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Chapter 0O
INTRODUCTION

0.1 Some historical remarks

Cubic surfaces have been studied since the last century, initially by G. Salmon [Sa] and
A. Cayley [C1] in 1848. Since then, the theory of twenty-seven lines on a non-singular
cubic surface fascinated many mathematicians. There were a lot of papers and books
devoted to this beautiful object. Besides the results by G. Salmon and A. Caley, the
following publications were influential: J. Steiner [St], L. Cremona [Cr], R. Sturm with
a purely geometric theory of cubic surfaces; L. Schlafli [Sch1, Sch2] with results on the
classification of cubic surfaces and the structure of the configuration of twenty-seven
lines; C. Wiener, Clebsch, F. Klein [K], Rodenberg and W. H. Blythe [BI1, BI12] with
the construction of models of cubic surfaces; C. F. Geiser [Gei|, H. G. Zeuthen [Ze],
H. F. Baker [Ba] studied the relation between twenty-seven lines of a cubic surface
and twenty-eight bitangents of a plane quartic curve; C. Jordan, Maschke, Burkhardt,
Witting, Dickson, Kiihnen, Weber, Kasner with results on the twenty-seven lines from
a group theoretic point of view and the Galois group of the equation of the twenty-
seven lines. In his book published in 1911, “The Twenty-Seven Lines upon the Cubic
Surface” [He|, A. Henderson gave a clear historical summary on the research of the
subject in the last century and a lot of references. We quote the first sentences in the
historical summary of the book:

“ While it is doubtless true that the classification of cubic surfaces is com-
plete, the number of papers dealing with these surfaces which continue to
appear from year by year furnish abundant proof of the fact that they still
possess much the same fascination as they did in the days of the discovery of
the twenty-seven lines upon the cubic surface. The literature of the subject
is very extensive. In a bibliography on curves and surfaces compiled by J.
E. Hill, of Columbia University, New York, the section on cubic surfaces
contained two hundred and five titles. The Royal Society of London Cata-
logue of Scientific Papers, 1800-1900, volume for Pure Mathematics (1908),
contains very many more. ”

These results turned out to be useful in research of many mathematicians. Modern
algebraic geometry and other related branches of mathematics introduced powerful
tools which were used to study cubic surfaces. The theory of cubic surfaces with a
specific configuration of lines is still an fascinating topic. There are more papers and
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2 Chapter 0. INTRODUCTION

books dealing with cubic surfaces and related topics. Among them, we mention: B.
Serge [S1,52], Yu. I. Manin [Mal, Ma2, Ma3, Mad], F. Bardelli and A. Del Centina
[Bar], [B-D], J. Sekiguchi [Sel, Se2], I. Naruki [Na], [Na-Se|, J. W. Bruce and C. T. C.
Wall [B-W], A. Geramita [Ge], M. Brundu and A. Logar [B-L|, B. Hassett, B. Hunt
[Hul, Hu2].

0.2 Non-singular cubic surfaces with star points

A cubic surface in P? is given by a non-zero cubic homogeneous polynomial in 4 vari-
ables. Fixing an ordering of monomials of degree 3 in the polynomial ring k[zg, 21, 2, 3],
each cubic surface defines a point in P!®. A non-singular cubic surface X contains
twenty-seven lines. There exist at most 3 lines among these twenty-seven lines through
a given point of X. A star point (also called Eckardt point) on a non-singular cubic sur-
face is the intersection point of three lines on the surface. Not every non-singular cubic
surface has a star point. In fact, the subset of P! corresponding to non-singular cubic
surfaces with at least one star point is a locally closed subvariety of codimension 1. A
non-singular cubic surface does not have more than 18 star points. This was proved by
Serge [S1] in 1946. We give another proof in Chapter 2. In 1876, F. E. Eckardt consid-
ered non-singular cubic surfaces possessing star points [Ec| (see also [S1], p. 147). In
his book [S1], B. Serge classified non-singular cubic surfaces possessing star points. He
proved a criterion stating that a non-singular cubic surface has as many Eckardt points
as it has harmonic homologies into itself. A harmonic homology of the central point P
and the fundamental plane H is a projective transformation of P* which maps a point
@ into its harmonic conjugate Q' € PQ with respect to P and the intersection point
PQNH ([S1], §98). Using this criterion, he determined all classes of non-singular cubic
surfaces with respect to possible numbers of star points ([S1], p. 154) by considering
polynomials defining surfaces and determining the number of harmonic homologies.

In this Ph.D. thesis, we denote by Hj the subset of P! consisting of points cor-
responding to non-singular cubic surfaces with at least k£ star points. We study these
H,, as subvarieties of P'° and their images in a compactification of the moduli space
M of non-singular cubic surfaces. In the next section, we describe a construction of
one compactification M of the moduli space of non-singular cubic surfaces. We obtain
a morphism ¢ : P — A — M, where A is the locus of singular cubic surfaces. We
consider the irreducibility, the local closedness and the dimension of Hj inside P'7.
Especially, we are interested in studying boundaries of ¢(Hy) in the compactification
M.

0.3 Moduli space of non-singular cubic surfaces and
a compactification

We construct the coarse moduli space M of non-singular cubic surfaces and its com-
pactification as well, in which we describe the subspaces ¢(Hy) and we study their
boundaries. Moduli theory is an area of algebraic geometry. The goal of moduli theory
is to classify certain objects by constructing spaces which parametrize isomorphism
classes of such geometric objects. This if often achieved by invariant theory, in con-
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structing a quotient of a parameter space with respect to an equivalence relation (given
by declaring isomorphic objects to be represented by equivalent points). The fine mod-
uli space of marked non-singular cubic surfaces has been constructed by I. Naruki [N]
and its closure is known as the “Cross ratio variety”. He also constructed a space
which is isomorphic to the Mumford compactification of the coarse moduli space of
non-singular cubic surfaces. Another approach to construct coarse moduli spaces is via
geometric invariant theory. We describe this approach in order to construct M and its
compactification.

We have a natural action of the group variety PGL(3) on P!°. This action is good
enough in the sense that the quotient spaces of semi-stable points and of stable points
do exist (Chapter 3, Section 2). Moreover, the quotient space M := PGL(3)\(PP'?)**
of semi-stable points is projective; the image of the subset of P! corresponding to
all non-singular cubic surfaces is affine and it is a coarse moduli space. We have
PGL(3)\(P* — A) = M C M. Hence, the space M is a compactification of the coarse
moduli space M.

0.4 Singular cubic surfaces

The locus A C P of singular cubic surfaces is a closed subset of codimension 1. Some
classifications of non-singular cubic surfaces can be found in [B-W] or [B-L|. We are
interested in singular cubic surfaces which correspond to semi-stable and stable points
under the action of PGL(3) on P! in the sense of geometric invariant theory. A cubic
surface with only isolated singularities has at most 4 singular points.

In this thesis, we consider singular cubic surfaces with only isolated singularities. A
point P on a cubic surface X with only isolated singularities is called a singular point of
type A if the tangent cone at P is an irreducible quadric surface. The subset of stable
points consists of the points corresponding to non-singular cubic surfaces and singular
cubic surfaces with only A; singularities. The subset of P! corresponding to singular
cubic surfaces with only A; singularities is locally closed of codimension 1. A point P
on a cubic surface X with only isolated singularities is called a singular point of type
Ay if the tangent cone at P consists of two distinct planes whose intersection line does
not lie on X. The subset of semi-stable points consists of the points corresponding to
non-singular cubic surfaces and singular cubic surfaces with A; or A, singularities. We
denote by iA4;jAs the subset of A consisting of the points corresponding to the cubic
surfaces with exactly ¢ singular points of type A; and j singular points of type As; we
have 2i 4+ 3j < 9,7 < 4 and (i,7) # (3,1). We use jA; and iA; instead of 04,54,
and i.4;0.A; respectively. In the quotient space M := PGL(3)\(P'°)*, the image of all
semi-stable but non-stable points is just one point. We will give a proof for this fact in
Chapter 3, Section 4.

0.5 Blowing-up of P? at 6 points
One of the main methods used to study cubic surfaces (at least for the case of semi-

stable ones) in this thesis is the blowing-up of P? at 6 points. We say that 6 distinct
points Py,. .., P; in P? are in general position if no three are collinear and all six points
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do not lie on a conic. A set of 6 points in general position determines an element
(called a 6-point scheme) in the Hilbert scheme of zero-dimensional closed subschemes
of length 6 in P2. Let P be a 6-point scheme consisting of 6 points P, ... , Ps in general
position. Let Y be the blowing-up of P? at P;,..., Ps. We see that the linear space

Lp of cubic forms in four variables which are zero at Pi,..., P; has linear dimension
4. Let {f1, f2, f5, f1} be a basis of Lp. Consider the rational map
P
P2 —— — P3

P (A(P): f(P): fo(P): fu(P)).

Let X be the closure of the image of v». Then X is a non-singular cubic surface.
Moreover, we have an isomorphism Y —— X. The twenty-seven lines of X are the
following:

e six exceptional curves P, corresponding to P; for 1 < i < 6,
e six strict transforms C; of the conics C; through {P,..., P} —{P} for1 <i <6,

e fifteen strict transforms Zij of the lines l;; = P;P; for 1 <¢ < j <6.

Conversely, let X be any non-singular cubic surface. For any choice of 6 mutually skew
lines Li,...,Ls C X, there exist P;,...,Ps € P? in general position such that the
blowing-up of P? at these points gives a surface isomorphism with X and P, = L, for
1 <1 < 6. There are 51840 of such choices. Star points on a non-singular cubic surface
can be recognized by the configuration of these 6 points.

Example 1. Let P,,---,Ps be 6 points of P? in general position such that PP, N
P3P, N PP = {O}, see Figure 0.1, (a). Then the blowing-up of P? at Py,... , P; has
at least one star point, which is the image of the point O.

P,

Figure 0.1: Configurations show the only ways of getting a star point

Example 2. Another configuration of 6 points which gives a star point on the corre-
sponding cubic surface is as follows. Let P;,--- , Ps be 6 points of P? in general position
such that the line P, P, is tangent to the conic C'; containing the 5 points Ps,... , Ps
at P,. Then the star point is the intersection point of the lines E,C’l and l~12, see
Figure 0.1, (b).



0.6. Specialization 5

In fact, any star point on a given non-singular cubic surface is recognized by the
above two configurations when viewing the cubic surface by the blowing-up process.

We can determine all configurations of 6 points in P? corresponding to the types of
non-singular cubic surfaces with a given number of star points.

A question arises naturally: is there a similar correspondence between a singular,
semi-stable cubic surface and a 6-point scheme in some relevant configuration of its
points? In this thesis, we show such a correspondence. Namely, let X be a semi-stable
cubic surface. Then there exists a 6-point scheme P such that the linear system Lp of
cubic forms in four variables through P has dimension 4; furthermore, for any basis of
Lp, the closure of the image of the rational map from P? to P? defined by the basis is
isomorphic to X. In this case, we have a morphism ¥ — X, where Y is the blowing-
up of P? at P. In general, this is a blowing-down which is not an isomorphism. A close
study of such 6-point schemes enable us to determine the number of lines, the number
of singularities of X and their configuration as well.

For example, let P; be a 6-point scheme consisting of 6 mutually different points
Py, ..., Pslying on an irreducible conic. Then the corresponding cubic surface is singu-
lar with exactly one A; singularity. The image (via any rational map defined by a choice
of basis of Lp,) of the irreducible conic is the singular point. Let Py be another 6-point
scheme consisting of 6 mutually different points P, ... , Ps such that no four points lie
on a line, three points P;, P, P; as well as three points P,, Ps, Py are collinear. Then
the corresponding cubic surface X is singular with exactly one Ay singularity. The
image of P, P, U P,P; is the singular point of X .

0.6 Specialization

We see that the correspondence between semi-stable cubic surfaces and certain 6-point
schemes gives us a way to study the subsets Hy as well as i4;jA, for 20 +35 < 9,47 <4
and (4,7) # (3,1). In this way, we can find all irreducible components of the subsets Hy
and we can determine the inclusion relationship between these irreducible components.
Moreover, this gives a way to study specializations in families of non-singular cubic
surfaces, especially to study boundaries of the irreducible components of H; inside
(P)** or at least of their images inside the compactification M = PGL(3)\(P'?)*.

We give some examples as illustrations.

Ezample 3. Let Py,...,Ps be 6 points in general position. Let [ be the line P, Ps.
Let P¢ be a moving point on [, keeping P, ... , Ps fixed. We see that, except for a finite
number of positions, the 6 points Py, ..., P5, P} are in general position. Therefore, we
have a family X — T of cubic surfaces, non-singular above a dense open subset of
T=DPPs. If Pﬁt" lies on the irreducible conic through P, ... , Ps, we get a specialization
position, where the corresponding cubic surface is a singular cubic surface Xy with
exactly one A; singularity. We can assume that the twenty-seven lines on fibers of the
family X — T are given by twenty-seven sections in G(1,3) x T — T. A question
arises: what are the specializations of these sections of lines on the surface X,? For
each 1 < i < 6, the sections corresponding to the lines P; and C; specialize to the same
line among the 21 lines of Xy. The other 15 lines of X, are contained in the 15 sections
corresponding to the lines Z;'j for1 <i<j<6.



6 Chapter 0. INTRODUCTION

Example 4. Let P,,..., P be 6 points in general position satisfying the condition
P Ps N PPN P Ps = {O}, see Figure 0.2, (a).

Consider the family determined as in the previous example (the moving point P}
moves on the line [ = m) We see that the family is contained in H;. If P¢ lies
on the irreducible conic through P, ... , Ps, we get a specialization position, where the
corresponding cubic surface Xj is singular with an A; singularity. The point determined
by X, is contained in H; N A; N (P1?)%; this intersection is an irreducible component
of the boundary AH;, := H; N AN (P*)* of H;. If P! moves to O, the 6 points
Pi,...,Ps and O define a specialization in the family and the corresponding cubic
surface is singular with two A; singularities. These two singularities are the images of
lines PPy and P,Ps. Moreover, we show in this thesis that the closure of the subset
2A; in (P'?)% is another irreducible component of the boundary AH;.

P,
Py

Figure 0.2: Configurations corresponding to points in the boundary of H;

Example 5. Suppose that P, ..., P, O satisfy the conditions above. Fix the 4 points
Py, P, P,, Ps. Fix a line d through P; not containing any point of {O, P,, Ps, Py, P5}.
Let d be the line P,Ps. Let P! move on d and let P} be the point on d’ such that the
three points Pf, P} and O are collinear, see Figure 0.2, (b).

Except for a finite number of values of ¢, the six points P, ..., Ps, P} and P} are
in general position and the blowing-up of P? at those six points is isomorphic to a
non-singular cubic surface with at least one star point. Therefore, we have another
family in H;. There exists t; such that Pg" = P, and P/°® = d N P,Ps. The four points
Pl P,, P;, P5 and the double point P; define a specialization in the family and the
corresponding cubic surface X is singular with one A, singularity. The singular point
of Xy is the image of the line P,Ps.

In this thesis, we prove that the closure of the subset A, := 0.4;1A, in (PY)% is
one irreducible component of AH;. We show that the boundary AH; consists of the
three irreducible components as described above.

0.7 Results in this thesis

The main results of this thesis are in Chapter 2 and 3. Chapter 1 deals with some
basis facts on cubic surfaces and actions of group varieties. We study non-singular
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cubic surfaces with star points in Chapter 2. We describe the specific configurations
of six points in general position corresponding to non-singular cubic surfaces with a
given number of star points. We consider the irreducibility, the local closedness and
the dimension of H,. Moreover, we determine the inclusion relationship between the
irreducible components of these Hy.

In Chapter 3, we study the boundaries of the subsets H}, inside P! and the bound-
aries of their images in the compactification M. To do so, we describe in Section 3.1 a
classification of singular cubic surfaces and compute the number of singular points, the
number of lines on each singular cubic surface with their configuration. This classifi-
cation can be found in [B-W]. Moreover, we compute the codimension of these classes
and determine the relationship between their closures. In Section 3.2, we prove the
basic fact that semi-stable cubic surfaces are those containing at most A, singularities
and stable cubic surfaces are those containing at most A; singularities. This fact were
mentioned in [GIT], p. 80 as well as in [Mu3], p. 51, but we do not know a reference
for a proof. In Section 3.3, we study semi-stable cubic surfaces. We prove that for
any semi-stable cubic surface X, there exists a 6-point scheme P such that the linear
system Lp of cubic forms through P has dimension 4; furthermore, for any basis of
Lp, the closure of the image of the rational map from P? to P? defined by the basis
is isomorphic to X. We also define and compute the multiplicities of lines and triple
intersections on semi-stable cubic surfaces. Section 3.4 contains several results on the
boundaries of H, and the boundaries of the images of Hy in M. We prove that the
image of all semi-stable but non-stable points in the quotient space M is just one point.






Chapter 1

Preliminaries

Throughout the thesis, we work on schemes and varieties over an algebraic closed field
with characteristic 0.

1.1 (General position

Definition: Let P;, P», Ps, Py, Ps and Ps be points of P2. They are called in general
position if no 3 of them are collinear and not all of them lie on a conic.

Denote:
0] :{P: (Pl,PQ,Pg,P4,P5,P6) |P1,P2,P3,P4,P5,P6 are in general pOSitiOIl}.

Proposition 1.1.1. As a subset of (P?)®, the set ® is an open subvariety of dimension
12.

Proof. Clear. O

1.2 The space of lines in P?

Definition: Let [ be a line in P3. Let a,b € | be two points such that a # b, given
by a = (ap : a1 : ay : az) and b = (by : by : by : b3). Denote (P;j)o<i<j<3 Where
P;; = a;b; — a;b;, as a point of P°. This point does not depend on the choice of a,b on
[. The P;; are called the Pliicker coordinates of [ in P®.

Lemma 1.2.1. The set of lines in P3 in Pliicker coordinates is a closed subvariety of
P° given by G = V (Vo123 — Voav13 + Vozv12) C PP.

Proof. [Mul], p. 173 O
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1.3 The space of cubic surfaces in P*

Definition: Fix an ordering in the set {z{°z{"25*25* | ap + a1 + g + a3 = 3} of

monomials of degree 3 in k[zg, 1, T2, z3]. In P3, each cubic surface X C P? is given by
a non-zero homogeneous polynomial:

— g .01 .02 Q3
X_V( E CaZo Ty Ty Ty ),

ag+o1+az+az=3

(i.e not all ¢, equal to zero). It corresponds with a point ¢ = (c,) € P'.
Conversely, for each point ¢ = (c,) € P', let H, be the cubic surface V(> coz®) in
P3, let

H = U H, C P x PY.

ceP1?

Then H =V (3 coz®). Therefore H is a closed subvariety of P2 x P'° of dimension 21.

Let X D S = {(z,c) | H, is singular}, let A = p,(S), where p, : P? x P!¥¥ — P1?
is the projection. Then P! — A parameterizes the set of non-singular cubic surfaces.
In fact, there exists a polynomial D € k[Ty,... ,Tig] such that A = V(D), see [GIT]
p- 79. In particular, this implies that:

Proposition 1.3.1. P — A is an open subset of P17.

Proposition 1.3.2. The blowing-up X of P? at siz points in general position is iso-
morphic to a non-singular cubic surface in P? .

Proof. [H], V.4.7. O

Proposition 1.3.3. The linear space of plane cubic forms passing through 6 points in
general position has dimension 4. A choice of a basis for this linear space determines
a rational map from P? to P3. The closure of the image of this rational map is a
non-singular cubic surface. This cubic surface contains exactly 27 lines. They are:

(i) the exceptional curves P;, for i =1,...,6 (siz of these),

(i) the strict transform l;; of the line li; in P? containing P; and P;, 1 <i<j <6
(fifteen of these), and

(#i) the strict transform C'j of the conic C; in P? containing the five P; for i # j,j =
1,...,6 (siz of these).

Proof. [H], V.4.9. O

From now on, we use notations F;, l;;, C;, C; for the lines and curves as in Proposition
1.3.3.

Proposition 1.3.4. Let X be a non-singular cubic surface in P2, and let E\, ..., Eg be
any set of six mutually skew lines chosen among the 27 lines on X. Then there exists
a morphism m : X — P2, making X isomorphic to the blowing-up of that P? with siz
points Py, ..., Ps (no &8 collinear and not all 6 on a conic) such that Ei, ..., Eg are the
exceptional curves for m .
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Proof. [H], V.4.10 and [Mul], 8.22, 8.23. O

Proposition 1.3.5. Let Py, ..., Ps in P? and no 3 of them are collinear. Then there
erists a unique, irreducible conic containing Py, ..., Ps.

Proof. [H], V.4.2. O

1.4 Algebraic groups and actions of algebraic groups
on varieties

In this section, we recall some basic facts about algebraic groups and actions of them
on varieties. These definitions and notations can be found in [N], Chapter 3, §1 or
[GIT], Chapter 0, §1.

Definition: An algebraic group is a group G together with a structure of algebraic
variety on G such that the maps:

GxG@ — G
(9,9) — g9

!

and

g—l

G — G
g —
are morphisms of algebraic varieties.
A homomorphism of algebraic groups is a map which is simultaneously a homomor-

phism of groups and a morphism of algebraic varieties.
Definition: An action of an algebraic group on a variety X is a morphism

p:GxX —X

such that for any ¢,¢' € G and x € X we have

©(g,0(9',7)) = ¢(99',z) and p(e,z) = x

where e is the identity element of G.
For convenience, one usually write gx for ¢(g,x). So that the above conditions
become
g9(¢d'x) = (9¢')r and ex = z.

Definition: Let G be an algebraic group acting on a variety X; let z € X. The
stabilizer G, of x is the closed subgroup G, = {g € G | gz = z} of G.

The orbit O(z) of z is the subset O(z) = {gz | g € G} of X.

A point z (a subset W) of X is said to be invariant under G if gz = = (gW = W)
for all g € G.
Definition: Let G be an algebraic group acting on varieties X and Y. A morphism
¢: X — Y is a G-morphism if ¢(gz) = go(x) for all z € X and g € G.

If G acts trivially on Y (i.e. gy =y for all g € G and y € V) then a G—morphism
is called G—invariant.
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Example 6. The projective general linear group PGL(n) is an algebraic group. Let

F = Z Corg’xt xy? xs®
aot-+az=3
be a non-zero cubic form in k[zg, ... ,x3]. Let A € PGL(3). Denote X for the column

matrix of xg, z1, e, x3. Then F(AX) is a non-zero cubic form in k[xg, 21, T, 23]. This
induces a natural action of PGL(3) on P'. In Chapter 3, we shall study this action.



Chapter 2

Non-singular cubic surfaces with
star points

In this chapter, we study non-singular cubic surfaces. A star point (also called an
Eckardt point) on a non-singular cubic surface is the point of intersection of 3 lines on
the surface. We denote by Hy the subset of points corresponding to non-singular cubic
surfaces in P® with at least k star points. For every k, we determine the dimension
and the number of irreducible components of H,. We also determine the subset of Hy,
which consists of points corresponding to surfaces with exactly a given number of star
points.

A non-singular cubic surface can be viewed as the blowing-up of P? at 6 points in
general position. A close study of the configuration of 6 points in P? enables us to
describe the sets of points in P! — A corresponding to non-singular cubic surfaces with
a given number of star points.

In his book “The Non-Singular Cubic Surfaces” [S], B. Segre gave a classification of
non-singular cubic surfaces in P* with a given number of Eckardt points. Our methods
give another proof of the possible number of star points on a non-singular cubic surface.

2.1 Star points. Star triples. Star-Steiner sets

Each non-singular cubic surface X has 45 tritangent planes, i.e the planes containing
3 lines of X. Moreover, there exist at most 3 lines among 27 lines of X through any
point P € X. In this case they form one of 45 tritangent planes of X ([R], pp. 102,
103).

Definition: A star point of a non-singular cubic surface is the intersection point of
three lines on the surface.

Definition: Let H, C P — A denote the set of points corresponding to cubic surfaces
with at least k star points.

In blowing-up of P? at 6 points in general position Pi,..., P, we see that each
tritangent plane is defined uniquely by a triple of lines in form (IBZC‘]Z”) or (l~”l~mnl~kh)
So, sometimes, we use these triples of lines to denote the tritangent planes.
Definition: Let 7 denote the set of 45 triples of lines on a given non-singular cubic
surface X, which span the tritangent planes. If a triple in 7 forms a star point then it

13
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is called a star triple.

Remark 2.1.1. Let 7} and 75 be 2 triples in 7 having no line in common. Each line
of T} meets exactly one line of 75. There exists uniquely another triple 75 € 7 such
that each line in 73 forms one tritangent plane with one line of 7} and one of T5. A
such set of 3 triples in 7 is called a Steiner set.

Exzample 7. The following are Steiner sets:
(i) {(p1C~'25~12), (152@3523% (p3éll~13)};
(ii) {(f’1é2l~12), (P3Culsa), (Z14l~23l~56)};

(iii) {(Z14l~23l~56), (Isslislas), (i265~45l~13)}-
Remark 2.1.2.

(i) By blowing-up, we see that any Steiner set of a given non-singular cubic surface
X has one of three following forms:

(a) S1= {( :Cili), (PiCrlin), (Pkéiiik)}a
(b) S5 = {(BCylis): (PeChlin), (inlsdn) §.

(©) S5 = { Urnndinlis), Grslonilo), Ginlindone) }-

R

where the indices belong to {1,...,6} and the different indices denote different
numbers.

(ii) The 9 lines of a Steiner set of a given non-singular cubic surface X can form a
Steiner set in exactly two ways. For example {(ﬁlégilg), (1526'31~23), (ﬁ3C~'1l~13)}
and {(151(:‘3[13), (1536’2[23), (152(:'1[12)}. In the other words, any Steiner set S =
{(lilsls), (d1dad3), (mymams3)} can be reordered and written in matrix form:

Lol g
dp dy ds

m; Mz Mmg

such that each row or each column of the above matrix expresses a triple in 7
and 3 triples from the 3 rows as well as from the 3 columns form a Steiner set.

We recall the concept and properties of the quadratic transformation ;93 (see[H|, V
4.2.3) corresponding to 3 given points P, =(1:0:0),P,=(0:1:0),P3=(0:0:1),

P? -——= P2
(To : 1 : T2) +—> (x19 @ ToXo : ToX1)-

Its inverse is (Yo : Y1 : Y2) — (Y1¥2 : Yo¥2 : Yoy1)- So the quadratic transformation ;a3
gives an isomorphism:

P? — V(zoz175) — P* — V (yoy112).

Let V be the blowing-up of P? at P, P, P;. We have the following diagram:
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v

where 1 is the blowing-up of P2 at @1 = (1:0:0),Q2=(0:1:0),Q3=(0:0:1)
such that:

(i) The exceptional curves with respect to @1, @2, @3 are the strict transforms of
P, P;, P P; and P, P, respectively.

(ii) The strict transforms of @1Q2, Q2Q3 and Q3Q): are the exceptional curves Py, Py
and P, of P3, P, and P, respectively.

(111) Y123 = ’L/) e} ’ﬂ'_l.

Then through the quadratic transformation:

a) The points Py, Ps, P correspond to lo3 = Q2Q3, 113 = Q1Q3, li2 = Q1Q)2, respec-
tively.

b) An irreducible conic passing through P;, P,, Py corresponds to a line not contain-
ing any )1, (2, @3; conversely, a line not containing any Py, P,, Py corresponds to
an irreducible conic passing through @1, Q2, Qs.

¢) An irreducible conic containing 2 of Py, P, P, say P; and P,, corresponds to an
irreducible conic containing ()1 and Q)».

d) A line containing only one point of P, P, P3, say P;, corresponds to a line con-
taining only @)1 of Q1, @2, Qs.

Proposition 2.1.3. Let P = (Py,...,P) € ®. Then the blowing up of P%
at P = (Pi,...,Ps) is isomorphic to the blowing up of P3 at Q = (Ql,QQ,Qg,

o(Py), go(Pg,),go(Ps)) € ®, where P;,Q; for 1 <1 < 3 have coordinates as above and ¢
15 the quadratic transformation with respect to Py, Py, Ps.

(Note that, we say “blowing up at P = (Py,...,Fs)” in stead of “blowing up at
Pi,...,B").

Proof. Let X and Y be the blowing-ups of P% at P = (P,...,Fs) and P} at
(Q1, Q2, Q3, 0(Py), ¢(Ps), p(FPs)), respectively, where P;, @; have coordinates as above
and ¢ is the quadratic transformation w.r.t P;’s, for i € {1,2,3}. Consider the diagram
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N%
y

X Y

where V. - P2 and V -2 P% are blowing-ups of P% at P;, P, P; and of P2 at
Q1,Qs, Qs, respectively; where X 2% V and YV -£5 V are the blowing-ups of V' at
7 1(P,) and V at ¢~ (o(P;)) respectively, for 1 € {4, 5,6}.

Since Yo ! = ¢, so m H(P) = ! (p(P)) for i = 4,5,6. This implies that the
blowing-ups of P% at P and P at Q are exactly the blowing up of V at 7' (P;) for
1=4,5,6.

Therefore X =2 Y. O

Remark 2.1.4. Let P and P’ be two elements of ®. If P’ can be obtained from P by
a quadratic transformation then the blowing-ups of P and P’ are isomorphic.

From now on we denote (ijk) for the quadratic transformation with respect to P;, P;, Py
fori,j,k € {1,...,6}.

Lemma 2.1.5. For any i,j € {1,2,3}, each Steiner set of the form S; can be trans-
formed to an element of the form S; by quadratic transformations. (Here S; is used as

in (2.1.2)).

Proof. Let s € Sy, we can assume (up to permutations of the permutation group of 6
letters) that:

s = {(1516'2[12), (153@4[34), (i14l~23l~56)} then

(124) exchanges s with {(ﬁ’4égi24), (P304l~34), (pgégigg)} € Sl;

(135) exchanges s with {(Z35l~46i12), (Z15l~26l~34), ([14[23[56)} € 53.

This means that one member of S; and one of S3 can be exchanged by a sequence of
two quadratic transformations. O

Proposition 2.1.6. Let S = {(l1lol3), (d1dads), (t1tats)} be a Steiner set of a given
non-singular cubic surface X and my = (l1lals)N(d1dads), me = (l1lal3)N(t1tats), mg =
(didsed3) N (t1,ta,t3). Then my, mg and ms have a common point.
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Proof. Since my, my are contained in the hyperplane H spanned by (l1l3l3), the line
my meets my. Similarly, the line m; meets mg, the line my meets ms. If m; = my then
mg = my. Otherwise, since mg ¢ H = span(my, my), this implies that m;, my and m;
have a common point. O

Corollary 2.1.7.

(i) Assume the hypothesis as in (2.1.6) and suppose that (I1dit1) forms a star point
A. Then my Nme Nmz D {A}.

(11) Let S = {(lilsls), (d1dads), (titats)} be a Steiner set of a given non-singular cubic
surface X. If (lilsls) and (didads) form 2 star points A; and Ao, respectively,
then (titats) forms another star point Az and Ay, Ay, As lie on a line.

Proof.

(i) Follows directly from the proposition.

(ii) By renumbering the triples of S, we can assume that {(l1dit1), (ladats), (l3dsts) }
is another Steiner set formed by 9 lines of S (2.1.2). Then apply the proposition
and (i) for the Steiner set {(l1dit1), (Iadata), (I3dsts) }. See also [S], p. 147.

O

Definition: A Steiner set such that every of the 3 members gives a star point is called
a star-Steiner set.

Proposition 2.1.8. A non-singular cubic surface does not have three star triples which
have a line in common.

Proof. Up to quadratic transformations, we can assume that the common line is the
strict transform of some conic C;. The three star points come from tangent points of 3
tangent lines from P;. This is impossible! O

2.2 A study of H;

For each z € H;, and view the corresponding cubic surface X, as the blowing-up of P?
at 6 points in general position, then each star triple of X is of the form (15,C~’]l~,]) or
(lijlmnlkn). As we have seen in (2.1.4) and (2.1.5), we can consider X, as the blowing-up
of P2 at P = (Py,...,Ps) € ® where lj5 N34 Nlss # (. For this, if there is another
one, say (lijlknlmn), then the permutation (i1)(j2)(k3)(m5)(n6)(h4) of Ss makes it
correspond to the previous one.

Let

L= {([Xg], Ly, -, L) | Xj is a non-singular cubic surface in P?;

L; is a line on X3; LiﬂLj:Q)forlgi%j§6}CIPIQXQG.
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Consider:

c PP - A
(X2],L1,---, L) > [X3].

We know that for any x € P'® — A, the number of elements of p~!(x) is 51840. This
implies that, dim£ = 19, see [H|, V.4.10.1 or [Mul], p. 180.

Let

D= {(P,X, [X2], Ly, , Lg) | P € ®; Xis the blowing-up of P atP;
L;is the exceptional curve w.r.t. P; € P; X3 is an embedding of X inP? }

Consider
D 2 0
(P,X, [X32],L1, 7L6) — P.
Note that for any P € @, we have O 1(P) = AutP® = PGL(3,k) & GL(4, k)/k*, see
[H], I1.7.1.1. Consequently, dim©®!(P) = 15.
Consider
D L
(PaXa [X??]aLla e aPG) = ([X??]a Lla o aLG)-
Note that for any o € £, we have I' }(a) = AutP? = PGL(2,k) = GL(3,k)/k*.
Consequently, dim['*(«) = 8, see [H], I1.7.1.1.
Let K1 = {(Pl, . ,PG) ed ‘ l12 N l34 N 156 ?é @}, D1 = G_I(Kl) and L1 = F(Dl)
Then we have H, = p(L,).

Theorem 2.2.1. The set H, is a closed, irreducible subvariety of P** — A of dimension
18.

Proof. We first prove that K is irreducible of dimension 11. Let

.7:12{(@51,12,13)|li€g;Q€lz‘; li # 1 f0T1§i<j§3} C P* x G°,

Fo = {(Q,ll,l%ls,Pl,--- JPs) | (@, 11, 1g,13) € Fi; Py # Pjfor 1 <i<j <3

Pi Py €li; Py, Py € l; Ps, Py € ls; (..., Ps) € <1>} C Fi x (B2,

Consider F, =25 F, 25 P? where p1, P2 are the projections. Since p; is surjective and
every fiber is irreducible and has dimension 3, this follows that J; is also irreducible and
J1 has dimension 5. Moreover, the map p, is surjective and every fiber is irreducible and
has dimension 6, so F; is irreducible and has dimension 5+6=11. Finally the projection
Fo — K is an isomorphism. This implies K is irreducible and has dimension 11.
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Consider the following diagram:

This induces

Our task is now to prove that D; is irreducible and then this implies that
H; = poT'(Dy) is irreducible. Let Lp denote the set of cubic forms passing through
the 6 points Py,... , Ps of a given P in ®. This set is a linear vector space of dimension
4. Let

Y= {(P,wl,wz,wg,m) | P=(P,...,P) € Ky;
©1, P2, L3, 4 are non-zero cubic forms passing through P, ... ,PG} C K, x (P9)*

and
U= {(Pa V1, P2, L3, 904) ey | {9017 ©2, P3, ()04} forms a basis of ['73}

Then we have the following commutative diagram:

U open Y Cl((E(;d Kl X (P9)4

K

where the map p : K; x (P?)* — K, is the projection. The map ¥ - K in
the above diagram is surjective and every fiber is isomorphic to (P?)*, therefore Y is
irreducible. Consequently U is irreducible. For any basis {1, 2, ©3, 04} of Lp, there
exist embeddings in P? of the blowing-up of P? at P; namely embeddings come from:

P2 ——— P
(xo A 332) — ()\1901 : )\2§02 : )\3903 : )\4204),

for A\; € k* such that {11, Ao, A3p3, Ayps} is a basis of Lp. Therefore, the set D is
isomorphic to an open subset of U xIP3. So that D; is irreducible, too. Consequently, the
set Dy has dimension 1141243=26. Therefore, dim(H;)=26-8=18. For the closedness
of Hy, see the proof of the Theorem 2.3.1. O
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Remark 2.2.2. We can prove the irreducibility of H; in another way as follows.

Consider the subset V; of P'? consisting of points whose corresponding cubic surfaces
have 3 lines meeting at one point. Given x € V;, we can choose a system of coordinates
of P? such that X, is determined by a non-zero cubic form

Qz + azy(z — y) (2.1)

where () is a quadratic form in z,y, 2,7 and @ € k. Each such non-zero cubic form
corresponds to a point of P, Let S C P! denote the set of all points in H; determined
by non-zero cubic forms (2.1). In particular, the subset S is irreducible.

Consider the surjective map PGL(3) x S — H; deduced by the natural action of
PGL(3) on P'. This implies that H; is irreducible.

However, we do not see how we can use this method for the case Hj, for k > 1.

2.3 A study of Hy; and Hj

Definition: Let
H® = {z € Hy | the surface X, has a pair of star triples having one line in common},

H¥ = {z € H, | the surface X, has 2 star triples having no line in common}.

For each =z € HQ(Q), view X, as blowing-up of P? at 6 points in general position.
Moreover, by Remark 2.1.4 and Proposition 2.1.5, we can assume that X, has a pair
of star triples of one of the following forms:

(i) (lalsalse), (Ialssls);
(i) (halsalse), (lalsslss);
(i) (l1alsalse), (112C1Py);
(iv) (lolsalsg), (I12CP;).

The first and the second just differ by the permutation (56). The third and the fourth
differ by the permutation (12). Moreover, the quadratic transformation (135) exchanges
the first and the third.

Let

KQ(Z) = {(Pl, oy BPe) €@ lioNilza Nl ={Q1}, lia Nlgs Nlge = {Qz}},

see Figure 2.1.

Let Dg) = 9*1(K§2)), LgQ) = F(Dg)). Then by the argument above, we have

2 2
B = (1))

Similarly, up to permutations and quadratic transformations, We can assume that
each cubic surface corresponding to an element of the subsets H2 , has a pair of star
triples of one of the following kinds:
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Figure 2.1: The configuration for members of K§2)

(i) (1~121~34l~56), (Pzégzzg),
(i) (lizlzalss), (luslaslia)-

But it is easy to see that the quadratic transformation(imn) for j ¢ {m,n} and {1,2}nN
{i,m,n} # 0, {3,4} n{i,m,n} # 0, {5,6} N {i,m,n} # O exchanges (ii) to (i).
Moreover, if there exists another pair, say Gijjkfjmn),~(l~;kml~jnl~,-k), then the permutation
(’1,1)(]2) (k3) (h4) (m5) (77,6) exchanges it to (l12l34l56), (l45lg@l13).

Let

K§3) = {(Pb--- Pe) € liaNlsgaNise ={Q1}, lisNlas Ny = {Q2}},

see Figure 2.2. Let Dg”) = @‘1(K§3)), Lg” = I‘(Dég)), and then by the above argument,

Figure 2.2: The configuration for members of Ké?’)

we have H{®) = p(L§3)).

Theorem 2.3.1. The set Hy is closed in P — A and has two irreducible components
H§2) and H2(3) of dimension 17.
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Proof. We have the following diagram:

p L L

This induces

)

Suppose that Kéz) is irreducible, we prove that DéZ is irreducible then this implies that

H® = po (D) is irreducible.
Let

Y= {(Pa(Pl,WZa(Ps:@L) ‘ P = (Pla-" apﬁ) € K§2)a
©1, P, 3, 4 are non-zero cubic forms passing through P, ... ,P(,-} C K§2) X (IF’Q)4
and

U= {(P’ <)01’§02a§03,€04) € Y ‘ {(pl,QOQa ©3, @4} forms a basis of E'P}a

where Lp is used as on page 19.
Consider the following commutative diagram:

U 0&6)1’1 Y clﬁid K§2) X (]P’g)4

K

where the map p : K§2) x (P?)4 — Kf) is the projection. The map ¥ -+ K§2) is sur-
jective and every fiber is isomorphic to (P?)%. Therefore Y is irreducible. Consequently,
the set U is irreducible. As in the proof of (2.2.1), we see that DS is isomorphic to an
open subset of U x P3. In particular D;Q) is irreducible.

Next, we prove that K§2) is irreducible of dimension 10. Let

open

Fr={(Q1,Q2) | Qi € P, Q1 # Q} — (P?)?,

Foy = {(Q1,Q2,51, loyls, 1) | (Q1,Q2) € Fisli € G {h} =L N, {Q2} =13N l4}
C Fl X g4
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and

Fy = {(Ql:Q2al1512513al4:P1:P2) | (Q1,Q2,l,1,15,14) € Fo; P, Py € Q1Q2}
C .7:2 X (]PI)Q.

Consider F;3 AN Fo LN F1 where the maps p;,ps are projections. Since F; is
irreducible of dimension 4, the map ps is surjective and every fiber is irreducible of
dimension 4, so JF; is irreducible of dimension 8. Also, the map p; is surjective and
every fiber is irreducible of dimension 2, so F3 is irreducible of dimension 8+2=10.
Moreover KéQ) is an open subset of F3 if we let {Ps} = 13, N5, {Ps} =11 Ny, {Ps} =
lo N3, {Ps} = la N lg. Therefore ng) is irreducible of dimension 10. This implies that
dim(H{Y) =10+15-8=17.

Similarly, we prove that Ké?’)
ducible of dimension 17.

Finally, we prove that HQ(Q), H2(3) and H; are closed. Let

is irreducible of dimension 10 and then H2(3) is irre-

M={(z,li,...,lLy) [z €PY —A; [, C X;} C (P* — A) x G*".

Then the projection p : M — P — A is finite.
Let Hy = {(z,l1,... ,lar) € M | 1NN 13 # 0}. Consider the maps:

M T g3
(.Z',ll,...,l27) l—)(li,lj,lk) for1<i<j<k<27.

Let L = {(ll,lg,lg;) | NNz # (Z)} C G3. Tt is easy to see that the set K = {(ll,lg) €
G? | liNly # 0} is closed in G%. Consider the maps:

a3 L NYe2: .
(o, l5) > (lz’7lj) for1 <i<j<3.

Then L = g3 (K) N gi'(K) N g5 (K) is closed in G3. Therefore H, = fi53(L) is
closed in M. Since H; is the image of H, via p, it is a closed subset of P¥ — A.

Let Hy = {(2,h,... br) € M | bNlyNls #0; LAliNls # 0. Then Hy =
Fiob (L) N f5(L) is a closed in M and H? = p(Hp) is closed in P — A

Similarly, let H, = {(ac,ll, oyl EM NNy #0; yNisNilg # @}. Then
H, = fi5(L) N fas (L) is closed in M and HS® = p(H,) is closed in P¥ — A,

]

Remark 2.3.2. The argument used to prove the closedness of HQ(Q), H2(3) and H; above
will be used several times in the rest of the chapter.

Corollary 2.3.3. H; = HQ(?’). Consequently Hs is closed in P — A, irreducible of
dimension 17.

Proof. By (2.1.7 (ii)), for any z € HY we have X, € H;. Conversely, if z € Hs then
the corresponding surface X, has at least 3 star triples and there exist 2 of them having
no line in common. For this, suppose X has 2 star triples, say 77 and 75, having one
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line in common. Let 73 be another star triple which has one line in common with 75.
Then 77 and 73 have no line in common, otherwise this situation contradicts against
the fact that the five tritangent planes containing a given line of any non-singular cubic
surface in P? are different. So z € H2(3). The rest of the corollary follows from the
theorem. 0

Corollary 2.3.4. The set H, generically consists of points corresponding to cubic sur-
faces with exactly 1 star point.

2.4 A study of H,

Recall that H, is the set of points corresponding to non-singular cubic surfaces with
at least 4 star points. Since Hy C Hy = HQ(Q), this implies that for each x € Hy, the
surface X, has a star-Steiner set. Moreover, if X; has a star-Steiner S = {17, T5, T3}
and another star triple 7" having 2 lines in common with S, then 7T has all lines in
common with S. This follows from (2.1.2). Therefore, the set H, consists of elements
in one of the 3 following subsets:

Hf) = {[X] € Hy | X has one star-Steiner S and another

star triple 7" having 3 lines in common with S };

Hiﬁ) = {[X] € Hy| X has one star-Steiner S and another

star triple 7" having 1 line in common with S };

Hig) = {[X] € Hy| X has one star-Steiner S and another

star triple 7" having no line in common with S }

A. A study of H"

By (2.1.5) and up to permutations, we can assume that for each = € Hf), the corre-
sponding cubic surface X, has the star-Steiner set S = {(I13l24l56), (P3Calss), (PaChl12)}.
Therefore, the subsets Hf) , up to permutations, consists of points corresponding to
surfaces which possesses S and another star triple in one of the following kinds:

(1) S and (153(71[13),
(11) S and (512534[56)-

We see that the quadratic transformation(234) exchanges S and (P3Chlys) of kind (i) to
{(qull}:;), (EQC~'4£24), (456434412)} and (l~13l~24l~56) MOI‘GOVGI’, the permut@t19n~(23) makes
{(P301l13), (P204l24), (l56l34112)} and (l13l24l56) correspond to S and (112l34l56), respec-
tively.
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Definition:

K® — {(Pl,... JPs) € @ | lis Nl Nise = {Q}; lio, 113 are tangent to Cl},

see Figure 2.3.

Figure 2.3: The configuration for members of K f)

Let D{Y = 0-1(K"), (L,)® = (D). By the argument above, we have H\" =
(4)
p(Ls").

Definition: Let C C P° denote the space parameterizing non-singular conics in P2.
This is an open subvariety of P5.

Theorem 2.4.1. The subset H£4) C Hy is closed in P — A, irreducible of dimension
16.

Proof. We first prove that K 24) is irreducible of dimension 9.
Let

Fi = {([C],Pl, P, P3) | C is a non-singular conic in P*; P; ¢ C;

Py, P3 € C; Py # Ps; l19,113 are tangent to C’} C C x (P?)3,
Fo={(Q.[C), P, Po, ) | (C), i Pa Py) € Fis Q € sy Q ¢ {Py, Pi}} € Fi x B,

Fy = {(Qa[C]aP1,P2,P3,P4,P5,P6) ‘ (Qa[c]anPQ,P?,) € Fo; {Ps} = PQ NC;
B, Ps € C; Iss Nl ={Q}; (P1,. .., ) e@} C Fy x (P?)%.

Consider

Fi =5 C
([C],Pl,PQ,Pg) — [C]



26 Chapter 2. Non-singular cubic surfaces with star points

The map p; is surjective and every fiber is irreducible of dimension 2. This implies that
JF5 is irreducible of dimension 5 4+ 2 = 7. Similarly, the map:

T = Fi
(Q7 [C]7P17P27P3) = ([C]7P17P25P3)

is surjective and every fiber is irreducible of dimension 1. Therefore F; is irreducible
of dimension 8. Finally, consider:

Fs £ Fy
(Q,[C],Pl,...,Pﬁ) — (Q,[C],Pl,PQ,Pg).

The map ps is surjective and each fiber is naturally isomorphic to A = {(P5,P6) €
CxC|QEls; Ps# Ps}. Consider:

A o
(Ps, Ps) + Ps.
The map h is surjective and every fiber consists of one point. Therefore A is irreducible
of dimension 1. This implies F3 is irreducible of dimension 8+1=9. So is K f), since
the projection F3 — Kf)
Next, we prove that the H §4) is irreducible of dimension 16.
We have the following diagram:

is an isomorphism.

This induces

KM HY.

We shall prove that Df;g is irreducible. This implies that H. £4) =po F(Dy)) is irre-
ducible. Hence H f) has dimension 9-8+15=16.
Let

Y ={(P.g1,02.05,00) | P = (P1,... . ) € Ki;
©1, P2, P3, 4 are non-zero cubic forms passing through P, ... ,Ps} C Kf) x (P%)*
and
U= {(7)7 01,02, 3, 04) €Y | {1, 2, p3, s} forms a basis of Ep},

where Lp is used as on page 19.
Consider the following commutative diagram:
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where the map p : Kf) x (PY)* — Kf) is the projection. The map Y —L» Kf) is sur-
jective and every fiber is isomorphic to (P?)*, therefore Y is irreducible. Consequently
U is irreducible.

As in the proof of (2.2.1), we see that fo) is isomorphic to an open subset of U x P3.
So DV is irreducible.

For the closedness of Hf), see the proof of (2.4.5). O

B. A study of H\”

For convenience, from now on, for any two star triples 77,75 of a non-singular cubic
surface X such that 77 and 75 do not have any line in common, we denote 7775 for the
third star triple of the star-Steiner set determined by 77 and 7,. By this notation, we
have, T1 Ty, = ToTy; Ti(ThTy) = Ty; To(ThTs) = T,...

For any x € Hf), the surface X, possesses a pair (S,U) where S = {11, T3, T1T»} is
a star-Steiner set and U is another star triple which has only one line in common with
S and we can assume with 7. We can assume that 7} = (C’lf’g[lg); U = (5’1]53[13).
Then the star triple 75, up to permutations, has one of following kinds:

(i) Ty = (CsPul3s) and then TyTy = (l14lo3ls6);

(ii) Ty = (C4Pil14) and then T1 Ty = (CoPylay);

(iii) Ty = (C5Pylyss) and then T1 Ty = (I14lasls6)-
Note that if T, has form (C~'2154l~24) or (Zij[mnikh) then 71T has the form (i) or (iii).

Lemma 2.4.2. Any element of each kind in the above list can be transformed to any
other kind in the list by permutations and quadratic transformations.

Proof.

If T2 = (é4pll~14) (klnd (11)) then T1T2 = (62P4l~24) and U(T1T2) = (Z14l~23l~56). It is
easy to see that S’ = {U, T\T,, U(TlTQ)} together 77 form one of kind (i).

If T2 = (05P4l~45) (klnd (111)) then T1T2 = (Z14l~25l~36), TQU = (Z14l~35l~26). Under the
“action” of the quadratic transformation(356), the star triples ToU, Ty and 1T, are
exchanged with Tll = (é’zﬁ%igg;), TQI = (O5P4Z45) and U' = (62P5i25), respectively. It is
easy to see that S = {17, T3, T{T3} together U’ form one of kind (i). O

Moreover, if any one of kind (i) possesses a pair S = {(C’Z]s][w), (C~’h]5kl~hk), (Lki,himn}
and U = (C;Pyl;;) then the action of the permutation (i1)(j2)(h3)(k4)(m5)(n6) let it
correspond to the pair {(Clpgllg), (03P4534), (l14l23l56)} and (C1P3113).
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Definition:
(6) _ _ .
K4 = (Pl, Ce ,P(;) ed ‘ l14 N 123 N 156 = {S}, l12,l13 are tangent to Cl ;

see Figure 2.4.

Figure 2.4: The configuration for members of K £6)

Let DY = 0 1(K?) and L{¥ = T'(D!%). By the above argument and by (2.1.4),
we have HLEG) = p(Lf)).

Theorem 2.4.3. The subset Hiﬁ) C Hy is closed in P — A, irreducible of dimension
16.

Proof. We prove first that K iﬁ) is irreducible of dimension 9. Let

F = {([C], Py, P2,P3) | C' is a non-singular conic in P*; P, ¢ C;

Py, Py € C; Py # Py; 119,113 are tangent to C} C C x (P*)3,
Fo = {((C), P, Poy Py, P2) | (IC), Py Poy Py) € Fis Pi € C5 Pudt Py, Po}} C i x P2,

.7:3: {([C]’PI:PQ,P3,P4,P5;P6) ‘ ([C],Pl,PQ,P3’P4) €f2,
P5,Ps € C; lsg Ny Nha = {S}; (Pr,... . Ps) € qJ} C Fy x (P)2.

Consider

Fi - C
([C],Pl,PQ,Pg) — [C]

The map p; is surjective and every fiber is irreducible of dimension 2. This implies that
F, is irreducible of dimension 5 + 2 = 7. Similarly, the map:

f2 & fl
([O]aP15P25P37P4) = ([C],Pl,PQ,Pg)
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is surjective and every fiber is irreducible of dimension 1. Therefore F; is irreducible
of dimension 8. Finally, consider:

Fs £ Fy
(I, Pyy..., Bs) = ([C], P, Py, Ps, Py).

Then the map pj3 is surjective and each fiber is naturally isomorphic to A = {(P5, P) €
CxC|S€ls; Ps# PG}. Consider:

A o

(Ps, Ps) +— Ps.
Then the map h is surjective and every fiber consists of one point. Therefore A is
irreducible of dimension 1. This implies that Fj3 is irreducible of dimension 8+1=9. So

is K i4) since the projection .7-'3 — K f) is an isomorphism.

Next, we prove that H4 is irreducible of dimension 16. The proof is analogous to
that of the proof of (2.4.1) when K" is substituted by K\”. Also, for closedness of
Hi ), see the proof of (2.4.5). O

Proposition 2.4.4. Fach X € His) has at least 6 star triples, which form 4 star-
Steiner sets and each star triple has exactly one line in common with another star
triple among the 6 ones above. Hence Hf) C Hs.

Proof. By (2.4.2), we can assume that X possesses a pair {S,U}, where
S = {T1 C1P2112) T, = (C3P4l34) T, = (l14123l56 } and U = (01P3l13)

It is easy to see that X has 2 more star triples, namely: ToU = (C’4Pll~14) and
UTT,) = (C'QP4ZQ4). Moreover, they form 4 star-Steiner sets, namely: {71,T5, T1T>},
{TQ, U, UTQ}, {U, TlTQ, U(TlTQ)} and {Tl, UTQ, U(TlTQ)} O

C. A study of Hig)

Recall that Hig) is the set of points corresponding to non-singular cubic surfaces such
that each surface has a pair {S, U}, where S is a star-Steiner set and U is another star
triple having no line in common with S. We can assume that each cubic surface X
corresponding to an element of H( ) has the star-Steiner set S = {(l12l34l56) (ll5l24l36),
(l45l26l13)} _This implies that U has the form (PC l; ;j)- Furthermore, we can assume
that U = ( P1l14) by using a suitable permutation. For this,

(

o (41)(23)ifi=4,j =1;

e (164)ifi=4,j=60ri=06,j =1;

e (kh)(j4)(il1) for k,h € {1,...,6} — {i,4,1,4} in others.
Definition:

Kig) = {(Pl, P ,Pﬁ) € () | 112 N lg4 N l56 = {Sl}, l15 N lg4 N l36 = {SQ},
l14 is tangent to C at P4}.

Let DY = 1K) and (L)® = F(Dflg)). By the above argument, we have
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Theorem 2.4.5. The subset Hig) C Hy is closed in P — A and has two irreducible
components of dimension 16.

Proof. We consider the following diagram:

p L L

This induces

We shall prove that K ig) has two irreducible components of dimension 9. Then this

implies that the H ig) has two irreducible components of dimension 16 (see, for example,
the proof of (2.4.1)).
Let

Fi={(Pi, Py, Py P)) € (B)* | P £ Py Vi# ji P Ly for 1 < j.k < 4},
Foy = {(PI;PZ;P37P47‘S) | (P1, Py, P3,Py) € Fi; S€los; S ¢ l23Ul14Ul13} C FixP?.

:F3:{(P1’P27P37P47P57P678) | (P17P2:P3:P475)€f2; (Plv"' :PG)E(I);

l36 N 115 M l24 = {S}, l14 is tangent to Cl at P4} C FQ X (]PQ)Q.

First of all, we see that the set F; is an open subset of (P?)?. Therefore it irreducible
of dimension 8. Consider

Fy s Fi
(P17P23P37P475) — (P17P27P37P4)-

The map p; is surjective and every fiber is irreducible of dimension 1. This implies that
JFi is irreducible of dimension 8 + 1 = 9. Now, consider

Fs 5 Fy
(Pl,...,PG,S) — (Pl,PQ,Pg,P4,S).

We prove that this map is 2 : 1 and the set F3 consists of two components, each of
them is isomorphic to an open subset of F,. Choose a system of coordinates of P?
such that P, = (-1:0:1),P,=(1:1:0),P3=(-1:1:0),P,=(0:0:1) and
S=(b:b:1)for b e kU{oo}. By a straight forward computation we easily prove that
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except for a finite number of values of b, the fiber of py at a given point consists of two
distinct points. Moreover, the set Fj3 is isomorphic to the set K ig)

Finally, we have to show that the subsets H\", H® and H{" are closed in P¥ — A.
Repeat the argument and notations used in the proof of the closedness of H; and Hy
n (2.3.1). Consider the following sets:

G(4) {(.T ll,...,127)6./\/1‘510[20[375@; llﬁl4ﬂl57é®; lzﬂlgﬂh#(b},

GO ={(z, 1, lyr) eM | LN NI #0; LN #0; Nl Nl # 0},
and
GO ={(@, by, lr) eM | NN #0; LnlsNls #0; LNlsNly # 0}
We have
G = fin(L) N fub(D) 0 fogh (D) = M,

closed
G = FAD) N Fib (1) 0 fah(D) = M,

and

GY = b (L) N fis(D) N frap(L) = M.

closed

In particular the subsets HF) = p(G( )) H, ©) = (G(6 ) and Hig) = p(Gig)) are closed
in P — A. O
Proposition 2.4.6. Each cubic surface corresponding to an element of Hig) contains
at least 9 star points and at least 12 star-Steiner sets.

Proof. We can assume that X is isomorphic to the blowing up of P? at P = (Pl, .. P6)
K, ©) We compute all star triples “generated” by the given star triples (01P4l14) (l12l34l56)

and (l24ll5l36) as follows:

(1) ( ) o

l1ol34l: (6) (CoPslas),
& CEn (7) (CoPrla).
(4) (6'3?2[23)’, (8) (CuPslsg),
(5) (213526545) (9) ( 5 3l35)

and they form 12 following star-Steiner sets:

(1) {01P4l14) (halaslss), (CsPala)};  (7) {(lhalaalse), (CiPelas), (CsPalss)};
(2) {(C1Pylwa), (laalislse), (CoPslas)};  (8) {(laalislse), (CsPilss), (CoPilis)
(3) {(C1Pils), (CsPslss), (hslaslas)};  (9) {(laslislss), (CuPelas), (CsPalas)};
(4) {(C1Piws), (CuPslss), (CsPilis)};  (10) {(halaslas), (CsPalas), (CoPilis) s
(5) {(halsalss), (loalislss), (hsbaslss)}; (A1) {(lislaslas), (CoPslys), (CaPlue) };
(6) {(halsalss), (CoPslos), (CoPilis)};  (12) {(CoPslzs), (CsPalzs), (05P3Z35)}D.
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Remark 2.4.7. The above nine star triples contain all the 27 lines of the surface. Each
star triple occurs in 4 of the above 12 star-Steiner sets.

We have dimH, :dimHQ(Q) :dimH2(3) = 17 and dimH, = 16. We conclude:

Corollary 2.4.8. The subset HQ(Q) respectively H2(3) generically consists of point cor-
responding to cubic surfaces with exactly 2, respectively 3, star points.

2.5 A study of H; and H

Theorem 2.5.1. H; = Hg = Hiﬁ) U Hﬁg).

Proof. The inclusion H\UHS ¢ Hg C Hj is trivial by (2.4.4) and (2.4.6). The proof is
done if we show that H; C HLEG)UHLEQ). Let x € Hs. Since H; C Hy = H£4)UH£6)UH£9),
we need only consider the case x € H, f). This means that the corresponding surface
X, has a pair (S,T) where S is a star-Steiner set and T is another star triple which
has all lines in common with S. Let U be the fifth star triple of X,. If U has no line
or only one line in common with S then z € Hiﬁ) U Hig). Consider the case U has all
lines in common with S. We can assume that

S = {(CyPsl3), (CsPulsy), (lashalss)},

T = (611P4l~14) and U = (Z12l~34l~56). Note that at the same time the triple (63P2l~23)
forms another star point. Our task is now to prove that the three lines l~24, I35 and 16
form a star triple, hence x belongs to Hig). Choose a system of coordinates for P? such
that P, =(1:0:0), P,=(0:1:0), Ps:=(1:1:1)and P, =(0:0:1). So the conic
containing P, P, P, and being tangent to [15 and ly4 at P, and P, respectively is given
by x5 —x129 = 0. Moreover, we have Sop = (1:1:0) € l;oNl3g, S1 = (1:0:1) € l14Nia3.
It is easy to see that lys = V(z) and SpS; = V(21 + 25 — 2¢). Therefore either

Ps=(1:e:—€)and Ps=(1: —€:¢)
or
Ps=(1:€:—€)and Ps=(1:—€:¢),

where € is a primitive cube root of unit. A computation shows that the three lines
lo4, I35 and l;g have one point in common. O

Remark 2.5.2. Later, we will see in (2.7.2) that, in this case, the surface has exactly
18 star points.

2.6 A study of H;, Hgs and H,

Recall that H;, Hg and Hy are the subsets corresponding to non-singular cubic surfaces
with at least 7, 8 and 9 star points, respectively.
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Lemma 2.6.1. Letx € Hf) and let Ty, ... , Ty be the six star triples of X, determined
by the given pair (S,U) as in the proof of (2.4.4). Let V be another star triple of X,.

(i) IfV has all line in common with one of 4 star-Steiner sets determined by {T1, ... ,Ts}
then X, has at least 10 star points and at least 10 star-Steiner sets.

(ii) Otherwise, the surface X, has at least 18 star points and at least 42 star-Steiner
sets.

Proof.
(i) We can assume that:
S = {(CiPola), (CsPilsa), (lashalss)}

and U = (élpgilg). Then V is one of the triples (PQég[Qg) and (l~12l~34l~56), up to
permutations. It is easy to find all star triples determined by S, U and V.

(a) If V= (Pgég[zg) then:

()T = (C1Psl1a), (2) T3 = (CsPyl3),
(3)11 T = (lslialse), (4) U = (C1B3ly3),
(5)V = (P, Csly3), (6) U = (C4Pil14),
(MUMT) = (CoPila),  (8) V(TU) = (hslalss),
OV (U(T\Ty)) = (CyPslss),  (10) UV = (CyPyly).
(b) If V = (I1sls4lss) then:
(DT = (C1Pyl1y), (2) Ty = (C3Pyl3s),
(3)11 T = (loslialse), 4) U = (C1B3ly3),
(5)V = (pg, 63~23), (6) T2U = (é4pll~14),
(NU(T1T2) = (C2Pila), (8) V(ToU) = (CaPslys),
V(U(ThTz)) = (CsPily3), (10) UV = (CyPalay).

Moreover, we can see that, in fact they are of the same kind. For this, in the
case (a), we choose S’ = {(01P3l13), (CoPylay), (l23ll4l56)}, U' = (C1Pyly2) and
V= (l~131~24l~56). Then {S’, U, V’} shows that X has the form of (b). Similarly, in
the case (b), we choose S’ = {(6’1]53[13), (5’2]54l~24), (l~23l~14l~56)}, U = (6’1152112)
and V' = (CoP3ls). Then {S,U’,V'} shows that X has the form as in (a).

The 10 star triples of X as in (a) form 10 star-Steiner sets. They are as follows:

L {1, 2), 3} 2 {™, 9, 6B} 3. {@1), (), (6)}
4. {@), (M, 3} 5. {4, (2), (6)} 6. {(1), (9), (8)}
7. {(6), ®), ®)} 8 {2, ®), 10)} 9. {(4), (5), 10)}
10. {(18), (9), (10)}

where (n) denotes the star triple numbered (n) in the list (a) of star triples of
X
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(ii) Recall that, the six star triples of X, determined by {S,U} form 4 star-Steiner

sets:

o {11, T, T'T5} = S;
o {U,T,,UTy};

o {1, UT,, T\ (UTs);
o {UTTT, T:(UT,)}.

Therefore, if V' does not satisfy the hypothesis of (i) then V' has no line in common
with one of the above star-Steiner sets. We can assume (S,U) as in (i) and V
has no line in common with S. Furthermore, we can assume that V' has no line
in common with U, otherwise, we can choose S’ = S, U' = ToU and V' =V,
then V' has no line in common with U’. Therefore, the star triple V' is one of
the forms (6’2155[25), (5’4155[45), ((75151515) and (l~a5l~24l~36). (Note that there are four
other cases for V' when Pj is substituted by P in the above list, but it is easy to
see that they just differ from each other by the permutation (56), which does not
change S or U).

It is not hard to find all star triples determined by {S,U,V'} for each case of V.
Namely,

(a) When V = ((72155[25) orV = (5’5151[15), then the 18 star triples generated by

{S, U,V} are:
(1) = (6'6153[36); (2) = (6'21&4[24),
(3) = (lisloslus), (4) = (Islislsa),
(5) = (CsBslss),  (6) = (CaPilia),
(7) = (hslyslss),  (8) = (Cshilys),
(9) = (C3Pulss), (10) = (lialselus),
(11) = (62155[25), (12) = (51153213),
(13) = (CsPalas),  (14) = (CsPslss),
(15) = (CuPslas),  (16) = (laglaalss),
(17) = (laloslse),  (18) (C1Palys).

(b) When V = (C~'4P5l~45), orV = (l~15l~24l~36), then the 18 star triples generated
by {S, U,V} are:

(1) = (CsPsls), (2) = (halsslas),
(3) = (64155[45); 4) = (ZISZ~24Z~36);
(5) = (61152[12); (6) = (Z1sl~255~46);
(7) = (CoPylys), (8) = (CsPslss),
(9) = (CsPylys),  (10) = (C1PBshs),
(11) = (CsBslzs),  (12) = (lislaslaa),
(13) = (CyPili), (14) = (Laloslss),
(15) = (CoBlys),  (16) = (CsPulsa),
(17) = (CsPilyg), (18) = (liglaslas)-



2.6. A Stl.ldy of H7,H8 and Hg 35

And we can see, in fact, they are of the same kind. For this, in the case of (a),
we can choose S'=S, U'=U and V' = (6'4156[46). Then {S’, U, V’} shows that
X, has the form (b). Similarly, in the case (b), we choose S" = S, U’ = U and
V' = (CyPgslys). Then {$',U’",V'} shows that X, has the form of (a). The surface
X, in case (a) has at least (but in fact exactly!) 42 star-Steiner sets. There are
3 star-Steiner sets consisting of all the 27 lines of X, namely:

(12) (13) (10) 2 6) (¢

(18) : él pQ l~12 (11) : ég p5 l~25
(1) : Pg éﬁ 236 (9) : P4 ég 234
(7): T I lus (16) : oy I35 l1s

6) (14) (3)
(15) 04 P6 l46
®): P C5 s
(17) Z14 Z56 l~23.

L {(@, 15), (13)} 2. {(17), (10), (4)}
3. {1, (7). 15)} 4. {(18), (6), (2)}
5. (16), (13)} 6. {(3), (7), 4)}
7. 4, (9} 8 {(18). ), ()}
9. 10. {(18), (16), (15)}
11. 12. {(12), (16), (14)}
13. 14. {(8), (13), (4)}
15. 16. {(3), (2), (1)}
17. 18. {(18), (9), (17}
19. 20. {(11), (17), (1)}
21. 22. {(12), (11), (3)}
23. 24. {(5), (1), (14)}
25. 26. {(18), (11), (8)}
27. 28. {(2), (7), (14)}
29. 30. {(9), (1), (15)}
31. 32. {(11), (14), (13)}
33. 34. {(11), (6), (10)}
35. 36. {(6), (1), (4)}

O

Definition: Let Hféo) and Hl((l)s) denote the subsets of Hiﬁ) consisting of all points as
in the cases (i) and (ii) respectively of Lemma 2.6.1.
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Remark 2.6.2.

(i) The 10 star triples of each cubic surface X corresponding to an element of Hl((l)o)
determined by {S, U, V} as in the lemma consist of 15 lines during 27 lines of
X. Each star triple occurs in two star-Steiner sets of the 10 star-Steiner sets.

(ii) The 18 star triples of each cubic surface X corresponding to an element of Hl((l)s)
determined by {S, U, V'} as in the lemma consist of 27 lines of X. Each star
triple occurs in seven star-Steiner sets of the 42 star-Steiner sets.

Corollary 2.6.3. H; = Hy = Hy = H” U HY.

Proof. First of all, we have Hy C Hg C H; C Hg = Hf) U Hig), see (2.5.1). Therefore
H, = (H; nH®)YUH; n H?) = (H; n H®)JH”. On the other hand, it follows
from (2.6.1) that (H; N Hi) = HGY U HGY. Moreover, H®) ¢ H. The inclusion
HS)O) U Hig) C Hy is clear. O

Theorem 2.6.4. The set Hl((l)o) is closed in P — A, irreducible of dimension 15.

Proof. Let z € Hl((lf).~ By (2.6.1), we can assume that X, has a set {S,U,V}, where
S = {(C1Pl15), (C3Pulss), (loslialse)} is a star-Steiner set, U = (C1P3ly3) and V =
(l~12l~34l~56) are star triples.

Let

K%O) = {(Pl,. .. 7P6) € (b | l12 ﬂl34 ﬂl56 = {52}, 514 ﬂl23 ﬂl56 = {Sl},

l12 and [ly3 is tangent to 01}, see Figure 2.5.

S

Figure 2.5: The configuration for members of KS)O)

Let D\t = 0-1(KY) and L{}” = T(D{}Y). Therefore H{)” = p(L{i").
Consider the diagram:
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This induces

10 r 10
DY s
o di
10 10
K" HY?.
Consider

F = {([C],Pl, P, P3) | C is a non-singular conic in P*; P; ¢ C;

P,,P; € C; P, # Ps; liy, 115 are tangent to C’} C C x (P?)3,
Fo = {(51,[C]7P1,P2,P3) | ([C],Pl,PmPs) € Fi; Sy €lyz; S1 ¢ {P27P3}} C Fi x P,

f3={(Sla[O];P1,P2,P3,P4,P5,P6) | (S1,[C), P, Py, P3) € Fo; {P1} = P1S1 NC;
Ps, Ps € C; lsg Nlag = {S1}; hia Nlsa Nlsg # 0; (P, ... ,Pﬁ)E@} C Fy x (P?)°.

Consider

F 2o¢
([C], P, P, P5) +—  [C).

The map p; is surjective and every fiber is irreducible of dimension 2. This implies that
F1 is irreducible of dimension 5 + 2 = 7. Similarly, the map:

Fy 2 Fi
(51,[C]aP1,P2,P3) = ([C]apl,PQ,Ps)

is surjective and every fiber is irreducible of dimension 1. Therefore F; is irreducible
of dimension 8. Finally, consider:

Fs = Fo
(Sla[c]apla---:PG) = (Sh[C],Pl,PmPs)-

It is easy to see that the fiber of (Sl, [C], Py, P, P3) consists of one pair determined by:
{P} =P S NC,
{Sa} = l3a N1y,
{P5,Ps} =515 NC,

with a remark that the 2 points of the pair { Ps, Ps} can be interchanged. Consequently,

the set KS)O) has dimension 8. Use the same argument as in (2.4.1), we see that Hféo)

is irreducible of dimension 15. By the same argument used in (2.3.1), we see that Hféo)

is closed in P — A. O
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Similarly, we can assume that for each x € Hfés), the surface X, is isomorphic to

the blowing-up of P? at one element of the following set
Kﬁ)s) = {(Pl, e 7P6) € (b | l15 n l24 n l36 == {Sl}, 514 ﬂ l23 ﬂ l56 - {SQ},
l12 and [ly3 is tangent to Cl}.

Let DY = 0 1(K{Y) and LY = I(D{Y). Therefore H{® = p(L{yY).
Theorem 2.6.5. The set Hl((l,g) is closed in P — A and has two irreducible components
of dimension 15.

Proof. 1t is sufficient to prove that K%s) has two irreducible components of dimension
8. Consider
F = {([C], Pi, P, P3) | C is a non-singular conic in P*; P, ¢ C;

PPeC; Py ?é Ps; 15,113 are tangent to C} CCx (IP2)3,

f2: {(57[0]7P17P27P3) ‘ ([C],Pl,PQ,P?,) Efl; 56523; Sgé {PQ,P:J,}} Cfl ><]fD2

and

f‘3: {(Sa[C]aPI:P25P3,P4aP5aP6) ‘ (S’[C]’PlaPQaP?)) Ef?; {P4}:m mCa
P5,Ps € C; lsg Nlog = {S}; lisNloaNlsg #0; (Pr,...,DP) ecI)} C Fy x (P?)°.

Consider

F e
([C],Pl,PQ,Pg) |—)[C]

The map p; is surjective and every fiber is irreducible of dimension 2. This implies that
J, is irreducible of dimension 5 4+ 2 = 7. Similarly, the map

F = Fi
(S,[C), P, P, P3) —  ([C], P, P», P5)

is surjective and every fiber is irreducible of dimension 1. Therefore F; is irreducible
of dimension 8. Finally, consider

Fs 2 Fy
(S,[C],Pl,...,Pﬁ) — (S,[C],Pl,PQ,PP,).

To see that any fiber of (S, [C], P, P, Ps) consists of two points, we choose coordinates
of P? such that P, = (0:1:0), P,b=(-1:0:1), P=(1:0:1)and P, =(0:1:1).
Therefore the conic containing P, P3; and P, being tangent to /15 and /13 at P, and
Pj respectively, is determined by X? + Y? — Z2 = 0. Then either Ps = (1 — €% : 2¢ :
14+€?), Ps=(e2=1: —2¢:1+€e*) or Ps = (14+€: —2¢* : 1—¢), Ps = (—e—1:26*: 1—¢),
where € is a primitive cube root of —1.

By the same argument used in (2.3.1), we see that H'y is closed in P — A. [
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Proposition 2.6.6. Hl((l)o) N HS)B) = 0.

Proof. Let x € H&l)s) and assume that X, has at least 18 star triples as in page 35:

(12) (13) (10) 2) () (@) ©) (14) (3)
(18) : él PQ [12 (11) . éz P5 ZQ5 (15) : 04 P6 l~46
(1) . Pg 66 l~36 (9) . P4 ég Z34 (8) B P1 05 Zl5
(7) : l~13 l~26 l~45 (16) : l~24 1~35 216 (17) Dolie o lse 223

If x € Hl((l)o) then X, has a set {S,U,V}, where S is a star-Steiner set, U is a star
triple with all lines in common with S and V' is a star triple which has only one line [
in common with S.

Note that, the above 18 star triples consist of all 27 lines of X, and each line of
X, does not occur in more than two star triples (2.1.7). Therefore, the star triples in
{S,U,V'} belong to the above 18 star triples. In particular, the pair {S, U} forms one
of the three above matrices. (This means that if three star triples of S are three rows
of a matrix then U is one of the columns of that matrix. Similarly, if three star triples
of S are three columns of a matrix then U is one of the rows of that matrix).

Since V' has one line in common with S, the star triple V' is one of the rows or the
columns of the matrix formed by S and U. But V' then has all lines in common with
S. This is a contradiction. O

Corollary 2.6.7. Fach cubic surface corresponding to an element of Hl((l)o) has exactly
10 star points.

Proof. Letx € H S)O). Suppose that X, has another star triple W which does not belong
to the set L of ten star triples determined by a set {S,U, V'} as (2.6.2.(i)). The ten star
triples of L consist of 15 lines, each of them occurs in exactly two star triples. Therefore,

the three lines of W do not appear in the 15 lines of L. The set {S,U, W} shows that

x belongs to Hfés). But by the previous proposition, we have Hf(l)o) N Hl((l)s) = 0. O

2.7 A study of H; with £ > 10

Theorem 2.7.1. Hy, = H{O UHEY = HY n HY,
Proof.

(i) We prove that Hyy C Hl((l)o) U Hfés).

Since Hyg C Hy = HGY U H® then Hy = (Hio N HYY)U(Hy N HY) =
Hl((l)o) U(Hio N Hig)). Consider x € (Hig N Hig)). Since z € Hig), the surface X,
has at least 9 star triples, which contain all 27 lines of X, see (2.4.6). Therefore
the tenth star triple W has all lines in common with three ones , say T},7, and
T; of the above 9 star triples. There exists another star triple Ty ¢ {T1,75, T3}
such that S = {T1, Ty, T1T,} and W show that x belongs to Hf). Then {S, W}

and T, show that = belongs to Hfés).

(i) The inclusion (H” U HE) ¢ (HY N H) is clear.
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(iii) We prove that (H iMOH LEG)) C Hiyp. Recall that each cubic surface X corresponding
to an element z € Hf) has at least 6 star triples {71,...,Ts} and each star
triple has exactly one line in common with another star triple in {77,...,7g},

see (2.4.4). Therefore, if z € Hf) then the surface X has another star triple U,
which does not belong to the set {71, ... ,Ts}. The conclusion follows from (2.6.1).

O

Corollary 2.7.2. A non-singular cubic surface does not have more than 18 star points.
Consequently H, = 0 for k > 18.

Proof. Let X be a cubic surface corresponding to an element z € Hig. Then x € Hyy =
Hféo) U Hl((l)g). Since Hféo) consists of points corresponding to surfaces with exactly 10
star points (2.6.7), this implies that z € Hf(l]g). We can assume that X has the set L
consisting of 18 star points generated by a set {S,U,V'} as in (2.6.1). But as we have
seen in the proof of (2.6.6), the set L consists of all 27 lines of X, each line occurs in
two star triples. Therefore any star triple of X belongs to L. This means that X, does
not have more than 18 star points. O

Corollary 2.7.3. H, = H® for 10 < k < 18.

Proof. For any 10 < k < 18, H, C Hy, = HY U HYY. Hence H, = (Hj N
HNYUHn B = H,n B Y HESY. But H, 0 HGY =0 by (2.6.7). O

In the rest of this section, we want to study some other properties of Hig = Hf(l]s).
Proposition 2.7.4. Hig = HF) N Hﬁg) = HEG) N Hig).
Proof.

(i) His = HY nHY.

The inclusion Hyg C Hf) ﬂHig) is clear. Suppose z € H f) ﬂHig) then the surface
X, has a pair {S’,U'}, where S’ is a star-Steiner set and U’ is another star triple
with no line in common with S’. Moreover, the surface X, has a pair {S,U},
where S is a star-Steiner set and U is another star triple which has all line in
common with S. Let L be the set of 9 star triples generated by {S’,U’'}. Let
S ={T1,T,, TiT>}. Note that any two star triples in L have no line in common.
So there exists one star triple V in L which does not have any line in common
with S. Then the pair of star-Steiner set S; = {77,V,VT;} and S shows that
x belongs to HP. So the set {S1,U, Ty} or {S1,U, T} shows that x belongs to
HGY = Hyg.

(ii) Hys = H® nHY.
The inclusion Hyg C HLEG) N Hig) is clear. Suppose that z € Hﬁﬁ) N Hig). Let
L denote the same set as in the proof of (i). Moreover, since z € Hf), the
corresponding cubic surface X, has a pair of star triples 7} and 75 such that they
have one line in common. Both 7T} and 75 do not belong to L by the configuration
of L, see (2.4.6). This implies that T} has all lines in common with L. Therefore
z € H" and the result follows from (i).
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O

From (2.5.1), (2.6.3), (2.6.4), (2.6.5), (2.7.1) and (2.7.4) we have the following results:

Corollary 2.7.5. The sets Hf), Hf) and Hig) generically consist of points corre-
sponding to cubic surfaces with exactly 4, 6 and respectively 9 star points.

PY — A
J
/ L
"H. 2(2) 17 H2(3)
16 Hgl)/)lslﬁ(ﬁ)/( \MHS))

Figure 2.6: A diagram explaining properties of H ,gm).

We give a survey of the results obtained in Figure 2.6. In the diagram of the figure:
(i) the number n in the left top of the symbol "H{™ denotes the dimension of H\™;
(ii) the vectors mean the inclusion relations;

(iii) the symbol (m) indicates that generically in the set H, ,gm) the corresponding sur-
face has exactly m star points, see (2.3.4), (2.4.8), (2.6.7), (2.6.1), (2.7.2) and
(2.7.5).

Other main results are:
e H, is irreducible and dimH; = 18;
o Hy=HP UH® and dim H, = 17;
e H; = HZ(S) and dim H3 = 17 and Hj is irreducible;

e H,=HYUH® UHY and dim H, = 16;
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e Hy=Hg=HY UHY and dim H, = 16, for k € {5,6};
e H; = Hy = Hy = H U H}” and dim H, = 16, for k € {7,8,9} and the union
is disjoint;
e Hyjy= Hl((l)o) U Hl((l)s) and dim Hjy = 15 and the union is disjoint;
e H,=H{Y and dim H, = 15, for 11 < k < 18;
e H, =0 for k > 18.



Chapter 3

On the moduli spaces of
non-singular cubic surfaces with
star points and compactifications

3.1 Cubic surfaces with only isolated singularities

In this section, we classify all cubic surfaces with only isolated singularities. This gives
various classes and we shall see that these classes are locally closed subsets in P'7.
We shall determine their codimensions, the number of lines and singular points on the
surface corresponding to each element of these classes. Finally, we show the inclusion
relationship between the closures of these classes.

Lemma 3.1.1. A line in P? which contains two singular points of a given cubic surface
lies on the cubic surface.

Proof. This is clear from the fact that a line passing though 2 singular points of a cubic
surface has the intersection multiplicity at least 4. O

Lemma 3.1.2. A line on a cubic surface with only isolated singularities does not con-
tain 3 singular points.

Proof. Let X be a cubic surface with only isolated singularities. Suppose that there
exist 3 singular points lying on a line. Choose a system of coordinates such that 3
singular points are: P, =(0:0:0:1),P,=(0:0:1:0),Ps=(0:0:1:1). The
surface X is given by an equation:

F = z3fo(z0, 21, 22) + f3(20, 21, 22),

where f; for 1 = 2,3 is a homogeneous polynomial of degree 1.

We have 0F/0x; = 230fy/0x; + 0f3/0x; for i = 0,1,2 and 0F/0x3 = fo. Then
(OF/0z;)(P) = (0f3/0z:)(Ps) = (0f3/0x;)(P3) = 0 fori = 0,1,2and fo(P,) =
f2(P3) = 0. Moreover, since (0F/0x;)(Ps) = (0f2/0x;)(Ps) + (0f3/0x;)(P3) = 0, then
(0f2/0x;)(P3) = 0 for 4 = 0,1,2. This implies that (0F/0x;)(P) =0 for any 0 < i <3
and P=(0:0:a:b) on the line | = V(x,z1). This contradicts the fact that X has
only isolated singularities. O

43
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Lemma 3.1.3. Let X be a cubic surface with only isolated singularities. Let Py € X be
a singular point. Suppose that the tangent cone at Py is a quadric surface. Then there
exist at most 6 lines on X through Py. Consequently, there exist at most 7 singular
points on the surface X.

Proof. Choose coordinates such that X is given as the zeros of

F = z3fo(x0, 21, 22) + f3(20, 21, 22),

where f; for i = 2,3 is a homogeneous polynomial of degree i and P, = (0:0:0: 1).
Let d = V(apxo + a1x1 + a9y, boxy + b1y + boxy) be a line on X through Py. Let
P =(co:c1:c:0)=V(x3)Nd. We have F(P)) = f3(P) = 0. It is clear that
F(eog:¢1 :¢co: 1) = fo(P1)) = 0. So P, € V(fa, fs,z3). Since X has only isolated
singularities and f, # 0, we see that V(fs, f3,x3) is a 0-dimensional variety which
contains at most 6 points. O

Remark 3.1.4. In fact, the lines through the singular point P, are completely deter-
mined by the intersection points of the curves Vp:(fs) and Vp2(f3) on the projective
plane H = V(x3). Namely, let @ = (co : ¢1 : 2 : 0) € V(fo, f3,23). Then the line
I = PQ is given by V(coz1 — ¢, coT2 — ca2g). So I C X. Moreover, since V (f5) is the
tangent cone T'C'p of X at P, we see that the lines through P lie on the tangent cone
TCP.

We use the definition of types of isolated singularities as in the sense of V. I. Arnol’d to
classify all cubic surfaces with only isolated singularities. About the types A;, D;, E, Es
singularities, we refer to papers of Arnol’d [Ar1] and [Ar2] or the paper of J. W. Bruce
and C. T. C. Wall [B-W] for general definitions and properties. In the case of cubic
surfaces, the above types of isolated singularities can be characterized as follows.

A singular point P on a cubic surface with only isolated singularities is:
e A, if the tangent cone T'C’p is an irreducible quadric surface;

e A, if the tangent cone T'Cp factors into two different planes such that the inter-
section line does not lie on the surface;

o A; for i = 3,4,5 if the tangent cone T'Cp factors into two different planes such
that the intersection line lies on the surface and there exist exactly 8 — ¢ distinct
lines through P. Moreover, in the case of As, the 3 lines through P lie on one
component of TCp.

e D, (Ds, Eg) if the tangent cone T'Cp is a double plane and there exist exactly
3 (2, 1 respectively) distinct lines through P.

e FEj if the tangent cone is an irreducible cubic surface.

Remark 3.1.5. Let a cubic surface with only isolated singularities be given by
F = w3fo(x0, 21, %2) + f3(wo,x1,22) as before. We see that the above types of iso-
lated singularities can be characterized by rank(f,) and the configuration of Vi2( fo, f3).
For instance, the point P is A; singular if rank(fs) = 3, is A singular if rank(fs) = 2
and the singular point of Vp2(f2) does not lie on Vpz(f3), is Az if rank(fy) = 2 and the
singular point of Vp2(f2) is a unique double point of Vp2(f2, f3), and so on.



3.1. Cubic surfaces with only isolated singularities 45

Definition: Let I be a homogeneous ideal of S = k|xy, ... ,z,] for r = 2,3 such that
Proj(S/I) consists of one point. This point is called a multiple point if the length of
S/I is greater than 1. In particular, this point is called a double (triple) point if the
length is 2 ( respectively 3).

Proposition 3.1.6. Let X be a cubic surface with only isolated singularities given by
F = z3fo(x9, 21, 22) + f3(x0, 21, 22) as before with fo #0. Let P=(0:0:0:1) € X.
If X has another singular point Q then the line | = PQ intersects the hyperplane V (x3)
at a point which is a multiple point of Vipz(fa, f3). Consequently, the surface X has at
most 4 isolated singularities.

Proof. We can choose coordinates such that the singular point @ = (0:0:1:0). We
have OF/0x; = x30fs/0x; + 0f3/0x; for i = 0,1,2 and 0F/0x3 = fo. It is clear that
f2(Q) = 0 and (0f3/0x;)(Q) = 0 for i = 0,1,2. This implies that the point (0:0: 1)
is a singular point of Vp2(f3) and therefore is a multiple point of Vpz(fo, f3). O

Conversely, we have:

Proposition 3.1.7. Let X be a cubic surface given as in the previous proposition.
Suppose that Vpz(fo, f3) contains a k-multiple point which is not a singular point of
Ve2(f2). Then the surface X has another singular point QQ which is in type Ag 1 and
lies on the line connecting P = (0 : 0 : 0 : 1) and the multiple point. Moreover, the
point @ is contained in V(x3) if and only if the multiple point is a singular point of

Ve (f3).

Proof. Let R = (ag : a1 : az) be a multiple point of Vp2(fa, f3). If Vpa(f3) is singular at
R then X is singular at @ = (ag : a1 : az : 0) € V(z3). Consider the case when Vp2(f3)
is not singular at R. Since R is multiple point, we have ((0f2/0z0)(R) : (0f2/0z1)(R) :
(8f2/023)(R)) = ((8f3/0%0)(R) : (Of3/0x1)(R) : (8f3/0x3)(R)). Then there exists
b € k* such that (0fy/0x;)(R) = b(0f3/0x;)(R) for all i = 0,1, 2. This implies that the
point (ag : a1 : as : b) is a singular point of X, and this point is not contained in V' (z3).

For the type of singularity at @, we refer to [B-W], Lemmas 2 and 3. O

Lemma 3.1.8. Let X be a cubic surface with only isolated singularities. If X has a
singular point in type either Dy or D5 or Eg or Eg, then X has only one singular point.

Proof. Except for the case of Ejg singularity, we can choose coordinates such that X is
given by F = x322 + f3(x0, 1, 72) where f3 is a homogeneous polynomial of degree 3.
We have OF/0xq = 2z0x3 + 0f3/0x0, OF/0x; = 0f3/0x; for i = 1,2 and OF /0x3 = x2.
Suppose that X has another singular point @ = (0 : a; : as : a3). This implies that any
point (0 : a; : ag : x3) on the line V(xq, ;29 — agzy) is singular. This is a contradiction.
For Ej, the result is clear from the definition. O

By (3.1.7) and (3.1.8), we conclude that the list of all cases of isolated singularities of
cubic surfaces is as follows.

i Al: 2141’ 3A1: 4A1a
L4 A21 2A27 3A2)
o A1 Ay, 2A1Ay, A124y, A1As, A1AL, A4,
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g D4a D5a Eﬁa
[ ] E'6.

Remark 3.1.9. This list of singularities can be found in [B-W] where several deep
properties, especially for Fg, were achieved.

Definition: We denote by i.A;5.A, the subset in P corresponding to all cubic surfaces
with exactly ¢ singular points of A; type and j singular points of A, type.

Remark 3.1.10. We are interested in iA;j. Ay since we shall prove later that their
points correspond to all semi-stable, singular cubic surfaces (see the next section for
the definition of semi-stable). At the moment, we want to know the codimensions of
these classes in P! as well as the relationship between them and the number of lines
on each member. First of all, we need a lemma.

Lemma 3.1.11. Let X, be the projective space of homogeneous polynomials of degree n
in two variables. Any subset of X,, consisting of polynomials with solutions correspond-
g to a given partition of n is irreducible and its dimension equals to the number of
distinct solutions. Furthermore, let A and B be two such subsets corresponding to given
partitions Py and Pg respectively. If Py and Pg can be written Py = (a4,...,a,) and
Pg = (b11,--- by, 5br1y ..oy byy,) such that Y, a; = n and ijzl bjr = a; for

1<j<r, then AC B.

Proof. A homogeneous polynomial of degree n in two variables, as a point of A, is

completely determined by its zeros Py, ..., P,, which are considered as points in P'.
This defines a morphism « : (P*)” — X, which is finite and surjective.
Let A be the subset of X,, corresponding to the given partition P4 = (ay, ... ,a,),

where Y7, a; = n. Consider the morphism:

(I[_bl)r — (]Pal)n

P,....P) — (P,....P,....Pp... P).
(P ) (P 1 )

a1 times a, times

This is an inclusion. The image v((P*)” — A) is the subset A. So the set A is irreducible
of dimension 7.

Let B be the subset corresponding to the partition Pg = (b11, ... , b1ty y0p1y--- , brt,)
such that S/, bjx = a; for 1 < j <r. The inclusion (P —s (P')™ factors through
(P — (P)Zizit — (P')™, where

@)y - (@)

P,....,P) = (P,...,P,...,P., ... P).
(P ) (P ] )

t1 times t, times

The fact A C B follows immediately. O

Proposition 3.1.12. Let X; = i1 A1j1 Az and Xy = i A1j2. Az be two classes such that
11 > 19.

(i) If j1 = jo then X; C Xs.
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(i5) If iy + j1 = g + jo then X; D Xo.
(11i) The subset iA1jAs has codimension i + 2j.

Proof. Any singular cubic surface with only isolated singularities can be given by a
polynomial of the form:

F = 3 fo(x0, 21, 22) + f3(20, 21, 22),

where f; for ¢ = 2,3 is a homogeneous polynomial of degree 7. The subset 7454
consists of elements characterized by rank(fy) and a specific partition of 6. Namely, the
set 4,7 A, is characterized either by rank(f,) = 3 and the partition (2¢71, 53, 18721737)
of 6 if 4 > 0 or by rank(f;) = 2, and the partition (2¢, 377! 972737) of 6 if j > 0 plus the
requirement that no point of Vp2(fo, f3) is the singular point of Vp2(f;). This implies
that the codimensions of A; and A, are 1 and 2 respectively. Moreover, we note that
a double point (triple point) of Vip2(fs, f3) makes the number of distinct points drop 1
(2 respectively). Applying the lemma, we see that the dimension of the set i.4;5.A4, for
i > 0, drops (i — 1) + 2j. Since the codimension of A; is 1, the codimension of i.4;j.4,
is 1+ (i — 1)+ 25 =i+ 2j. Similarly, the dimension of the set j Ay drops 2(j — 1).
Since the codimension of A, is 2, the codimension of j Ay is 2 4+ 2(j — 1) = 2j. This
proves (iii).

The results in (i) and (ii) follow from the second part of the lemma. Namely:
(l) If 41 > iy and J1 = Jo-

(a) If j; = jo = 0. We can assume that rank(f;) = 3 for any element in X;
and X,. This means that the partitions corresponding to X; and X, are
(20171 18720) and (2271, 187%2) respectively. Since 7; > iy, the second part
of the lemma can be applied.

(b) If j1 = j» > 0. We can assume that X; and X, are characterized by
rank(f,) = 2 and partitions (21,3171 197217301) and (2%2, 37271 19-227372)
respectively. Since i; > io, the second part of the lemma can be applied.

(11) If 7:1 +]1 = 7:2 +]2 and 7:1 > 7;2.

(a) If j; = 0 then X; can be characterized by rank(f;) = 3 and the partition
(21118°24) The set X, can be characterized by rank(f;) = 2 and the
partition (2%2,37271 19-2%2732) With condition 4; = 45 + j, in mind, we can
check that 7; # 4 and the second part of the lemma can be applied for this
case.

(b) If j1 # 0. Since j, > j; > 0, we can assume that X; and X, are characterized
by rank(f;) = 2 and the partitions (2%1,3711 19°247371) and
(202 30271 19-227372) regpectively. If j, = 3 then i, = 0. This implies that
either (i1, 1) = (1,2) or (i1,71) = (2,1). The result follows from the lemma.
If j, = 2 then j; = 1. The partition corresponding to X; is (2%, 1572"1) with
i1 < 3. The partition corresponding to X, is (227',3,157%2). Then the
lemma can be applied to this case.

0
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Remark 3.1.13. We write X; — X, for the fact X; C X5; the proposition implies
the following diagram:

A — 24,

3A:

NN

AiAy — 2414 Ai2A,

N TN

3A;

4A,

where classes are in the same column if and only if they have the same codimension.

For the rest of the section, we determine the number of lines on each cubic surface in
these classes. We need a lemma.

Lemma 3.1.14. Let X be a cubic surface with only isolated singularities. Suppose that
X is given by F = x3fo(xo, x1,22) + f3(To,T1,%2) as before with fo # 0. Let d be a line
on X passing through P = (0:0:0:1). Then d contains another singular point of X
if and only if there exists a hyperplane H such that HNX = 2dUl wherel is a line on
X. Furthermore if P € | then P is not an A, singularity.

Proof. Suppose that d contains another singular point (); we change coordinates such
that @ := (0: 0:1:0) and d = V(z9,71). Then we have fo = a122 + asxoz1 +
a3TTo + a4x? + azr12o. It is easy to check that (0: 0 : 1) is a singular point of Vi2(f3),
see (3.1.7). So f3 = x2g2(wo, 1) + g3(xo, 1), where g; for i = 2,3 is a homogeneous
polynomial of degree 1.

Let H = V(axo — x1) where a € (kU {o0}), is a hyperplane containing d. Then
H N X is determined by x374[(a; + aag + asa?)xg + (asa + az) ] + brihi (zo, o) in H.
Then there exists a such that asa + a3 = 0 and we have the desired result.

Conversely, suppose that there exists a hyperplane H such that HNX = 2d U [.
We can assume that H =V (z1) and d = V(xg,z1). This implies that z3 fo(z0,0,z2) +
f3(x0,0,13) = x3ti(wo, T2) where t; € k[zg,z2]. So fo = ayx? + z1hi(T0, 71, 272) and
I3 = 22g1(w0, T2) + T192(Tg, T1, o). If f3, as a polynomial in k[, z1, x2], is not singular
at @ = (0 : 0 : 1) then it is easy to check that ((0f3/0x0)(Q) : (8f3/021)(Q) :
means that @ is a double point of Vpz(fs, f3).

Finally, suppose that HNX = 2dUl and P € [. We can assume that [ = V(z1, azo+
bxy) and fo = 173 + asTeT1 + a3ToT2 + a4T2 + asT1T2. Since HN X = 2d U1, we have
a17374 + T3a3T0To + f3(T0,0, 1) = cxi(axzy + bxy) for ¢ € k* and this implies that
a; = a3 = 0. Then we have rank(f;) < 2. O
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Determining the number of lines on a cubic surface correspond-
ing to an element in iA4;j.A4, and their configuration

A;. Let X be the cubic surface corresponding to an element of A;. We know that

there exist exactly 6 lines on X through the singular point P of X. We note
that any line which does not contain P intersects with at least one line through
P. By the lemma, this line intersects exactly 2 lines through P. There are 15 of
them. Since the cone containing these 6 lines is irreducible, all of the 15 lines are
mutually different. Therefore there exist exactly 21 lines on X.

As. Let X be the cubic surface corresponding to an element of A;. We know that

2A4,.

3A;.

4A,.

there exist exactly 6 lines on X through the singular point P of X. These 6 lines
lie on two different components H; and Hy of the tangent cone at P. By the same
argument as in the case of A;, we see that d is another line on X if and only if d
intersects one of the three lines in H; and one of the three lines in Hy. So, there
exist exactly 15 lines on X.

Let X be the cubic surface corresponding to an element of 24;. Let d be the
line connecting the two singular points P, and P, of X. There are 4 other lines
through each of P, and P,. Let t; be a line containing only one singular point.
Then there exists a line ¢, through another singular point such that ¢; Ny # .
By the lemma, there is a line [ intersecting d such that 2d + [ is a triple tangent
of X. This line does not contain any singular point. By the same argument as
before, we see that if m is another line on X which does not intersect d, then m
intersects exactly one pair of the lines through P; and one pair of the lines through
P,. There are 6 such lines. Therefore, there exist exactly 1 +2.4+ 146 = 16
lines on X.

Let X be the cubic surface corresponding to an element of 3.4;. Denote by P,
for + = 1,2,3 the 3 singular points of X. Let d;; for 1 < i < j < 3 be the
line connecting P; and P;. There exist exactly 2 other lines through each of P
for i = 1,2,3. We denote them by a;,b; for i = 1,2,3. As in the case of 2A4,
there exists another line intersecting d;;, denoted by [;;, such that 2d;; U l;; is a
hyperplane intersection of X. The line /;; does not contain any of the singular
points and intersects the two lines ag, b, for k ¢ {i,j}. Therefore, there exist
exactly 3+ 2.3+ 3 = 12 lines on X.

Let X be the cubic surface corresponding to an element of 44;. Denote by P,
for 1 <4 < 4 the 4 singular points of X. Let d;; for 1 < i < j < 4 be the line
connecting two points P; and P;. So the 4 singular points and 6 lines d;; form a
tetrahedron in P?. With the same argument as above, we see that there exists
another line /;; intersecting d;; such that 2d;; U [;; is a hyperplane intersection
of X. The line /;; does not contain any singular point and intersects the line
opposite to d;;. So, there exist exactly 6 +3 = 9 lines on X.

A1 Ay. Let X be the cubic surface corresponding to an element of A;A,. Let d be

the line connecting the two singular points P, and P, of X where P; is the A;
singular point. There exist 3 other lines, denoted by my, ms, ms, through P; and
there exist 4 other lines through P,. We know that the tangent cone of X at P»
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factors into 2 hyperplanes H; and Hy;. We can assume that Hi N X = 2d U [,
where [ is one of the 4 other lines through P,; the plane Hy contains the other
3 lines, which are denoted by ni,ny,n3. The line [ does not intersect any line of
m,; for © = 1,2,3. Each of the lines my, my, mg through P; intersects one of the
lines n1,ny, n3 through P. Finally, there exists another line /;; intersecting m;
and m; for 1 < ¢ < j < 3. The line [;; intersects [ and one of the lines n;, ny, ns.
So, there exist exactly 1 +3 +4 4 3 =11 lines on X.

2A;Ay. Let X be the cubic surface corresponding to an element of 2.4;.45. Let Py, Py
be the two A; singularities and () be the A, singularity of X. There are 3 lines
connecting each pair of the 3 singular points. There exists exactly one other line
through each of P, P, and there exist exactly 2 other lines through ). There
exists another line intersecting the two lines through () and meeting the line
connecting P, P,. So, there exist exactly 3+ 1+ 1+ 2+ 1 = 8 lines on X.

2A;5. Let X be the cubic surface corresponding to an element of 24,. Let d be the
line intersecting the two singular points P, and P, of X. One component of the
tangent cone at P; for 1 = 1,2 intersects X at 3d. The second component contains
the 3 other lines on X through P;. Each line through P, different from d intersects
a line through P, and different from d. There are no other lines. So, there exist
exactly 1 + 3+ 3 = 7 lines on X.

A12A,. Let X be the cubic surface corresponding to an element of A;2A4;5. Let Q1, Q-
be two A, singularities of X. There are 3 lines connecting the 3 singular points.
There exists exactly one other line /; through @; for + = 1,2 and there are no
other lines through the A; singular point. The two lines /; and [, intersect. There
are no other lines. So there exist exactly 3+ 1+ 1 =5 lines on X.

3A;y. Let X be the cubic surface corresponding to an element of 3A4,. There exist 3
lines connecting three singular points of X. Let d be one of these 3 lines. Then
one component of the tangent cone at a singular point on d intersects X at 3d.
It is clear that there are no other lines on X. So there exist exactly 3 lines on X.

3.2 Stable and semi-stable cubic surfaces

In this section, we study the natural action of the projective general linear group
PGL(3) on P!, the parameterizing space of cubic surfaces in P2. We determine stable,
semi-stable cubic surfaces in the sense of the geometric invariant theory and study the
correspondent quotient spaces.

A. Linear actions of reductive groups on projective varieties

We describe briefly basic fundamentals of the geometric invariant theory. In this sub-
section, as well as through this section, we use mainly definitions and properties from
the book by P. E. Newstead [N] and the book by D. Mumford [GIT].

Definition: A linear action of an algebraic group G on the affine space A"™! is an
action induced by a morphism of algebraic groups G — GL(n + 1) and the natural
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action of GL(n + 1) on A", If the group morphism G — GL(n + 1) is an injective
then G is called a linear algebraic group.

Exzample 8. The groups SL(n), PGL(n) are linear algebraic groups. The fact that
SL(n) < GL(n) is clear. We show that PGL(n) < GL(n?). Consider the action of
GL(n) on the linear space of n x n matrices M,, defined by

GL(n) xM,, — M,
(A, M) - AMA.

This defines a morphism ¢ : GL(n) — GL(M,) where GL(M,,) is the algebraic
group of linear automorphisms of the vector space M,,.
We see that Ker(¢) =2 G, where G!. is the 1-dimensional torus. It is clear that

GL(n)/Ker(¢) = GL(n)/G., = PGL(n).

Hence we get an injective homomorphism: PGL(n) < GL(M,,) & GL(n?).

Definition: A linearization of an action of an algebraic group G on a projective variety
X in P" is a linear action of G on A" which induces the given action of G on X.

Definition: A linear action of an algebraic group G on a projective variety X in P" is
an action of GG together a linearization of this action.

Definition: The maximal connected normal solvable subgroup of a linear algebraic
group G is called the radical of G. A linear algebraic group is called reductive if its
radical is a torus (i.e. isomorphic to (G")(k) = (k*)" for some integer r).

Remark 3.2.1.

(i) In fact, the radical of a connected linear algebraic group G is the identity com-
ponent of the intersection of all Borel subgroups of G (see [B], 11.12). Recall
that a subgroup of a connected linear algebraic group is said to be Borel if it is
a maximal connected solvable subgroup. In GL(n + 1), any Borel subgroup is
isomorphic to the subgroup of upper triangular matrices ([Sp|, 7.2.11) and there-
fore is isomorphic to the subgroup of lower triangular matrices. This implies
that the radical of GL(n + 1) is the diagonal group D,,1. So GL(n + 1) is re-
ductive. Since SL(n + 1) (PGL(n) respectively ) is a normal connected subgroup
(quotient, respectively) of GL(n+1), the group SL(n+1) (PGL(n), respectively )
is a reductive group (see [B], 11.14).

(ii) There are the concepts of linear reductive group and geometric reductive group.
In the case of characteristic 0, they coincide with the concept of reductive group.
We refer the reader, who is interested in these topics, to [N], chapter 3, §1, or
[N-M].

Definition: Let X be a projective variety in P". For a given linear action of a reductive
group G on X, a point x € X is called:

e semi-stable if there exists an invariant homogeneous polynomial f € k[zo, ... , Zy]
of positive degree such that f(x) # 0;
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e stable if it is semi-stable and dim O(z) = dim(G) and the induced action of G on
X7 is closed, where O(x) is the orbit of .

Let X*%, X* denote the set of semi-stable (stable) points of X with respect to the action
of G.

Remark 3.2.2. The definition of “stable” corresponds to Mumford’s “properly stable”
(see [GIT], Definition 1.8), where he used the notation X, for this set.

Lemma 3.2.3. For a linear action of an reductive group on a projective variety X,
the subsets X*° and X* are open in X.

Proof. See [N], 3.13. O

Definition: (Categorical quotient, good quotient and geometric quotient).

(i) Let G be an algebraic group acting on a variety X. A categorical quotient of
X by G is a pair (Y, @) consisting of a variety Y and a morphism ¢ : X — Y
satisfying:

(a) ¢ is G-invariant,
(b) for any variety Z and a G-invariant morphism ¢ : X — Z, there exists
uniquely a morphism x : Y — Z such that x - ¢ = .

(ii) Let G be an algebraic group acting on a variety X. A good quotient of X by G
is a pair (Y, ¢) consisting of a variety ¥ and an affine morphism ¢ : X — Y
satisfying:

(a) ¢ is G—invariant,
(b) ¢ is surjective,

(c) if U is open in Y then ¢* : Oy (U) — Ox(¢~'(U)) is an isomorphism of
Oy (U) onto (Ox(¢7'(V))),

(d) if W is a closed invariant subset of X, then ¢(W) is closed,
(e) if Wy, W, are disjoint closed invariant subsets of X then ¢(W1)Ng(Wa) = ().

(iii) The pair (Y, @) is called a geometric quotient if it is a good quotient and for any
y € Y the set ¢~!(y) consists of a single orbit.

Remark 3.2.4. A good quotient is a categorical quotient (see [N], 3.11). In fact, the
conditions (a), (c¢), (d) and (e) imply that (Y, @) is a categorical quotient (see [GIT],
Chapter 0, §2.(6)).

Theorem 3.2.5. Let X be a projective variety in P*. For any linear action of a
reductive group G on X:

(i) there exists a good quotient (Y, @) of X** by G and Y is projective;

(ii) there exists an open subset Y® of Y such that ¢~ (Y*) = X® and (Y*,¢) is a
geometric quotient of X?*;



3.2. Stable and semi-stable cubic surfaces 53

(111) for x1,19 € X%,

¢(71) = ¢(22) & O(z1) N O(22) N X** # 5

(iv) for x € X**,

z is stable < dim O(x) = dim G and O(x) is closed in X*°.

Proof. See [N], 3.14. O

Proposition 3.2.6. The concept of good quotient and geometric quotient are local with
respect to Y, i.e:

(1) if (Y, ) is a good (geometric) quotient of X by G and U is open in'Y then (U, ¢)
is a good (geometric) quotient of 3~ (U) by G.

(i1) if § : X — Y is a morphism and {U;} is an open covering of Y such that (U;, ¢)
is a good (geometric) quotient of ¢~*(U;) by G for all i, then (Y, @) is a good
(geometric) quotient of X by G.

Proof. See [N], 3.10. O

Proposition 3.2.7. Suppose that for a given moduli problem, there exists a family U
parameterized by X with local universal property. Suppose further that an algebraic
group G acts on X in such a way that Uy, ~ Uy, if and only if x1 and x4 lie in the
same orbit of this action. Then

(i) any coarse moduli space is a categorical quotient of X by G;

(i1) a categorical quotient (Y, ¢) of X by G is a coarse moduli space if and only if for
any y € Y, the set ¢~ (y) consists of one single orbit.

Proof. See [N], 2.13. O

B. The action of PGL(3) on P

We consider the natural action of PGL(3) on P! the parameterizing space of cubic
surfaces in P®. Although this action is not linear, we see that the definitions of semi-
stability and stability are well-defined. For this, we lift the action of PGL(3) to the
natural action of SL(4) on P¥ induced by the action of PGL(3). It is clear that the
action of SL(4) on P' is linear. Since the natural morphism SL(4) — PGL(3) is
surjective with a finite kernel and the set of invariant homogeneous polynomials as well
as the orbit of any point in P! with respect to these actions are the same, we can view
semi-stable (stable) points w.r.t. the action of SL(4) are semi-stable (stable) points
w.r.t. the action of PGL(3). Moreover, we have:
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Proposition 3.2.8. The action of PGL(3) on P has all properties (i) — (1v) as in
Theorem 3.2.5.

Proof. Tt is clear that the action of SL(4) on P! satisfies the hypothesis of Theo-
rem 3.2.5. The result follows when we look at the definitions of good quotient and
geometric quotient and keep in mind that the set of invariant homogeneous polynomi-
als, the orbit of any point in P, the set of semi-stable, stable points w.r.t the actions
of SL(4) and PGL(3) are the same.

In particular, their quotient spaces are the same. O

Corollary 3.2.9. The quotient space PGL(3)\(P'®)** is a projective variety. The vari-
eties PGL(3)\(P'®)® and M := PGL(3)\(P' — A) are coarse moduli spaces. Moreover,
the latter is affine but not a fine moduli space.

Proof. The first two conclusions follow immediately from the previous proposition and
(3.2.7). Moreover PGL(3)\(P'—A) is affine since P'¥ — A is affine and the discriminant
defining A is an invariant homogeneous polynomial. We prove that M = PGL(3)\ (P**—
A) is not a fine moduli space.

Consider 2 cubic surfaces in P? given by C; = V(23 + 23 + 23 + z3) and C, =
(tzd + 23 + 23 + z3) where t € Q(w) for w is the primitive cube root of unity. We can
choose t in such a way that ¢ ¢ (Q(w))®. The 27 lines of C; are given by (see [Mul],
p. 177):

To+ wW'ri =22 +waxr3 =0
To+wre =21 +wrs =0
To+wry =21 +wrey =0

for 0 <i,j < 2.
Similarly, the 27 lines of Cy are given by:

Vtxg 4+ Wiy = 29+ wizs =0
Vtxg + W'y = 21 +wizy =0
Vtxg + Wiy = 11+ wizy =0

for 0 <4,5 < 2.

If C; and C; are isomorphic over Q(w), each line of C; is isomorphic to some line of
C5 over Q(w). Since the lines of C; are defined over Q(w) but the lines of C5 are not,
the surfaces C; and Cy are not isomorphic over Q(w).

But it is easy to see that they are isomorphic over Q(w, ¥/¢). (For example, take
the change of coordinates & = /1o, & = z;, for i = 1,2, 3, then C, is defined by the
same equation as C}).

Now the situation follows from the fact:

Lemma 3.2.10. Suppose that M is a moduli space and X1, Xo are two objects defined
over a field K. If there exists a field extension K C L such that X1 2k X, but
X1 =2, Xy, then M is not a fine moduli space.

(Proof of the lemma). Suppose that M is a fine moduli space. The family [X;] for
i = 1,2 over Spec(K) defines a morphism ¢, : Spec(K) — M. The families of X; and
X, are the same over Spec(L), so they define the same morphism ¢’ : Spec(L) — M
such that the diagram
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P
Spec(K)

., M
P2
Spec(L)

commutes. Let y € M be the image of these morphisms in M. The above diagram
corresponds to the following commutative diagram:

©1

K

Oy
©2
2
L

where @1, p3 and ¢’ are homomorphisms determined by ¢1, ¢ and ¢’ respectively. Note
that the map K — L is the inclusion. This implies that ¢; = ¢y and X; = X5 over
K. Contradiction!

]

C. Semi-stable and stable cubic surfaces

In this subsection, we give explicitly the sets of semi-stable and stable points of P**
under the action of PGL(3). To do so, we first state a powerful criterion of stability
originally considered by D. Hilbert and improved by D. Mumford and C. S. Seshadri.
A complete description concerning to this criterion can be found in [GIT], Chapter 2,
§1 or in [N], Chapter 4, §2. Secondly, we apply this criterion to find out all semi-stable
and stable points in P9,

C.1. A criterion of stability

Definition: An 1-parameter subgroup (1-PS) of an algebraic group G is a non-trivial
homomorphism of algebraic groups A : £* — G.

Let G be a reductive group acting linearly on a projective variety in P*. An 1-
PS of G induces a linear action of k* on k"*!. A linear action of k* on k"*! can be
diagonalized ([B], 4.6). In other words, there exists a basis {eg, - ,e,} of k" and
there exist integers r; for 0 < i < n such that \(¢)e; = t" e;.

Let z € X. Let & € A*™! be a point over z. Then & =Y 1  Ze;. Let

p(z, \) = max{—r" | £; # 0}.

Theorem 3.2.11. Let G be a reductive group acting linearly on a projective variety in
P*. Then a point x € X 1is:

semi-stable < p(z, A) > 0 for every 1-PS X\ of G,
stable < p(z,A) > 0 for every 1-PS X\ of G.
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Proof. See [GIT], Theorem 2.1 or [N], Theorem 4.9. O

In our case, we have the action of SL(4) on P*. Any 1-PS X of SL(4) conjugates to
one of the form:

t* 0 0 0
0t 0 0

YO A (3.1)
0 0 0 ¢

where a + b+ c+d =0 and (a,b,c,d) € (Z*)*. The theorem above can be rephrased:

Theorem 3.2.12. Consider the action of PGL(3) on P'9. A point x € P is semi-
stable (respectively stable) if p(gx, \) > 0 (respectively > 0) for every g € PGL(3) and
for every 1-PS of the form (3.1).

Note that for a point z € P! given by a cubic form:
i,.0 k.t
E : QijktLoTL1LoL3,
i+j+h+t=3
we have

p(z, A) = max{ai + bj + ck + dt | a;jre # 0}, (3.2)

where A is given in form (3.1).

C.2. Semi-stable and stable cubic surfaces

Lemma 3.2.13. The set P — A is contained in (P'?)*.

Proof. In fact, this is just a particular case of [GIT|, Proposition 4.2. The result
follows from the fact that the discriminant D defining A is an invariant homogeneous
polynomial and the stabilizer of any z € P'® — A is finite. O

We consider the case of singular cubic surfaces. The main result of this subsection is
the following theorem.

Theorem 3.2.14. On the action of PGL(3) on P¥, we have:

(1) The subset of stable points consists of points in P — A and those of types iA;
for1 <11 <4,

(11) The subset of semi-stable points consists of points in P — A and all those of
types iA1jAs for 2i+ 35 < 9,1 <4 and (3,7) # (3,1).

(See the definition of i.4;j A, in the previous section).

Proof.
a) Suppose that there exists an element z € i4; for some 0 < 7 < 4, which is not
stable. This means that there exists an 1-PS A of SL(4) in the form (3.1) such that
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u(z,A) < 0. As we know, the corresponding cubic surface X, can be given by a
homogeneous polynomial:

F = z3fo(z0, 21, 22) + f3(20, 21, 22),

where f; for i = 2,3 is a homogeneous polynomial of degree i and rank(f;) = 3. We
can choose coordinates such that fo = 22 — zozy and f3 = apxd + 12371 + agzor? +
a3z + ay2319 + 57172 + agzs (see [B-W], p. 248). So we can write:

2 3 2 2 3 2 2 3
F = z3(x] — 2o%a) + aoxy + a12521 + aoToT] + a3T] + Q4T1To + A5T1T5 + ApTs.

Moreover, we can assume that @ = (0 : 0 : 1 : 0) € V(fa, f3,23) and in the case
the surface has more than one singular point, the point @) is a multiple point. Since
z € iA;, we have a; # 0. From the formula (3.2) for computing u(xz, \) we have
values 2b+d, a + ¢+ d and 2b + ¢ corresponding to monomials 2322, zozox3 and T2z,
respectively, where (a,b,c,d) € (Z*)* and a + b+ c+d = 0. Since u(z,\) < 0, all
values 2b + d, a + ¢ + d and 2b + ¢ are not positive. If ag # 0, then we have a < 0
also. Sincea+c+d=—b<0,then b>0. Wehave 2b+d+2b+c=4b+c+d =
4db—a+a+c+d=3b—a <0. This implies that a = b = 0. But this forces c=d =0
also. Contradiction!

Suppose that ag = 0. If a; # 0, then 2a+b < 0. Then we have 2b+d+2b+c+2a+b =
5b+a+ (a+b+c)=4b+ a < 0. This implies that 8 +a+d+c=70<0. Sob=0
and this implies that « = ¢ = d = 0. Contradiction!

If agp = a1 = 0, then ay # 0. Otherwise, the point (1 : 0 : 0) is a triple point of
Ve2(fa, f3). Since as # 0, we have 2b+ a < 0. Then we have 20 +d+2b+c+2b+a =
6b+ (a + b+ c) = 5b < 0. This implies b = 0 and similarly we have a contradiction.
Therefore, every element of i.4; for 1 < i < 4 is stable.

b) Next, we prove that if = € i.A;j Ay for j > 0, then z is semi-stable but not stable.
We know that z can be given by a homogeneous polynomial:

F = z3fo(x0, 21, 22) + f3(20, 21, 22),

where f; for i = 2,3 is a homogeneous polynomial of degree i and rank(f;) = 2 and the
singular point of Vp2(fy) does not lie on Vpz(f3). We can choose coordinates such that
(see [B-W], p. 249) fy = xoz; and

2 2 2 2 3
fs = zo(aoxy + a1Zox2 + a223) + 21 (asa] + a42122 + a523) + aes,

where ag # 0. So we can write:
F= 2 2 2 2 3
= 232021 + Zo(A0xy + 10T + a223) + T1(a3x] + asT1%2 + a523) + ;.

Suppose that x is not semi-stable. Then there exists an 1-PS A of SL(4) such that
u(z, A) < 0. As in the above case, by the formula (3.2), this means that there exists a
4-tuple (a,b,c,d) € (Z*)* such that a+b+c+d=0and a+b+d < 0 and 3¢ < 0.
But it is easy to see that there is no such 4-tuple. So z is semi-stable.

We prove that z is not stable. It is enough to find a 4-tuple (a, b, c¢,d) € (Z*)* such
that a +b+c+d = 0 and all values a + b+ d, 3a, 2a + ¢, a + 2¢, 3b, 2b+ ¢, b+ 2¢ and
3c are not positive. We can choose b=c=0,a=—-1and d=1.
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c) Finally, let 2 be a point corresponding to a singular cubic surface. Suppose that x
does not belong to any i.4;j.As for 2i+35 <9, i <4 and (3, 7) # (3,1). We prove that
x is not semi-stable. It is enough to find an 1-PS A of SL(4) such that p(z, A) < 0.

(¢1) The case that the corresponding cubic surface X, is a reducible cubic surface. We
can assume that X, is given by a cubic form F' = x3fs(xo, 1, T2, x3) where
f2 is a homogeneous polynomial of degree 2. The monomials of F' have forms
xffx?x?xg_tl_trt"‘} where 0 < ¢; + t3 + t3 < 2. If we choose the 1-PS A of the
form (3.1) witha =b=c=1,d = —3 then at; + bto +cls +d(3 —t, —to — t3) =
4(t1+t2+t3) —9<8—-9=-1. So ,U,(.’L',)\) < 0.

(co) The case that the corresponding cubic surface X, is an irreducible, reduced surface
with non-isolated singularities. This implies that a general hyperplane section
is an irreducible cubic curve and therefore has only one singular point. This
means that the singular locus is a line. We can assume that the line of singular
locus is given by V(zg,z1). Then the surface can be given by a polynomial
F = f3(xo,x1) + z2fo(x0, 1) + x392(T0, x1) where g, and f; for i = 2,3 are
homogeneous polynomials of degree 2 and i respectively (see [B-W], p. 252).
Every monomial of F' has one of the following forms

zhxy " for 0 <r <3, zhailmy, xhai Va3 for 0 <tu < 2. (3.3)

We choose an 1-PS A in form (3.1) with a = b = —1, ¢ = d = 1 then from (3.3),
we have:

rla—b)+3b=-3; (a—bt+2b+c=-1; (a—blu+2b+d=—1.
So we have p(z,\) < 0.

(c3) The case that x is of the type D4 or Dj or Eg. We can choose coordinates such that
x is given by a polynomial F' = x3z2 + f3(x¢, 71, Z2) Where f3 is a homogeneous
polynomial of degree 3. Moreover, we can assume that Q@ = (0:0:1:0) € V(f3).
This means that the coefficient of the monomial z3 in f; is zero. The monomials
of F are z3z2 and x5 "7zl for 0 < i+j < 3 and j < 3. We choose an 1-PS \
in form (3.1) with e = b= -3, c=1 and d = 5. Then we have 2a +d = —1 and

(B—i—jla+ib+jc=—-3B—i—j)—3i+j=—-9+4j<0. So pu(z,\) < 0.

(c4) The case that z is of the type Es. We may assume that z is given by an irreducible
homogeneous polynomial fs(xo, 21, ;). The monomials of f3 are zj */ziz) for
0 <i+j < 3. Then we can choose an 1-PS A in form (3.1) witha =b=c= —1
and d = 3. Then we have (3 —i — j)a + ib+ je = —3. So u(z,A) < 0.

(c5) The case that x belongs to one of A; Az, A; Ay, A1As, 241 A3. Assume that
P =(0:0:0:1)is an A; singularity of the corresponding cubic surface
X,;. Then X, is given by

F = z3fo(zo, 21, 22) + f3(20, 21, T2),

where f; for ¢+ = 2,3 is a homogeneous polynomial of degree 7. Moreover, as in
the case a), we can choose coordinates such that f, = 23 — zyTy and

3 2 2 3 2 2 3
fs = aoxy + a125x1 + axzory + a3z + AT T2 + a5T1T5 + a6y,
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see [B-W], p. 248. So we can write:
2 3 2 2 3 2 2 3
F= a:3(:1c1 — acoxg) + apTy + A1THT1 + A2Tox] + A3T] + A4X7T2 + A5T1T5 + ATy,

Moreover, we can assume that @ = (0 : 0 : 1 : 0) € V(fs, f3,23) is a multiple
point with multiplicity at least 4. This implies that a; = 0 for all 3 < ¢ < 6.
The monomials of F are z31%, T370%9, 3, 321 and zox?. We choose an 1-PS \
in form (3.1) with a =d = -3,b=1,c=5. Then 2b+d = —-1,a+c+d =
—1,3a=-9,2a+b= -5 and a+ 2b = —1. So pu(z,\) <O0.

(cs) Finally, we consider the case that z belongs to one of Az, A; and As. As in the
case b), we can assume that z is given by

2 2 2 2
F = z3z021 + 20(aoxy + a120T2 + a223) + 1 (a3x] + 04,129 + a5xs;).

The monomials of F are x3x¢z1, T3, 1322, Tox3, 3, 2229, 1125. We choose an
1-PS X in form (3.1) witha=b=-3,¢c=1,d=5. Thena+b+d=-1,3a =
3b=—-6,2a+c=2b+c=-5,a+2c=b+2c=-1. So u(z,\) <0.

This finishes the proof. O

3.3 The csurfaces of 6-point schemes in almost gen-
eral position

In this section, we make a further study of semi-stable cubic surfaces; we generalize a
useful method which was used in Chapter 2 to study non-singular cubic surfaces. We
know that the blowing-up of P? at 6 points in general position is isomorphic to a non-
singular cubic surface. Conversely, each non-singular cubic surface is isomorphic to the
blowing-up of P? at 6 points in general position. We will define the concepts of 6-point
scheme, 6-point scheme in almost general position and the csurface of a 6-point scheme
in almost general position. The last two ones can be considered as the generalization
of the concepts of general position and the blowing-up of P? at 6 points in general
position. We will prove that any semi-stable cubic surface is isomorphic to the csurface
of a 6-point scheme in almost general position with a specific configuration. By this
way, we can study properties of semi-stable cubic surfaces by checking corresponding 6-
point schemes in P?; we can compute the multiplicities of lines and triple intersections
on semi-stable cubic surfaces. Especially, in this way, we can study boundaries of
subvarieties parameterizing non-singular cubic surfaces with a given number of star
points as well as the boundaries of their moduli spaces in PGL(3)\ (P!?)**.

A. 6-point schemes and 6-point schemes in almost general po-
sition

Definition: A 6-point scheme is a closed subscheme in P? of dimension zero and of
length 6. Any 6-point scheme P defines a formal cycle ¢(P) = > n; P, for > n; = 6; the
set of the points P, is called the support of P and denoted by Supp(P). If the linear

system of all cubic forms passing through a 6-point scheme P has (linear) dimension
4, then P is called a 6-point scheme in almost general position.
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Remark 3.3.1.

i) Any subscheme o consisting o istinct points in general position is a 6-

i) Any subsch f P2 isting of 6 distinct points in g 1 position is a 6
point scheme in almost general position. Let 79 denote the subset of all 6-point
schemes in general position.

(ii) Let Hilb, denote the Hilbert scheme of zero-dimensional closed subschemes of
length n in P?2. For the definition, construction and the existence of Hilbert
schemes, we refer to [G], Exp. 221, Section 3. It is well-known that Hilb,, is
non-singular, projective and irreducible of dimension 2n (see [F], 2.4 and [E-H],
p. 136). We denote by H® the subscheme of Hilbg consisting of all 6-point schemes
in almost general position.

(iii) Let P € Hilbg. Let I C k[zg,x1, 9] is the homogeneous ideal defining P. “A
cubic form f3 € k[zg, 1, x2| passing through P” means that f is an element of I.

(iv) Let P € Hilbg. Let hp be the Hilbert function corresponding to P. Then P is a
6-point scheme in almost general position if and only if hp(3) = 6.

Lemma 3.3.2. Let P € H* and let | be any line in P? such that INP # 0. Then the
length of L NP s not greater than 4.

Proof. Let Lp be the linear system of cubic forms passing through P. Let f3 be an
element of Lp. If the length of [ NP is at least 4 then f3 factors into the linear form
defining [ and a quadratic form passing P —{INP}. Suppose that the length of [NP is
greater than 4. This implies that the linear space of quadratic forms passing through
P — {{ NP} has dimension greater than 4. This means that the dimension of Lp is
greater than 4. A contradiction! O

Definition: Let P € H® We say that P is a 6-point scheme with no 4 points on a
line if there does not exist any line [ in P? satisfying that the length of [ NP equals to
4. Denote H° for the subset of 6-point schemes with no 4 points on a line.

Lemma 3.3.3. The subscheme H® in Hilbg has dimension 12 . The same holds for
He.

Proof. Consider the morphism ¢ : Hg — Sg\ (P?)® which maps each P € Hilbg to the
formal cycle of P. Let U = Sg\((P?)® — A), where A is the diagonal closed subset
of (P?)®. Let U® (respectively U°) be the subset of U consisting of elements with 6
distinct points such that no 5 ( respectively 4) points collinear. It is clear that U* and
U° are open subsets of U. Note that ¢='(U,) C H® and ¢~ (U°) C H°. The morphism
¢ induces isomorphisms from ¢~ (U%) to U® and from ¢~ (U°) to U°. O

B. Csurfaces of 6-point schemes in almost general position

Lemma 3.3.4. Let P € H°. Let Lp be the linear system of cubic forms passing through
P.

(i) The base locus of Lp is the support of P.
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(ii) Let {f1,...,fi} be a basis of Lp. Consider the morphism

v P2 — Supp(P) — P3
P — (f1(P): fo(P) : f3(P) : f4(P)).

Let X be the closure of the image of 1. Then X is a cubic surface.

(11i) If {g1,-..,94} is another basis of Lp and X' is the cubic surface obtained as in
(i), then X and X' are isomorphic.

Proof.

(i) Let P € P? — Supp(P). Since P does not have 4 points on a line, there exists a
cubic form in L£p which does not contain P. This implies that the base locus of
Lp is the support of P.

(ii) Let Q1, @2 be two general points in P2 —Supp(P). The linear subspaces consisting
of cubic forms through P U {Q:} and P U {Q1, @2} respectively have dimension
3 and 2. This implies that there exists a cubic form in £p which contains ()1 but
does not contain ()3 and conversely. This means that v is injective over an open
subset of P2. Moreover, any two general cubic forms in £p have 3 other points in
common which do not belong to P. This implies that X is a cubic surface.

(iii) Let A = (aij)ax4 be the matrix of changing bases from {f1, ..., fa} to {g1,-.. , 94}
Then A defines a projective transformation which transforms X to X'.

O

Definition: A csurface is an algebraic variety Y such that there exists a cubic surface
X C P? such that X @Y.

From the lemma, we see that each P € H° determines uniquely (up to isomorphisms)
a csurface, which is called the csurface of P. If P € H9%, then the csurface of P is the
blowing-up of P? at P.

Consider the case that P, contains 4 points on a line. There exists a line [ such
that [ NPy has length 4. In this case the base locus of Lp, contains all points on [.
Each cubic form in Lp, factors into the linear form defining / and a quadratic form
passing through Py — {Py N [}, which is contained in a unique line d. In other words,
we can write Lp, = [.Q, where Q is the linear space of quadratic forms passing through
Po—{PoNl}. So each choice of a basis of Lp, reduces to a basis of Q. The closure of the
map defined by this basis of Q is a quadric surface @) in P®. Let H be the hyperplane
in P? corresponding to the quadratic form in Q defining C = (U d. Set Cp, :== QU H.
The surface Cp, is called the csurface of Py.

Definition: Let Py = (1 : 0:0), P, = (0:1:0)and P, = (0 : 0 : 1). Let
¢ : P? — — — P? be the quadratic transformation with respect to Py, P, and P, (see
[H], V.4.2.3). Let C be the cubic curve given by

F:Zaijkxéx{xgfori+j+k:3and0§i,j,k§2. (3.4)

The cubic curve defined by Fj, := )" a;jk yg’iyffj y2~* in P? is called the image of C by

¢ and is denoted by C,,.
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Remark 3.3.5.

(i) A cubic curve given by a polynomial as in (3.4) contains the 3 points Py, P; and
P, and its image contains the 3 points Qg = (1 : 0:0),Q; = (0: 1:0) and
Q2= (0:0:1) in the second P?.

(ii) Let ¢! be the inverse of ¢. We know that ¢~ = ¢. It is clear that (F,),-» = F
where F' is a polynomial as in (3.4).

From now on, when we consider a quadratic transformation with respect to P; =
(1:0:0),P;=(0:1:0),P,=(0:0:1) from P? to P?, we use notation Q;, Q;, Qy for
the points which are the images of lines ﬁ, PP, and ?Pj, respectively. This means
that @; = (1:0:0),Q; =(0:1:0) and Q; = (0:0: 1) in the second P2.

Lemma 3.3.6. Let C be a cubic curve given by a polynomial as in (3.4).
(1) If C is non-singular at any P; then C,, equals to the closure of o(C—{ Py, P1, P»}).

(it) If C is singular at only one P; then C, factors into d;, = Q;Qy for {i,j,k} =
{0,1,2} and the closure of o(C — { Py, P1, P»}).

(111) If C factors into ljy := P; Py and a conic then C, is singular at @Q; for {i} =
{0,1,2} — {4, k}.

(iv) Suppose that C is singular at Py, Py and P,. This means that C = l;; U L U Ljy.
Then C(p = dz'j U dik U djk.

(v) Suppose that C is singular at P;, P; and non-singular at P.

a) If C' = 2l;;Ul then C, factors into d;, d;xand the closure of p(I—{ Py, Pi, Py }).
j P j

(b) If C factors into l;; and an irreducible conic Cy containing Py, Py, Py then
C, factors into dix, djxand the closure of ¢(Cy — { Py, P1, P}).

(vi) If C is irreducible and C contains a given point P on the line l;; fori,j € {0,1,2},
then C,, is tangent at Py, to a direction which is determined uniquely by P, where
{k} ={0,1,2} — {i,5}. Conversely, if C is non-singular at Py and tangent to a
gwen direction at Py for k € {0,1,2}, then C, contains a specific point P € Q,—Q]
defined by the direction, where {i,j} = {0,1,2} — {k}.

Proof.

(i) Let P € C — {Py, P1, P2} and P = (x¢ : &1 : x2). We have ¢(P) = (z129 : Tox2 :
xox1). Since F,(¢(P)) = 0, we have ¢(P) € C,. This implies that the closure
of o(C — {P, P1, P,}) is contained in C,. Moreover, since C is non-singular at
any P;, a general cubic curve containing P, P, P, intersects C at 3 other distinct
points. This implies that the closure of p(C — {Py, Pi, P»}) is a reduced cubic
curve. So Fj, is a homogeneous polynomial defining this closure.
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(ii) Suppose that C is singular at Py = (1:0:0). Then C is given by
F = alxoxf + aﬂoxg + a;;xf:@ + a4x1x§ + a5X0T1T2-
We see that

F, = a1yoys + aYoyi + asygys + asygys + asyoy1ye
= yo(a1y2 + a2y? + azyoy2 + a1yoy1 + asy1Ys)-

This implies that the line dio = V(yo) C C,. Moreover, for any P € C —
{Py, P\, P}, we have ¢(P) € C,. This implies that the closure of ¢(C —
{Py, P1, P,}) is contained in Cl,.

Conversely, let T be the closure of ¢(C — {Py, Py, P,}). Then T is a reduced
conic curve. This means that d U T is a reduced cubic curve. This implies that
Co,=dUT.

(iii) Suppose that C factors into l;5 := P, P, and a conic Cj containing Py = (1:0: 0).
Then C' is defined by F = x¢(a123 + a9} + a370To + a4ToT1 + asT172). We see
that F,, = a1%oy; + a2¥oys + asy;ye + asy1ys + asyoyrye. Therefore C, is singular
atQ():(lOO)

(iv) It is clear from the definition of Cl,.

(v) and (vi). Use the same argument as above.

0

Lemma 3.3.7. Let P € H°. Suppose that P contains 3 distinct points Py, Py and Ps.
Suppose further that there exists a cubic form in Lp which is non-singular at any P; for
1=1,2,3. Let ¢ be the quadratic transformation with respect to Py, P, and Ps;. Then
the set o(Lp) :={Fy¢ | F € Lp} is a 4-dimensional linear space whose base locus is of
dimension 0.

Proof. Choose coordinates such that P, = (1:0:0),P, = (0:1:0) and P; = (0 :
0 : 1). Suppose that the base locus of ¢(Lp) contains an irreducible component Y of
positive dimension. Since ¢ is one-to-one in P? — V(zyz172), the variety Y is contained
in V(yoy1y2). Assume that Y contains the line djs = V(yp). This means that for any
F € Lp, we have F,, = yog2(yo, 1, y2) where g is a homogeneous polynomial of degree
2 and vanishes at Q3 = (0:0:1). Then F = (F,),-1 is singular at P, = (1:0:0), see
(3.3.6). A contradiction! O

Definition: Let P € H° satisfy the conditions as in the previous lemma. Let I be the
ideal generated by all cubic forms in ¢(Lp). The scheme defined by this ideal is called
the image of P and denoted by ¢(P).

Proposition 3.3.8. Every semi-stable cubic surface is isomorphic to the csurface of
some 6-point scheme in almost general position with no 4 points on a line.
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Proof. Let X be a semi-stable cubic surface. If X is a non-singular cubic surface then
X is isomorphic to the blowing-up of a 6-point scheme in general position. We consider
the case that X is singular.

Suppose that X does not have any A, singularity. By choosing coordinates, we may
assume X to be defined by

F = z3fo(xo, x1, x2) + f3(x0, 21, T2),

where f; for © = 2,3 is a homogeneous polynomial of degree 7. The scheme P =
Vp2(fo, f3) defines an element in 7°. The 6-point scheme P is contained in an irreducible
conic curve defined by f, and the cycle ¢(P) corresponds to a partition (2:7'1%) of 6.
Let Lp be the linear space of cubic forms passing through P. Since P does not contain
any triple point, we see that the cubic forms zq f, 1 fo and x5 fy are elements of Lp.
Moreover, we have {xgfs, 21 f2, X2 fo, — f3} is a basis of Lp.

Consider the morphism 1 : P2 — Supp(P) — P? determined by this basis. Then we
see that F (o fo, T1fo, Tafo, —f3) = —f3f3+ fsf3 = 0. This means that X is isomorphic
to the csurface of P.

Consider the case that X contains at least one A, singularity. By choosing coordi-
nates, we may assume X to be defined by

F = z3fo(z0, 21, 22) + f3(20, 21, 22),

where f; for 4+ = 2,3 is a homogeneous polynomial of degree i and fy is reducible.
The scheme P = Vp2(fo, f3) defines an element in H° which corresponds to a partition
(37-12¢1%) of 6, where j > 1. Let Lp be the linear space of cubic forms passing through
P. Note that, if P has a multiple point then the direction at the multiple point is
contained in the reducible conic defined by f,. This implies that the cubic forms
Zof2, 1 f2 and x5 fo are elements of Lp. Moreover, we have {xfo, 21 fo, o fo, — f3} is a
basis of Lp. As above, we see that X is isomorphic to the csurface of P. O

Remark 3.3.9. Let P € H° such that the csurface of P is isomorphic to a semi-
stable cubic surface and the support of P contains at least 3 distinct points. Let
Py, P,, P; be some 3 distinct points contained in P. Choose coordinates such that
P=(1:0:0),P,=(0:1:0)and P;, = (0:0:1). Let ¢ be the quadratic
transformation with respect to P, P, and P;. As in the proof of the previous lemma,
there exist a basis of Lp of the form {z¢ fo, z1 fo, T2 fo, — f3} where fo, f3 € k[xq, 1, 25]
are homogeneous polynomials such that the csurface of P is isomorphic to the surface
X =V(zsfa + f3)-

On the other hand, we see that {(zof2)y, (Z1f2)p, (T2f2)p, —(f3),} is a basis of the
linear space ¢(Lp). Consider the morphism:

P? — Supp(p(P)) — P’
(Wo:y1:y2) V= ((wof2)p: (T1f2)p : (@2fa)y 1 (—f3)y)

defined by this basis. The closure of the image of this morphism is a surface Y. We will
see that the surface Y is isomorphic to X. For this, let fo = a1zx1 + aoxoxs + a3r125.
Then f5 defines a conic curve containing Py, P, P;3. We have:

(o f2)p = Y1Y2(a1y2 + a2yr + asyo),
(z1f2)p = You2(a1y2 + azy1 + asyo),
(z2f2)p = Yot (@1y2 + a2yr + asyo).
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Let h1 = a1Y2 + a2Y1 + asYo and F' = $3f2 + f3. We have

F((zof2)es (T1f2) s (T2f2) s (—f3))
= (= f3)p f2(1y2h1, Yoy, Yoyrha) + f3(y1y2h1, Yoy ha, Yoyiha)
= (—f3)oh? fo (Y192, Yoy2, Yoy1) + A3 f3 (Y192, Yoya, Yoy1)-

Note that

fo(Y1Y2, YoYa, Yoyr) = a1yoy1y§ + (12902/%112 + a3y§yly2
= Yoy1Y2(a1y2 + a2y1 + asyo) = Yoy1 Y2,

and f3(y192, YoY2, Yoy1) = Yoy1y2(f3),- So we have

F((zof2)e, (x1f2) e, (22f2) 0, (= f3),) = 0.

Since F' is irreducible, the surface Y is defined by the polynomial F'. This implies that
©(P) is a 6-point scheme in almost general position. Therefore, we have proved the
following proposition.

Proposition 3.3.10. Let P € H°. Suppose that the csurface of P is isomorphic to a
semi-stable cubic surface and the support of P contains at least 3 distinct points. Let
@ be the quadratic transformation with respect to some 8 distinct points of P. Then
the subscheme ¢(P) is a 6-point scheme in almost general position and the csurface of
©(P) is isomorphic to the csurface of P.

C. Multiplicity of a line on a semi-stable cubic surface. Triple
intersection and multiplicity

We recall how the 27 lines of a non-singular cubic surface are obtained by blowing-up
P? at a 6-point scheme in general position.

Let P be a 6-point scheme in general position. Let £p be the linear space of cubic
forms passing through P. Let {fi,..., f1} be a basis of Lp. Consider the morphism:

¥ : P?—Supp(P) — P3
P (A(P): AP): K(P): 1u(P).

The closure of the image of v is a non-singular cubic surface X with exactly 27 lines
obtained as follows.

(i) Consider the two-dimensional linear subspace Sp, for 1 < i < 6 consisting of cubic
forms which are singular at P;. This subspace determines uniquely a line on X
which we denote by P,. The surface X has 6 lines of this type.

(ii) Consider the two-dimensional linear subspace S;;, for 1 < i < j < 6 consisting of
all cubic forms which factor into the linear form defining /;; = fP] and quadratic
forms passing through P — {P;, P;}. This subspace determines uniquely a line on
X which is denoted by iza The line l~,-j is the closure of the image of I;; — {P;, P;}.
The surface X has 15 lines of this type.
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(iii) Consider the two-dimensional linear subspace S¢, for 1 < i < 6 consisting of all
cubic forms which factor into the quadratic form defining the conic C; through
{P1,..., P} — {P} and linear forms vanishing at P;. This subspace determines
unlquely a line on X, which is denoted by C;. The line C; is the closure of the
image of C; — { Py, P5, P3}. So the surface has 6 lines of this type.

Let £ be the scheme consisting of pairs (z,1) € P! x G where [ corresponds to a
line on the cubic surface X, defined by z. Let £L — P'? be the projection. Let H be
the set of 6-point schemes such that the csurface of each element in H is isomorphic to
a semi-stable cubic surface. There exists a morphism from an open covering of H to
P mapping each P € H into a point corresponding to an embedding of the csurface
of P. The pullback of £ — P! via this morphism gives a morphism p : £° — H,
which is proper.

Let H9 be the subset of H consisting of 6-point schemes in general position. Let
(P2)§ C (P?)° be the subset of 6-tuples (P,... , P) such that the 6 points P, ..., P
are in general position. Let f : (P?)§ — HY be the natural map, which is finite
and surjective. We have M := k(M) = k(H%) C k((P?)§) =: N. Define H as the
normalization of 4 in M C N; we have g : H— H is finite, proper, surjective and it
extends f.

Let £ be the fibered product of g : H — H and p: L0 — H. We have sections

Py, PZO], co (P — L corresponding to 27 lines on non-singular cubic surfaces.

Proposition 3.3.11. The sections P, C) for 1 <i < 6 and Pj; for 1 <i <j <6
extend uniquely to morphisms P;, C; and Pi; respectively from H to L.

Proof. Note that the morphism P? : (P2)§ —s £ is injective. Denote by L? the image
of P. Then we have an isomorphism P} : (P*)§ — L?. Let LY be the closure of
LY inside £. Since the morphism LY — H is quasi-finite (see (3.3.8) and Section
3.1, p. 49) and proper, it is finite. By Zariski’s Main Theorem ([Mu2], p. 288), the
morphism P! extends uniquely to an isomorphism P; : H—> L_?. Similarly, we have
isomorphisms P;; and C;.

]

By composing with L — L, we can consider the morphisms P;, C; for 1 <7 <6
and P;; for 1 <14 < 5 <6 above as morphisms from H to L.

Corollary 3.3.12. Let (z,l) € L, where the corresponding cubic surface X, is semi-
stable and isomorphic to the csurface of a given 6-point scheme in H. Then (x,l) is
contained in one of the images of the morphisms P;, C; for 1 < i < 6 and P;; for
1<i1<j5<6.

Proof. Consider the commutative diagram
L " L0
l l (3.5)
H 1 A

Suppose that surface X, is isomorphic to the csurface of an element y € H. Since g is
surjective, there exists z € H such that g(z) = y. If z € P — A, then the result is clear
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from the fact of obtaining the lines on a non-singular cubic surface. Consider the case
that X, is singular. We see in page 71 when studying ¢A4,jAs for 2i +35 < 9,1 < 4
and (4, j) # (3, 1) that the line [ corresponds to a two-dimension linear subspace of the
forms P;, C; for 1 <i <6 or S;; for 1 <i < j < 6. This implies that (x,[) is contained
in the image of one of the morphisms P;, C; for 1 <¢ < 6and P;jfor1 <i<j<6. O

Definition: Let (z,l) € £, where the correponding cubic surface X, is isomorphic to
the csurface of a given 6-point scheme P € H. The number of the morphisms P;, C;
for 1 <4 <6 and P;; for 1 < i < j < 6 whose images contains (z,l) is called the
multiplicity of [. Consequently the multiplicity of any line on a given semi-stable cubic
surface is at least one.

Remark 3.3.13. Let [ be a line on a semi-stable cubic surface X isomorphic to the
csurface of a 6-point scheme P. Consider all linear subspaces of L of the forms Sp,, S¢,
for 1 <4 <6 and S;; for 1 <7 < j <6 which determine /. Then the number of these
linear subspaces is the multiplicity of [ (see pp. 71-81).

The multiplicity of [ can be computed with the help of specializations. Namely,
let I'y be an one-dimensional family of non-singular cubic surfaces such that X is the
fiber of 2o € I'y. Suppose further that there exist 27 sections corresponding to the 27
lines over I'y; the line [ is contained in one of these sections. The multiplicity of [ is
the number of sections containing /. The multiplicity of [ is independent on the family
chosen.

Proposition 3.3.14. Let X be a semi-stable cubic surface andl be a line on X.
(i) Suppose that | contains ezxactly one singular point.
(a) If the singular point is Ay, then | is of multiplicity 2.
(b) If the singular point is Ao, then [ is of multiplicity 3.
(i1) Suppose that | contains 2 singular points.
(a) If both of singularities are Ay, then [ is of multiplicity 4.
(b) If both of singularities are As, then | is of multiplicity 9.
(¢) If two singularities are of different types, then [ is of multiplicity 6.
(11i) If I does not contain any singular point, then | is of multiplicity 1.

Proof.
(1) Consider the case that X contains only A; singularities. By choosing coordinates,
we assume that X is given by

F = z3fo(z0, 1, 22) + f3(x0, 21, 22),

where f; for ¢+ = 1,2 is a homogeneous polynomial of degree i. Let P be the 6-
point scheme Vi (fa, f3). Let ¢(P) = Yo, P; where the points P; for 1 < i < 6 are
unnecessarily different. We know that X is the closure of the image of the morphism
from P? — Supp(P) — P? determined by the basis {x¢f2, Z1 fo, Tofo, —f3} of Lp. Let
C be the conic curve in P? = V(z3) defined by f,. It is clear that the image of any
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point on C' — Supp(P) is the point S = (0 : 0 : 0 : 1), which is an A; singularity.
Let P; is a point in the support of P. Each cubic form in Sp, factors into f, and a
linear form vanishing at P;. This implies that the line P, contains the singular point
S. Moreover, we prove that P; is the line containing S and P;. For this, suppose that
P,=(1:0:0:0). Any line d containing P; is given by Vp2(a1z1 + agzy). We see that
dUP, = V(F,a1z1 + azzs). The line connecting S and P, is given by x; = x5 = 0. This
implies that P, is the line containing S and P;.

Let [ be a line on X containing at least one A; singularity; we may assume [ to be
one of P,. If | contains exactly one A; singularity, then the corresponding point P; is
a single point of Vp2(fo, f3). It is easy to check that the linear subspaces Sp, and Sc,
are the same. Moreover, they are different from other linear subspaces of the forms Sp,
and S;;. Therefore, the multiplicity of [ is 2. If [ contains two A; singularities, then
the corresponding point P; is a double point of Vpz2(fs, f3). So we may assume that in
the cycle ¢(P) = 3°9_, B;, the points P; coincides with P,. This implies that the linear
subspaces Sp,, Sp,, S¢, and S¢, are the same; in fact, the line [ is of multiplicity 4.

Consider the case that [ does not contain any singular point. If X has exactly one A;
singularity, then there exist exactly 6 lines of multiplicity 2. Note that X has exactly 21
lines. This implies that the other 15 lines are of multiplicity 1. So [ is of multiplicity 1.
If X has exactly two A; singularities, then there exist exactly 8 lines with multiplicity
2; there exists one line with multiplicity 4. Note that X has exactly 16 lines. This
implies that the other 7 lines of X are of multiplicity 1. So [ is of multiplicity 1 in
this case. If X has exactly three A; singularities, then there exist exactly 6 lines with
multiplicity 2, there exist exactly 3 lines with multiplicity 4. In this case, the surface
X has exactly 12 lines. This implies that the other 3 lines are of multiplicity 1. This
means that [ is of multiplicity 1. Finally, if X has exactly four A; singularities, then
there exist exactly 6 lines with multiplicity 4. Since X has exactly 9 lines, the other 3
lines are of multiplicity 1. So [ is of multiplicity 1.

(2) Consider the case that X contains at least one Ay singularity and [ is one line on
X through one A, singularity. By choosing coordinates, we may assume X to be given
by a polynomial of the form

F = z3fo(zo, x1, x2) + f3(x0, 21, T2),

where f; for + = 2,3 is a homogeneous polynomial of degree i; the quadratic form f,
defines two different lines d;, ds in P? where the intersection point of d; and ds is not
contained in Vpz2(f3). Let P be the 6-point scheme defined by Vpz2(f2, f3). Then [ is one
of SP;, where P; for 1 < i < 6, are the points (not necessarily different) of Vpa(fa, f3).
Suppose that [ = SP,. We know that the surface X is the closure of the image of the
morphism 1 from P? — Supp(P) to P? defined by the basis {zyfo, T1f2, Tofo, —f3} of
Lp. As in the previous case, we see that the A, singular point S = (0:0:0:1) is the
image of (dy U dy) — Supp(P); the line SP; is P, for 1 < i < 6.

If [ contains only one singular point, then the corresponding point P; is a single
point of Vpa(fa, f3). We can assume that P; € d;. We see that d; NP defines a zero-
dimensional subscheme of length 3, which corresponds to a formal cycle P, + P, 4+ P3
where P, and P3 are not necessarily different. Note that if P, and P; coincide, then
dy is the direction at the double point. With the same argument, we see that do NP
defines a zero-dimensional subscheme which corresponds to a formal cycle P, + P5s + Py
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where the point Py, Ps, P are not necessarily different and dj is the direction if do NP
has multiple point. We see that the linear subspaces Sp,, S, and So3 are the same.
Moreover, the subspace Sp, is different from other subspaces of the forms Sp, and S;;.
This means that the line [(= P,) is of multiplicity 3.

Suppose that [ contains another singular point which is of A; type. Then the
corresponding point P; is a double point of Vpz(fs, f3). This means that in the formal
cycle P, + P, + P5, the point P; coincides with P,. We see that the linear subspaces
Sp,,Sp,, Scy, Scy, S13 and Seg are the same and in fact, the multiplicity of the line [
is 6. Similarly, if [ contains two A, singularities, then the corresponding point P; is a
triple point of Vp2(fa, f3). This means that the subscheme d; NP defines a cycle 3P;.
And we can check that the line [ = P, is of multiplicity 9.

Consider the case that [ does not contain any singularity. With the same argument
used in (1), by checking case by case, we see that [ is of multiplicity 1. O]

Definition: Let X be a semi-stable cubic surface. A triple intersection of X is a
hyperplane intersection which factors into 3 lines. A point P € X is called a star point
if it is contained in the intersection of all lines of some triple intersection of X. In that
case, the triple intersection is also called a star triple.

Example 9. If X is a non-singular cubic surface, then a triple intersection of X is the
hyperplane intersection of a tritangent plane. So there exist exactly 45 different triple
intersections on X.

Definition: Let x € (P')**. Suppose that z is a specialization of a given one-
dimensional family of non-singular cubic surfaces, which locally possesses a section
of star points. The specialization position of the section of star point on the corre-
sponding surface X, is called a proper star point with respect to the family. It is clear
that a proper star point is a star point.

Example 10. If X is a non-singular cubic surface, then the concepts of star point and
proper star point are the same as the concept of star point which we defined in the
previous chapter.

Remark 3.3.15. Let X be a semi-stable cubic surface. View X as the csurface of a
6-point scheme P. Let ¢(P) = 3.0, P, where the points P; for 1 < i < 6 are not
necessarily different. Then we see that 45 triple intersections of X corresponding to
(15,-,C~',~,l~ij) for 1 <4 < 6 and (l~,~j,l~mn,l~hk) for {i,5,m,n,h,k} = {1,...,6} are not
necessarily different. But as in the case of non-singular cubic surfaces, we show in the
following proposition that any triple intersection of X is one of these.

Proposition 3.3.16. Let X be a semi-stable cubic surface. Let T be a triple intersec-
tion of X. Then there exists a 6-point scheme P such that its csurface is isomorphic
to X. Furthermore, let ¢(P) = Z?:l P;, where the points P; for 1 < 1 < 6 are not
necessarily different. Then T corresponds to one of triple intersections of the forms
(E,C‘j,iij) for1<i<6 or (Zij,[mn,ikh) where {i,7,m,n, h,k} ={1,...,6}.

Proof.

(1) Consider the case that X contains only A; singularities. There exists a 6-point
scheme P € H° contained in an irreducible conic C' such that X is the closure of the
image of a morphism from P? — Supp(P) to P? defined by some basis of Lp. The image
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of C — Supp(P) is an A, singularity, which is denoted by S. Let ¢(P) = Y0, P; where
P; for 1 < i < 6 are not necessarily different. Let T' = (dy, d2, d3) be a triple intersection
of X.

Suppose that there exist exactly two of the lines dy, dy, d3 coinciding and containing
S. We can assume that d; = dy = P1 P2 By (3.1.13), we see that this happens only
when P; contains (exactly) two A; singularities. This means that the corresponding
point P; in P is a double point and [/;, is the direction at P;. Note that the line ;5 is
a unique line meeting P, but not containing any singular point since its multiplicity is
1. This implies that ds = [;5. So, in this case, we have T = (Pl, Co, llg)

Consider the case that d; = P;, dy = P where P, # P Suppose that ds = P, for
P, ¢ {P;, P;}. This means that there exists a cubic curve, Wthh factors into the conic
C and a line containing FP;, Pj, P,. This is impossible since three points P, P;, P, are
not collinear. Suppose that d; = Zmn The corresponding subspace S mn contains the
cubic form C U [;; if S;,, = S;j. This means that ds = lZ] and T = (P, C], 2])

Consider the case that d; = Zij, dy = l~mn where Zij #* Zmn. The triple intersection
T corresponds to the cubic curve which contains /;; U l,,,. This happens only when
{i,7YU{m,n} = 0. Moreover, we see that ds = Iy, where {3, 5, m,n,k,h} = {1,...,6}.
In this case, we have T' = (l,], Linms lkh)

(2) Consider the case that X contains at least one A, singularity. There exists a 6-point
scheme P € H° contained in two different lines /; and I, such that [;NP for 1 <i <2
has length 3 and X is the closure of the image of a morphism from P? — Supp(P) to
P? determined by some basis of £p. Furthermore, we can assume that c¢(P) = Y v_, P;
where the points P; are not necessarily different and three points P;, P, P; are contained
in /1, three points Py, P5, Ps are contained in /. As in the case above, we see that the
image of (I; Uls) — Supp(P) is a point S, which is an A, singularity; the tangent cone
at S is two hyperplanes which are H; = span(S,l;) and Hy = span(S,ls). The lines
through S are P, for 1 < i < 6 and they are not necessarily different. 5

Suppose that T is one of H; N X and Ho N X. Then T = (Pl,ég,llz) or T =
(P4, Cs, l45) Consider the case that T" is not one of these two hyperplane intersections.
Suppose that 7" contains a line P, ¢ H; and a line P C H,, then we see that T" =
(PZ, C’], l”) If T is formed by three lines, all of them do not contain the singular point
S, then T = (Iij, lyn; Ixn) where {i,m,k} = {1,2,3} and {j,n,h} = {4,5,6}. O

Remark 3.3.17. Let X be a semi-stable cubic surface isomorphic to the csurface of
some 6-point scheme P. We know that a line [ on X is determined by a two-dimensional
linear subspace of Lp of the forms Sp,, S, or S;; (3.3.12). The number of the linear
subspaces determining the line [ is the multiplicity of [. Let 7" be a given triple in-
tersection of X. By the above proposition, we see that 7" is determined by a triple of
linear subspaces of the forms either (Sp,, Sc;, Si;) for 1 <4 < j < 6 or (S, Smn, Shk)
where {7, j,m,n,h,k} ={1,...,6}. Con81der1ng all the linear subspaces corresponding
to three lines of T enables us to determine how many triples of the forms (P, C], lm)
for 1 <4 < 6 and (li;, lym, Inx) for {4, j,m,n,h,k} = {1,...,6} coinciding with 7. This
fact allows us to talk about the multiplicity of T

As in the case of the multiplicity of a line on X, the multiplicity of 7" can be
computed with the help of specializations. Namely, let I'y be an one-dimensional family
of non-singular cubic surfaces such that X is the fiber over z; € Ty. Suppose further
that there exist 45 sections corresponding to the 45 triple intersections over I'y; the



3.3. The csurfaces of 6-point schemes in almost general position 71

triple 7" is contained in one of these sections. The multiplicity of 7" is the number of
sections containing 7". The multiplicity of T is independent on the family chosen.

The rest of this section is used to determine the multiplicities of lines and triple
intersections, the number of star points on semi-stable cubic surfaces. Moreover, we
describe how to recognize the singular points as well as the lines on semi-stable cubic
surfaces from the configuration of corresponding 6-point schemes. From now on, unless
stating differently, when we write the formal cycle ¢(P) of a given 6-point scheme P,
we always mean that the points in the cycle are mutually distinct.

A; Let © € A;. We know that the corresponding surface X, is isomorphic to the
csurface of a 6-point scheme P € H° such that ¢(P) = Y.5_, P; where the 6
mutually distinct points lie on an irreducible conic curve C (see Figure 3.1).

Py

Figure 3.1: 6-point schemes corresponding to points in A;

By (3.3.14), we see that the image of C' — Supp(P) (via any morphism from P? —

Supp(P) to P? determined by a basis of £p) is the singular point; the lines P, = C;
for 1 <14 < 6 are the 6 lines through the singular point. Other lines of X, are l” for
1 <4< j < 6. The 21 lines of X, with multiplicities correspond to the partition
(20,1°) of 27. Moreover, we see that triple intersections (B;, Cj, 1ij), (P;, Cy, 1i)
and (PZ,PJ,ZU) for 1 < i < j < 6 are the same. This means that every triple
intersection (P;, P;j,1;;) for 1 < i < j < 6 is of multiplicity 2. The surface X, has
30 distinct triple intersections which correspond to the partition (2'°,1'%) of 45.

2A; Let © € 2A4;. The corresponding surface X, is isomorphic to the csurface of a
6-point scheme P € H° contained in an irreducible conic curve C' and ¢(P) =
2P, +Y0_, P; (see Figure 3.2,(a)).

The point z belongs to the closure of P — A. Consider P as a specialization
of some family of 6-point schemes in general position. Suppose further that the
family has 6 sections of points. We may assume that the double point 2P; is
contained in the two sections corresponding the points P, and Ps. Consider any
morphism from P? — Supp(P) to P? determined by a basis of L. By (3.3.14), we
see that the image of C'— Supp(P) is a point S, which is an A; singularity; the
lines P, for 2 < i < 5 are of multiplicity 2; the line P; is of multiplicity 4 and it is
the line containing two singular points of X,. The singular point 5; is contained
in the lines P; for 1 < i < 5. Another singular point is contained in the lines P,
and lh for 2 <1 < 5, since the lines llz for 2 <4 <5 are of multiplicity 2. The 16
lines of X, with multiplicities correspond to the partition (4!,2%, 17) of 27.
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Figure 3.2: 6-point schemes giving points in 2.4,

The triple intersection (2P1,116) has multiplicity 2 since it is determined by
(Pl, Ce, 116) and (Cl, B, 116) Note that the line [ is the closure of the i image of the
direction d at the double point 2P;. Every triple intersection (Pl, P,, llj) for 2 <
i < 5 has multiplicity 4 since it coincides with (Pl, Cz, lh) (Cl, P, lh) (P6, C;, lsz)
and (Cy, P, lg;). Every triple intersection (P, P;, ;) for 2 < i < j < 5 has
multiplicity 2 since it coincides with (I%,(:‘j,l;j) and ((:‘i,Pj,ZNz-j). Similarly, ev-
ery triple intersection (l~1,~, l~1j, l~mn) for {i,j,m,n} ={2,3,4,5} has multiplicity 2.
Every triple intersection (l~16, l~ij, len) for {i,j,m,n} = {2,3,4,5} has multiplicity
1. These triples do not contain any singularities. So X has 20 distinct triple
intersections which correspond to the partition (4%, 23, 13) of 45.

We see that the intersection point of ]51 and l~16 is a star point of X. In the next
section we will prove that this point is also a proper star point.

Remark 3.3.18. When considering X, as the csurface of a 6-point scheme as
above, it is not clear how the second singular point is obtained. Consider the
quadratic transformation with respect to P;, P, P;. Then the image of P is a
6-point scheme Q consisting of 6 distinct points {Q1,...,Qs} where 3 points
Q2,Q3,Q lie on a line [y; three points (4, @5, Qs lie on another line Iy, see
Figure 3.2, (b).

By (3.3.10), the surface X, is isomorphic to the csurface of Q. Then 2 singular
points of X are the images of 2 lines l1, [y via any morphism from P? — Supp(Q) to
IP? determined by a basis of Lg. The line corresponds to Sg, is the line containing
the 2 singular points of X.

A Let © € Ay. The corresponding cubic surface X, is isomorphic to the csurface of

a 6-point scheme P € H° such that ¢(P) = 2?21 P; where 3 points Py, P,, P lie
on a line [;; three points Py, Ps, P lie on another line [5; the intersection point of
l; and Iy does not belong to P (see Figure 3.3).

Let L£p be the linear space of cubic forms passing through P. Consider any
morphism from P? — Supp(P) to P? determined by a basis of Lp. By (3.3.14),
the image of (I; Uly) — Supp(P) is the singular point. The 6 lines P, for 1 < i < 6
contain the singularity and they are of multiplicity 3. The other 9 lines of X,
are i,-j for i € {1,2,3} and j € {4,5,6}. These lines are of multiplicity 1. The 15
lines of X, with multiplicities correspond to the partition (3%,1°%) of 27.
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P.
P
P

Py P; Py

Figure 3.3: 6-point schemes corresponding to points in As

Note that the linear subspaces Sp,, S¢, and Sy, for {17, j, k} = {1,2,3} or {4, j,k} =
{4,5,6} are the same. This implies that the triple intersection (Pl,Pz,P;.;) has
multiplicity 6 since it coincides with (Pl, Cg,l12) (Cl, Py, llg) (Pl, l13, 03)
(C1, 113, Ps), (log, Py, C3) and (las, Co, Ps). Similarly, the triple (P4, Ps, P5) has
multiplicity 6. Every triple intersection (P P 1 j) for 1 <i<3and4<j<6
has multiplicity 3 since it coincides with (P, CJ, l”) (C;, PJ, lm) and (lmn,lkh, ZZ])
where {m,n} = {1,2,3} — {i}, {k,h} = {4,5,6} — {j}. Every triple intersec-
tion (i, bk, lnn) for {i,m,n} = {1,2,3}, {j, k, h} = {4,5,6} has multiplicity 1.
So X, has 17 distinct triple intersections. The 17 triple intersections with their
multiplicities correspond to the partition (62,3°,1°) of 45.

Moreover, we see that the singular point is a star point of X, since it is contained
in all lines of the triple intersections (Py, Py, P;). We will prove in the next section
that it is a proper star point.

A1 A; Let x € A As. The corresponding cubic surface X, is isomorphic to the csurface
of a 6-point scheme P € H° where ¢(P) = P+ P»+ Ps+ P,+2P;5 such that P, and
2P5 are contained in a line [;; three points Py, P, P; are contained in another line
lo; the intersection point of /; and Il does not belong to P (see Figure 3.4, (a)).

©125

Figure 3.4: 6-point schemes corresponding to elements in A;.A45

View X as a point in the closure of P! — A. Consider P as a specialization
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position of some family of 6-point schemes in general position. Suppose further
that the family has 6 sections of points. We may assume that the double point 2 P;
is contained in the two sections corresponding to the points Ps and Ps. Consider
any morphism from P? — Supp(P) to P? determined by a basis of Lp. By (3.3.14),
we see that the image of (I; Ul,) —Supp(P) is the A, singularity; the line P is of
multiplicity 6 and is the line containing 2 singularities; the lines 15z for1 <i<4
contain the A, singularity and they are of multiplicity 3. Moreover, we see that
the lines [;5 for 1 < i < 3 are of multiplicity 2. So they contain the A; singularity.
The other lines of X, are l~4i for 1 < ¢ < 3 which are of multiplicity 1. The 11
lines of X, with their multiplicities correspond to the partition (6, 3% 23, 13) of
27.

As in the case of Ay, we see that the triple intersections (Pl, b, Pg) and (2]35, ]54)
are of multiplicity 6; every triple intersection (P, P;, l~4,-) for 1 < i < 3 has mul-
tiplicity 3. Every triple intersection (Ps, P;,-, l~5,~)~ for 1 <4 < 3 has multiplicity 6
since it coincides with (P5, éi, l5i), (65, pz‘, l5i), (146; lk:h, l5i), (Pﬁ, éz', lﬁi), (éﬁ, PZ', lﬁz)
and (l~45,l~kh,l~6i) for {k,h} = {1,2,3} — {i}. Finally, every triple (l~i5,l~j5,l~k4)
for {i,7,k} = {1,2,3} has multiplicity 2 since it coincides with (l~i5,l~j6,l~k4) and
(l~i6,l~j5, l~k4). So X has 11 distinct triple intersections. With multiplicities, the
triple intersections of X, correspond to the partition (6°,33,2%) of 45.

The A, singularity is a star point of X, since it is the intersection of all lines of
the triple intersection (2Ps, Py).

Remark 3.3.19. If we consider the above 6-point scheme, it is not clear how
to obtain the A; singularity. Consider the quadratic transformation (95 with
respect to P, Py, Ps. Let Q = ¢(P) be the image of P. We see that ¢(Q) =
2Q5+Q1+Q2+Q4+Qs, where Q1, Q2, Qs lie on the line dy; three points Q4, @5, Qs
lie on another line dy (see Figure 3.4, (b)). The csurface of Q is isomorphic to
X,. Consider any morphism from P? — Supp(Q) to P* determined by a basis of
Lg. In this case, the image of I; — {Q1, @2, Qs} is the A; singularity; the image
of Iy — {Q4, Qs5, Qs} is the A, singularity; the line Qg is the line containing two
singularities.

3A; Let z € 3A;. The corresponding cubic surface X, is isomorphic to the csurface of
a 6-point scheme P € H°® where P = 2P, + 2P, + P; + P, and P is contained in
an irreducible conic curve C (see Figure 3.5, (a)).

The point z belongs to the closure of P — A. Consider P as a specialization
position of some family of 6-point schemes in general position. Suppose further
that the family has 6 sections of points. We may assume that the double point
2P, is contained in the two sections corresponding to the points P; and Ps, the
double point 2P, is contained in the two sections corresponding to the points P
and Ps. Consider any morphism from P? — Supp(P) to P* determined by a basis
of Lp. As in the case of 24, we see that the image of C — Supp(P) is a point
Sy, which is an A; singularity; the lines P; and P, are of multiplicity 4; the lines
]5,~ for 1 < i < 4 contain the singular point S; (3.3.14).

Moreover, the line l15 also has multiplicity 4 since the linear subspaces Sis, S16, S25
and Ssg are the same. There exist 3 star points on X, determined by triple
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Qs
Dy N Qy Q4
Py p123
P, Qs /Qs Q
Py

(a) (b)

Figure 3.5: 6-point schemes corresponding to elements in 3.4

intersections (2F~’1,l~15), (2?2,526) and (2[12,534). We see that P, P, and lj, are
three lines connecting 3 singular points of X,. The six lines Py, Py, l13, 114, los
and lo4 have multiplicity 2 and each of them contains exactly one singular point.
Namely, the lines P3 and P, contain S; = P, N Pg, the lines l13 and [, contain
SQ = P1 N 112, the lines l23 and l24 contain 53 = P2 N l12 The 12 lines of X with
multiplicities correspond to the partition (42,2%,13) of 27.

As in the case of 24, the triple intersections (2P1, 115) (2132, l~26) (2l~12, l~34) have
multiplicity 2. The triple intersection (Pl, L1, P3) has multiplicity 4 since it co-
incides with (Pl, l13, 03) (P5, 135, 03) (Cl, l13, Pg) and (05, l35, Pg) Slmllarly, the
trlple intersections (Pl, 114, P4) (PQ, l23, Pg) (PQ, 124, P4) (112, l13, l24) and (llg, l23, 114)
have multiplicity 4. The triple intersection (l15, l23,l24) has multiplicity 2 since
it coincides with (l15, 123, l46) and (l15, I3, l24) Similarly, the triple intersections
(l26, l1, l14) and (l34, P, P4) have multiplicity 2. The triple intersection (Pl, P, l12)
has multiplicity 8 since it coincides with

(lea C?Qa {12)7 (?1: C:’6a {16)5 (C:Vla I:)Q: l:12)a (él,ﬁga Zlg)a~
(Ps, Ca,la5), (Ps, Cg, Isg), (Cs, Pa, las) and (Cs, Pe, Is6).

The multiplicity of the triple(lys, I, l34) is 1. So the surface X has 14 distinct
triple intersections, which correspond to the partition (8!,4%,26 11).

Remark 3.3.20.

(i) The surface X, above has three star points, which correspond to the triple
intersections(2P;, l15), (2P, log) and (2l12,134). In the next section, we prove
that they are proper star points.

(ii) As in the case of 2A4;, when considering X, as the csurface of a 6-point
scheme P as above, it is not clear how to obtain the singular points S, and
S3. Consider the quadratic transformation @93 with respect to Py, P, Ps.
Let Q = ¢(P) is the image of P. Then we see that ¢(Q) = Y0, Q;
where 3 points @2, Q3,5 lie on a line di; three points @1, @3, Qs lie on
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another line do; three points @4, Qs, Qs lie on the third line d; (see Fig-
ure 3.5, (b)). We know that the csurface of Q is isomorphic to X,. Con-
sider any morphism from P? — Supp(Q) to P® determined by a basis of
Lg. The three singular points of the csurface of Q are the images of

- {Q27Q37Q5}; dy — {Qla Qs, QG} and dz — {Q4, Qs, Qe}-

4A; Let x € 4A;. The corresponding cubic surface X, is isomorphic to the csurface of

a 6-point scheme P € H® where ¢(P) = 2P, + 2P, + 2P; and P is contained in
an irreducible conic C (see Figure 3.6, (a)).

P2 Q3

¥123
Qs Qs @

(a) (b)

Figure 3.6: 6-point schemes corresponding to elements in 4.4

The point z belongs to the closure of P — A. Consider P as a specialization
position of some family of 6-point schemes in general position. Suppose further
that the family has 6 sections of points. We may assume that the double point
2P; is contained in the two sections corresponding to the points P, and P, the
double point 2P, is contained in the two sections corresponding to the points P
and Ps; and the double point 2P; is contained in the two sections corresponding
to the points P3 and Fg.

Consider any morphism from P? — Supp(P) to P? determined by a basis of Lp.
As in the case of 341, by (3.3.14), the image of C'— Supp(P) is a point S;, which
is an A; singularity; the lines 151,162 and Pg have multiplicity 4 and contain S;.
We see that the linear subspaces S12, 515, 524 and S45 are the same. This implies
that the multiplicity of Iy is 4. Similarly, the lines l13, I3 are of multiplicity 4.
The lines P, for 1 < i < 3 and lzy for 1 <1 < j < 3 form a tetrahedron whose
vertices are 4 singular points of X,. Other lines of X, are l14, lo5 and I35 which are
of multiplicity 1. The 9 lines of X, with multiplicities correspond to the partition
(4%,13) of 27.

As in the case of 3.4, every triple intersection formed by three A; singularities
is of multiplicity 8. There exist 6 triple intersections which are of the forms
(2d,1) where d is one of the 6 lines of multiplicity 4 and [ is one of three lines
{l~14, l~25, l~36}. Each of these 6 triple intersections has multiplicity 2. Finally, the
triple intersection (l~14, l~25, l~36) has multiplicity 1. So the surface X has 11 distinct
triple intersections corresponding to the partition (8%,25 11) of 45.
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Remark 3.3.21.

(i) We see that X, has 6 triple intersections of the form (2d,1), so X, has at
least 6 star points. We see in the next section that these points are proper
star points.

(ii) To see how 4 singular points of X, are obtained, we consider the quadratic
transformation 193 with respect to P;, Py, P;. The image ¢193(P) consists
of 6 distinct points which form a quadrilateral in P? (see Figure 3.6, (b)).
The csurface of p13(P) is isomorphic to X,. The 4 edges of the quadrilateral
correspond to 4 singular points.

2A1 A, Let x € 24, A5. The corresponding surface X, is isomorphic to the csurface of
a 6-point scheme P € H° where ¢(P) = 2P, + 2P, + P; + P, such that 2P, Ps
are contained in a line [;; the points 2P, P, are contained in another line ly; the
intersection point of /; and /y does not belong to P (see Figure 3.7 (a)).

Figure 3.7: 6-point schemes corresponding to elements in 24,4,

The point = belongs to the closure of P — A. Consider P as a specialization
position of some family of 6-point schemes in general position. Suppose further
that the family has 6 sections of points . We may assume that the double point
2P is contained in the two sections corresponding to the points P, and P, and
the double point 2P, is contained in the two sections corresponding to the points
P2 and P6.

Consider any rational morphism from P? —Supp(P) to P? determined by a basis of
Lp. Asin the case of A; Ay, by (3.3.14), we see that the image of (I;Uly) —Supp(P)
is the A, singularity; each of the lines P, and P, has multiplicity 6 and contains the
A, smgularlty and one of A; singularities; the lines P3 and P, are of multiplicity 3;

the lines Pl, PQ, P3 and P4 contain the A, singularity. The line l12 has multiplicity
4 since the linear subspaces Si2, Sig, So5 and Ssg are the same. This implies that
the line llg contains two A; singularities. The lines 114, l23 have mult1p11c11:y 2. The
lines Pl, l12 and l14 contain one A1 singularity. The lines PQ, l12 and l23 contain
another A; singularity. The line l34 has multiplicity 1. The 8 lines of X, with
multiplicities correspond to the partition (6%,4',3% 22 1) of 27.

The triple intersection (]51, P, l~12) is of multiplicity 12 since it coincides with

(P:)la C:(Q, l:12) (Cla P?a ll?) (l35a Z465 l:l?) (P5, CQ, l25) (C:%’ EQ, Z25)a (Zl:ia l:46: l:25),
(Pla 06, llG) (Cla Pﬁa llﬁ) (l35a l247 llG) (P5, CG) l56) (C5a P67 556)7 (l13a l24: l56)'
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As in the case of 24, the triple intersection (l-12, l-14, 223) has multiplicity 4 since
it coincides with (l12, s, 36), (l16; ls; 123), (I25, [14, I36), (Is6, [14, I23); the triple in-
tersection (2l19,134) has multiplicity 2.

Asin the case of A A5, the triple intersections (2]51, ]53), (ZPQ, P4), (Pl, Py, l~14) and
(Py, Ps, I53) are of multiplicity 6; the triple intersection (Ps, Py, I34) has multiplicity
3. So X has 8 distinct triple intersections, which correspond to the partition
(121, 64,41, 31, 21) of 45.

Remark 3.3.22.

(i) The surface X, above has at least 2 star points. One of them is the A,
singularity. Another is determined by the triple intersection (2l;9,134). In
the next section, we prove that they are proper star points.

(ii) Consider the quadratic transformation 93 with respect to P;, Py, Ps as in
the case of A;Ay. Let Q@ = 193(P). Then we see that ¢(Q) = 2Q2 + Q1 +
Q3+ Q4+ Qs, where the direction d at the double point 2, contains Qs; the
three points 1, Q3 and Qg are contained in a line l;; the three points (02, Q4
and Qg are contained in another line l;. The csurface of Q is isomorphic
to X,. Consider any morphism from P? — Supp(Q) to P? determined by
a basis of Lg. The images of [; — {Q1,RQ3,Q¢} and d — {Q2, Q3} are two
A, singularities; the image of lo — {Q2,Q4,Qs} is the Ay singularity (see
Figure 3.7 (b)).

2A, Let x € 2A,. The corresponding cubic surface X, is isomorphic to the csurface
of a 6-point scheme P € H° where ¢(P) = P, + P, + P5 + 3P, such that 3 point
P, P, P; lie on a line [; and 3P, is contained in another line /5; the intersection
point of [; and I, does not belong to P (see Figure 3.8, (a)).

/ Q4
S~
Y124

IR A 3 RN

Figure 3.8: 6-point schemes corresponding to elements in 2.4,

The point = belongs to the closure of P — A. Consider P as a specialization
position of some family of 6-point schemes in general position. Suppose further
that the family has 6 sections of points. We may assume that the triple point
3P, is contained in the three sections corresponding to the points Py, Ps and Fs.

Consider any morphism from P? — Supp(P) to P? determined by a basis of Lp.
As in the case of A;Ay, by (3.3.14), we see that the image of (I; Uly) — Supp(P)
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is a point Sy, which is an A, singularity; the line P, is of multiplicity 9 and
contains two singularities; the lines P, for 1 < i < 3 are of multiplicity 3 and
contain S;. We see that the lines [, for 1 < 5 < 3 are of multiplicity 3 since
the linear subspaces S;4, S;5 and S;s are the same. These lines contain another

Ay singularity. The 7 lines of X, with multiplicities correspond to the partition
(91, 3%) of 27.

As in the case of A;Aj, the triples (3P,) and (P, Py, P;) are of multiplicity
6. Similarly, the triple (14, l24,l34) has multiplicity 6. The triple intersection
(P1, Py, 114) is of multiplicity 9 since it coincides with

(1?1C:'4l:14), (?1?4{14), (P1?5£~15)’ (élpézl§):~(Pléﬁl~16)a
(01P6l16): (123556514); (523546515) and (523545516)-

Similarly, the triple intersections (P, Py,lo4) and (P, Py, l34) are of multiplicity
9. So, the surface X, has 6 distinct triple intersections, which correspond to the
partition (93,6%) of 45.

Remark 3.3.23.

(i) The surface X, above has the triple intersection (3P,). This implies that
X, has an infinite number of star points. In the next section, we will prove
that indeed they are proper star points.

(ii) To see how the second singular point of X, is obtained, we consider the
quadratic transformation o4 with respect to Pi, Py, Py. Let Q@ = p124(P).
We see that ¢(Q) = 2Q4 + 2Q5 + Q1 + @2 such that the direction d at
the double point 2()5 contains the point ()4 and three points @)1, Q)2, Q)5 are
contained in a line [ (see Figure 3.8, (b)). The csurface of Q is isomorphic
to X;. The two singular points are the images of | — {Q1,Q2,Qs} and
d — {Q5,Q4} by any morphism from P? — Supp(Q) to P? determined by a
basis of Lg.

Ai12A; Let x € A;2A4;. The corresponding cubic surface X, is isomorphic to the
csurface of a 6-point scheme P € H°, where ¢(P) = 2P, + P, + 3P, such that 2P,
and P, are contained in a line /;; the triple point 3P, is contained in another line
lo; the intersection point of [y and /o does not belong to P (see Figure 3.9, (a)).

The point = belongs to the closure of P — A. Consider P as a specialization
position of some family of 6-point schemes in general position. Suppose further
that the family has 6 sections of points. We may assume that the triple point
3P, is contained in the three sections corresponding to the points Py, Ps and Py;
the double point 2P, is contained in the two sections corresponding to the points
P, and Ps.

Consider any morphism from P? — Supp(P) to P? determined by a basis of Lp.
By (3.3.14), we see that the image of ({; Uly) —Supp(P) is a point Sy, which is an
A, singularity; the line Pj is of multiplicity 9 and contains two A, singularities;
the line P; is of multiplicity 6 and it contains S; and the A; singularity; the line
P, is of multiplicity 3 and it contains S;. As in the case of 24,5, we see that the
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- /

ey /QQ h Qs

Figure 3.9: 6-point schemes corresponding to elements in A;2.A4,

line Iy, is of multiplicity 3 and contains the another A, singularity. The surface
X, has exactly 5 lines with the partition (9',62, 3%) of 27.

As in the case of 245, the triple intersections (3]54) (2P1, ]52) and (2l~14, l~24) are of
multiplicity 6; the triple intersection (P2, Py, l24) is of multiplicity 9. The triple
intersection (Pl, Py, l14) is of multiplicity 18 since the following triple intersections
are the same:

(Pl, ?4) ’lj14)a (?1;?47?14)7 (P17?55215)a (CI: P5, l15)7 (?1) C:’Gazlﬁ) (C 65 516)
(lgzs, Is6, {14), (lg3, L, l~15), (lgs, las, l~16)a (P3, 04, 134), (gs, Py, {34), (FsC}» 135));
(Cs, Ps, I35), (Ps, Cs, I36), (Cs, Ps, I36), (112, s, 34); (112, lag, I35), (112, las, I36)-

So X has 5 distinct triple intersections corresponding to the partition (18',9!,63)
of 45.

Remark 3.3.24.

(i) As in the case of 2.4,, since the surface X, above has the triple (3P;), all
points on the line P, are star points. Moreover, the triple intersections
(2]51,]52) and (2l~14,l~24) determine other star points on X,. In the next
section, we will prove that they are proper star points.

(ii) It is not clear how other singularities on X, are obtained by considering the
6-point scheme P as above. Consider the quadratic transformation ¢ with
respect to Pi, Py, Py. Let Q@ = ¢(P). Then we see that ¢(Q) = 2Q4 + 2Q5 +
Q1 + @2, where the direction d; at the double point 2Q)5 contains Q)4; the
direction ds at the double point ()4 contains ()9; the three points @1, Q2, Qs
are contained in a line [, (see Figure 3.9, (b)). The surface X, is isomorphic
to the csurface of Q. Consider any morphism from P? — Supp(Q) to P?
determined by a basis of Lg. It is clear that the image of dy — {Q2, Q4} is
the A; singularity; the images of [ — {Q1, @2, @5} and d; — {Q4, @5} are the
A, singularities.

3A; Let © € 3A4;,. We know that the corresponding cubic surface X, is isomorphic

to the csurface of a 6-point scheme P € H°® where ¢(P) = 3P, + 3P such that
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3P, and 3P, are contained in 2 different lines d, ds respectively; the intersection
point of d; and dy does not belong to P (see Figure 3.10, (a)).

Qs

(a) (b)

Figure 3.10: 6-point schemes corresponding to points in 3.4,

Consider any morphism from P? — Supp(P) to P? determined by a basis of Lp.
By (3.3.14), we see that the image of (I; Uly) — Sup(P) is a point S;, which is an
A, singularity; the lines P, and P, are of multiplicity 9 and contain S;. Moreover,
as in the case of A;2A,, the line [ is of multiplicity 9. The 3 lines of X together
with multiplicities correspond to the partition (9%) of 27. These 3 lines form a
triangle where 3 vertices are three A, singularities. The surface X has 4 distinct
triple intersections, namely (3P,), (3P,), (3l12) and (Py, Py, l15). The latter is of
multiplicity 27. Each of the first three triples is of multiplicity 6. So the 4 triple
intersections of X with multiplicities correspond to the partition (27!,6%) of 45.

Remark 3.3.25.

(i) All points on lines 151, P, and [}, are star points of X,. Moreover, we will
prove in the next section that they are proper star points.

(ii) The same question as before arises: how to see other singular points of X,
from morphisms from P? — Supp(P) to P? defined by bases of L»? We can
not apply any quadratic transformation as before since P does not contain 3
distinct points. Going back to the cases of 245 and A;2A4,, a “conjecture”
appears naturally : is the csurface of 6-point scheme Q with a configuration
as in Figure 3.10, (b) isomorphic to the surface X,? The 6-point scheme @
defines a cycle ¢(Q) = 2Q1 + 2Q2 + 2Q)3, where the direction at 2Q); contains
(2, the direction at () contains ()3 and the direction at ()3 contains ;.
We prove that the conjecture is true. Choose coordinates such that @}; =
(1:0:0),Q =(0:1:0)and Q3 = (0:0:1). The linear space Lo

parameterizes all cubic forms
_ .2 2 2 k
[ = a125x1 + a2xo + a325%0 + asToT122 € K[z, 1, To).
Choose the basis {2371, 2319, ToT1T9, 1370} of Lp. Consider the morphism:

P? — Supp(Q) — P?
(o : 1 1 m9) > (2dx1: 2339 1 TOT179 ¢ TIY),
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determined by the basis.
Let F = z3mox; — 5. We have
2. 2 2 (2 2 2 3
F(z§zy, 210, xox1T9, X5x0) = (x520)(2521) (2122) — (To122)
_ 33,3 ,3.3.3
= ToT1Ty — Tol1Ta;
= 0.

Since F' is irreducible, the csurface of Q is defined by F'. This means that
the csurface of Q is of type 34y and therefore is isomorphic to the surface
X,.

We end this section with Table 3.1 containing the information about the number of
lines, the number of triple intersections on semi-stable cubic surfaces.

Num. Plg — A Al 2./41 A2 3./41 .Al AQ 4./41 2./41 .Ag 2./42 .Al 2./42 3A2

Lines 27 21 | 16 | 15 | 12 11 9 8 7 ) 3

Triple 45 30| 20 | 17| 14 11 11 8 6 ) 4
Int.

Star 0 0 1 1 3 1 6 2 00 o0 o0

points

Table 3.1: Information about lines, triple intersections and star points on semi-stable
cubic surfaces; note that the star points mentioned in the table are star points which
the corresponding surface of every element point at least has.

For each class iA;jA; for 20 +3j < 9,4 < 4 and (4,5) # (3,1), we compute the
number of star points, which the corresponding surface of every element of the class at
least has; this number of star points is realized on a dense open subset in that class.
As we have seen, every of these star points is either an A, singularity or any point on
a line containing two A, singularities or the specific point on a line containing two A;
singularities.

3.4 On the boundaries of the moduli spaces of non-
singular cubic surfaces with star points

Let ¢ : (P'°)%* — M be the quotient space with respect to the natural action of PGL(3)
on P!, We know from Section 3.2 that M is projective. Let M := PGL(3)\ (P — A),
where A is the locus of singular cubic surfaces in P!®. Then M can be viewed as the

coarse moduli space of the non-singular cubic surfaces. The space M is a compactifi-
cation of M. Let N := PGL(3)\(P'?)?.

In this section, we study the boundaries of the subsets HZ-(IC
stable cubic surfaces (see Chapter 2 for the definition of Hi(k)); we also study the
boundaries of moduli spaces ¢(H™) inside M.

Let (A)* = (P*)** N A. We denote by AH" the intersection of the closure of H'"

with (A)®*, which is called the boundary of H* in (P')*. Denote i.4;jA; for the
closure of 4154, in (P'9)% for 20 + 35 < 9,7 <4 and (4,5) # (3,1).

) inside the set of semi-
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A. Some basic facts
Lemma 3.4.1. The subsets i.A,j Ay are irreducible in P'°.

Proof. Consider the case i > 0. Each = € i4,jA, for i > 1 is given by a polynomial

F = z3fo(x0, x1, x2) + f3(20, 21, 22),
where f; for © = 1,2 is a homogeneous polynomial of degree i; the rank of f; is 3 and

Vp2(fa, f3) corresponds to a partition (2¢1371%) with 2( — 1) + 35 + k = 6.
By choosing coordinates, we can assume that fo = 22 — 2oz and

3 2 2 3 2 2 3
f3 = apxy + a1x5x1 + aemoT] + a3T] + ATTT2 + A5T1X5 + ATy,

see [B-W], p. 248.
The points of Vp2(fo, f3) are determined by the solutions of the equation:

f3(0%, 010,907 == aoh® + a10°0 + as0*p? + a3y + a, 0*0* + as00° + agy® = 0.

We prove that the set of all homogeneous polynomials of degree 6 in 2 variables which
possess solutions corresponding to a given partition of 6 is irreducible.

Let T be the projective space parameterizing all homogeneous polynomials of degree
6 in two variables. Let a be the partition (271371%) of 6. Let 7T, be the subset of T
consisting of all homogeneous polynomials of degree 6 in 2 variables which possess
solutions corresponding to the partition a. Consider the morphism:

(Pl)z’—I—j-i—k—l 5T
(@1 :b1;. .. 5 Gigjrk— : bipjrn—1) — F,
where
i1 itj—1 itj+k—1
F=]]0w—ab)® ] 0t — a0 [ (0s%b — ash).
t=1 r=i s=it+j

The image of (P*)"7T+~1 — A, is T,, where A, is the diagonal of (P*)"*/*%~1 So T}, is
irreducible. This implies that the subset Kj;; of i.4;j.As consisting of points which are
given by

F = 23(2? — 1om2) + aoxy + a17571 + aaToTs + 315 + a4 x9 + a5T175 + a6Ts,

is irreducible. Consider ¢ : PGL(3) x K;; — P which is induced from the natural
action of PGL(3) on P'°. The subset 74,545 is the image of (, so it is irreducible.

Consider the case i = 0. An element in j Ay for j = 1,2,3 can be determined by a
polynomial

F = z3fo(z0,z1, 22) + f3(x0, 21, T2),

where f; for + = 1,2 is a homogeneous polynomial of degree 7; the rank of f5 is 2; the
singular point of Vp2(f3) is not contained in Vp2(f3); the points of Vipz(fe, f3) correspond
to a partition (3/711%) with 3(j — 1) + k = 6.

By choosing coordinates, we can assume that fo = z¢x; and

fa= mo(aoxg + a120To + agac%) + xl(a?,xf + a4z + asa:%) + xg; (3.6)

see [B-W|, p. 249. Let Ny be the set of all cubic forms in type (3.6).
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j=1. Let N; be the subset of Ny such that Vip2(xoz1, f3) consists of 6 distinct points.
Consider the morphism:

AS - Ny
(a'Oa R ,(1,5) — f3a
where f3 is a cubic form in type (3.6). We see that the image of the set
B ={(ag...,as) € A® | a? — 4agas # 0,02 — 4azas # 0}

is the set N;. So NV is irreducible. By the same argument as in the case of ¢ > 0,
we see that A, is irreducible.

Jj=2. We can choose coordinates such that Vp2(zz1, f3) has a triple point at (1 : 0 : 0).
This means that in type (3.6), we have ap = a; = as = 0. Let N, be the subset
of all cubic forms in type (3.6), such that ag = a; = a3 = 0 and a? — 4azas # 0.
Then N, is the image via 7 of the set

B2:{(G,0,... ,a5) EAG |a0:a1 :a2:0,ai_4a’3a’57é0},

which is an open subset of A> € AS. So N, is irreducible. With the same argument
as in the case of i > 0, we see that 2.4, is irreducible.

j=3. We can choose coordinates such that two triple points of Vp2(zozy, f3) are
(1:0:0)and (0:1:0). This means that in type (3.6), we have a; = 0 for
all 0 <7 < 5. Let N3 be the one-point set consisting of the point determined by
F = 233021+ 3. The set 3A, is the image of the morphism PGL(3) x N3 —» P1?
which is induced from the natural action of PGL(3) on P¥. So it is irreducible.

0
Recall that M := PGL(3)\(P'?)** and N := PGL(3)\(P'?)*.

Proposition 3.4.2. Let z,y € (P')% such that the corresponding cubic surfaces con-
tain at least one Ay singularity. Let ¢ : (P'°)* — M be the quotient space with respect
to the natural action of PGL(3) on P'®. Then ¢(z) = é(y). Consequently the set M — N
consists of the singleton s, which is the tmage of all non-stable points.

Proof. First of all, we note that, by choosing coordinates, any z € 345 can be given
by a polynomial F = z3x¢z; + 3. This means that ¢(3.4,) consists of one point. We
denote this point by s. Let x € (P'?)% such that the corresponding cubic surface X,
contains at least one A, singularity. Let O(z) be the orbit of z with respect to the
action of PGL(3) on P'. Our task is now to prove that O(z) contains at least one
element of 3A,, then by (3.2.5, (iii)), we have ¢(z) = s.

Since X, contains one A, singularity, the surface can be given by a polynomial

2 2 2 2 3
F = 233021 + xo(a0xy + a170x2 + azxs) + x1(asx] + aax122 + asxs) + T3,

see [B-W], p. 249. Consider the subset 1" of PGL(3) consisting of elements A, given
by:

b 00 0
0b 0 0
Aat) =10 0 a 0
00 0 1/
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where a,b € k*. Let ¢ : PGL(3) x P — P'? be the natural action of PGL(3) on P*.
The set T'(z) := (T x {z}) consists of elements in O(z) given by

F(a,b) = T3Tox1+ bxo(bQCL().T(Q) + abalmoxz + a2a2$§) + b.Tl (b2a3$% + aba4x1x2 + a2a5x§) +

+ a’z}.

Then O(x) contains the point z, given by
Fla,0) = T31071 + a%%.

It is clear that zo € 3.A4,. ! O

B. On the boundaries
B.1. On the boundary of H;

Recall that H; is the subvariety of P — A parameterizing all cubic surfaces with at
least one star point.

Proposition 3.4.3. The subset 2A, is contained in the closure of Hi. Consequently
the star point on the line with multiplicity 4 of any cubic surface parametrized by a
point of 2A; is a proper star point.

Proof. Let x € 24;. We know from the previous section that the corresponding cubic
surface X, is isomorphic to the csurface of a 6-point scheme Q = Z?:l Q; where 3
points ()2, @3, Qs lie on a line [y; three points (4, @5, Qs lie on another line /5; no 3 of
the five points @1, ..., Qs are collinear (see the Figure 3.11).

Figure 3.11: 6-point schemes giving points in 2.4,

Let P, be a moving point on the line d = Q1Qs. At a general position of P; on
d, the 6-point scheme P, = Zle P; where P, = @; for 1 <4 < 5 and Ps = P,, gives

1 The proof is completed using a suggestion from Prof. Dr. E. Looijenga. I would like to thank him
very much.
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a non-singular cubic surface with at least one star point. Except for a finite number
of positions, when P, moves on the line d, we have a family in H;. This implies that
x lies on the closure of H;. Moreover, we see that the section of star point over the
family is defined by the tritangent plane H; = (l~23, l~45, l~16) where lNij is the line on the
csurface of a 6-point scheme in the family determined by the linear subspace S;;. In the
specialization position, the linear subspaces Sa3, Sa5, Sc, and Sg, coincide. This means
that Qg is the line connecting the 2 singular points and the section of tritangents H,
contains the triple (2@1, l~16). So the section of star points contains the star point on
the line Qg with multiplicity 4. O

Corollary 3.4.4. The closure of 2A; in (P'°)*¢ is an irreducible component of AH,.

Proposition 3.4.5. Any = € A, lies on the closure of Hi. Consequently, the A,
singularity of X, as a star point, is a proper star point.

Proof. Let Q be a 6-point scheme where ¢(Q) = 2Q; + Y_._, Q;, such that three points
@1, @2, @3 are contained in a line [; the direction at double point 2(); does not contain
any @; for ¢ = 4,5; the four points Q1, Q2, Q4, @5 as well as 4 points @1, Qs3, Q4, Qs
are in general position (see Figure 3.12, (a)). Consider the quadratic transformation
with respect to (@1, Q4, Q5. Then the image of Q is a 6-point scheme P consisting of 6
distinct points P, ... , P such that 3 points Py, P, P; as well as 3 points P, Ps, Py are
collinear. We know that the csurface of P is isomorphic to a cubic surface with exactly
one Aj singularity (see Figure 3.12; (b)).

Figure 3.12: 6-point schemes giving points in A,

Let x € A,y. The surface X, is isomorphic to the csurface of a 6-point scheme Q
where ¢(Q) = 2Q, + Y.7_, Q; described as above (see Figure 3.12 (a)).

Let O be the intersection point of  and Q4Q5. Let d be the direction at the double
point 2(0;. Let m be a fixed line which contains ()3 and does not contain any other
point of Supp(Q). Let (Ps, P3) be a pair of moving points such that Ps € d and P; € m
such that P3P contains O. It is clear that, except for a finite number of positions,
when moving (P, P3), the csurfaces of 6-point schemes P = Z?:l P,, where P, = @);
for i € {1,2,4,5}, are isomorphic to non-singular cubic surfaces with at least one star
point. This defines a family in H;. When (Ps, P5) = (Q1, Q3), we arrive at the 6-point
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scheme Q whose csurface is isomorphic to X,. So z lies on the closure of H;. Moreover,
the star section over the family is defined by the tritangent planes (l~12, L5, l~36), where
the line l~Z] on a surface of the family is determined by the linear subspace S;;. In
the specialization position, the linear subspaces Sia, S26 and Sg, coincide; the linear
subspaces Ssg, S13 and Sg, coincide. Note that the 6 lines Ql,QQ,Q3,l45,ll4 and 515
have multiplicity 3 and they contain the Ay singularity. It is clear that the section of
star point gives a specialization to the intersection of Qs, Q5 and ls5, which is the A,
singularity point. U

Corollary 3.4.6. The closure of Ay in (P'°)%® is an irreducible component of AH;.

Consider the set K, consisting of all 6-point schemes P where ¢(P) = _7_, P; such
that P is contained in an irreducible conic and l;5 N34 N 156 = {O} (see Figure 3.13).

Figure 3.13: 6-point schemes of K;

Let D; be the subset of P! consisting of all points corresponding to the cubic
surfaces, each of them is isomorphic to the csurface of some element in K. It is clear
that D; C A;. On the other hand, we see that D; is contained in the closure of H; also.
For this, let x € D;. The corresponding surface X, is isomorphic to the csurface of
some 6-point scheme P € K. Let ¢(P) = Y.y, P,. Fix P,,..., P; and let Ps move on
the line P;O. This defines a family of 6-point schemes whose csurfaces are isomorphic
to non-singular cubic surfaces with at least one star point. When P is contained in
the conic defined by Pi,...,Ps, we get P. This implies that x lies on the closure of
H,. Moreover, we prove that:

Lemma 3.4.7. The subset D; is irreducible in (P'?)%.

Proof. Let x € D;. Since D; C Ay, by choosing coordinates, we can assume that z is
given by

2
F = 373(331 — 370.’11'2) + f3, (37)
where
_ 3 2 2 3 2 2 2
f3 = apxy + a12571 + aaT0T] + a3 + AsTTT2 + A5T125 + A6T5,

such that the scheme Vp2(2? — zox2, f3) consists of 6 distinct points. Furthermore there
exists a numbering of 6 points P, ... , Ps of Vp2(2? — 2o, f3) such that l1oNlzsNise # 0
(see Figure 3.13).
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The 6 points of Vp2(2? — 2029, f3) are determined by the solutions of the equation
aof® + a10% + az0*? + azBY® + a 02t + as09° + agp® = 0. (3.8)

Let T be the projective space parameterizing all homogeneous polynomials of degree 6
in two variables.
Consider the morphism

(P')s — T
(ay :by;---5a6:bg) —> H?:1(bz'9 — a; ).

Note that a solution (6; : 1;) of (3.8) corresponds to a point P; = (67 : 6;1); : 4?) for
1 <1 < 6 contained in the conic Vp2(2? — moz2). The set of all elements of (P')% — A
such that l15 N I3, N lsg # 0 is irreducible. This implies that the subset D} C P
consisting of all elements which correspond to polynomials of the form (3.7) and satisfy
the above condition is irreducible. We see that D; is the image of the morphism
¢ : PGL(3) x D} — P' which is induced from the natural action of PGL(3) on P'°.
So the set D; is irreducible. O

Proposition 3.4.8. AH, = D; U2A, U A,.

Proof. Tt is clear that the sets D;,2.4; and A, are irreducible components of AH;.
Conversely, let x be the generic point of an irreducible component W of AH;. Suppose
that W # 24, and W # A,. Since dimW = 17, we have = € A;. So the surface X,
is isomorphic to the csurface of a 6-point scheme P such that ¢(P) = 3o, P; where 6
distinct points Py, ..., P; are contained in an irreducible conic. The 21 lines of X, are
I5Z~ and l~z~j for 1 <i < j < 6. Note that the A; singularity is not a star point. Therefore
the star point of X, is determined by a triple intersection of the form (ZZ-]-, Dnk, Zmn). This
implies that the 6 points Py, ..., Ps satisfy l;; N lpk N1y # 0. This means that z € Dy
and W = D;. O

Recall that ¢ : (P*?)** — M is the quotient space with respect to the action of PGL(3)
on P9,

Corollary 3.4.9. ¢(AH;) = ¢(D1) U ¢(2A;). Moreover, the components ¢(Dy) and
#(2A,) contain the singleton s.

Proof. Note that since ¢ : (P*?)** — M is a good quotient, the sets ¢(D;) and ¢(2.4;)
are closed. The first conclusion follows from the proposition.

Since 24, C 245, we have s € ¢(2A;).

Let P € K. By definition, we have ¢(P) = 2?21 P; where 6 points Py,... , Ps are
contained in an irreducible conic and l15Ni34Niss = {O}. Consider the quadratic trans-
formation ¢ with respect to Py, Ps, Ps; we see that the 6-point scheme ¢(P) consists of 6
distinct points @1, ... , Q¢ such that (s, @4, Qs are collinear and QQ1Q>2NQ3Q1NQ5Qs =
{¢(O)} (see Figure 3.14).

Consider a family in D; given by fixing 5 points ()s, ... , ()¢ and moving (); on the
line Q20(0), where ©(0) = Q3Q4 N Q5Qs. When @ coincides with the intersection
point of Q2¢(0) and Q3Q)5, we get a 6-point scheme whose csurface is isomorphic to a
surface with exactly one Ay singularity. This implies that s € ¢(D;). O
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Qs \Qz

Figure 3.14: 6-point schemes giving points in D,

Proposition 3.4.10. Let X be a semi-stable cubic surface. Any star point of X is a
proper star point.

Proof. Let P be a star point of X. The result is clear if P is formed by a triple
intersection whose lines are of multiplicity 1. If P is an A, singularity, then the result
follows from (3.4.5). Consider the case X has two A; singularities. Let d be the line
containing two A; singularities. Let (2d,1) be the triple intersection which factors into
2d and another line [ on X. Suppose that P = dN, then the result follows from (3.4.3).
Consider the case that X has at least two A, singularities and P is a point in the
line connecting two A, singularities. We only consider the case that P is not singular.
Choose coordinates such that X is given by the polynomial (see [B-W], p. 249):

2 2 3
Fy = x3x921 + xl(alxl + asx1T0 + a3x2) + x5;

moreover, if X has another singularity then the point (0 : 1 : 0) is a multiple point of
Vp2(zo, f3) where fs = x1(a17? + ayx179 + a3x3) + x5. The surface X contains two A,
singularities, namely S; = (0:0:0:1) and S =(1:0:0:0). The line d = V(x1,x2)
contains two A, singularities. Let P = (\,0:0: 1) € d where A # 0.

Consider the family given by

F, = z3(zoz1 + Atx%) + xl(alx% + a9x1T9 + agac%) + xg - txoxg, (3.9)

where t € k . Let fi = zozi + M3 and fi = z1(a12? + 27172 + a373) + 25 — twoxs. For
t # 0, the polynomial f} has rank 3. Consider P = Vp2(f%, f). We see that the line
Vpa(z1) is tangent to Vp2(fL) and Ve2(f%) at (1:0:0). Moreover (1:0:¢) € V(zy, f2).
This implies that the point (1:0: 0) is a double point of V/(f1, f). Other points of P
are determined by (—Atb? : 1 : b) where b is a solution of the following equation

a1 + apTy + aszs 4+ x5 — My = 0. (3.10)

The above equation has a multiple solution for an infinite number of values of ¢ if and
only if (a1, as) = (0,0).

(i) If X defines a point in 2.4,. This is equivalent to say a? —4a;ay # 0. Except for a
finite number of values of ¢, we see that P has only one double point. This means
that (3.9) defines a family I'; in 2.4;. Each corresponding cubic surface X; of any
element in T'; consists of two A; singularities, namely S; = (0 : 0 : 0 : 1) and
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So=(1:0:0:1). We see that H = V(1) N X; = 2d + l;, where d = V (1, x2)
and l; = V(z1, Mz3 + x9 + tzg). The surface X; contains a proper star point
Po=(\A:0:0:1)=dnl;. When the family I'; gives a specialization to X,
the sections of A; singularities contain the A, singularities of X,. Moreover, the
section of proper star points over I'; contains P = (A:0:0: 1) in Xj.

(ii) If X defines a point in A;2A45 and S3 = (0:1:0:0) is the A; singular point of
X. It is equivalent to say (ai,as) = (0,0) and az # 0. We see that (3.10) has one
double solution at x5 = 0 and two other solutions with multiplicity 1 except for
a finite number of values of ¢. This means that (3.9) defines a family I'; in 3A4;.
Each element in I'; corresponds to a surface X; consisting of three A; singularities,
namely Sy = (0:0:0:1),S,=(1:0:0:0) and S3 =(0:1:0:0). We see that
H =V(zy) N X; = 2d + Iy, where d = V(x1,22) and l; = V (21, Atzs + 2o + txp).
The surface X; contains a proper star point P, = (A:0:0:1). When the family
I'; gives a specialization to X, the sections of A; singularities S; and Sy contain
the two A, singularities S; and S, respectively of X,. Moreover, the section of
proper star points over I'; contains P = (A:0:0: 1) in Xj.

(iii) If X defines a point in 3A, and the third A, singularity is S3 = (0:1:0 : 0).
This means that a; = a; = a3 = 0. It is clear that (3.9) defines a family T,
in 24;A,. Each corresponding surface X; of an element in I'; contains two A;
singularities, namely S; = (0 : 0 : 0 : 1),S2 = (1 : 0 : 0 : 0) and one A,
singularity at S3 = (0 : 1 : 0 : 0). The surface X; contains a proper star point
P, = (A:0:0:1). When the family I'; gives a specialization to Xy, the
sections of A; singularities S; and Sy contain the two A, singularities S; and Sy

respectively of X,. Moreover, the section of proper star points over I'; contains
P=(A:0:0:1)in X,.

This completes the proof. O

B.2. On the boundary of H2(3)

Recall that H2(3) is the subvariety of P! — A whose corresponding cubic surfaces contain
at least one star-Steiner set. The set H2(3) generically consists of the points correspond-

ing to non-singular cubic surfaces with exactly 3 star points which are collinear.

Proposition 3.4.11. The set 3A; is contained in the closure of HQ(?’). Consequently,
the 3 star points on 3 lines of multiplicities 4 of a cubic surface corresponding to any
point of 3A; are collinear.

Proof. Let © € 3A;. We know from the previous section that the corresponding sur-
face X, can be considered as the csurface of some 6-point scheme Q consisting of 6
distinct points @1, ... ,Qs such that Q1,Qs, Qs as well as Q3, @5, Q2 and Q4, Qs5, Qs
are collinear; moreover (1 ¢ QQ2Q)4 (see Figure 3.15).

Consider a family of 6-point schemes P = 2?21 P; where P, = Q; for i € {2,3,4,6}
and P;, Ps move on the line Q5 such that P,Q3 N Q4P N Q2Q¢ # 0. Except for a
finite number of positions, each position of (P;, Ps) gives a 6-point scheme such that

its csurface is isomorphic to a cubic surface in H2(3), see Chapter 2, Section 2.3. This
gives a family in HS. When P, = Q; then P5 = Q5. This implies that z € AHY). O
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Figure 3.15: 6-point schemes giving points in 3.4;

Corollary 3.4.12. The closure of 3A; in (P*?)* is an irreducible component of AH§3).

Lemma 3.4.13. Let x be the generic point of an irreducible component of AH2(3). Then

Proof. Suppose that x € 2A4,. Let S1, S», S3 be the three star points of X,. By choosing
coordinates, we can assume that the corresponding cubic surface X, is isomorphic to
the csurface of a 6-point scheme Q such that ¢(Q) = 2?21 Q; where Qg, Q2, Q3 as well
as Qe, @4, Qs are collinear, and no 3 of the five points @, ..., Qs are collinear (see
Figure 3.11). The line QG contains the two singular points and has multiplicity 4. The
line [} intersects Qs but does not contain any sin%ular point. Note that the 9 lines of
3 star triples of a non-singular cubic surface in H23) are mutually different. Since the
line /16 has multiplicity 1, the line /15 does not contain any two of Sy, Sz, S3. So there
exists a star point formed by a triple intersection 7" whose lines are different from [yg.
From the configuration of lines on X, we see that the triple intersection 7" possesses 2
lines, each of them passes through one singular point of X,. A contradiction appears
from the fact that an A; singularity is not a star point. O

Definition: Let K; be the subset of (P?)* consisting of 4-tuple (P, P,, Ps, P;) such
that 4 point Py, P, P53, P, are in general position. Let

K, = {(P1,P2,P3,P4,P5) € (]PQ)5 | (P1, Py, P3, Py) € Ko; Ps € l19; Ps ¢ l34;

Ps 4P, Vi= 1,2};

B = {(P1, Py, Py, Py, Py, Ps) € (B)° | (Py, Py, Po, P, Ps) € K
116 N lg4 N l35 75 (0; l14 N l23 N l56 75 @} (see Figure 3.16 )
Let Dé?’) be the subset of P! consisting of all points such that each corresponding

cubic surface is isomorphic to the csurface of one 6-point scheme determined by some
6-tuple in Bé?’). It is easy to see that Dg?’) C A;.
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Py

Py P, P,

Figure 3.16: 6-point schemes giving points in Dé?’).

Proposition 3.4.14. The closure of D§3) 1s an irreducible component of AH§3).
Proof. First of all, we prove that Dé?’) is irreducible. The set K| is an open subset of
(P?)* so that it is irreducible. Each fiber of the projection p : K; — Kj is isomorphic
to an open set of P'. This implies that K, is irreducible. Since K; is isomorphic to
Bég), the set Bg)’) is irreducible.

Let

L= {(P,Fl,FQ,Fg,F4) | P e Bé?’); F; for 1 <1< 4is a cubic form in Ep},

U= {(P,Fl, Fy, Py, Fy) € L | {F\, Fy, Fy, Fy)} is a basis of LP}.

Consider the following diagram:

U 0511 L cl(o_s;ed B§3) % (I[J)Q)4

B

where p is the projection. The map ¢ is surjective and every fiber is isomorphic to
(P3)%. So L is irreducible. This implies that U is irreducible.

Let D; be the subset of B{® x P'® consisting of all pairs (P, z) where cubic surface
corresponding to x is isomorphic to the csurface of the 6-point scheme determined
by P. Given (P, Fy, F,, F3, F;) € U, the closure of the rational map from P? to P3
defined by the basis {F}, F», F3, F}} is a cubic surface in P>. We then have a morphism
7 : U — D; which is surjective. This implies that D; is irreducible. Consider the
projection Dy —» D§3) which is surjective. Consequently Dé?’) is irreducible.

Let z € D§3). The corresponding surface X, can be considered as the csurface of a 6-
point scheme P such that ¢(P) = Zle P; where (Py,...,Ps) € B§3). Fix P, P, Ps, P,
and let P3;, Ps move on the lines lo3, l5s, respectively such that lig N los N 35 # 0. We
obtain a family in H2(3) such that x is a specialization position. Moreover, we see that
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when P; = P; then P; moves to the intersection point of /16 and ls3. This gives a
6-point scheme whose csurface is isomorphic to a cubic surface with exactly one A,
singularity. For this, use a similar quadratic transformation as in Figure 3.20. O

Corollary 3.4.15. Let ¢ : (P'*)** — M be the quotient space with respect to the
action of PGL(3) on P'. Then ¢(AHSY) = ¢(DS) U $(3A;). Moreover, the com-
ponents QS(DS’)) and ¢(3A;) contain the singleton s.

Proof. By the end of the proof of the previous proposition, we see that the boundary of
Dé?’) contains a point of Ay. So s € ¢(D3). Since 3.4, C 3A;, we also have s € ¢(3A4;).

Let = be the generic point of an irreducible component W of ¢(AH2(3)). Suppose
that W # ¢(3A4;). By (3.4.13), we see that x € A;. By choosing coordinates, we can
assume that the surface X, corresponding to x is isomorphic to the csurface of a 6-point
scheme P where ¢(P) = 3°_, P, such that the 6 points P, ... , Ps are contained in an
irreducible conic. Since the singular point of X, is not a star point, the 3 star points of
X, are determined by 3 triple intersections (lij, lmn, lkn); (lims Lk, Inn) and (Lnk, lin, Uin),
where {i,7,m,n,h,k} = {1,2,3,4,5,6}. This implies that the 6 points Py,..., Fs in
PP? satisfy the corresponding conditions, namely li; N lyn Nlgn Z 0, Lin N Lk Nl # 0
and Uy, Nlp N, # 0. Consider the quadratic transformation with respect to P;, P, Py
then the image of P is a 6-point scheme Q where ¢(Q) = .0, Q; such that 6 points

Q1,...,Qs, up to a permutation of 6 letters, form an element of B§3). This implies

that W = ¢(D{Y). O

B.3. On the boundary of H2(2)

Recall that HQ(Q) is the subvariety of P consisting of the points whose cubic surfaces
contain (at least) two star triples with one line in common.

Definition: Let
B§2) = {(Pl, ..., P5,0) € (P*)° | P, Py, Ps, Py, Ps are in general position;
lo4 N I35 = {O}; the conic determined by P, ..., Ps are tangent to P;O at Pl},

see Figure 3.17 (a).

Note that each element in B§2) defines uniquely a 6-point scheme P such that
¢(P) = 2P, + 3.0_, P;, where the direction at the double point 2P, is determined by
P,0. Moreover, we know that the csurface of P has exactly two A; singularities. Let
D;z) be the subset of P! consisting of all points such that each corresponding cubic
surface is isomorphic to the csurface of one 6-point scheme determined by some element
of B§2). It is easy to see that Dg) C 2A;.

Let

Céz)z{(Pla--- ,PG)E(IP’2)6|R-#f’j‘v’i#j;l12ﬂl34ml567é(b;l14ﬂl23ﬂl567&(0;

Py, Py, P3, Py, P5, P are contained in an irreducible conic},

see Figure 3.17 (b))
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Let Eéz) be the subset of P'? consisting of all points such that each corresponding
cubic surface is isomorphic to the csurface of one 6-point scheme determined by some
6-tuple in 052). It is easy to see that E§2) C A;.

Figure 3.17: 6-point schemes of B§2) and 02(2) respectively

Proposition 3.4.16. The closures of DéQ) and EéQ) are irreducible components of
AHP.

Proof. Let P° be the projective space parameterizing the non-zero quadratic forms in
three variables. Let

Ky, = {(Pl, Py, P3, P,,) € (P?)* | Py, P,, P, P, are in general position};

K, = {(Pl,Pz,P?,,PLL,O,C) € (P*)°xP° | (P1, Py, P3, Py) € Ko; O € loy; O ¢ {Py, Py}

O ¢ ly3;C is the conic containing P;, P, P3, P, and tangent to P;O at Pl};

KQ: {(PlaP21P35P4aP5a01C) € (IP2)6XIP5 | (Pl,P2,P3,P4,0,C) GKl,P5 GCﬂP:;O}

It is clear that the set K| is irreducible. Every fiber of the projection p; : K1 — Kj is
isomorphic to an open set of P!. This implies that K, is irreducible. The projections
Ky — K| and Ky — BéZ) are isomorphisms. Therefore B§2) is irreducible.

Similarly, we prove that 052) is irreducible. For this, let

K; = {(Pl,PQ, Py, Py, P5,0,,0,) € (P)7 | P,,..., Ps are in general position;

lioNlgs = {01} liaNilag = {O2}; Ps € 0102};

K, = {(Pl,--- P, 01,0,,C) € (P?)" xP° | (P1,...,Ps5,01,0:) € Ks;

C is the conic determined by Py,...,Ps; Ps € CN 0102}.
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Consider the projection p : K3 — K. We see that every fiber is isomorphic to an
open set of P!. So Kj is irreducible. The projections K, — K5 and K, — C’éQ) are

isomorphisms. So 02(2) is irreducible.

By the same argument used in the proof of (3.4.14), we see that DS and E? are
irreducible.

Suppose z € D§2). The corresponding surface X, is isomorphic to the csurface of a
6-point scheme P, determined by an element (P, ..., P5,0) € Béz). Consider a family
of HQ(Q) given by 6-point schemes P such that ¢(P) = °¢_, P, where P; is a moving
point on the line PO (see Figure 3.17 (a)). This implies that 2 € AHS.

Let z be an element in E;Q) . The cubic surface X, corresponding to z is isomorphic
to the csurface of a 6-point scheme Py determined by a 6-tuple (Pi,...,Ps) in CéQ).
Consider a family of H2(2) given by 6-point schemes Q such that ¢(Q) = Z?Zl Q; where
Q; = P; for 1 <i <5 and Qg is a moving point on the line O;0, (see Figure 3.17 (b)).
This implies that = € AHQ(Q). O

Proposition 3.4.17. Let x be the generic point of an irreducible component W of
AHZ(Q). If x € Ay, then W = EéQ).

Proof. By choosing coordinates, we can assume that the surface X, is isomorphic to
the csurface of a 6-point scheme P such that ¢(P) = Z?Zl P; where 6 points Py, ..., Ps
are contained in an irreducible conic. Since the A; singularity is not a star point, the
two star points of X, are defined by triple intersections (lNZ-j, Zmn, l~kh) and (l~ij, ka, Znh)
where {i,j,m,n,h,k} = {1,2,3,4,5,6}. This implies that the 6 points Py,..., Fs in
P? satisfy the corresponding conditions, namely Lij NVl N lgn, # () and Lij Ve N, # 0.

Up to a permutation of 6 letters, the six points Py, ... , P define a 6-tuple in 052). This
means that z € E§2) and therefore W = EéQ). O

B.4. On the boundary of Hiﬁ)

Recall that H, iﬁ) be the subvariety of P — A parameterizing non-singular cubic surfaces,
each of them possesses a pair (S,7) where S is a star-Steiner set and 7" is another star
triple with exactly one line in common with S.

Proposition 3.4.18. The set 4A; is contained in the closure of Hiﬁ).

Proof. Let x € 4A,. By choosing coordinates, the corresponding surface X, is isomor-
phic to the csurface of a 6-point scheme P consisting of 6 distinct points P, ..., P
such that these points form a complete tetragon (see Figure 3.18, (a)). Consider the
quadratic transformation ¢ with respect to Py, Py, P,. We see that Q@ = ¢(P) where
c(Q) = 2Q1 + 2Q4 + Q2 + Qs such that @1, Q2, @3, Q4 are in general position and the
directions at (); and @4 contain @5 (see Figure 3.18, (b)).

Therefore the surface X, is isomorphic to the csurface of Q. Let C' be the conic
containing @1, @2, @, and being tangent to the directions at (); and (4. Consider a
6-point scheme P such that ¢(P) = 3-°_, Ps where P, = Q; for i € {1,2,4,5}, two
points P3, P are contained in C and P, P, N P,Ps N PsPs # () (see Figure 3.19).

Let P; and Ps move on the conic C such that PP, N P,Ps N P3P # . Tt is clear
that we have a family of cubic surfaces in Hiﬁ). When (P3, Ps) = (P1, Py), we get the

6-point scheme Q. This implies that z € AH. iﬁ). O
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Figure 3.19: 6-point schemes giving points in H, is)

Corollary 3.4.19. The closure of 4A; in (P*°)** is an irreducible component of AHL@.

Remark 3.4.20. We know that four A; singularities on a cubic surface in 4.4; form
a tetrahedron. Each edge of the tetrahedron contains one star point. Two star points
on opposite edges lie on another line of X, which has multiplicity one. So the 6 star
points of X lie on a hyperplane generated by the three lines of multiplicity 1.

Recall that ¢ : (P'?)** — M be the quotient space with respect to the action of
PGL(3) on P'.

Proposition 3.4.21. The set QS(AH_P) consists of two points, one is the singleton s
and another is the image of 44, in M.

Proof. Let K iﬁ) be the set consisting of all 6-point schemes P in general position such
that ¢(P) = 2?21 Ps where the conic Cs is tangent to l15 and ly5 at P, and P, respec-
tively; the lines l14, lo5 and [3¢ have one point in common (see Figure 3.19).

We know from the previous chapter that the blowing-up of P? at P € K iﬁ) is
isomorphic to a non-singular cubic surface in Hfs). Conversely, for any x € HLEG), the
corresponding cubic surface X, is isomorphic to the csurface of some 6-point scheme in
K9 Let P € K%, Fix Py, P, P,, P; and let Py, Ps move on the conic Cs such that
P3 Ps contains the intersection point of /14 and lo5. Except for two positions determined
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when P3Py = ly; and P3P = l14, the 6 points Py, ... , Ps define 6-point schemes in Kf).
This defines a surjective morphism from an open set of P! to ¢(H. is)). This extends to
a surjective morphism & : P! — ¢(H§6)). It is clear that when P3P; = l14, we get a
point #; € P! such that £(t;) = ¢(4A;) (see Figure 3.18, (b)). When PsP5 = Iy, we
get a point t, € PL. The point £(f,) corresponds to the csurface of a 6-point scheme
Py such that ¢(Py) = 2P, + Py + Py + P3 + Ps + Ps where P», P3, P5 are collinear (see
Figure 3.20, (a)).

Qs
Q4
.Pl Ql
N B
2! Py 5 N
‘P 0 Q2 Qs Qs

Figure 3.20: 6-point schemes giving points in A,

We prove that the csurface of Py is isomorphic to a cubic surface in Ay. For
this, consider the quadratic transformation ¢ with respect to P;, P,, P,. We see that
Qo = ¢(Py) consists of 6 distinct points Q1, ..., Qs such that @1, Q4, Qs as well as
@2, Qs3, Qs are collinear (see Figure 3.20, (b)). As we know, the csurface of Qg is
isomorphic to a cubic surface with exactly one A, singularity. O

Since Hf) C HQ(Q), we have:

Corollary 3.4.22. The set ¢(AH2(2)) contains the singleton s.

B.5. On the boundary of Hf)

Recall that H f) is the subvariety of P! — A parameterizing non-singular cubic surfaces,
each of them possesses a pair (S,7) where S is a star-Steiner set and 7" is another star
triple with all three lines in common with S.

Recall that N = PGL(3)\(P*)*. We know that M = N U {s}. Let

B = {(P1, ..., Ps,0,) € (P*)% | P, P, P3, P, are in general position ;

lioNilza ={01}; Ps € lisNilos; Ps € 1230P501},

see Figure 3.21 (a). Note that each element in Bf) defines uniquely a 6-point scheme
P such that ¢(P) = Z?:Q P,. Moreover, we know that the csurface of P is isomorphic
to a cubic surface with exactly three A; singularities. Let fo) be the subset of P*
consisting of all points such that each corresponding cubic surface is isomorphic to the
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(4

Figure 3.21: 6-point schemes of B, ) and C’f) respectively

csurface of one 6-point scheme determined by some element in Bf). It is easy to see

that DY c 34,.
Let

Cf) = {(P1, ..y Ps,01,0,) € (P*)° | Py, P, P, P, are in general position ;

lio Nilza Nlsg = {O1};li3 N las Nlsg = {Oa};l1a N lzg Nlss # O; Ps € 523},

see Figure 3.21 (b). Each element in C'f) defines uniquely a 6-point scheme P such that
¢(P) = 320, P.. Moreover, we know that the csurface of P is isomorphic to a cubic

surface with exactly one A; singularity. Let Ef) be the subset of P consisting of all

points such that each corresponding cubic surface is isomorphic to the csurface of one
6-point scheme determined by some element in C’f). It is easy to see that Ef) C A;.

Proposition 3.4.23. The closures of Dl(;l) and E§4) in (P9)% are irreducible compo-
nents of AHf).

Proof. Let Ky = {(Pl, Py, P3, Py) € (P?)*| Py, P,, Ps, P, are in general position}. Con-
sider the projection p : Bf) — Ky. We see that p is an isomorphism. So Bf) is
irreducible. Similarly the projection Cf) — K is an isomorphism. So the set Cf) is
irreducible. By the same argument used in the proof of (3.4.14), we see that Df) and
Ef) are irreducible.

Let z € fo). By definition, the surface X, is isomorphic to the csurface of a 6-point

scheme P determined by an element (P, ... , Ps, O1) of Bf). Fix 4 points Py, P, P, P,.
Let l13 N 124 = {02} Let Pg,Pg move on the line 0102 such that l45 N 136 N l12 7’é @
Except for a finite number of positions of (Pf, PY), the 6 points Py, ..., Py, P}, P} form
a 6-point scheme P such that the csurface of P is isomorphic to a cubic surface in H f).
We obtain a family in H F). It is clear that x is a specialization position of this family.

Similarly, if x € Ef), we consider a family defined as above. The point x is a
specialization position which is determined when lo3 N 0105 = {P5}. O
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Corollary 3.4.24. The set ¢(AH§4)) N N consists of two points which are the image
of fo) and Ef).

Proof. Since dim H f) = 16 and the sets Dj, Ef) are irreducible, the image of Df) as
well as Ef) is one point in M. Let z € H f). Suppose that z is stable. It is sufficient

to prove that = € Dz(f) orzr € E£4). The corresponding cubic surface X, contains 4 star

points Si, ... ,Ss. Note that there exist 3 star points in {Si, ..., S} corresponding to
a star-Steiner set. Therefore, we can apply the same argument as in (3.4.13) to show
that z ¢ 2./41

Suppose that z € A;. We can assume that the surface X, is isomorphic to the
csurface of a 6-point scheme P such that ¢(P) = E?:i P; where 6 points P, ..., Ps are
contained in an irreducible conic. Since the A; singularity is not a star point, the 4 star
points of X, are determined by star triples S; = (Zij,imk, Znh), Sy = (Zih, Linns l}k), S; =
(Zjn, Lim, Zkh) and T = (l~z~j, L Zkh) Note that the triple 7" has 3 lines in common with
3 triples S1, So, S3. This implies that the 6 points P, ... , Py satisfy the corresponding
COnditiOIlS, namely lij N lmk N lnh 7é (Z), lih N lmn N ljk 7é @,ljn N lzm N lkh 7£ (Z) and
lij Nl N g, # 0. Consider the quadratic transformation with respect to P;, P, Py
then we see that the image of P is a 6-point scheme Q such that ¢(Q) = S0, Q; where
the 6 points )1, ... ,Qg, up to a permutation of 6 letters, form an element of C’F). This
implies that x € Ei4).

If + € 34;. We can assume that the surface X, is isomorphic to the csurface
of a 6-point scheme P such that ¢(P) = 2?21 P; where P, P3, Ps are collinear, the
points P, Py, Ps are collinear, the points Py, Ps, Ps are collinear and Ps ¢ PP, (see
Figure 3.21 (a)). Let Sy, S2,Ss be the three star triples of X, which correspond to 3
star triples in a star-Steiner set. Let 7' be another star triple of X, which has 3 lines
in common with Si,5,,53. The surface X, has 3 lines of multiplicity 3. They are
Py, Py and Ps. The surface X, has 3 star points formed by triples T} = (2]52, l12), T =
(2Ps,134) and T3 = (2P;,l55). Suppose that 7" is one of these three star triples, say
T = (2]52, l~12). Since T" has 3 lines in common with star triples Si, S, S, we see that
P, is contained in another star triple. It is impossible since any A, singularity is not a
star point. This means that T ¢ {T1,T5,T3}. There exists a unique triple in X, which
is different from 7T} for 1 < i < 3 and able to form a star point, namely (12, l34, Is6).
This implies that the 6 points Py, ... , Ps satisfy lio NI34 Nlss # (. This means that the
6 points P, ..., Ps; define an element in Bi4). Therefore x € Ef). O
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Samenvatting

Een niet-singulier kubisch oppervlak bevat 27 lijnen. Dit is een klassiek
onderwerp in de wiskunde. De configuratie van deze 27 lijnen is een
fascinerende structuur. F. E. Eckardt onderzocht in 1876 niet-singuliere
kubische oppervlakken waar drie lijnen op het oppervlak door één punt
gaan; een dergelijk punt noemen we een sterpunt op een kubisch opper-
vlak (het wordt ook wel een Eckardt punt genoemd).

Een kubisch oppervlak wordt gegeven als nulpuntenverzameling van een
homogeen polynoom in 4 variabelen van graad 3. Een dergelijke veelterm
heeft 20 coéfficienten. Zo zien we dat P'° een parametrizatie geeft van de
verzameling van alle kubische oppervlakken. In Hoofdstuk 2 bestuderen
we voor elk natuurlijk getal k de deelvariéteit Hj, van P'? die gedefiniéerd
wordt als de verzameling van alle niet-singuliere kubische oppervlakken
met tenminste k sterpunten. De stratificatie verkregen door de Hy wordt
beschreven.

Een kubisch oppervlak kan worden verkregen door het opblazen van 6
punten in een projectief vlak. De configuratie van de 27 lijnen op dat
oppervlak kan eenvoudig en elegant worden afgelezen uit eigenschappen
van de configuratie van die 6 punten. Het hele proefschrift wordt gedacht
vanuit de structuur van 6-punt schema’s in P? en het daardoor
gedefiniéerde kubische oppervlak.

Vervolgens bestuderen we in het derde hoodstuk van dit proefschrift
singuliere kubische oppervlakken, moduli-ruimten daarvan, de configu-
ratie van lijnen op een kubisch oppervlak, en de “multipliciteit” van een
lijn op een (singulier) kubisch oppervlak. Hierdoor krijgen we inzicht in
eigenschappen van de rand van de Hy in een compactificatie, van multi-
pliciteiten van drie-raakvlakken aan semi-stabiele kubische oppervlakken
en de relatie daarvan met corresponderende 6-punt schema’s.
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