Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Huub Kooijman, ${ }^{\text {a }}{ }^{*}$ Marijke Hogenbirk, ${ }^{\text {b }}$ Gerrit Schat, ${ }^{\text {b }}$ Otto S. Akkerman, ${ }^{\text {b }}$ Friedrich Bickelhaupt ${ }^{\text {b }}$ and Anthony L. Spek ${ }^{\text {a }}$

${ }^{\text {a }}$ Bijvoet Centre for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ${ }^{\mathbf{b}}$ Scheikundig Laboratorium, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Correspondence e-mail:
h.kooijman@chem.uu.nl

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in main residue
R factor $=0.070$
$w R$ factor $=0.183$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

($\mu_{2}-\eta^{2}$-2-tert-Butylethyn-1-yl)(μ_{2}-chloro)bis\{[bis($\boldsymbol{\eta}^{5}$-cyclopentadienyl)dimethylsilane]titanium\}

The title compound, $\left[\mathrm{Ti}_{2} \mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{9}\right)\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Si}\right)_{2}\right]$, displays an asymmetric $\mu_{2}-\eta^{2} \mathrm{C} \equiv \mathrm{C}$ bridge between the two metal ions. The $\mathrm{C}-\mathrm{C} \equiv \mathrm{C}$ bond angle deviates markedly from linearity. The difference in the $\mathrm{Ti}-\mathrm{Cl}$ bond lengths involving the bridging Cl is 0.146 (3) \AA. The angles between the leastsquares planes through the ring systems of the titanocene units are 55.4 (4) and $57.8(4)^{\circ}$.

Comment

In order to broaden the variety of known asymmetrically substituted ansa-metallacyclopropene complexes, the ansatitanocene $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{TiCl}_{2}$ was treated with magnesium in tetrahydrofuran in the presence of tert-butylacetylene. Unexpectedly, the title compound, (I), was obtained and we present its structure here.

Received 3 June 2005 Accepted 7 June 2005 Online 17 June 2005

(I)

The structure of (I) is shown in Fig. 1, and selected bond lengths and angles are listed in Table 1. The distance of 3.383 (2) \AA between the Ti ions is large enough to be considered as non-bonding (in the metal, the Ti -Ti distance is $2.90 \AA$; Hull, 1921). The tert-butylacetylene group acts as a $\mu_{2^{-}}$ η^{2} bridge between the two metal ions. This bridging mode of the $\mathrm{C} \equiv \mathrm{C}$ group is not uncommon. Recent examples are a heteronuclear Ti-Ag complex with bridging $\mathrm{C} \equiv \mathrm{C}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$, reported by Al-Anber et al. (2004), and a homonuclear Ru complex with bridging $\mathrm{C} \equiv \mathrm{C}$, reported by Griffith et al. (2003). Takahashi et al. (1997) published the structure of $\left(\mu_{2}-\eta^{2}\right.$ -

Figure 1
A view of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Disorder components with an occupation factor of less than 0.5 are drawn with dashed bonds.
propynyl)(μ_{2}-chloro)dizirconocene, which, compared with (I), lacks the $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$ links between the cyclopentadienyl rings, but also shows the $\mu_{2}-\eta^{2}$ bridging mode of the $\mathrm{C} \equiv \mathrm{C}$ group.

The November 2004 release of the Cambridge Structural Database (CSD; Allen, 2002) contains $222 \mathrm{C}-\mathrm{C} \equiv \mathrm{C}$ groups involved in a $\mu_{2}-\eta^{2}$ bridge between two metal ions. The length of the triple bond in (I) $[1.227$ (8) \AA] is in good agreement with the range observed in the CSD (1.05-1.37 \AA, mean value $1.224 \AA$, standard deviation of sample $0.035 \AA$), but the $\mathrm{C} \equiv \mathrm{C}-\mathrm{C}$ bond angle $\left[140.2(6)^{\circ}\right.$] is among the most extreme deviations from linearity (observed CSD range $139-180^{\circ}$, mean value 164°, standard deviation of sample 8°). The length of the $\mathrm{C} 13-\mathrm{Ti1} \sigma$ bond [2.043 (6) \AA] is relatively small compared with $173 \mathrm{C} \equiv \mathrm{C}-\mathrm{Ti}$ systems found in the CSD, with $\mathrm{C}-\mathrm{Ti}$ bond lengths in the range $2.026-2.257 \AA$. Only four systems reported in the CSD have a $\mathrm{C}-\mathrm{Ti}$ bond shorter than that found in (I).

The $\mu_{2}-\mathrm{Cl}$ bridge in (I) also has an asymmetric geometry. The difference in the $\mathrm{Ti}-\mathrm{Cl}$ distances is 0.146 (3) \AA, with $\mathrm{Ti} 1-\mathrm{Cl} 1$ being the shorter bond. The angle between the leastsquares planes through the Cp rings coordinated to Ti1 is $55.4(4)^{\circ}$; for the rings coordinated to Ti2, this angle is 57.8 (4). For the related compound ($\mu_{2}-\eta^{2}$-propynyl)(μ_{2}-chloro)dizirconocene, which lacks the $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$ links between the cyclopentadienyl rings, the slightly lower values of 51.5 (4) and $55.6(3)^{\circ}$, respectively, were found.

Experimental

Experiments were performed using a high-vacuum sealed glass apparatus (Vreugdenhil \& Blomberg, 1963). Solvents were dried before use by distillation from a liquid $\mathrm{Na}-\mathrm{K}$ alloy. At room temperature, a solution of tert-butylacetylene (0.21 mmol) in tetrahydrofuran (12.1 ml) was added to $\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{TiCl}_{2}$ [62.2 mg , 0.20 mmol , prepared according to the procedures reported by Bajgur et al. (1985)]. After stirring for 7 h , an intense dark-purple mixture was formed. Although there was still some unreacted magnesium remaining, the solvent was removed by distillation with liquid nitrogen. The residue was extracted twice with 10 ml of toluene. NMR analysis of the product mixture revealed that two products had
been formed in a 3.5:1 ratio. Crystals of (I), suitable for X-ray diffraction studies, were obtained by cooling a saturated solution of the reaction product in toluene. The crystals were isolated in a glove box under a nitrogen atmosphere and sealed into Lindemann glass capillaries. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR (200 MHz , room temperature, $\mathrm{C}_{6} \mathrm{D}_{6}$, reference $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}=7.17$ p.p.m., δ, p.p.m.): $5.62(\mathrm{~m}$, $\left.12 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 1.22\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.38[s, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.29\left[s, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right] ;{ }^{13} \mathrm{C}$ NMR $(62.9 \mathrm{MHz}$, room temperature, $\mathrm{C}_{6} \mathrm{D}_{6}$, reference $\mathrm{C}_{6} \mathrm{D}_{6}=128.0$ p.p.m., δ, p.p.m.): 172.3 $(\mathrm{Ti}-C \equiv \mathrm{C}), 120.9(\mathrm{Ti}-\mathrm{C} \equiv C), 119.3\left(\mathrm{C}_{5} \mathrm{H}_{4}\right), 117.5\left(\mathrm{C}_{5} \mathrm{H}_{4}\right), 102.7$ $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right), 102.6\left(\mathrm{C}_{5} \mathrm{H}_{4}\right.$, bridgehead), $101.2\left(\mathrm{C}_{5} \mathrm{H}_{4}\right), 38.8\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 33.3}\right.$
 intensities): 584 (3) $[M], 350(14)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{TiCl}(\mathrm{C} \equiv \mathrm{C}-\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], \quad 314(45), \quad 269(100), \quad 254$ (28), 234 (47), $\quad\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}-\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ti}\right], 176$ (24), 150 (14).

Crystal data

$\left[\mathrm{Ti}_{2} \mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{9}\right)\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Si}\right)_{2}\right]$
$M_{r}=584.97$
Triclinic, $P \overline{1}$
$a=9.381(4) \AA$
$b=11.552(3) \AA$
$c=14.120(4) \AA$
$\alpha=80.18(2)^{\circ}$
$\beta=83.89(3)^{\circ}$
$\gamma=74.93(3)^{\circ}$
$V=1452.8(9) \AA^{3}$
Data collection
Enraf-Nonius CAD-4 Turbo
\quad diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
6538 measured reflections
5250 independent reflections
3134 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.081$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.337 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{K} \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=9.9-14.0^{\circ} \\
& \mu=0.74 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Block, black } \\
& 0.3 \times 0.3 \times 0.2 \mathrm{~mm} \\
& \\
& \\
& \theta_{\text {max }}=25.3^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-13 \rightarrow 13 \\
& l=-16 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070
$$

$$
w R\left(F^{2}\right)=0.183
$$

$$
S=1.17
$$

$$
5250 \text { reflections }
$$

$$
326 \text { parameters }
$$

$$
\begin{gathered}
\text { H-atom parameters constrained } \\
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.075 P)^{2}+P\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.81 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.77 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.
$C g 1, C g 2, C g 3$ and $C g 4$ are the centroids of rings C3-C7, C8-C12, C19-C23 and $\mathrm{C} 24-\mathrm{C} 28$, respectively. C 55 is the midpoint of the $\mathrm{C} 13 \equiv \mathrm{C} 14$ bond.

Ti1-Cl1	2.413 (2)	Ti2-C14	2.262 (6)
Ti1-C13	2.043 (6)	Ti2-Cg3	2.126 (3)
Ti1-Cg1	2.081 (3)	Ti2-Cg4	2.118 (3)
Ti1-Cg2	2.091 (3)	Ti2-Cg5	2.190 (5)
Ti2-Cl1	2.559 (2)	C13-C14	1.227 (8)
Ti2-C13	2.288 (6)		
Cg1-Ti1-Cg2	128.96 (13)	Cg3-Ti2-Cl1	102.27 (10)
Cg1-Ti1- Cl 1	108.25 (11)	Cg4-Ti2-Cg5	110.88 (15)
Cg1-Ti1-C13	106.72 (19)	Cg4-Ti2-Cl1	102.93 (9)
Cg2-Ti1-Cl1	109.01 (10)	Cg5-Ti2-Cl1	97.00 (13)
Cg2-Ti1-C13	106.71 (18)	Ti1-Cl1-Ti2	85.72 (7)
C11-Ti1-C13	90.27 (17)	Ti1-C13-Ti2	102.6 (2)
Cg3-Ti2-Cg4	126.70 (13)	C13-C14-C15	140.2 (6)
Cg3-Ti2-Cg5	111.61 (15)		

The tert-butyl group displayed conformational disorder, which could be described with a two-site model. The site-occupancy ratio
refined to 0.715 (8):0.285 (8). The displacement parameters of the minor disorder component, atoms $\mathrm{C} 16 B-\mathrm{C} 18 B$, were set equal to those of the major disorder component atoms, $\mathrm{C} 16 A-\mathrm{C} 18 A$. H atoms were introduced in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and refined as riding on their carrier atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ (methyl C) or $1.2 U_{\text {eq }}$ (cyclopentadienyl C).

Data collection: locally modified CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 (de Boer \& Duisenberg, 1984); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported in part (ALS) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO).

References

Al-Anber, M., Walfort, B., Stein, T. \& Lang, H. (2004). Inorg. Chim. Acta, 357, 1675-1681.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bajgur, C. S., Tikkanen, W. R. \& Petersen, J. L. (1985). Inorg. Chem. 24, 25392546.

Boer, J. L. de \& Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Griffith, C. S., Koutsantonis, G. A., Skelton, B. W. \& White, A. H. (2003). J. Organomet. Chem. 670, 198-204.
Hull, A. W. (1921). Phys. Rev. 18, 88-89.
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Takahashi, T., Nishihara, Y., Sun, W. H., Fischer, R. \& Nakajima, K. (1997). Organometallics, 16, 2216-2219.
Vreugdenhil, A. D. \& Blomberg, C. (1963). Recl Trav. Chim. Pays-Bas, 83, 453-460.

