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Introduction

The moduli spaces of p-divisible groups with a PEL-type structure have recently at-
tracted considerable attention. One reason for this interest is the search for good integral
models of Shimura varieties. Another one is a wish to have a better understanding of
the moduli of abelian varieties. This thesis attempts to add to the knowledge of the
structure of these moduli spaces.

Our moduli spaces are obtained by looking at those p-divisible groups that possess
a given extra structure, which can be a polarization, a ring of endomorphisms and/or a
�xed level structure (whence the PEL abbreviation). As Kottwitz has shown ([18], x5),
if this extra structure is \prime-to-p", the resulting deformation functors are smooth
over the base. If not, the spaces generally become singular. These singularities have
been studied in many cases; see for example Deligne-Pappas [6], Rapoport-Zink [33]
and Pappas [32] for the rami�ed ring of endomorphisms, Norman [27], de Jong [17] and
Crick [5] for inseparable polarizations and Chai-Norman [4] for the p-level structure.

One of the diÆculties in such studies is a lack of deformation theory of p-divisible
groups, which would be both general enough to work over an arbitrary base and simple
enough to do all the necessary computations. The crystalline approach (Messing [23];
Berthelot, Breen, Messing [2]) and that of Fontaine [10] have a disadvantage that they
work only for divided power extensions. Consequently, they directly allow to determine
the moduli space only in the cases of not too high rami�cation (cf. Norman [27]). On
the other hand, the Cartier theory or the theory of displays (Norman-Oort [28], Zink
[40]) does work over an arbitrary base. However, these theories require computations
in �-linear algebra, which are usually quite diÆcult.

A possible way out is to use the so-called local models. The idea is to �nd, �etale-
locally, a non-canonical isomorphism between the moduli space that one is interested
in and a moduli space of a certain linear algebra problem. This has the advantage of
allowing explicit computations. It is the approach used in [6], [17] and [33] for speci�c
moduli problems. The unifying idea is that such an isomorphism is supposed to exist,
whenever the deformation data in question is rigid on the Dieudonn�e modules. Our
main goal is to give this idea a precise formulation and prove the existence of such an
isomorphism (Theorem 4.3.8). To illustrate the possible applications we present some
examples in Chapter 5.

Fix a perfect ground �eld k of characteristic p> 0 and a complete Noetherian local
ring � with �=m�

�= k . Since we are interested primarily in the \very local" structure
of the moduli spaces, we formulate our deformation problems in terms of functors on
the category Art�, Artinian local �-algebras with residue �eld k.

For example, letG=k be a p-divisible group and �x a �nitely generated Zp-subalgebra
O � End(G). For simplicity take �=W =W (k), the ring of Witt vectors of k. One
can de�ne the (covariant) functor

Def(G;O) : ArtW �! Sets ;
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which associates to a ring A2ArtW the set of pairs (G=A;O�End(G)) up to iso-
morphism. Here G=A is a deformation of G=k, a p-divisible group given together with
an identi�cation G 
A k�=G. As for the inclusion O � End(G), we require it to reduce
to the chosen one on G. In other words we are interested in those deformations of G
which inherit the given O-action. It is not diÆcult to show that the functor Def(G;O)
is pro-representable (4.3.5). Since Def(G) is well-known to be pro-represented by the
ring W [[t1; :::; td]] with d = dimG dimGt, it follows that Def(G;O) is pro-represented
by a ring of the form

U = W [[t1; :::; td]]=J

for some ideal J . We use here the rigidity of morphisms, which implies that the forgetful
map Def(G;O)!Def(G) is an inclusion of functors. The question is how to determine
the pro-representing ring U .

Associated to deformation G=A of G=k there is a �ltration of the Lie algebra of the
universal extension of G (cf. Messing [23], Chapter IV),

V G �MG :

The A-modules V G and MG are functorial in G and the pair V G �MG deforms (in
the obvious sense) the corresponding pair V G�MG for G. Further, if G admits an
O-action, then V G and MG are O-modules. So there is a natural transformation of
deformation functors (see 4.1.4, 4.3.1 for de�nitions)

Def(G;O) �! Def(V G �MG;O) :

Thanks to the crystalline theory, we know that the deformation behaviour of the uni-
versal extension �ltration determines, to a certain extent, that of G. Let us restrict
our functors to the category ArtW;pd of those A 2 Art� for which the kernel of the
structure map A ! k has nilpotent divided powers. Then the MG's form a crystal ;
in other words, for any A2ArtW;pd and G1;G2=A deforming G=k, there are canonical
isomorphisms

MG1 �=M
W A �= MG2;
whereM=D(G) is the covariant Dieudonn�e module of G. By functoriality, everything
is compatible with the O-action. Hence there is a canonical isomorphism of functors

Def(G;O) �! DefM(V G � MG;O) : (1)

Here DefM(V G � MG;O) is the rigidi�ed version of Def(V G � MG;O); an element
of DefM(V G � MG;O)(A) is an O-stable �ltration of �nite free A-modules VA � MA

which deforms V G � MG and an isomorphism

MA
�=M
W A ;

compatible with the O-action.
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Unfortunately, a canonical isomorphism such as (1) does not exist on the full cat-
egory ArtW (cf. 4.3.10). Still, one can consider the following diagram of natural trans-
formations of functors on ArtW :

Def(G;O) ��������> DefM(V G �MG;O)
q1 & . q2

Def(V G �MG;O) .

Assume that the ring O has the property that the moduleM is rigid . By this we mean
that any deformation of M
W k to a ring A 2 ArtW is isomorphic to M
W A, as
an O-module. Then one can expect every element of Def(V G � MG;O) to be in the
image from DefM(V G �MG;O). Moreover, by crystalline theory, the same argument
should hold for the functor Def(G;O). Indeed, we will show that the transformations
q1 and q2 are formally smooth (4.3.8, 4.4.1).

The consequence is that there is a non-canonical isomorphism (dotted arrow in the
above diagram),

Def(G;O) �= DefM(V G �MG;O) ; (2)

compatible with the projections to Def(V G�MG;O). This is clear if the functor
Def(V G�MG;O) is pro-representable. Then the formal smoothness of q1 and q2 im-
plies that both the pro-representing rings of the functors above are formal power series
over the pro-representing ring of Def(V G�MG;O). By comparing the tangent spaces
(crystalline theory again), it follows that the isomorphism (2) indeed exists. In fact,
Def(V G�MG;O) is usually not pro-representable. However, a general comparison
theorem (1.5.3) for formally smooth extensions implies the isomorphism (2) exists any-
way.

Several comments are in order.
First, one has to determine what is the condition on the ring O which guarantees the

required rigidity. It turns out, that whenever O is a hereditary (e.g. maximal) order in
a semi-simpleQp-algebra, the Dieudonn�e moduleD(G) is a projective O
ZpW -module
(4.4.1, part 1) and, hence, satis�es the rigidity condition (4.4.1, part 2).

Second remark is that the functor Def(V G �MG;O) is of interest in itself. In fact,
let

�� : O �! End(TG)

be the tangent space representation of O. Then it follows from our rigidity assumption
that the natural map

Def(V G �MG;O) �! Def(��)
VA �MA 7�! MA=VA

gives an isomorphism of functors (cf. the proof of Theorem 4.4.1). In view of this, the
formal smoothness of q1 means the following: a necessary and suÆcient condition to
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deform the pair (G;O) to a ring A 2 ArtW is being able to deform the tangent space
representation �� to A. Therefore, the geometric properties of the functor Def(G;O)
(
atness, smoothness etc.) can be read o� from those of Def(�� ).

This explains why in the search of good integral models of Shimura varieties, one
is bound to restrict the tangent space representation. Indeed, the minimal requirement
for these models is that they should be 
at over SpecW . However, the deformation
functor Def(�� ) is de�nitely not 
at in general; consider for example a supersingular
elliptic curve E with O=End(E). Then

Def(E;O) �= HomW (k;�)

is not 
at over SpecW . Kottwitz [18] has formulated a determinantal condition which
does imply 
atness in certain cases. In fact, Rapoport and Zink [33] have conjectured
that under this condition, all local models are 
at (in case O is a maximal order).
This was disproved by Pappas [32] in case O is a quadratic extension of Zp. He has,
moreover, conjectured 
atness under a modi�ed version of this condition. In any case,
as we have seen above, such a 
atness condition can be formulated purely in terms of
the tangent space representation. If one provides such a condition and shows that (the
hull of) the resulting restricted deformation functor Def 0(�� ) is 
at over SpecW , the
same holds for Def 0(G;O).

The �nal remark is that the proof of the existence of an isomorphism (2) has little
to do with the fact that we are looking at the case of endomorphisms. So we can prove
the main comparison theorem (4.3.8) for a rather general deformation data.

The structure of the manuscript is as follows. We refer to the introductions of the
chapters for a more extended outline.

Chapter 1 is dedicated to the in�nitesimal deformation theory in general. It can
be read independently of the rest of the thesis. Although in�nitesimal methods form
a basis of almost every deformation study, the basic statements and even de�nitions
(obstruction space, for instance) seem to have been undocumented until recently (see
[9]). So we decided to give a short consistent presentation of the basic results in the
theory. We also prove the comparison theorem for formally smooth extensions (Section
1.5) and discuss quotient functors (Sections 1.6{1.7).

Chapters 2,3 form preliminaries needed for the main results in Chapters 4, 5. Chap-
ter 2 is dedicated to the deformation functors of representations of R and of R-stable
�ltrations (Sections 2.2,2.3). The Hochschild cohomology groups which occur as tan-
gent and obstruction spaces to these functors are recalled in Section 2.1. The ring
representation case is similar to Mazur's study of group representations in [22], except
that Hochschild cohomology replaces group cohomology.

Chapter 3 recalls the basic structure theorems of maximal and hereditary orders
in semisimple algebras over a �eld K, which is complete with respect to a discrete
valuation. We give a simple extension of the result of Janusz [15] on base change of
hereditary orders in case of an in�nite base extension.
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In Chapter 4 we prove the main comparison result for the PEL-type moduli problems
of p-divisible groups. To present the result as general as possible, we de�ne the notion
of a deformation data (Section 4.2) and formulate the main theorem (Section 4.3) in
terms of it. As the theorem only applies when the deformation data is rigid on the
Dieudonn�e modules, there is an obvious question in which situations this condition is
satis�ed. For the deformation functor Def(G;O) this turns out to be the case whenever
O is a hereditary (e.g. maximal) order in a semi-simple Qp-algebra (Section 4.4); for
the functor deformation functor Def(G;O; �) when the order O is hereditary and �
is principal (Section 4.5). We show also how to reduce the more general deformation
problems to the case of Def(G;O) or Def(G;O; �) with � principal (Section 4.6). As
an illustration, we consider the case of the \p-chain" of p-divisible groups (Section 4.7).

In Chapter 5 we use the comparison theorem and the relation to the tangent space
representation to determine the pro-representing ring of the functor Def(G;O) in some
cases. We discuss the following examples:

1. O unrami�ed.

2. O=Zp quadratic, G arbitrary.

3. O = Zp[ h
p
�] and G of height h � 4.

4. O maximal order in a central division algebra over Qp and G arbitrary.

5. O arbitrary, G one-dimensional.

In case 1 we get the result of Kottwitz; case 3 gives back a local result of Drinfeld ([8],
Prop. 4.2) in case O is commutative. Case 4 generalizes the example of the so-called
special formal OD-modules ([33], 3.69). Finally we discuss the canonical liftability of
morphisms (Section 5.5).

Notations. We work over a ground �eld k which is arbitrary in Chapters 1{2 and
perfect of positive characteristic p in Chapters 4, 5. We denote by � a �xed complete
Noetherian local ring given together with an augmentation isomorphism �� : �=m�

��!k .
In Chapter 5 we let �=W =W (k), the ring of Witt vectors.

A ring by de�nition contains 1.
To denote the duals, V � is used for k-vector spaces in Chapters 1{2. From Chapter 4

on, we use the consistent notation Gt, M t etc. for the Serre duals of p-divisible groups,
A-linear duals for �nite free A-modules etc.

The symbol Homk stands for morphisms in the category of k-vector spaces and Hom�

for morphisms in Art�. The set of m�n matrices over A is denoted by Matm�n(A).
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1 In�nitesimal deformation theory

In this chapter we study in�nitesimal deformation theory, that is, properties of (co-
variant) functors of Artin rings. In our applications later, these will be deformation
functors of some kind. Let k be an arbitrary ground �eld and �x a complete Noetherian
local ring � with �=m�

�= k . Following Schlessinger [35], we work on the category Art�
of Artinian local �-algebras A given together with an isomorphism A=mA

�= k .
There are several points which make in�nitesimal deformation theory usually far

more accessible than a general moduli study on the full category of rings.
First, any surjection in Art� can be split into a �nite sequence of small surjections.

A surjection � :A!!A0 is small if mA annihilates I =ker � . In this case I is a �nite-
dimensional k-vector space. So any ring A2Art� , however singular and complicated,
can be obtained from the ground �eld k by a �nite sequence of extensions by k-vector
spaces. This often allows to reduce some questions in the study of (diÆcult) defor-
mation functors to (hopefully simpler) linear algebra. Consider, for example, a pro-
representable functor F :Art�!Sets, and take an element �0 2 F(A0). Then the size
of a �ber of the map F(A)!F(A0) above �0 is controlled by two �nite-dimensional
k-vector spaces, the obstruction space OF and the tangent space TF . If F is a defor-
mation functor of some kind, these are usually some kind of cohomology groups. In
practice they can often be determined, yielding some amount of information about the
functor in question.

Second, another attractive characteristic of working on Art� is the simple nature of
formal smoothness. While there exist plenty of smooth morphisms on the category of
rings (or schemes), the analogous in�nitesimal notion of formal smoothness is far more
restrictive. In fact, any formally smooth natural transformation of pro-representable
functors F !G is given in terms of the pro-representing rings by

G �! G[[t1; : : : ; tn]] �= F

for some n � 0. In particular the only formally smooth pro-representable functors on
Art� are the ones whose pro-representing ring is isomorphic to �[[t1; : : : ; tn]] for some n.

Third useful feature of Art� is that it is usually quite easy to determine whether a
functor is pro-representable. This is again in constrast with the diÆculties of solving the
analogous representability questions on the category of rings. Schlessinger's theorem
([35], Theorem 2.11) asserts that F :Art�!Sets is pro-representable if and only if F
commutes with �bre products,

F(A�B C) = F(A)�F(B) F(C) (3)

plus F(k) consists of one point and the tangent space TF is �nite-dimensional. More-
over, it is enough to test (3) when, say, C!B is a small surjection. This gives a
practically e�ective criterion to show that a functor is pro-representable.

It should be noted, however, that not all deformation problems give rise to functors
which are pro-representable. For example, very often one is led to study the functors
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which can be represented as quotients of a pro-representable functor by an action of
a formal group, such as dGLn for some n. These are not in general pro-representable,
although they do have a weaker property of possessing a hull. Hence it is natural to ask
whether the three points mentioned above generalize to a larger class of functors than
just that of the pro-representable ones. Roughly speaking, the goal of this chapter is
to give some answers to this question.

More precisely, our aim is threefold:
First, we axiomatize the notion of an obstruction space for an arbitrary covariant

functor F :Art�!Sets (Section 1.3). This follows the ideas of Artin ([1], 2.6). We
show (1.3.8) that the minimal obstruction space OF exists when F commutes with
products,

F(A�k B)
��! F(A)� F(B) :

This condition is satis�ed for most of the deformation functors which occur in practice,
since those can be usually represented as a quotient of a pro-representable functor by
a formal group action (1.7.3). In the studies of concrete deformation functors, the
technical point of the existence (and functoriality etc.) of an obstruction space is often
ignored. Note that very similar results to those presented here have been obtained
recently by Fantechi and Manetti [9].

Our second object of study is formally smooth natural transformations F !D where
D is not necessarily pro-representable. More precisely, given a diagram

Hom�(F1;�) = F1
f�! D g � F2 = Hom�(F2;�);

with f; g formally smooth, we ask ourselves how are F1 and F2 related. For example,
if D is pro-representable, it is clear that one of the rings F1; F2 is a formal power series
ring over the other. The same statement holds if D is only assumed to have a tangent
space (1.5.5). More generally, for an arbitrary D we prove a comparison theorem (1.5.3)
which relates F1 and F2 purely from the tangent space information. This comparison
theorem serves as a main tool for our study of deformation functors of p-divisible groups
in Chapter 4.

The third part of this chapter addresses a question whether a given functor can be
written as a quotient of a pro-representable one by a group action. If � is a group which
acts on a pro-representable functor F , it is easy to determine whether the question F=�
has a hull (1.6.2). Conversely, if D :Art�!Sets has a hull F !D , we show that D
can be represented as F=� for some � if and only if the natural map

D(A�B C) �! D(A)�D(B) D(C)

is surjective for all A!B C in Art�(1.6.3). We also conjecture the analogous
criterion for quotients by a formal group action (1.7.5).

To keep the presentation self-contained, we recall the basic facts about the category
Art� and Schlessinger's criterion (Sections 1.1, 1.2, 1.4).
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1.1 Artinian local algebras

Let � be a complete Noetherian local ring with residue �eld k and �x an augmentation
isomorphism �� : �=m�! k . In practice one often has either �= k (equal characteris-
tics case) or k perfect of positive characteristic and � the ring of Witt vectors of k.

De�nition 1.1.1. The category Art� consists of Artinian local �-algebras A together
with an augmentation isomorphism �A :A=mA

�= k . Morphisms in the category are
local homomorphisms of �-algebras, commuting with the augmentation. The set of
such homomorphisms is denoted Hom�(F;G).

Remark. Note that Art� has a �nal object (k with �k =id). Also note that every
surjection A!!A0 in the category has a nilpotent kernel, so it can be split into a
sequence

A = An !! An�1 !! � � � !! A1 !! A0 = A0

of small surjections in the sense of [31]:

De�nition. A small surjection (sometimes called an in�nitesimal extension) is a mor-
phism � :A!!A0 in Art� such that I =ker � satis�es mAI =0.

Remark. The kernel I of a small surjection is a module over A=mA= k . Hence it
is a (�nite-dimensional) k-vector space. Schlessinger's small extension ([35], 1.2) is a
small surjection with an additional property that this vector space is one-dimensional.
A small surjection (and, hence, any surjection in Art�) can be split into a sequence of
small extensions.

To study representability questions, one extends Art� to a larger category dArt�, of
which Art� is a full subcategory. The following well-known lemma (cf. [3], Chap. 9,
x2, No. 5, Lemme 3b) characterizes the rings of dArt�.
Lemma 1.1.2. Let F be a complete local �-algebra with F=mF

�= k . Then the follow-
ing conditions are equivalent.

1. The vector space mF=(m
2
F
+m�F ) is �nite-dimensional.

2. The ring F is Noetherian.

3. For all n� 1 we have F=mn
F
2 Art�.

4. The algebra F is isomorphic to one of the form �[[t1; :::; tn]]=J .

Proof.
2) 1. If mF =(a1; :::; an)F , then every x 2 mF can be written x= r1a1+ � � �+ rnan .
Taking ri modulo mF and ai modulo m

2
F
, we see that ai form generators for the F=mF -

vector space mF=(m
2
F
+m�F ).

4) 2. Since � is Noetherian, �[[t1; :::; tn]] is Noetherian as well.
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1) 4. Let a1; :::; an be representatives of a basis for mF=(m
2
F
+m�F ). De�ne a �-

algebra homomorphism �[[t1; :::; tn]]!F by letting ti 7! ai. We claim that it is surjec-
tive. In other words, for every x2F there is f 2�[[t1; :::; tn]] with f(a1; :::; an)= x. To
prove this, we construct inductively a compatible system fk 2�[[t1; :::; tn]] with total
degree of fk at most k and such that fk(a1; :::; an)� x mod mk+1

F . The constant f0
exists since �=m� ! F=mF is an isomorphism.

Now assume that fk�1 is constructed. Let y= fk�1(a1; :::; an)� x2mk
F
. Firstly, the

multiplication map

(mF=m
2
F
)
k � � � 
k (mF=m

2
F
) �! mk

F
=mk+1

F

is surjective (by de�nition of mk
F
). Secondly, mF=m

2
F
is generated, as a k-vector space,

by the ai and the image of �. So there is a homogeneous polynomial gk(t1; :::; tn) of
degree k with coeÆcients in � such that gk(a1; :::; an)� y mod mk+1

F
. Here we again use

that the composition �!F! k is surjective. Now fk= fk�1+ gk satis�es the required
property.
3) 1. Use that F=m2

F
(and hence mF=m

2
F
) has �nite length as a �-module.

2) 3. The ring F=mn
F
is Noetherian, local and its maximal ideal is nilpotent. It follows

that F=mn
F
is Artinian ([26], 9.1).

De�nition 1.1.3. The category dArt� consists of Noetherian local �-algebras A given
together with an augmentation isomorphism �A :A=mA

�= k . Morphisms in the category
are local homomorphisms of �-algebras, commuting with the augmentation. Again we
denote by Hom�(F;G) the set of such homomorphisms.

Remark. Our Art� is Schlessinger's C� and our dArt� is Ĉ� ([35], 1). Note that by the
above lemma the condition that A is Noetherian in Schlessinger's de�nition of Ĉ� can
be removed, since it follows from the other assumptions.

1.2 Pro-representable functors

This subsection describes the basic properties of pro-representable functors F :Art�!
Sets . We de�ne the obstruction space (1.2.4) and show how the behaviour of F under
small surjections is determined by the tangent and the obstruction space (1.2.7). All
results presented here are well-known, but we recall them to keep the presentation
self-contained and due to the lack of suitable reference.

Remark. Let F :Art�!Sets be a covariant functor. Then F can be canonically
extended to a functor dArt�!Sets by letting

F(G) = lim � F(G=m
n
G
); G 2 dArt� ;

and similarly for morphisms.
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De�nition 1.2.1. A covariant functor F :Art�!Sets is said to be pro-representable
if the extended functor on dArt� is representable. In other words, F is pro-representable
if there is a complete Noetherian local �-algebra F with F=mA= k and

F(A) = Hom�(F;A) ; A 2 Art� ;

functorially in A. We will usually denote the pro-representing ring by the corresponding
Latin letter.

De�nition 1.2.2. For a complete Noetherian local �-algebra F with an augmentation,
de�ne the tangent space of F over � to be the k-vector space

TF =

 
mF

m2
F +m�F

!�
:

Here � denotes k-linear dual. Equivalently, TF =Der�(F; k), the set of �-linear deriva-
tions of F into k ([35], 1.0).

Remark 1.2.3. A homomorphism � :F!G induces a k-linear map d� :TG!TF .
It is easy to show that � is surjective if and only if d� is injective ([35], Lemma 1.1).
Note also that TF is �nite-dimensional by Lemma 1.1.2.

De�nition 1.2.4. Let F 2 dArt�. Let n=dimTF and write F = S=J with S=
�[[t1; : : : ; tn]]. This is possible by the proof of (1) 4) of Lemma 1.1.2. De�ne the
obstruction space OF of F over � to be the k-vector space

OF = (J=mSJ)
� :

Here � denotes k-linear dual.

Remark 1.2.5. It is easy to show that OF does not depend on the choice of a repre-
sentation of F as S=J . Moreover, OF is contravariantly functorial in F . Note also that
O(F )= 0 if and only if F is a power series ring over �. It is also clear that an inclusion
F !F [[t1; :::tm]] induces an isomorphism on the obstruction spaces.

Remark 1.2.6. If F is a complete Noetherian local ring and M is an F -module, then
x1; :::; xn 2M generate M if and only if their residue classes generate M=mFM as a
F=mF -vector space ([26], 5.1). In particular, J is generated by dimkOF elements.
So dimk TF is the smallest number of generators of F as a complete �-algebra and
dimk OF is the smallest number of relations.

The following theorem describes the behaviour of F =Hom�(F;�) under a small sur-
jection A!!A0 with kernel I. The vector space OF 
k I contains the obstruction ele-
ments to lifting points of F under a small extension with kernel I. The space TF 
k I
measures how many liftings there are, provided the obstruction is zero.
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Theorem 1.2.7. Let F �=Hom�(F;�) be a pro-representable functor from Art� to
Sets. Let � :A!!A0 be a small surjection in Art� with kernel I. Take �0 2F(A0).
Then

1. There exists an element �2OF 
k I whose vanishing is necessary and suÆcient
for the existence of � 2F(A) such that �(�)= �0 .

2. The obstruction element is functorial: assume given a commutative diagram

A
'�! B

�

??y ??y �

A0
'0�! B0 .

where B!!B0 is a small surjection with kernel K. Then the obstruction element
�2OF 
k I of (A!!A0; �0) is related to the corresponding obstruction element
�2OF 
kK of (B!!B0; '0(�0)) by the formula �= (1
')�.

3. If �=0, then the set of all � 2F(A) with �(�)= �0 is a principal homogeneous
space under TF 
k I.

Proof. We consider �0 as a homomorphism F !A0 . Choose a surjection p :S=
�[[t1; :::; tn]]!F with kernel J as in De�niton 1.2.4.
1. De�ne a0i 2mA0 to be the images of ti under the composite morphism �f0 :S!F!
A. In order to lift �0 to a homomorphism � :F!A, choose arbitrary ai 2mA such that
�(ai)= a0i . This de�nes a �-homomorphism � :S!A by letting ti 7! ai .

If ker�� ker f0 , then � descends to a � :F!A. In general, however, � : J ! I
is non-zero. In any case, � vanishes on mSJ , and hence descends to an element �2
OF 
k I . Recall that I has a structure of a A=mA = k-vector space by the assumption
that mAI =0. The element � does not depend on the choice of ai. Indeed, a di�erent
choice ~ai= ai+ �i with �i 2 I gives a map ~� which is the same on J . This follows
from the fact that ImA=0 (so aiaj =~ai~aj etc.) and J �m2

S +m�S . The element
�2OF 
k I is the required obstruction.
2. Immediate from the construction.
3. Let �; ~� :F!A be two liftings of �0 :F!A0 . Consider the homomorphism (of �-
modules) t= ~�� � :F!A. Then Im t� I and t(m�F )= t(m2

F
)= 0, since ImA=0. So

t 2 TF
k I. Conversely, given � and t2TF 
k I , the �-module map ~�= �+ t is easily
veri�ed to be a �-algebra homomorphism F!A.

Remark. In practice, given a functorF , one can often prove thatF is pro-representable
(e.g. using Schlessinger's criterion, see Theorem 1.4.3). To determine the pro-represen-
ting ring F of F is, however, generally much harder. It is often possible, though, to
determine TF and some vector space V containing OF in terms of F itself. In some
cases, for example if V =0 (and hence OF =0), this suÆces to determine the ring F .
Otherwise, one has at least the following dimension estimate.
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Lemma 1.2.8. For any F 2dArt� ,
dim� + dimk TF � dimkOF � dimF � dim� + dimk TF : (4)

Proof. A Noetherian local ring has �nite (Krull) dimension ([26], 9.4{9.6), so all the
terms of (4) are �nite. The second inequalitity follows from the fact that F can be
written as �[[t1; :::; tn]]=J with n=dimk TF (cf. 1.1.2). For the �rst inequality, use
that J is generated by dimk OF elements (by 1.2.6) and use ([26], 9.7)

dimF=(x) � dimF � dimF=(x) + 1; x 2 mF :

This proves the lemma.

Finally, let us recall the notion of formal smoothness:

De�nition 1.2.9. A natural transformation of functors F !D is said to be formally
smooth if for every surjection A!!A0 in Art�, the natural map

F(A) �! F(A0)�D(A0) D(A)
is surjective.

Remark 1.2.10. If both F and D are pro-representable, then the formal smoothness
of F !D is equivalent to the fact that the corresponding map D!F of �-algebras
makes F into a formal power series over D,

D �! F �= D[[t1; : : : ; tn]] :

See e.g. [35], Proposition 2.5(i). We will show later (1.5.3) that more generally, when-
ever F1;F2 ! D are formally smooth with F1;F2 pro-representable and D has a
tangent space, one of the pro-representing rings F1; F2 is a formal power series ring over
the other one.

1.3 The tangent space and the obstruction space

In this section we show how to de�ne the tangent space TF and an obstruction space
OF of a functor F which is not necessarily pro-representable. For the tangent space
this is well-known (cf. [35], Lemma 2.10). The de�nition of an obstruction space is
suggested by Theorem 1.2.7 and Artin's obstruction theory for a groupoid ([1], 2.6).

If F happens to be pro-representable, then both the tangent space TF and the
(minimal) obstruction space OF exist and coincide with those of the pro-representing
ring F (1.3.2,1.3.9).

We also show that the (minimal) obstruction space OF exists when F commutes
with products over k. This applies to most of the deformation functors which come
up in practice. Note, however, that the obstruction spaces which one gets in practice
(usually some cohomology groups) are rarely minimal. Our result 1.3.8 has been recently
obtained independently by Fantechi and Manetti ([9], 2.10, 2.11).
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Notation. For a �nite-dimensional k-vector space V and A2Art� we let A[V ]2Art�
denote the ring A � V with V 2=mAV =0 and the augmentation determined by that
of A. If A= k and V = k , we denote the resulting ring by k[�].

Remark. The association V 7! k[V ] embeds the category of �nite-dimensional k-vector
spaces as a full subcategory of Art�.

If V1 and V2 are �nite-dimensional k-vector spaces, then there are natural projections
k[V1�V2]! k[V1] and k[V1�V2]! k[V2]. Thus for any F , we have a map

F(k[V1 � V2]) �! F(k[V1])�F(k[V2]) : (5)

Remark. If the above map is bijective for any V1 and V2, then F(k[�]) has a structure
of a k-vector space given by (cf. [35], Lemma 2.10):

addition: The (k-linear) addition map k� k! k induces

� : k[�]�k k[�]! k[�]

and thus

TF � TF = F(k[�])� F(k[�]) = F(k[�]�k k[�])
F(�)�! F(k[�]) = TF :

k-action: The action of a 2 k on F(k[�]) is induced by the map � 7! a� on k[�].

De�nition 1.3.1. We say that F has a tangent space if (5) is bijective for all V1 and
V2. In that case we call TF =F(k[�]) the tangent space of F .

Remark 1.3.2. A pro-representable functor F =Hom�(F;�), has a �nite-dimensional
tangent space, since

Hom�(F; k[V �W ]) = Hom�(F; k[V ])� Hom�(F; k[W ])

and there are canonical k-vector space isomorphisms

TF = Hom�(F; k[�]) = Homk(mF=(m
2
F +m�F ); k) = TF :

De�nition 1.3.3. Let F :Art�!Sets be a covariant functor. An obstruction � is a
triple (A; I; �0) where A2Art� is a ring, I �A an ideal for which mAI =0 and �0 2
F(A=I). We say that � is trivial if there exists � 2F(A) such that F(A!A=I)(�)= �0.

De�nition 1.3.4. Let F :Art�!Sets be a covariant functor. We say that (V; o) is
an obstruction space for F if V is a k-vector space and

(I; A; �0) = � 7�! o(�) 2 V 
k I

is a rule which associates to an obstruction (I; A; �0) an element of V 
k I, satisfying
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1. (functoriality) If � = (I; A; �0
A
) and � = (J;B; �0

B
) and there exists a map

f :A!B with f(I)� J and F(A=I!B=J)(�0)= �0 , then

(1
 f) o(�) = o(�) ;

2. (vanishing)
� trivial () o(�) = 0 :

We will sometimes denote an obstruction space just by V , dropping o from the notation.

Remark 1.3.5. If (V; o) is an obstruction space and i : V �!� ~V an inclusion of k-
vector spaces, then we can let

~o(�) = (i
 1)(o(�))

and thus get an obstruction space ( ~V ; ~o). The requirement that i must be injective
follows from the vanishing condition of 1.3.4. If we weaken the vanishing condition by
replacing \ () " by \)", then any linear map i will do. In de�ning the notion of
a universal obstruction space we allow this larger class of pairs ( ~V ; ~o) as test objects.
This choice has an advantage that it gives the functoriality in F for free (cf. 1.3.7).

De�nition 1.3.6. We say that the obstruction space (V; o) for F is minimal or uni-
versal if it satis�es the following universal property: let ( ~V ; ~o) satisfy the functoriality
condition and the \)" part of the vanishing condition of 1.3.4. Then there is a unique
k-linear map V ! ~V which makes ~o factor via o.

Notation. If a universal obstruction space of F exists, we denote it by OF . This
makes sense as it is clearly unique up to a (canonical) isomorphism.

Theorem 1.3.7. The association O :F 7!OF gives a covariant functor from the cat-
egory of functors Art�!Sets which have a universal obstruction space to the category
of vector spaces over k.

Proof. We have already de�ned O on objects. To de�ne O on morphisms, let t :F!G
be a natural transformation of functors. Denote by (OF ; oF), (OG; oG) the universal
obstruction spaces of F and G respectively. Take an obstruction for F ,

� =
�
A; I; �0 2 F(A=I)

�
:

Let
l(�) = oG

�
A; I; t(�0) 2 G(A=I)

�
2 OG 
k I :

Clearly (OG; l) satis�es the functoriality axiom and the \)" part of the vanishing axiom
of 1.3.4. De�ne

Ot : OF �! OG
to be the factoring map of l which exists and is unique by the universal property of
OF . This de�nes O for morphisms. From the universal property it also follows that O
takes composition to composition, so O is a covariant functor.
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Remark. Clearly not every functor F has an obstruction space. The pro-representable
ones do (see 1.3.9), but for example the condition that F has a hull (see 1.4) alone does
not guarantee the existence of OF . The functors which arise in practice, however, can
be usually written as quotients of a pro-representable functor by a smooth formal group
action. Those satisfy the following condition which does imply the existence of OF (cf.
1.7.2, 1.7.3).

Theorem 1.3.8. Let F :Art�!Sets be a covariant functor. Assume that the natural
map

F(A�k B) �! F(A)� F(B) (6)

is bijective for all A;B 2 Art�. Then F has a universal obstruction space.

Proof. First note that F(k) consists of one element (take A=B= k ).

Consider the set S of tuples (A; I; �0; s) where �= (A; I; �0) is an obstruction for F
for which A!A=I is a small surjection and s : k�= I an isomorphism of W -modules.
By abuse of notation, we will denote such a 4-tuple again by �. As a set, OF is
supposed to consist of elements of S modulo equivalence, so we de�ne it this way:

Let �1=(A1; I1; �
0
1; s1) and �2=(A2; I2; �

0
2; s2) be elements of S. Denote A01=

A1=I1; A
0
2=A2=I2 . De�ne the di�erence �1��2 2S as follows. The product map

A1�k A2�!A01�k A
0
2 is a small extension whose kernel is a 2-dimensional k-vector

space, generated by �1 = (s1(1); 0) and �2 = (0; s2(1)). The map

A1 �k A2=(�1 + �2) �! A01 �k A
0
2

is a small surjection. De�ne an isomorphism u between k and the kernel of this small
surjection by letting u(1) = �2. Finally, de�ne �0 2 F(A0 �k B

0) to be the unique
element which maps to (�01; �

0
2) via 6. Let

�1 � �2 = (A�k B=(�1 + �2); (�1); �
0; u) :

Let

�1 � �2 () �1 ��2 is trivial :

It is easy to check that \�" is an equivalence relation. Moreover, the subtraction
operation de�ned above respects the equivalence and gives the set S=� a structure of
an abelian group. We let OF = S=� and give it a k-vector space structure by letting

� = (A; I; �0; � 7! s(�)); � 2 k� ) � �� = (A; I; �0; � 7! s(��)) :

It is easy to see that OF indeed becomes a k-vector space and that it satis�es the
required universal property.
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Theorem 1.3.9. Let F :Art�!Sets be pro-representable. Then the obstruction
space OF of the pro-representing ring F is the universal obstruction space for F .
Proof. Theorem 1.2.7 shows that OF is, indeed, an obstruction space for F . Recall
the construction: write F �=S=J ,

S �= �[[t1; :::; tn]]; J � m2
S
+m�S :

We let OF =Hom(J=mSJ; k), as a k-vector space. Given � = (I; A; �0), the element
o(�) is constructed as follows. Denote A0=A=I and let a0i= �0(ti). Then lift a0i ar-
bitrarily to ai 2 A. The homomorphism S!A de�ned by ti 7! ai maps J to I and
descends to a linear map J=mSJ ! I, hence an element of OF 
k I. We denote this
element by f(�).

It remains to prove that (OF; o) is universal. Since pro-representable functors com-
mute with �bred products, F has a universal obstruction space OF . By Remark 1.3.5,
the canonical map

i : OF �! OF

which exists by the universal property, is injective. Hence it suÆces to show that it is
surjective. Take '2OF , considered as a k-linear form on J=mSJ . Let I denote the
kernel of the composition of maps of W -modules

J �! J=mSJ
'�! k :

Then I �S is an ideal and we let A = S=I and A0 = S=J = F . The natural projection
A!!A0 is a small extension. Finally, the identity map F �! A0 gives an element
�0 2 F(A0). The triple

� = (I; A; �0)

is an obstruction for which o(�)='. Hence i(�)='. This shows that i is surjec-
tive.

Remark. In practice, if a F is a deformation functor of some kind, then often there
are (co)homology groups playing a role of tangent and obstruction spaces for F . This
is for example the case for deformations of group representations [22], Lie algebras,
subschemes of projective space, ring representations (Theorem 2.2.4), �ltrations (The-
orem 2.3.2), varieties, endomorphisms of p-divisible groups (4.3.4) and in many other
situations. Knowing the tangent and an obstruction space either helps to determine the
pro-representing ring (or a hull) of a functor itself, or at least to get some estimates on
its dimension. It should be noted, however, that one rarely knows that a given obstruc-
tion space is actually minimal. So such a computation can be very often used to show
that a functor is formally smooth, but does not help much in proving, for example, that
a functor is not formally smooth.
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1.4 Schlessinger's theory

For the sake of completeness, we recall the notion of a �bre product and state Schles-
singer's necessary and suÆcient conditions for a functor on Art� to be pro-representable
and to possess a hull. The results here are taken completely from Schlessinger [35].

De�nition 1.4.1. Let f :A!B and g :C!B be two morphisms in Art�. De�ne the
�bre product of A and C over B to be the ring

A�B C = f(x; y) 2 A� C j f(x) = g(y)g

with an obvious �-structure and augmentation to k.

Remark. The �bre product A�B C is the categorical �bre product in Art�. In fact,

Hom�(F;A�B C) = Hom�(F;A)�Hom�(F;B)
Hom�(F;C)

for any �-algebra F , not necessarily Artinian. In particular, pro-representable functors
commute with �bre products, in the sense of the following de�nition.

De�nition 1.4.2. We say that a functor F commutes with �bre products if for any
f :A!B and g :C!B , the natural map

F(A�B C)! F(A)�F(B) F(C) (7)

is bijective.

Remark. If F commutes with �bre products then, in particular, it has a tangent space
(cf. 1.3.1). For a pro-representable F the tangent space is, moreover, �nite-dimensional.
The converse to this due to Schlessinger:

Theorem 1.4.3. A functor F :Art�!Sets is pro-representable if and only if F(k)
consists of one element, F commutes with �bre products and has a �nite-dimensional
tangent space.

Proof. [35], Theorem 2.11.

Many of the geometrically interesting functors are not pro-representable. For instance,
the deformation functors of complete varieties, of group/ring representations and of
group schemes are in general not pro-representable. These, however, can often be
represented as quotient functors of a pro-representable functor by a group action of a
smooth formal group, usually some GLn. In particular, they satisfy a weaker condition
of possessing a hull. (For instance, see Theorem 2.2.4 for the case of ring representations
and [35], Prop. 3.10, 3.12 for the case of varieties.)
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Theorem 1.4.4. Assume a functor F (such that F(k) has one element) has a �nite-
dimensional tangent space. The following conditions are equivalent:

1. The map (7) is surjective for all A!B C in Art� (it suÆces to check this when
A!! B is a small extension).

2. There is a pro-representable functor G and a formally smooth map G!F which
is an isomorphism on tangent spaces.

3. There is a pro-representable functor G and a formally smooth map G!F .
Proof. 1 , 2 is Schlessinger's theorem [35], Theorem 2.11. 3 ) 1 follows from the
fact that the map (7) for G is surjective and G(A)!!F(A) for all A. The implication
2) 3 is trivial.

De�nition. If F satis�es the equivalent conditions of Theorem 1.4.4, we say that F
has a hull. In fact, a hull of F is a pro-representable functor G together with a formally
smooth map G!F which is an isomorphism on tangent spaces.

Remark. A hull F of D, if it exists, is unique up to a non-canonical isomorphism ([35],
Proposition 2.9). This also follows from Corollary 1.5.4.

1.5 Comparing formally smooth extensions

Suppose a functor D possesses a hull g :G!D with G =Hom�(G;�). It turns out that
any other formally smooth map f : Hom�(F;�)=F!D factors through G,

F ��! G
f & .g

D
:

Moreover the factoring map � is formally smooth, so F �= G[[t1; :::; tn]]. In other words,
the only rings which can be mapped to D in a formally smooth way, are formal power
series over G. In practice, this can be used to determine the hull of a functor D. Firstly,
�nd any formally smooth map F ! D with F pro-representable. For example, D is
often given as a quotient of some F =Hom�(F;�) by a smooth group action. Secondly,
�nd an isomorphism

F �= G[[t1; :::; tn]]; n = dimk TF � dimk TD ;

for some G. Then (combine 1.5.6 with 1.5.7) the ring G pro-represents the hull of D.
The main result of this section is Theorem 1.5.3, which compares formally smooth

extensions of a functor D. In order to give a formulation in case D does not necessarily
have a tangent space, we need some preliminary de�nitions.
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Remark. (cf. [35], 2.10) Suppose G �= Hom�(G;�) is pro-representable. The cotan-
gent space TG� of G over � has the property that

G(k[V ]) = Hom�(G; k[V ]) = Homk(TG�; V )

for any (�nite-dimensional) k-vector space V . In other words, TG� represents the
functor V 7! G(k[V ]) on the category of k-vector spaces.

In particular, given another pro-representable functor F �=Hom�(F;�), a natural
transformation F !G induces a k-linear map TG�!TF� and, hence, gives an element
of G(k[TF�]).

For example, the identity map G!G corresponds to an element which we denote by
12G(k[TG�]). It is the image of 12G(G)=Hom�(G;G) under the natural projection
G! k[TG�].
De�nition 1.5.1. Assume given a diagram of natural transformations of functors

F G
f & .g

D
(8)

with F and G pro-representable. We say that a k-linear map

t : TF �! TG

lies above D, if the corresponding element in G(k[TF�]) and the element 1 2 F(k[TF�])
project via g and f to the same element of D(k[TF�]). By a lift of such a t, we mean a
natural transformation � :F!G , which makes (8) commute (i.e. g�= f ) and which
induces t on the tangent spaces.

Remark 1.5.2. Conversely, given � :F !G with g�= f , it induces a map t :TF!
TG which lies above D, and � is a lift of t. This, perhaps, explains the meaning of
these notions.

Remark. If D has a tangent space, then t :TF!TG lies above D if and only if it
commutes with projections to TD.

Theorem 1.5.3. Assume given F f�!D g �G with F ;G pro-representable and a k-
linear t :TF!TG which lies above D. Then

1. If g is formally smooth then a lift of t exists.

2. If f is formally smooth and t is surjective, then any lift of t is formally smooth.

3. If f is formally smooth and t is bijective, then any lift of t is an isomorphism of
functors.
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Proof. 1. Constructing a natural transformation � :F !G which lies above D (i.e.
g�= f ) and induces t on the tangent spaces is equivalent to giving an element � 2 G(F )
such that g(�2G[F ]) = f(12F [F ])2D(F ) and such that � maps to an element which
corresponds to t under the natural projection G(F )!G(k[TF�]). In other words, we
are looking for a pre-image of (f(1); t) under the map

G(F )! D(F )�D(k[TF�]) G(k[TF�]);

This map is surjective by the assumption that g :G!D is formally smooth.

2. Let � :F !G induce a surjection t :TF!TG . We have to show that given � :A!!
A0 ,

F(A) !! F(A0)�G(A0) G(A);
in other words, given '0 2F(A0) and 
 2G(A) with �('0)= �(
)(= 
0), we have to
construct '2F(A) with �(')='0 and �(')= 
 .

By induction over the length, it suÆces to consider the case A!! A0 is a small
extension (ker �=(�) 6=0, mA�=0). In other words (�)�= k as a �-module, and we �x
such an identi�cation.

Let Æ2D(A); Æ02D(A0) be the images of 
; 
0 under g. Note that Æ0=f('0) and by
the formal smoothness of f ,

F(A) !! F(A0)�D(A0) D(A);

so there is ~'2F(A) such that �( ~')='0.
Let ~
=�( ~')2G(A). If ~
= 
, let '= ~' and we are done. Otherwise, we adjust ~'

(within the �bre above '0), using the surjectivity of t as follows:

Both 
 and ~
 are ring homomorphisms G ! A. Consider them as just homo-
morphisms of �-modules. Then � = 
� ~
 is a map G ! A of �-modules which
lands in (�) = ker �. Restrict it to the map m

G
! (�) and note that it descends to

mG=(m
2
G+m�G)! (�), since (�) �= k as a �-module. Hence � can be considered as an

element of TG.
Now lift � to an element � 2 TF via the surjection t : TF ! TG. Extend it to a

homomorphism of �-modules F! (�) � A by letting 1 map to 0 and de�ne '= ~'+�.
Then one easily checks that ' is a local �-algebra homomorphism, �(') = '0 and
�(')=
 as required.

3. The same argument as in (2.) applies, except that now t : TF!TG is injective, so
� and, therefore, the desired ' is also unique. Hence

F(A) �=�! F(A0)�G(A0) G(A)

whenever A!! A0. In particular, taking A0 = k, we see that � : F(A) ! G(A) is a
bijection for all A. Hence � is an isomorphism of functors.
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Corollary 1.5.4. If F f�!D g �G withF ;G pro-representable and f; g formally smooth,
then F is isomorphic to G over D if and only if the tangent spaces TF and TG are
isomorphic over D.
Proof. Follows immediately from the theorem. It should be mentioned, however,
that this corollary requires only the (easier) part 1. of the theorem. If � :F !G
and � :G!F lift the given isomorphisms on the tangent spaces, then �� and �� are
isomorphisms: an endomorphism of a complete Noetherian local �-algebra which is
identity on the tangent space is an isomorphism.

Corollary 1.5.5. Assume given F f�!D g �G with F ;G pro-representable and f; g
formally smooth. Assume also that D has a tangent space. Then one of the pro-
representing rings F;G is a formal power series ring over the other one.

Proof. The tangent space maps TF !!TD and TG!!TD are both surjective by
formal smoothness. Hence there is either a surjection TF !TG or a surjection TG!
TF of k-vector spaces which commutes with the projections to TD. The statement
follows from parts 1 and 2 of the theorem.

Corollary 1.5.6. (Versal property of the hull.) Assume that a functor D has a hull
G =Hom�(G;�), and let f :F!D be formally smooth with F =Hom�(F;�). Then

F �= G[[t1; :::; tn]]; n = dimk TF � dimk TD ;

Proof. Since D has a tangent space and TG �= TD (by de�nition of a hull), there is a
unique map t :TF!TG which lies above D, namely the one induced by f on tangent
spaces.

Remark. The corollary often allows to determine a hull G of D, when given a formally
smooth map Hom�(F;�)!D . Indeed, F �=G[[t1; :::; tn]] with n=dimTF � dimTD .
So, if one �nds a ring G0 for which F �=G0[[s1; :::; sn]], then G0 is isomorphic to the hull
G of D, by the following \cancellation theorem for complete local rings", due to A. J.
de Jong.

Proposition 1.5.7. If F;G2dArt� are complete Noetherian local �-algebras with an
augmentation such that F [[t]]�=G[[t]], then F �=G.

Proof. [17], Lemma 4.7.

1.6 Quotients by groups

One often obtains non-pro-representable functors which, nevertheless, possess a hull by
taking quotients of pro-representable functors. One can do it either by taking quotients
by one group of automorphisms or by taking an action of a formal group instead.
The latter way is the one which mostly occurs in practice. This and the next section
describe the respective properties of these constructions. In the constant group case we
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give necessary and suÆcient conditions for a functor which has a hull to be represented
as such a quotient (1.6.3). In the formal group case we conjecture the corresponding
result (1.7.8).

De�nition 1.6.1. Let F =Hom�(F;�) and let ��Aut�(F ) be a subgroup. Then �
acts on F(A) for all A by composing a homomorphism F!A with an element of �.
De�ne the quotient functor F=� by letting A 7!F(A)=�.
Remark. We have let � � Aut�(F ) act on F(A) for all A by composition. Equiva-
lently, one can let an abstract group � act on F(A) for all A, in such a way that for
A! B, the maps F(A)!F(B) are �-equivariant.
Theorem 1.6.2. Let F =Hom�(F;�) and � � Aut�(F ). Denote by D=F=� the
quotient functor.

1. The quotient map q :F !D is formally smooth.

2. D has the property that D(A�B C)!!D(A)�D(B)D(C) for all A!B C .

3. D has a hull if and only if

� � ker
�
Aut�(F )! Aut�(F=m

2
F
)
�
;

in other words, if � acts trivially on the tangent space of F .

4. D is pro-representable if and only if �= f1g.
Proof. 1. Let � :A!!B . We have to show that

F(A)!! F(B)�D(B) D(A) :

Take a2D(A) and ~b2F(B) such that �(a)= q(~b) in D(B). Choose a representative
~a 2 F(A) of a. If �(~a)=~b, then we are done. In any case,

g � �(~a) = ~b

for some g 2 �. Then g � ~a is the required lift.
2. Let � :A!B and � :C!B in Art�. Let a2D(A) and c2D(C) be such that
�(a)= �(c) in D(B). Choose representatives ~a 2 F(A) and ~c 2 F(C) of a and c
respectively. The elements �(~a) and �(~c) in F(B) map to the same element in D(B),
hence there is a g 2 � such that

g � �(~a) = �(~c) :

Replace ~a by g � ~a. Then ~a still maps to a 2 D(A), but now we have �(~a) = �(~c). Since
F commutes with �bre products, there is ~r 2F(A�B C) which projects to ~a 2 F(A)
and ~c 2 F(C). Then the image r of ~r in D(A�B C) is the required lift of (a; c).
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3. The \if" part is clear: using part 2. and Schlessinger's criterion, it suÆces to prove
that D has a tangent space. But F has a tangent space and F(k[V ])!D(k[V ]) is
bijective for all k-vector spaces V by our assumption on �. Hence D has a tangent
space as well.

For the converse, assume that the action of � on TF is non-trivial but the quotient
D=F=� has a hull. In particular D has a tangent space. Let V =TF =F(k[�]). Let
k[�1; �2] denote the ring k[t1; t2]=(t

2
1; t

2
2; t1t2) and consider the map

� : D(k[�1; �2]) �! D(k[�])�D(k[�]):
whose components �1 and �2 are the natural projections. By assumption D has a
tangent space, so � is a bijection. However,

D(k[�1; �2]) = F(k[�1; �2]=� = (V � V )=� ;
and

D(k[�])�D(k[�]) = (V=�)� (V=�) :

Moreover, the action of � on F(k[�1; �2]) =V �V is diagonal,

g � (v1; v2) = (g � v1; g � v2); v1; v2 2 V ; g 2 � ;

by compatibility of the action with the two inclusions k[�] �!� k[�1; �2]. As we have
assumed that the action of G on V is non-trivial, there are v1 6= v2 2V such that
g � v1= v2 for some g2�. Then

h � (v1; v1) = (h � v1; h � v1) 6= (v1; v2)

for any h2�. Hence (v1; v1) and (v1; v2) give two distinct elements of D(k[�1; �2]).
However �1(v1; v2)= �2(v1; v2) as elements of D(k[�])�D(k[�]). Hence � is not injective,
a contradiction.
4. If �= f1g, then D=F is pro-representable. Conversely, assume D is pro-represen-
table. Since, in particular, D has a hull, �� ker(Aut�(F )!Aut�(F=m

2
F )) by part 3. of

the theorem. Hence F !D is identity on the tangent spaces. Since it is also formally
smooth, F =D for example by uniqueness of the hull.

Theorem 1.6.3. Let D :Art�!Sets. The following conditions are equivalent.

1. D possesses a hull and D(A�B C)!!D(A)�D(B)D(C) for all A!B C (not
only in case C!!B ).

2. There exists a pro-representable functor F =Hom�(F;�) and a subgroup

� � ker
�
Aut�(F )! Aut�(F=m

2
F
)
�

such that D�=F=�.
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Proof. 2) 1 is a part of Theorem 1.6.2. Now we prove 1) 2.
Let F �= Hom�(F;�) be a hull of D and q :F !D the de�ning map. Let ��

Aut�(F ) consist of those automorphisms g which, considered as elements of Aut(F)
satisfy qg= q , as natural transformations. Since q is identity on tangent spaces, ��
ker
�
Aut�(F )!Aut�(F=m

2
F )
�
as required. It suÆces to prove that D �= F=�. Clearly

q factors through F=� and
F(A)=�! D(A)

is surjective for all A2Art� , since F(A)!!D(A) by formal smoothness. To prove
injectivity, assume x; y 2F(A) are such that q(x)= q(y)2D(A). We have to prove
that there is g 2 � for which g � x= y .

Consider x and y as homomorphisms F!A. We �rst want to reduce to the case
that x; y are surjective. Let A0�A be the �-subalgebra genereated by Imx and Im y.
Then both x and y factor via A0,

x; y : F �! A0 �!� A :

In other words x; y 2 F(A) lie in the image of F(A0) �!� F(A). Let x0; y0 2 F(A0)
be the same homomorphisms, considered as elements of F(A0). We claim that q(x0)=
q(y0)2D(A0).

We know that q(x0) and q(y0) have the same image in D(A). By the second assump-
tion on D, the map

D(A0) = D(A0 �A A
0)! D(A0)�D(A) D(A0)

is surjective. Equivalently, D(A0) �!� D(A). So D takes injections to injections. Thus
q(x0)= q(y0). If we can �nd a g 2 � for which g � x0= y0 , then g � x= y as required. So
we can replace A by A0, in other words assume that A is generated by Imx and Im y
as a �-algebra.

We claim that in this case both x and y have to be surjective.
Indeed, let B= Im(x) and C = Im(y). As A is generated by B and C as a �-algebra,

the cotangent space V = mA=(m
2
A
+m�A) is generated, as a vector space, by mBV and

mCV . Thus, if we show that mBV = mCV , then it follows that x; y are surjective on
cotangent spaces, hence surjective (Remark 1.2.3).

Consider the projection A!A=m2
A
, composed with x and y:

F
x;y�! A !! A=m2

A :

The compositions �x and �y de�ne elements �x; �y 2 F(A=m2
A
). Since q(�x)= q(�y), and

q : F ! D is a bijection on the rings of the form k[V ] (such as A=m2
A), it follows that

�x= �y . Hence mBV =mCV and x; y are both surjective.
In summary, we have surjections x; y :F!A and q(x)= q(y)2D(A) if x; y are

considered as elements of F(A). We have to prove that there is a g 2 � for which
g � x= y .
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By the lemma below, there exists a homomorphism g :F!F such that the cor-
responding natural transformation � :F!F commutes with q and such that xg= y .
Since q�= q , it follows that g is identity on the tangent space of F . In particular, it is
an automorphism of F and g 2 �. Also g � x= y , as required.

Lemma 1.6.4. Let q : F ! D be formally smooth with F �= Hom�(F;�) pro-
representable. Let x; y 2F(A) satisfy q(x)= q(y) and assume that y is surjective,
if considered as a homomorphism F !A. Then there exists a natural transformation
� :F !F for which

F �����! F
q& . q

D
commutes and such that �(x)= y .

Proof. Consider the following commutative diagram:

F(F ) q�! D(F ) 3 q
F(x)

??y ??yF(x)
y 2 F(A) q�! D(A)

:

Here q is seen both as a natural transformation and as an element of D(F ). As x is
surjective and F !D is formally smooth, there exists a g 2 F(F ) lifting (q; y) in the
above diagram.

We claim that g 2 Hom�(F; F ) is a homomorphism which gives the required natural
transformation �. Firstly, q(g)= q is the above diagram implies that q�= q as natural
transformations. Secondly, F(x)(g)= y says precisely that �(x)= y .

1.7 Quotients by formal groups

De�nition 1.7.1. Let G be a group functor Art� ! Groups and F :Art�!Sets. An
action of G on F consists of group actions of G(A) on F(A) for all A 2 Art�, functorial
in A. Recall also that a formal group is a formally smooth pro-representable group
functor.

Theorem 1.7.2. Let F be a pro-representable functor and G a formal group which
acts on F . Then D=F=G , de�ned by A 7!F(A)=G(A), has a hull.

Proof. For A;B 2 Art�, the natural maps

F(A�k B)! F(A)�F(B); G(A�k B)! G(A)� G(B)

are isomorphisms, since F ;G are pro-representable. Hence

F(A�k B)=G(A�k B) �! F(A)=G(A) � F(B)=G(B)
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is bijective for any A;B. In particular, F=G has a tangent space.
Next, we show that the natural map F !F=G is formally smooth, so

F(A)!! F(B)�F(B)=G(B) F(A)=G(A) :
whenever � :A!!B . Take an element in the right-hand side, represented by a pair
� 2 F(B); � 2 F(A) such that �(�)= gB � � for some gB 2 G(B). Since G is formally
smooth, G(A)!!G(B), so gB can be lifted to an element gA 2 G(A). Then g�1A � �2
F(A) is the required lift.

Hence D has a hull (cf. de�nition 1.4).

Remark 1.7.3. From this proof it also follows that D = F=G has a universal obstruc-
tion space (Theorem 1.3.8).

Remark. Note that the pro-representability of G is used only to prove that F=G has
a tangent space and not for the formal smoothness of the quotient map.

Theorem 1.7.4. Let G :Art�!Groups be an formally smooth group functor. Assume
that G acts on a pro-representable functor F in such a way that for every k-vector space
V , G(k[V ]) acts trivially on F(k[V ]). Then F=G has a hull, namely F with the natural
quotient map.

Proof. By the remark above, formal smoothness of G implies that the quotient map
is formally smooth. Since F(k[V ])! (F=G)(k[V ]) is bijective for all V , the quotient
functor has a tangent space and the quotient map is bijective on the tangent spaces.
Hence F is the hull of F=G.
Remark. Let G :Art�!Groups be as in the above theorem and let �=G(k). For
any A2Art� there is a surjective group homomorphism G(�A) :G(A)!� induced by
the augmentation � :A! k (see De�nition 1.1.1). Moreover, for any f :A!B the
induced homomorphism G(f) :G(A)!G(B) commutes with these projections to �. So
we have a natural transformation of group functors

G �! �

where � denotes the constant group functor with value � on every A2Art� (and taking
every morphism in Art� to the identity on �). So we get an exact sequence

1 �! Gformal �! G �! � �! 1

of group functors on Art�, where Gformal denotes the kernel. By de�nition Gformal(k)
consists of one element. So Gformal is close to being a formal group, except that it is
not necessary pro-representable. Theorem 1.6.3 characterizes in general quotients by
constant groups, but it seems diÆcult to �nd to corresponding result for (even pro-
representable) formally smooth group functors. Nevertheless, the following conjecture
seems feasible.
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Conjecture 1.7.5. Let D be a functor which has a hull F . Then there exists a formally
smooth G :Art�!Groups (as in Theorem 1.7.4) and an action of G on F such that
D�=F=G .

Remark 1.7.6. One might also conjecture that G can be chosen to be an extension of
a formal group by a constant group.

Remark 1.7.7. Let F be a pro-representable functor and let G act on F . Assume for
simplicity that the action on F(k[V ]) is trivial for all V . Let D=F=G and consider
the following properties of D:
(1) D(A�B C)!!D(A)�D(B)D(C) for all A!B  C .

(2) D(A�B C)
�=�!D(A)�D(B)D(C) for B= k , all A;C.

(3) D(A�B C)!!D(A)�D(B)D(C) for all A!B C .

In any case, D has property (1) by the above theorem. If G is a constant group functor,
then G satis�es (3) but not (2), unless it is trivial (take A=C =F and B = k). If G is
a formal group, then D satis�es (2) but seemingly never (3), unless again it is trivial.
In this respect, the two quotient constructions are complementary to each other. Hence
one might conjecture a criterion for quotients by formal groups analogous to Theorem
1.6.3.

Conjecture 1.7.8. Let D be a functor which has a hull F . Assume that D commutes
with products,

D(A�k B)
��! D(A)�D(B) :

Then D �= F=G for some formal group G acting on F .
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2 Cohomology of R -R bimodules

It is typical, that tangent spaces and obstruction spaces to moduli functors are cer-
tain cohomology groups. For example, the tangent space to the deformation space
of a regular variety X=k is H1(X; �X) and the obstruction lies in H2(X; �X), where
�X is the tangent sheaf. Deforming a morphism f :X!Y of (say, regular) vari-
eties gives H0(X; f ��Y ) and H1(X; f ��Y ) respectively. Mazur's deformation theory of
a Galois representation � :G!Aut(V ) gives H1(G;End(V )) as the tangent space and
H2(G;End(V )) as an obstruction space, cf. [22], x1.2, x1.6. Illusie [12] has shown that
in general the tangent space of a functor can be identi�ed with a certain Ext1 and the
obstructions lie in Ext2.

Our primary interest lies in deformations of p-divisible group with an O-action as
well as those of ring representations and R-stable �ltrations on an R-module. In all three
cases the corresponding tangent and obstruction spaces turn out to be the Hochschild
cohomology groups.

In Section 2.1 we recall the basic properties of these cohomology groups and prove
that H1(R -R ;EndA(R))= 0 if the ring R is a �nite free A-module (2.1.12). The corol-
laries (2.1.13, 2.1.14) are used later to show that the deformation functor of a projective
module has a trivial tangent space (2.2.5).

Section 2.2 is devoted to the deformation functor Def(��) of a ring representation
�� :R!End(V ) on the category Art�. This basically follows the work of Mazur on de-
formations of group representations [22]. The deformation functor is pro-representable
under the appropriate �niteness condition on R and the tangent space (respectively
an obstruction space) is the Hochschild cohomology group H1(R -R ;End(V )) (respec-
tively H2(R -R ;End(V ))). In case R = �[G], the group algebra of a group G, we
recover Mazur's results. In fact it is easy to see that the Hochschild cohomology groups
are isomorphic with the usual group cohomology in this case.

In Section 2.3 we study the case of �ltrations. The pro-representability result 2.3.2
serves for us primarily as a tool to study the deformations of p-divisible groups later
(Chapter 4).

As in the previous chapter, k is an arbitrary �eld and � is a complete Noetherian
local ring given with an augmentation � : �=m�

�= k. Throughout this chapter R
denotes a �-algebra which is not necessarily commutative.

2.1 Hochschild cohomology

Throughout this section A is a commutative ring and R a not necessarily commutative
A-algebra which is �nite and free as an A-module. In particular A�R . Note that
ar= ra for all a2A�R and r2R (by de�nition of an A-algebra, see [14], p.44). We
recall some basic results on the Hochschild cohomology of R -R bimodules. See [14],
Section 6.11 for details. We also prove that H1(R -R ;EndA(R))= 0 and deduce some
corollaries, which are going to be used later on.
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De�nition 2.1.1. An R -R bimodule is an abelian group M together with left and
right actions of R (denoted r � m and m � r) such that for all r1; r2 2R , m2M and
a2A,

r1 � (m � r2) = (r1 �m) � r2 (actions commute) ;
a �m = m � a (and coincide on A) :

Example 2.1.2. An R-algebra homomorphism R!S gives an R -R bimodule struc-
ture on S via the left and the right multiplication (r � s= rs; s � r= sr). In particular,
R itself can be considered an R -R bimodule.

Example 2.1.3. If M is a left R-module and N a right R-module, then M 
AN is in
a natural way an R -R bimodule.

Example 2.1.4. If M;N are left R-modules, then HomA(M;N) is an R -R bimodule:
let r � f and f � r to be (r � f)(x)= r � f(x) and (f � r)(x)= f(r � x). This applies notably
to the endomorphism ring of a left R-module.

De�nition 2.1.5. A homomorphism of R -R bimodules is a homomorphism as abelian
groups commuting with both actions. An exact sequence is a chain of R -R bimodule
homomorphisms which is exact as a sequence of abelian groups (or A-modules).

Remark 2.1.6. To give an R -R bimodule M is equivalent to giving an A-module
M together with left R and R op actions. This is equivalent to giving a left R
AR

op

action on M . Hence there is an equivalence of categories

fR -R bimodulesg � fleft R
A R
op-modulesg :

De�nition 2.1.7. Given an R -R bimodule M , let

H0(R -R ;M) = fm 2M j r �m = m � r; all r 2 Rg

Note that this an A-submodule of M , although not in general an R-module.

Remark 2.1.8. If we let R to be an R -R bimodule via the left and the right multipli-
cation, then for any R -R bimodule M we have a canonical isomorphism of A-modules

H0(R -R ;M) = Hom
R -R (R;M)

In particular (use Remark 2.1.6), the functor H0(R -R ;�) is left exact.

De�nition 2.1.9. The right derived functors of H0(R -R ;�), denoted Hn(R -R ;�),
are called Hochschild cohomology groups of R with values in M .
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Example 2.1.10. A=Z, R=Z[G] with a �nite group G. If M is a G-module, de�ne
an R -R bimodule structure onM by letting G to act naturally on the left and trivially
on the right,

g �m = gm
m � g = m

and extending by Z-linearity. Then H0(R -R ;M) becomes the usual 0-th cohomology
group,

H0(R -R ;M) = fm 2M j gm = m; all g 2 Gg =MG = H0(G;M) :

Consequently Hn(R -R ;M)=Hn(G;M).

Example 2.1.11. One can show that H1(R -R ;M)�=Z1(R -R ;M)=B1(R -R ;M) with

Z1 (R -R ;M) = f� 2 HomA(R;M) j �(r1r2) = r1 ��(r2) + �(r1)�r2g
B1(R -R ;M) = f�m 2 HomA(R;M) j �m(r) = r�m�m�r; for some m 2Mg :

Proposition 2.1.12. Consider R as a left module over itself and de�ne the R -R -
bimodule structure on EndA(R) as in 2.1.4. Then

H1(R -R ;EndA(R)) = 0 :

Proof. An element r 2 R acts on R via left multiplication. Thus it de�nes an element
in EndA(R) which we denote by rl. Let � 2 Z1 (R -R ;EndA(R)), so

� : R �! EndA(R)

is an A-module homomorphism, such that

�(rs) = rl�(s) + �(r)sl :

We claim that � 2 B1 (R -R ;EndA(R)), so �=�� , the coboundary de�ned by an ele-
ment � 2 EndA(R). Here � can be explictly given by

�(r) = �(�(r))(1) ;

the value of the endomorphism �(r) 2 EndA(R) on 1 2 R. Indeed, for all r; s 2 R,
��(r)(s) = (rl� � �rl)(s)

= rl(�(s))� �(rl(s))
= �rl(�(s)(1)) + �(rs)(1)
= �rl(�(s)(1)) + (rl�(s))(1) + (�(r)sl)(1)
= �(r)(s) :

Hence H1(R -R ;EndA(R))= 0.
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Corollary 2.1.13. If M is a projective left R 
A R
op-module considered as an R -R

bimodule, then H1(R -R ;M)= 0.

Proof. Since R
AR
op�=EndA(R) as an R -R bimodule, this statement is a reformu-

lation of the above proposition in case M is free of rank 1. For an arbitrary projective
M , it follows from the fact that M is a direct summand of a direct sum of free rank 1
modules and the fact that cohomology commutes with direct sums.

Corollary 2.1.14. If M is a projective left R-module and N a projective right R-
module, then H1(R -R ;M 
AN)= 0.

2.2 Deforming ring representations

De�nition 2.2.1. Let A2Art� and let V be a �nite free A-module. A representation
of R on V is a �-algebra homomorphism

} : R �! EndA(V) :

If � :A!B is a homomorphism in Art�, then }
AB is a representation of R on
the B-module V 
AB .

De�nition 2.2.2. A representation � of R on a �nite-dimensional k-vector space V
(i.e. in case A= k ) is called residual. De�ne a deformation of � to A2Art� to be a
representation } on an A-module V given together with an isomorphism i :}
A k�= �.

De�nition 2.2.3. Let � :R!End(V ) be a residual representation. De�ne the defor-
mation functor of �,

Def(�) : Art� �! Sets
A 7�! fdeformations of � to Ag= �=

A representation } :R!EndA(V) gives an R -R bimodule structure on EndA(V) via
the left and the right multiplication (cf. 2.1.2). The associated Hochschild cohomology
groups are responsible for the behaviour of the deformation functor:

Theorem 2.2.4. Assume R is �nitely presented over �. Let � :R!End(V ) be a
residual representation. Then

1. H2(R -R ;End(V )) is an obstruction space for Def(�).

2. H1(R -R ;End(V )) is the tangent space of Def(�).

3. Def(�) has a hull.



32 2 COHOMOLOGY OF R�R BIMODULES

Proof. 1. Let A!!A0 be a surjection with kernel I, such that mAI =0 Take

}0 : R �! EndA0(V 0) ;
a deformation of � to A0. Choose a basis v01; : : : ; v

0
n of V 0=A0 and let

V = Av1 + : : :+ Avn

be a �nite free A-module (so V 
AA
0=V 0 ). We try to lift �0 to a �-homomorphism

� :R!End(V). Denote for every r 2 R,
�0r = �0(r) 2 End(V 0) = Matn�n(A

0) :

Choose a basis frig for R over � and lift each of the �0ri to an element �ri 2 End(V).
De�ning �r for all r 2 R by linearity results in the map of �-modules

R
��!End(V) :

To measure the extent to which � fails to be a ring homomorphism, let

�r;s = �rs � �r�s :
When all �r;s=0, then �(r)=�r is the required deformation. In general, however,

�r;s = ker(End(V)!! End(V 0)) :
By assumption, the kernel I of A!!A0 can be considered as a k-vector space, so

�r;s 2 End(V )
k I :

Also, from

�rs;t = �rst � �rs�t = �rst � (�r�s + �r;s)�t
�r;st = �rst � �r�st = �rst � �r(�s�t + �s;t)

it follows that

�rs;t � �r;st = �r�s;t � �r;s�t = (��(r)
 1)�s;t � �r;s(��(t)
 1) :

Hence � is an element of Z2(R -R ;End(V ))
k I . Replacing �ri by di�erent lifts ~�ri of
�0ri changes �r;s by an element in B2(R -R ;End(V ))
k I ,

~�r = �r +mr ) ~�r;s = �r;s +
�
mrs � (��(r)
 1)ms �mr(��(s)
 1)

�
:

Thus, the obstruction to deforming �0 to A lies in H2(R -R ;End(V ))
k I . Since our
construction is clearly functorial (De�nition 1.3.4), the vector space H2(R -R ;End(V ))
is an obstruction space for Def(�).
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2. Let A= k[I]! k=A0 for some k-vector space I. In this case there is a section
A0!A, so there is a canonical deformation } = �
k k[I]. It is given by �r=�0r . Any
other deformation is given by

~�r = �r + wr; wr 2 Mn(k)
k I

The condition ~�rs= ~�r ~�s yields (as in 2.)

mrs = �(r)ms +mr�(s) :

Hence m2Z1(R -R ;End(V ))
k I . Moreover, m(1) and m(2) give isomorphic deforma-
tions if and only if there is a basis transformation Q 2 Mn(I) which transforms one
into the other. This implies that

m(2)(r) = m(1)(r) + (�(r)Q�Q�(r));

i.e. m(2)�m(1) 2B1(R -R ;End(V ))
k I . It follows that H
1(R -R ;End(V )) is tangent

space of the functor Def(�).
3. We have already shown that Def(�) has a tangent space. The idea is that one can
rigidify Def(�) by �xing a basis of the module. This yields a pro-representable functor
R of which Def(�) is a quotient by a dGLn-action. Choose a basis f�v1; :::; �vng of V and
consider the �nite free �-module

V� = �v1 + : : :+ �vn

with an identi�cation V�
� k=V given by vi 7! �vi . For A2Art� let

R(A) = f' 2 Hom(R;End(V� 
� A) j '
A k = �g :

Here Hom denotes homomorphisms of (non-commutative) �-algebras. This gives a
functor R :Art�!Sets. Let

dGLn(A) = ker
�
GLn(A)! GLn(k)

�
This gives a pro-representable group functor dGLn, smooth on n2 parameters. If we letdGLn(A) act on End(V� 
� A) by conjugation, then clearly Def(�)=R=dGLn . So, by
theorem 1.7.2, it suÆces to show that R is pro-representable. Let fx1; :::; xmg be the
set of generators of R over �. Then '2R(A) is determined by '(xi)2Matn�n(A).
Here the isomorphism End(V�
�A)�=Matn�n(A) is �xed by the choice of the vi. In
other words ' is determined by the coeÆcients �ijk 2 mA of '(xi) in the basis fvj
v�kg
of End(V). It follows that

R �= Hom(�[[tijk]]=J;�)
where J is the ideal generated by the relations among the xi's in R. Hence R is
pro-representable and Def(�) has a hull.
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Corollary 2.2.5. Assume that R is �nite and free as a �-module. Let V� be a projec-
tive R-module and W� any R-module which is �nite and free over �. Then

V� �=W� () V� 
� k �=W� 
� k :

Proof. The implication from left to right is trivial. Conversely, assume that V�
� k�=
W�
� k . Then V� and W� are two deformations of the same residual representation.
Since V� is R-projective, Vk=V�
� k is projective over Rk=R
� k . By 2.1.13 we
have

H1(R -R ;End(Vk)) �= H1(Rk -Rk;End(Vk)) = 0 :

By the above theorem, the deformation functor Def(� :RA!End(Vk)) has trivial tan-
gent space. It follows that every two deformations of Vk to A 2 Art� are isomorphic.
Thus V��=W� .

2.3 Deforming �ltrations on R-modules

Let �!! k and R be as before. As the proof of Theorem 2.2.4 shows, one way to
rigidify the deformation functor of a ring representation � :R!End(V ) is to �x a
basis of liftings of V . As we will see in Section 4.4, in case R is a �nite free �-module,
another way is to represent � as a quotient representation of a \free representation of
R". In this section we study deformations of an R-stable �ltration, which are directly
related to quotient representations.

The following de�nes such a deformation functor in general.

Notation. Let } :R!End(M) be a �xed representation of R on a �nite free �-
moduleM. Denote M =M
� k; �=}
� k and let

V � M

be an R-stable submodule, i.e. a subrepresentation of �.

De�nition 2.3.1. For A2Art� denote MA=M
�A. Let

DefM(V �M;R)(A) = fVA �MA j VA 
A k = V g ;

the set of direct A-submodules VA deforming V inM, such that VA is R-stable. We call
DefM(V�M;R) the deformation functor of V in M. Note that this functor depends
on the R-module structure ofM, rather than just on V and M .

In the following theorem we consider the k-vector space Homk(V;M=V ) an R -R
bimodule via 2.1.8.

Theorem 2.3.2. Assume R is �nitely generated over �. Then

1. DefM(V�M;R) is pro-representable.
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2. The tangent space of DefM(V�M;R) is H0(R -R ;Homk(V;M=V )).

3. H1(R -R ;Homk(V;M=V )) is an obstruction space for DefM(V�M;R).

Proof. 1.
Let fe1; :::; en; f1; :::; fmg be a basis ofM over � which reduces to bases of V and

M=V . This also gives a basis feA1 ; :::; eAn; fA1 ; :::; fAmg ofMA for any A 2 Art�. It is easy
to see that any �ltration VA�MA which deforms V �M has a unique basis of the
form

eA1 + u11f
A
1 + � � �+ um1f

A
m

eA2 + u12f
A
1 + � � �+ um2f

A
m

...
eAn + u1nf

A
1 + � � �+ umnf

A
m

(9)

with uij 2 mA. Incidentally, this shows that the functor DefM(V�M) of all (not
necessary R-stable) deformations of V inM is pro-represented by �[[tij]] with 1� i�
n,1� j�m. Clearly DefM(V�M;R)�DefM(V�M) is a subfunctor. To show that it
is indeed pro-represented by a quotient of �[[tij]], we describe explicitly the equations.
This computation will be used in chapter 5.

Take A 2 Art� and a �ltration VA �MA, described by (9). We put the coeÆcients
uij into an n�m matrix U . Thus the basis elements (9) make columns of the block
matrix �

I
U

�
where I denotes the identity matrix (n�n in this case).

The action of an element r 2 R onM can be described by a block matrix

r 7!
�
Ar Br

Cr Dr

�
2 End�(M)

in the basis fe1; :::; en; f1; :::; fmg. The condition that r maps the �ltration V into itself
is given by �

Ar Br

Cr Dr

��
I
U

�
=
�
I
U

�
N; for some N 2 Matn�n(A)

This gives two matrix equations, from which we eliminate N and get

UAr + UBrU �DrU � Cr = 0; 1 � i � k : (10)

Note that this equation can be also written in a matrix form,

(U �I)
�
Ar Br

Cr Dr

��
I
U

�
= 0 : (11)



36 2 COHOMOLOGY OF R�R BIMODULES

Let fr1; :::; rkg be a set of generators of R as a �-algebra. Then the conditions (10)
for r= r1; :::; rk are necessary and suÆcient for the R-stability of V. Replacing uij
by indeterminants tij yields exactly the equations (nmk of them) which determine
DefM(V�M;R). Hence this functor is pro-representable. The pro-representing ring is
�[[tij]]=J where J is the ideal generated by the above equations.
2. Let A= k[�]. Following the above reasoning, an R-stable �ltration VA �MA which
deforms V is given by a matrix U for which the equations (10) hold. Since the entries
of U lie in mA and m2

A=0, the term UBiU vanishes. Also the fact that the original
�ltration V is R-stable implies Ci=0. So the equations read

UAr �DrU = 0; r 2 R :

Write U = � �U with �U 2Matn�m(k). Then this equation can be re-written as

�U � r � r � �U = 0; r 2 R :

Here �U is considered as an element in Homk(V;M=V ) and r� and �r denote the left
and the right action of r on this vector space. This identi�es the tangent space of
DefM(V�M;R) with H0(R -R ;Homk(V;M=V )).
3. To simplify the notation, we let � :A!!A0 be a small extension, i.e. assume ker ��= k
as a �-module. Let V 0 2DefM(V�M;R)(A0) be an R-stable �ltration ofMA0 . We try
to deform it to an R-stable �ltration of MA .

Let V be any �ltration ofM which deforms V 0. Denote by U and U 0 the matrices
de�ning V and V 0. To measure the failure of V being R-stable, consider

UAr + UBrU �DrU � Cr = �Er 2 ��Matn�m(k) :

Here (�) is the kernel of A!!A0 . Consider again Matn�m(k)=Homk(V;M=V ) an an
R -R bimodule. Then a direct computation shows

�Ers = (U �I)
�
Ar Br

Cr Dr

��
As Bs

Cs Ds

��
I
U

�
= (U �I)

�
Ar Br

Cr Dr

��
I 0
0 I

��
As Bs

Cs Ds

��
I
U

�
= (U �I)

�
Ar Br

Cr Dr

� ��
I
U

�
(I 0) +

�
0
�I
�
(U �I)

� �
As Bs

Cs Ds

��
I
U

�
= �Er(As+BsU) + (�UBr+Dr)�Es

= �ErAs +Dr�Es

= �Er � s+ r � �Es :

(12)

The last but one equality uses the fact that the maximal ideal of A is annihilated by
�, thus �U =0. So E : r 7!Er is a 1-cocycle for the R -R bimodule cohomology with
coeÆcients in Homk(V;M=V ). Also note that Er =0 for all r 2 R if and only if the
chosen �ltration V is R-stable.
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If we change the �ltration V by a di�erent lifting ~V of V 0, then we can write

~U = U +N; N 2 �Matn�m(k) :

Then the relation between the cocycles ~E and E is given by

~Er = Er + (r �N �N � r) :

Hence a di�erent choice of V changes the cocycle E by a 1-coboundary. Thus the
obstruction to the existence of an R-stable �ltration V lies in the cohomology group
H1(R -R ;Hom(V;M=V )), as asserted.

If A!!A0 is an arbitrary small surjection with kernel I, an identical argument
(everything has to be tensored with I) shows that the corresponding obstruction lies in
H1(R -R ;Hom(V;M=V ))
k I . Moreover, our construction is clearly functorial in the
sense of De�nition 1.3.4. Hence H1(R -R ;Hom(V;M=V )) is an obstruction space for
DefM(V�M;R), as asserted.
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3 Modules over maximal orders

In this chapter we recall the basic structure theorems for maximal and hereditary
orders in (not necessarily commutative) semisimple algebras. These results are used
in Section 4.4.

More speci�cally let G=k be a p-divisible group. Assume k is perfect and denote by
W =W (k) its Witt vector ring. If O�End(G) is a Zp-subalgebra, we will need to single
out the situations when the representation of O on the Dieudonn�e module D(G[p]) has
a trivial deformation functor. Using the results of the previous section, we show that
this is the case whenever the Dieudonn�e module D(G) is O 
Zp W (k)-projective. This
turns out to be the case whenever O is a maximal order in a semi-simpleQp-subalgebra
of End(G). Indeed, maximal orders over a complete �eld are hereditary , so torsion-free
modules over them are projective (3.2.9). In order to prove that if O is hereditary then
so is O 
Zp W (k), we show that hereditary orders stay hereditary after an unrami�ed
base ring extension (3.2.11). This is a simple extension of [15], Theorem 1.

All algebras considered in this chapter are �nite-dimensional and separable over a
�eld K. In our applications (Chapter 4) K will be the fraction �eld of W (k), hence
separability will be automatic. The word module stands for a left module. We refer to
Reiner [34] for the proofs of most of the statements.

3.1 Semi-simple algebras

In this section the ground �eld K is arbitrary.

De�nition 3.1.1. A K-algebra D is simple if D has no non-trivial two-sided ideals.
A K-algebra whose radical (intersection of all maximal left ideals) is zero is called
semisimple. A K-algebra D is called central if the center Z(D) equals K.

Example. A �nite �eld extension L of K is a simple K-algebra (non-central, unless
L=K ). A �nite-dimensional division algebra D over K is simple. A matrix ring
Matn�n(K) and, more generally, a matrix ring Matn�n(D) over a (central) division
K-algebra D is a (central) simple K-algebra.

These are in fact the only examples:

Structure Theorem 3.1.2. A semisimple K-algebra D decomposes as a product of
matrix algebras over division algebras,

D = Matn1�n1(D1)� � � � �Matnk�nk(Dk) :

Each of the Di's is central over a �nite �eld extension Ki of K.

Proof. [34], Theorems 7.1,7.4.

If D is a (semi)simpleK-algebra and L=K a �nite �eld extension, then D
K L is easily
seen to be a (semi)simple L-algebra. Moreover, central K-algebras become central L-
algebras after such a base change. It is not true, however, that division algebras stay
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division. For example if a division algebra D=K contains a non-trivial �eld extension
L=K, then D
K L contains L
K L, which has zero divisors. If, moreover, L�D is
maximal commutative, then D
K L�=Matn�n(L). The converse to this is the following
theorem.

Theorem 3.1.3. Let D be a division algebra, central over K and L=K a �nite �eld
extension. Then

1. D
K L is a division algebra if and only if L=K and D=K have no isomorphic
intermediate sub�elds (except for K itself).

2. D
K L�=Matn�n(L) if and only if L can be embedded into D as a maximal
commutative subalgebra.

Proof. [14], Theorem 4.8; [34], Theorem 7.15.

De�nition 3.1.4. In the situation of (2.) we say that L splits D.

Finally, we discuss the structure of (left) modules over semisimple algebras.

Theorem 3.1.5. Let D be a semisimple K-algebra. Then every �nitely generated
D-module is projective.

Proof. If D is a division algebra over K, then every �nitely generated D-module is
free (easy induction argument, using that D has no two-sided ideals). If D is a matrix
algebra over a division algebra, the result follows from Morita equivalence. Finally, if
D is a product of simple K-algebras, every D-module decomposes as a direct sum of
modules over the factors of D and, hence, is projective.

3.2 Maximal and hereditary orders

Throughout this section K is a �eld, which is complete with respect to a discrete
valuation v and A its valuation ring. Again, K-algebras are assumed to be separable
and �nite-dimenional.

De�nition 3.2.1. Let D be a semi-simple K-algebra. An order of D is a �nitely
generated A-subring O of D such that O
AK =D .

De�nition 3.2.2. An order O of D is said to be maximal if there is no order O0 of D
which strictly contains O.
Over a complete �eld, the structure of maximal orders in a semi-simple K-algebra is
summarized in the following theorems ([34], Theorems 12.8, 17.3, 10.5).

Theorem 3.2.3. Let D=K be a division algebra (recall that K is complete by assump-
tion). Then D has a unique maximal order, the integral closure of A in D.
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Theorem 3.2.4. Let D=Matn�n(D0), a matrix ring over a division algebra D0. De-
note the unique maximal order of D0 by O0. Then Matn�n(O0) is a maximal order of
D and every other maximal order of D is conjugate to it.

Theorem 3.2.5. Every maximal order of a product D=D1� � � ��Dn of simple K-
algebras is conjugate to a product of (some) maximal orders of the Di's.

Remark 3.2.6. Let L � K be a �nite �eld extension. Denote by B the integral
closure of A in L. We have already remarked that if D is a central semi-simple K-
algebra, then D 
K L is central semi-simple. It is also clear that if O � D is an order,
then O
R S�D
K L is again an order. However, if O is maximal, this does not imply
that O 
A B is maximal, even if L=K is unrami�ed. Consider the following example:

Example 3.2.7. Let p 6=2 be a prime, K =Qp and L the unique unrami�ed quadratic
extension of K. Let A=Zp , B=Zp�Zp� be the rings of integers of K and L respec-
tively. Denote by � the unique non-trivial automorphism of L over K. Consider

O =

(
Zp

�
1

0

0

1

�
+ Zp

�
�

0

0

��

�
+ Zp

�
0

p

1

0

�
+ Zp

�
0

�p

��

0

�)
� Mat2�2(L) :

It is easy to see that D=O
Zp Qp is a division algebra, in fact the unique quaternion
algebra over Qp. The subring O � D is the maximal order of D. The �eld L splits D.
(L is contained in D as a maximal commutative sub�eld.) Consider the order

O 
A B � D 
K L �= Mat2�2(L)

It is easy to see by looking at the given generators that

O 
A B �=
(�

a

pc

b

d

� ���� a; b; c; d 2 B
)
;

which is not a maximal order in D
K L, as it is contained in Mat2�2(B). It is fortunate
for the applications in Chapter 4 that the orders which can be obtained by a base change
from a maximal order by an unrami�ed ring extension do inherit the following important
property of maximal orders:

De�nition 3.2.8. An order O of D is (left) hereditary if every O-module, which is
�nitely generated and free as an A-module is O-projective.

Theorem 3.2.9. ([34], 18.1) A maximal order in a K-algebra D is hereditary.

Theorem 3.2.10. (Structure theorem; [34], 39.14)

1. A division algebra D=K has a unique hereditary order, namely the maximal order
of D.
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2. Let D=K be a division algebra. Let O denote the unique maximal order of D0 and
r denote the radical of O0. Let E�=Matn�n(D). Then for every hereditary order
H of E, there are positive integers fn1; :::; nkg with sum n and an identi�cation
E =Matn�n(D), such that H takes the form

H =

0BBBBB@
Matn1�n1(O) Matn1�n2(O) Matn1�n3(O) � � � Matn1�nk(O)
Matn2�n1(r) Matn2�n2(O) Matn2�n3(O) � � � Matn2�nk(O)
Matn3�n1(r) Matn3�n2(r) Matn3�n3(O) � � � Matn3�nk(O)
� � � � � � � � � � � � � � �

Matnk�n1(r) Matnk�n2(r) Matnk�n3(r) � � � Matnk�nk(O)

1CCCCCA :

Conversely, every order of this form is hereditary.

3. If D is semi-simple with simple components Di, then the hereditary orders of D
are exactly the direct sums of hereditary orders in the Di.

Theorem 3.2.11. Let D=K be a (�nite-dimensional) semi-simple algebra and O�D
a hereditary order. Let L=K be an unrami�ed extension of complete �elds and let B
denote the ring of integers of L. Then O
AB is a hereditary order in D
K L.

Proof. In case [L :K]<1 this is Janusz [15], Theorem 1. Now let L=K be arbitrary.
Using the Structure theorem 3.2.10, one reduces to the case D is division. In this case
O�D is the maximal order. If D
K L happens to be a division algebra, then O
AB
is easily seen to be the maximal order of D 
K L, hence it is hereditary. If D
K L is
not division, then there is a �nite extension K1 of K in L such that already D
K L
is not division. Let B1 denote the ring of integers of K1. Replace K by K1, D by
D1=D
K K1 and O by O1=O
AB . The order O1 is hereditary in D1 (again Janusz
[15], Theorem 1) and we can apply the same procedure until on some step Dn
Kn L is
a division algebra. This happens necessarily after �nitely many (< rkLD) steps.

Remark. We will use this theorem in 4.4.1 with A=Zp and B=W (k), the ring of
Witt vectors of a perfect �eld k of characteristic p. We show namely that the Dieudonn�e
moduleD(G) of a p-divisible groupG=k isO
ZpW (k)-projective whenever O�End(G)
is a hereditary order in a semi-simple Qp-algebra.
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4 Formal moduli of p-divisible groups

In this chapter we are going to study deformation functors of p-divisible groups with
extra structure, such as a ring action and/or a principal quasi-polarization. From here
on the ground �eld k is assumed to be perfect. As usual we work on the category Art�
where � is a �xed complete Noetherian local ring with �=m�= k .

To illustrate our approach, consider a p-divisible group G=k and �x a Zp�subalgebra
O�End(G). Let G=A be a deformation of G to a ring A 2 Art� and assume that the
O-action lifts to G. Associated to G there is a �ltration on the Lie algebra of the
universal extension of G,

V G �MG :
Here MG is a �nite free A-module of rank equal to the height of G and V G is a direct
summand. Moreover, by functoriality, the ring O acts on V G and MG. So V G �MG
can be considered as a deformation of V G�MG on the category of �ltered modules
with an O-action. This gives a natural transformation of deformation functors (see
4.1.4, 4.3.1 for de�nitions)

Def(G;O) �! Def(V G�MG;O) : (13)

We are going study how the two functors are related.
We appeal to the Grothendieck-Messing deformation theory of p-divisible groups

([23], Ch. IV). Let G 0=A0 be a p-divisible group. If A!!A0 is a surjection in Art�,
whose kernel has a nilpotent divided power structure, one can relate deformations of G 0
to A to the deformations of the universal extension �ltration. This relies, in particular,
on the \crystalline" nature of MG. Namely, for any two deformations G1=A;G2=A of
G 0=A0, there is a canonical isomorphism

MG1 �= MG2

which reduces to the identity on MG 0. It follows that there is a universal A-module
MAG 0, which can be canonically identi�ed with every MG for G=A deforming G 0=A0.
Hence, associated to G=A there is a deformation of the �ltration V G 0�MG 0 to a �l-
tration V G of a �xed A-module, namely MAG 0. By the result of Messing ([23], V, 1.6)
this association is a bijection.

This is a powerful method of studying deformations of p-divisible groups with extra
data. For example if G 0=A0 admits an O-action, then MAG 0 is an O-module (by functo-
riality) and the deformations G=A which inherit the O-action correspond precisely to
the O-stable �ltrations ofMAG 0. One does need to know, however, what is the structure
of MAG 0 as an O-module. The diÆculty is that although MG \does not change" over
divided power extensions, it does change over arbitrary extensions A! k . It is easy to
give an example of rings A!!A0!! k and two deformations G 01=A0;G 02=A0 of G=k such
that MAG 01 and MAG 02 are not isomorphic as O-modules. So it is much easier to study a
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functor such as Def(G;O) on the category ArtW;pd of divided power extensions A! k
than on the full category Art�.

The idea is to target the situations when MG is \rigid" as an O-module, meaning
that for any A2Art� any two deformations M1;M2 of MG to A are isomorphic as
O 
Zp A-modules. In this case for any deformation G=A there is an O 
Zp A-module
isomorphism

MG �= D(G)
W (k) A :

Here D(G) is a covaraint Dieudonn�e module of G, which is a �nite free W (k)-module
with an O-action. In such a \rigid" situation it turns out that the natural transforma-
tion (13) is formally smooth: any deformation of the pair V G�MG is induced by that
of G. Note that this implies that the functor Def(G;O) can be determined in terms of
pure linear algebra. It is namely pro-represented by a formal power series ring over the
hull of Def(V G�MG;O).

As it seems diÆcult to actually determine the hull of Def(V G�MG;O), we are
going to appeal instead to the strategy described in Section 1.5. Namely, we are going
to produce another formally smooth natural transformation F !Def(V G�MG;O)
with F pro-representable and one which can be calculated explicitly. We get a diagram

F Def(G;O)
& .
Def(V G �MG;O) .

If the tangent spaces of F and Def(G;O) happen to be of the same dimension, then
the two functors are isomorphic by 1.5.4. There is in fact a natural candidate for
F . We can rigidify Def(V G�MG;O) by studying deformations V �M over A given
together with an isomorphism M�=D(G)
W A of O 
Zp A-modules. Then the corre-
sponding deformation functor DefD(G)(V G�MG) is easily seen to be pro-representable
(cf. 2.3.2) and formally smooth over Def(V G � MG;O). Moreover, its tangent space
is isomorphic to that of Def(G;O) by crystalline theory. Hence

Def(G;O) �= DefD(G)(V G �MG) :

This gives a way to determine Def(G;O) explicitly, provided the rigidity assumption
on MG is satis�ed.

The structure of this chapter is as follows:
First we recall the basic facts concerning p-divisible groups: rigidity of homomor-

phisms, duality and deformation theory (Section 4.1). For a subring O�End(G) and a
principal quasi-polarization � :G

��!Gt we de�ne the deformation functors Def(G;O)
and Def(G;O; �).

In Section 4.2 we de�ne the notion of deformation data D, in order to generalize our
method to any situation when the rigidity of MG applies. We also de�ne deformation
functors Def(G;D) of p-divisible groups with a given deformation data and the notion
of rigidity in this context.
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In Section 4.3 we prove the pro-representability of the functors Def(G;D) in general
(4.3.5) and the main comparison theorem (4.3.8). We also present an example to
illustrate that such a comparison result does not hold if the rigidity assumption is
omitted (4.3.10).

Then we apply the result to the functors Def(G;O) and Def(G;O; �) (Sections 4.4,
4.5). In order to do that, it is necessary to determine for which O�End(G) the O-
moduleMG is rigid. This turns out to hold whenever O is a hereditary (e.g. maximal)
order in a semi-simple subalgebra of End(G) (Theorems 4.4.1,4.5.3). An interesting
by-product is that in the case of a hereditary order the deformation functor Def(V G�
MG;O) is isomorphic to the deformation functor of the tangent space representation
�� :O�!End(TG). In view of the formal smoothness of (13), a necessary and suÆcient
condition of deforming the pair (G;O) to some A2Art� is being able to deform this
tangent space representation. This generalizes some known results on deformations
with a restricted tangent space representation (cf. [8], [18], [33]).

Finally, we show that a deformation functor Def(G;D) with an arbitrary deforma-
tion data is isomorphic to a functor of the form Def(H;O; �) for some p-divisible group
H, a subring O�End(G) (not necessarily a maximal order) and a principal quasi-
polarization � on H. This explains why in Chapter 5 we consider only deformation
problems with one p-divisible group G=k.

As an illustration, we present another standard example, namely that of a chain of
maps between p-divisible groups,

G0 �! G1 �! � � � �! Gn�1 �! Gn = G0;

whose composition is multiplication by p (Section 4.7). The required rigidity condition
is also satis�ed in this case (but not, for example, if the composition is p2) and our
comparison theorem applies.

Our references for the deformation theory of p-divisible groups are Messing [23]
(Chapters IV, V) and Berthelot, Breen, Messing [2] (especially 3.3, 4.2 and 5.3). We
have chosen to follow the covariant Dieudonn�e module convention, as in the Cartier
theory.

4.1 Deformations of p-divisible groups

For the de�nition of p-divisible groups and Serre duality we refer to [38], 2.1, 2.3. We
work on the category Art� of Artinian local �-algebras with residue �eld k, perfect of
characteristic p. By G=k we denote a p-divisible group over k and G=A or GA=A denotes
a p-divisible group over A2Art� . We use Gt for the Serre dual of G and similarly for
morphisms. Recall that G �= Gtt canonically, as follows from the corresponding result
for �nite group schemes.

In order to study the deformations of p-divisible groups, we rely on the Grothen-
dieck-Messing approach ([23], Ch. IV).
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Notation. For a p-divisible group G=A denote

TG | the tangent space (or the Lie algebra) of G,
MG | the Lie algebra of the universal extension of G,
V G | the canonical �ltration on MG.

There is an exact sequence (of �nite free A-modules)

0 �! V G �!MG �! TG �! 0; (14)

Moreover, TG;MG; V G and the above sequence are compatible with base change and
are functorial in G. We have

dimA TG = n; dimAMG = h; dimA V G = n0 :

where n; n0 denote the dimensions of G and Gt and h=n+n0 is the height. The sequence
(14) for Gt is canonically isomorphic to the (A-linear) dual of the corresponding sequence
for G.

Finally, for G=k there are canonical isomorphisms ([2], 4.2.14)

MG = D(G[p]) = D(G)
W (k) k ;

functorial in G. Here D(�) denotes the covariant Dieudonn�e module.
We need the following rigidity result for morphisms of p-divisible groups:

Theorem 4.1.1. Let G;H be p-divisible groups over A and A!B a ring homomor-
phism in Art�. Then

Hom(G;H) �!� Hom(G 
A B;H
A B) :

Proof. Compose the map A!B with the augmentation to k,

A �! B �! k :

To show that Hom(G;H)!Hom(G 
AB;H
AB) is injective, it suÆces to verify that
the composition Hom(G;H)!Hom(G 
A k;H
A k) is injective. In other words we can
reduce to the case of a map A! k . From here we can also reduce to the case when
A!!B is a small extension, in particular an extension with divided powers.

Thus let A !! B be a divided power extension. Then the Grothendieck-Messing
theory identi�es Hom(G;H) with a subset of Hom(G 
AB;H
AB) of those homomor-
phisms which preserve the �ltrations. Hence the injectivity follows.

De�nition 4.1.2. A quasi-polarization on a p-divisible group GA=A is an isogeny

� : GA �! GtA
which satis�es �t=��. We say that the quasi-polarization is principal if � is an
isomorphism.
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Remark. It follows from 4.1.1 that a morphism � :GA!GtA is a (principal) quasi-
polarization on GA if and only if �
A k is a (principal) quasi-polarization on GA 
A k.

Our primary goal is to study the structure of the following deformation functors:

De�nition 4.1.3. Let A!! A0 be a morphism in Art� and G 0=A0 a p-divisible group.
A deformation of G 0 to A is a p-divisible group G=A together with an isomorphism

i : G 
A A
0 �= G 0 : (15)

De�nition 4.1.4. Let G=k be a p-divisible group. De�ne the deformation functor ofG,

Def(G) : Art� �! Sets

A 7�!
�
deformations
of G to A

�
= �= :

Given a subring j :O �!� End(G), we let

Def(G;O) : Art� �! Sets

to be the functor of deformations G=A together with the action of O which reduces to
j on G (under (15)). Similarly, given a subring O�End(G) and a quasi-polarization
� on G, we de�ne

Def(G;O; �) : Art� �! Sets

to be the functor of deformations G=A together with the action of O and a quasi-
polarization which reduce to those of G.

Remark. It is well-known that Def(G) is pro-representable and
Def(G) �= Hom�(�[[t1; :::; td]];�); d = dimG � dimGt :

From the rigidity theorem (4.1.1) it follows that Def(G;O) and Def(G;O; �) are sub-
functors of Def(G). These subfunctors are pro-representable (4.3.5 below), so the pro-
representing rings are of the form

�[[t1; :::; td]]=J :

These rings are often singular and our goal is to describe them in some cases.

4.2 Deformation data

In order to generalize 4.1.4 to a potentially larger class of situations, we de�ne the notion
of a deformation data. Such a deformation data can be of the form \an object with an
action of a ring O" or \an object with an action of a ringO and a quasi-polarization" or,
most generally, a �nite collection of objects together with certain morphisms between
them and their duals. For such a deformation data D, it is clear how to de�ne a D-
object of pDivA or any other additive Zp-linear category with duality (such as �nite
free modules over a given Zp-algebra). We also de�ne deformation functors of D-objects
and give the examples that we have in mind.
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Notation 4.2.1. For A2Art� let C= CA denote one of the following categories:

1. The category pDivA of p-divisible groups GA over A.

2. The category ModA of �nite free A-modulesMA.

3. The category FModA of �ltrations FA�MA , whereMA is a �nite free A-module
and FA a direct A-summand.

In each case CA is an additive Zp-linear category with a duality, an anti-equivalence of
categories t : CÆ

A
! CA. We have namely the Serre duality for p-divisible groups, the

A-linear duals for modules over A and

(F �M) 7�! ((M=F )t �M t)

for the �ltrations. In any case, we denote the dual object of X by X t and similarly for
morphisms.

A morphism A!A0 in Art� induces a Zp-linear \base change" functor

�
A A
0 : CA �! CA0 :

There are also some obvious forgetful functors, such as

FModA �! ModA (forget the �ltration) :

These are Zp-linear, commute with base change and preserve duality.

De�nition 4.2.2. An arbitrary self-dual Zp-linear category D is called a deformation
data if it has �nitely many objects and all Hom(X; Y ) are �nitely generated Zp-modules.

In the following list of basic de�nitions, let C = CA be as in 4.2.1 and D a deformation
data. The term functor will refer to a Zp-linear duality-preserving functor.

De�nition 4.2.3. A D-object XA of a category C is a covariant functor XA :D!C .
By a morphism X!Y of D-objects we mean a natural transformation as functors.

Notation 4.2.4. For a functor F : C!C 0 and a D-object X of C we let F(X) to be
the D-object of C 0 given by the composition F(X)=F ÆX . In particular, this de�nes
the base change of D-objects (let F =�
AA

0 : CA!CA0 ).
Remark. With the notations of Section 4.1, the following associations give duality-
preserving Zp-linear covariant functors (cf. [2], 5.3.6).

U : pDivA �! FModA
G 7�! (V G �MG)

D(�) : pDivk �! ModW (k)

G 7�! D(G)
D(�[p]) : pDivk �! Modk

G 7�! D(G[p])

Following 4.2.4, for a deformation data D and a D-object GA of pDivA we can speak of
U(GA). In case A= k and G=k we can also de�ne D(G) and D(G[p]).
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De�nition 4.2.5. Let A !! A0 be a homomorphism in Art�. Given a D-object XA0

of CA0 , a deformation of XA0 to CA is a D-object XA of CA given together with an
isomorphism

XA 
A A
0 �= XA0 :

For a D-object Xk of Ck, let the deformation functor of Xk to be

Def(Xk;D) : Art� �! Sets
A 7�! fdeformations of Xk to CAg= �= :

Keeping in mind the deformation functors that we are interested in (cf. 4.1.4), we
have the following examples:

Example 4.2.6. (Endomorphisms.) Let O be a Zp-algebra. Let D consist of two
objects, X and its dual X t with

End(X) = O; End(X t) = O op; Hom(X;X t) = 0; Hom(X t; X) = 0 :

We let duality interchange X and X t and act as identity End(X)!End(X t). Then D
de�nes the data \an object with an O-action". For instance, a D-object of pDivA can
be identi�ed with a p-divisible group GA=A together with an action of O. In particular,
for a D-object G=k we have (cf. 4.1.4)

Def(G;D) �= Def(G;O) :

Example 4.2.7. (Endomorphisms, principal quasi-polarization.) Let O be a
Zp-algebra with a Zp-linear anti-involution r : O �= O op. Again take D= fX;X tg and let

End(X) = O; End(X t) = O op; Hom(X;X t) = Zp�; Hom(X t; X) = Zp�
�1 :

Here � and ��1 are formal symbols and

���1 = id = ��1�; �t = ��; ��1ot� = r(o) (o2O) :

Then D de�nes the data \an object with an O-action and a principal quasi-polari-
zation". For instance, a D-object of pDivA is a p-divisible group GA=A together with
an action of O and a self-dual isomorphism � :G!Gt whose Rosati involution on O
is r. So for a D-object G=k we have (cf. 4.1.4)

Def(G;D) �= Def(G;O; �) :

Example 4.2.8. (p-chain.) Take n � 1. Let D consist of objects Xi indexed by
i 2 Z=nZ and their duals X t

i . Let

Hom(Xi; Xi+1) = Zpfi; Hom(X t
i+1; X

t
i ) = Zpf

t
i
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and de�ne the compositions of all the fi to be multiplication by p,

fi�1fi�2 � � � fi�n = p 2 Zp = End(Xi); i 2 Z=nZ :

As in 4.2.6 we let all the homomorphisms between Xi and X
t
j to be 0. Then D de�nes

the data \p-chain of length n". For instance, a D-object of pDivA is a collection of
p-divisible groups Gi=A (with i 2 Z=nZ) and maps fi : Gi ! Gi+1 every of whose cyclic
compositions equals p. In particular this forces the Gi to have the same height and the
fi to be isogenies.

4.3 The comparison theorem

Notation. Let G be a D-object of pDivk. Let M=D(G)
W �, which is a D-object
of Mod�. Denote by V G�MG the D-object U(G). Thus, canonically, MG=M
� k .
Following 4.2.2, we can de�ne the deformation functors Def(G;D) and Def(V G�
MG;D). We also de�ne the \rigidi�ed" version of the latter deformation functor,
DefM(V G�MG;D):

De�nition 4.3.1. Let N be a deformation of MG to �. De�ne

DefN (V G �MG;D) : Art� �! Sets

to be the covariant functor which associates to a ring A2Art� the set of isomorphism
classes of elements (VA�MA)2Def(V G�MG;D) given together with an isomorphism
MA
�=N 
� A.

Lemma 4.3.2. Let D be a deformation data and G a D-object of pDivk. For any
deformation N of the D-object MG to �, the functor DefN (V G � MG;D) is pro-
representable.

Proof. Apply the same argument as in the proof of Theorem 2.3.2. It is easy to
see that the Zp-generators of the Hom(X; Y ) for varying X; Y 2 D plus the duality
constraints give �nitely many equations for the deformation functor.

Remark 4.3.3. The crystalline theory establishes a canonical bijection

DefM(V G � MG;D)(A) = Def(G;D)(A)

for every k-algebra A2Art� whose augmentation A! k is a divided power extension.
In particular, this applies to A= k[V ] for any �nite-dimensional k-vector space V . So
the tangent spaces of the two functors are isomorphic. In particular, Def(G;D) does
have a (�nite-dimensional) tangent space.
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Example 4.3.4. Let G=k be a p-divisible group and O � End(G) a Zp-subalgebra.
Then the tangent space to Def(G;O) equals to the Hochschild cohomology group
H1(O�O; TG
k TG

t) as it is the tangent space to the deformation functor of the
�ltration (Theorem 2.3.2).

Lemma 4.3.5. Let D be a deformation data and G a D-object of pDivk. Then the
functor Def(G;D) :Art�!Sets is pro-representable.

Proof. We apply the Schlessinger's criterion (Theorem 1.4.3). By 4.3.3, Def(G;D)
has a �nite-dimensional tangent space. So it suÆces to prove that

Def(G;D)(A�A0 B
0) �! Def(G;D)(A)�Def(G;D)(A0) Def(G;D)(B0) (16)

is a bijection whenever A!!A0 is a small extension and B0 ! A0 a morphism in Art�.
Let GB0 2Def(G;D)(B0) be a deformation of G to B0.

Associated to GB0 there is a universal extension �ltration V GB0 �MGB0 . Moreover,
since

B = A�A0 B
0 !! B0

is a small (in particular, a divided power) extension, we can also de�neMBGB0 , the value
of the universal extension crystal of GB0 on the ring B. This is a D-object of ModB.
Moreover, by Grothendieck-Messing, there is a bijection between the deformations of
GB0 to B (as a D-object) and deformations of the �ltration V GB0 �MGB0 to a �ltration
of MBGB0 (again, as a D-object). However, the functor

F = DefMBGB0 (V G � MG) : ArtB �! Sets

is pro-representable by Lemma 4.3.2. In particular, it commutes with �bre products,
so

F(A�A0 B
0) �! F(A)�F(A0) F(B0)

is a bijection. It follows that (16) is a bijection as well.

Remark. In order to prove the pro-representability of Def(G;D) we have used the
Grothendieck-Messing theory together with the pro-representability of DefN (V G�
MG;D) for various choices of N . However, non-isomorphic p-divisible groups over
A might have non-isomorphic MG's, as D-objects. Consequently, one should not ex-
pect the full deformation functor Def(G;D) to be isomorphic to DefN (V G�MG;D)
for any particular choice of N . In some cases, however, the D-object MG is \rigid" in
the sense that it can be uniquely deformed to any A 2 Art�. Then Def(G;D) could
be expected to be (non-canonically) isomorphic to DefM�

(V G�MG;D) whereM� is
the unique deformation of M to �. Such a non-canonical isomorphism in fact exists, as
we show in 4.3.8 below.
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De�nition 4.3.6. Let C be as in 4.2.1 and let D be a deformation data. A D-object
Xk of Ck is said to be rigid if there is a \universal" D-object X� of C� such that

Def(Xk;D)(A) = fX� 
� Ag; A 2 Art� ;
and such that the automorphism functor

Aut(X�) : A 7�! Aut(X� 
� A)

is formally smooth.

Remark 4.3.7. It is not diÆcult to show that a D-object Xk of Ck is rigid if and only
if the following holds. First, Xk can be deformed to any A 2 Art�. Second, given a
surjection A!!A0 in Art� and a deformation XA0 of Xk to A0, any two deformations
X (1)
A ;X (2)

A of XA0 to A are isomorphic over XA0 . In other words, there is an isomorphism
of D-objects X (1)

A
�=X (2)

A which becomes identity on XA0 after applying 
AA
0 .

Theorem 4.3.8. Let D be a deformation data and G a D-object of pDivk. Let M=
D(G)
W (k) �. Consider a diagram of functors

Def(G;D) DefM(V G �MG;D)
q1& .q2

Def(V G � MG;D)
: (17)

Assume that the D-object M
� k=D(G[p]) of Modk is rigid. Then q1 and q2 are
formally smooth and there is a (non-canonical) isomorphism of functors i :Def(G;D)!
DefM(V G�MG;D) which makes (17) commute.

Proof. The strategy is to apply the comparison theorem 1.5.4. First note that both
Def(G;D) and DefM(V G�MG;D) are pro-representable (4.3.2, 4.3.5). Moreover,
their tangent spaces are isomorphic by 4.3.3 and this isomorphism commutes with the
projections to Def(V G�MG;D). In order to conclude that the two functors are
isomorphic over Def(V G�MG;D) it suÆces to prove that the projections q1 and q2
are formally smooth. We begin with q2.

Let A !! A0 be a surjection in Art�. Let VA0 �MA0 =M
�A
0 be a D-object of

FModA0 , considered as an element of Def(V G � MG;D)(A0). Assume that we are
given a deformation VA�MA of this element to A. In particular, MA is a deforma-
tion of MA0. However, M 
� A is also a deformation of MA0. So, by the rigidity
assumption, this two deformations are isomorphic. Moreover, by 4.3.7, we can choose
as identi�cation MA=M
�A which reduces to the identity map on MA0. Then
VA�MA=M
�A is a required deformation.

To show that q1 is formally smooth we apply a similar argument. Let A!! A0 be a
small extension in Art�. Let GA0 2Def(G;D)(A0). Denote by VA0 �MA0 the associated

universal �ltration object and let VA � M(1)
A be a deformation of it to A (as a D-

object of FModA0). Since A!!A0 has divided powers, we can also de�ne the value of
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the universal extension crystal of GA0 on A. Denote it by M(2)
A . BothM(1)

A andM(2)
A

are deformations of MA0 . Hence, by rigidity, they are isomorphic over MA0. Using
such as isomorphism, VA0 can be considered as a �ltration onM(2)

A . An application of
crystalline theory shows that this �ltration comes from a D-object GA of pDivA. Then
GA is a required deformation of GA0 to A. Hence q2 is formally smooth.
Remark 4.3.9. The isomorphisms established in Theorems 4.3.8 are in no way canoni-
cal. For example, we do not claim that they are functorial in G. The following example
shows that such a functorial isomorphism can not exist in general, even in the case
O=Zp .

Example 4.3.10. Let k=Fp and G be the p-divisible group of an ordinary elliptic
curve over k. Assume for a moment that for any A2Art� and any deformation G=A
of G=k, there is a canonical isomorphism

D(G)
� A =MG;

which is compatible with base change, functorial in G and which coincides with the
Grothendieck-Messing isomorphism at least when A= k[W ] for a �nite-dimensional
k-vector space W . Construct a natural transformation of functors

Def(G) �! DefD(G)(V G�MG)

by letting

G=A 7�! V G � EG = D(G)
� A :

This natural transformation is in fact an isomorphism, since both functors are pro-
represented by the ring �[[t]] and the map is an isomorphism on the tangent spaces.
Moreover, by functoriality, we get an induced inclusion of functors,

Def(G;O) �!� DefD(G)(V G�MG;R);

for an arbitrary subring O�End(G) and R=O
Zp �. Now denote by '2End(G)
the (geometric) Frobenius on G and let

On = Zp[p
n'] � End(G); n � 0 :

From the Serre-Tate theory, it follows that

Def(G;On) �= Hom�

�
W [[t]]=((1 + t)p

n � 1);�
�
:

However, it is easy to see that

DefD(G)(V G�MG;R) �= Hom�

�
W [[t]]=(pnt);�

�
:
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Remark. In Chapter 5 we compute the functors Def(G;O) and Def(G;O; �) in some
cases using the above isomorphisms. Recall the basic steps of our method to determine
the above functors.

Say we are interested in Def(G;O). Then �rstly, we have found a functor (not neces-
sarily pro-representable) over which Def(G;O) is formally smooth. Then we have rigid-
i�ed this functor to get a pro-representable functor (DefD(G)(V G�MG;R) in this case)
which is relatively easy to compute. Then we have applied the comparison theorem.

It might be interesting to apply the same method in a di�erent setting. For example,
a theorem of Grothendieck-Illusie ([13], Thm. 4.4) asserts that

q : Def(G) �! Def(G[p])
is formally smooth. Here Def(G[p]) is the deformation functor of the p-torsion of G as
a truncated p-divisible group. Suppose we could rigidify this functor to get

r : F �! Def(G[p])
with r formally smooth as well. Assume also that F is pro-representable and explicit
enough. By \explicit enough" we mean that one can determine, say, the �ltrations of F
determined by the p-rank �ltration on Def(G[p]). Then using the comparison theorem
as in the theorems above, one could deduce the corresponding information about the
deformation functor of G.

4.4 The maximal order case

To discuss the applications of our results, we consider the case of a p-divisible group G
with an action of a ring O. We show that in this case, the rigidity required for 4.3.8
is satis�ed if the Dieudonn�e module D(G) is O 
Zp W (k)-projective. This, in turn, is
true whenever O is a hereditary (e.g. maximal) order in a semi-simple Qp-algebra.

We �x the following notations. Let G=k be a p-divisible group over a perfect �eld
of characteristic p and O�End(G) a Zp-subalgebra. Let D be the deformation data
of Example 4.2.6 with O as the acting ring. We let R=O
Zp � and

�� : R �! End(TG)

denote the tangent space representation. Note that TG is a D-object and (cf. 2.2.3)

Def(TG;D) �= Def(�� ) :
Let V G�MG=D(G[p]) as usual denote the universal extension �ltration. We letM
denote D(G)
W �. Clearly (cf. 2.3.1)

DefM(V G �MG;D) �= DefM(V G � MG;R) :

Finally, by 4.2.6 we have Def(G;O) = Def(G;D). This is a subfunctor of Def(G), the
full deformation functor of the p-divisible group G.
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Theorem 4.4.1. Let G=k be a p-divisible group. Let O�End(G) be a Zp-subalgebra
which is isomorphic to a hereditary order in a semi-simple Qp-algebra. Consider the
diagram of functors

Def(G;O) DefM(V G �MG;R)
q1& .q2

Def(�� )
(18)

Here q1 and q2 are the obvious maps given by GA 7!TGA and (VA�MA) 7! (MA=VA).
Then

1. D(G) is a projective R=O
ZpW (k)-module.

2. D(G[p]) is rigid as a D-object of Modk.

3. q1 and q2 are formally smooth.

4. There is a (non-canonical) isomorphism of functors i :Def(G;O)!DefM(V G�
MG;R) which completes (18) to a commutative diagram.

Proof. 1. Since hereditary orders stay hereditary after an unrami�ed base change over
a complete �eld (Theorem 3.2.11), R is a hereditary order in a semi-simple algebra over
the fraction �eld of W (k). Thus (by de�nition, cf. 3.2.8), every R-module which is free
over W is projective.
2. From the �rst part of the theorem it follows thatM is a projective R-module. The
assertion follows from the fact that projective modules satisfy the rigidity condition
(cf. 2.2.5).
3, 4. This follows from Theorem 4.3.8 once we show that

Def(V G �MG;D) �! Def(�� )
VA � MA 7�! MA=VA

(19)

is an isomorphism. We start with surjectivity. Let A 2 Art� and }A 2Def(�� )(A),

}A : R �! EndA(TA) :

Here TA is a �nite free A-module and TA
A k=TG. Let MA=M
�A. We have a
diagram of R
� A-modules,

MA


k�! MG �!! TG
" 
k
TA

(20)

where the map MG!!TG comes from the canonical isomorphism MG=V G�= TG.
SinceMA is a projective R
� A-module, there exists a R
� A-module map MA!TA
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which makes (20) commute. It is surjective by Nakayama's lemma and its kernel VA�
MA is the required deformation of the �ltration V G�MG.

It remains to show that (19) is injective. Let V1;A�M1;A and V2;A�M2;A be two
elements of Def(V G�MG;D)(A). Suppose

M1;A=V1;A �= TA �=M2;A=V2;A : (21)

as R
� A-modules. By the second part of the theorem, there are isomorphisms

M1;A
�=M
� A �=M2;A :

In particular,Mi;A are projective R 
� A-modules. We have to show that there is an
isomorphismM1;A

�=M2;A which reduces to the identity map on MG and which takes
V1;A to V2;A.

Consider the set TA�TGMG . It can be naturally given an R
�A-module structure
(via that of its components). We have the following diagram of R
� A-modules

M1;A �������������> M2;A

�1& .�2

TA �TG MG
(22)

Here �i have the maps induced by (21) as their �rst components and the natural projec-
tions M1;A!MG as their second components. In particular �2 (and �1) is surjective.
By projectivity ofM1;A, there exists a dotted map which makes (22) commute. Such a
map has both of the required properties (look at its components).

4.5 The polarized maximal order case

Our next case is that of a p-divisible group G with a �xed subring O � End(G) and
given together with a principal quasi-polarization, an isomorphism

� : G �! Gt

which is anti-symmetric, �t=��. We assume that O is stable under the Rosati invo-
lution

' 7�! i(') = ��1't�; ' 2 End(G) :

To simplify our considerations, we only study the case p 6= 2. So we use the blanket
assumption char k 6=2 is used throughout this section.

Notation 4.5.1. Denote R=O
Zp � and M=D(G)
W (k)� as in the previous sec-
tion. The quasi-polarization induces an isomorphism, which we also denote by �,

� :M�!Mt :
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This is an isomorphism of (left) R-modules if we giveMt the left R-module structure
via the Rosati involution,

(r � f)(x) = f(i(r) � x); f 2 Mt : (23)

Notation 4.5.2. Denote by D the deformation data of Example 4.2.7 with our given
ring O and the involution i induced by �. Note that (G;Gt) becomes a D-object of
pDivk. By abuse of notation we will denote this object just by G. Hence we will
also refer to V G�MG as a D-object of FModk and adopt similar notations for the
deformations GA of G to some A 2 Art�.
Remark. The deformation functor Def(G;D) is canonically isomorphic to the one
de�ned in 4.1.4 (cf. 4.2.7),

Def(G;D) = Def(G;O; �) :
Denote also

DefM(V G �MG;R; �) = DefM(V G � MG;D) :
Remark. An element of Def(G;O; �)(A) is thus a p-divisible group GA=A deforming
G, which admits an O-action and a principal quasi-polarizations reducing to those of G.
An element of DefM(V G � MG;R; �)(A) is an O-stable (eqivalently R-stable) totally
isotropic �ltration VA �MA =M
� A which reduces to V G�MG.

Theorem 4.5.3. Let � :G!Gt be a principal quasi-polarization. Let O�End(G)
be a Rosati-invariant Zp-subalgebra which is isomorphic to a hereditary order in a
semi-simple Qp-algebra. Then there is a (non-canonical) isomorphism

Def(G;O; �) �= DefM(V G � MG;R; �) :

Proof. Let D be as above (see 4.5.2). We show that

Def(G;D) �= DefM(V G �MG;D)
by applying the main comparison theorem (4.3.8) to this situation. In order to do
this, it suÆces to prove that MG=D(G[p]) is rigid as a D-object. Let A!!A0 be a
surjection in Art� and MA0 a deformation of MG to A0 as a D-object. Hence MA0

is a �nite free A0-module with an R-action and given together with a self-dual (left)
R-module isomorphism MA0

�=Mt
A0

(as in 4.5.1).

Let M(1)
A and M(2)

A be two deformations of MA0 to A (as a D-object). We claim
that they are isomorphic. Let

�(1) :M(1)
A
�! (M(1)

A
)t; �(2) :M(2)

A
�! (M(2)

A
)t :

be the quasi-polarizations. By 2.2.5, there is an R-module isomorphism ' :M(1)
A !M(2)

A

which reduces to the identity map on MA0. If, moreover, ' commutes with the �'s,
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that is, if �(1)='t�(2)', then M(1)
A andM(2)

A are indeed isomorphic as D-objects, as
required. Otherwise, consider the maps

' and (�(2))�1('t)�1�(1) :

Both are R-module isomorphisms M(1)
A !M(2)

A which reduce to the identity onMA0.
Hence their \average",

 =
1

2

�
'+ (�(2))�1('t)�1�(1)

�
is also anR-module map which reduces to the identity onMA0. In particular (Nakayama's
lemma), it is an isomorphism as well. Using the self duality of �(1) and �(2), it is easy
to check that �(1)= t�(2) . Hence  is the required isomorphism of D-objects. This
completes the proof.

Remark. Given a triple (G;O; �), it might be interesting to compare the structure
of the deformation functors Def(G;O) and Def(G;O; �). One can describe the latter
functor as a �bre product functor

Def(G;O; �) = Def(G;O)�Def(G) Def(G; �);

which presents the pro-representing ring ofDef(G;O; �) as a (completed) tensor product
of the corresponding rings. Here Def(G) is the full deformation functor of the p-divisible
group G, pro-represented by the formal power series ring �[[t1; :::tn2 ]] with n=dimG.
The functor Def(G; �) of deformations of G which respect � is pro-represented by
�[[t1; :::tn(n+1)=2]]. Note however, that knowing abstractly the pro-representing ring of
Def(G;O) does not by itself give that of Def(G;O; �). In fact, one needs to know
how exactly the subfunctors Def(G;O) and Def(G; �) \intersect" inside Def(G). For
example assume that Def(G;O) is formally smooth, i.e. it is pro-represented by a
formal power series ring (in some number of variables) over �. It is not clear then that
Def(G;O; �) is formally smooth as well, as two regular subschemes of a regular scheme
can have a singular intersection. Surprisingly, the formal smoothness of Def(G;O) does
imply that of Def(G;O; �), as we show in the theorem below. The proof makes use of
the fact that O is Rosati invariant (although not the actual involution on O) and the
\averaging" trick used in the proof of 4.5.3.

Theorem 4.5.4. Let � :G!Gt be a principal quasi-polarization. Let O�End(G)
be a Rosati-invariant Zp-subalgebra and assume that Def(G;O) is formally smooth.
Then Def(G;O; �) is formally smooth as well.

Proof. Let A !! A0 be a small extension in Art� and GA0 2 Def(G;O; �)(A0). Hence
GA0=A0 a deformation of G=k to which the quasi-polarization and the ring action lift.
We have to show that there is a GA 2Def(G;O; �)(A) which deforms GA0 . The formal
smoothness of Def(G; �) implies the existence of a deformation G�A=A of GA0 which
inherits the quasi-polarization. On the other hand, by formal smoothness of Def(G;O)
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there is also (another) deformation GO
A
=A of GA0 to which the O-action lifts. We are

going to use the relation between � and O (namely, the Rosati invariance) to show that
there is a third lifting, GA=GO;�A =A to which both � and O-action lift. In some sense,
GO;�
A

is going to be a combination of GO
A
and G�

A
.

As in the proof of pro-representability 4.3.5, we use the results of Grothendieck-
Messing. Associated to GA0 there is a universal extension �ltration V GA0 �MGA0 . Since
A!!A0 has divided powers, we can also de�ne MAGA0 , the value of the universal ex-
tension crystal of GA0 on the ring A. This is a D-object of ModA. There is a bijection
between the deformations of GA0 to A (as a D-object) and deformations of the �ltration
V GA0 �MGA0 to a �ltration of MAGA0 (again, as a D-object).

Fix an identi�cation of �-modules ker(A!!A0)�= k . By Theorem 2.3.2, the set of
all deformations of V GA0 �MGA0 to a �ltration of MAGA0 is a principal homogeneous
space under TG
 TGt. Thus, for any GA deforming GA0 , we can formally write

GA = G�A + � (24)

for some � 2TG
TGt . Since it is easy to characterize the �ltrations to which either
� or the O-action lifts, the same is true for the deformations GA of GA0 to A. Consider
the composition s of the maps

TG
 TGt d�
d��1�! TGt 
 TG i�! TG
 TGt :

Here i interchanges the two factors and d� :TG�!TGt is induced by � :G!Gt on
the tangent spaces. Then � lifts to the deformation GA as in 24 if and only if � is
symmetric under s,

s(�) = � :

On the other hands, the liftings GA which inherit the O-action can be written as

GA = GOA + �; � 2 H0(R -R ; TG
 TGt) � TG
 TGt :

Write
GO
A
= G�

A
+ �; � 2 TG
 TGt

From the relation 23, it follows that

s(�)� � 2 H0(R -R ; TG
 TGt) � TG
 TGt :

Thus both G�
A
+ � and G�

A
+ s(�) give deformations which inherit the O-action. Hence

so does

GO;�
A

= G�
A
+
� + s(�)

2

It is also clear that (� + s(�))=2 is symmetric under s, so GO;�A inherits both � and the
O-action, as asserted.
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4.6 Non-rigid deformation problems

Let G=k be a p-divisble group. We have studied the deformation functors of G with
an action of a maximal order O and/or a principal quasi-polarization �. In many
applications to abelian varieties, such as the study of CM-liftings or construction of
abelian varieties with a given endomorphism ring, one is led to study a more general
situation. This leads to consider a functor of the type

D = Def(G;O; �1; :::; �n; �1; :::; �m); �i : G! Gt; �j : G
t ! G (25)

where O�End(G) is an arbitrary subring and �i; �j are quasi-polarizations, not nec-
essarily principal. It is possible to reduce the study of such functors to a simpler case.
Namely, there is an isomorphism

Def(G;O; �1; :::; �n; �1; :::; �m) �= Def(H;OH; �H) (26)

for a certain choice of H;OH and �H. In fact, take H =G�Gt and let i be the map
H = G�Gt ! Gt �G = H t which interchanges the two factors. Then �H = iÆ(1;�1)
is a (principal) quasi-polarization on H. If the subring OH � End(H) happens to
be a hereditary order in a semi-simple Qp-algebra, we can apply our previous results.
Unfortunately, this is far from the case in general.

The ring OH and the isomorphism (26) are established as follows. Let D be as in
(25). Let H =G�Gt and decompose

End(H) =

0@ End(G) Hom(G;Gt)

Hom(Gt; G) End(Gt)

1A
De�ne OH � End(H) to be

OH =

*
pG; pGt;

 
' 0
0 't

!
'2O

;

 
0 �i
0 0

!
1�i�n

;

 
0 0
�j 0

!
1�j�m

+
:

In other words, OH is generated by the data de�ning D plus the projections pG and pGt
of H on the two factors. Take �H as above and consider

F = Def(H;OH; �H) :

We claim that D�=F . Clearly a deformation G 2 D(A) for some A2Art� gives also
an element of F(A).

Conversely, take H 2 F(A). De�ne
G1 = ker(pG : H ! H); G2 = ker(pGt : H ! H) :

These are p-divisible groups over A which deform G and Gt. Since pG; pGt 2 End(H)
are orthogonal idempotents, H�=G1�G2 .
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From the relation

pGt = ��1
H
pt
G
�H

it follows that the lift of �H to a principal quasi-polarization on H identi�es Gt1 with G2.
So H �= G1�Gt1 .

Finally, from the commutation relation of the elements of OH with the projections
pG; pGt it follows that every '2O lifts indeed to an endomorphism of G1, rather than
just an endomorphism of H. The same hold for �i and �j. So G1 2D(A) as asserted.
Remark 4.6.1. The above argument clearly generalizes to a deformation problem
with an arbitrary deformation data (cf. 4.2.2). Thus, given a deformation data D and
a D-object G of pDivk, there is an isomorphism

Def(G;D) �= Def(H;OH; �H)

for some p-divisible groupH=k, a subringO � End(H) and a principal quasi-polarization
�H on H. This is, however, mostly of theoretical interest, as the deformation functors
Def(H;OH; �H) can be extremely complicated in case OH is not a maximal order.

4.7 The p-chain case

Although our computations in Chapter 4 concern primarily the deformation functors
Def(G;O) and Def(G;O; �), it is interesting to give an example of a slightly di�erent
kind. Here is a well-known deformation problem which involves more than one p-
divisible group.

Let D be the deformation data of 4.2.8, a \p-chain of length n". As we already
remarked, a D-object of pDivA can be identi�ed with a collection of p-divisible groups
fGi=Ag indexed by i 2 Z=nZ and maps fi :Gi!Gi+1 , such that

fi�1fi�2 � � � fi�n = p 2 End(Gi); i 2 Z=nZ : (27)

In particular, fi are isogenies. We claim that in this situation the comparison theorem
4.3.8 applies:

Proposition 4.7.1. Let G be a D-object of pDivk. Then D(G[p]) is a rigid D-object
of Modk. There is a non-canonical isomorphism of functors

Def(G;D) �= DefM(V G �MG;D) :

Proof. Let Gi denote the p-divisible groups which form the p-chain and fi :Gi!
Gi+1 the connecting maps. As usual, let Mi=D(Gi) and Mi=D(Gi[p]) =Mi
W

k . For any i 2 Z=n choose a subspace Ki�Mi such that Mi= fi�1Mi�1�Ki . The
compositions

fi�1 � � � fi�j : Mi�j �!Mi
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map Ki�j injectively intoMi for 1� j <n. Letting fi�1 � � � fi�j denote the identity map
for j=0, we have

Mi =
n�1M
j=0

fi�1 � � � fi�jKi�j :

If fMig is a deformation of M to A 2 Art� as a D-object, one obtains a similar
decomposition: let Ki�Mi be a �nite free A-module which lifts Ki � Mi. Then,
using Nakayama's lemma, one shows that

Mi =
n�1M
j=0

fi�1 � � � fi�jKi�j :

It follows that every two D-deformations of M to A are isomorphic. The second asser-
tion of the proposition follows from Theorem 4.3.8.

Remark 4.7.2. It is interesting to note that the condition (27) is essential for the
rigidity. In fact, if one takes a chain of p-divisible groups (Gi; fi) with, for instance,Q
fj = p2 instead, the corresponding deformation data is not rigid and the statement

corresponding to 4.7.1 does not hold.

Remark 4.7.3. Proposition 4.7.1 allows to write down equations for the deformation
functor Def(G;D) of a p-chain of p-divisible groups. There is, however, a di�erent
approach to study this functor. As in the previous section, it is possible to �nd an
isomorphism

Def(G;D) �= Def(H;O) (28)

for certain p-divisible group H and a hereditary order O � End(H).

Namely, let the p-chain in question be given by

Gn
fn�! G1

f1�! G2
f2�! � � � fn�1�! Gn�1

fn�1�! Gn :

De�ne H =G1� � � ��Gn . Let ei 2End(H) be the projector on the i-th factor and
f =(f1; :::; fn)2End(H). Let O�End(H) be the Zp-subalgebra generated by the ei
and f . Then (28) holds.

The structure of O can be also easily determined. It is isomorphic to the subring of
Matn�n(Zp) given by

O =

8>>>>>><>>>>>>:

0BBBBBB@

a1;1 a1;2 : : : a1;n�1 a1;n
b2;1 a2;2 : : : a2;n�1 a2;n
...

. . . . . . . . .
...

bn�1;1 bn�1;2 : : : an�1;n�1 an�1;n
bn;1 bn;2 : : : bn;n�1 an;n

1CCCCCCA ; ai;j 2 Zp; bi;j 2 pZp

9>>>>>>=>>>>>>;
: (29)

We refer to Section 5.3 for the proof of this statement (cf. 5.3.1) and a study of the
deformation problem Def(H;O). There we discuss the case of a p-divisible group with
an action of a maximal order a central division algebra over Qp, which leads to the
same functor. In fact, these considerations also give an alternative proof of 4.7.1.
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5 Computing the moduli

We are going to consider the deformation functor Def(G;O) in detail and present some
examples. Throughout this chapter G is a p-divisible group over a perfect ground �eld k
of characteristic p and O�End(G) a hereditary order in a semi-simple Qp-subalgebra
of End(G)
Zp Qp.

Let d; d0; h denote the dimension of G, the dimension of the dual Gt and the height
of G respectively. Thus h= d+ d0 .

Let �=W =W (k) be the ring of Witt vectors of k. Thus the category ArtW is the
category of all Artin local rings with residue �eld k. We let R=O
ZpW .

Let M=D(G) be the (covariant) Dieudonn�e module of G and let V =V G and
M =MG denote the terms of the �ltration on the Lie algebra of the universal extension,

0 �! V G �!MG �! TG �! 0 : (30)

The representation of R on the tangent space G is denoted by �� .
Recall that our assumption on O implies thatM is a projective R-module (Theorem

4.4.1). The functors DefM(V�M;R) and Def(G;O) are pro-representable (2.3.2,4.3.5).
The projections

Def(G;O)! Def(�� ); DefM(V �M;R)! Def(�� )

are formally smooth and there is a non-canonical isomorphism (Theorem 4.4.1)

Def(G;O) �= DefM(V �M;R)

which commutes with these projections.
Denote by U the pro-representing ring of DefM(V�M;R) (and hence of Def(G;O)

as well). Our goal is to compute U in some cases.
Note that the proof of Theorem 2.3.2 gives the equations of the moduli space for

any hereditary order O, provided the action of O on the Dieudonn�e module of G is
known. We state this result explictly as follows.

Theorem 5.0.4. Let G=k be a p-divisible group and O�End(G) a subring, which is
a hereditary order in a semisimple Qp-algebra. Choose a basis fe1; :::; ed0 ; f1; :::; fdg of
the Dieudonn�e module M=D(G) over W , which lifts the respective bases of V =V G
and TG of the �ltration on M =MG =M
W k,

0 �! V �!M �! TG �! 0 :

Write the action of R=O
ZpW onM in a block matrix form with the respect to this
basis,

R 3 r 7�!
 
Ar Br

Cr Dr

!
2 End(M) :
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Let U be a d � d0 matrix, whose entries uij are indeterminants. Then the pro-
representing ring of Def(G;O) is

U �= W [[uij]]=J ;

where J is the ideal generated by the equations

UAr + UBrU �DrU � Cr = 0; r 2 R : (31)

Remark. An analogous result holds in the principally polarized case. The equations
de�ning the functor DefM(V�M;R; �) are (31) together with the symmetry equations
uij = uji if the basis is properly chosen.

Before we give the examples of computations, we state some simple reductions (Sec-
tion 5.1) which allow to assume that the ring O has a relatively simple form. Then
we determine the pro-representing ring in case O is the ring of integers in a quadratic
extension of Qp and give some higher-dimensional computations as well (Section 5.2).
Then we look at the case of a maximal order in a division algebra with unrami�ed
center (Section 5.3), the case of one-dimensional p-divisible groups (Section 5.4) and
the so-called canonical liftings (Section 5.5).

5.1 Preliminary reductions

Let W 0 be the fraction �eld of W and R0=R
W W
0 . Since R0 is a semisimple W 0-

algebra, by the structure theorem (3.1.2) we have

R0 �= Matn1�n1(S
0
1)� � � � �Matnk�nk(S

0
k); (32)

a product of matrix rings over division rings S0
i . Each of the S0

i is central over a �nite
extension of W 0.

Reduction to the case of simple R

Assume that R�=R1�R2 . Then every R-module decomposes as a direct sum of an
R1-module and an R2-module. In particular this applies toM;M; V and, similarly, to
M
W A;VA for all A. Thus,

DefM(V �M;R)(A) = DefM(V1�M1; R)(A)�DefM(V2�M2; R)(A) :

On the level of the pro-representing rings,

U �= U1 b
 U2 :
Thus, we can assume that R0 is simple rather than semi-simple. In view of the decom-
position (32), this means that R0 is a matrix ring over a division algebra.

Remark. Even if the original order O�End(G) is simple, R=O
Zp W might not
stay simple. In fact it is simple if and only if the center Z(O0) stays a �eld after
tensoring with W 0. This is equivalent to requiring that the �eld extensions Z(O0)=Qp

and W 0=Qp have no isomorphic intermediate sub�elds (except Qp itself).
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Reduction to the case of a totally rami�ed center

Let W 0 be the maximal �etale extension of R in the center Z(R),

W � W 0 � Z(R) :

ThenM; V; VA etc. can be all naturally considered as W 0 modules. The ring W 0 is the
ring of Witt vectors of some �nite separable �eld extension k0 of k.

ConsiderM a �nite free W 0-module and

MA =M
W A =M
W 0 W 0 
W A =M
W 0 (A
W W 0)

as a base change of M to the ring A
W W
0 . Then an element fVA�M 
W Ag of

DefM(V�M;R)(A) is a �ltration of A 
W W 0-modules which reduces to fV �Mg.
Thus, DefM(V �M;R) becomes a composition of functors

ArtW �! ArtW 0 �! Sets

Here the �rst functor is the base change A 7!A
W W
0 . The second one is DefM(V�

M;R) but with R;M; V etc. considered over W 0. If we denote its pro-representing
ring by U 0, then

U = U 0 
W W 0

Moreover, since W 0 was chosen as maximal �etale, the center of R is totally rami�ed
over W 0. By this reduction we can assume that Z(R) is totally rami�ed over W 0.

Remark. If k is algebraically closed, then every �nite extension of W 0 is totally ram-
i�ed and the discussion above becomes vacuous.

Reduction from Matn�n(R) to R

Assume that R�=Matn�n(S), so R is a full matrix ring over another ring S. In particular
this applies when S0 is a division algebra and R�R0 is a maximal order (rather than
just hereditary).

Let � be a free S-module of rank n. The Morita equivalence ([34], 16.9, 16.16) gives
an equivalence of categories

fleft S-modulesg �! fleft R-modulesg
N 7�! HomS(�; N) �= N�n : (33)

Here R acts on HomS(�; N) on the left via its natural linear action on �.
Now letM be an R-module (�nite and free overW as above) and V �M =M
W k

an R-stable �ltration. Then there is an S-moduleMS and a S-submodule V S of MS ,
which induceM and V respectively, via (33). Moreover, a deformation of V to a ring A
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(as an R-module) is induced by a unique deformation of VS to A (as an S-module).
Hence

DefM(V �M;R) �= DefM(V S�MS ; S) :

So the problem of determining the pro-representing ring U for DefM(V�M;R) reduces
to a similar problem for the ring S.

As an application of the above reductions, we get a result of Kottwitz ([18], x5) on
formal smoothness in the unrami�ed case.

Theorem 5.1.1. Let G=k be a p-divisible group and let O � End(G) be of the form

O0 �= Matn1�n1(O1)� � � � �Matnk�nk(Ok);

where Oi are maximal orders in (�nite) unrami�ed �eld extensions of Qp. Then
Def(G;O) is formally smooth over W . Moreover, if � is a principal quasi-polarization
on G whose Rosati involution stabilizes O, then Def(G;O; �) is formally smooth over
W as well.

Proof. The functor DefM(V�M) (no extra data) is formally smooth for any �nite
free W -module M and any �ltration V �M =M
W k . Thus, the formal smooth-
ness of Def(G;O) follows from the above reductions. The quasi-polarized case follows
from 4.5.4.

Remark 5.1.2. It follows that the pro-representing ring of Def(G;O) is
U �= W [[t1; :::; tn]]; n = dimkH

1(R -R ; TG
k TG
t) :

Indeed, Def(G;O)�=DefM(V�M;R) and the dimension of the tangent space of the
latter functor is given by 2.3.2.

5.2 The commutative case

In this section we give some computation in case O � End(G) is commutative. By
the results of the previous section, O can be taken to be the maximal order in a �eld
extension of Qp in this case.

We have seen that the deformation functor Def(G,O) is formally smooth in case
O=Zp is unrami�ed.

If O is rami�ed, the moduli space is usually highly singular. We illustrate this with
two speci�c examples. First we look at the case of a maximal order in a quadratic
�eld. Here it is possible to determine the equations of the deformation functor in all
cases. The other example is the case O�=W [ h

p
p]. Here we list some computations in

low dimensions.

Example 5.2.1. Maximal order in a quadratic �eld.

Assume for simplicity that char k 6=2. Let [K :Qp] = 2 and O�K be the valuation
ring of K. Let G be a p-divisible group over k with an O-action. Take R=O
Zp W
with W =W (k). The following cases are possible.
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Case 1. R �= W �W .

Index the components W �=W (1)�W (2) . Decompose V =V (1)�V (2) and T =M=V
as T (1)�T (2) correspondingly. The deformation functor Def(G;O) is formally smooth
and

U �= W [[t1; :::; tn]]; n = dimV (1) dimT (1) + dimV (2) dimT (2) :

Case 2. R is local and R=W is unrami�ed.

In this case M is a free R-module and M;V and M=V free l=R
W k -modules.
So Def(G;O) is formally smooth and

U �= W [[t1; :::; tn]]; n =
d

2

d0

2
:

Case 3. R is local and R=W is rami�ed.

Write R=W [
p
�] with with (�)=mW . The moduleM is free of rank (d + d0)=2

over R. The action of
p
� onM can be therefore described by a matrix

p
� :

�
0 I
�I 0

�
2 EndW (M)

in some basis. Here I is the identity matrix of size (d+ d0)=2. However, we have
to take into account the �ltration V � M . It is easy to see that there a basis
fe1; :::; ed0 ; f1; :::; fdg ofM (as in the Theorem 5.0.4) in which the action of

p
� takes

the form

p
� :

0BBBBBB@
0 Ir0
�Ir0 0

0 Is
�Is 0

0 Ir
�Ir 0

1CCCCCCA 2 EndW (M) : (34)

Here Ix denotes the x� x identity matrix. We have

d = 2r + s; d0 = 2r0 + s :

The equations which decribe the moduli space are (31) applied to
p
� 2R . Thus let

Ap�; Bp�; Cp� and Dp� be the blocks of (34) separated by the boldface lines. Compu-
tation shows that the solutions of (31) are given in a block matrix form by the matrices

0B@
r0 r0 s

s �U13U12 U12 U13

r U32 � U23U12 U22 U23

r �U22 � U23U13U12 U32 U23U13

1CA = U ;
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where U12; U22; U23; U32 are arbitrary and U13 satis�es U2
13 = �Is. Hence the pro-

representing ring of the deformation functor is given by

U �= W [[t1; :::; tn]] [[uij]]=J; n = rs+ 2rr0 + r0s; 1 � i; j � s

where J is the ideal expressing the matrix relation fuijg2= �Is .
Note the two particular instances of this example:
If s=0 then the deformation functor is formally smooth of dimension d

2
d0

2
over W ,

as in the unrami�ed case.
On the other hand, if d= d0 and r= r0=0, then the de�ning equations are just

fuijg2= �Is with 1� i; j� d. This is for example the case when a (rami�ed at p)
quadratic �eld acts diagonally on a product of elliptic curves. Note also that in this
case the pro-representing ring is highly singular. Indeed, the tangent space of U is
n2-dimensional (i.e. maximal possible), while the dimension of the ring itself is actually
much smaller.

Example 5.2.2. O= Zp [ h
p
�])

Take O=Zp[ h
p
�] with � 2 mW and R=O
ZpW . Let G=k be a p-divisible group of

height h= d+ d0 with an O-action. This is a \complex multiplication" case, in a sense
that O�End(G) has a largest possible rank (namely h) for a commutative subring.

We sketch the results of our computations. The tangent space to Def(G;O) has
dimension min(d; d0). The functor is formally smooth if and only if d=0 or d0=0, in
which case the pro-representing ring is W . Some of the low-dimensional examples are
presented in the following table.

Note that, by duality, we can reduce to the case d � d0.

d d' Pro-representing ring of Def(G;O)
1 any W [x]=

�
xd

0 � �
�

2 2 W [x; y]=
�
2xy + y3; x2 + xy2 � �

�
2 3 W [x; y]=

�
x2 + 3xy2 + y4; 2x2y + xy3 � �

�
2 4 W [x; y]=

�
3x2y + 4xy3 + y5; x3 + 3x2y2 + xy4 � �

�
3 3 W [x; y; z]=

�
yz3+2y2z+2xy+xz2; z4+3yz2+2xz+y2; xz3+2xyz+x2��

�

5.3 Maximal order in a division algebra with unrami�ed center

We keep the notations of the introduction to this chapter. In this section we study the
case when O is the maximal order in a division algebra D whose center is a (�nite)
unrami�ed extension K=Qp.

We begin with the structure of R = O 
Zp W in this case.
An arbitrary �nite extension K=Qp can be �ltered by intermediate sub�elds

Qp � KW � Kun � K
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where Kun is the maximal unrami�ed extension of Qp inside K and KW is the maximal
sub�eld of K which is isomorphic to a sub�eld of W 0=W 
Zp Qp . Note that W

0=Qp

is unrami�ed, whence the inclusion KW �Kun . Let 
W ;
un and 
 denote the rings
of integers of KW ; Kun and K respectively.

First, we can reduce the computation of Def(G;O) to the case KW =Kun . This
can be achieved by replacing W =W (k) by a W 0=W (k0) for a �nite extension k0=k as
described in Section 5.1.

Second, since 
W is contained in O, the base changed ring O
Zp 
W is isomorphic
to a product of m= [KW :Qp] copies of O. Hence

R = O 
Zp W = (O 
Zp 
W )

W W = (O � � � � � O)

W W
= (O 

W W )� � � � � (O 

W W ) :

The p-divisible group G decomposes G=G1� � � ��Gm and the study of the deforma-
tion functor Def(G;O) can be reduced to that of Def(Gi;O) for 1� i�m.

Thus assume that Qp=KW =Kun . To justify the title of this section, assume
further that K=Qp is unrami�ed, K

un=K . In summary, we assume that D is a �nite-
dimensional central Qp-algebra and O�D the maximal order.

By Theorem 4.4.1, the functor Def(G;O) is isomorphic to the deformation functor
of the universal �ltration Def(V G�MG;R) where R=O
ZpW . The Dieudonn�e
module D(G) is an R-module and V G�MG=D(G)
W k is an R
W k-�ltration. So
we need to know the structure of these rings to study Def(G;O). The ring R = RW

has the following shape ([34]):

Notation. Let A 2 ArtW . Denote by RA the A-algebra of matrices

RA =

8>>>>>><>>>>>>:

0BBBBBB@

a1;1 a1;2 : : : a1;n�1 a1;n
b2;1 a2;2 : : : a2;n�1 a2;n
...

. . . . . . . . .
...

bn�1;1 bn�1;2 : : : an�1;n�1 an�1;n
bn;1 bn;2 : : : bn;n�1 an;n

1CCCCCCA ; ai;j 2 A; bi;j 2 pA

9>>>>>>=>>>>>>;
: (35)

Denote by ModRA the category of RA-modules which are �nite and free over A. Note
that RA

�=RW 
W A. In order to study the structure of the RA-modules, we introduce
further the following basic elements:

e1 =

0BBB@
1 0 � � � 0
0 0 � � � 0
� � � � � � � � � � � �
0 0 � � � 0

1CCCA; : : : ; en =
0BBB@
0 � � � 0 0
� � � � � � � � � � � �
0 � � � 0 0
0 � � � 0 1

1CCCA
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and

� =

0BBBBBBBB@

0 1 0 � � � 0 0
0 0 1 � � � 0 0
� � � � � � � � � � � � � � � � � �
0 0 0 � � � 1 0
0 0 0 � � � 0 1
p 0 0 � � � 0 0

1CCCCCCCCA
To ease the notation (cf. (37) below), we will think of the indices of the ei as being in
Z=nZ, so we let en+1 = e1 etc.

Clearly ei are orthogonal idempotents,

e2i = ei; eiej = 0 (i 6= j);
nX
i=1

ei = 1 : (36)

Further

�n = p and ei� = �ei+1 : (37)

The ring RA is generated (as an A-algebra) by the ei and � subject to (36) and (37).
This allows to describe the structure of RA-modules as follows.

Lemma 5.3.1. Let M 2 ModRA be an RA-module. Then M decomposes as a direct
sum of A-modules,

M =M1 �M2 � � � � �Mn; Mi = eiM :

The element ei 2 RA acts as identity on Mi and as zero on Mj for j 6= i. The element
� 2 RA maps Mi to Mi�1, so we get a sequence of A-modules and A-module maps:

Mn
�1 � M1

�2 � M2
�3 � � � � �n�1 � Mn�1

�n � Mn : (38)

The cyclic composition �i+1�i+2 � � ��i�1�i is multiplication by p on Mi. Conversely,
given A-modules Mi for i2Z=nZ and maps �i :Mi!Mi�1 every of whose cyclic com-
positions equals p, there is a unique RA-module M which gives this data.

Remark 5.3.2. The above lemma can be also formulated in the form of an equivalence
of categories between ModRA and the category of data fMi; �ig satisfying the above
conditions.

Proof of 5.3.1. The decomposition (38) is a consequence of the fact that ei are
orthogonal idempotents, so they generate a subring of RA isomorphic to A�A� � � ��
A.

To �nd the action of � on the Mi, we use the relation ei�= �ei+1 . Since ei�ej =
�ei+1ej which is zero for j 6= i+1, it follows that ei� = 0 on Mj for j 6= i+1. So �
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maps Mk to Mk�1 for all k. The assertion on the cyclic composition follows from the
fact that �n= p.

Conversely, suppose given �nite free A-modules Mi and A-module maps �i :Mi!
Mi�1 whose cyclic compositions equal p. Let M =M1� � � ��Mn and de�ne the RA-
module structure on M as follows.

Let ei 2 RA act as identity on Mi and as zero on Mj for j di�erent from i. Let �
act as �i on Mi. Extend by linearity to an action of � and the ei on the whole of M .
It is easy to check that the relations (36) and (37) are satis�ed, so we obtain indeed an
RA-action. Remark 5.3.2 is obvious.

Example. Let M �=RA , a free RA-module of rank 1. Then M decomposes as a direct
sum of RA-modules M =S

(1)
A � � � ��S(n)

A . Namely, let S(i) = S
(i)
A consist of those

matrices of (35) which are zero outside the i-th column. Applying the decomposition of

(5.3.1) to S(i), we �nd that the components S
(i)
j are all one-dimensional and the maps

S(i)
n

�1 � S
(i)
1

�2 � S
(i)
2

�3 � � � � �n�1 � S
(i)
n�1

�n � S(i)
n : (39)

are all identity except �i, which is multiplication-by-p. It follows that S(i) are inde-
composable. Further, S(i) are RA-projective, as they are direct summands of a free
RA-module. In fact, every projective RA-module is a sum of the S(i):

Proposition 5.3.3. Every projective RA-module M is a direct sum of S
(i)
A . An RA-

module M is projective if and only if M 
A k is Rk-projective.

Proof. First assume A = k.
We claim that every (�nitely generated) projective Rk-moduleM is a direct sum of

the S
(i)
k .

It is easy to see that M is free over the subring P of Rk,

P = k[�] �= k[t]=tn :

Decompose M =M1� � � ��Mn as in 5.3.1. Filter each of theMi by letting Fi=ker �i�
Mi . Finally choose eij 2Mi; 1� j� ki such that feijg1�j�ki reduces to a basis ofMi=Fi
as a k-vector space. It is then not diÆcult see that Rkeij �M is a submodule isomorphic
to Si and that

M =
X
i;j

Rkeij

is a direct sum (see the proof of 5.3.5, parts 1 and 2 for a detailed proof).
Now let A2ArtW be arbitrary. If an RA-module M is projective, then it is a

direct summand of a free RA-module. Tensoring with k shows that M 
A k is a direct
summand of a free Rk-module, hence projective.

Conversely, assume that M 
A k is projective. Then

M 
A k �=
X

(S
(i)
k )

ni
; some ni 2 Z :
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Let
M 0 =

X
(S(i)

A
)
ni

Then M 0 is a (projective) RA-module and M
0 
A k �= M 
A k. From Corollary 2.2.5, it

follows that M �= M 0.

Remark 5.3.4. Let A=W =W (k). Since RW is a hereditary order, every RW -module,
which is �nite and free as W -module, is RW -projective. In particular, this applies to
the Dieudonn�e moduleM=D(G). It follows from the above proposition, that one can
�nd a basis fejgj2J ofM over W , such that every �ej is either equal to ek or pek for
some k 2 J . Such a basis, therefore, respects

(1) The action of � onM.

(2) The decomposition M=M1� � � ��Mn , i.e. the action of ei onM.

On the other hand, the module M comes with a �ltration V �M =M
W k . So it
is desirable to be able to choose a basis fejgj2J as above, but with the additional
property that J = JV q JM=V and fejgj2JV and fejgj2JM=V

reduce to bases of V and

M=V respectively. In other words, this basis is also supposed to respect

(3) The �ltration V �M =M
W k .

In fact such a basis exists (5.3.5 below). This allows, for instance, to classify the possible
equations of the moduli space of Def(G;O), at least in the low-dimensional cases.

Theorem 5.3.5. There is a basis fejgj2J ofM as a W -module which respects (1), (2)
and (3) of 5.3.4 as described above.

Proof. We proceed in three steps, adding an extra condition on each step. We start
by describing those bases ofM which satisfy just the condition (1) of 5.3.4.

1. Consider the action of � on M . For any 0� k�n, we have Im�k=ker �n�k

on M (with �0= idM ). This follows immediately from the fact that this equality is
true for �nite free Rk modules (by inspection), and hence for projective ones as well.
Consequently, the natural �ltrations ofM by the images and the kernels of �k coincide,

0 = �nM � �n�1M � � � � � �M � �0M =M
jj jj jj jj

0 = ker �0 � ker � � � � � � ker �n�1 � ker �n =M
(40)

It follows that the consecutive quotients in this �ltration are all isomorphic to M=�M ,

�k :M=�M
��! �kM=�k+1M : (41)

Indeed, the above map is injective,

�kx 2 �k+1M () �kx 2 ker �n�k�1 () x 2 ker �n�1 () x 2 �M :
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We can now construct aW -basis ofM which satis�es (1) of 5.3.4, starting with a similar
k-basis of M . Take an arbitrary k-basis f��jgj of M=�M and choose representatives
�j 2 M of ��j. Then for any 0� k<n, the set f�k�jgj gives a basis of �kM=�k+1M ,
thanks to the isomorphism (41). It follows that B= f�k�jgj;0�k<n is a k-basis of M .
Moreover, for any v 2 B either �v 2B or �v=0.

Finally, lift �j to arbitrary elements %j 2 M. Then f�k%jgj;0�k<n is easily seen to
be a W -basis of M which satis�es the condition (1) of 5.3.4. Conversely, every such
basis is easily seen to come from our construction.

2. As a second step, we show how to determine those bases which satis�y both
(1) and (2) of 5.3.4. By 5.3.1, M decomposes as M =M1� � � ��Mn with respect to
the action of the idempotents ei 2 Rk. Every Rk-submodule N �M also decomposes
N =N1� � � ��Nn with Ni � Mi. This applies to the steps of the �ltration (40).
Indeed, ker �kjM is an Rk-submodule of M , as immediately follows from the de�ning
equations (36) and (37). Hence M=�M also decomposes as a direct sum,

M=�M =M1=�M2 �M2=�M3 � � � � �Mn=�M1 : (42)

(Note that �M \ Mi = �Mi+1, which is used to obtain this decomposition.) Now
we apply the construction of the �rst step of the proof. Instead of starting from an
arbitrary k-basis of M=�M , we choose a basis f��jgj of M=�M which respects (42).
Also we do not lift ��j 7! �j and �j 7! %j arbitrarily, but preserving the decompositions
M =

L
iMi and M=

L
iMi . Then f�k%jgj;0�k<n is easily seen to be a W -basis ofM

which satis�es the conditions (1) and (2) of 5.3.4.
Note also that f�jgj is a basis of M as a W [�]-module and that the submodules

Rk�j = h�j; ��j; : : : ; �n�1�ji

are isomorphic to S
(ij+1)
W where ij are the indices such that �j 2Mij . This provides the

promised detailed proof of 5.3.3. (We only used that M is a projective Rk-module in
this construction).

3. Finally, we show how to choose a basis which satis�es (1), (2) and (3). The
�ltration V � M is Rk-stable, so it also decomposes

V =
M
i

Vi �
M
i

Mi =M :

Consider the subsets ��kVi�k of Mi,

��kVi�k = fv 2Mi j �kv 2 Vi�kg :

Then Mi becomes �ltered,

0 � Vi � ��1Vi�1 � ��2Vi�2 � � � � � ��nVi�n =Mi : (43)
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This induces a �ltration on Mi=�Mi+1,

0 � Vi+�Mi+1

�Mi+1

� ��1Vi�1+�Mi+1

�Mi+1

� � � � � ��nVi�n+�Mi+1

�Mi+1

=
Mi

�Mi+1

;

which can be also written as

0 � Vi
Vi \ �Mi+1

� ��1Vi�1
��1Vi�1 \ �Mi+1

� � � � � ��nVi�n
��nVi�n \ �Mi+1

=
Mi

�Mi+1

:

Choose a basis of Mi=�Mi+1 which respects this �ltration and lift it to Mi using the
natural surjections from (43). Combining these vectors for various i, we get a subset
f�jgj of M . Finally, as described in part 2 of the proof, lift these elements to a subset
f%jgj ofM, respectingM=

L
iMi . We get a basis ofM as aW -module which satis�es

(1) and (2) of 5.3.4. We claim that the condition (3) is ful�lled as well. Indeed, each
Vi is a direct sum of subspaces

Vi;j = �j
��jVi�j

��jVi�j \ �Mi+1
; 0 � j < n;

each of which is spanned by a subset of f�jgj of M . This completes the proof.
The existence of a basis as in Theorem 5.3.5 allows to determine the possible moduli

spaces of the type that we are considering for a given W -rank of M. To give an
impression of the kind of equations that one obtains, we present some general and some
low-dimensional examples. We denote by U the pro-representing ring of Def(G;O).
Example 5.3.6. If V = f0g or V =M , then U �= W . In fact, if G=k is an �etale-local
or a local-�etale p-divisible group, then G can be uniquely deformed to any A2ArtW
and all endomorphisms of G lift to these unique deformations.

Example 5.3.7. Recall that V =�iVi with Vi � Mi. If dimk Vi 6=dimk Vj for some
i; j, then Def(G;O)(A)= ; for any A in which p 6= 0. So a necessary condition for
Def(G;O) to have non-characteristic-p points is that dimk Vi=dimk Vj for all i; j. This
is the so-called Kottwitz determinant condition in our case.

Example 5.3.8. If V is a projective Rk-module, then Def(G;O) is formally smooth.
This follows from 4.4.1 since the deformation functor of the tangent space representation
is trivial in this case. In other words, U is a formal power series ring over W .

Example 5.3.9. Let m=1 and n� 1 be arbitrary. After renumbering the Mi if
necessary, we can assume that �M1=0 and �Mi=Mi�1 for i 6= 1. The corresponding
picture of the basis elements of 5.3.5 is then

q0
p � v1  � v2  � � � �  � vj  � qj+1  � � � �  � qn = q0 ;
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where j =dimk F and fvig resp. fqig denote the parts of the basis as in 5.3.5 which
reduce to the basis of V resp. the basis of M=V . The pro-representing ring U of
DefM(V�M;R) is given by (

W; j = 0 or j = n;
k; 1 � j � n�1 :

This illustrates both 5.3.6 and 5.3.7.

Example 5.3.10. Another example, the so-called Drinfeld case, is given in [33], Chap-
ter 3. In fact, in [33] it is assumed that the division algebra in question has a Brauer
invariant 1=n. However, the answer does not depend on the Brauer invariant, since the
structure of R is independent of it.

Let dimk Vi=1 for all i. For any i either �Vi=0 or �Vi=Vi�1 . Let r be the number
of i 2 Z=nZ for which �Vi=0, i.e. the number of critical indices. Then

U �= W [[t1; :::; tm]]=(
Y
ti � p) :

By condidering higher-dimensional analogues of this example, it is easy to construct
examples with

U �= W [[A1; :::; Am]]=J : (44)

where Aj are (not necessarily square) matrices which consist of indeterminants and J
is the ideal which expresses the relations

A1A2 � � �Am�1Am = p� identity
A2A3 � � �AmA1 = p� identity

� � � � � �
AmA1 � � �Am�2Am�1 = p� identity :

Example 5.3.11. Not every �ltration with dimk Vi=dimk Vj for i; j 2 Z=nZ. gives a
deformation problem of the type described in the previous example. For instance, let
n = 3, dimkM = 12. Let the �ltration V �M and the action of � on M be given by

M = M1 � M2 � M3

v1  � q2  � q3
p � v1

v4  � q5
p � v6  � v4

q7
p � v8  � v9  � q7

q10
p � v11  � q12  � q10 :

Thus fvig is a basis of V , fqig gives a basis of M=V and the arrows  � resp.
p �

indicate that the given basis element is mapped to the following basis element resp. p
times the following basis element. A computation shows that the pro-representing ring
of DefM(V �M;R) is given by

U �= W [[A;B;C;D;E; F;G]]=(AF +BE;BC � p; FG+FAD� p; AC +EG+EAD) :

This is clearly not isomorphic to a ring of the form (44) for any choice of the Ai.
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5.4 One-dimensional formal groups

We keep the notations of the introduction to this chapter. We assume further that the
p-divisible group G is one-dimensional. Let R denote O 
Zp W , as usual.

The representation �� of R on the tangent space of G is simply a homomorphism

�� : R �! k : (45)

Moreover a deformation of �� to a ring A is just a deformation of this homomorphism
to a homomorphism (of W -algebras) R!A. Thus Def(�� ) is pro-represented by R
itself or, rather, by the following ring:

Notation. Write the abelianization R=[R;R] as a product of local factors,

R=[R;R] �= S1 � S2 � � � � � Sk :
Let R(c) denote the unique factor which has a non-zero image under (45).

Remark. Clearly R(c) 2 dArtW if we let the augmentation R(c)! k to be induced
by (45). Moreover,

HomW (R;�) �= HomW (R
(c);�)

as functors on ArtW .

Theorem 5.4.1. Let G=k be a one-dimensional p-divisible group and O � End(G)
a hereditary order in a �nite-dimensional semisimple Qp-algebra. Then Def(G;O) is
pro-represented by a ring of the form

U �= R(c)[[t1; :::; tm]] :

Proof. This is an application of Theorem 4.4.1.

Remark 5.4.2. In case O is commutative, this result is due to Lubin-Tate [19]; see
also Drinfeld [8], Prop. 4.2.

5.5 Canonical liftings

In this section we present a computation of slightly di�erent kind. Here we use the
explicit structure of the tangent and the obstruction space to Def(G;O), which is
independent of the fact whether or not O is a maximal order.

Let G=k be p-divisible group over a perfect �eld and '2EndkG an arbitrary en-
domorphism.

De�nition 5.5.1. We say that ' is canonically liftable if for any A 2 ArtW there is a
unique lifting of (G;') to A, that is, a p-divisible group G=A and � 2 EndA(G), such
that G 
A k = G and �
A k = '.
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Remark. In terms of the deformation functor,

' is canonically liftable () Def(G;Zp[']) �= HomW (W;�) :
Theorem 5.5.2. The pair (G;') is canonically liftable if and only if the linear opera-
tors induced by '

'� 2 Endk(TG
t) and '� 2 Endk(TG)

do not have a common eigenvalue over �k.

Proof. Let V denote the k-vector space TG
TGt . The condition that '� and '�

have distinct eigenvalues over �k is equivalent to requiring the operator

'� 
 1� 1
 '� 2 Endk(V )

to be a bijection. To see this, �rst note that being a bijection is stable under a base
�eld change, so we can assume that k is algebraically closed. Choose bases feig for TG
and ffig for TGt such that '� and '� get into an upper-triangular form,

'� =

0BBBB@
�1 � : : : �
0 �2

. . .
...

...
. . .

. . . �
0 : : : 0 �n

1CCCCA ; '� =

0BBBB@
�1 � : : : �
0 �2

. . .
...

...
. . . . . . �

0 : : : 0 �n

1CCCCA :

Then '�
 1� 1
'� is upper-triangular in the basis fei
 fjg with �i��j on the
diagonal. It is invertible if and only the diagonal entries are non-zero or, equivalently,
if �i and �j are pairwise distinct.

Now it suÆces to prove that ' is canonically liftable if and only if '�
 1� 1
'�
is a bijection on V . Let O denote the ring Zp['] and R=O
ZpW .

The tangent space to the functor Def(G;O) is isomorphic to H0(R -R ; TG
TGt)
by 4.3.4. Clearly a necessary condition for ' to be canonically liftable is that this
tangent space is zero, for otherwise the pair (G;') is not uniquely liftable to k[�].

So H0(R -R ; TG
TGt)= 0. Since R is generated by ' over W , we have

H0(R -R ; V ) = fv 2 V j ('� 
 1� 1
 '�)v = 0 g :
This group is trivial if and only if '�
 1� 1
'� is injective (equivalently, bijective).
This proves the \only if" part of the theorem.

For the \if" part, it suÆces to show that both the tangent space and the obstruction
space to Def(G;O) are 0, provided '�
 1� 1
'� is bijective. As we have seen, its
injectivity gives the vanishing of the tangent space. As for the obstruction space, we
unravel the de�nition of H1(R -R ; TG
TGt),

H1(R -R ; TG
 TGt) = V= Im('� 
 1� 1
 '�) :
This group is 0 since '�
 1� 1
'� is surjective. Hence Def(G;O) is formally smooth
of dimension 0, as required.
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Example 5.5.3. Let k = Fq be �nite, X=k an ordinary abelian variety and ' = Fq be
the geometric Frobenius (Fq : x 7! xq). Let G=X[p1] be the associated p-divisible
group. Then Fq;� = 0 on TG and F �q is a bijection on TGt. Hence Fq is canonically
liftable. In fact the unique liftings (G;�) of (G;') obtained in this case are exactly the
Serre-Tate canonical liftings. This perhaps explains the terminology \canonical liftings"
which we use.

Example 5.5.4. If k=Fq is �nite, ' = Fq and X=k is non-ordinary, then (X[p1]; Fq)
is not canonically liftable, since Fq;� is zero while F �q is not bijective and thus has also
at least one zero eigenvalue. So the geometric Frobenius is canonically liftable if and
only if X is ordinary.

Remark 5.5.5. If ' is canonically liftable, then Def(G;Zp[']) is formally smooth (of
dimension 0 over W ). Let � be a principal quasi-polarization on G whose Rosati invo-
lution stabilizes Zp[']. By Theorem 4.5.4, Def(G;Zp[']; �) is formally smooth as well.
Hence Def(G;Zp[']; �), being also a subfuctor of Def(G;Zp[']), equals Def(G;Zp[']).
In other words, � lifts to all the canonical liftings.

Remark. Even if ' has small degree over Zp compared to the height of G, it might
happen that ' is canonically liftable. For example let p > 2 and Z['] =Z[

p�d] with
(d; p)= 1. Let E be an ellptic curve over k with Z[']�End(E). Then we can let Zp[']
act diagonally on the product (any number of times) G=E[p1]� � � ��E[p1]. Then
' on G is canonically liftable.
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6 p-descent on elliptic curves

6.1 Introduction

Classically, a 2-descent is the most widely used method to bound the rank of the
Mordell-Weil group of an elliptic curve E over a number �eld. Originally, these methods
required the existence of rational torsion points or a rational isogeny on E. In [2],
Brumer and Kramer presented a method which works independently of the structure
of the 2-torsion. As one of the applications, they have produced examples of cubic
extensions of Q whose class group has large 2-torsion.

In some cases, the existence of the 2-part of the Tate-Shafarevich group makes it
diÆcult to determine the rank exactly. It is then helpful to be able to use a prime
p> 2 in the descent computations. The goal of this chapter is to show that the basic
ingredient for this, namely the injectivity of the Kummer map, holds in a large class of
situations.

Let E=K be an elliptic curve and �x a prime p 6= char (K). Take a �eld L with
K � L � �K over which there is a non-trivial p-torsion point T 2 E(L)[p]. There is a
Kummer map associated to T (cf. 6.2.1 below),

� = �T;L : E(K)=pE(K) �! L�=L�p :

If all of the p-torsion of E is already rational over K =L, the associated Kummer
pairing

��;K : E[p]� E(K)=pE(K) �! K�=K�p

is non-degenerate on the left. If K is a number �eld, the standard local methods give
a bound for the size of the image of the Kummer pairing in L�=L�p. This gives the
corresponding bound on E(K)=pE(K) and, hence, on the Mordell-Weil rank of E.

In practice, however, the points of E[p] =E( �K)[p] are rarely de�ned over K. In fact,
for a �xed non-CM elliptic curve, the Galois group G �K=K acts irreducibly on E( �K)[p]
for all but �nitely many primes p. Our main result is that precisely in this situation,
the Kummer map is injective (Theorems 6.3.1, 6.4.2):

Theorem. Let E=K be an elliptic curve, p 6=charK a prime and T 2E[p] a non-
zero torsion point. Assume that E[p] is an irreducible G �K=K-module. Then for any
intermediate �eld K(T )�L�K(E[p]),

�T;L : E(K)=pE(K) �! L�=L�p

is injective.

This result extends [13], Exercise 10.9 where the Kummer map is de�ned and its prop-
erties are outlined. Note that the assumption [L :K] =m2� 1 of the exercise suggests
that m is prime.

The outline of this chapter is as follows. We start by recalling both the cohomological
de�nition of the Kummer map and the more practical geometric de�nition (Section 6.2).
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It is also possible to give a yet equivalent description, in terms of H0(C;O�
C
=O�p

C
) which

makes sense for a non-singular projective curve C of arbitrary genus.
Then we turn to injectivity of the Kummer map starting with the case L=K(E[p])

(Section 6.3) and then deducing the general case as a corollary (Section 6.4).
In Section 6.5 we show that in many cases the image of the Kummer map is contained

in the kernel of the norm map NL=K. This can be used to bound the potential size of
this image.

We also discuss the local properties of the image of �T;L in case K is a number �eld
(Section 6.6). The primary question we are interested in here is when for a given prime
l of L, the image of � is \trivial at l". Using this one shows that in some cases there is a
large part of E(K)=pE(K) which maps into the subgroup of L�=L�p which corresponds
to the p-part of the class group of L.

An example which illustrates our results is presented in Section 6.7.

Notation. The ground �eld K is assumed to be perfect. We let p denote a prime of Q
di�erent from charK. We denote by E[p] the p-torsion of an elliptic curve E=K over
the algebraic closure �K. For a point T 2 E( �K) we denote by K(T ) the �eld extension
of K inside �K which is obtained by adjoining the coordinates of T . Similarly, K(E[p])
stands for the compositum of K(T ) for T 2 E[p]. This is a �nite Galois extension of K.
The Galois group of a �eld extension L=K is denoted by GL=K .

Remark. Results similar to those presented here have been obtained independently
by Djabri, Schaefer and Smart [3]. The slight di�erence is that they study the algebra
A obtained by adjoining the coordinates of a \generic p-torsion point" rather than the
�eld L = K(T ). Thus they are able to prove the injectivity on the Kummer map
without using the irreducibility assumption. An advantage of our method, however, is
that it is possible to \vary L", which is useful in applying the results of Section 6.5, see
Remark 6.5.4.

6.2 The Kummer map

Let E be an elliptic curve over a �eld K. Fix a prime p 6= char (K). We recall the
well-known cohomological description of E(K)=pE(K). We refer to [13], Ch. X for
details. Consider the exact sequence of G �K=K-modules

0 �! E[p] �! E( �K)
[p]�!E( �K) �! 0 :

Taking G �K=K-cohomology yields a long exact sequence, from which we extract

0 �! E(K)=pE(K) �!� H1(G �K=K; E[p]) �! H1(G �K=K ; E( �K))[p] �! 0 : (46)

What interests us here is the �rst injection. Tracing through the de�nition of the
connecting homomorphism, one can produce the explicit description of this map:
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Let P 2 E(K). Choose any Q 2 E( �K) with pQ = P . Then

E(K)=pE(K) 3 P 7�! (� 7! Q� �Q) 2 H1(G �K=K; E[p]) :

Note that a di�erent choice of Q a�ects the cocycle � 7!Q��Q by a 1-coboundary, so
the map is well-de�ned.

We do a similar computation for the multiplicative group in place of the group of
points of E. Take the G �K=L-cohomology of

1 �! �p �! �K�
[p]�! �K� �! 1

(here [p] is the p-th power map) and in the same way as above extract

1 �! L�=L�p �! H1(G �K=L; �p) �! H1(G �K=L; �K
�) �! 1 :

By the Hilbert '90 theorem, the group H1(G �K=L; �K
�) is trivial. So H1(G �K=L; �p)�=

L�=L�p .
Now take a point T 2 E[p] of order p. Choose an intermediate �eld K � L � �K

over which T is de�ned. Then the Weil pairing on E[p] gives a homomorphism of
G �K=L-modules E[p]! �p,

E[p] 3 S 7�! ep(S; T ) 2 �p :
It induces the map on cohomology,

H1(G �K=K; E[p]) �! H1(G �K=L; �p) ;

given explicitly by � 7! (� 7! ep(�(�); T )).
The above maps can be combined to (cf. [13], Exc. 10.9)

E(K)=pE(K) �! H1(G �K=K ; E[p])
Res�!H1(G �K=L; E[p]) �! H1(G �K=L; �p) �= L�=L�p :

Here Res denotes the restriction homomorphism.

De�nition 6.2.1. The Kummer map �T;L is the composition of the above maps,

�T;L : E(K)=pE(K) �! L�=L�p :

It is de�ned for any point T 2 E[p] of order p and a �eld L which contains K(T ).

There is a di�erent description of the Kummer map, which is more geometric in
nature and more suitable for actual computations. In case p=2, it was already used
by Mordell in the proof of his �niteness theorem ([5]; [6], Ch. 16). Start again with
E=K and a non-trivial torsion point T 2E(K)[p]. The divisor

D = p(T )� p(O)
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is principal, so there is a rational function f 2K(E) which represents it. The evaluation
map

e : E(K) 3 P 7�! f(P ) 2 K�
is de�ned outside T and O and can be extended by linearity to

Div0E(K) �! K� :

Here Div0 stands for divisors whose support does not contain T or O. Moreover, by
Weil reciprocity

f(div g) = g(div f) = g(p(T )�p(O)) = g((T )�(O))p 2 K�p

for any g for which div g 2Div0 . This allows to get rid of \0" in Div0 and get a well-
de�ned map which we still denote by e,

e : PicE(K) �! K�=K�p :

It also follows that e is a group homomorphism. Finally, using the explicit de�nition of
the Weil pairing, one can show that the map induced by e,

E(K)=pE(K) �! K�=K�p ;

coincides with the Kummer map �T;K. For instance, this follows from [11], Theorem
2.3. It is also stated in [13], Exc. 10.9(a).

Also note that the above construction can be generalized to curves of arbitrary genus
(see [8], Section 5 and [11], Lemma 2.1).

As an example, consider the p=2 case. Let E be an elliptic curve over a �eld K
with charK 6=2. Assume that E has a rational 2-torsion point over K and put E in
the form

Y 2 = (X � t1)(X � t2)(X � t3); t1 2 K; t2; t3 2 �K :

Let T =(t1; 0). The function X � t1 has the correct properties, so the Kummer map
associated to T is given by

e : E(K) �! K�=K�2

(x; y) 7�! x� t1 (47)

for (x; y) 6=T and 6=O . It is easy to check that e(O)= 1 and e(T )= (t1� t2)(t1� t3).
This description is used in the actual computation for 2-descent.

The exceptional values e(T ) and e(O) can be made less exceptional: in fact e is
given on the whole of E locally by invertible regular functions. The functions

f1 = X � t1 on U1 = E n f(t1; 0); Og
f2 =

1

(X � t2)(X � t3) on U2 = E n f(t2; 0); (t3; 0)g
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have the property that

f1(P ) = f2(P ) 2 K�=K�2

for every P 2 E(K) which lies in U1 \U2 , since

f1=f2 = Y 2 :

In general, for a non-singular projective curve C=K and a prime p one might ask which
maps

C(K) �! K�=K�p

are locally given by invertible regular functions, de�ned over K and which di�er by p-th
powers on the intersections. We can make this precise (after all C(K) might be empty)
as follows.

De�nition. Let C be a non-singular projective curve over a �eld K. A p-map is a
global section of the sheaf O�

C
=O�p

C
. Here OC denotes the structure sheaf.

Note that a p-map can be given by an open covering fUig of C and invertible regular
functions fi on Ui with the property that fi=fj 2H0(Ui \Uj;O�pC ).

It turns out that for an elliptic curve C =E the p-maps are exactly the Kummer
maps given by some K-rational p-torsion point T 2E(K)[p]. More generally, for a
curve C of arbitrary genus the p-maps are classi�ed by K-rational p-torsion points in
the Picard group of C:

Proposition 6.2.2. Let C be a non-singular projective curve over a perfect �eld K.
Then

H0(C;O�C=O�pC ) �= PicC(K)[p] : (48)

Proof. First assume K is algebraically closed. A short exact sequence of sheaves

0 �! O�X=�p �! O�X �! O�X=O�pX �! 0

where the left map is taking a function to its p-th power gives a long cohomology
sequence

0 �! K�=�p
�=�!K� �! H0(C;O�

C
=O�p

C
) �! H1(C;O�

C
=�p) �! H1(C;O�

C
) :

The sheaf �p on C is constant, hence 
asque (Zariski topology), hence acyclic. Thus

0 �! H0(O�C=O�2C ) �! PicC
[p]�!PicC

which gives (48). The case of arbitrary K is obtained by taking G �K=K-invariants.
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Example 6.2.3. As an illustration, consider the case p = 3. Assume that E=K is
given by an equation

E : y2 = x3 + ax + b :

Let T = (xT ; yT ) 2 E[p] be a non-trivial 3-torsion point and let L = K(T ). Thus xT is
a root of the 3-division equation,

x4
T
+ 2ax2

T
+ 4bxT � a2

3
= 0

and the extension L=K(xT ) is given by

y2
T
� (x3

T
+ ax

T
+ b) = 0 :

It is easy to �nd a function on E which has the divisor 3(T )� 3(O). Namely T is an
in
ection point of E so a linear function which de�nes the tangent line to T has the
required properties. The Kummer map �T;L is thus given (outside T and O) by

�T;L : E(K)=pE(K) 3 (X; Y ) 7�! (Y � yT )� 3x2T + a

2yT
(X � xT ) 2 L�=L�3 :

This is in agreement with the formula given in [14], p.309.

6.3 The case of an irreducible action on p-torsion points

Theorem 6.3.1. Let E=K be an elliptic curve, p 6=char(K) a prime, L=K(E[p]) and
T 2 E( �K) a point of exact order p. Assume that G �K=K acts irreducibly on E[p]. Then
the Kummer map

�T;L : E(K)=pE(K) �! L�=L�p

is injective.

Proof. First note that E[p] is an irreducible G �K=K-module means that E[p] has no
non-trivial G �K=K�invariant subspace. Equivalently, E[p] has no non-trivial GL=K�in-
variant subspace. It is also equivalent to saying that E does not admit a p�isogeny
de�ned over K.

The sequence (46) and the corresponding one for G �K=L-cohomology �t into the
commutative diagram

�
#\

E(K)=pE(K) �!� H1(G �K=K ; E[p]) �!! H1(G �K=K ; E( �K))[p]
# #Res #Res

E(L)=pE(L) �!� H1(G �K=L; E[p]) �!! H1(G �K=L; E( �K))[p] :
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In particular, �T;L also equals the composition

E(K)=pE(K) �! E(L)=pE(L) �! H1(G �K=L; E[p]) �! H1(G �K=L; �p) �= L�=L�p :

Thus an obvious necessary condition for �T;L to be injective is �=0 or, in other words

E(K) \ pE(L) = pE(K) :

The fact that this is necessary is of course clear anyway: if P 2E(K)\ pE(L) then one
can choose Q2E(L) with pQ=P , so

ep(Q
� �Q; T ) = 1 for all � 2 G �K=L

as Q�=Q for all �. Hence P is in the kernel of �. If P 62 pE(K), then � is not injective.
Apply the snake lemma to the diagram above:

� H1(GL=K ; E[p]) H1(GL=K ; E(L))[p]
# # Inf # Inf

E(K)=pE(K) �!� H1(G �K=K ; E[p]) �!! H1(G �K=K; E( �K))[p]
# #Res #Res

E(L)=pE(L) �!� H1(G �K=L; E[p]) �!! H1(G �K=L; E( �K))[p] :
# # #

E(L)=pE(L)+E(K) C1 C2

The kernels form an exact sequence

0 �! � �!� H1(GL=K; E[p]) �! H1(GL=K ; E(L))[p] :

So the natural constraint which would imply �=0 is H1(GL=K ; E[p])=0. This is indeed
the case since GL=K acts faithfully and irreducibly on E[p] �= Fp � Fp:

Lemma 6.3.2. Let p be a prime and let G � GL2(Fp) act irreducibly on a two-
dimensional vector space V over Fp (via the natural action of GL2). Then H

1(G; V )=0.

Proof. (cf. [3], Proposition 1). First note that if G does not contain an element of
order p then H1(G; V ) is automatically zero as it is annihilated both by jGj and p.
Thus assume this is not the case.

First assume p = 2. Then GL2(V ) �= S3 and the action is the usual action of S3 on
the set of 3 elements V �f0g. Since G acts irreducibly on V (so it has no �xed points
on V �f0g) and it contains an element of order 2, the only possibility is G = S3. The
in
ation-restriction sequence for the normal subgroup A3 � S3 reads:

H1(S3=A3; V
A3)

Inf�! H1(S3; V )
Res�! H1(A3; V ) :

Since A3 has no non-zero invariants on V (so that the group on the left is trivial)
and H1(A3; V ) is trivial as well (being annihilated both by 2 and by 3), we see that
H1(S3; V )=0 as required.
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Now let p be an odd prime. Since G acts irreducibly on V and G has an element
of order p, a result of Serre ([12], 2.4, Proposition 15) asserts that G contains SL2(Fp),
thus f�1g � G. We apply the in
ation-restriction sequence for this (normal) subgroup:

H1(G=� 1; V �1)
Inf�! H1(G; V )

Res�! H1(�1; V ) :
Again f�1g has no invariants on V and also H1(�1; V )=0 being annihilated both by
p and by 2. So H1(G; V )=0.

We continue with the proof of the theorem. The map �T;L becomes the composition

E(K)=pE(K) �!� E(L)=pE(L) �! H1(G �K=L; �p) :

So it remains to show that the second map here is injective. This means that

ep(Q
� �Q; T ) = 1 for all � 2 G �K=L

implies Q2E(L). In other words, it can not happen that for some Q 62 E(L),
Q� �Q 2 <T > � E[p] for all � 2 G �K=L :

If this would be the case, the set V = fQ��Q j � 2G �K=Lg would form a proper non-
trivial subspace of E[p]. However, the following lemma applied with

G = G �K=K ; H = G �K=L; A = E[p] and �(�) = Q� �Q
shows that V is GL=K-invariant. This contradicts the irreducibility assumption.

Lemma 6.3.3. Let a group G act on an abelian group A, and let H / G act trivially
on A. Then for any �2H1(G;A), the subgroup of A

V = V� = f�(h) j h 2 Hg
is invariant under G (or G=H).

Proof. First note that Res(�)2H1(H;A)=Hom(H;A), so � de�nes a homomorphism
H ! A, whose image is V (in particular V is a subgroup of A). If we let G act on H
by

g � h = ghg�1

then H becomes a G-module and the important thing is that the map � : H ! A
becomes a G-homomorphism (it commutes with this action of G). Clearly � factors as

� : H �!! V �!� A :

Thus to show that V is invariant under G, take v 2 V � A, take h 2 H such that
�(h)=v. Then

g � v = �(g � h) 2 V
as required.
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Remark. By a theorem of Serre ([12], 4.2, Th�eor�eme 2), for a curve E without complex
multiplication, there are only �nitely many primes p for which G �K=K does not act
irreducibly on E[p]. Indeed, the theorem asserts that G �K=K ! Aut(E[p]) (�= GL2(Fp))
is surjective for almost all primes. Thus the condition of Theorem 6.3.1 is satis�ed for
all but �nitely many primes provided E has no CM.

6.4 A generalization for sub�elds of K(E[p])

Proposition 6.4.1. Let E=K be an elliptic curve, p a prime di�erent from charK
and T 2 E[p] a non-trivial point of order p. Let K(T ) � L1 � L2 � �K be �elds. Then
the associated Kummer map �T;L2 factors

�T;L2 : E(K)=pE(K)
�T;L1�!L�1=L

�p
1 �! L�2=L

�p
2 :

Here the second map is induced by the inclusion L1 �!� L2.

Proof. The de�ning map for �T;L2

E(K)=pE(K) �! H1(G �K=K; E[p])
Res�!H1(G �K=L2 ; E[p]) �! H1(G �K=L2 ; �p)

�= L�2=L
�p
2

factors as (look at the explicit de�nition of �T;L)

E(K)=pE(K) �! H1(G �K=K; E[p])
Res�! H1(G �K=L1 ; E[p]) �!

�! H1(G �K=L1 ; �p)
Res�! H1(G �K=L2 ; �p)

�= L�2=L
�p
2 :

It remains to remark that H1(G �K=L1 ; �p)
�= L�1=L

�p
1 and that the restriction map from

H1(G �K=L1 ; �p) to H1(G �K=L2 ; �p) is indeed equivalent to the natural map L�1=L
�p
1 !

L�2=L
�p
2 induced by the inclusion L1 �!� L2.

A direct corollary of this proposition is the following generalization of Theorem 6.3.1
to the sub�elds M of L=K(E[p]) over which � can still be de�ned.

Theorem 6.4.2. Let E=K be an elliptic curve, p a prime di�erent from charK and
T 2 E[p] a non-trivial point of order p. Let L=K(E[p]) and let M be a sub�eld of L
which contains K(T ). Assume that G �K=K acts irreducibly on E[p]. Then the Kummer
map

�T;M : E(K)=pE(K) �!M�=M�p

is injective.

Proof. By the proposition above, �T;L factors as

�T;L : E(K)=pE(K) �!M�=M�p �! L�=L�p :

Since the composition is injective, the �rst map (which is �T;M) is injective as well.
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6.5 The norm map on the image of the Kummer map

Let E=K be an elliptic curve, T 2 E[p] a point of (exact) order p and L a sub�eld of
K(E[p]) over which T is de�ned. We have de�ned the Kummer map

�T;L : E(K)=pE(K) �!� L�=L�p

and proved that it is injective under the irreducibility assumption. In this section we
show that in many cases the image of �T;L is contained in the kernel of the norm map

NL=K : L�=L�p �! K�=K�p :

In the next section we study the local behaviour of the image in case of a number �eld.
We start by describing the action of Galois on the target of the Kummer map.

Lemma 6.5.1. Let E=K; p and L be as above. For � 2 G �K=K the composition

E(K)=pE(K)
�T;L�! L�=L�p ��! �(L)�=�(L)�p (49)

is equal to the Kummer map �T� ;�(L).

Proof. Recall the geometric description of the Kummer map. The map �T;L is given
(locally on E) by invertible regular functions fi which are de�ned over L,

fi : E(K) � Ui 3 P 7�! f(P ) 2 L� :
The composition (49) is then given by the functions f �i . Clearly these also form an ele-
ment of H0(E;O�E=O�pE ). Moreover, the principal divisors (f �i ) are the conjugates (fi)

� .
It follows that ff �i g corresponds to the Kummer map de�ned by T � , as required.

Corollary 6.5.2. Let E=K; p and L be as above. Assume that E[p](K)= fOg. Then
the image of �T;L is contained in the kernel of the norm map (cf. [13], Exc. 10.9(b))

NL=K : L�=L�p �! K�=K�p :

Proof. Extend each of the possible embeddings ��i :L! �K to an automorphism �i 2
G �K=K . Let �T;L be given by a cocycle ffig2H0(E;O�

E
=O�p

E
). Then NL=K(�T;L) is given

by a cocycle fQ� f
�
i g. However this cocycle is de�ned over K, and hence corresponds

to a Kummer map given by some p-torsion point N 2 E[p](K). The assumption that
E has no non-trivial p-torsion de�ned over K gives N =O , so this Kummer map is
trivial.

Example 6.5.3. We continue Example 6.2.3, that is, the p=3 case. Assume for
simplicity that the Galois group of K(E[3])=K is isomorphic to the full group GL2(F3).
(This is the case for general E=Q.) The chain of sub�elds

K
4� K(xT )

2� K(xT ; yT )=L
6� K(E[3])

corresponds (via Galois theory) to the chain� � �
� �

�
4�

� � �
0 �

�
2�

�
1 �
0 �

�
6�

�
1 0
0 1

�
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of subgroups of GL2(F3). The �eld K(xT ) is the unique non-trivial intermediate �eld
of the �eld extension L=K. More generally, every proper subgroup of GL2(Fp) which
contains (1

0
�
�) is of the form (H

0
�
�) with H a subgroup of (Z=pZ)�. This follows from

Serre [12], 2.4, Proposition 15.

Clearly E[p](K(xT ))= 0. So an application of 6.5.2 shows that the Kummer map
�T;L lands into the kernel of the norm map

NL=K(xT )
: L�=L�3 �! K(xT )

�=K(xT )
�p :

In fact, this can be veri�ed explicitly. The unique non-trivial automorphism of the
(quadratic Galois) extension L=K(xT ) sends T =(xT ; yT ) to �T =(xT ;�yT ). The prod-
uct �T;L��T;L maps

(X; Y ) 7�!
"
(Y �yT )� 3x

2
T + a

2yT
(X�xT )

#"
(Y +yT )� 3x

2
T + a

�2yT (X�xT )
#
= (X�xT )3 :

The last equality is an easy symbolic computation. Clearly the map lands into K(xT )
�3.

Remark 6.5.4. The result of 6.5.2 can be used to bound the size of the potential image
of the Kummer map. More precisely, the image of �T;L is contained in the intersection
of the kernels of the norm maps NL=K0 where K

0 varies through all the intermediate
�elds of the extension L=K over which E has no non-trivial p-torsion. This allows to
decrease the amount of computation necessary to compute this image.

6.6 Local analysis of the image of �T;L

Let K be a number �eld, E=K an elliptic curve and T 2 E[p] a point of order p. Let
L be any sub�eld of K(E[p]) containing K(T ). We have de�ned a map

�T;L : E(K)=pE(K) �!� L�=L�p

and proved that it is injective in certain cases. Now we study the image of this map.
We start with recalling the result that for almost all primes l of L, this image is \trivial
at l", i.e. it lands into

fa 2 L�=L�p j ordl(a) = 0 mod pg :

This is well-known, see for instance [8], Prop. 12.4.
Let Ll be the completion of L at l and Kv the completion of K at the unique prime

v of K which l divides. Denote by Lun
l and Kun

v their unrami�ed closures; thus Lun
l

contains Kun
v and L and is their compositum. By Fv we will denote the residue �eld of

Kv. We use Oun
v and mun

v to denote the ring of integers of Kun
v and its maximal ideal

respectively. Finally, �v denotes the minimal discriminant of E at v.
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The Kummer maps for E=Kv and E=K
un
v �t into a commutative diagram

E(K)=pE(K) �! L�=L�p

# #
E(Kv)=pE(Kv) �! L�l =L

�p
l

# #
E(Kun

v )=pE(Kun
v ) �! Lun

l
�=Lun

l
�p .

Assume that for our chosen prime v of K, either E(Kv)=pE(Kv) is trivial or that
E(Kun

v )=pE(Kun
v ) is trivial. Then, by the commutativity of the diagram, for any P 2

E(K)=pE(K), the image �T;L(P ) in L is in Lun
l
�p. This implies that (and for l 6 jp is

equivalent to)
ordl(�T;L(P )) = 0 mod p :

Even if the groups E(Kv)=pE(Kv) and E(K
un
v )=pE(Kun

v ) are not trivial, a bound on the
size of either of them gives a lower bound on the size of the subgroup of E(K)=pE(K)
which lands into Lun

l
�p. More precisely, we have the following result.

Theorem 6.6.1. Let K be a number �eld, E=K an elliptic curve and p a prime. For
a prime v of K denote

Æv = min
�
dimFp E(Kv)=pE(Kv); dimFp E(K

un
v )=pE(Kun

v )
�
:

Let Æ=
P

v Æv . Then there is a subgroup H � E(K)=pE(K) of Fp-codimension at most
Æ which lands via the Kummer map

�T;L : E(K)=pE(K) �! L�=L�p

into the subgroup

fa 2 L�=L�p j ordl(a) = 0 mod p for all lg :
Proof. Clear.

Let us investigate the groups E(Kv)=pE(Kv) and E(K
un
v )=pE(Kun

v ). It turns out
that the former group is useful for the primes above p while the latter gives a better
estimate for the primes not dividing p.

For the standard structure results for the group of points of an elliptic curve over
a complete �eld we refer to [13], Chapters IV, VII. Let E be de�ned by a minimal
Weierstrass equation at v. There is a reduction map (which we denote by \~")

E(Kv) �! ~E(Fv) :

Here ~E=Fv is the reduced curve. It might be singular or not depending on whether E
has good or bad reduction at v. In any case let

~Ens(Fv) = fR 2 ~E(Fv) jR is non-singularg
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and

E0(Kv) = fP 2 E(Kv) j ~P 2 ~Ens(Fv)g :
Then the following sequences are exact ([13], VII.2.1, VII.2.2)

0 �! Ê(mv) �! E0(Kv) �! ~Ens(Fv) �! 0

0 �! Ê(mun
v ) �! E0(K

un
v ) �! ~Ens(�Fv) �! 0 :

(50)

Here Ê is the group associated to the formal group of E over Kv. To compare E with
E0, we will also make use of the exact sequences

0 �! E0(Kv) �! E(Kv) �! E(Kv)=E0(Kv) �! 0

0 �! E0(K
un
v ) �! E(Kun

v ) �! E(Kun
v )=E0(K

un
v ) �! 0 :

(51)

Finally, the size of the quotient E=E0 is determined by the Kodaira-N�eron theorem.

Theorem (Kodaira, N�eron). Let E=Kv be an elliptic curve over a local �eld. If
E has split multiplicative reduction, then E(Kv)=E0(Kv) is a cyclic group of order
ordv(�v)=�ordv(j). In all other cases, E(Kv)=E0(Kv) is a �nite group of order at
most 4.

Proof. [7], xIII.17.
The two propositions below give estimates on the sizes of E(Kv)=E0(Kv) for arbitrary
v and of E(Kun

v )=E0(K
un
v ) for v 6 jp.

Proposition 6.6.2. Let E=Kv be an elliptic curve over a local �eld. Then

dimFp E(Kv)=pE(Kv) = dimFp E(Kv)[p] +

(
v(p) dimFp Fv; vjp
0; v 6 jp :

Proof. Let A be an abelian group for which [p] :A!A has �nite kernel and �nite
cokernel. De�ne

P (A) = dimFp A=pA� dimFp A[p] :

For an exact sequence of abelian groups

0 �! A �! B �! C �! 0 ; (52)

an application of the snake lemma to the multiplication by p map on (52) shows that

P (B) = P (A) + P (C) ;

provided P (A) and P (C) are de�ned. Note also that P (C) = 0 if C is �nite. Hence
P (B)=P (A) whenever B�A is of �nite index and P (B) (equivalently P (A)) is de-
�ned.
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For the group of points A=E(Kv) we have a �ltration by subgroups of �nite index

� � � � Ê(mr
v) � � � � � Ê(m2

v) � Ê(mv) � E0(Kv) � E(Kv) :

Indeed, the subgroup E0(Kv)�E(Kv) is of �nite index by the Kodaira-N�eron theorem,
E0(Kv)=Ê(Kv)�= ~Ens(Fv) is �nite since Fv is �nite and (cf. [13], IV.3.2a)

Ê(mr
v)=Ê(m

r+1
v ) �= mr

v=m
r+1
v
�= Fv; r � 1 :

By [13], IV.6.4 there is an integer r� 1 for which

Ê(mr
v)
�= Ĝa(m

r
v)
�= (Ov;+) :

Hence
P (E(Kv)) = P (Ov) = dimFp Ov=pOv � 0

which equals v(p) dimFp Fv if vjp and zero otherwise. This gives the assertion of the
proposition.

Note that the above result is well-known. Our proof in a more general setting can
be found in [9], Lemma 3.8 and Prop. 3.9. For an alternative proof, see [8], Lemma
12.10.

Remark 6.6.3. Clearly dimFp E(Kv)[p]� 2. Moreover, in case Kv =Qp and p 6=2,
this dimension is at most 1, since �p 6�Qp . So

dimFp E(Qp)=pE(Qp) � 2

in this case.

Remark 6.6.4. The rough estimate dimFp E(Kv)[p]� 2 can often be improved. For
example, one can apply the multiplication-by-p map to the exact sequences (50) and
(51) and look at the kernels. One obtains

dimFp E(Kv)[p] � dimFp Ê(mv)[p] + dimFp
~Ens(Fv)[p] + dimFp(E(Kv)=E0(Kv))[p] :

For example if Kv =Qp and p 6= 2, then Ê(mv) has no p-torsion ([13], IV.6.1.1). If
moreover, p is a prime of good reduction for E, then E=E0 is trivial as well, so for such
primes p > 2 one �nds

dimFp E(Kv)[p] � dimFp
~Ens(Fv)[p] =

(
0; ~E supersingular,

1; ~E ordinary.

Lemma 6.6.5. Assume that v 6 jp. Then E0(K
un
v )=pE0(K

un
v ) is trivial.

Proof. Apply the multiplication-by-p map to the second sequence of (50). We get a
commutative diagram:

0 �! Ê(mun
v ) �! E0(K

un
v ) �! ~Ens(�Fv) �! 0

# [p] # [p] # [p]

0 �! Ê(mun
v ) �! E0(K

un
v ) �! ~Ens(�Fv) �! 0 .
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From the kernel-cokernel sequence extract an exact sequence of cokernels:

Ê(mun
v )=pÊ(mun

v ) �! E0(K
un
v )=pE0(K

un
v ) �! ~Ens(�Fv)=p ~Ens(�Fv) : (53)

The assumption char Fv 6= p implies that the multiplication-by-pmap is an isomorphism
Ê(mun

v )! Ê(mun
v ). So it suÆces to show that

[p] : ~Ens(�Fv) �! ~Ens(�Fv)

is surjective. We distinguish the following possibilities of reduction:

� Good reduction. In this case ~E=Fv is an elliptic curve, ~Ens= ~E and [p] is surjective
on �Fv�valued points, as it is a non-constant morphism of algebraic curves.

� Multiplicative reduction. Here

~Ens(�Fv) �= (�F�v; �)
and [p] is the p-th power map on �F�v, thus surjective.

� Additive reduction. Here
~Ens(�Fv) �= (�Fv;+)

and [p] is the multiplication-by-pmap on �Fv, again surjective (note that char Fv 6=
p).

This proves the lemma.

Proposition 6.6.6. Assume that v 6 jp. Let C denote E(Kun
v )=E0(K

un
v ) and let �v de-

note the minimal discriminant of E at v. Then dimFp E(K
un
v )=pE(Kun

v )= dimFp C=pC
and

dimFp C=pC

8>>>>>><>>>>>>:

= 0; E has good reduction at v;
� 2; p = 2;
� 1; p = 3;
= 1; p > 3; pjordv�v > 0 and E has multiplicative reduction;
= 0; p > 3; p6 jordv�v > 0 or E has additive reduction:

Proof. Apply the multiplication-by-p map to the short exact sequence

0 �! E0(K
un
v ) �! E(Kun

v ) �! E(Kun
v )=E0(K

un
v ) �! 0

and look at the cokernels. Then

E0(K
un
v )=pE0(K

un
v ) = 0 �! E(Kun

v )=pE(Kun
v ) �! C=pC �! 0 : (54)

The �rst equality of the lemma follows. The second equality is a direct consequence of
the Kodaira-N�eron theorem.
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6.7 An example

We give an example which illustrates our results. The following elliptic curve was found
by Fermigier [4] and has rank � 22 over K =Q.

E22 : y2+ xy + y = x3 � 940299517776391362903023121165864x
+10707363070719743033425295515449274534651125011362 : (55)

In order to apply our results, let us �rst collect the standard local information. The
given model of E22 is minimal at all primes and

�(E22) = 22395276136174373 47293 p1 p2

with
p1 = 270704849145149791;
p2 = 60794657878864337775664712674231370427122734380997 :

We would like to thank Herman te Riele for producing the above factorization. The
curve E22 is semi-stable at all primes except 17. The reduction types are

2 :I2; 3:I9; 5:I2; 7:I6; 13:I6; 17:IV; 37:I3; 47293:I1; p1 :I1; p2 :I1 :

A computation (as in Serre [12], Example 5.9.4) shows that the Galois group of �Q=Q
acts on E[p] via the full group GL2(Fp) for all p. For a non-trivial point T 2 E[p]
consider the �eld L = Q(T ). The degree [L : Q] is p2� 1, that is maximal possible.
The injectivity theorem 6.4.2 applies for every p and the local result 6.6.1 immediately
implies the following:

Proposition 6.7.1. Let p be a prime and T 2 E22[p] a non-trivial point of order p.
Let L=Q(T ) and de�ne

Cp = fa 2 L�=L�p j ordl(a) = 0 mod p; all lg �= (Z=pZ)cp :

Then

cp �

8>>><>>>:
16; p = 2;
15; p = 3;
19; p = 17;
20; p 6= 2; 3; 17:

It is interesting to note that such an elliptic curve E=Q with a large Mordell-Weil
rank can be used to produce number �elds whose class group has a large p-part. Such
examples have been studied in detail for p=2 (see [2]) and for p=3 in case E possesses
a rational 3-isogeny (see [14]). The group

Cp = fa 2 L�=L�p j ordl(a) = 0 mod p; all lg �= (Z=pZ)cp :

�ts into an exact sequence

0 �! UL=U
p
L
�! Cp �! HL[p] �! 0
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where UL is the group of units of L and HL is the class group. Hence a lower bound on
the size of Cp combined with the knowledge of the size of UL gives a lower bound on
the size of HL[p].

In our chosen example, this can be done as follows. The �eld L has 3 real embeddings
for p=2 and p� 1 real embeddings for an odd prime p. Moreover, L� has no p-torsion
for odd p. This follows from the fact the the Galois group acts via the full GL2(Fp).
We have by the Dirichlet unit theorem

dimFp UL=U
p
L
=

(
3; p = 2;
(p2 + p� 4)=2; p > 2:

A combination of this with the above proposition gives the following bounds for small
primes p:

p 2 3 5 7
cp � 16 � 15 � 20 � 20

dimFp UL=U
p
L 3 4 13 26

dimFpHL[p] � 13 � 11 � 7 |

These rough estimates become useless for primes p � 7. However, a more careful
analysis on the possible image of the Kummer map, notably the use of 6.5.2, can be
used to produce sharper bounds.

For example, take an intermediate �eld Q�K�L such that E[p](K)= 0. By 6.5.2,
the image of the Kummer map lands into the kernel of the norm map NL=K :L

�=L�p!
K�=K�p . In particular, the intersection of this image with the unit part UL=U

p
L
is

actually contained in the kernel of

NL=K : UL=U
p
L
�! UK=U

p
K
: (56)

In this way one can produce better lower bounds on the size of HL[p]. Note, however,
that the obvious idea to take K =Q works only for p=2, since UK=U

p
K
is trivial for

p> 2. So one has to consider di�erent �elds, such as for instance K =Q(xT ).

In our chosen example, this works as follows. Let p > 2 and take K =Q(xT ) which is
a sub�eld of L=Q(T ) of degree 2. Since E[p](K) is trivial, the image of the Kummer
map inside the units is contained in the kernel of (56). The �eld K has p� 1 real
embeddings for an odd prime p. By the Dirichlet unit theorem,

dimFp UK=U
p
K
=

1

4
(p2 + 2p� 7) :

The norm map (56) is surjective. Indeed, consider the map i :UK=U
p
K
!UL=U

p
L
induced

by the inclusion K!L. Then the composition NL=KÆi is multiplication by [L :K] = 2,
hence an isomorphism (p > 2).
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A combination of these considerations with Proposition 6.7.1 gives the following
bounds for small primes p:

p 2 3 5 7 11
cp � 16 � 15 � 20 � 20 � 20

dimFp UL=U
p
L

3 4 13 26 64
dimFp UK=U

p
K 3 2 7 14 34

dimFp HL[p] � 13 � 13 � 14 � 8 |

A similar argument can also be applied to bound the part of the Kummer map which
lands outside the unit group. In this way it is possible to improve the bounds even
further.

For instance, consider the family of elliptic curves over Q

En : y2 = x3 + nx; n 2 Z :

Let p=3, take a non-zero point T 2 E[3] and take Ln=Q(T ) (a degree 8 extension of
Q). It is not diÆcult to show that

dimF3
HLn[3] � rankQ(En)� 1 : (57)

This gives a non-trivial estimate already for those En=Q whose Mordell-Weil rank is at
least 2. For instance, there are six En of rank 2 with jnj � 50, namely the ones with

n = �17; 14; 33; 34; 39; 46:

For each of these we have HLn [3]
�= Z=3Z, so in these cases the estimate (57) is in fact

an equality.
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Samenvatting in het Nederlands

Dit proefschrift bestaat uit twee onafhankelijke delen. Het eerste deel (hoofdstuk 1{5)
is gewijd aan in�nitesimale deformatietheorie en toepassingen op p-deelbare groepen.

De moduliruimtes van p-deelbare groepen met een PEL-type structuur zijn recent
sterk in de belangstelling gekomen. Een reden hiervoor is dat men op zoek is naar
goede modellen voor Shimura-vari�eteiten. Een andere reden is dat ze kunnen helpen
een beter begrip te verkrijgen van de moduli van abelse vari�eteiten. Het eerste deel
van dit proefschrift probeert iets toe te voegen aan de kennis van de structuur van
deze moduliruimtes. Ze zijn vaak zeer singulier en deze singulariteiten zijn in speci�eke
gevallen bestudeerd.

Een van de problemen in het bestuderen van deze moduliruimtes is het ontbreken
van een deformatietheorie van p-deelbare groepen die algemeen genoeg is om over een
willekeurige basisruimte te werken en tegelijkertijd eenvoudig genoeg is om berekenin-
gen uit te kunnen voeren. Een mogelijke oplossing hiervoor zou zijn om de zogenaamde
lokale modellen te gebruiken. Het idee is dan om, �etale-lokaal, een niet-canoniek iso-
mor�sme te vinden tussen de moduliruimte waar men in ge��nteresseerd is en een mo-
duliruimte van een lineair algebra��sch probleem. Onder andere Deligne en Pappas,
de Jong en Rapoport en Zink hebben dit idee gebruikt in bepaalde gevallen van een
PEL-type structuur moduliruimtes. Het algemene idee is dat zo'n isomor�sme wordt
verondersteld te bestaan wanneer de deformatiedata rigide is op de Dieudonn�e-modulen.
We zullen dit idee preciezer formuleren en een bewijs geven van het bestaan van dit
isomor�sme.

Een van de moduliruimtes waar ons resultaat op van toepassing is, is die van een p-
deelbare groep G met een werking van een maximale order O. In dit geval laten we zien
dat de corresponderende modulifunctor formeel glad is over de deformatiefunctor van de
raakruimtevoorstelling �� van O op G. Dus een noodzakelijke en voldoende voorwaarde
om (G;O) te kunnen deformeren is dat men �� kan deformeren. Dit verklaart de rol
van de raakruimtevoorstelling in de studie van Kottwitz, Pappas en anderen naar de
platheid van lokale modellen.

De indeling van dit deel van het proefschrift is als volgt. In hoofdstuk 1 wordt
de algemene in�nitesimale deformatietheorie behandeld. Wij geven de basisresultaten
van de theorie, bewijzen een stelling die formele gladde uitbreidingen vergelijkt en
bespreken quoti�entfunctoren. In hoofdstuk 2 en 3 geven wij de voorbereidingen voor de
hoofdresultaten in hoofdstuk 4, waar wij de isomor�estelling bewijzen voor de PEL-type
moduliproblemen. We passen die toe op het bovengenoemde geval van een p-deelbare
groep met een ringwerking en op het geval waarin we een hoofdpolarizatie hebben.

In het tweede deel van dit proefschrift (hoofdstuk 6) houden we ons bezig met de
Kummerafbeelding en p-descent op elliptische krommen. Klassiek is 2-descent de meest
gebruikte methode om een bovengrens te bepalen van de rang van de Mordell-Weil groep
van een elliptische kromme E over een getallenlichaam K. In sommige gevallen maakt
de 2-torsie van de Tate-Shafarevich groep het moeilijk om de rang precies te bepalen.
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Men zou dan een priemgetal p > 2 willen gebruiken in het afdalingsproces, mits men
weet dat de Kummerafbeelding nog steeds injectief is. In dit hoofdstuk bewijzen wij
dat dit het geval is wanneer de kromme E geen rationale p-isogenie heeft over K.
Dit maakt het mogelijk om p-descent toe te passen in deze gevallen. Ook beschrijven
wij met standaardmethoden de lokale beelden van de Kummerafbeelding en geven een
voorbeeld ter illustratie.
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