. Since the labeling is feasible before the geometrically local optimizer is
applied to it, the labeling corresponds to a padfa. .. CiCjCx. .. Neng: Wherec;
is the node corresponding to the label which we want to move (which is placed
at positioncj). We now have to find all nodes that connect the patht...ci
to the pathck...neng Yielding a feasible labeling again. We can easily do this
by inspecting each outgoing arc frotnand checking if the node it points to is
connected t@y.

For each candidate position, we can decide whether the labeling still satisfies
the proximity constraints if the label is placed there. If it does, we classify the slot
corresponding to the position just like we did in Secfior] 5.2—note however, that
a slot can now also be assigned the statg. Otherwise, we classify the slot
asINFEASIBLE, and in the next step of slot filling the candidate position will be
disregarded as a possibility to place the label.

Deciding where to place the label. The next step in the slot-filling procedure
uses the classification of the candidate positions to decide where to place the la-
bel. There are now two extra classes a candidate position can henie:and
INFEASIBLE. HandlingINFEASIBLE is easy, we simply do not consider that can-
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didate position at all. We deal withiNE by giving it the highest priority in the
hierarchy of classes, since we consider line-feature labels to be the most impor-
tant. We do not allow deletion of a line-feature label, because it would make the
solution infeasible. Recall from Sectibn b.2 thetGA labels were never deleted.

A consequence of givingINE a higher priority is that we need to stop this special
treatment. A label of aMEGA city can be deleted when it can not be moved to

a position where it does not intersect line-feature labels. This can certainly be a
undesired side effect. One solution to prevent this could be to allow line-feature
labels to be deleted, but enforce the proximity constraints as if the label is still
placed. We have to be careful, however, that this is only done for line features
with many labels. Generally speaking, when more complex cartographic rules
have to be enforced, the geometrically local optimizer needs to be made more
sophisticated.

The slot-filling procedure thus proceeds in the same manner as was described
in Section 5.2, with the small exception of how preferences are handled. Since
line features do not have preferred positions, no specified order on the positions
that are tried is used when the geometrically local optimizer is applied to a line
feature.

6.3 Comparisons

In the previous section, we described how the approach for labeling point features
with a GA can be extended to handle line features as well. An implementation of
the GA was used to explore the results of this approach.

We used real maps for the following experiments, which show portions of the
Mississippi delta (see Figure 6]14) and the west coast of North America (see Fig-
ure[6.1%). The maps were generated by extracting cities, rivers, country outlines
and lakes from a data set that was bundled with the ESRI Arcéigrogram.

This data was clipped by the bounding boxes that held the two regions of interest.
The data is largely unstructured, which is mostly a problem with the river data.
Two rivers (the Missouri and the Colorado) were specified by several polylines,
which were manually joined. Note that each river is a single polyline, so there is
no special significance for branches of a rffjahen a river was divided in two

parts by a lake, we joined the parts using only a single shore line of the lake—note
that this can cause a label to be placed inside the lake. The lake at the start of the
Tennessee was disregarded altogether for labeling.

We will compare the results of the GA with the local-search algorithm (LSA)
from Sectior{ 5.R. It uses the same initializer and geometrically local optimizer

*Two very short branches of the Canadian and the San Joaquin were excluded from labeling.
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g

Figure 6.14: The unlabeled map of the Mississippi area.

(GLO) as the GA. After initializing a single solution, it repeatedly applies the
GLO to all features on the map. The termination criterion is the same as in Section
[5.7: if the last 50 iterations did not improve the number of non-intersecting labels,
a new solution is generated. The total length of the run is the (maximal) amount
of time the GA spent on the same map. The population size of the GA was 200.
A run of the GA was stopped when the last 500 recombinations did not improve
the average fitness of the population by one. The results from the GA are the
average of 10 similar runs with different seeds for the random-number generator.
The values for the constants of the proximity constraints were chosen to produce
maps which looked good and had multiple labels. Unless otherwise specified, we
usedegiose= 18 andegy, = 46.

We are aware of only one other attempt to provide a general algorithm for
point and line-feature labeling that combines the combinatorial constraint with
cartographic rules. This is the approach based on simulated annealing by Ed-
mondson et &2 Since we already did extensive experiments to compare the GA
with simulated annealing in Chap{gr 3, we do not repeat them here. We feel the
conclusion from that chapter still holds: both algorithms can produce high-quality
solutions, but the approach described in this thesis is more robust, extendible and
easier to include domain knowledge with. Other than that, it would be very diffi-
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Figure 6.15: The unlabeled map of the west-coast area.
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cult to compare both approaches fairly, since it is hard to quantify which result is
better when constraints other than minimizing the number of conflicts are added.
One of the strengths of the approach using the GA is that the ability to express car-
tographic rules in the GLO makes it often unnecessary to quantify quality, but this
makes comparisons hard. In addition, the approach of Edmondson only places a
single label for each line feature, whereas we place multiple labels that adhere to
the proximity constraints.

We present the results as follows. Firstly, we will investigate how useful it is
to integrate line-feature labeling with point-feature labeling, as opposed to fixing
the line-feature labels beforehand and doing just point-feature labeling. Secondly,
we will compare the results of the GA with the local-search algorithm.

Usefulness of placing line-feature labels with the GA

Before we accept the GA as outlined in this chapter as a viable approach to solv-
ing the map-labeling problem, we should investigate whether it is really necessary
to integrate both point- and line-feature labeling in the same GA. After all, maybe
it is simpler just to fix the label positions of the line features and then perform
point-feature labeling. Do we really gain anything by using a more complex GA
that can handle line features? To answer this question, we compared two variants
of the GA on the same map. The first variant is the GA described in this chap-
ter. The second variant is the same GA, with the following modification. During
initialization, a random labeling for line-feature labels is produced. This labeling
is the same for all individuals in the population. In addition, the labeling remains
fixed during the run of the algorithm. That s, in the geometrically local optimizer,
line-feature labels are never moved.

For both GAs, ten runs were done with different seeds for the random-number
generator, and the average is shown in Figure|6.16 for the west-coast map, using
a medium scale. The average of ten runs for the Mississippi map, using a medium
scale, is shown in Figure 6]17. The standard deviation of the final solutions is
shown in the last point of the run. It shows that, depending on the map, the results
can improve considerably when the integrated approach is used.

Comparison with the local-search algorithm

Next, we compare the GA against the LSA. In Tgble 6.1, the results of the GA and
the LSA are shown for the Mississippi map and the west-coast map for different
scales. The notatioavg:ss denotes the averagar/g of the runs, which standard
deviation ofsd. The labels of the rivers were never deleted. The table shows
that the GA outperforms the LSA. The GLO allows the GA to be extended to
incorporate line features, yielding a GA that can search efficiently and respect the
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Figure 6.16: The usefulness of integrating both point- and line features in the GA.
The map labeled is the west-coast area, using the medium scale.

cartographic rules as well as the combinatorial constraints. The results also show
that the GA techniques described in this chapter work well for maps of different
scales.

6.4 Discussion

In this chapter, we extended the point-feature GA to handle line features as well.
The results showed that the GA is able to produce good solutions. We only needed
to extend the initializer and the geometrically local optimizer, which illustrates the
flexibility of the GA's design. However, a close inspection of the map produced by
the GAreveals there is room for improvement in the geometrically local optimizer.

In Figure[6.18, a labeling of the west coast of the USA is shown, as done by
the GA. Indicated in this figure are some areas in which undesirable artifacts are
present (the enumeration refers to the circles on the map):

1. No provision is made for dealing with the background of the map. In the
figure, the labels of Brigham City, Clinton, Clearfield and Magna are placed
inside the lake, making it hard to read. This happens, because, as far as the
GAis concerned, there is no lake. The GA, as described, works strictly with
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Table 6.1: Results for the map of the Mississippi area and the map of the west-
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Figure 6.17: The usefulness of integrating both point- and line features in the GA.

The map labeled is the Mississippi area, using the medium scale.

label positions, and never considers the geometry of the features. One solu-
tion would be to extend the geometrically local optimizer with a measure of
how many objects intersect a candidate position. Such a measure can also
be used to improve the quality measure which was used to calculate candi-
date positions for line features, to avoid generating candidates that intersect,
for example, another line feature.

A special case of the previous artifact is seen where the label of the Missouri
river is placed inside the river itself. This is a consequence of the fact that
the input data contained a lake, from which the south coast was used to join
the parts of the river. The construction of polylines from the geographical
data was described at the start of Sedftion 6.3.

Certain cartographic rules are not yet incorporated. For example, in car-
tography it is considered bad when a river divides a city and its label. In
the figure, Anderson is placed on the wrong side of the river, even though
there is enough room on the other side. Another such rule is: “labels of
cities next to a large body of water should be placed entirely in the water”,
which is also not used by the GA. These rules can easily be enforced in the
geometrically local optimizer, if it can be determined which candidate po-



6.4 Discussion 161

sitions violate them. To do this, it is needed that the candidate positions are
assigned additional attributes (like “places label in water”) which describe
their relation to the surrounding geometry.

4. The label of Oakland, which is@EGA city, is deleted (it is placed on the
map lightly shaded). This happens because it intersected in all positions ei-
ther the label of San FranciscoN&GA city) or the label of the San Joaquin
(classified as aINE). Thus, it was deleted in the slot-filling procedure. Note
that the San Joaquin label could easily be placed out of the way, at the small
cost of deleting the label of Bonadelle Ranchos-Madera Ranchos. We tried
to address this problem in Section]5.2—a simpler version of the problem is
shown in Figuré 5]3 on page 110. Solving this would require that the GLO
considers the geometrical context of the rivals of the point it is applied to.

5. At junctions in a river, labels should be repeated to make clear how both
branches are called. For example, consider the junction in the figure. It is
not immediately clear which branch is the Colorado, and what the name of
the other branch is. This problem also results from the fact that the geomet-
rically local optimizer only uses label positions. It can be solved by adding
a constraint similar to the proximity constraints that ensures a label is placed
near a junction. The constraint has to be respected by the initializer and the
geometrically local optimizer.

6. When placing labels on a map, it can not be avoided that some labels are
placed on portions of aline. In the figure, for example, the label of Aberdeen
was placed with a vertical line running through it. This makes it harder to
read. The ideal solution would be to paint the part of the line under the
label in a color that has a lower contrast with the text. Alternatively, it can
be removed completely.

Area features. Support for area-feature labeling is missing, too. It is relatively
easy to extend the GA to handle area features. Really all that would be needed is a
procedure for calculating suitable area-feature label positions. Note that an area-
feature label is usually not a single rectangle, but a set of rectangles corresponding
with the bounding boxes of the individual letters of the name. As a result, the
procedure that tests for a label intersection needs to be modified slightly.

It is questionable, however, whether it is necessary or useful to build this into
the GA. The improvement in the fitness of the final solution which is achieved
by integrating the placement of line-feature labels in the GA—as opposed to a
preprocessing step—was relatively modest. Since a map will have relatively few
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larger than the small scale.
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area features, we expect little gain in integrating the placement of area-feature
labels in the GA.

Therefore, it is probably best to use pre- and postprocessing steps to take care
of the area features. In the preprocessing step, a good labeling for area features
alone can be calculated using techniques from litera@fé%7%.2In the postpro-
cessing step, the positions of area labels can be altered slightly to resolve remain-
ing conflicts.

6.5 Conclusion

In this chapter, we took a very pragmatic approach to the map-labeling problem.
We concentrated on discussing techniques for extending the GA to handle line
features. For long line features, labels were repeated at suitable intervals, ensuring
that each vertex of the line feature is close to a label. We were less concerned with
details than with general solutions. For example, the way we find candidate label
positions can be improved by using curved labels, a better quality measure, and so
on. However, we think these improvements are relatively straightforward, at least
from a conceptual point of view.

We showed the GA succeeds in producing good-looking maps. The useful-
ness of integrating the placement of line-feature labels into the GA was tested by
comparing against the same GA that gave all individuals in the population the
same labeling for line features which could not be changed. The GA using the in-
tegrated approach showed a modest improvement. Compared to the local-search
algorithm, the GA can place significantly more labels. However, the resulting
maps contain artifacts which require a more sophisticated geometrically local op-
timizer to be resolved. The design of the GA as a whole does not need to be
changed, however, which demonstrates the flexibility of the approach.
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CHAPTER [/

Conclusion

In this thesis, we set out to study the use of GAs to solve the map-labeling prob-
lem, and to apply theoretical insights about GAs to a real-world problem. These
two goals were reflected in the intended audiences, namely those with a carto-
graphic interest, and those interested in GAs. Next we discuss what this thesis has
to offer these two audiences.

For researchers from the field of geographical information systems, we have pre-
sented a new method for automated label placement, based on genetic algorithms.
We designed a GA that can find good solutions for map-labeling problems that
include point and line features. The solutions are good in a combinatorial sense,
that is, solutions can be found that have close to the optimal number of labels.
In Chapter B, the GA for point-feature labeling was compared with the current
state-of-the-art and was found to be competitive. In Chapter 4, maps of which the
optimal number of non-intersecting labels was known were labeled using the GA,
and close to optimal solutions could be found using only small populations. The
GA can easily be extended to find solutions which are good with respect to carto-
graphic rules. In Sectidn 5.2, we exemplified the addition of cartographic rules by
incorporating them in a separate procedure, the geometrically local optimizer. The
GA was thus extended to place point-feature labels in preferred positions, respect
differences in importance of the features, and to do integrated name selection.
Chaptef b presented a framework for designing GAs for GIS problems. In addi-
tion to map-labeling, the application of the framework was demonstrated with the
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line-simplification problem and a generalization problem. Furthermore, we added
the handling of line features to the GA in Chagter 6. If necessary, line-feature la-
bels were repeated, and placed at appropriate intervals along the line feature. This
is one of the few algorithms that allows for multiple labels for line features. Ex-
tending the GA to handle area features should be relatively straight-forward, but
we argued that we would probably gain little compared to a preprocessing step.

The map-labeling problem is hard in a combinatorial sense—in fact, even ba-
sic instances of the problem are NP-hard. In addition, it is also difficult because
solutions have to respect many additional cartographic rules. The usual way that
map-labeling algorithms—for example, the simulated-annealing algorithm of Ed-
monsoi#—enforce the cartographic rules is by expressing them in the cost func-
tion. There are, however, serious problems with that approach. The cartographic
rules can degrade the combinatorial rule, it is difficult to express locally hard rules
(for example, “capitals should always be labeled”), it is hard to judge how the
weighting factors affect the solutions by looking at the map, the tuning of the
weighting factors takes time, and it makes the algorithm inflexible. Therefore, we
have opted for another approach. The division in two different classes is reflected
in the design of our GA. The combinatorial constraint is expressed in the fithness
function, and is handled by the normal mechanics of any GA, namely recombina-
tion and selection. The cartographic rules are handled in the geometrically local
optimizer. This gives the algorithm considerable flexibility, since we can often
avoid the need to quantify the cartographic rules.

In order to be practically useful, it has be possible to integrate the GA into
a GIS. Therefore, we took care that the user of the GIS doesn’'t have to set or
tune any arcane parameters. Most GA-specific parameters could be eliminated.
The cost function is kept simple, to avoid weighting factors that need to be tuned.
Furthermore, the maintainer of the GA is able to add constraints to the problem
definition without the need to redesign the whole algorithm. This was made pos-
sible with the geometrically local optimizer.

For readers with an interest in genetic algorithms, designing a GA to solve a real-
world problem may sometimes seem like a black art. The study of the map-
labeling problem shows that this is not necessarily always the case. Theoretical
results from literature have helped us to design a GA which solves the problem
well. In Chaptef B, we showed that concepts like linkage, building blocks, mix-
ing and disruption could be used to design a GA that outperformed GAs which
ignored these issues. The insights from theory naturally lead to the addition of a
new operator, the geometrically local optimizer. The clear geometrical structure
of geographical problems such as the map-labeling problem allows us to iden-
tify likely building blocks of the solution. We can exploit our knowledge about
the geometry to construct a geometrically local optimizer, which produces locally
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optimal parts of a solution, that is, building blocks. Building blocks in the map-
labeling problem are geometrically local regions of the map which have a good
labeling.

By designing the GA with these theoretical insights in mind, we were able to
perform an analysis of its scale-up behavior in Chapjter 4. We used models from
literature for the population size (the gambler’s-ruin model), and the number of
generations until convergence. These theoretical models have thus far only been
applied to artificial problems with known properties. We have shown that our GA
adheres to the assumptions underlying the models, and experiments on uniformly-
dense maps confirmed the predicted scale-up—the number of function evaluations
scales up linearly with respect to the input size. As far as we know, this is the first
time the models have been applied to a problem of real-world significance. We
were able to satisfy the conditions for these models largely because of our use of
the geometrically local optimizer. It allowed us to keep the fithess function simple
and additively decomposable. In addition, disruption was minimized due to the
repairing effect of the geometrically local optimizer.

In Chaptef b, we showed the design of the map-labeling GA can be placed in
a more general setting, yielding a framework to build GAs for a class of hard GIS
problems. GAs designed in the framework are likely to adhere to the assumptions
of the theoretical models, so we expect the same scale-up behavior as for the map-
labeling GA.

In conclusion, we have provided a new approach for automated names placement
that is based on genetic algorithms. The GA is capable of finding solutions that
are good in a combinatorial sense, and adhere to cartographic rules as well. In
addition, the GA is based on solid theoretical foundations and was shown to have
favorable scale-up behavior. Therefore, we think we have offered a viable ap-
proach to solve map-labeling problems.

Further research can be pursued in the following directions:

e The addition of more cartographic rules to the genetic algorithm would
solve more complex instances of the map-labeling problem and produce
better maps.

¢ It would also be interesting to test our expectations regarding the scale-up
behavior of the line-simplification problem and the generalization problem.
In addition, the scale-up predictions of the models for maps of increasing
density can be verified.

e The framework can be applied to design GAs for other GIS problems, such
as the coloring of countries, political redistricting, and outline simplification
of buildings.
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APPENDIX A

Notation

Constants

o Expected fraction of gamblers that hit the saturation barrier.

¢ Constant used in simplification: distance the simplified line can deviate from
the original line.

€close Constant used in line-feature map labeling: sleseness constraint
&ar Constant used in line-feature map labeling: seeer constraint
€medium Constant below which a city ISMALL.

£mega Constant above which a city EGA.

&n Constant used in generalization: largest distance allowed between a point and
its representative.

& Constant used in generalization: smallest distance allowed between two repre-
sentatives.

d Signal between two competing schemata, for example the building block and
its competitor.

| Selection intensity.

169



170 Notation

k Size of the partition (for example, the size of a trap function in the concatenated
trap-function problem).

| Length of a chromosome.

m Number of partitions (for example, the number of trap functions in the con-
catenated trap-function problem).

n Size of the population.

n* Critical size of the population.

nc Number of candidate positions for a label.

Nreat NUumMber of features on the map.

n, Number of labels for a feature.

np Number of pairs for the corresponding-bits problem.

Npoints Number of points in the polyline, Iik@npoims.

t* Generation when a critically-sized population is converged.

Xo The initial number of building blocks in the population.

Variables:

f Average fitness of chromosomes in the population.
p A partition.

prop Proportion of optimal alleles in the population.

s A schema.

t The generation number.

X A solution or chromosome.
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Probabilities:

Pr. Probability of crossover.

Prer Probability of making an decision error.
Prm Probability of mutation.

Prok Probability of making the correct decision.

Pr(n) Probability of hitting the saturation barrier.

Functions:

distancé.) Distance between points or labels.

feost(-) Cost function.

fit(-) Fitness function.

frap(-) Trap function.

free(-) Number of free labels.

length(-) Length of a line segment.

matcH-) Match between two bits in the corresponding-bits problem.
pref(-) Measure of preferred positions for labels.

u(-) Function of unitation (number of 1’s in argument).
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Samenvatting

Traditioneel worden (land)kaarten met de hand door cartografen gemaakt. Deze
handmatige aanpak levert kaarten op van hoge kwaliteit. Door de opkomst van
computer systemen voor het analyseren en afbeelden van geografische data is er
een noodzaak ontstaan voor de automatische generatie van kaarten. Zo’n geogra-
fisch informatie systeem (GIS) kan bijvoorbeeld gebruikt worden voor het nemen
van een beslissing over de locatie van een toekomstige fabriek die nog gebouwd
moet worden. Allerlei randvoorwaarden spelen een rol: de locatie moet bijvoor-
beeld dicht bij een snelweg en water zijn, maar niet te dicht bij stedelijke bebou-
wing of natuurgebieden. Met het GIS kan een kaart worden gemaakt waarop alle
geschikte locaties en alle relevante informatie afgebeeld zijn. Omdat deze kaart
uniek is voor het specifieke probleem dat bestudeerd wordt, kan er niet gebruik
worden gemaakt van kant en klare kaarten die opgeslagen liggen in het systeem,;
de kaart moet ter plekke gegenereerd worden.

Een belangrijk deelprobleem bij het automatisch maken van kaarten is het
plaatsen van de namen op de kaart. Dit vergt dan ook een aanzienlijk deel van de
tijd van een cartograaf als de kaart met de hand gemaakt wordt. De elementen van
een kaart kunnen opgedeeld worderpwmint featuregpuntvormige elementen,
zoals steden)ine featuregqlijnvormige elementen, zoals rivieren) area featu-
res(gebiedsvormige elementen, zoals landen). Edleéurekan een naam hebben
die zodanig geplaatst moet worden datfdature makkelijk identificeerbaar is.

Er bestaan veel cartografische regels die bepalen hoe de naantdujtaege-
plaatst moet worden. De meest belangrijke regel is dat namen elkaar niet mogen
overlappen omdat ze anders onleesbaar worden. Andere regéleran belang-
rijkheid. De naam van egpoint featurezoals een stad moet bij voorkeur rechts
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boven de stad geplaatst worden. Een andere regel stelt echter dat er een andere
positie gekozen moet worden als de stad naast een rivier ligt en de naam en de
stad aan verschillende kanten van de rivier zouden komen te liggen. liweor
featureszoals een rivier geldt dat de namen soms herhaald moeten worden als de
rivier erg lang is. De naam van earea featuremoet dusdanig geplaatst worden

dat het ongeveer de vorm van het gebied aangeeft. Zo zijn er talrijke regels die
verschillen in belangrijkheid en elkaars soms tegen kunnen spreken. Een goede
plaatsing voor de namen heeft geen overlappende namen op de kaart en is een zo
goed mogelijk compromis tussen de overige regels.

De “geen overlap’-regel op zich maakt het plaatsen van namen al erg moei-
lijk. Als elke featurezijn naam in enkele verschillende posities kan plaatsen, dan
is het totale aantal mogelijke combinaties van BEturesezamen erg groot. Het
vinden van de combinatie die zoveel mogelijk namen zonder overlap op de kaart
zet is dan al erg moeilijk. Als er een redelijk aarfeturesop de kaart staat dan
is het zelfs voor de krachtigste computers ondoenlijk om gegarandeerd de beste
oplossing te vinden. Daarvoor zouden namelijk alle combinaties overwogen moe-
ten worden (bijvoorbeeld door het aantal namen zonder overlap te tellen) om de
beste te vinden. Om toch een goede oplossing te kunnen vinden kan men gebruik
maken van een heuristiek. Een heuristiek is een methode die niet garandeert de
beste oplossing te vinden, maar die vaak toch redelijk snel een goed resultaat weet
te bereiken. De heuristiek overweegt niet alle oplossingen, maar enkel degenen
die veelbelovend lijken. In het proefschrift wordt als heuristiek van het genetisch
algoritme gebruik gemaakt.

Het genetisch algoritme is een heuristiek om goede oplossingen voor moeilij-
ke problemen te vinden, die gebaseerd is op de Darwiniaanse theorie van evolutie
door natuurlijke selectie. In de natuur ontwikkelen dieren (en andere organis-
men) zich doordat hun eigenschappen (zoals vorm, of gedrag) ten dele genetisch
bepaald zijn. Als deze eigenschappen invlioed hebben op hun succes in de voor-
planting, dan is de kans groot dat nakomelingen deze eigenschappen zullen erven.
Aldus zullen de dieren evolueren en beter aangepast raken aan hun omgeving. Dit
principe kan ook gebruikt worden om moeilijke problemen in het algemeen op te
lossen. Het idee hierbij is om de oplossingen voor een moeilijk probleem te laten
“evolueren”, waarbij de meest succesvolle oplossingen diegene zijn die het pro-
bleem het beste oplossen. Voor het probleem van het plaatsen van nhamen op een
kaart is een oplossing een specifieke plaatsing van de namen. De mate van succes
is het aantal namen dat geplaatst wordt zonder overlap met andere namen. De
meest succesvolle kaarten worden geselecteerd om nieuwe kaarten te maken die
er op lijken, in de hoop een betere plaatsing te vinden. Dit proces wordt herhaald
tot een oplossing die goed genoeg is wordt gevonden.

In feite is het plaatsen van namen een moeilijk probleem vanwege twee ver-
schillende redenen. Ten eerste is het aantal mogelijke manieren om de namen
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te plaatsen erg groot en is het moeilijk de beste manier te vinden. Ten tweede
bestaan er nog veel andere cartografische regels, die ook op de een of andere ma-
nier tot uitdrukking moeten komen. Een voor de hand liggende manier om dat
te doen is om elke regel te kwantificeren, zodat het bij kan dragen aan de maat
van succes voor een bepaalde plaatsing van de namen. Zo kan bijvoorbeeld elke
point featurewaarvan de naam rechts boven is geplaatst een bonus punt krijgen.
De totale maat van succes voor een kaart is dan bijvoorbeeld het aantal namen
zonder overlap plus het aantal bonus punten. Een van de problemen met deze
methode is dat de meest belangrijke regel (het voorkomen van overlap) nu ge-
schonden kan worden als daar genoeg bonus van andere regels tegenover staat.
In het proefschrift is daarom gekozen voor een andere aanpak. De kwaliteitsmaat
is simpelweg het aantal namen dat zonder overlap geplaatst kan worden, terwijl
alle andere cartografische regels op een lokaal niveau toegepast worden wanneer
er van geselecteerde kaarten nieuwe kaarten gemaakt worden.

De methode die beschreven is in dit proefschrift is dusdanig ontwikkeld dat hij
makkelijk toegepast kan worden in een GIS. Zo is bijvoorbeeld vermeden dat er
veel parameters die specifiek zijn voor het genetisch algoritme ingesteld moeten
worden. Ook is het makkelijk om extra cartografische regels toe te passen indien
dit wenselijk is, zonder het algoritme ingrijpend te moeten wijzigen of afstellen.

In het eerste hoofdstuk wordt een inleiding gegeven in de problematiek van het
plaatsen van namen op kaarten, gevolgd door een hoofdstuk dat een algemene
uitleg over de werking van genetische algoritmen geeft.

In hoofdstuK B wordt het genetisch algoritme beschreven dat namen kan plaat-
sen op kaarten mgbint featuresAlleen het minimaliseren van het aantal namen
dat overlapt wordt beschouwd. Dit hoofdstuk beschrijft de kern van de metho-
de, die zorgvuldig ontworpen is om het praktisch en uitbreidbaar te maken. De
volgende hoofdstukken borduren hier op voort, maar in verschillende richtingen.

In hoofdstuK 4 wordt onderzocht hoe eféiait het genetisch algoritme is. Om
praktisch bruikbaar te zijn, moet de methode goed opschalen—dat wil zeggen, bij
grotere kaarten moet de rekentijd niet explosief toenemen. Gegeven een gewenste
kwaliteit (bijvoorbeeld 97% van alle namen moet zonder overlap geplaatst wor-
den) kan berekend worden hoeveel tijd het algoritme nodig heeft om een oplossing
met die kwaliteit te vinden. Er blijkt dat voor de soort kaarten die onderzocht zijn,
de hoeveelheid rekentijd kwadratisch is in het aaf¢aturesop de kaart. Dit
betekent dat een twee keer zo grote kaart vier keer zo veel rekentijd vergt. Een
methode die gegarandeerd de beste oplossing vindt (en dus geen heuristiek is),
heeft rekentijd die exponentieel is in het aarfiégtures Het genetisch algoritme
is dus veel effiénter.

In hoofdstuk{ b worden de technieken van hoofdstuk 3 veralgemeniseerd en
wordt een generiek raamwerk voor het oplossen van een klasse van GIS proble-
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men gepresenteerd. Het raamwerk wordtlgstreerd aan de hand van ddase
studies Allereerst wordt het plaatsen van namen verder bekeken, en worden en-
kele cartografische regels toegevoegd. Volgende problemen betreffen het simpli-
ficeren van lijnen zonder de vorm te verliezen, en het representeren van groepen
objecten door een minimaal aantal representanten.

In hoofdstul & wordt er gekeken hoe het plaatsen van namen op kaarten met
point alsmeddine featuresgedaan kan worden. Een aantal complicaties moet
hiervoor opgelost worden. Zo kan het lifje featuresroorkomen dat er meerdere
namen geplaatst moeten worden, die niet te dicht op elkaar, maar ook niet te ver
van elkaar moeten staan.

Het laatste hoofdstuk vat het hele proefschrift nog eens samen.
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