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Preface

F
OUR years ago, I was o�ered a research project. The theme was computer aided
veri�cation of programs |more speci�cally, distributed programs. I thought it
was silly. From the software projects I did during my under-graduate time, I

knew how hard it is to use a formal method to argue about the correctness of sizeable
programs, and I could understand why industry considers formally proven correctness
as impractical. Using a computer to check our proofs will not make it any easier
because basically we still have to do all the thinking and supply the computer with all
the details. Although there are tools to automatically generate proofs, such tools have
their limitations. Anyway, I was intrigued by the project so I accepted the o�er.

I was introduced to the theorem prover |or rather, theorem proving environment|
HOL, a general purpose and interactive program in which we can add de�nitions and
write proofs, which the program will verify. HOL has some tools to automatically
construct proofs for certain formulas but, depending on the problem at hand, most of
the time it was necessary to construct the proofs myself. Learning HOL was di�cult.
It is a machine with which we want to be able to handle formulas with all the delicacy
of a human hand. To that end, HOL is equipped with lots of handles and buttons and
we need to know them in detail to be able to operate HOL conveniently. Manipulating
formulas through pulling handles and pushing buttons was certainly a quite di�erent
experience from how we are taught in school.

During the research I began to realize that perhaps we do not have much choice after
all. We have become more and more dependent on computers. Accidents are bound to
happen. If they happen with air planes, why should they not happen with software?
Sooner or later, people will realize that they should impose a stronger standard on the
quality of software. Employing theorem provers seems to be an idea worth investigating.

I discovered that verifying a distributed algorithm with a theorem prover is not as
it seems at �rst sight. First, before we can even start verifying a program, we will
have to supply the theorem prover with a wealth of mathematical facts which we are
going to use. If a fact is not in the theorem prover's library of knowledge, we will
have to prove it ourselves. This is a lot of work, and being a piece of new technology
theorem provers generally, if not all, have a poorly developed library of facts. On
the other hand, many distributed programs involve concepts from various branches
of mathematics. Verifying them may require references to lots of other mathematical
facts. The second problem is notation. With a few exceptions, most theorem provers
only support an ASCII based format |or a slight variation thereof|, which is quite
cumbersome when working with long and complicated formulas. Third, we leave many
things implicit in our reasoning with pencil and paper, forced to concentrate on really
important things. When working at the mechanical level of theorem provers, we need
to make those implicit things in our reasoning explicit, discovering that we are often
not aware of the extend of the implicitness in our reasoning.
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There is nothing we can do to alleviate this third problem except learning through
experience. The �rst two problems are however temporary. Things will get better as
the technology evolves. I truly believe that there is a large potential use for theorem
provers. We should be patient though, trying to systematically build their libraries of
knowledge, to standardize them, and to provide good documentations. It will require
highly quali�ed specialists to operate theorem provers, but I believe that in the end
this is a small price to pay if we indeed plan to computerize the whole world, so to say.

In this thesis I would like to share with the reader, how designing a program and
mechanically verifying it can be done hand in hand. My experiment with HOL quickly
pointed out that the programming logic I was using, UNITY, was inadequate. So,
I had to upgrade the logic and to verify it with HOL. A large portion of this thesis
is concerned with this extension. In the remaining part of the thesis, a non-trivial
example will be presented, and I will discuss my experience in verifying the example.

I would like to thank Doaitse Swierstra, my promotor (thesis supervisor), for of-
fering me an AIO position, for giving me the precious chance to investigate the width
and length of a theorem prover, for counselling me throughout my research, and for
diligently proofreading this thesis and helping me writing the Samenvatting (summary)
of this thesis. Although not directly related to my research, I also want to thank him
for showing me the merits and potential of functional programming, especially in ed-
ucation. He gave me ideas which I hope I will have a chance to realize. I would like
to thank the Woensdag Middag Club, especially for showing me the elegance of the
Relational Calculus. I wish I had more time to learn more about it, and I certainly
look forward to such an opportunity in the future. I would like to thank Rob Udink,
with whom I have had many discussions regarding UNITY, and from whom I have
learned much. I would like to thank the HOL community for their help and unspo-
ken encouragement during the �rst two years of my research, during which I was but
a helpless novice in HOL. I would like to thank the whole Vakgroep Informatica for
accepting me |a strange outlander from the East I must have been| among them. I
would also like to thank the reviewers of my thesis, in alphabetical order: Prof. Dr. E.
Brinksma, Dr. F. de Boer, Prof. Dr. J. van Leeuwen, Prof. Dr. J.J.Ch. Meyer, and
Prof. Dr. M. Rem, for taking the time and e�ort to review this thesis. I also thank
Tanja Vos for proofreading this thesis. I thank Peter, Ina, Tim, Pieter, and Annelies
for being my family here and providing me a safe haven in this land of tall people.

Finally, I would like to thank Ramosta for her continual support, and for adding
alien colors to my life |strange though they are, but a pleasant change for someone
whose world is dominated by a computer screen. I thank the God for His blessing |the
row of luck granted to me could not be, so to say, the result of a random generator.

August 1995,
Wishnu Prasetya

The cover of this book depicts a dragon cruising a sky dominated by a sun. I like the picture, especially since there are

many ways to interpret it. Here is one: the sun symbolizes hope. The dragon symbolizes mankind, travelling the sky,

guided by the sun, seeking to discover what tomorrow hides from us.
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The light in the eastern skies

Is still and always morning,

It alters the renewing air

Into belief and yearning.

|from The Lark, the Raven, and the Owl

Chapter 1

Introduction

T
HIS thesis presents the results of four years of research in which we explored
the boundary of computer aided veri�cation applied to the veri�cation of dis-
tributed programs |more speci�cally, of the so-called self-stabilizing, distributed

programs. It introduces an extension of the programming logic UNITY [CM88] as a
mathematical framework for reasoning about such programs. It will be shown that
the extension is compositional with respect to parallel composition 1 . The thesis then
continues to describe how, for the purpose of computer aided veri�cation, the exten-
sion may be embedded into an interactive theorem prover. As an experiment, we have
also mechanically veri�ed an example program. The example is a self-stabilizing and
distributed algorithm for computing the minimal distance between all pairs of nodes
in a network. We will discuss this example, and it will take a quite large portion of
this thesis for several reasons. First, the problem is not as trivial as it it may seem.
Second, to make the problem more interesting, and the results more useful, we will
consider a generalized notion of minimal distance. Such a generalized notion of mini-
mal distance is useful if, for example, we want to lift the algorithm so that it will also
work for a hierarchically divided network. In such a network, nodes are grouped to
form domains, and domains are grouped to form larger domains. The domains form a
network of their own and also form a hierarchy. In fact, many large real networks are
organized like that. Verifying the example turns out to require theories from various
branches of mathematics, which is quite typical for many distributed algorithms. The
computer aided veri�cation of such a program will therefore have a quite di�erent em-
phasis than, for example, a veri�cation of an electronic circuit which typically involves
a single, uniform kind of mathematics.

The theorem prover that we use to do the computer aided veri�cation is HOL
[GM93], which provides reasoning in higher order logic and programmable proof-tools.

The role of distributed programs has become increasingly important as more and
more people hook their computers together, either locally or world-wide. The tech-
nology of computer networks advances rapidly and so is its availability. Today, it is
no longer a luxury for a student to be able to quickly contact a fellow student, or a
professor, or his future employer across the ocean through world-wide computer net-
works. There are even plans in some countries to make computer networks generally

1 Meaning that the speci�cation of a program is decomposable into speci�cations of its parallel
components.
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available at the house-hold level. Underlying this machinery, there are distributed pro-
grams which have to ensure that every message sent reaches its destination and have
to provide management for resources shared by various users on various computers.
These are very complicated tasks. Sooner or later, if not already, as we depend more
and more on computer networks, we will have to seriously address the question of
trustworthiness of the underlying distributed programs.

In practice, the correctness of a program is justi�ed by testing it with various
inputs. For complicated programs however, it soon becomes impossible to exhaustively
test them. In his paper in Mathematical Logic and Programming Language [Goo85], a
computer scientist, D.I. Good, sadly said the following about the practice of software
engineering:

So in current software engineering practice, predicting that a software system

will run according to speci�cation is based almost entirely on subjective, human
judgement rather than on objective, scienti�c fact.

People have long been aware of this problem. In the 70's, pioneered by scientists
such as E.W. Dijkstra, C.A.R. Hoare, and D. Gries, people began to advocate formal
approach to the development of programs [Hoa69, Dij76, Gri81]. A program and its
proof are to be developed hand in hand, and hence no post-veri�cation is needed!
However, the technique requires sophisticated mathematical dexterity not mastered by
most computer engineers and students, not even today.

Just like programs, proofs are also prone to human errors. This is especially true for
distributed programs. There is, we believe, no escape from this situation: distributed
programs are inherently complicated and this fact, one way or another, will be re
ected
in their proofs. Refutation to proven 'correct' distributed programs occurs quite often.
Even at the very abstract level mistakes can be made. An infamous example is perhaps
the case of Substitution Axiom used in a programming logic called UNITY [CM88]. It
was discovered that the axiom makes the logic unsound. A few years later a correction
was proposed in [San91]. But even this turned out to be not entirely error-free [Pra94].
Although this kind of sloppiness occurs not too frequently, a mistake at the theory level
may have severe consequences on the applications, especially if the faulty features are
exploited to the extreme. Therefore, the need for computer aided veri�cation is real.

Parallel to the formal approach to program derivation, technology to support com-
puters aided veri�cation was also developed. Roughly speaking, the technology can
be divided into two mainstreams. One is called model checking or simulation and the
other interactive theorem proving. In model checking [CES86] we have a computer
which exhaustively traverses all possible executions of a program, extensively enough
to be able to answer a given question about the program's behavior. The advantage is
that we are relieved from the pain of constructing proofs. The technique works only for
programs with a �nite state-space and even then, it may not be feasible for a program
with too large a state-space (the current technology is capable to deal with 1020 states
[BCM+90]). However, this limit is quickly approached and surpassed, especially when
dealing with sophisticated, in�nitely large data-types. So, some intellectual e�ort may
be needed nonetheless to reduce the original problem into one with a more manageable
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state-space.
In interactive theorem proving, we have a computer to interactively verify a proof.

We basically have to construct the proof ourselves although most modern interactive
theorem provers such as HOL [GM93] are also equipped with several facilities for partly
automating the proof construction process. An interactive theorem prover usually
provides a 
exible platform as its underlying logic is extensible, thus enabling us to
incorporate into the theorem prover the branch of mathematics required for a given
application area. Modern interactive theorem provers are also based on powerful logics,
supported by reasonably good notational mechanisms, enabling us to express complex
mathematical objects and concepts easily and naturally.

Despite some of its advantages, model checking lacks the expressive power present
in interactive theorem provers. What seems like a good solution is to extend interactive
theorem provers with various automatic tools such as model checkers 2 (so, we would
be able to consider a problem at a higher abstraction level and then decompose it into
automatically provable units). People are currently working on this kind of integration.
Some pointers that we can give are: [KKS91, Bou92, Bus94].

If the reader is interested in model checkers, a good starting point may be [CES86]
or [BCM+90]. In this thesis we will focus on interactive theorem proving, applied to
the kind of problems described some paragraphs earlier.

An interactive theorem prover is usually based on some deductive logic. The com-
puter will only accept a theorem if a proof, constructed by composing the logic's de-
duction rules, is supplied. Rigor is mandatory as it is also the only way to ensure
correctness. However, this also means that we have to be very scrupulous in writing
and manipulating formulas. Before we can even verify the simplest program with a the-
orem prover, we �rst needs to formalize and express the semantics of the programming
language being used by giving a so called programming logic. That logic should of
course be rich enough to express whatever aspect of programs we want to investigate.
Once a choice has been made, basically all that we have to do is to embed the logic
to the theorem prover. The embedding process itself is usually simple: it is a matter
of translating the logic from its description on paper |let us call this 'human level
description'| into the notation used by the theorem prover. The problem lies rather
in the di�erence in the degree of rigor typically applied in a human level description
and that required by a theorem prover. A human level description of a mathematical
object or concept is typically intended to introduce some the object/concept to human
readers. Some details may, intentionally or not, be omitted for a number of reasons,
such as:

i. to improve the readability of formulas.

ii. the details are considered not interesting.

iii. the details can be extracted from the context.

iv. the details are considered as common knowledge.

2 Note however, that the mandatory rigor imposed by a theorem prover would require that either
the tools are �rst veri�ed by the theorem prover or their results are 're-played' by the theorem prover.
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v. the author is simply not aware of the details.

Using a theorem prover, on the other hand, requires that all details, interesting or not,
are written down. If naively translated, the resulting logic may loose some strength.
The de�ciency may not be discovered immediately. When it is �nally encountered we
may have already produced thousands of lines of proofs, which may then need to be
re-done. A great deal of e�ort is thus wasted. Being precise is the key, but this can be
di�cult, especially if we are so convinced that we know what we are talking about.

There are many interactive theorem provers. For our research we have chosen HOL,
a system developed by M. Gordon [GM93]. HOL is based on Gordon's higher order
logic 3 . There are other theorem provers with a more powerful logic. Nuprl [Con86]
being an example thereof. Still, HOL's logic is certainly su�cient to deal with almost
all kinds of applications. It is also extensible; that is, we can add new de�nitions or
axioms. The main reason that we have chosen HOL is that it provides a whole range
of proof-tools, which are also highly programmable. In addition, HOL is also one of
the most widely-used theorem provers. Many users have made their work available
for others, making HOL a theorem prover with, we believe, the greatest collection of
standard mathematical theorems.

In this thesis we are especially interested in so-called self-stabilizing, distributed
programs, and how to verify them in HOL. A self-stabilizing program 4 is a program
which is capable to converge to some pre-de�ned equilibrium. Such a program is
tolerant to perturbations made by the program's environment: if some perturbation
throws the program from its equilibrium it simply re-converges to its equilibrium.
Of course an essential assumption here is that following a period of unstability, the
environment will eventually become stable, long enough for the self-stabilizing program
to converge. The combined behavior of a self-stabilizing program and its environment
is therefore usually speci�ed relative to this period of stability.

There is a limitation which we must be aware of. In a self-stabilizing and distributed
system, it is not possible to decide locally, for example in process a, whether the whole
system has reached its equilibrium. Such a decision would require a to collect local
information from other processes, which may be corrupted by the system's environment,
resulting in a wrong conclusion being drawn by a. For example, a self-stabilizing
program can only guarantee that a message sent by a will eventually reach b, but a
will never know whether or not the message has arrived in b (although one can say
that the probability increases with time). No acknowledgement mechanism will help.
Therefore we will take a more general approach by considering programs that may be
only partially self-stabilizing. A self-stabilizing program has an ability to revert to
its equilibrium from any where in the state-space. A partially self-stabilizing program
forbids some transitions as it might not be able to revert to its equilibrium after such
a forbidden transition. This can, for example, be used to forbid the environment from
corrupting acknowledgement information without being noticed.

3 Roughly speaking, a higher order logic is a version of predicate calculus where it is allowed to
quantify over functions
4 The concept of self-stabilization was �rst conceived by E.W. Dijkstra [Dij74]
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Self-stabilization has been applied to various problems, such as mutual exclusion
protocols, communication protocols, and graph algorithms [BYC88, AG90, CYH91].
However, reasoning about self-stabilization is often complicated and it was not until
recently that people attempted to deal with it more formally [Len93]. The need for
formality is, �rst of all, to increase our con�dence in our products, but also, as stated
by the mathematician David Hilbert in 1900:

The very e�ort for rigor forces us to discover simpler methods of proof. It also
frequently leads the way to methods which are more capable of development than

the old methods of less rigor. |Quoted from [Gri90].

In addition, we also have a very pragmatic need in mind: we need a formal approach to
enable us to do veri�cation using a theorem prover, and in an as easy way as possible.

Our starting point is UNITY, a programming logic developed by Chandy and Misra
[CM88] for reasoning about distributed programs. Lentfert and Swierstra have ex-
tended the logic with a special operator to describe self-stabilizing properties of a
program [LS93]. This thesis will start from there. Special attention will be given to
the issues of inductive decomposition and compositionality. Both are useful in ob-
taining the local speci�cation of a process from a global speci�cation of a network of
processes. Some examples will be presented to illustrate our style of calculation, es-
pecially concerning inductive decomposition. We believe style is important as it can
make the di�erence between a concise and comprehensible proof and an either overly
long or obscure one.

The developed logic has been embedded in the interactive theorem prover HOL
mentioned some paragraphs earlier. It was then used to to mechanically verify the
work in [Len93] on a self-stabilizing and distributed algorithm to compute the minimal
distances between all pairs of vertices in a (hierarchical) network. To extend the ap-
plicability of the results, a generalized notion of 'minimal-distance' will be considered.
Some price will have to be paid though. Various parameters will have to be introduced
for the purpose of the generalization. Consequently, the size of formulas increases sig-
ni�cantly, which may greatly obscure their meaning. A lot of algorithms actually have
quite numerous parameters. It is just that in textbooks most of them, for the purpose
of readability, are removed from formulas. When working with a theorem prover, rigor
is mandatory and this informal kind of parameter hiding is not possible |at least not
without the help of a special notational interface. Calculation, or veri�cation, becomes
more laborious although still within the range of practicality. But beyond that point,
we may �nd the trustworthiness and the practicality of the method to be seriously in
con
ict. In our opinion, any modern, general purpose theorem prover should be sup-
ported by a decent notational interface. Nuprl is an outstanding example thereof. HOL
still, unfortunately, lags behind in this respect. Further development of the technology
of the notational interface will de�nitely be appreciated by everyone.

Although it is possible to present the complete veri�cation of the program men-
tioned in the paragraph above, such would mean presenting thousands of lines of proofs
and formulas. Instead, only some aspects will be exposed in this thesis. An outline of
the veri�cation will be given, and so are theorems which are considered important, or
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interesting.

When all is said and done, a frequently asked question about computer aided veri-
�cation is: how much can we trust the computer we are using to verify the correctness
of other computers? The answer is: not much actually. Attempts have been made to
verify the programming languages used to implement the veri�cation software. People
are even trying to verify the compilers, and the chips used in the hardware. Still, we
can never get an absolute guarantee that nothing can go wrong. A message sent by
the proof-engineer's terminal to a remote �le server may get scrambled unnoticed, for
example. Or, some cyber criminal may alter the code unnoticed. In practical terms
however, interactive theorem provers are very reliable, or at least, when faced with an
extremely large and complicated veri�cation task, it is our experience, over and over
again, that they are much more reliable than men. That is however as far as such an
extreme e�ort can be considered as an insurance.

1.1 Structure of this Thesis

This thesis will be divided into two parts. The �rst part is about the logic we are us-
ing. An elaborate motivation will be given in Chapter 2. Chapter 3 reviews some basic
concepts of programming that are important for this thesis. These are, for example,
the notions of write variables, predicates, and actions. Careful understanding of such
basic concepts is important when one is about to embed a programming logic into some
theorem prover. Chapter 4 presents an extension of the programming logic UNITY we
mentioned earlier. UNITY has a problem that progress properties are not composi-
tional with respect to parallel composition. That is, we cannot in general factorize a
progress speci�cation of a program into the speci�cations of its parallel components.
This is too bad because we therefore cannot develop a component program in isola-
tion. The extension presented in Chapter 4 is however compositional, and useful for
the class of algorithms we are considering. Chapter 5 extends the logic further to deal
with self-stabilization. The chapter also presents a number of laws to do inductive
decomposition. Examples will be provided to illustrate our style of calculation. Em-
phasis will be placed on how various intuitive ideas relate to their formal counterparts.
The results up to this point should be useful for designing self-stabilizing, distributed
systems in general. In addition, almost all results have been mechanically veri�ed, and
available as HOL libraries.

One of the example, presented at the end of Chapter 5, is what we call Lentfert's Fair
and Successive Approximation (FSA) algorithm [Len93]. The algorithm is a general
algorithm to self-stabilizingly compute a certain class of functions called round solvable

functions. Minimum-distance-like functions are examples of round solvable functions.
It is the derivation of this algorithm which we took as a case study as we experimented
with mechanical veri�cation. It turned out that the hard part of the problem is,
for non-trivial cases, not in verifying the algorithm itself, but rather in proving the
round solvability of a function. In Chapter 6 special attention will be given to the
round solvability of minimum-distance-like functions. Finally, in Chapter 7 the FSA
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algorithm will be lifted so that it will work for networks of 'domains' instead of ordinary
networks of nodes. The domain-level FSA algorithm is a real example in which the
general treatment to minimal distance functions presented in Chapter 6 will prove to
be useful.

Although our objective is mechanical veri�cation, Part I of this thesis should be
of interest to those who are interested in formal techniques, applied to the design of
distributed programs.

The second part of this thesis is about the embedding of the logic presented in
Part I in the theorem prover HOL. Chapter 8 provides a brief introduction to the HOL
system. Chapter 9 explains how the logic presented in Part I is embedded in HOL.
Some examples illustrating how we represent programs and speci�cations in HOL, and
how to do re�nement in HOL, will be provided. Finally, we will show how the main
results regarding the FSA algorithm and the round solvability of minimum-distance-
like functions look like in HOL. An appendix will be included, providing a list of all
relevant HOL de�nitions and most important (mechanically veri�ed) HOL theorems
produced during our research.

In Chapter 10 we present a conclusion we draw from our research.

1.2 A Note on the Presentation

Almost all theorems in this thesis are computer-checked. For such theorems there is
basically little need to present their proofs. Still, the purpose of presenting a proof is
not only so that it can be checked by its reader, but also:

i. to show how simple a theorem follows from some facts.

ii. to show a style of calculation.

iii. to give some insight in proving a closely related problem.

iv. to expose the actual nature of a theorem.

For these reasons, some proofs will be presented in this thesis. Should the reader
still insist on checking the validity of the computer-checked results, the reader only
needs to go through the list of de�nitions given in Appendix A. All of our computer-
checked theorems are derived from these de�nitions. Their validity, with respect to
these de�nitions, is guaranteed by HOL. However, it is indeed still possible that an
absurd de�nition has been made.

When presented, computer checked results (de�nitions) will be marked by the names
they are identi�ed with in the HOL theories (de�nitions) that we wrote. For example:

Theorem 1.2.1 Pink Panther Pink Panther thm

Fu = Fu � Fu

The number and the name Pink Panther are how we refer to the theorem in this
thesis. The name Pink Panther thm is how the theorem is called in HOL. Implicitly,
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this means that the theorem is mechanically veri�ed. When referring to a theorem, def-
inition, or equation we often |for the reader's convenience| include the page number
in which the referred text can be found. The page number is printed as a subscript
like in: Theorem 1.2.17 or Theorem Pink Panther7.

When presenting a theorem we often present it like this:

A1

A2

B

which is another way for us to denote A1 ^ A2 ) B. The notation is commonly used
within the UNITY community.

The reader will �nd a discrepancy between the notations used in the �rst and second
part of this thesis. The purpose of Part I is to introduce to the reader the programming
logic we use, and its various aspects. Comprehension takes higher precedence. The
notation is therefore adapted to be as inspiring as possible. On many occasions, some
parameters may be omitted from a formula and the reader should rely on the context
when checking them. This should not be a problem.

In Part II, we describe how the logic is embedded in the theorem prover HOL.
De�nitions and theorems, as they are in the HOL notation, will be presented. The
translation from the human notation from Part I to the HOL notation, and the con-
verse, should be straight forward. However, we must warn the reader that the naming
of variables and the order of parameters may be di�erent as during the making of
this thesis better naming and parameter ordering convention is also developed. Unfor-
tunately, adapting our HOL code accordingly will take time we cannot a�ord at the
moment.

Finally, should one want to apply the results presented in this thesis, the safe way
to do it is not to consider them as presented in Part I, which after all was hand-typed
and hence is likely to contain errors. Instead, one should take the results as they are
reported by HOL. Some of them are listed in Appendix A. Admittedly they are in
the ASCII format |which is of course nowhere close to, for example, LATEXformatted
formulas| but they are the output of HOL, as it is.

In the course of our research, thousands of lines of HOL proofs have been produced.
A large part of the results should be reusable. There are for example libraries on well
founded relations, program variables, transitive and disjunctive closures, lattices, and
of course the extended UNITY logic that we used. All these libraries are available
through ftp at ftp.cs.ruu.nl.
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A Formal Approach to the Design

of Self-Stabilizing Programs





Always before, you could explain

The turning darkness of the earth,

And how that dark embraced the rain,

And gave the ferns and 
owers birth.

|from Kender Mourning Song

Chapter 2

Motivation

W
E started our research with a pragmatic objective in mind: to mechanically
verify the Fair and Successive Approximation (FSA 1 ) algorithm, presented in
a thesis by Lentfert [Len93]. The thesis was motivated by the Smart Cabling

Project initiated by Utrecht University around 1988. The project aims to design an
inherently safe packet switching network and serves as an experimental platform for
formal program development methods. The algorithm is self-stabilizing |what this
means will be explained later| and is actually a general algorithm. For example,
Lentfert applied the algorithm for computing minimal distances between any pair of
nodes in a (hierarchical) network. Lentfert's thesis contains a detailed, formal proof of
the algorithm. Still, the proof is long and complicated so that it was felt that mechanical
veri�cation is needed. The interactive theorem prover HOL has been chosen for this
purpose for the reasons explained in Chapter 1. In addition, once this goal is achieved,
all theorems resulting from the veri�cation would be in principle reusable.

Most modern interactive theorem provers such as HOL are equipped with tools
to (partly) automate proofs 2 . However, we should not expect that everything can
be veri�ed automatically since the validity of HOL formulas has been known to be
undecidable 3 . When automatic veri�cation fails, we need to guide the theorem prover
by hand. For example, the veri�cation of the FSA algorithm requires a lot of hand-
guided proofs 4 .

During the course of our research, two things became obvious. First, the program-
ming logic used by Lentfert misses certain low level details, and as a result it is actually
not strong enough to derive some laws he was using, in particular laws concerning pro-
gram composition. Second, because of the absolute rigor imposed by a theorem prover,
a hand-guided, mechanical proof requires a great deal of e�ort, attention, and patience.
The question of proof economy becomes therefore important. We learned that it is a
good idea to lay out a complicated proof on paper before working on it with a theorem

1 Not to be confused with 'Finite State Automata'.
2 Examples of such automatic tools in HOL are decision procedures for Presburger natural number
arithmetics, written by Boulton [Bou92], and for �rst order predicate calculus, written by Kumar,
Kropf, and Schneider [KKS91].
3 HOL, as mentioned in Chapter 1, is based on higher order logic. This logic contains �rst order
logic, which, as shown by Church in 1936, is undecidable.
4 Many distributed algorithms have higher order parameters which can severely hamper automation
of their proofs.
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Figure 2.1: A simple network.

prover. Elegant proofs are de�nitely encouraged as this will reduce the e�ort required
in veri�cation.

Challenged by those two obstacles, we have worked on the logic used by Lentfert.
We have added the necessary details to it, and also various calculational laws. Along-
side with the (re-)invention of the laws, a style is developed, resulting in a shorter, more
elegant proof of the FSA algorithm. Of course, we intend the logic to be generally appli-
cable for designing and verifying distributed programs in general, and self-stabilizing,
distributed programs in particular.

In the reminding of this chapter we will brie
y discuss the aspects of the design
and veri�cation of self-stabilizing, distributed programs, which are relevant to our
development of Lentfert's formalism. The discussion will be mostly informal as its
purpose is only to provide a motivation for the rest of Part I. The motivation will be
given with the aid of an example, which is a simpli�ed version of Lentfert's algorithm.

2.1 Self-Stabilization

Imagine a network of nodes as in Figure 2.1. Ignore for the time being the numbers
printed above the circles. The network in Figure 2.1 is connected, that is, each node
is reachable from any other node. A non-empty sequence of nodes in such a network
describes therefore a path from the �rst to the last node. Let us de�ne the distance of
a path to be the length of the path minus 1. A minimal path from a node a to another
node b is de�ned as a path from a to b with the smallest distance. The minimal distance

between nodes a and b is de�ned as the distance of a minimal path between a and b.
For example, abd and acd are minimal paths from a to d in the network in Figure 2.1
and the minimal distance between a and d is 2.

In a computer network, a minimal path can be used to approximate the 'best' route
to send messages from one computer to another. Many computer networks are therefore
supported by a program that constructs and maintains minimal paths. A network can
be described by a pair (V;N) where V is a set consisting of all nodes in the network
and N is a function such that for any node a, N:a is the set of all 'neighbors' of a.

Let us consider a self-stabilizing algorithm for computing the minimal distances.
The algorithm is displayed in Figure 2.2 5 , and is in fact an instance of the Lentfert's

5 The algorithm was originally due to Tajibnapsis [Taj77]. Tajibnapsis' algorithm is however not
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program MinDist

init true

begin

do forever

for all a 2 V do

for all b 2 V do

if b = a then d:a:b := 0 else d:a:b := minfd:a:b0 + 1 j b0 2 N:bg
end

J

Figure 2.2: The MinDist algorithm

FSA algorithm. Although the algorithm only computes minimal distances, it can easily
be extended to also compute minimal paths (this will be discussed in Chapter 6).

Notice that the program has an initial condition true, which means that it will work
correctly no matter in which state it is started. Consequently, if during its execution an
external agent interferes with it and tampers with the values of d, we can consider this
as if the program is re-started in a new initial state. Since the program works correctly
regardless its initial state, it will also do so in this new situation. In addition, once all
d:a:b's become equal to the actual minimal distances, the situation will be maintained
forever (or until the next interference by the environment). Such properties are called
self-stabilizing properties and are clearly very useful.

Let P ` p  q mean that if p holds somewhere during an execution of P then
eventually q will hold and remain to hold forever. Let Dist:a:b denote the actual minimal
distance between a and b. We can use  to express the self-stabilizing property of
MinDist:

MinDist̀ true (8a; b : a; b 2 V : d:a:b = Dist:a:b) (2.1.1)

The speci�cation states that the program MinDist must eventually establish (8a; b :
a; b 2 V : d:a:b = Dist:a:b). We will not be able to prove this directly. We can however
break the total progress into smaller progress-steps. Induction is usually required to
combine these steps into the speci�ed progress property. This is not always easy. For
example naively applying an induction to the values of d:a:b does not work because
these values can increase or decrease during execution 6 . Look again at the Figure
2.1. The number printed above a node i, i 2 fa; b; c; dg, denotes the initial value of
d:a:i. Note that the value of d:a:a will decrease whereas the value of d:a:b and d:a:c

will increase. Even an already correct value can temporarily be made incorrect. For
example d:a:d initially contains a correct value. However, if the process responsible for
maintaining d:a:d is executed �rst it will assign 1 to d:a:d, which is not the correct �nal
value.

self-stabilizing.
6 Had we restricted d:a:b's to initially have the value of1, it would have been easier to prove (2.1.1).



Page 14 Chapter 2. MOTIVATION

Indeed, induction is an important technique. In fact, self-stabilizing programs often
require complicated inductive proofs (for example as in [CYH91, Len93]). In Chapter
5 we will discuss some inductive decomposition principles which we have found useful.
Examples will be given. Through the examples we want to illustrate how various
ideas are translated in an as natural as possible way, from the informal to the formal
level. Emphasis is also given to the calculation style. As has been remarked, the
combination of elegance and clarity in proofs has a direct consequence on the amount
of e�ort required to mechanically verify them.

2.2 Compositionality

Another topic we want to address is compositionality. Consider again the program
MinDist. We can implement it as a distributed program consisting of processesMinDist:a

for all a 2 V where each MinDist:a maintains the variables d:a:b for all b 2 V . Even the
process MinDist:a can be implemented as a distributed program consisting of processes
MinDist:a:b, for all b 2 V where each process MinDist:a:b does:

do forever

if b = a then d:a:b := 0 else d:a:b := minfd:a:b0 + 1jb0 2 N:bg (2.2.1)

It would be nice if we could decompose a global speci�cation such as speci�cation
(2.1.1) into speci�cations of component programs. This would enable us to design each
component in isolation. To be able to do this kind of decomposition we need laws of
the form:

(P sat spec1) ^ (Q sat spec2)

P 
Q sat (spec1� spec2)
(2.2.2)

where P and Q are programs, 
 is some kind of program composition, and spec1 and
spec2 are speci�cations. Such properties are called compositional. It enables us to split
the speci�cation of P 
 Q into the speci�cations of P and Q. In particular, we are
interested in the case where 
 is some form of parallel composition.

There is another advantage of having compositional properties. It may be the case
that the separation of spec1�spec2 into spec1 and spec2 using (2.2.2) yields expressions
that are more complicated and are, basically, harder to prove. Still, we just have to
verify spec1 against P alone, instead of against both P and Q. The same thing holds
for spec2. For su�ciently large P and Q the application of (2.2.2) often reduces the
amount of proof obligations signi�cantly.

An important property of any program is its progress. However, not much is known
about the compositionality (with respect to parallel composition) of progress proper-
ties. It has been recognized that much can be concluded by just looking at which
components read or write to which variables. Still, the matter seems to be not well
understood. More precision is required for better understanding. Some formal theory
about variables, how mundane it may sound, needs to be developed.
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Let us now consider the following example. Let P` p 7! q mean that if p holds
during an execution of the program P then eventually q will hold. So, 7! describes
progress.

Let a; b, and c be boolean variables. Suppose now P` a 7! c holds. The property
does not refer to b, so we may expect that if we put P in parallel with Q de�ned below
then the progress will be preserved.

Q: do forever b := :b

However, even though the expression P` a 7! c does not refer to b, it may happen that
the progress actually depends on b, for example if P is the following program:

P : do forever

begin

if a then b := true else skip;

if b then c := true else skip

end

In this case, Q will destroy the progress a 7! c. Still, if we put P in parallel with
Q0 which does nothing to a and c and only writes to b under the condition, say, C then
we can conclude that the composite program will have the property a ^ :C 7! c _ C
7 . That is, if a ^ :C holds during any execution of P in parallel with Q0, then Q0

cannot modify b as long as :C holds, and then eventually c will hold by the actions of
P . However, it is possible that P itself may set C to true, which explains the second
disjunct in a ^ :C 7! c _ C.

The examples suggests that useful results can be drawn by recording the set of
variables upon which a progress property depends. In this thesis we will take a less
radical approach. We observe that the only part of a program that is ever in
uenced
by its own actions is its writable part. We will therefore split a progress speci�cation
in two parts. The �rst part, the actual progress part, describes progress made on the
write variables (and those variables only) of a program. The second part, the so-called
J -part, describes the state of the other variables (consequently, the J -part is 'stable'
during any (isolated) execution of the program). Especially interesting results can be
obtained for programs that are write-disjoint. In this case the J -part of a speci�cation
of P also acts as a speci�cation for the other programs which P is composed with.

Two programs are said to be write-disjoint if their sets of write variables are disjoint.
For example the programs MinDist:a:b in (2.2.1) are pair-wise write-disjoint.

Let J P` p 7! q mean: (1) p 7! q is a progress property of P through its writable
part, and (2) the predicate J describes the state of the variables not writable by P

and in addition J also fully describes the dependency of p 7! q on these variables. Let
P and Q be two write-disjoint programs such that J P ` p 7! q holds. Since P and
Q are write-disjoint, Q cannot write to P 's write variables. Consequently, J also fully
describes the dependency of p 7! q on Q, and hence if Q cannot destroy J neither can it

7 In fact, this is an instantiation of the Singh Law [Sin89].
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Figure 2.3: Instances of the write-disjoint composition.

destroy p 7! q. This property is called transparency. As we will see later, transparency
turns out to be an important property in composing programs.

Let wP denote the set of all write variables of P . Let P �Q mean that P and Q

are write-disjoint:

P �Q = (wP \wQ = �) (2.2.3)

Let P []Q denote the parallel composition of the programs P and Q. By this we
simply mean that we put P and Q side by side and execute them concurrently. How
the two programs communicate is not relevant at this point. If P �Q holds, then P []Q
is called the write-disjoint composition of P and Q.

The transparency of progress properties mentioned earlier can be expressed by the
following law:

(J P` p 7! q) ^ 00Q cannot destroy J00

J P []Q` p 7! q
(2.2.4)

Note that the law has the form of (2.2.2). Using the law, we can assign the task of
establishing a progress property, like p 7! q, to a write-disjoint component. A formal
treatment of this kind of laws will be given in Section 4.8.

Composition of write-disjoint programs occurs frequently in practice (as in the
program MinDist, for example). See Figure 2.3. Diagram (a) shows two programs
in parallel, not interfering with each other. Diagram (b) shows two programs in a
so-called fork construction, in which they share the same input variables, but have
no common write variables. Diagram (c) shows two programs in a so-called layering
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construction. The program Q on the left is called the lower layer, which 'sends its
output' to the the upper layer P . Layering |also called collateral composition| has
been recognized by Herman [Her91] and Arora [Aro92] as an important technique for
combining self-stabilizing programs. Diagram (d) shows how 'outputs' can be fed back
in a write disjoint composition. Finally, diagram (e) shows a more complicated example
of a network of write disjoint programs.

Communication through channels can also be modelled by write-disjoint composi-
tion. Consider the following programs sender and receiver:

prog sender

read x; a!
write x; a!
init a! = []
do forever

begin

x := "generate a new datum" ;

a! := x; a!
end

prog receiver

read y; a!; a#
write y; a#
init (a! = []) ^ (a# = 0)
do forever

begin

if a# < `:(a!)
then y; a# := a![a#]; a# + 1 ;

"process the new datum in y"

end

The sender and receiver are connected by an asynchronous channel a. The channel is
modelled by a history variable a!, recording all messages sent through a. The progress
of the receiver is recorded by the variable a# in such a way that the pre�x a![0 : : : a#)
contains all the messages in a! which have been received by receiver. Note that sender
and receiver are write disjoint.

2.3 Hierarchical FSA Algorithm

We have mentioned that as a test case we want to mechanically verify Lentfert's FSA
algorithm. An instance of the algorithm, shown in Figure 2.2, self-stabilizingly com-
putes the minimal distance between any pair of nodes in an ordinary network.

We take up two challenges. First, we want to generalize the notion of 'minimal dis-
tance', and second, we want to consider the hierarchical version of the FSA algorithm.
In this section we want to bring up some aspects of these challenges in order to give
some insight to the reader about the nature of the problem.

The minimal distance between two nodes a and b (denoted by Dist:a:b) in a con-
nected network (V;N) can be characterized by the following equation:

(Dist:a:a = 0) ^ (a 6= b) (Dist:a:b = minfDist:a:b0 + 1 j b0 2 N:bg)) (2.3.1)

The assumption here is that the 'distance' of going between two linked nodes a

and b (that is, b 2 N:a) is 1. This can be generalized by allowing the distance of two
connected nodes (a; b) to be some natural number, called the weight of the link (a; b).
This can be abstracted by a function w : V!V!N such that w:a:b returns the weight
of (a; b). This means that the function +1 in equation (2.3.1) is to be replaced by
+w:b0:b.
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Figure 2.4: South East Asia hierarchically divided network.

Further generalization can be made by replacing +w:b:b0 with an arbitrary function
addW:b0:b, min by the greatest lower bound operator u of some lattice, and 0 with the
bottom element of the lattice 8 . So, equation (2.3.1) is now generalized to:

(�:a:a = ?) ^ (a 6= b) (�:a:b = ufaddW:b0:b:(�:a:b0) j b0 2 N:bg)) (2.3.2)

Of course the choice of u and addW cannot be arbitrary. We are interested in the
conditions under which � can be computed by Lentfert's FSA algorithm.

An application of (2.3.2) is to de�ne the notion of hierarchical distance. First we
have to explain what a hierarchical network is. An example of a hierarchical network

is given in Figure 2.4. It displays an ordinary network with Darius, Sam, Flips, : : :

as nodes, connected to each other. The reader can think that these nodes represent
real computers or computer users, connected by (physical) communication links. A
hierarchical network is an ordinary network divided into domains. For example, Flips
and Edu form the domain Tomato Co., and the domain Tomato Co. and GM Co. form
a larger domain Indonesia. A domain represents a local network of computers. In
addition, the domains form a tree-hierarchy, as shown in Figure 2.5. The domains
have levels: the level of a root domain is 0, the level of a non-root domain A is the
level of its father plus 1. Hierarchical division is very natural and occurs frequently in
practice. O�ces are hierarchically divided, governments are hierarchically divided, our
inter-connected networks are hierarchically divided. Such a division is natural because
it is our way to systematically group objects together.

8 Alternatively, one can also generalize the problem using a regular algebra as in [BEvG94]
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Hierarchical division is also introduced so that we can hide information. One may
not want to know the exact geography of Indonesia, but may be satis�ed with the
knowledge that Indonesia lays in South East Asia and is a neighbor of Malaysia. If the
network re
ects an actual network of computers, a computer sending mail to Flips in
Indonesia only needs to know how to send it to some node in Indonesia. It is then up
the Indonesia's national network to deliver it to Flips. Indeed, if the network is very
large, such as the world-wide Internet network, we may not want to store complete
information about the whole network locally in each node. Instead, each node stores
only information of visible domains. The exact meaning of 'visible' is unimportant
for now, but the idea is: a domain may be visible, but not its interior. One of the
consequences is that things have to be reasoned about at the level of domains instead
of nodes.

In an ordinary network (V;N) a node b0 is called a neighbor of b if b0 2 N:b. This
network at the node level re
ects the physical network. It also de�nes a network at
the domain level by de�ning a domain B0 to be a neighbor of a domain B, denoted
by B0 2 N :B, if there exists a node b0 inside B0 and a node b inside B such that
b0 2 N:b. Let say now we have some notion of visibility de�ned on the set of domains.
Let B0

x B denote B 0 is visible from B. The idea is to restrict N with this visibility
relation. If we de�neN 0:B = N :B\fB0 j B0

x Bg, the notion of minimal distance can
be extended from the node level to the domain level by generalizing equation (2.3.2)
to:

(�:A:A = ?) ^ (A 6= B ) (�:A:B = ufaddW:B0:B:(�:A:B0) j B0 2 N 0:Bg)) (2.3.3)

Note that by de�nition of N 0, to compute �:A:B we only need �:A:B 0 of all neigh-
boring (by N ) and visible domains B0!

In [Len93] it is proposed to de�ne the minimum hierarchical distance such that the
cost, or 'distance' of going from a domain B0 to a neighboring domain B1 is always
higher than the cost of going to B2 if the level of B1 is lower than the level of B2. This
can be achieved by de�ning distances as vectors, and using the lexicographic ordering
to de�ne the u used in the equation (2.3.3). A proper instantiation of addW can be
chosen accordingly.

This would mean that results on the minimal distance algorithm for ordinary net-
works can be extended to apply to its hierarchical version. And of course, we also hope
that the same things can be done to the FSA algorithm in general. Still, we have to
take into account that a domain is not a single, non-divisible entity as a node is. It
has sub-domains and nodes. A computation at the domain level will therefore have to
be mapped to the nodes. All these aspects will be exposed in detail in Chapter 7.

2.4 Summary

We have explained what a hierarchical network is and motivated the practical interest
for such a network. We have given an instance of the FSA algorithm, namely the
minimal distance algorithm, we have explained what it does, and motivated how it
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Figure 2.5: The hierarchy of the domains within South East Asia.

can be generalized to handle a hierarchical network. We have mentioned the self-
stabilizing property of the minimal distance algorithm, and motivated the importance
of compositionality. In the rest of Part I we are going to:

i. introduce a programming logic in which we can reason about self-stabilizing and
distributed programs.

ii. introduce various calculation laws to facilitate the design and veri�cation of dis-
tributed algorithms.

iii. investigate the compositionality of self-stabilization.

iv. present examples of inductive decompositions.

v. discuss the veri�cation of Lentfert's FSA algorithm.



Past the point of no return,

No backward glances.

The games we played 'till now

Are at the end.

Past all thought of 'if' or 'when'.

No use resisting: a burden the thought,

And let the dream descend.

|the Phantom

Chapter 3

The Basics

T
HIS chapter explains the meaning of some most primitive concepts of program-
ming. The concepts mostly deal with objects at the level of statements and
lower. Most textbooks about formal methods are rather implicit in addressing

these concepts, since they are thought to be well understood. However, in Chapter
4 we want to study conditions required to preserve progress properties under parallel
composition. To thoroughly study the problem it is required that we are being explicit
at the low level, especially with regard to various accessibility modes of variables, as
motivated in Section 2.2. A minimal theory about accessibility needs to be developed.
There is another reason for being explicit at the lowest level: it makes embedding the
programming logic presented in Chapter 4 into the interactive theorem prover HOL
straightforward.

We will explain the mathematical objects representing program-states, statements,
and state-predicates. Some standard statements, operators on statements, a notion
of statement-re�nement, and Hoare triple speci�cations will be de�ned. It will also
be de�ned what it means for a statement to have write and read access to a variable.
In denotational semantics [Sch86] the meaning of a programming language is given in
terms of interpretation functions that map constructs in the language to some inter-
pretation domains. Here, we only present our interpretation domains 1 . Programming
constructs will be explained in terms of these domains. No language will be explicitly
given and we rely instead on 'commonly' accepted notations 2 . Confusion does some-
times arise. To help the reader, we will, throughout this thesis, explicitly write down
the meaning of a potentially ambiguous expression.

1 It has been said that our goal is to be able to mechanically verify distributed programs using the
interactive theorem prover HOL. To this end the programming logic presented in Chapter 4 will be
embedded in HOL. The logic that underlies HOL, its notational style, and the availability of basic
libraries greatly in
uence the choice of the interpretation domains.
2 In HOL, we usually encode programs directly in terms of the interpretation domains. A program-
ming language can always be de�ned on top of the interpretation domains. In fact, we include a
minimal language in our HOL package.
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program Fizb

vars a; x; y

do forever

begin

if a = 0 then x := 1 else skip ;
if a 6= 0 then x := 1 else skip ;
if x 6= 0 then y; x := y + 1; 0 else skip

end

J

Figure 3.1: The program Fizb

3.1 States, Variables, and Values

A program has variables. Their values vary during the program's execution. The
values of the program's variables at a given moment re
ect the program's state at that
moment. Therefore, program-states are usually represented by functions from variables
to values. We will assume a universe Var of identi�ers, large enough to represent all
program variables, and a universe Val of all values these variables may take. So, any
variable of any program P is a member of Var.

Let P be a program and V be a set consisting of all variables of P . A state of P can
be represented by a function s 2 V!Val. The value of a variable v in state s is given by
s:v. However, since in HOL all functions are required to be total and since sub-typing
is not possible, we will represent a state of P by a total function s 2 Var!Val. The
value of a variable v outside V in a state s is irrelevant to P in the sense that it cannot
in
uence any execution of P and neither can any execution of P in
uence it. The set
of all program-states is denoted by State.

For example, consider the program Fizb in Figure 3.1. It has three variables a; x,
and y. A state of Fizb is for example s 2 Var!Val such that:

(s:a = 1) ^ (s:x = 1) ^ (s:y = 4) ^ (8v : v 62 fa; x; yg : s:v = 0) (3.1.1)

The value of the variable a in the state s is s:a, which is equal to 1. The value of any
variable outside fa; x; yg, hence the variable does not belong to Fizb, in the state s is
0, but this should not matter to Fizb.

For a function f 2 B!C, the projection or restriction of f to a set A, denoted by
f �A can be de�ned as a partial function of type B!C such that (f �A):x = f:x if
x 2 A \ B and else it is unde�ned. However, we want the projection of a state to be
a state again, which is a total function. For this purpose, a constant @ is introduced.
In HOL, all objects are typed. A type de�nes of course a set. The types in HOL
are all non-empty. All that is known about @ is that for any given (non-empty) type
A, @A exists and is a member of A. The constant @ can be thought as representing
'unde�nedness' in a partial function. Evaluating an 'unde�ned' value can be thought as
an error and therefore special calculation rules have to be added to handle such errors.
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We prefer to regard @ as an ordinary value, representing the set of 'uninteresting' but
otherwise valid values. This eliminates the need to introduce special rules to handle
'unde�nedness'.

Here is our de�nition of projection and some of its useful properties:

De�nition 3.1.1 Projection Pj DEF

For all f 2 A!B, V � A, and x 2 A:

(x 2 V ) (f �V ):x = f:x) ^ (x 62 V ) (f �V ):x = @)

Theorem 3.1.2 �Extension Pj EQ

(f �V = g �V ) = (8x : x 2 V : f:x = g:x)

Theorem 3.1.3 �Anti-monotonicity Pj EQ MONO

V � W ^ (f �W = g �W ) ) (f �V = g �V )

Theorem 3.1.4 �Composition

f �V �W = f �(V \W ) = f �W �V

Theorem 3.1.5 �Extension by [

(f �(V [W ) = g �(V [W )) = (f �V = g �V ) ^ (f �W = g �W )

Corollary 3.1.6

(f �� = g ��) ^ (f 2 A!B ) (f �A = f))
J

3.2 Actions

A program consists of statements, also called transitions, or actions. From now on we
will use the latter term. The execution of an action can bring the program to a new
state. An action can be non-deterministic. That is, given a state, there are several
possible new states which the action may result into. We model non-deterministic
actions by relations on State with the following interpretation. Let a 2 State!State!B
be an action. If a:s:t holds, it means that t is a possible new state, after executing a
in the state s. If t is the only new state related to s, then the action a is deterministic
at s and it will end in t if executed in s.

The set of all actions is denoted by Action. Here are some examples. The relation
a 2 State!State!B such that for x 2 Var:

a:s:t = ((t:x = s:x+ 1) _ (t:x = 0)) ^ (t�fxgc = s�fxgc)
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is an action that non-deterministically increases the value of x by 1 or assigns 0 to it.
It leaves other variables un-touched. The deterministic action

if a = 0 then x := 1 else skip

from the program Fizb can be represented by b 2 State!State!B such that:

b:s:t = ((s:a = 0)) (t:x = 1)) ^ ((s:a 6= 0)) (t:x = s:x)) ^ (t�fxgc = s�fxgc)

In general, assignments and conditionals can be de�ned as:

assign:x:e = (�s; t: (t:x = e:s) ^ (t�fxgc = s�fxgc)) (3.2.1)

if g then a else b = (�s; t: (g:s) a:s:t)^ (:g:s) b:s:t)) (3.2.2)

assign:x:e is usually denoted as x := e. Note that the 'expression' e has the type
State!Val and the 'boolean expression' g in the conditional has the type State!B .

Other examples are skip, miracle, and chaos:

De�nition 3.2.1 skip, miracle, and chaos SKIP, MIRA, CHAOS

skip = (�s; t: s = t)
miracle = (�s; t: false)
chaos = (�s; t: true)

J

The action skip does not change any variable. The action chaos is totally non-
deterministic, and is considered to be a very bad action; that is, we do not want to
have an action that behaves like chaos. Another kind of actions that we do not want
is non-terminating actions. With our choice of representation for actions, we cannot
express non-termination. We can still say though, that a non-terminating action will
be at least as bad as chaos. 3 4 . An action is therefore said to be potentially non-
terminating if it behaves like chaos if executed in some states. The action miracle

forbids any transition. It may not even remain in the old state. Such an action is
considered to be un-implementable. An action is said to be potentially miraculous if it
behaves like miracle if executed in some states. It is called non-miraculous if it is not
potentially miraculous. In this thesis non-miraculous actions are called always enabled

because such an action is always ready to make a transition (even though it may be a
skip transition).

De�nition 3.2.2 Always Enabled Action ALWAYS ENABLED

�Ena = (8s :: (9t :: a:s:t))
J

3 So, by trying to get rid of chaos, we will automatically get rid of non-termination.
4 In any case, this should not matter since later, beginning from Chapter 4, all actions considered
will be assumed to be terminating.
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An action a is re�ned by, or implemented by, another action b, denoted by a v b,
if a can do any transition that b can do. In other words, a is less deterministic than b.
The ordering v corresponds to the reverse of the standard sub-relation ordering, and
de�nes a lattice on Action. The corresponding least upper bound and greatest lower
bound operators will be denoted by u and t.

De�nition 3.2.3 Refinement aREF

a v b = (8s; t :: b:s:t) a:s:t)

De�nition 3.2.4 Synchronization Operator rINTER

a u b = (�s; t: a:s:t^ b:s:t)

De�nition 3.2.5 Choice Operator rUNION

a t b = (�s; t: a:s:t_ b:s:t)
J

chaos is the worst of all actions: it can be re�ned by any other action. On the
other extreme, miracle re�nes any other action, which is why it is called "miracle", and
why a potentially miraculous action is considered un-implementable. The operator u is
also called synchronization operator because it can be used to model a concurrent and
synchronized execution of two actions: a transition can be made only if both actions
agree on it. The operator reduces non-determinism but may introduce miracles. The
operator t is called choice operator because a t b may behave either as a or b when
executed in a state s. The operator adds non-determinism, and may eliminate miracles.

We can lift the projection � to the action level as follows:

De�nition 3.2.6 � on Action a Pj DEF

(a�V ):s:t = a:(s�V ):(t�V )
J

For example, one can show that restricting the deterministic assignment x := x+1
to fxg yields a non-deterministic action (�s; t: t:x = s:x+1). Restricting an action does
not generally yield something that makes sense. For example, let x and y be distinct
variables. Restricting y := x+y+1 to fxg yields (�s; t: (@ = s:x+@+1) ^ (s�fxg =
t�fxg)), which is equal to miracle.

Restricting chaos and miracle yields chaos and miracle again. What is perhaps more
interesting is skip�V . It is an action that preserves the values of all variables in V , but
for the rest it behaves like chaos.

Using the above operators on Action we can, for example, rewrite (3.2.1) to:

assign:x:e = (�s; t: t:x = e:s) u (skip�fxgc) (3.2.3)
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A simultaneous assignment can be de�ned as:

assign2:(x; y):(e1; e2)

= (3.2.4)

(�s; t: t:x = e1:s) u (�s; t: t:y = e2:s) u (skip�fx; ygc)

3.2.1 Ignored and Invisible Variables

Parallel programs interact through shared variables, that is, variables which are written
by one program, and read by another program. These variables play a central role in
our study of parallel composition, presented in Chapter 4. Intuitively, we know what
'shared', 'read', and 'write' variables are. However, careful study is called for and
precise de�nitions, rather than some intuitive notion, of access-modes are required. It
is possible to deduce the access-mode of a variable based on syntactic information.
For example, by 'looking into its code' we conclude that x and y are the only write
variables of the program Fizb in Figure 3.1. Formalizing this would require us to detail
the semantics of the programming language being used and falls beyond the scope of
this thesis. What we will provide are de�nitions of variables' access-modes in terms of
our semantic domains, which are State and Action.

A set of variables is V ignored by an action a, denoted by V 8 a, if executing the
action in any state does not change the values of these variables. Variables in V c may

however be written by a. The smallest set of variables which may be written by a is
the set of variables which are actually written by a. One can show that V is ignored
by a if and only if a re�nes skip�V , which is an action that preserves the values of the
variables in V , but for the rest is totally non-deterministic. Consequently, au (skip�V )
always ignores V .

De�nition 3.2.7 Ignored-by IG BY DEF

V 8 a = (8s; t :: a:s:t) (s�V = t�V ))

Theorem 3.2.8 IG BY ADEF

V 8 a = (skip�V ) v a
J

The notion of ignored-by will be used to express the writability of a variable by a
given action. We will now de�ne its counterpart, used to express readability, for which
we turn to the diagram in Figure 3.2. A set of variables V is said to be invisible to
a, denoted by V 9 a, if |as suggested by the commuting diagram| the e�ect of
changing the values of the variables in V (by executing the action skip � V c) in any
state s and then followed by the execution of a can be achieved by �rst executing a
and then skip �V c. In other words, changing the values of the variables in V will not
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skip�V c
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J

Figure 3.2: The invisibility diagram.

in
uence what a can do to the variables outside V . In formula, we can de�ne this
notion of invisibility as follows (this de�nition is due to R. Udink):

V 9 a = (skip�V c); a v a; (skip�V c) (3.2.5)

where ";" denotes the sequential composition of relations:

(a; b):s:t = (9s0 :: a:s:s0 ^ b:s0:t) (3.2.6)

Using the above de�nition, it is possible for an invisible variable to be written. We
will insist a slightly stronger de�nition (because we �nd it easier for certain proofs) by
requiring that if an invisible variable x is written by an action a then a should also be
able to 'ignore' it |that is, to behave like skip with respect to x. More precisely:

V 9 a = (skip�V c); (a u skip�V ) v a; (skip�V c) (3.2.7)

Typically though, a write variable of a program is also a read variable. This is the
same, as will be explained latter, as saying that an invisible variable is also ignored. If
we assume this (we will do so latter in Chapter 4) then the above two de�nitions are
equal. There are several other ways to formulate the notion of invisibility. Below is
the de�nition we use in our HOL package. It is equivalent with (3.2.7) above.

De�nition 3.2.9 Invisible-to INVI DEF

V 9 a

=
(8s; t; s0; t0 :: (s�V c = s0 �V c) ^ (t�V c = t0 �V c)^ (s0 �V = t0 �V ) ^ a:s:t ) a:s0:t0)

J

Another characterization of 9 is given below. It is perhaps less intuitive but useful
in later calculations.

Theorem 3.2.10 INVI ADEF

V 9 a = (a v (a�V c) u (skip�V )) ^ (a�V c v a)
I
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Notice that as corollaries, V is always invisible to a�V c and skip�V . Below we give
the proof of the theorem above.
Proof:
First, we prove the ( side. Assume a v (a�V c)u (skip�V ) and a�V c v a. We derive:

(s�V c = s0 �V c) ^ (t�V c = t0 �V c) ^ (s0 �V = t0 �V ) ^ a:s:t

) f a re�nes a�V c g

(s�V c = s0 �V c) ^ (t�V c = t0 �V c) ^ (s0 �V = t0 �V ) ^ a:(s�V c):(t�V c)

) f simple calculation g

(s0 �V = t0 �V ) ^ a:(s0 �V c):(t0 �V c)

) f (a�V c) u (skip�V ) re�nes a g

a:s0:t0

and hence we conclude that V 9 a holds. For ) side, assume V 9 a. First we prove
a v (a�V c) u (skip�V ), and then a�V c v a. We derive:

a:(s�V c):(t�V c) ^ (s�V = t�V )

= f �Composition23 g

(s�V c �V c = s�V c) ^ (t�V c �V c = t�V c) ^ (s�V = t�V ) ^ a:(s�V c):(t�V c)

) f V 9 a g

a:s:t

and hence we conclude that (a�V c) u (skip�V ) re�nes a. For a�V c v a we derive:

a:s:t

= f �Composition23 g

(s�V c = s�V c �V c) ^ (t�V c = t�V c �V c) ^ (s�V c �V = t�V c �V ) ^ a:s:t

) f V 9 a g

a:(s�V c):(t�V c)

and hence we conclude that a re�nes a�V c.
N

As an example, consider an action a = "if z then x := x+y else skip". Assume that
v; x; y, and z are all distinct variables. The action writes to x, and reads from x; y, and
z. We have: fy; zg 8 a and fxgc 8 a; but not: fx; yg 8 a. We have fvg 9 a and
fx; y; zgc9 a; but not: fv; xg9 a.
8 and 9 satisfy the following properties:

Theorem 3.2.11 8 Anti-monotonicity IG BY MONO

(V � W ) ^ (W 8 a) ) (V 8 a)

Theorem 3.2.12 9 Anti-monotonicity INVI MONO

(V � W ) ^ (W 9 a) ^ (W 8 a) ) (V 8 a)
J
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Notation Meaning HOL-de�nition

true (�s: true) TT DEF

false (�s: false) FF DEF

:p (�s: :p) pNOT DEF

p) q (�s: p:s) q:s) pIMP DEF

p ^ q (�s: p:s ^ q:s) pAND DEF

p _ q (�s: p:s _ q:s) pAND DEF

(8i :W:i : P:i) (�s: (8i :W:i : P:i:s)) RES qAND

(9i :W:i : P:i) (�s: (9i :W:i : P:i:s)) RES qOR

Note: p and q are predicates over A. The dummy s ranges therefore over A.
J

Table 3.1: Overloading of the boolean operators.

3.3 State-predicates

A predicate over a set A is a function of type A!B . In particular, we are interested in
predicates over State. Such a predicate is called a state-predicate. A state-predicate is
used to describe a set of states satisfying a certain property; so is:

(�s: (s:x = s:y + 1) ^ n < s:y)

a state-predicate describing all states s in which the value of x is the value of y plus 1
and the value of y is greater than n. In practice, the above state-predicate is usually
written as:

(x = y + 1) ^ n < y

So, symbols are being overloaded. Other examples of such overloading are:

"y < x", "p ^ q", or "(9i : P:i : x:i = 0)"

which actually denote:

"(�s: s:y < s:x)", "(�s: p:s ^ q:s)", and "(�s: (9i : P:i : s:(x:i) = 0))"

Usually, this kind of overloading does not cause confusion. Later however, there will
be occasions where a careful distinction is called for. It will be helpful if the reader is
well aware of this double interpretation. To emphasize this, Table 3.1 shows the 'lifted'
meaning of the boolean operators. In this thesis, we assume this kind of overloading
in all non-HOL formulas |that is, formulas not appearing in the type-writer font.
Whenever the meaning of a predicate expression is likely to confuse the reader we
will also give the expanded expression, using � notation as above. In HOL however,
as overloading is not possible, separate symbols have to be used to denote the lifted
operators.
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The set of all state-predicates is denoted with Pred. A state-predicate p is said to
hold in a state s if p:s holds. A predicate p over A is said to hold everywhere, denoted
by [p], if p:s holds for all s 2 A.

De�nition 3.3.1 Everywhere Operator pSEQ DEF

[p] = (8s :: p:s)
J

Consider again the program Fizb in Figure 3.1. The variables a; x; y are the only
variables of Fizb. A predicate p 2 (fa; x; yg!Val)!B is a predicate that is 'local' to the
program Fizb because it only contains information on the values of a; x, and y. Such
a local predicate is useful, for example, in a trivial case, because its validity in a given
state cannot be in
uenced by other programs that do not write to fa; x; yg. However,
since introducing a predicate of this type would require a sub-typing ability in HOL,
which is not available, we have to encode them with predicates over State.

A state-predicate p is said to be con�ned by a set of variables V , denoted by
p 2 Pred:V , if p does not restrict the value of any variable outside V (unless p is
already empty):

De�nition 3.3.2 Predicate Confinement CONF DEF

p 2 Pred:V = (8s; t :: (s�V = t�V )) (p:s = p:t))
J

For example, x + 1 < y is con�ned by fx; yg but not by fxg. Notice that if p
is con�ned by V , p does not contain useful information about variables outside V .
Indeed, p 2 Pred:V is how we encode p 2 (V!Val)!B .

true and false are con�ned by any set. Con�nement is preserved by any predicate
operator in Table 3.1. So, for example, if p; q 2 Pred:V then p ^ q 2 Pred:V . As a rule
of thumb, any predicate p is con�ned by free:p, that is, the set of variables occurring
free in p:

p 2 Pred:(free:p) (3.3.1)

Note however, that free:p is not necessarily the smallest set which con�nes p. For
example, � con�nes "0 = x _ 0 6= x". Another useful property is monotonicity:

Theorem 3.3.3 Confinement Monotonicity CONF MONO

V � W ) Pred:V � Pred:W
J

Projection can be lifted to the predicate level:

p�V = (�s: p:(s�V )) (3.3.2)
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Projection distributes over predicate-operators in Table 3.1. So, for example (p _ q) �
V = (p � V ) _ (q � V ). Just as in the case of actions, restricting a predicate does in
general not yield something that makes sense. For example, given that x and y are
distinct variables, restricting (�s: 0 < s:x) to fyg yields (�s: 0 < @) the truth of which
at any given state cannot be proved or contradicted since there is nothing we know
about @, except that it exists. Still, restricting (�s: 0 < s:x) to fxg yields (�s: 0 < s:x)
again. In fact, one can show that p = p�V characterizes con�nement by V :

p 2 Pred:V = (p = p�V ) (3.3.3)

3.4 Speci�cation

The e�ect of an action can be speci�ed by a Hoare triple. If p and q are state-predicates
and a is an action, the triple fpg a fqgmeans that if a is executed in any state satisfying
p, it will end in a state satisfying q.

De�nition 3.4.1 Hoare Triple HOA DEF

fpg a fqg = (8s; t :: p:s ^ a:s:t) q:t)
J

Consequently, miracle satis�es fpg miracle fqg for all state-predicates p and q,
whereas chaos only satis�es fpg chaos ftrueg and ffalseg chaos fqg. Notice that if
a re�nes b, that is, b v a, then any Hoare triple satis�ed by b is also satis�ed by a.
Basic laws for Hoare triples, such as pre-condition strengthening and post-condition
weakening, are well known. See for example [Dij76, Gri81].

An action, if restricted to a set of variables V , cannot be in
uenced by any variable
outside V . That is, if a satis�es fpg a fqg, then a � V satis�es fp � V g a � V fq � V g.
Consequently, if p and q are con�ned by V , then a�V also satis�es fpg a�V fqg.

Theorem 3.4.2 HOA Pj MAP

fpg a fqg

fp�V g a�V fq �V g

Corollary 3.4.3 HOA INVI

V c
9 a ^ fpg a fqg

fp�V g a fq �V g
I

The proof of Corollary 3.4.3 is as follows:
Proof:

fp�V g a fq �V g

( f property of re�nement g
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a�V v a ^ fp�V g a�V fq �V g

( f Theorem 3.4.2 g

a�V v a ^ fpg a fqg

( f Theorem 3.2.1027 g

V c
9 a ^ fpg a fqg

N

Sometimes actions are extended with a concurrent assignment to some fresh vari-
ables. This is done either to simplify a proof or as a part of some program transforma-
tion. If a is an action and b is an assignment to some fresh variables, we can encode the
concurrent extension of a with b by b; a. Recall that ";" is an action-level composition.
That is, b; a is considered to be a single atomic action rather than two separate ac-
tions which have to be executed in some order. Extending an action with a concurrent
assignment to some fresh variables 'preserves' the speci�cation of the action. In fact,
this is a corollary of the above theorems:

Corollary 3.4.4 Adding Fresh Variables HOA ADD FRESH

V 8 b ^ V c
9 a ^ fpg a fqg

fp�V g b; a fq �V g
I

In the above, the fact that b is an assignment to some variables which are not
referred to by a is expressed by V 8 b ^ V c

9 a. Notice that if both p and q are
con�ned by V then fpg b fqg is really preserved by a; b. The proof of the above is
given below.
Proof:

We will use the following well-known rule of action composition:

fpg a fqg ^ fqg a frg

fpg a frg
(3.4.1)

Now, we derive:

fp�V g b; a fq �V g

( f the above rule of action composition g

(fp�V g b fp�V g) ^ (fp�V g a fq �V g)

( f V 8 b, Theorem 3.2.826 g

(fp�V g (skip�V ) fp�V g) ^ (fp�V g a fq �V g)

( f Theorem 3.4.231 and Corollary 3.4.331 g

(fpg a fqg) ^ V c
9 a

N

Let a be an action and V be a set of variables such that a may write only to
variables in V . That is, V c

8 a holds. Let p be a state-predicate con�ned by a set of
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variables W . Suppose a is executed in a state satisfying p, and suppose in its execution
a does not change any variable in V \W . Then a will maintain p. The action a may
still change the values of the variables in V nW , but this does not destroy p since p is
con�ned by W , which means that p tolerates changes in the variables in W c.

Theorem 3.4.5 Action Wr Pred

V c
8 a ^ p 2 Pred:W

f(�s: s�U = f �U) ^ pg a f(�s: s�U = f �U)) pg
let U = V \W

I

Proof:

(s�U = f �U) ^ p:s ^ a:s:t ^ (t�U = f �U)

) f Theorem 3.2.826: V
c
8 a = skip �V c v a g

(s�U = f �U) ^ p:s ^ (s�V c = t�V c) ^ (t�U = f �U)

) f WnU � V c and �Anti-monotonicity23 g

(s�U = t�U) ^ p:s ^ (s�(WnU) = t�(WnU))

) f �Extension23 by [ g

(s�W = t�W ) ^ p:s

) f p 2 Pred:W , hence p = p�W g

p:t

N

The following corollary of the theorem above should be familiar to the reader. It
states that if p is con�ned by V and a does not write V , then a cannot destroy p.

Corollary 3.4.6 Action Wr Pred Cor

V 8 a ^ p 2 Pred:V

fpg a fpg
J

3.5 Summary

Just to provide the reader with an overview: we have in this chapter revealed how we
represent variables, program states, predicates, actions, and speci�cations. We have
discussed how the notion of read and write variables can be encoded. All these issues
are relevant to answer the question (which will be answered in the next chapter) as
to how we represent a program. In addition, many useful theorems presented in this
chapter will be used to derive various results regarding program transformation and
composition presented in the next chapter.



Page 34 Chapter 3. THE BASICS

3.6 Related Work

In Action Systems [Bac90] there exists also a notion of projection on states and predi-
cates, but the topic seems to receive little attention. In [Cho93] projection and coercion
of predicates are used to relate programs with di�erent state spaces. [dBKPJ93] exten-
sively discusses a semantics and proof rules for variable hiding (a hidden variable, also
called local variable, is a variable written by a program but is ignored by and invisible
to its environment). Introducing local variables is useful as progress made on local
variables cannot be in
uenced by other programs. In [UHK94] projection is used to
encode the concept of local predicates. Program properties based on local invariants
are de�ned and their preservation under parallel composition is studied.



"Thea! No! What are you doing?"

"I'm going to let the titans in."
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ared brightly,

The gate swung open : : :

{from Into the Labyrinth

Chapter 4

Programs and Their Properties

A brief review on the programming logic UNITY will be presented. Special attention will

be given to the issue of compositionality, that is, the ability to decompose a speci�cation

of a program into speci�cations of its components. A new progress operator which is more

compositional will be introduced, and a set of calculational laws for the new operator will

be provided.

4.1 Introduction

T
HE previous chapter introduced the basic building blocks which constitute a pro-
gram, namely variables and actions. In this chapter we will talk about programs
and their behavior. Basically, a program is only a collection of actions. During

its execution, the actions are executed in a certain order. It is however possible to en-
code the ordering in the actions themselves by adding program counters. In this sense,
a program is really a collection of actions, without any ordering. This way of viewing
programs is especially attractive if we consider a parallel execution of actions where
strict orderings begin to break down. In fact, a number of distributed programming
logics are based on this idea. Examples thereof are Action Systems [Bac90], Temporal
Logic of Action [Lam90], and UNITY [CM88].

Recall that we aim to verify the work of Lentfert [Len93] on a general, self-stabilizing,
and distributed algorithm to compute minimal distances in a hierarchical network.
Lentfert's work is based on the programming logic UNITY, which was chosen mainly
for its simplicity and its high level of abstraction. We will simply follow his choice.

Examples of programs derivation and veri�cation using UNITY are many. The
introductory book to UNITY [CM88] itself contains numerous examples, ranging from a
simple producer-consumer program, to a parallel garbage collection program. Realistic
problems have also been addressed. In [Sta93] Staskauskas derives an I/O sub-system
of an existing operating system, which is responsible for allocating I/O resources. In
[Piz92] Pizzarello used UNITY to correct an error found in a large operating system.
The fault had been corrected before, and veri�ed using the traditional approach of
testing and tracing [KB87]. It is interesting to note that the amount of work using
UNITY is small, compared to that of the traditional approach. A review of Pizzarello's
industrial experience on the use of UNITY can be found in [Piz91]. In [CKW+91]
Chakravarty and his colleagues developed a simulation of the di�usion and aggregation
of particles in a cement like porous media.



Page 36 Chapter 4. PROGRAMS AND THEIR PROPERTIES

In practice, many useful programs do not, in principle, terminate; some examples
are �le servers, routing programs in computer networks, and control systems in an air
plane. For such a program, its responses during its execution are far more important
than the state it ends up with when it eventually terminates. To specify such a program
we cannot therefore use Hoare triples as we did in Chapter 3. Two aspects are espe-
cially important: progress and safety. A progress property of a program expresses what
the program is expected to eventually realize. For example, if a message is sent through
a routing system, a progress property may state that eventually the message will be
delivered to its destination. A safety property, on the other hand, tells us what the
program should not do: for example, that the message is only to be delivered to its des-
tination, and not to any other computer. The two kinds of properties are not mutually
exclusive. For example, a safety property, stating that a computer in a network should
not either ignore an incoming message or discard it, implies that the computer should
either consume the message or re-route it to some neighbors. This states progress. In
UNITY there is an operator called unless to express safety properties, and two more
operators, ensures and leads-to, to express progress properties.

In [CM88] two kinds of program composition are discussed. In the �rst, programs
are composed by simply 'merging' them. This can be thought of as modelling paral-
lel composition. In the second, called super-position, actions may be extended with
concurrent assignments to fresh variables. Both will be discussed here, but in a quite
di�erent light than in [CM88]. In addition we will discuss program compositions in
which guards may be added. In the applications veri�ed in this thesis however, only
parallel composition is used.

Ideally, a program is developed hand in hand with its proof. One starts with a
speci�cation, which is re�ned, step by step using a set of rules, until an implementable
program is obtained. In sequential programming, one begins with an imaginary pro-
gram. In each development step, the program is re�ned by adding more details to it.
The original speci�cation is then reduced to speci�cations for the components of the
programs. Subsequently, each component can be developed in isolation. This kind
of hierarchical program decomposition is not an issue which is very well explored in
UNITY. Safety properties decompose nicely. Unfortunately, the same cannot be said
for progress properties, especially with respect to the parallel composition. A general
law to decompose progress is provided by Singh [Sin89]. Similar laws were also used
by Lentfert to decompose self-stabilization. An unpleasant discovery that was made
during our research was that these laws were all 
awed 1 . Fortunately, the 
aw was
not so serious that it bears no consequence to Lentfert's results. To facilitate the me-
chanical veri�cation of Lentfert's work, we have also re-written Lentfert's proofs as to
make them simpler and more intuitive. This is made possible by, among other things,
the Transparency Law (2.2.4). If the reader recalls the discussion in Section 2.2, the
law is used to assign the task of establishing a progress property to a write-disjoint

1 Partly, the discovery is due to the absolute rigor imposed by HOL. When a supposedly obvious
fact seems to be impossible to be proven in HOL, it is a good indication that we do not formulate the
fact correctly and completely.
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prog Fizban

read fa; x; yg
write fx; yg
init true

assign

if a = 0 then x := 1 else skip

[] if a 6= 0 then x := 1 else skip

[] if x 6= 0 then y; x := y + 1; 0 else skip

J

Figure 4.1: The program Fizban

component. For the purpose of this law, a new progress operator will be introduced.
Section 4.2 brie
y reviews the ideas behind UNITY. Section 4.3 discusses the stan-

dard UNITY operators to express behavior of a program. Various basic laws used to
reason about them are presented in Section 4.4. Section 4.5 introduces the new progress
operator mentioned above. Various laws about parallel composition will be discussed in
Section 4.7. Section 4.8 discusses the parallel composition of write-disjoint programs.
Section 4.9 brie
y discusses some other kinds of program composition. And �nally,
Section 4.10 brie
y discusses the soundness of UNITY with respect to its operational
semantics.

4.2 UNITY Programs

UNITY is a programming logic invented by Chandy and Misra in 1988 [CM88] for
reasoning about safety and progress behavior of distributed programs. Figure 4.1
displays an example. The precise syntax will be given later.

The read and write sections declare, respectively, the read and write variables of
the program 2 . The init section describes the assumed initial states of the program. In
the program Fizban in Figure 4.1, the initial condition is true, which means that the
program may start in any state. The assign section lists the actions of the programs,
separated by the [] symbol.

The actions in a UNITY program are assumed to be atomic. An execution of a
UNITY program is an in�nite and interleaved execution of its actions. In a fully parallel
system, each action may be thought of as being executed by a separate processor. To
make our reasoning independent from the relative speed of the processors, nothing
is said about when a particular action should be executed. Consequently, there is no
ordering imposed on the execution of the actions. There is a fairness condition though:

2 When declaring a variable one may also want to declare its type (instead of assuming all variables
to be of type, say, N). UNITY does not disallow such a declaration, but its logic as in [CM88] does not
include laws to deal with subtleties which may arise from typing the variables. For example, nothing
is said about the e�ect of assigning the number 10 to a B valued variable. Of course it is possible to
extend UNITY with a type theory, but this issue is beyond the scope of this thesis.
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in a UNITY execution, which is in�nite, each action must be executed in�nitely often

(and hence cannot be ignored forever).
For example, by now the reader should be able to guess that in the program Fizban,

eventually x = 0 holds and that if M = y, then eventuallyM < y holds.
Notice that the program Fizban resembles the program Fizb in Figure 3.122, which

has the following body:

do forever
begin

if a = 0 then x := 1 else skip ;
if a 6= 0 then x := 1 else skip ;
if x 6= 0 then y; x := y + 1; 0 else skip
end

In fact, Fizb is a sequential implementation of Fizban. Indeed, as far as UNITY con-
cerns, the actions can be implemented sequentially, fully parallel, or anything in be-
tween, as long as the atomicity and the fairness conditions of UNITY are being met.
Perhaps, the best way to formulate the UNITY's philosophy is as worded by Chandy
and Misra in [CM88]:

A UNITY program describes what should be done in the sense that it speci�es
the initial state and the state transformations (i.e., the assignments). A UNITY
program does not specify precisely when an assignment should be executed : : :

Neither does a UNITY program specify where (i.e., on which processor in a
multiprocessor system) an assignment is to be executed, nor to which process an
assignment belongs.

That is, in UNITY one is encouraged to concentrate on the 'real' problem, and not to
worry about the actions ordering and allocation, as such are considered to be imple-
mentation issues.

Despite its simple view, UNITY has a relatively powerful logic. The wide range
of applications considered in [CM88] illustrates this fact quite well. Still, to facilitate
programming, more structuring methods would be appreciated. An example thereof is
sequential composition of actions. Structuring is an issue which deserves more investi-
gation in UNITY.

By now the reader should have guessed that a UNITY program P can be represented
by a quadruple (A; J; Vr; Vw) where A � Action is a set consisting of the actions of P ,
J 2 Pred is a predicate describing the possible initial states of P , and Vr; Vw 2 Var

are sets consisting of respectively read and write variables of P . The set of all such
structures will be denoted by Uprog. So, all UNITY programs will be a member of this
set, although, as will be made clear later, the converse is not necessarily true.

To access each component of an Uprog object, the destructors a, ini, r, and w are
introduced. They satisfy the following property:
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Theorem 4.2.1 Uprog Destructors ID UPROG

P 2 Uprog = (P = (aP; iniP; rP;wP ))
J

In addition, the input variables of P , that is, the variables read by P but not written
by it, is denoted by iP :

iP = rPnwP (4.2.1)

4.2.1 The Programming Language

Below is the syntax of UNITY programs that is used in this thesis. The syntax deviates
slightly from the one in [CM88] 3 .

hUnity Programi ::= prog hname of programi
read hset of variablesi
write hset of variablesi
init hpredicatei
assignhactionsi

actions is a list of actions separated by []. An action is either a single action or a set of
indexed actions.

hactionsi ::= hactioni j hactioni [] hactionsi
hactioni ::= hsingle actioni j ([]i : i 2 V : hactionsii)

A single action is either a simple assignment such as x := x + 1 or a guarded action.
A simple assignment can simultaneously assign to several variables. An example is
x; y := y; x which swaps the values of x and y. The precise meaning of assignments
has been given in Chapter 3. A guarded action has the form:

if g1 then a1
g2 then a2
g3 then a3
: : :

An else part can be added with the usual meaning. If more than one guard is true then
one is selected non-deterministically. If none of the guards is true, a guarded action
behaves like skip. So, for example, the action "if a 6= 0 then x := 1 else skip" from the
program Fizban can also be written as "if a 6= 0 then x := 1".

In addition we have the following requirements regarding the well-formedness of a
UNITY program:

i. A program has at least one action.

3 We omit the always section and we �nd it necessary to split the declare section into read and write

parts
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ii. The actions of a program should only write to the declared write variables.

iii. The actions of a program should only depend on the declared read variables.

iv. A write variable is also readable.

These are perfectly natural requirements for a program. Most programs that a pro-
grammer writes will satisfy them 4 .

In Chapter 3 the notions of ignored and invisible variables have been explained. If
a set of variables V c is ignored by an action a, that is, V c

8 a, then a can only write
to the variables in V . So, ii can be encoded as:

(8a : a 2 aP : (wP )c 8 a)

Quite similarly, If V c is invisible to a, that is, V c
9 a, then a will only depend on the

variables in V . So, iii can be encoded as:

(8a : a 2 aP : (rP )c 9 a)

In [CM88] it is required that all actions in a UNITY program are deterministic.
We �nd that this restriction is unnecessary. If a program contains a non-deterministic
action, the only consequence is that the program will probably show less predictable
behavior. In [CM88] it is also required that all actions in a UNITY program are
terminating. This is a perfectly logical requirement because if a statement does not
terminate, then no further progress will be made, which violates the in�nite execution
model of UNITY. Here, we will refrain from imposing this requirement. We consider
non-termination to be as bad as chaos, which is totally non-deterministic. A program
which contains chaos can always be re�ned by removing some non-determinism at the
action level. We leave it to the designers to come up with actions which are terminating.

The requirement that a UNITY guarded action behaves as skip if none of its guards
is true means that all UNITY actions are required to be always-enabled (= not poten-
tially miraculous). It is also not necessary to require this explicitly, but we will do it
anyway. As we will see later, this requirement is crucial for a law called Impossibility
Law.

Recall that any UNITY program is an object of type Uprog. Now we can de�ne a
predicate Unity to de�ne the well-formedness of an Uprog object. From now on, with a
"UNITY program", we mean an object satisfying Unity.

De�nition 4.2.2 Unity UNITY

Unity:P = (aP 6= �) ^ (wP � rP ) ^ (8a : a 2 aP : �Ena) ^

(8a : a 2 aP : (wP )c 8 a) ^ (8a : a 2 aP : (rP )c 9 a)
J

4 One may however want to drop requirements i and iv. i is required by some laws. So, if omitted
it will re-appear somewhere else. iv was added because it seems convenient.
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4.2.2 Parallel Composition

A consequence of the absence of ordering in the execution of a UNITY program is
that the parallel composition of two programs can be modelled by simply merging the
variables and actions of both programs. In UNITY parallel composition is denoted by
[]. In [CM88] the operator is also called program union.

De�nition 4.2.3 Parallel Composition PAR

P []Q = (aP [ aQ; iniP ^ iniQ; rP [ rQ;wP [wQ)
J

Parallel composition is re
exive, commutative, and associative. It has a unit ele-
ment, namely (�; true; �; �) (although this is not a well-formed UNITY program).

As an example, we can compose the program Fizban in Figure 4.1 in parallel with
the program below:

prog TikTak

read fag
write fxg
init true

assign if a = 0 then a := 1 [] if a 6= 0 then a := 0

The resulting program consists of the following actions (the else skip part of the actions
in Fizban will be dropped, which is, as remarked in Section 4.2.1, allowed):

a0 : if a = 0 then a := 1
a1 : if a 6= 0 then a := 0
a2 : if a = 0 then x := 1
a3 : if a 6= 0 then x := 1
a4 : if x 6= 0 then y; x := y + 1; 0

Whereas in Fizban x 6= 0 will always hold somewhere in the future, the same cannot be
said for Fizban [] TikTak. Consider the execution sequence (a0; a2; a1; a3; a4)�, which is
a fair execution and therefore a UNITY execution. In this execution, the assignment
x := 1 will never be executed. If initially x 6= 1 this will remain so for the rest of this
execution sequence.

4.3 Programs' Behavior

To facilitate reasoning about program behavior UNITY provides several primitive op-
erators. The discussion in Section 4.2 revealed that an execution of a UNITY program
never, in principle, terminates. Therefore we are going to focus on the behavior of a
program during its execution. Two aspects will be considered: safety and progress.
Safety behavior can be described by an operator called unless. By the fairness con-
dition of UNITY, an action cannot be continually ignored. Once executed, it may
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p unless q : p ^ :q
EDGF@A

// // q p ensures q : p ^ :q
EDGF@A

// //! q

J

Figure 4.2: unless and ensures. The predicates p ^ :q and q de�ne sets of states. The

arrows depict possible transitions between the two sets of states. The arrow marked

with ! is a guaranteed transition.

induce some progress. For example, the execution of the action a4 in Fizban [] TikTak
will establish x = 0 regardless when it is executed. Actually, any action which is not
skip or chaos induces some meaningful progress. This kind of single-action progress is
described by an operator called ensures.

In the sequel, P;Q; and R will range over UNITY programs; a; b; and c over Action;
and p; q; r; s; J and K over Pred.

De�nition 4.3.1 Unless UNLESS

P` p unless q = (8a : a 2 aP : fp ^ :qg a fp _ qg)

De�nition 4.3.2 Ensures ENSURES

P` p ensures q = (P` p unless q) ^ (9a : a 2 aP : fp ^ :qg a fqg)
J

Intuitively, P ` p unless q implies that once p holds during an execution of P , it
remains to hold at least until q holds. Figure 4.2 may be helpful. Note that this
given interpretation says nothing about what p unless q means if p never holds during
an execution. P ` p ensures q encompasses p unless q, and adds that there should
also exist an action that can, and because of the fairness assumption of UNITY, will
establish q.

If progress can be made from p to q, and from q to r, we would expect that progress
can also be made from p to r. Similarly, if progress can be made from p1 to q1, and
from p2 to q2, then starting from either p1 or p2, progress will be made to either q1
or q2. These two are natural properties of progress. However, ensures does not have
these properties. It is because it only describes single-action progress. To describe the
combined e�ect of several actions, the smallest transitive and disjunctive closure of
ensures has to be used. This relation is denoted by 7! ("leads-to"). Leads-to describes
progress in general.

The notion of transitivity is well known; we will write Trans:R to denote that a
relation R is transitive. The notion of left-disjunctivity is de�ned below:
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De�nition 4.3.3 Left Disjunctive Relation LDISJ DEF

A relation R over A!B is called left-disjunctive, denoted Ldisj:R i� for all q 2 A!B
and all non-empty sets W (of predicates over A):

(8p : p 2 W : R:p:q) ) R:(9p : p 2 W : p):q
J

The formula above may be confusing. Notice that the 9 on the right hand side of
) denotes 9 on the predicate level, not Boolean level. If we write the formula without
notational overloading (as warned in Section 3.3), it looks like:

(8p : p 2 W : R:p:q) ) R:(�s: (9p : p 2 W : p:s)):q

In a simple case, Ldisj:R impliesR:p1:q^R:p2:q) R:(p1_p2):q. For example, unless
is left-disjunctive. Now we can de�ne TDC, the smallest transitive and disjunctive
closure of a given relation, as follows:

De�nition 4.3.4 Smallest Transitive and Disjunctive Closure TDC

TDC:R:p:q = (8S : R � S ^ Trans:S ^ Ldisj:S : S:p:q)
J

Note that we can also de�ne TDC as follows:

TDC:R = \fS j R � S ^ Trans:S ^ Ldisj:Sg (4.3.1)

which shows more clearly that TDC is some smallest closure of R. Note that the total
relation is transitive and left-disjunctive. Hence the set fS j R � S^Trans:S^Ldisj:Sg
is non-empty, and hence TDC:R is non-trivial.

Now we can de�ne 7! as follows:

De�nition 4.3.5 Leads-to LEADSTO

(�p; q: P` p 7! q) = TDC:(�p; q: P` p ensures q)
J

Introducing TDC may seem only to serve as adding 
avor to the notation, but it
is not. Many useful properties of 7! are actually pure properties of TDC. Later, we
introduce a variant of 7!. The new progress operator is also a TDC-relation, but based
on a di�erent relation. This new operator will then automatically inherit all properties
of TDC. This has saved a lot of time and e�ort in mechanically verifying the properties
of the new operator.

As an example, the program Fizban in Figure 4.1, which has the following assign

section:

if a = 0 then x := 1
[] if a 6= 0 then x := 1
[] if x 6= 0 then y; x := y + 1; 0
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satis�es the following properties:

Fizbaǹ (a = X) unless false (4.3.2)

Fizbaǹ true unless (x = 1) (4.3.3)

Fizbaǹ (a = 0) ensures (x = 1) (4.3.4)

Fizbaǹ (a 6= 0) ensures (x = 1) (4.3.5)

Fizbaǹ true 7! (x = 1) (4.3.6)

If (4.3.2) holds for any X then it states that Fizban cannot change the value of a.
(4.3.3) is an example of a property that trivially holds in any program. The reader can
check it by unfolding the de�nition of unless.

(4.3.4) and (4.3.5) describe single-action progress from, respectively a = 0 and a 6= 0
to x = 1. Because 7! is a closure of ensures, and hence includes ensures, we conclude
that (a = 0) 7! (x = 1) and (a 6= 0) 7! (x = 1) also hold. Using the disjunctivity
property of progress, we can conclude (4.3.6), which states that eventually x = 1. Note
that ensures is not disjunctive. So, despite (4.3.4) and (4.3.5), we cannot conclude:

Fizbaǹ true ensures (x = 1) (4.3.7)

The above cannot be true because there is no single action in Fizban which can establish
x = 1 regardless in which state it is executed. The point is that single-action progress
is a bit special and cannot be expressed using 7!. The composition Fizban [] TikTak,
despite property (4.3.6), does not satisfy true 7! (x = 1). On the other hand, composing
TikTak with a program P that does satisfy (4.3.7) yields a program that does satisfy
true 7! (x = 1).

Properties of the form P` p unless false are called stable properties, which are very
useful properties because they express that once p holds during any execution of P , it
will remain to hold. Because of their importance we will de�ne a separate abbreviation:

De�nition 4.3.6 Stable Predicate STABLE

P`�p = P` p unless false
J

P`�p is pronounced "p is stable in P" and p is called a stable predicate. Notice that
� can also be de�ned as follows:

P`�p = (8a : a 2 aP : fpg a fpg) (4.3.8)

Consequently, if p holds initially and is stable in P , it will hold throughout any ex-
ecution of P , and hence it is an invariant. There seem to be at least two notions
of invariant. Here, we de�ne an invariant of a program P as a predicate that holds
throughout any execution of P . Note that with this de�nition, an invariant is not
necessarily stable. For example, consider a program P consisting of a single action a:

if x = 1 then x := 2
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If iniP = (x = 0), then (x = 0) _ (x = 1) holds initially and throughout the execution
of P . Hence it is an invariant. However, (x = 0) _ (x = 1) is not stable (because if
x = 1 then a will assign 2 to x).

Invariants and stable predicates are disjunctive and conjunctive. That is, if p and q
are invariants (or stable), then so are p ^ q and p _ q. However, whereas invariants are
monotonic with respect to ), stable predicates are not. Invariants are useful, but for
self-stabilizing programs, whose initial condition can be as liberal as true, the notion
of stability is more useful.

4.4 UNITY Laws

Figures 4.3 and 4.4 display a set of basic laws for unless properties. Figure 4.5 displays a
set of basic laws for �, and 4.6 for ensures. The properties are taken from [CM88]. As a
notational convention: if it is clear from the context which program P is meant, we often

omit it from a formula. For example we may write p unless q to mean P` p unless q.
Also, for laws we write, for example:

P :
: : : (p unless q) : : :

r 7! s
to abbreviate:

: : : ( P` p unless q) : : :

P` r� s

Note that the unless Conjunction and Disjunction laws in Figure 4.3 can be
generalized to combine an arbitrary number of unless properties (the generalization has
also been veri�ed). A similar remark also holds for the conjunction and disjunction
of �. Note that ensures is conjunctive but not disjunctive. Note also that the ensures
Introduction law depends on the fact that the program P is non-empty (otherwise
there is no sense in talking about 'single-action' progress).

There is another law of ensures called Impossibility Law, stating that it is impossible
to progress to false unless if one starts from false, which is just not possible:

Theorem 4.4.16 ensures Impossibility ENSURES IMPOS

P :
p ensures false

[:p]
I

A crucial assumption to this law is that all actions in the program P are always-
enabled. Otherwise, if a miracle is possible, then it can be used to establish false, and
then it would follow by the ensures Post-weakening law in page 47 that any progress
is possible. The proof of the Impossibility law is as follows:
Proof:

By de�nition, P` p ensures false implies that there exists an action a 2 aP such that
fpg a ffalseg holds. Since P is a UNITY program, a is always enabled. We derive:

fpg a ffalseg

= f de�nition Hoare triple g



Page 46 Chapter 4. PROGRAMS AND THEIR PROPERTIES

Theorem 4.4.1 unless Introduction UNLESS IMP LIFT1, UNLESS IMP LIFT2

P :
[p) q] _ [:p) q]

p unless q

Theorem 4.4.2 unless Post-weakening UNLESS CONSQ WEAK

P :
(p unless q) ^ [q ) r]

p unless r

Theorem 4.4.3 unless Conjunction UNLESS CONJ

P :
(p unless q) ^ (r unless s)

p ^ r unless (p^ s) _ (r ^ q) _ (q ^ s)

Theorem 4.4.4 unless Disjunction UNLESS DISJ

P :
(p unless q) ^ (r unless s)

p _ r unless (:p ^ s) _ (:r ^ q) _ (q ^ s)

J

Figure 4.3: Basic laws for unless.

Corollary 4.4.5 unless Reflexivity UNLESS REFL

p unless p

Corollary 4.4.6 Anti-Reflexivity UNLESS ANTI REFL

:p unless p

Corollary 4.4.7 Simple Conjunction UNLESS SIMPLE CONJ

P :
(p unless q) ^ (r unless s)

p ^ r unless q _ s

Corollary 4.4.8 Simple Disjunction UNLESS SIMPLE DISJ

P :
(p unless q) ^ (r unless s)

p _ r unless q _ s

J

Figure 4.4: Some corollaries of unless.
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Theorem 4.4.9 �Conjunction STABLE GEN CONJ

P :
(�p) ^ (�q)

�(p ^ q)

Theorem 4.4.10 �Disjunction STABLE GEN DISJ

P :
(�p) ^ (�q)

�(p _ q)

J

Figure 4.5: Basic laws of �.

Theorem 4.4.11 ensures Introduction ENSURES IMP LIFT

P :
[p) q]

p ensures q

Theorem 4.4.12 ensures Post-weakening ENSURES CONSQ WEAK

P :
(p ensures q) ^ [q ) r]

p ensures r

Theorem 4.4.13 ensures Progress Safety Progress (PSP) ENSURES PSP

P :
(p unless q) ^ (r unless s)

p ^ r ensures (p^ s) _ (r ^ q) _ (q ^ s)

J

Figure 4.6: Basic laws for ensures

Corollary 4.4.14 ensures Reflexivity ENSURES REFL

p ensures p

Corollary 4.4.15 ensures Conjunction ENSURES CONJ

P :
(p ensures q) ^ (r ensures s)

p ^ r ensures (p^ s) _ (r ^ q) _ (q ^ s)

J

Figure 4.7: Some corollaries of ensures
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(8s; t :: p:s ^ a:s:t) false)

= f predicate calculus g

(8s; t :: p:s) :a:s:t)

= f a is always enabled, that is, (8s :: (9t :: a:s:t)) g

(8s :: :p:s)

= f de�nition of [:] g

[:p]

N

4.4.1 Transitive and Disjunctive Relations

Recall that the general progress operator 7! is de�ned as the TDC of ensures. That
is, it is the smallest transitive and left-disjunctive closure of ensures. Many laws of
leads-to can be derived from general properties of TDC, which are presented in this
subsection.

Being the smallest closure of some sort, TDC induces an induction principle. Ac-
tually it is trivial: since TDC:R is the smallest transitive and left-disjunctive closure
of R, any other relation S which includes R, is transitive, and left-disjunctive will also
include TDC:R.

Theorem 4.4.17 TDC Induction TDC INDUCT1

R � S ^ Trans:S ^ Ldisj:S

TDC:R � S
J

The principle gives a su�cient condition for a relation S to include TDC:R. In
[CM88] the principle is invoked many times to prove other laws for 7!.

It can be shown that TDC:R itself includes R, and is transitive and left-disjunctive.
These last two are the most basic properties progress. In addition, it is also monotonic
with respect to �.

Theorem 4.4.18 TDC LIFT, TDC TRANS, TDC LDISJ

(R � TDC:R) ^ Trans:(TDC:R) ^ Ldisj:(TDC:R)

Theorem 4.4.19 TDC Monotonicity TDC MONO

(R � S) ) (TDC:R � TDC:S)
J

In [CM88] some laws of the form 7!� S are proven through 7!� (7! \S). In
general, to show TDC:R � (TDC:R \ S), using TDC Induction it su�ces to show:

(R � TDC:(TDC:R \ S)) ^ Trans:(TDC:R \ S) ^ Ldisj:(TDC:R\ S) (4.4.1)
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The above is often easier to prove. Note that part of it is by Theorem 4.4.18 trivial 5 .
We have de�ned 7! as the smallest transitive and left-disjunctive closure of ensures.
One may wonder if replacing "transitive" with "right-transitive" would still de�ne the
same relation. That is, we would like to de�ne 7! as:

7! = \fS j ( ensures � S) ^ (ensures ;S � S) ^ Ldisj:Sg (4.4.2)

Note that R;S � S means that S is right-transitive with respect to the base relation
R. The question whether or not the above de�nition of 7! is equal to the old one can
be generalized to the question whether or not the following equation holds:

TDC:R = \fS j R � S ^ (R;S � S)^ Ldisj:Sg (4.4.3)

Let �I:R abbreviate the set fS j R � S ^ (R;S � S) ^ Ldisj:Sg and let TDCI:R
abbreviate \(�I:R). Analogous to the case with TDC, one can show that TDCI:R
itself is a closure of R, is right-transitive, and left-disjunctive. That is, TDCI:R is a
member of �I:R. Being the smallest closure, TDCI also induces an induction principle:

R � S ^ (R;S � S) ^ Ldisj:S

TDCI:R � S
(4.4.4)

This, and TDC Induction state su�cient conditions for TDC to be equal to TDCI.
Among these conditions, the only non-trivial one is that TDCI:R is transitive, but this
can be proven using the induction principle (4.4.4). The conclusion is that TDC and
TDCI are equal:

Theorem 4.4.20 TDC EQU Ri TDC

TDC = TDCI

J

As a corollary, the de�nition (4.4.2) of 7! is equal to the old one. It also means the
following induction principle is applicable to 7!:

P :
(ensures � S) ^ (ensures;S � S) ^ Ldisj:S

7!� S
(4.4.5)

There are cases where the induction principle above is more useful than the one in
Theorem 4.4.17. For example, it has been crucial in proving a progress law called
Completion law (page 52).

Another kind of induction that is often used in practice is well-founded induction.
A relation �2 A!A!B is said to be well-founded if it is not possible to construct
an in�nite sequence of ever decreasing values in A. That is, : : : ; x2 � x1 � x0 is

5 For example, to prove Trans:(TDC:R\ S) we have to prove:

TDC:R:p:q^ S:p:q ^ TDC:R:q:r^ S:q:r ) TDC:R:p:q^ S:p:r

for all p, q, and r. However, since by by Theorem 4.4.18 TDC:R is already transitive, we only need to
show S:p:r.
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not possible. For example the ordering < on N and � on sets and relations are well-
founded. A well-founded relation admits the well-founded induction principle given
below 6 .

De�nition 4.4.21 Well-founded Induction ADMIT WF INDUCTION

A relation �2 A!A!B is said to admit the well-founded induction if:

(8y :: (8x : x � y : p:x)) p:y) = (8y :: p:y)
J

Let m be a function |so-called bound function| that maps State to A. If from p a
program can progress to q, or else it maintains p while decreasing the value of m with
respect to a well-founded ordering �, then, since � is well-founded, it is not possible
to keep decreasing m, and hence eventually q will be established. We call this principle
Bounded Progress. It holds for any relation on predicates which is re
exive, transitive,
and left-disjunctive.

Let in the sequel ! be a relation over predicates over B (which can be program
states), � be a well founded relation over a non-empty type A, and m be a mapping
from B to A.

Theorem 4.4.22 Bounded Progress BOUNDED REACH i

Trans:! ^ Ldisj:! ^ q! q

(8M :: p ^ (m =M)! (p ^ (m �M)) _ q)
p! q

I

Note: The notation is overloaded. In the above, "p^(m =M)" and "(p^(m �M))_q"
actually mean, respectively, (�s: p:s ^ (m:s =M)) and (�s: (p:s ^ (m:s �M)) _ q:s)
Proof:

p! q

( f ! is left-disjunctive and B is non-empty g

(8M :: p ^ (m =M)! q)

= f Well-Founded Induction g

(8M :: (8M 0 :M 0 �M : p ^ (m =M 0)! q) ) (p ^ (m =M)! q))

IfM is a minimal element, thus there is noM 0 such thatM 0 �M , then the assumption:

p ^ (m =M)! (p ^ (m �M)) _ q

is equal to p^ (m =M)! q, which trivially implies the last formula in the derivation
above. If M is not a minimal element:

6 It has been showed that the above formulation of well-foundedness is actually equivalent with the
admittance of the well-founded induction itself.
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(8M 0 :M 0 �M : p ^ (m =M 0)! q)

) f ! is left-disjunctive g

p ^ (m �M)! q

) f q! q; ! is left-disjunctive g

(p ^ (m �M)) _ q! q

) f from the assumption: p^ (m =M)! (p^ (m �M))_ q;! is transitive g

p ^ (m =M)! q

N

A corollary of the Bounded Progress principle is the following, stating that if
from :p progress can be made in which the value of the bound function m decreases,
then eventually p will be reached.

Theorem 4.4.23 Inevitable Fulfilment BOUNDED ALWAYS REACH i

Trans:! ^ Ldisj:! ^ q! q

(8M :: :p ^ (m =M)! (m �M))

true! p
J

4.4.2 Laws of Leads-to

We are not going to use the 7! operator very often. A variant thereof, better suited for
our purpose, will be introduced in Section 4.5. For the sake of completeness, Figure
4.8 displays a set of basic laws for 7!. Some of them follow directly from the laws
mentioned in the previous subsection. The reader may want to compare those laws
with those of the new operator given in Section 4.5.

4.5 Introducing the Reach Operator

Consider the program P and TikToe in Figure 4.9. The program P can establish x = 1
if a is less than 2. So, it satis�es P` (a < 2) 7! (x = 1). As with Hoare triples, we
may strengthen the 'pre-condition' of 7!, and come up with the following property of
P :

(b = 0) ^ (a < 2) 7! (x = 1) (4.5.1)

We note that P does not write to either a or b, and hence should maintain (b = 0)^(a <
2). We expect then, that if we compose P in parallel with another program which
maintains the stability of (b = 0) ^ (a < 2), but does not write to x |the program
TikToe is an example thereof| then (4.5.1) will be respected by the composition.
At least, this works with P []TikToe. The programs P and TikToe are write-disjoint,
that is, they do not write to a common write variable. Compositions of write-disjoint
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Theorem 4.4.24 7! Introduction LEADSTO IMPLICATION, LEADSTO ENS LIFT thm

P :
[p) q] _ (p ensures q)

p 7! q

Theorem 4.4.25 7! Induction LEADSTO INDUCT thm1

P :
(8p; q :: (p ensures q) ) R:p:q) ^ Trans:R ^ Ldisj:R

(8p; q :: (p 7! q)) R:p:q)

Theorem 4.4.26 7! Transitivity LEADSTO TRANS thm

P :
(p 7! q) ^ (q 7! r)

p 7! r

Theorem 4.4.27 7! Disjunction LEADSTO GEN DISJ

For all non-empty sets W :

P :
(8i : i 2 W : p:i 7! q:i)

(9i : i 2 W : p:i) 7! (9i : i 2W : q:i)

Corollary 4.4.28 7! Cancellation LEADSTO CANCEL

P :
(p 7! q _ b) ^ (b 7! r)

p 7! q _ r

Corollary 4.4.29 7! Strengthening & Weakening LEADSTO ANTE STRONG,

LEADSTO CONSQ WEAK

P :
[p) q] ^ (q 7! r) ^ [r) s]

p 7! s

Theorem 4.4.30 7! Progress Safety Progress (PSP) LEADSTO PSP

P :
(p 7! q) ^ (r unless s)

p ^ r 7! (q ^ r)_ s

Theorem 4.4.31 7! Impossibility LEADSTO IMPOS

P :
p 7! false

[:p]

Theorem 4.4.32 7! Completion LEADSTO COMPLETION

For all �nite sets W :

P :
(8i : i 2 W : p:i 7! q:i_ r) ^ (8i : i 2 W : q:i unless r)

(8i : i 2 W : p:i) 7! (8i : i 2 W : q:i)_ r

J

Figure 4.8: Basic laws of 7!
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prog P

read fa; xg
write fxg
init true

assign if a < 2 then x := 1
[] if a = 2 then x := x+ 1

prog TikToe
read fa; bg
write fag
init true

assign if a = 0 then a := 1
[] if a = 1 then a := 0
[] if b 6= 0 then a := a+ 1

J

Figure 4.9: The program P and TikToe.

programs are frequently found in practice. In Chapter 2 we hypothesize that the
parallel composition of write-disjoint programs satis�es a principle called Transparency
Principle. It states that progress made through the writable part of a write-disjoint
component P will be preserved by the composition, as long as the other write-disjoint
components respect whatever assumptions P has on its non-writable part. The example
with P and TikToe suggests that the principle is valid. It is valid, as we will see later,
but not if we use 7! to specify progress.

To illustrate the problem with 7! consider the following program P 0, with the same
read and write variables as P , and the same initial condition. However, the action if

a < 2 then x := 1 in P will be broken in two. P 0 has the following assign section:

if a = 0 then x := 1
[] if a = 1 then x := 1
[] if a = 2 then x := x+ 1

The program P 0 also satis�es (4.5.1). However, if composed with TikToe the progress
may fail if both programs choose a wrong order of execution. Consider the following
scheduling of the actions in P 0[]TikToe:

[ if a = 0 then a := 1 ; if a = 0 then x := 1 ; if b 6= 0 then a := a+ 1 ;
if a = 1 then a := 0 ; if a = 1 then x := 1 ; if a = 2 then x := x+ 1 ]*

which is fair, but if initially all a; b, and x are 0, then x will never become 1 in this
execution sequence.

So, if we imagine P as a program which is still under development (so, we cannot
look into its code), and if the speci�cation of P states that it should satisfy (b = 0)^(a <
2) 7! (x = 1) and fa; bg 6� wP , we cannot just say that composing it with TikToe

will preserve (b = 0) ^ (a < 2) 7! (x = 1). The moral of the story is that we cannot
generally conclude the 7! properties of a composite program from the 7! properties
of its components, without further information about the interior of the components,
or at least, information about how the components' properties are derived. There are
however cases where it is possible. A su�cient condition was given by Singh in [Sin89].
This will be discussed in Section 4.7. But even the result by Sigh is not strong enough
to derive the Transparency Principle. In this section, a new progress operator will be
introduced, with which the principle is provable.
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Let us de�ne the following variant of ensures:

De�nition 4.5.1 ensures B ENS

J P` p ensures q = p; q 2 Pred:(wP ) ^ ( P`�J) ^ ( P` J ^ p ensures q)
J

Note that ensures only describes progress through the writable part of a program. An
additional parameter J is added, which is required to be stable in the program. Since
the state of the non-writable part of the program cannot change, it can be speci�ed
within J .

A variant of leads-to called "reach", denoted by�, can be de�ned as the smallest
transitive and left-disjunctive closure of ensures. It follows that � can only spec-
ify progress made through the writable part of a program, but this should not be a
hindrance as such is the only kind of progress a program can make.

De�nition 4.5.2 Reach REACH

(�p; q: J P` p� q) = TDC:(�p; q: J P` p ensures q)
J

Alternatively, we can also de�ne� as follows:

J P` p� q

=
(P` �J) ^ TDC:(�r; s: (P` J ^ r ensures s) ^ r; s 2 Pred:(wP )):p:q

(4.5.2)

It should now be obvious why we introduced TDC. The properties of TDC men-
tioned in Subsection 4.4.1 can easily be instantiated for�. This operator is not equal
to 7!, but let us postpone the details until Section 4.10. It is however easy to see that:

(true P` p� q)) ( P` p 7! q) (4.5.3)

By its de�nition, true P` p ensures q implies P` p ensures q. Hence, by
TDC Monotonicity

48
, (4.5.3) follows.

As a notational convention: if it is clear from the context which program P or which

stable predicate J are meant, we often omit them from an expression. For example we
may write P` p � q or even simply p � q to mean J P` p � q. Also, for laws we
write, for example:

P; J :
: : : (p unless q) : : :

r� s
to abbreviate:

: : : ( P` p unless q) : : :

J P` r� s

Figure 4.11 displays a set of basic laws of� which have corresponding laws for 7!.
The proofs of these properties follow the pattern of the related proofs for 7! properties
as found in [CM88]. Figure 4.12 displays some laws which have no 7! counterpart.
Some comment as to how the laws can be proven is also included. In particular, the�
Confinement law states that an expression of the form J P` p� q is only valid if both
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prog Bu�er
read fin; inRdy; ack; buf; outg
write fack; buf; outg
init :ack ^ (buf = [])
assign

if inRdy ^ :ack ^ (`:buf < N) then buf; ack := buf ++[in]; true
[] if :inRdy ^ ack then ack := false
[] if buf 6= [] then out; buf := hd:buf; tl:buf

J

Figure 4.10: An N-placed bu�er.

p and q are con�ned by Pred:(wP ). This con�rms what is said before, namely that�
describes only progress through the writable-part of a program. The � Disjunction

states the disjunctivity property of �. It should be noted however, that � is not

disjunctive in its J -argument. That is, J1 ` p� q and J2 ` p� q do not necessarily
imply J1 ^ J2 ` p � q. There are good reasons for this, but let us postpone the
discussion for a while.

As an example, consider the program Bu�er displayed in Figure 4.10. It uses a
bu�er buf of size N . What it does is passing on the values in buf to out, �rst in, �rst
out. Data are entered to buf via the input register in. The boolean variable inRdy is
an input variable, which is expected to become true if a new datum becomes available.
Bu�er is ready to receive a new datum if there is a place in buf and if ack is false. When
a new datum is entered to buf, it is acknowledged by setting ack true. A property of
the program Bu�er is that a new and un-acknowledged datum will eventually appear
in out. Using 7! this can be expressed as follows:

(8X :: Bu�er` (in = X) ^ inRdy ^ :ack 7! (out = X)) (4.5.4)

Using� the property can be expressed as follows:

(8X :: (in = X) ^ inRdy Bu�er` :ack� (out = X)) (4.5.5)

However, the following, which would be quite tempting to write due to its resemblance
to (4.5.4):

(8X :: true Bu�er` (in = X) ^ inRdy ^ :ack� (out = X)) (4.5.6)

is not a valid expression because the argument "(in = X) ^ inRdy ^ :ack" is not a
predicate con�ned by w(Bu�er).

The previously mentioned Transparency Law will be presented and proven in Sec-
tion 4.7.

4.6 On the Substitution Law

Recall that we call a predicate p invariant in a program P if it holds throughout any
computation of P . Consequently, the truth of p can be assumed in manipulating speci-
�cations of P , if by a 'speci�cation' we mean a predicate over all possible executions of
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Theorem 4.5.3 � Introduction REACH ENS LIFT,REACH IMP LIFT

P; J :

p; q 2 Pred:(wP ) ^ (�J)
[J ^ p) q] _ (J ^ p ensures q)

p� q

Theorem 4.5.4 � Induction REACH INDUCT1

P; J :

(8p; q :: (p ensures q)) R:p:q)
Trans:R ^ Ldisj:R

(p� q)) R:p:q

Theorem 4.5.5 � Transitivity REACH TRANS

P; J :
(p� q) ^ (q� r)

p� r

Theorem 4.5.6 � Disjunction REACH DISJ

For all non-empty sets W :

P; J :
(8i : i 2 W : p:i� q:i)

(9i : i 2 W : p:i)� (9i : i 2 W : q:i)

Corollary 4.5.7 � Reflexivity REACH REFL

P; J :
p 2 Pred:(wP ) ^ (�J)

p� p

Corollary 4.5.8 � Cancellation REACH CANCEL

P; J :
q 2 Pred:(wP ) ^ (p� q _ r) ^ (r� s)

p� q _ s

Theorem 4.5.9 � PSP REACH PSP

P; J :
r; s 2 Pred:(wP ) ^ (r ^ J unless s) ^ (p� q)

p ^ r� (q ^ r)_ s

Theorem 4.5.10 � Completion REACH COMPLETION

For all �nite and non-empty sets W :

P; J :

r 2 Pred:(wP )
(8i : i 2 W : q:i^ J unless r) ^ (8i : i 2 W : p:i� q:i_ r)

(8i : i 2 W : p:i)� (8i : i 2 W : q:i)_ r

J

Figure 4.11: Basic properties of � which are analogous to those of 7!
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Theorem 4.5.11 � Stable Shift REACH STABLE SHIFT

P :
p2 2 Pred:(wP ) ^ (�J) ^ (J ^ p2 ` p1� q)

J ` p1 ^ p2� q

Can be proven using � Induction.

Theorem 4.5.12 � Stable Strengthening REACH STAB MONO

P :
(�J2) ^ (J1 ` p� q)

J1 ^ J2 ` p� q

Can be proven using � Induction.

Corollary 4.5.13 � Stable Background REACH IMP STABLE

P :
J ` p� q

�J

Follows straightforwardly from the alternative de�nition of� (4.5.2).

Theorem 4.5.14 � Confinement REACH IMP CONF

P; J :
p� q

p; q 2 Pred:(wP )

Can be proven using � Induction.

Theorem 4.5.15 � Substitution REACH SUBST

P; J :

p; s 2 Pred:(wP )
[J ^ p) q] ^ (q� r) ^ [J ^ r) s]

p� s

Follows from� Introduction, Stable Background, Transitivity, and Confinement.

J

Figure 4.12: More properties of �

P . This very natural principle is imposed in [CM88] as an axiom called the Substitution
Law, and has the following form. Let R be either unless, ensures, or 7!:

P :

"J is invariant"

[J ) (p = p0)] ^ R:p:q ^ [J ) (q = q0)]

R:p0:q0
(4.6.1)

The law was a source of anxiety because it was found that the law makes the logic
inconsistent [San91]. On the other hand, without the Substitution Law UNITY is
incomplete relative to a certain operational semantics. In [San91] Sanders proposed
an extension, from which the law can be derived instead of imposed as an axiom. The
consistency of the logic was thus guaranteed.
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In this section we will brie
y discuss the Substitution Law and Sander's extension,
and their relation to the UNITY logic plus the � operator as we have described so
far.

As we have no Substitution Law, at least, not for unless, ensures, and 7!, one may
ask what kind of incompleteness one may expect. Let us consider just the case of
unless. The other two operators can be argued about in much the same way. Recall
that in Section 4.3 we have carefully given the following operational interpretation for
unless:

Intuitively, P` p unless q implies that once p holds during an execution of P , it
remains to hold at least until q holds.

This deviates slightly from the traditional interpretation, for example as in [CM88],
in which the "implies" above is replaced by "if and only if". Indeed, we use "implies"
because we wish to avoid questions about incompleteness, until now. Now let us see
what kind of problem we run into if we replace "implies" with "if and only if".

Let P` p U q means "once p holds during an execution of P , it remains to hold at
least until q holds". Now consider a program Lazy as follows:

prog Lazy

read fa; xg
write fxg
init (a 6= 0) ^ (x = 0)
assign if a = 0 then x := x+ 1

In Lazy we have (x = 0) unless (a = 0). Because initially a 6= 0, the value of x will
remain constant. So, (x = 0) U false holds. However, (x = 0) unless false cannot be
derived without the Substitution Law:

(x = 0) unless (a = 0)

= f a 6= 0 is invariant, Substitution Law g

(x = 0) unless false

But Lazy` (x = 0) unless false by the de�nition of unless cannot hold since it is equal to
false. So obviously, unless is not equal to the interpretation U 7 .

In [San91] Sanders introduced a variant unless which is equal to U (and similarly
for ensures and 7!). Let P` �J means that J is invariant. Sanders de�nes unlessS as
follows:

P` p unlessS q = (9J : P` �J : J ^ p unless q) (4.6.2)

For J , one can always choose the strongest invariant of P . This strongest invariant
characterizes all states reachable by P , which is why the Substitution Law is derivable

7 This is caused by the fact that unless is de�ned in terms of all states instead of those states which
are actually reachable from the starting state(s).
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from the de�nition above. The unless as de�ned above coincides with the interpretation
U

To explicitly record on which invariant a property is based, Sanders generalized
(4.6.2) by parameterizing unlessS with an invariant:

J P` p unlessS q = ( P` �J) ^ ( P` (J ^ p) unless q) (4.6.3)

Curiously, Sanders fell into the same trap as Chandy and Misra did in [CM88] by
claiming that the Substitution Law also applies to the parameterized unlessS. Consider
again the program Lazy. Note that x < 2 is invariant. We derive now:

true

= f (4.6.3), x < 2 is invariant, unless Anti-reflexivity46 g

(x < 2) Lazy` (x < 2) unlessS (2 � x)

= f x < 2 is invariant, Substitution Law g

(x < 2) Lazy` (x < 2) unlessS false

) f (4.6.3) g

Lazy` (x < 2) unless false

= f de�nition of Lazy g

false

The 
aw is corrected by Prasetya in [Pra94] by requiring that J is not only an invariant,
but also a 'strong' invariant. A strong invariant is an invariant which is also stable.

De�nition 4.6.1 Strong Invariant Inv

P` s J = [iniP ) J ] ^ ( P` �J)

De�nition 4.6.2 Parameterized unlessS UNL

J P` p unlessS q = ( P` s J) ^ ( P` J ^ p unless q ^ J)
J

One can show that the following Substitution Law holds for the above de�nition of
unlessS. The result extends to ensures and 7!. It has been mechanically veri�ed and
available as part of our UNITY package for the theorem prover HOL.

Theorem 4.6.3 unless Substitution UNL SUBST

P; J :
[J ) (p = p0)] ^ (p unlessS q) ^ [J ) (q = q0)]

p0 unlessS q0

J

The reader may note that the � operator already ful�ls a Substitution57 law. In-
deed, the operator has some 
avor of Sanders' parameterized 7!, but there are some
important di�erences. Sanders' invariant-parameterized 7! is de�ned as follows:

J P` p
S

7! q = ( P` s J) ^ ( P` J ^ p 7! q) (4.6.4)
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Theorem 4.7.1 unless Compositionality UNLESS PAR i

(P` p unless q) ^ (Q` p unless q) = (P []Q` p unless q)

Corollary 4.7.2 �Compositionality STABLE PAR i

(P` �J) ^ (Q` �J) = (P []Q` �J)

Follows from unless Compositionality and the de�nition of �.

Corollary 4.7.3 s Compositionality Inv PAR

(P` s J) ^ (Q` s J)

P []Q` s J

Follows from � Compositionality and the de�nition of s .

Theorem 4.7.4 ensures Compositionality ENSURES PAR

(P` p ensures q) ^ (Q` p unless q)

P []Q` p ensures q

J

Figure 4.13: Compositionality of safety properties and of ensures.

In �, the J is only required to be stable, which apparently is enough to have the
Substitution law. This is a useful generalization because when combining parallel

programs, an invariant is easier to be destroyed than a stable predicate. Also, since
S
7!

is based on 7!, which is not con�ned by wP , it will have the same problem as 7! when
it comes to parallel composition, especially the parallel composition of write-disjoint
programs. If one wishes to combine the strength of Sanders' de�nition and that of�,
one will have to parameterize with both stable predicates and invariants.

4.7 Parallel Composition

As has been motivated in Chapter 2, composition laws are useful as they enable us to
decompose a global speci�cation of a program into local speci�cations of the program's
components. Not only that the original problem, which may contain complicated inter-
component dependencies, is thereby broken into more manageable pieces, but also each
component can subsequently be developed in isolation. In this section an overview of
various parallel composition laws that we have veri�ed will be given.

The compositionality of safety properties follows a very simple principle: the safety
of a composite follows from the safety of its components; the laws are given in Figure
4.13. As for the compositionality of progress properties, only the compositionality of
ensures was known in the �rst place. A parallel component may write to a common
variable, and thereby a�ecting, or even, destroying a progress property of another com-
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buffer

outin

sender

buf

inRdy

ack

prog Sender
read fack; in; inRdyg
write fin; inRdyg
init :inRdy
assign if :inRdy ^ :ack then in; inRdy := "generate a new datum"; true
[] if inRdy ^ ack then inRdy := false

prog Bu�er
read fin; inRdy; ack; buf; outg
write fack; buf; outg
init :ack ^ (buf = [])
assign if inRdy ^ :ack ^ (`:buf < N) then buf; ack := buf ++[in]; true
[] if :inRdy ^ ack then ack := false
[] if buf 6= [] then out; buf := hd:buf; tl:buf

J

Figure 4.14: A sender and an N-placed bu�er.

ponent. The phenomenon was not well understood and it was thought that except in
the most trivial cases, no useful result can be obtained for progress properties expressed
by 7!. A step forward is made by Singh [Sin89]. Although no claim is made on the
strength of Singh's results, we believe that it is fairly strong. The results will be dis-
cussed in the sequel. However, instead of 7!,� will be used to express progress. The
laws will look slightly di�erent but the idea remains the same.

Stronger results can be obtained for parallel composition of programs which share
no common write variables, but � is really required here. Perhaps, it should also
be noted that as we attempted to verify Singh's results it was discovered that his
main theorem is 
awed. The 
aw may look trivial and can be easily removed, but a
considerably more sophisticated proof is required. This should illustrate a bit as how
poor the issue was |and probably still is| understood.

4.7.1 General Progress Composition

Consider again the program Bu�er in Figure 4.10 and a new program Sender, both
displayed in Figure 4.14. Both programs are intended to be put together in parallel.
The picture in Figure 4.14 may be helpful. The program Sender generates data and
sends it through in to the program Bu�er. The latter puts the data in an N -placed
bu�er buf and meanwhile, it also passes the data to out, �rst in, �rst out. The reader
may notice that the synchronization between Sender and Bu�er is a hand-shake protocol



Page 62 Chapter 4. PROGRAMS AND THEIR PROPERTIES

:inRdy ^ :ack //�

S
inRdy ^ :ack

��

�B

BCED N�`:bufGF��

:inRdy ^ ack

OO

B

inRdy ^ ackoo
S

Note: S abbreviates Sender and B Bu�er. � produces a new datum and � put the datum in buf, if

there is a place for it.

J

Figure 4.15: A 4-phase hand-shake protocol between Sender and Bu�er.

with the following phases:

phase 0 : :inRdy ^ :ack
phase 1 : inRdy ^ :ack
phase 2 : inRdy ^ ack

phase 3 : :inRdy ^ ack

A new datum can only be generated in phase 0, which subsequently brings the system
to phase 1. A new datum can only enter buf in phase 1 (and if buf has a place free),
which subsequently brings the system to phase 2. Then, Sender will 
ip its inRdy,
bringing the system into phase 3, and Bu�er its ack, reverting the system to phase 0.
The transition graph in Figure 4.15 may be helpful.

Let SB abbreviate Sender [] Bu�er. A fundamental property which we claim that
SB has is the following:

(8X :: true SB` (in = X) ^ inRdy ^ :ack� (out = X)) (4.7.1)

stating that a new, un-acknowledged datum will eventually reach out. This progress
property can be proved directly from the code of SB. However, let us now see how it can
be derived from the properties of Sender and Bu�er. Let us �rst do some calculation,
starting from (4.7.1):

(in = X)^ inRdy ^ :ack� (out = X)

( f� Transitivity56 g

((in = X) ^ inRdy ^ :ack� X 2 buf) ^ (X 2 buf� (out = X))

Now, by applying � PSP56 to the �rst conjunct using the following instantiation of
the law:

p  (in = X)^ inRdy ^ :ack

q  X 2 buf _ (in 6= X)_ :inRdy _ ack

r = p

s  X 2 buf

J  true
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we can re�ne the last speci�cation to the following:

SB` (in = X)^ inRdy ^ :ack unless X 2 buf (4.7.2)

true SB` (in = X)^ inRdy ^ :ack� X 2 buf _ (in 6= X)_ :inRdy _ ack (4.7.3)

true SB` X 2 buf� (out = X) (4.7.4)

(4.7.2) states that while in phase 1 the system (SB) can only either remain there, or
put the value of in into buf. We leave it to the reader to �gure it out why SB satis�es
this. (4.7.4) should be provable from the fact that this is a 'local' progress of the Bu�er.
We will return to this later. Let us for now concentrate on (4.7.3). Something that
might help to prove this is the following property of Bu�er:

(in = X) ^ inRdy Bu�er` true� X 2 buf _ ack (4.7.5)

But how can this be exploited to prove (4.7.3)? Note that the only way Sender can
in
uence Bu�er is through the variables in and inRdy. However, Sender cannot modify
any of those if inRdy ^ :ack holds. Consequently, if in addition in = X then either by
(4.7.5) Bu�er will make its progress to X 2 buf_ack, or either program does something
to inRdy, ack, or in which it invalidates either inRdy ^ :ack or in = X. In other words,
(4.7.3) is implied!

The principle used to conclude (4.7.3) from(4.7.5) is an instantiation of a composi-
tion law known as Singh's Law [Sin89]. Before it can be presented, �rst we need some
de�nitions.

De�nition 4.7.5 !? DVa

Q!?P = wQ \ rP
J

So, Q!?P denotes the variables through which Q can in
uence P . For example,
Sender!?Bu�er is fin; inRdyg. In practice people often use the term 'shared variables'.
This term is ambiguous because it is not clear whether it is meant variables which are
read, or written in common, or some other combination.

Let V be a set of variables. Let Q` p unlessV q roughly mean that under condition
p, Q cannot alter the variables in V without establishing q:

De�nition 4.7.6 unlessV

Q` p unlessV q = (8X :: Q` p ^ (8v : v 2 V : v = X:v) unless q)
J

Note: the dummy X has the type Var!Val. By omitting some overloading we can
also write the formula above as:

Q` p unlessV q = (8X :: Q` p ^ (�s: s�V = X �V ) unless q)
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In particular, Q` p unlessQ!?P q means that under condition p, Q cannot in
uence
P without establishing q. For example, Q` p unlessQ!?P false means that Q cannot
in
uence P as long as p holds; Q` true unlessQ!?P q means that Q always marks its
interference to P by establishing q. Recall that the program Sender cannot in
uence
Bu�er as long as inRdy ^ :ack holds. So, Sender satis�es:

Sender̀ inRdy ^ :ack unlessSender!?Bu�er false (4.7.6)

There are two lemmas that we are going to use later. The �rst states that if p is
a predicate con�ned by rP , then Q cannot destroy p without changing a variable in
Q!?P :

Lemma 4.7.7 CONF SAFE

p 2 Pred:(rP )

Q` p ^ (�s: s�U = X �U) unless (�s: s�U 6= X �U)
where U = Q!?P

I

To prove the above lemma, the theory developed in Chapter 3 will now be brought
into play.
Proof:

p ^ (�s: s�U = X �U) unless (�s: s�U 6= X �U)

= f de�nition unless, predicate calculus g

(8a : a 2 aQ : fp ^ (�s: s�U = X �U)g a f(�s: s�U = X �U)) pg)

( f U = wQ \ rP , Theorem 3.4.533 g

p 2 Pred:(rP ) ^ (8a : a 2 aQ : (wQ)c 8 a)

( f de�nition Unity g

p 2 Pred:(rP ) ^ Unity:Q

N

Lemma 4.7.8

p 2 Pred:(rP ) ^ (Q` r unlessQ!?P s)

Q` p ^ r unless s
I

Proof:

Let U = Q!?P . We want to prove p ^ r unless s. Using unless Simple Disjunction
46
it

su�ces to show that for all X:

p ^ r ^ (�s: s�U = X �U) unless s

Using unless Conjunction46 and Post Weakening46 it su�ces to show:

r ^ (�s: s�U = X �U) unless s

p ^ (�s: s�U = X �U) unless (�s: s�U 6= X �U)
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The �rst follows from Q` r unlessU s. The second follows from Lemma 4.7.7.
N

Now here is the Singh law. If P can make progress p � q, and under condition
r, Q cannot in
uence P without establishing s, then in the composition P []Q starting
from p and r, either P makes its progress to q, or it does something that invalidates r,
or Q writes something to P , in which case s will hold. The law is formulated below.
A more general version is also provided.

Theorem 4.7.9 Singh Law REACH SINGH

r; s 2 Pred:w(P []Q) ^ (Q` �J) ^ (Q` J ^ r unlessQ!?P s) ^ (J P` p� q)

J P []Q` p ^ r� q _ :r _ s

Theorem 4.7.10 (General) Singh Law REACH SINGH g

r; s 2 Pred:w(P []Q) ^ p1 2 Pred:(wP [ (Q!?P ))
( P []Q` �J) ^ (Q` J ^ r unlessQ!?P s) ^ (J ^ p1 P` p2� q)

J P []Q` p1 ^ p2 ^ r� q _ :p1 _ :r _ s
I

Only the proof of the General Singh Law will be presented.
Proof:

By applying� Induction56, it su�ces to show that R = (�a; b: J P []Q` p1^a^r� b_
:p1_:r_s) is transitive, left-disjunctive, and includes E = (�a; b: J^p1 P` a ensures b).
To show that R is transitive is easy:

(p1 ^ a ^ r� b _ :p1 _ :r _ s) ^ (p1 ^ b ^ r� c _ :p1 _ :r _ s)

= f predicate calculus g

(p1 ^ a ^ r� (p1 ^ b ^ :r) _ :p1 _ r _ s) ^ (p1 ^ b ^ r� c _ :p1 _ :r _ s)

) f� Cancellation56 g

p1 ^ a ^ r� c _ :p1 _ :r _ s

The left-disjunctivity of R follows directly from� Disjunction56. It remains to show
that R includes E.

By applying� Introduction56 and ensures Compositionality60, R:a:b is implied
by:

i. (p1 ^ a ^ r) 2 Pred:(wP []Q)

ii. (b _ :p1 _ :r _ s) 2 Pred:(wP []Q)

iii. P []Q` �J

iv. P` J ^ p1 ^ a ^ r ensures b _ :p1 _ :r _ s

v. Q` J ^ p1 ^ a ^ r unless b _ :p1 _ :r _ s

The �rst two are easy and left to the reader. iii appears in the assumption. Using
ensures Post-weakening47, iv is implied by P` J ^ p1 ^ a ^ r ensures b, which follows
from E:a:b. For v we derive:
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J ^ p1 ^ a ^ r unless b _ :p1 _ :r _ s

( f unless Post-weakening46 g

J ^ p1 ^ a ^ r unless s

( f P []Q` �J implies Q` �J , unless Simple Conjunction46 g

p1 ^ a ^ r unless s

( f Lemma 4.7.8 g

(p1 ^ a) 2 Pred:(rP ) ^ r unlessQ!?P s

( f predicate con�nement distributes over ^; assumptions g

p1 2 Pred:(rP ) ^ a 2 Pred:(rP )

( f con�nement is monotonic with respect to �; de�nition E g

p1 2 Pred:(wP [ (Q!?P )) ^ E:a:b

N

Let us now try to apply the law to our example with Sender and Bu�er. Recall that
we want to obtain the speci�cation (4.7.3) from (4.7.5). The �rst is re-displayed below:

true SB` (in = X) ^ inRdy ^ :ack� X 2 buf _ (in 6= X) _ :inRdy _ ack

By applying the General Singh Law, we can re�ne the above to the following:

i. (inRdy ^ :ack) 2 Pred:(w(Sender[]Bu�er))

ii. false 2 Pred:(w(Sender[]Bu�er))

iii. (in = X) ^ inRdy) 2 Pred:(w(Bu�er) [ Sender!?Bu�er)

iv. (in = X) ^ inRdy Bu�er` true� X 2 buf _ ack

v. Sender̀ inRdy ^ :ack unlessSender!?Bu�er false

The �rst three are trivial. iv is (4.7.5). v is (4.7.6), stating that Sender cannot in
uence
Bu�er as long as inRdy and :ack hold. It is not too di�cult to conclude from its code
that Sender has this property.

The Singh Law, although it formulates a very intuitive idea, looks complicated. The
law reduces a progress speci�cation of a program to a progress speci�cation of one of
its component, two safety speci�cations, and some 'type' restrictions on the predicates
that occur in the speci�cations. At �rst sight, applying the law seems only to generate
more proof obligations and one may therefore question the merit of using the law.
However, recall that a � (or 7!) progress property is proved by composing a number
of ensures properties. Without the Singh Law, or some other parallel composition law,
all these ensures properties will have to be veri�ed with respect to the whole program.
With the Singh Law they only have to be veri�ed with respect to a component program.
If the number of ensures properties and the average size of the component programs
are su�ciently large, then applying the Singh Law will become more economical.

In some cases, the law can be simpli�ed. The following corollaries show some of
these cases. In the linear temporal logic there is a relation called until. A program P

satis�es P` p until q if whenever p holds during an execution of P , afterwards q will
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eventually hold but in the meantime p will continue to hold until q holds. This sounds
very much like ensures, but until is actually larger than ensures. Roughly speaking,
until is equal to 7! \ unless . Consequently, either p ` true � q or (true ` p �

q) ^ ( ` p unless q) imply p until q. If either holds in P , and under condition p, Q
cannot in
uence P without establishing q then one can conclude that p� q must hold
in the composition P []Q. This is what the following two corollaries state.

Corollary 4.7.11 until Compositionality UNTIL COMPO1

(Q` �J) ^ (Q` J ^ p unlessP?!Q q) ^ (P` J ^ p unless q) ^ (J P` p� q)

J P []Q` p� q

Corollary 4.7.12 until Compositionality UNTIL COMPO2

p 2 Pred:(wP [ (P?!Q)) ^ (P []Q` �J)
(Q` J ^ p unlessP?!Q q) ^ (J ^ p P` true� q)

J P []Q` p� q
J

4.7.2 Exploiting Fix Point

A state s is called a �x point of a program P , if s remains unchanged under the
execution of any action in P . The notion can be lifted to the predicate level. A
predicate p is called a �x point of P , denoted by p 2 Fp:P , if all states s 2 p are �x
points.

De�nition 4.7.13 Fix Point FPp DEF

p 2 Fp:P = (8a; s : a 2 aP : p:s ^ a:s:t) (s = t))
J

Note that the de�nition above may not match its intended interpretation if P contains
an action a which is not always-enabled (that is, for some begin state s, a may not be
able to make any transition). However, in the case of UNITY programs, their actions
are assumed to be always-enabled.

Fix points can be useful in parallel composition. If a program P has reached a �x
point, then certainly it cannot in
uence any other program Q. If Q cannot throw P

from its �x points space, then any progress in Q will be preserved in the composition
P []Q. In fact, this principle is a corollary of the Singh law. Before its formulation is
presented here are some basic properties of �x points. Fix points are anti-monotonic
with respect to ). In addition, if a predicate q is a �x-point of P , then for any p, p^ q
is stable in P .
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Theorem 4.7.14 Fp Monotonicity FPp MONO

[p) q] ^ q 2 Fp:P

p 2 Fp:P

Theorem 4.7.15 Fp Stability FPp IMP STABLE

q 2 Fp:P

(p ^ q) 2 Fp:P
J

We now present the composition law using �x points we mentioned before 8 :

Theorem 4.7.16 REACH COMPO BY FPp

( P` � (J1 ^ J2)) ^ J2 2 Fp:Q ^ (J1 P` p� q)

J1 ^ J2 P []Q` p� q
I

Proof:

J2 2 Fp:Q ^ (J1 P` p� q)

) f Theorem 4.7.15; de�nition of unlessV g

( Q` J1 ^ J2 ^ true unlessQ!?P false) ^ (J1 P` p� q)

) f P` � (J1 ^ J2), �Conjunction47 g

( Q` J1 ^ J2 ^ true unlessQ!?P false) ^ (J1 ^ J2 P` p� q)

) f Singh Law65 g

J1 ^ J2 P []Q` p� q

N

4.7.3 Why the Original Version of Singh Law is Flawed

Earlier it was mentioned that the original version of the Singh law is 
awed. Let us
now take a look at this and see what we can learn from it. However, if the reader
wishes, he can skip this entire subsection.

A simple form of the original Singh Law [Sin89] looks as follow:

(Q` true unlessQ!?P s) ^ ( P` p 7! q)

P []Q` p 7! q _ s
(4.7.7)

stating that if Q cannot in
uence P without establishing s, then any progress made
by P will be preserved in the composition P []Q, or Q interferes and establishes s.

Note that there is no restriction on p; q and s. They may be any predicates! Now
consider the following programs:

8 The law was given �rst by Singh in [Sin89].
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prog P

read fxg

write fxg
init true
assign x := x+ 1

prog Q

read fag

write fag
init true
assign a := :a

Since the programs share no variable then obviously Q cannot in
uence P (Q!?P =
�), and hence it satis�es:

Q` true unlessQ!?P false (4.7.8)

A valid property of P is P` a ^ (x = 0) 7! a ^ (x = 1). Using (4.7.8) and Singh law
(4.7.7) we conclude the progress also holds in P []Q. But this cannot of course be true.

As no restriction is put on p and q in (4.7.7), the progress p 7! q may actually refer
to some internal variable of Q, and this is what causes the problem above. Let us now
put a restriction on them and see how we can prove the law:

p; q 2 Pred:(rP ) ^ (Q` true unlessQ!?P s) ^ ( P` p 7! q)

P []Q` p 7! q _ s
(4.7.9)

To prove the above we do not have many options but to resort to 7! Induction52.
So, assuming Q` true unlessQ!?P r, prove that R = (�p; q: p; q 2 Pred:(rP ) ) ( P []Q`
p 7! q_ s)) is transitive, left-disjunctive, and includes ensures. But we have now a new
problem. The transitivity (and left-disjunctivity) of R cannot be proved:

p; q 2 Pred:(rP )) ( P []Q` p 7! q _ s))

q; r 2 Pred:(rP )) ( P []Q` q 7! r _ s))

are not su�cient to prove

p; r 2 Pred:(rP )) ( P []Q` p 7! r _ s))

So, let us instead prove a slightly di�erent law:

Theorem 4.7.17 Simple Singh Law for 7!

(Q` true unlessQ!?P s) ^ ( P` p 7! q)

P []Q` (p�rP ) 7! (q �rP ) _ s
I

Note that if p; q 2 Pred:(rP ), hence in other words (p = p�rP ) ^ (q = q �rP ), the
above implies (4.7.9).
Proof:

Assuming Q` true unlessQ!?P s, the law above will be proved using 7! Induction52.
So, it will be showed that R = (�p; q: P []Q` (p � rP ) 7! (q � rP ) _ s) is transitive,
left-disjunctive, and includes (�p; q: P` p ensures q). For the transitivity:

((p�rP ) 7! (q �rP ) _ s) ^ ((q �rP ) 7! (r �rP ) _ s)
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) f 7! Cancellation52 g

(p�rP ) 7! (r �rP ) _ s

The left-disjunctivity of R follows directly from 7! Disjunction52 and the fact that
the con�nement of predicates distributes over _.

As for the inclusion of ensures, assume P` p ensures q. We derive:

P []Q` (p�rP ) 7! (q �rP ) _ s

( f 7! Introduction52 g

P []Q` (p�rP ) ensures (q �rP ) _ s

( f ensures Compositionality60 g

( P` (p�rP ) ensures (q �rP ) _ s) ^ (Q` (p�rP ) unless (q �rP ) _ s)

( f ensures Post-weakening47; Corollary 3.4.331 g

(8a : a 2 aP : (rP )c9 a) ^ ( P` p ensures q) ^ (Q` (p�rP ) unless (q �rP ) _ s)

( f assumption, de�nition Unity
40
g

Unity:P ^ (Q` (p�rP ) unless (q �rP ) _ s)

( f unless Post-weakening46 and Lemma 4.7.864 g

Unity:P ^ p�rP 2 Pred:(rP ) ^ (Q` true unlessQ!?P s)

= f P is a UNITY program, p�V is always con�ned by Pred:V g

Q` true unlessQ!?P s

N

4.7.4 A Short Overview

At this point, the reader may begin to lose track as to where we are aiming at. Just
to remind him: we have introduced the logic UNITY and discussed how to represent a
UNITY program. We have presented the standard UNITY operators, used to express
the behaviors of a program, and discussed their shortcomings. We gave a special
attention to progress properties and extended UNITY with a new progress operator
which we claim to have a nice compositional property |this will be made clear in
the next section. In the mean time, many calculational laws concerning the extended
logic have been presented. Some of the laws will be used later, but some will not. In
general though, the reader will likely �nd those laws to be useful for designing his own
programs.

As said, the next section will present more compositionality results of the new
progress operator �. It is an important section. The two sections that follow the
next section are included for the completeness sake. The �rst will discuss program
transformations, which can be used as an alternative method to design a program as
in [Bac90, R.95]. The second will present a standard operational semantics for UNITY
and present some soundness results of the UNITY logic with respect to the mentioned
semantics.
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4.8 Write Disjoint Composition

Stronger compositionality results can be obtained for programs that are write-disjoint.
Recall (from Chapter 3) that two programs P and Q are said to be write-disjoint if
they write to no common variable. This is denoted by P �Q. If two programs P and
Q are write-disjoint, Q can only in
uence P through P 's input variables, that is, the
variables read by P but not written by it. Consequently, once P and Q agree on a set
of input values for P , whatever progress P makes through its write variables will be
preserved in the parallel composition of P and Q. In Chapter 3 we hypothesized a law
called Transparency law which states exactly this. This will be proven in this section.
The Transparency law is fundamental for write-disjoint composition. Some well known
design techniques that we use in practice are corollaries of this principle. A progress
property is usually constructed, either using transitivity or disjunction, from a number
of simpler progress properties. Using the principle we can delegate each constituent
property, if we so desire, to be realized by a write-disjoint component of a program.

Parallel composition of write-disjoint programs is also attractive because it occurs
frequently in practice. The pictures in Figure 2.3 show various instances of composition
of write-disjoint programs. We will de�ne some of them below.

De�nition 4.8.1 Write-disjoint Programs WD DEF

P �Q = (wP \wQ = �)

De�nition 4.8.2 Layering LAYERING

P . Q = (P �Q) ^ (wP � iQ)

De�nition 4.8.3 Fork FORK

P t Q = (P �Q) ^ (iP = iQ)

De�nition 4.8.4 Non-Interfering (Parallel) FPAR

PkQ = (P �Q) ^ (rP \ rQ = �)
J

If P �Q, then the parallel composition of P and Q is also called the write-disjoint

composition of P and Q. Obviously, if .;t, and k are all instances of �.

In a non-interfering parallel composition of two programs, both programs are in-
dependent from each other. In a fork, the programs based their computation on the
same set of input variables. For example if we have a program that computes the
minimum of the values of the variables in V , and another program that computes the
maximum, we can put the two programs in parallel by forking them. In a layering

we have two layers. If P . Q holds, then P is called the lower layer and Q the upper

layer. The computation of the upper layer depends on the results of the lower layer.
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The converse does not necessarily hold. For example, the lower layer can be a pro-
gram that constructs a spanning tree from a vertex i and the upper layer is a program
that broadcasts messages from i, using the constructed spanning tree. Layering works
like a higher level sequential composition. However, the two layers do not have to be
implemented sequentially, especially if they are non-terminating programs.

Before the Transparency law can be proven, �rst we need the following lemma,
stating that if P and Q are write disjoint, then Q cannot destroy a predicate con�ned
by wP :

Lemma 4.8.5 CONF Local

(P �Q) ^ p 2 Pred:(wP )

Q`�p
I

Proof:

The lemma follows from Lemma 3.4.633 in Chapter 3:

Q`�p

= f de�nition of � (4.3.8) g

(8a : a 2 aQ : fpg a fpg)

( f Lemma 3.4.6
33
g

(8a : a 2 aQ : wP 8 a ^ p 2 Pred:(wP ))

( f P and Q are write-disjoint g

p 2 Pred:(wP )

N

Now the transparency law:

Theorem 4.8.6 Transparency Law REACH TRANSPARANT

P �Q ^ (Q` �J) ^ (J P` p� q)

J P []Q` p� q
I

Proof:

By applying � Induction56 it su�ces to show that R = (�p; q: J P []Q` p � q) is
transitive, left-disjunctive, and includes E = (�p; q: J P ` p ensures q). That R is
transitive and left-disjunctive follows from � Transitivity56 and Disjunctivity56.
For the inclusion of E we derive:

J P []Q` p� q

( f� Introduction56 g

p; q 2 Pred:(w(P []Q)) ^ ( P []Q` �J) ^ ( P []Q` J ^ p ensures q)

( f wP � wP []Q; Confinement Monotonicity30 g
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p; q 2 Pred:(wP ) ^ ( P []Q`�J) ^ ( P []Q` p ^ J ensures q)

= f � Compositionality60 g

p; q 2 Pred:(wP ) ^ ( P`�J) ^ (Q`�J) ^ ( P []Q` p ^ J ensures q)

( f ensures Compositionality
60
and the de�nition

54
of ensures g

(Q`�J) ^ (Q` p ^ J unless q) ^ (J P` p ensures q)

( f unless Post-weakening46; de�nition of �; � Conjunction47 g

(Q`�J) ^ (Q`�p) ^ (J P` p ensures q)

( f Lemma 4.8.5 g

(Q`�J) ^ p 2 Pred:(wP ) ^ (P �Q) ^ (J P` p ensures q)

= f de�nition54 of ensures g

(Q`�J) ^ (P �Q) ^ (J P` p ensures q)

N

For example consider again the example with Sender and Bu�er in Figure 4.1461.
Recall that we were discussing about the speci�cation (4.7.1) of Sender[]Bu�er:

(8X :: true SB` (in = X) ^ inRdy ^ :ack� (out = X))

The speci�cation was re�ned into a number of speci�cations. One of them is (4.7.4):

true Sender[]Bu�er̀ X 2 buf � (out = X)

By looking into the code of Bu�er we conclude that this progress will be established
by Bu�er, no matter what Sender does. But how can we conclude this without having
to look into the code of Bu�er? Notice that Sender and Bu�er are write-disjoint. Using
the Transparency law we can re�ne the above to:

true Bu�er` X 2 buf � (out = X) (4.8.1)

stating that the required progress can indeed be delegated to Bu�er.
One may ask, whether a special law for write-disjoint programs is really necessary.

That is, whether it can derived from the Singh Law given in the previous section. The
latter expresses how, in general, a progress property of a program P may be in
uenced
by another program Q (through the variables in Q!?P ). However, the Singh Law does
not discriminate between progress properties which are 'directly' dependent on Q!?P
and those that are not. For example, we cannot obtain (4.8.1) above from

true Sender[]Bu�er̀ X 2 buf � (out = X)

using the Singh65 law because the law presumes the worst case, which is that any
progress made by Bu�er may su�er from interference by Sender, which is not always
true.

An instance of write-disjoint composition called layering |also called collateral
composition| has been recognized by Herman [Her91] and Arora [Aro92] as an im-
portant technique to combine self-stabilizing programs. The following law is especially
useful to handle layering.
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Theorem 4.8.7 Spiral Law REACH SPIRAL

(P �Q) ^ ( P` � (J ^ q)) ^ (Q` �J)
(J P` p� q) ^ (J ^ q Q` true� r)

J P []Q` p� q ^ r
J

If P . Q holds, P []Q is a layering with P as the lower layer and Q as the upper
layer. According to the law, a progress property p� r in P []Q can be split into p� q

in the lower layer P , and q ` true� r in the upper layer Q. The Spiral law is used
to implement a sequential division of tasks. For example if we want to do a broadcast,
we can think of a two-steps process: �rst, construct a spanning tree, and then do the
actual broadcast. Usually we have separate programs for both tasks. The Spiral Law
provides the required justi�cation for this kind of separation, where in this case P

constructs the spanning tree and Q performs the broadcast under the assumption that
q describes the existence of this spanning tree.

4.9 Program Transformations

Parallel composition or sequential composition are, as the name implies, program com-
position in which two programs are combined to form a larger one. There are also
program transformations in which a program is transformed into another one. In
[CM88] only the addition of assignments to fresh variables is mentioned. There are of
course more useful transformations but at the time not much was known about how
exactly they a�ect the behavior of a program. Recent results were given by Singh in
[Sin93] who exposed data re�nement, guard strengthening, and re�nement of atomicity,
and investigated the kind of program properties preserved by these transformations.
There is also the work by Udink, Herman, and Kok in [UHK94] which presented ac-
tion duplication, data re�nement, guard strengthening, and action substitution using
invariants, and proved that these transformations preserved some form of local safety
and progress properties.

In this section several program transformations will be discussed. The main ques-
tion that we wish to address is how the transformations a�ect the � properties of a
program. We expect that the results in [CM88] and [Sin93] for 7! will translate well to
results in�. In addition, we �nd the laws of superposition (additions of assignments
to fresh variables) in [CM88] to be somewhat informally stated. We will re-state them,
with proper details. The reader may also �nd it interesting to see how the transfor-
mation laws presented later can be neatly proven from the laws at the action level
presented in Chapter 3. The proofs are collected separately in Section 4.12. Program
transformation is however not a main issue in this thesis. The technique is not going
to be used in the applications presented later in this thesis. Therefore we are not going
to be too elaborate. The results are also not mechanically veri�ed yet.

If P is a UNITY program, adding variables to P , or a skip action, preserves the
properness of P . That is, the resulting program also satis�es Unity:P . Obviously, this
simple transformation preserves whatever unless, ensures,�, and invariant properties
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of P . In addition, strengthening the initial condition of a program also preserves such
properties.

Recall than an action a can be extended with an assignment b to some fresh variables
by composing b 'in front of' a: b; a. Assume that V are the variables read by a.
Naturally, we expect that extending a with b preserves any Hoare triple speci�cation of
a, as long as the speci�cation does not refer to the fresh variables. This is justi�ed by
Corollary 3.4.432 from Chapter 3 which states that fpg a fqg implies fp�V g b; a fq �V g.
The same should also hold at the program level. In UNITY, the addition of assignments
to fresh variables is called superposition. In addition, if we can extend the actions in a
program with assignments to fresh variables, we can also add new actions which only
assign to fresh variables.

Theorem 4.9.1 Primitive Properties after Superposition

Let P and Q be UNITY programs and f 2 Action! Action such that: aQ =
ff:a; a j a 2 aPg [ ff:a j a 2 Ag for some A � Action. Let R be either unless or
ensures. We have:

(8a : a 2 aP : rP 8 f:a) ^ ( P` p R q)

Q` (p�rP ) R (q �rP )
J

Notice that Q is obtained from P by extending each action a of P with an assignment
f:a (which can also be skip). The �rst conjunct in the assumption of the above law
expresses the fact that f:a only assigns to fresh variables. A similar law also exists for
�. It can easily be proven using � Induction56.

Theorem 4.9.2 � after Superposition

Let P and Q be UNITY programs and f 2 Action!Action such that wP � wQ and:
aQ = ff:a; a j a 2 aPg [ ff:a j a 2 Ag for some A � Action. We have:

(8a : a 2 aP : rP 8 f:a) ^ (J P` p� q)

J �rP Q` p� q
J

An action a can be strengthened with a guard g by extending it to if g then a. The
meaning of this action, according to the convention made Section 4.2 is:

(�s; t: (g:s) a:s:t) ^ (:g:s) (s = t)))

It is known that strengthening the actions of a program with guards preserves its safety
properties:
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Theorem 4.9.3 Safety under a Stronger Guard

Let P and Q be UNITY programs, g 2 Action!Pred, and A � aP such that aQ =
(aPnA) [ fif g:a then a j a 2 Ag We have:

P` p unless q

Q` p unless q
J

Notice that Q is obtained from P by adding a guard g:a to each action a from A.
If an action a in P is strengthened with a guard g, whatever progress by � in P

will be preserved in the new program, if the other actions cannot destroy g, and if it
will eventually hold. This is expressed by the following theorem 9 .

Theorem 4.9.4 Progress under a Stronger Guard

Let P and Q be UNITY programs, g 2 Action!Pred, and A � aP such thatwP � wQ

and aQ = (aPnA) [ fif g:a then a j a 2 Ag. Let Q�a be the same program as Q,
except that the action a is deleted. We have:

(8a : a 2 A : (Q�a` �J ^ g:a) ^ (J Q` true� g:a)) ^ (J P` p� q)

J Q` p� q
J

Notice that the condition J Q ` true � g:a states that in the new program Q,
eventually the guard g:a becomes true. The condition Q�a

` � J ^ g states that no
other action but a can falsify the guard g:a.

If P ` J ^ p unless q holds, and in addition J implies that g = h, then replacing
an action if g then a in P with if h then a preserves J ^ p unless q. Typically J is an
invariant, or at least a stable predicate. A similar result also exists for ensures and�.

Theorem 4.9.5 Actions Substitution

Let P , Q and R be UNITY programs such that

Q = P [](fif g1 then assign:x:f1g; iniP; rP;wP )

R = P [](fif g2 then assign:x:f2g; iniP; rP;wP )

and x 2 wP . Let R be either unless or ensures. If J satis�es [J ) (�s: f1:s; g1:s =
f2:s; g2:s)] then we have:

Q` J ^ p R q

R` J ^ p R q
and

J Q` p� q

J R` p� q
J

As an example consider two programs P and Q which communicate through the
assignment (of P ) if g then y := x where x is intended to be a variable of P and y of
Q. The assignment can be viewed as an action by P to send a new datum it keeps in

9 A stronger result was given by Singh in [Sin93].
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x to the variable y. As it is, P can send a new datum whenever g is true. Suppose
that we want to implement this communication on a synchronous machine. That is,
sending a new datum is only possible if not only P , but also Q is ready to receive the
datum. Below we show an implementation of this. The read, write, and init sections
are omitted for the sake of simplicity.

prog P 0

assign
: : :

[] if Prdy^ Qrdy then if g then y;Prdy := x; false
[] if :Prdy ^ :Qrdy then Prdy := true

prog Q0

assign
: : :

[] if Prdy^ :Qrdy then Qrdy := true
[] if :Prdy ^Qrdy then Qrdy := false

The variables Prdy and Qrdy are assumed fresh with respect to P and Q. P 0 is
ready to send a new datum if Prdy is true and Q0 is ready to receive one if Qrdy is true.
Only when Prdy and Qrdy are both true then a communication can take place. Notice
that the protocol is in fact the 4-phase hand-shake protocol as in Figure 4.14.

We feel that P 0[]Q0 somehow 'implements' P []Q. But how can one justify this?
We observe that we can obtain P 0[]Q0 from P and Q through a series of previously
described transformations, and recall that the transformations preserve |under some
conditions| unless and � properties.

First, we can transform P by adding an assignment Prdy := true and extending the
action if g then y := x with if g then Prdy := false. Notice that these are assignments
to Prdy, which is fresh. We obtain the following program:

prog P1
assign

: : :

[] (if g then Prdy := false) ; (if g then y := x)
[] Prdy := true

By adding assignments to the fresh variable Qrdy we can also transform Q to the
following:

prog Q1

assign
: : :

[] Qrdy := true
[] Qrdy := false

By adding guards we can obtain P 0 from P1 and Q0 from Q1.
By the transformation laws given earlier, it can be concluded that P []Q` p unless q

implies P 0 []Q0` p unless q and J P []Q` p� q implies J P 0 []Q0` p� q, if J , p, and q are all
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con�ned by Pred:(rP ) and if each new guard eventually holds and can only be falsi�ed
by the action it stands guard for. If the reader observes the code of P 0 and Q0 and
considers the fact that Pry and Qrdy are fresh variables, he should be able to conclude
that the latter condition is met.

One can continue |or take di�erent transformations| by, for example, sharpening
the condition that determines the readiness of Q to receive and hence giving Q more
control in synchronizing with P .

4.10 The Semantics of UNITY

Eventually, one may want to relate the logic de�ned by UNITY and some operational
semantics. In doing so, one usually hopes to investigate how far the logic re
ects
the 'real' world. This raises the question of soundness and completeness of the logic
with respect to the given operational semantics. Another reason is that in some cases,
reasoning may be easier if conducted at the operational level. So, some ability to go
back and forth between the logical and operational level will be appreciated.

In this section, an operational semantics for UNITY will be given. The semantic
domains are quite straightforwardly chosen, namely all possible sequences of states
which can be generated by a UNITY program (this is a standard model). An opera-
tional notion of unless and 7! (leads-to) will be de�ned based on these semantics. It
has been proven that these two operators are sound with respect to their operational
counterparts, but not complete. It has been shown that Sanders' version of unless
and 7! are complete [San91, Pac92]. There is no reason for us to repeat these results.
However, we wish to mention here that we have mechanically veri�ed the soundness
results. Quite unfortunately, due to time constraints, we did not succeed in verifying
the completeness results.

Recall that an execution of a UNITY program is an in�nite sequence of actions
such that each action occurs in�nitely often (fairness). Let exec:P denote the set of all
possible UNITY execution of P . We will represent an in�nite sequence over A with a
function from N to A. Let tr be the set of all possible sequence of states which can be
generated by the executions in exec. A member of tr:P is called a trace of P .

De�nition 4.10.1 Execution Set EXEC DEF

� 2 exec:P = (8i :: �:i 2 aP ) ^ (8i; a : a 2 aP : (9j : i � j : �:j = a))

De�nition 4.10.2 Trace Set TRACE DEF

� 2 tr:P = iniP:(�:0) ^ (9� : � 2 exec:P : (8i :: (�:i):(�:i):(�:(i+ 1))))
J

Let P` p U q mean that for any trace � of P , if �:i satis�es p ^ :q, then �:(i+ 1)
satis�es p _ q. Let P` p L q mean that for any trace � of P , if �:i satis�es p, then
there exists a j, i � j, such that �:j satis�es q. Indeed, U and L are intended to be the
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operational interpretation of unless and 7!.

De�nition 4.10.3 Operational Unless tUNLESS ADEF1

P` p U q = (8i; � : � 2 tr:P : (p ^ :q):(�:i) ) (p _ q):(�:(i+ 1)))

De�nition 4.10.4 Operational Leads-to tLEADSTO ADEF1

P` p L q = (8i; � : � 2 tr:P : p:(�:i) ) (9j : i � j : q:(�:j)))
J

unless and 7! are sound with respect to the above operational interpretation. They
are however not complete. The Sanders' de�nition of unless and 7! (given in Section
4.6) are complete with respect to the above interpretation. The soundness of Sanders'
de�nition follows from the soundness of the standard unless and 7!. We did not verify
any completeness result. If the reader is interested, an elegant completeness proof can
be found in [Pac92].

Theorem 4.10.5 Soundness of unless UNLESS IMP tUNLESS

( P` p unless q) ) ( P` p U q)

Theorem 4.10.6 Soundness of 7! LEADSTO IMP tLEADSTO

( P` p 7! q) ) ( P` p L q)
J

Now, how about the operational meaning of �? We could not come with any
satisfactory answer. The only thing that we know is, as given equation (4.5.3)54 in
Section 4.5, that � includes 7!:

(true P` p� q) ) ( P` p 7! q)

Or, slightly more general, we can prove:

(J P` p� q) ) ( P` J ^ p 7! q) (4.10.1)

Since J P ` p � q also implies P ` J unless false, It follows then, that J P ` p � q

implies P` J U false and P` J ^ p L q. We do not expect equivalence though, because
� is quite di�erent from 7!. This has been suggested early in Section 4.5, but let us
go over an example presented there again. Consider the following program:

prog P

read fa; xg

write fxg
init true
assign if a = 0 then x := 1
[] if a = 1 then x := 1
[] if a = 2 then x := x+ 1
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In the above program we have (b = 0) ^ a < 2 7! (x = 1). We expect that the�
version of this property, namely (b = 0)^ a < 2 ` true� (x = 1), also holds. But this
is not true. The property (b = 0)^a < 2 7! (x = 1) can be concluded because we have
(b = 0) ^ (a = 0) ensures (x = 1) and (b = 0) ^ (a = 1) ensures (x = 1) and we can join
them using the disjunctivity of 7!. Unfortunately we cannot do the same with �. If
we do that, we will get an unsound logic. Consider the program TikToe in Figure 4.9.
It is redisplayed below:

prog TikToe
read fa; bg
write fag

init true
assign if a = 0 then a := 1
[] if a = 1 then a := 0
[] if b 6= 0 then a := a+ 1

The programs P and TikToe are write-disjoint. Suppose (b = 0) ^ a < 2 P `
true� (x = 1) holds. The predicate (b = 0) ^ a < 2 is also stable in Tiktoe. By the
Transparency72 principle we conclude that (b = 0) ^ a < 2 P []TikToe` true � (x = 1)
also holds. But this simply cannot be true. Consider the execution:

[ if a = 0 then a := 1 ; if a = 0 then x := 1 ;
if a = 1 then a := 0 ; if a = 1 then x := 1 ;
if a = 2 then x := x+ 1 ; if b 6= 0 then a := a+ 1 ]*

which is a fair execution of P []TikToe, but with this execution x will never be equal to
1 if initially x 6= 1 ^ a < 2 ^ (b = 0).

So, � is not as disjunctive as 7! can be: it has to be less disjunctive because, as
we have seen, this is crucial for the Transparency law. As said, we could not come
up with a satisfactory operational semantics for (�p; q: J P ` p � q). We suspect
however, that this is the largest subrelation of (�p; q: P` J ^ pLq) which satis�es the
Transparency law.

4.11 Related Work

In [UHK94], Udink, Herman, and Kok de�ned a new progress operator. The new
operator is somewhere between ensures and 7!. It has a very nice compositionality
property but it is a rather complicated operator. However, the authors also provided
a class of program transformations which preserve safety and progress under the new
operator. Reasoning can be carried out in terms of transformations. In fact, the
transformations discussed in Section 4.9 were much inspired by the work in [UHK94].

The issue of compositionality in distributed programming has received quite a lot
of attention. In [Zwi88] Zwiers proposed a compositional logic for synchronously com-
municating processes. In [dBvH94] de Boer and van Hulst proposed a compositional
logic for asynchronous systems, and in [PJ91] Pandya and Joseph proposed yet an-
other compositional logic for both synchronous and asynchronous systems. The focus
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of these papers are focussed around the assumed means of communication, namely
channels. Partial correctness is considered. In UNITY however, total correctness is
very important, since otherwise no progress can be concluded. In this thesis, attention
is focused on the compositionality of progress in general, but indeed further research
is required to develop some basic theory for UNITY regarding channel-based commu-
nication. Such an investigation will surely bene�t the results of the above mentioned
papers.

Closely related work was done by de Boer and his colleagues in [dBKPJ93] where
they gave a compositional semantics of local blocks. A local block is a part of a program
in which it does some internal computation. Such a computation is not visible from
outside, and therefore cannot be directly in
uenced either. Recall that in Section 4.8
we discussed write-disjoint programs. If two programs P and Q are write-disjoint, then
the write variables of P are in a sense local, because they cannot be written by Q |
although Q may still be able to observe them. In [UK93a] Udink and Kok investigated
the relation between various operational semantics for UNITY and the preservation
of UNITY properties under program re�nement. In their subsequent paper [UK93b],
semantics that preserves program re�nement within a context were proposed.

4.12 Postponed Proofs

Theorem 4.9.1

Let P and Q be UNITY programs and f 2 Action!Action such that: aQ = ff:a; a j a 2
aPg [ ff:a j a 2 Ag for some A � Action. Let R be either unless or ensures. We have:

(8a : a 2 aP : rP 8 f:a) ^ ( P` p R q)

Q` (p�rP ) R (q �rP )
I

Proof:

We will only show the case R = unless. The case of ensures can be proven in a much
similar way. We have to show:

Q` (p�rP ) unless (q �rP )

By the de�nition42 of unless it su�ces to show that for all b 2 aQ we have:

f(p�rP ) ^ :(q �rP )g b f(p�rP ) _ (q �rP )g

If b = f:a; a, for some a 2 aP , we derive:

f(p�rP )^ :(q �rP )g f:a; a f(p�rP )_ (q �rP )g

= f projection distributes over predicate operators g

f(p^ :q)�rPg f:a; a f(p _ q)�rPg

( f Corollary 3.4.432 g
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rP 8 f:a ^ (rP )c 9 a ^ fp ^ :qg a fp_ qg

= f P is a UNITY program g

rP 8 f:a ^ fp^ :qg a fp _ qg

= f assumption g

fp ^ :qg a fp _ qg

The last follows from P` p unless q.
If b = f:a, for some a 2 A, then it can also be written as f:a; skip and an argument

quite similar to the one applies.
N

Theorem 4.9.4

Let P and Q be UNITY programs, g 2 Action!Pred, and A � aP such that wP � wQ

and aQ = (aPnA) [ fif g:a then a j a 2 Ag. Let Q�a be the same program as Q,
except that the action a is deleted. We have:

(8a : a 2 A : (Q�a` �J ^ g:a) ^ (J Q` true� g:a)) ^ (J P` p� q)

J Q` p� q
I

Proof:

Using� Induction56 it su�ces to show thatR = (�p; q: J Q` p� q) is transitive, left-
disjunctive, and includes E = (�p; q: J P` p ensures q), assuming that Q�a

` �J ^ g:a

and J Q` true� g:a hold for all a 2 A.
The transitivity and left-disjunctivity of R follow from � Transitivity56 and

Disjunction56. As for the inclusion of E, assume E:p:q. Hence, by the de�nitions of
E, ensures , and ensures we have:

p; q 2 Pred:(wP ) (4.12.1)

P` �J (4.12.2)

P` J ^ p unless q (4.12.3)

fJ ^ p ^ :qg a fqg (4.12.4)

for some a 2 aP . If a 62 A (and hence a 2 aQ) we derive:

J Q` p� q

( f� Introduction56 g

p; q 2 Pred:(wQ) ^ (Q` �J) ^ (Q` J ^ p ensures q)

= f wP � wQ, Confinement Monotonicity30, (4.12.1) g

(Q` �J) ^ (Q` J ^ p ensures q)

( f de�nition of ensures, a 2 aQ g

(Q` �J) ^ (Q` J ^ p unless q) ^ fJ ^ p ^ :qg a fqg

= f (4.12.4) g

(Q` �J) ^ (Q` J ^ p unless q)
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( f de�nition44 of �, Theorem 4.9.376 g

(P` �J) ^ (P` J ^ p unless q)

The �rst is (4.12.2) and the second is (4.12.3). If a 2 A we derive �rst:

J Q` p� q

( f� Cancellation56 g

q 2 Pred:(wQ) ^ (J Q` p� (p ^ g:a)_ q) ^ (J Q` p ^ g:a� q)

( f� PSP56 g

p; q 2 Pred:(wQ) ^ (Q` J ^ p unless q) ^ (J Q` true� g:a) ^ (J Q` p ^ g:a� q)

= f wP � wQ, Confinement Monotonicity30, (4.12.1) g

(Q` J ^ p unless q) ^ (J Q` true� g:a) ^ (J Q` p ^ g:a� q)

( f Theorem 4.9.376 g

(P` J ^ p unless q) ^ (J Q` true� g:a) ^ (J Q` p ^ g:a� q)

The �rst conjunct is (4.12.3) and the second is an assumption. Let Qa be de�ned as:

Qa = (fif g:a then ag; iniQ; rQ;wQ)

Note that Q = Q�a[]Qa. For the third conjunct we derive:

J Q` p ^ g:a� q

( f� Introduction56, con�nement is preserved by ^ g

p; g:a; q 2 Pred:(wQ) ^ (Q` �J) ^ (Q` J ^ p ^ g:a ensures q)

= f wP � wQ, Confinement Monotonicity30, (4.12.1) g

g:a 2 Pred:(wQ) ^ (Q` �J) ^ (Q` J ^ p ^ g:a ensures q)

( f Theorem 4.9.376, de�nition44 of �, (4.12.2) g

g:a 2 Pred:(wQ) ^ (Q` J ^ p ^ g:a ensures q)

( f Q = Q�a[]Qa, ensures Composition60 g

g:a 2 Pred:(wQ) ^ (Q�a` J ^ p ^ g:a unless q) ^ (Qa` J ^ p ^ g:a ensures q)

( f unless Simple Conjunction46, de�nition44 of � g

g:a 2 Pred:(wQ) ^ (Q�a` J^p unless q) ^ (Q�a` �J^g:a) ^ (Qa` J^p^g:a ensures q)

= f aQ�a � aQ, assumption g

g:a 2 Pred:(wQ) ^ (Q` J ^ p unless q) ^ (Qa` J ^ p ^ g:a ensures q)

= f Theorem 4.9.376, (4.12.3) g

g:a 2 Pred:(wQ) ^ (Qa` J ^ p ^ g:a ensures q)

= f de�nition of ensures and Qa g

g:a 2 Pred:(wQ) ^ fJ ^ p ^ g:a^ :qg if g:a then a fqg

The �rst conjunct follows from J Q` true � g:a and � Confinement57. For the
second, we derive:

fJ ^ p ^ g:a^ :qg if g:a then a fqg

= f de�nition Hoare triple and if g:a then a g
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(8s; t :: (J ^ p ^ g:a^ :q):s ^ (g:a:s) a:s:t)^ (:g:a:s) s = t) ) q:t)

= f de�nition of predicate operators g

(8s; t :: (J ^ ^p ^ :q):s ^ g:a:s ^ (g:a:s) a:s:t) ^ (:g:a:s) s = t) ) q:t)

( f predicate calculus g

(8s; t :: (J ^ p ^ :q):s ^ a:s:t ) q:t)

= f de�nition of Hoare triple g

(4:12:4)

N

Theorem 4.9.5

Let P , Q and R be UNITY programs such that

Q = P [](fif g1 then assign:x:f1g; iniP; rP;wP )

R = P [](fif g2 then assign:x:f2g; iniP; rP;wP )

and x 2 wP . Let R be either unless or ensures. If J satis�es [J ) (�s: f1:s; g1:s =
f2:s; g2:s)] then we have:

Q` J ^ p R q

R` J ^ p R q
and

J Q` p� q

J R` p� q
I

Proof:

We will only proof the unless case. The ensures case can be proven in much the same
way and the� case can subsequently be proven easily using� Induction56. It su�ces
to show that:

fJ ^ p ^ :qg b f(J ^ p) _ qg

holds for all b 2 aR. If b 2 aP then it is trivially implied by Q` J ^ p unless q. If
b = if g2 then assign:x:f2 we derive:

fJ ^ p ^ :qg if g2 then assign:x:f2 f(J ^ p) _ qg

= f de�nition of Hoare triple, if-then construct, and assignment g

(8s; t :: (J ^ p ^ :q):s ^ (g2:s) (t:x = f2:s)^ (t�fxgc = s�fxgc)) ^
(:g2:s) (s = t)) ) ((J ^ p)_ q):t)

= f de�nition of predicate operators g

(8s; t :: J:s ^ (p ^ :q):s ^ (g2:s) (t:x = f2:s)^ (t�fxgc = s�fxgc)) ^
(:g2:s) (s = t)) ) ((J ^ p)_ q):t)

= f [J ) (�s: f1:s; g1:s = f2:s; g2:s)] g

(8s; t :: J:s ^ (p ^ :q):s ^ (g1:s) (t:x = f1:s)^ (t�fxgc = s�fxgc)) ^
(:g2:s) (s = t)) ) ((J ^ p)_ q):t)

= f de�nition of Hoare triple and if-then construct, assignment g

fJ ^ p ^ :qg if g1 then assign:x:f1 f(J ^ p) _ qg

N
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Chapter 5

Stabilization

A self-stabilizing system is, roughly speaking, a system which is capable to recover from
arbitrary transient failures. Such a property is obviously very useful, although one may
�nd the requirement to consider arbitrary failures to be too strong. A more general notion
called convergence is useful to express a more restricted form of stabilizing systems. In
this chapter a UNITY de�nition of convergence will be presented, together with a set of
calculational laws. The laws are used to derive Lentfert's Fair and Successive Approximation
(FSA) algorithm.

5.1 Introduction

T
HE notion of self-stabilization was �rst introduced by Dijkstra in [Dij74]. In his
paper Dijkstra considers a network of processes. A central daemon is introduced
to schedule the execution of the processes and there is a notion of privilege.

Only privileged processes may be executed, but during the execution, the privileges
may indeed change. There is also a set of pre-de�ned legitimate states describing the
objective of the system. Dijkstra de�nes self-stabilization as:

Regardless of the initial state and regardless of the privilege (privileged process)
selected each time for the next move, at least one privilege (privileged process)
will always be present and the system is guaranteed to �nd itself in a legitimate
state after a �nite number of moves.

and in addition:

In each legitimate state each possible move will bring the system again in a
legitimate state.

Since Dijkstra's paper, there have been many advances in computer science research
which made it possible to reason about distributed systems at a more abstract level.
People re-discovered temporal logics and with such a logic at hand it is no longer
necessary to reason operationally in terms of central daemon and privileges (which
basically de�ne the enabledness of an action). Most importantly though, reasoning
about self-stabilization can now be carried out completely within such a logic. The
idea of self-stabilization itself is �rst formalized by Arora and Gouda in [AG90], but
their reasoning is still done informally. A step forward is made by Herman in [Her91]
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by proposing a number of compositional laws of stabilization. A truly formal treat-
ment of stabilization is later given by Lenfert and Swierstra in [LS93] in which the
concept of stabilization in UNITY is formalized and various calculational properties of
stabilization are proved.

To re-phrase Dijkstra's de�nition, self-stabilization requires two things. First, the
system in question is required to reach a legitimate state in a �nite time, regardless
of the initial state of the system. Second, the system will subsequently remain within
the space of legitimate states. The �rst requirement means progress, and the second
stability. If the set of legitimate states is described by a state-predicate q, and P is a
program which self-stabilizes to q, then in UNITY we can express this as follows:

( P` true 7! q) ^ ( P` �q) (5.1.1)

Notice the pre-condition true in the progress part of the above speci�cation. It means
that P can progress to q regardless of its initial state.

What about the failure-recovery property of a self-stabilizing system we mentioned
earlier? As a self-stabilizing system P tries to reach its objective, its environment may
be unstable: it may produce some transient errors, or undergo a spontaneous recon�g-
uration, which a�ect the consistency of the variables upon which P depends. Because
of this 'malicious' behavior, such an environment is sometimes called an adversary.
For example, Dijkstra's central daemon can be considered as an adversary due to its
non-deterministic behavior. If an error occurs, one can consider the state after the
error as a new initial state. Since the system can reach its objective regardless of its
initial state, it will do so too now from the new state. In fact, the fact that a program
can tolerate arbitrary transient errors and the fact that it need not to be initialized are
equivalent.

Self-stabilization is a strong design goal. Perhaps too strong as it may be either too
di�cult to achieve or only be achievable at the expense of other goals. As failures are
not always arbitrary it is useful to consider recovery from a restricted set of failures. The
notion of self-stabilization can be generalized to express this kind of weaker recovery.
There is another reason to make a generalization: it may yield more attractive and
useful calculational laws. In [Len93] Lenfert used the notion of eventually-implies. In
a program P , p is said to eventually imply q if:

( P` p 7! q _ :p) ^ ( P` p ^ q unless :p) (5.1.2)

In particular, if p holds and remains stable, then the above implies that P will progress
to q, which then will remain to hold. It is more general because P does not have to
stabilize to q from all possible initial states, but only those states satisfying p.

We will however take a less radical approach. Basically what we will do is simply
to replace the true in (5.1.1) with an some predicate p. So, given p, a program P is
said to stabilize to q if:

( P` p 7! q) ^ ( P` �q) (5.1.3)

This corresponds with the notion of convergence introduced by Arora and Gouda in
[AG92]. Another closely related concept is adaptiveness introduced by Gouda and
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Herman in [GH91]. Recall that our goal is to mechanically verify the work of Lentfert on
self-stabilizing minimal distance algorithms [Len93]. Convergence turns out to satisfy
all calculation laws used by Lentfert, and some more. In addition, it is also a very
intuitive concept. These are the reasons that we choose convergence above eventually-
implies.

5.2 Convergence

The de�nition of stabilization or convergence as in (5.1.3) is what by Lentfert in [Len93]
is called leads-to-a-stable. There is still a small problem with the de�nition in (5.1.3).
Suppose that a program P can progress from p to q. However, P may not remain
in q immediately after the �rst time q holds. Instead, P may need several iterations
before it �nally remains within q. This can be encoded by requiring P to converge to
a stronger (than q) predicate. This predicate does not need to be fully described. It
su�ces to know that it implies q 1 . So, here is the de�nition of convergence (in terms
of � instead of 7!):

De�nition 5.2.1 Convergence CON

J P` p q

=
q 2 Pred:(wP ) ^ (9q0 :: (J P` p� q0 ^ q) ^ ( P` � (J ^ q0 ^ q)))

J

So, J P` p  q implies that under the stability of J , from p the program P will
eventually �nd itself in a situation where q holds and will remain to hold. If it is obvious
from the context which P and which J are referred, they will be often dropped from
the formula. J ` p  q is pronounced "given the stability of J , from p, P converges
to q".

5.2.1 An Example: Leader Election

As an example, let us consider a derivation of a self-stabilizing program for choosing
a 'leader' in a network of processes. The problem was �rst posed in [lL77]. Leader
election has a lot of applications in distributed computing. For example, to appoint
a central server when several candidates are available. The selection is required to be
non-deterministic 2 .

1 This notion of convergence is what by Burns, Gouda, and Miller called pseudo-stabilization

[BGM90].
2 The reader may remark that as in [Tel94] we should also require that each process must run
the same program. Note however that this kind of requirement is intended for non-self-stabilizing
distributed systems, for it is known that no distributed, self-stabilizing system exists if the system is
fully symmetric [Gou87, Sch93]
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Figure 5.1: A ring network.

We have N processes numbered from 0 to N � 1 connected in a ring. Process i is
connected to process i+ where + is de�ned as:

i+ = (i+ 1) mod N

Figure 5.1 shows such a ring of six processes.
Each process i has a local variable x:i that contains a natural number less than N .

For example, the numbers printed above the circles in Figure 5.1 show the values of
the x:i's of the corresponding processes. The problem is to make all processes agree on
a common value of the x:i's. The selected number is then the number of the 'leader'
process, which is why the problem is called 'leader election'. The computation has
to be self-stabilizing and non-deterministic. The latter means that if the program is
re-run several times, it should not always select the same leader.

To solve this, �rst we extend the x:i's to range over natural numbers and allow them
to have arbitrary initial values. The problem is generalized to computing a common
value of x:i's. The identity of the leader can be obtained by applying modN to the
resulting common natural number.

Let us de�ne a predicate Ok as follows.

Ok = (8i : i < N : x:i = x:i+)

The speci�cation of the problem can be expressed as follows:

LS0 : true ring` true Ok

Here is our strategy to solve the above. We let the value of x:0 decrease to a value
which can no longer be 'a�ected' by the value of other x:i's |we choose to rule that
only those x:i's whose value is lower than x:0 may a�ect x:0. This value of x:0 is then
propagated along the ring to be copied to each x:i and hence we now have a common
value of the x:i's. Recall the Bounded Progress50 principle from Chapter 4. It states
that any transitive and left-disjunctive relation ! satis�es:

q! q ^ (8M :: p ^ (m = M)! (p ^ (m �M)) _ q)

p! q

if � is well-founded. We know that � is transitive and left-disjunctive, so it satis�es
the principle above. The principle states that if a program will either establish q or
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decrease m, then eventually q will hold since � is well-founded and hence m cannot
be decreased forever. In fact, the above described strategy (either Ok is established or
x:0 decreases) is an instance of this principle. Let us now apply the principle to LS0:

true ` true Ok

( f De�nition of  g

(true ` true� Ok) ^ (` �Ok)

( f the Bounded Progress principle g

(8M :: true ` (x:0 = M)� (x:0 < M) _ Ok) ^ (` �Ok) ^ (true ` Ok� Ok)

( f� Introduction56, ensures satis�es p ensures p g

(8M :: true ` (x:0 = M)� (x:0 < M) _ Ok) ^ (` �Ok) ^ Ok 2 Pred:(w(ring))

Note that the requirement Ok 2 Pred:(w(ring)) is met if w(ring) contains all x:i's,
i < N . The progress part of the last formula above states that the value of x:0 must

decrease while Ok is not established. But if Ok is not yet established then there must
be some i such that x:i 6= x:0. A naive solution is to send the minimum value of the
initial x:i's to x:0 but this results a deterministic program which always chooses the
minimum value of the x:i's as the common value. So, we will try something else. We
let each process copy its x:i to x:i+. In this way the value of some x:i which is smaller
|not necessarily the smallest possible| than x:0, if one exists, will eventually reach
process 0, or it will disappear. Of course it is possible that values larger than x:0 reach
process 0 �rst, but in this case process 0 simply ignores these values.

Let now ts be de�ned as follows:

ts = N � maxfn j (n � N) ^ (8i : i < n : x:i = x:0)g (5.2.1)

Roughly, ts is the length of the tail segment of the ring whose elements are still di�erent
from x:0. Note that according to the just described strategy the value of x:0 either
remains the same or it decreases. If it does not decrease, it will be copied to x:1, then
to x:2, and so on. In doing so ts will be decreased. Note that ts = 0 implies Ok. This
is, again, an instance of the Bounded Progress principle (either ring establishes Ok
or ts decreases). Let us now see how the strategy described above is translated to the
formal level (con�nement conditions will be omitted |they are met if w(ring) contains
all x:i's):

true ` (x:0 = M)� (x:0 < M) _Ok

( f the Bounded Progress principle g

(8K : K < N : true ` (x:0 = M) ^ (ts = K)�
((x:0 = M)^ (ts < K))_ Ok_ (x:0 < M))

( f� Introduction56 g

(8K : K < N : ` (x:0 = M) ^ (ts = K) ensures
((x:0 = M) ^ (ts < K)) _Ok _ (x:0 < M))

So, to summarize, we come to the following re�nement of LS0:
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prog ring
read fx:i j i < Ng

write fx:i j i < Ng
init true
assign if x:(N � 1) < x:0 then x:0 := x:(N � 1)
[] ([]i : i < N � 1 : x:(i+ 1) := x:i)

J

Figure 5.2: Leader election in a ring.

For all M 2 N and K < N :

LS1.a: �Ok

LS1.b: (x:0 = M) ^ (ts = K)
ensures ((x:0 = M) ^ (ts < K)) _ Ok _ (x:0 < M)

In addition: fx:i j i < Ng � w(ring).
J

LS1.a states that once the processes agree on a common value, they maintain this
situation. LS1.b states that if a common value has not been found, then either the
length of the tail segment should become smaller, which can be achieved by copying
the value of x:i to x:i+, or x:0 should decrease.

Without further proof, a program that satis�es the above speci�cations is presented
in Figure 5.2 3

5.2.2 Properties of Convergence

Leader election is our �rst example of program derivation. During its derivation, its
original convergence speci�cation was broken into a progress part and a safety part.
Reasoning was continued purely using the laws for � and �. Some part of the
calculation can also be carried out in terms of convergence. Figure 5.3 lists properties
of convergence. Notice that shares some important properties of�. However, what
distinguishes from� is that the �rst is conjunctive (Theorem 5.2.10) and the second
is not. Figure 5.4 presents two properties of  regarding write-disjoint composition.
Notice that convergence also satis�es the Transparency principle.

Compared with leads-to-a-stable [Len93], de�ned as in (5.1.3),  has the Substi-
tution law. In particular, the post-condition of can be weakened as in Hoare triples.
With leads-to-a-stable this is not possible. Compared with eventually-implies [Len93]
|see (5.1.2)|, is transitive whereas eventually-implies is not.

3 In the read and write sections of the program in Figure 5.2 "fx:i j i < Ng" denotes a set of
variables. Another notation which the reader is perhaps more familiar with is: x: array [0 : : :N ) of

Val
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Theorem 5.2.2 Convergence Implies Progress CON IMP REACH

P; J :
p q

p� q

Theorem 5.2.3  Stable Background CON IMP STABLE

(J P` p q) ) (P` �J)

Theorem 5.2.4  Confinement CON CONF LIFT

P; J :
p q

p; q 2 Pred:(wP )

Theorem 5.2.5  Introduction CON ENSURES LIFT, CON IMP LIFT

P; J :

p; q 2 Pred:(wP ) ^ (�J) ^ (�(J ^ q))
[p ^ J ) q] _ (p ^ J ensures q)

p q

Theorem 5.2.6  Substitution CON SUBST

P; J :
[J ^ p) q] ^ [J ^ r) s] ^ p; s 2 Pred:(wP ) ^ (q  r)

p s

Theorem 5.2.7 Accumulation CON SPIRAL

P; J :
(p q) ^ (q  r)

p q ^ r

Theorem 5.2.8  Transitivity CON TRANS

P; J :
(p q) ^ (q  r)

p r

Theorem 5.2.9  Disjunction CON DISJ

P; J :
(8i : i 2 W : p:i q:i)

(9i : i 2 W : p:i) (9i : i 2 W : q:i)
if W 6= �

Theorem 5.2.10  Conjunction CON CONJ

For all non-empty and �nite sets W :

P; J :
(8i : i 2 W : p:i q:i)

(8i : i 2 W : p:i) (8i : i 2 W : q:i)

Theorem 5.2.11  Stable Shift CON STABLE SHIFT

P :
p0 2 Pred:wP ^ (�J) ^ (J ^ p0 ` p q)

J ` p0 ^ p q

J

Figure 5.3: Some basic properties of  .
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Theorem 5.2.12  Transparency CON TRANSPARANT

P �Q ^ (Q` �J) ^ (J P` p q)

J P []Q` p q

Theorem 5.2.13  Write-disjoint Conjunction CON CONJ qWD

For any non-empty and �nite set W :

J :
(8i; j : i; j 2 W ^ (i 6= j) : P:i� P:j) ^ (8i : i 2 W : P:i` p:i q:i)

([]i:i2Q:P:i)` (8i : i 2 W:p:i) (8i : i 2 W : q:i)

J

Figure 5.4: Convergence under write-disjoint composition.

5.3 Inductive Decomposition

In sequential programming, we have a law for decomposing a while-loop speci�cation
into the speci�cations of the loop's guard and body. In fact, the whole sequential
programming relies basically on loops. In UNITY we do not have loops. At least
not explicitly. Recall that any execution of a UNITY program is in�nite and that each
action must be executed in�nitely often. In this sense a UNITY program is actually one
large while-loop. A loop decomposition law is basically an induction theorem, used to
break the progress speci�cation of the whole loop into the speci�cation of each iteration
step. We have seen such a theorem before, namely the Bounded Progress50 law from
Chapter 4. The law is a consequence of well-founded induction and is applicable to both
� and  |see Figure 5.5. In fact, well-founded induction is a standard technique to
prove termination and the 7! version of the Bounded Progress law appears in [CM88]
as a standard technique to prove progress.

A stronger induction principle exists for convergence. The principle exploits the
conjunctivity of convergence |a property which is not enjoyed by� or 7!. Imagine a
tree of processes. Each process collects the results of its sons, makes its own progress
and then passes the result to its father. Consider a node n with sons l and m. Suppose
l and m make progress to, respectively, ql and qm. The progress of l and m does not
however combine to ql ^ qm because progress is not conjunctive. However, if processes
l and m converge to ql and qm then we do have ql ^ qm. The process n may therefore
make a stronger assumption to establish its own progress. If each process n has the
following convergence property:

(8m : "m is a proper descendant of n" : qm) qn

then by applying tree induction one may conclude that eventually the system will
converge to (8m : m 2 A : qm), where A is the set of all processes in the tree. The
principle applies not only to trees, but to structures which can be ordered by well-
founded relations.
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Let in � be a well-founded relation over A and m 2 State!A.

Theorem 5.3.1 � Bounded Progress REACH WF INDUCT

P; J :
q 2 Pred:(wP ) ^ (8M :: p ^ (m = M)� (p ^ (m �M)) _ q)

p� q

Theorem 5.3.2  Bounded Progress CON WF INDUCT

P; J :
(q q) ^ (8M :: p ^ (m = M) (p ^ (m �M)) _ q)

p q

Note: The notation used above is overloaded. Without overloading, p^(m = M) (p^(m �
M)) _ q can be written as:

(�s: p:s ^ (m:s = M))  (�s: (p:s ^ (m:s �M)) _ q:s)

J

Figure 5.5: Bounded progress principle for progress and convergence.

Theorem 5.3.3 Round Decomposition CON BY sWF i

For all �nite and non-empty sets A and all well-founded relations �2 A�A:

P :
( �J) ^ (8n : n 2 A : J ^ (8m : m � n : q:m) ` true q:n)

J ` true (8n : n 2 A : q:n)
J

Proof:

J ` true (8n : n 2 A : q:n)

( f  Conjunction91 g

(8n : n 2 A : J ` true q:n)

( f Well-founded Induction50 g

(8n : n 2 A : (8m : m � n : J ` true q:m) ) (J ` true q:n))

If n is a minimal element then:

(8m : m � n : J ` true q:m) ) (J ` true q:n)

( f predicate calculus g

J ` true q:n

= f n is a minimal element, hence there is no m such that m � n g

J ^ (8m :m � n : q:m) ` true q:n

If n is not a minimal element then:

(8m : m � n : J ` true q:m) ) (J ` true q:n)
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prog doMin

read fx:n j n in the treeg [ fy:n j n in the treeg
write fy:n j n in the treeg
init true

assign y:n := minfy:m jm is a son of ng min x:n

J

Figure 5.6: Computing minimum inputs.

( f  Conjunction91 g

(J ` true (8m :m � n : q:m)) ) (J ` true q:n)

( f  Transitivity91 g

J ` (8m :m � n : q:m) q:n

( f  Stable Shift91 g

(8m : m � n : q:m) 2 Pred:(wP ) ^ (` �J) ^ (J ^ (8m :m � n : q:m) ` true q:n)

( f  Confinement91, con�nement is preserved by 8 g

(` �J) ^ (8n : n 2 A : (J ^ (8m :m � n : q:m) ` true q:n))

N

Theorem 5.3.3 above is called Round Decomposition for the following reason. One
can view a loop in terms of rounds. Each iteration step makes the system advance to
the next round, until the �nal round is reached. In a sequential system the rounds are
totally ordered. This does not have to be the case in a distributed system, although
well-foundedness will still be required. In sequential programming, invariants are used
to specify the obligation of each iteration step. Imagine a distributed system that
iterates along a (�nite and well-founded) ordering � over the domain of rounds to
establish (8n : n 2 A : qn). Theorem 5.3.3 states that it su�ces to have:

J ^ (8m : m � n : qm) ` true q:n

for each round n. The above speci�es the obligation of each round. The predicate
J ^ (8m : m � n : qm) can be viewed as some sort of loop invariant.

5.3.1 An Example: Computing Minimum

Imagine again a tree of processes with the root �. Each process n has a variable x:n.
The values of the x:n's are set up by the environment and the processes themselves
cannot in
uence them. The task is to compute the minimum value of the x:n's and
to make this value known to the root �. The computation has to be self-stabilizing
such that if the environment issues a new value for some x:n, a new minimum will
be automatically re-computed. Actually this is not a di�cult requirement. A stan-
dard distributed minimum computation, repeated forever, will do. The algorithm is
presented in Figure 5.6.
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Still, there are other aspects besides the clarity of the solution that we wish to
bring into light. First, we want to show how the requirement for self-stabilization can
be expressed in terms of . Second, we are interested in the calculation, in particular
in how informal ideas and strategies are translated to the formal level. In addition, to
make the problem more interesting, we will generalize it by considering the greatest
lower bound operator u of an arbitrary semi-lattice 4 � instead of the standard min

operator.
Let us now be more precise with our tree. The tree is �nite and A is the set of all

processes |also called nodes| in the tree. The set of all sons of a node n is given by
S:n. If we de�ne S0:n = fng and Si+1 = S �Si, we can de�ne the 'transitive' closure of
S, denoted by S+, as S+:n = [fSi:n j 0 < ig and the 'transitive and re
exive' closure
of S, denoted by S�, as S�:n = S+:n [ S0:n. The set S�:n corresponds with the set of
descendants of n and S+:n with the set of proper descendants of n. We can regard S,
S+, and S� as relations. For example: m S n = m 2 S:n. Notice that as a relation S+

is well-founded.
For the sake of readability, con�nement constraints will be omitted from our calcu-

lation. When a mechanical veri�cation is attempted, one should however be prepared
to deal with every detail explicitly.

Before we continue, let us �rst introduce a function map which will be useful in
specifying the problem. For any function f and any set V , let f � V (the map 5 of f
on V ) be de�ned as:

f � V = ff:x j x 2 V g (5.3.1)

Map satis�es the following properties:

f � (g � V ) = (f � g) � V (5.3.2)

f � (V [W ) = (f � V ) [ (f �W ) (5.3.3)

f � ([V ) = [((f�) � V ) (5.3.4)

Using the map operator the problem of minimum computation can be stated as:
compute u(x � S�:�). If we let the result to be stored in y:�, the problem can be
speci�ed as follows:

M1 : (s = S) doMin` true (y:� = u(x � S�:�))

Let us �rst introduce some abbreviations which we will use later. For all n 2 A:

Okn:S = (y:n = u(x � S�:n)) (5.3.5)

preOkn:S = (8m : m 2 S+:n : Okm) (5.3.6)

4 Another approach would be to use an idempotent, commutative, and associative operator � (also
called a regular algebra). A nice treatment was given by Backhouse, Eijnde, and van Gasteren in
[BEvG94].
5 The notation is borrowed from Functional Programming
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Okn states that process n has a 'correct' value of y:n, which here means that the
value of y:n is equal to the minimum of all x's of the descendants of n. preOkn states
that all processes that 'precede' n, which here means being proper descendants of n,
have correct values of their y's.

As a preparation for further calculation let us express M1 in terms of Ok and then
strengthen the goal to include a similar goal for each process n:

true (y:� = u(x � S�:�))

= f de�nition Ok g

true Ok�:S

( f  Substitution91 g

true (8n : n 2 A : Okn:S)

So, M1 can be re�ned by M2:

M2 : (s = S) P` true (8n : n 2 A : Okn:S)

To establish Ok our strategy is as follows. Suppose that somehow we can establish
Okm for all proper descendants m of n, then we might try to establish Okn using this
knowledge. This is done repeatedly until Ok� is established. This sounds very much
like round decomposition: A is the set of rounds, ordered by S+, and Okn is the goal
of round n. The following calculation will make this apparent:

(s = S) ` true (8n : n 2 A : Okn:S)

( f S+ is well founded; Round Decomposition93 g

(8n : n 2 A : (s = S) ^ (8m : m 2 S+:n : Okm:S) ` true Okn:S)

= f de�nition of preOk g

(8n : n 2 V : (s = S) ^ preOkn:S ` true Okn:S)

Notice how the �nal speci�cation re
ects our strategy (establish Okn given that all
proper descendants are Ok).

Furthermore, we observe that the task of establishing Okn can be delegated to
process n, which we will call doMin:n. If we insist that each process n only writes to
y:n then these processes are write-disjoint, which is nice because we can now apply the
Transparency92 principle. We continue the calculation:

(s = S) ^ preOkn:S doMin` true Okn:S

( f doMin = ([]n : n 2 A : doMin:n),  Transparency92 g

( doMin` � ((s = S) ^ preOkn:S)) ^ ((s = S) ^ preOkn:S doMin:n` true Okn:S)

( f  Introduction91, � Compositionality60 g

( doMin` � ((s = S) ^ preOkn:S)) ^ ( doMin:n` � ((s = S) ^ preOkn:S ^ Okn:S)) ^
( doMin:n` (s = S) ^ preOkn:S ensures Okn:S)
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To summarize, we have re�ned M2 to the following speci�cation:

Let doMin = ([]n : n 2 A : doMin:n) such that w(doMin:n) = fy:ng). For all n 2 V :

M3:a : doMin` � ((s = S) ^ preOkn:S)
M3:b : doMin:n` � ((s = S) ^ preOkn:S ^ Okn:S)
M3:c : doMin:n` (s = S) ^ preOkn:S ensures Okn:S

J

In particular, M3.c states that we have to establish Okn from preOkn. This can be
done by computing u(x � S�:n) from u(x � S�:m) of all sons m of n:

u(x � S�:n) = (u((u � (x�) � S�) � S:n)) u x:n (5.3.7)

Proof: To prove the above we use the following property of a semi-lattice. In a
semi-lattice, the corresponding u operator satis�es:

u([V ) = u(u � V ) (5.3.8)

An instance of the above is: u(U [ V ) = (uU) u (uV ). Now let us prove the lemma
above:

u(x � S�:n)

= f a property of S� g

u(x � (([fm : m 2 S:n : S�:mg) [ fng))

= f de�nition � g

u(x � (([(S� � S:n)) [ fng))

= f properties of �: (5.3.4), (5.3.3), and (5.3.2) g

u(([(((x�) � S�) � S:n)) [ fx:ng)

= f (5.3.8) and (5.3.2) g

(u((u � (x�) � S�) � S:n)) u x:n

N

The lemma suggests that Okn:S can be established by the assignment:

y:n := (u((u � (x�) � S�) � S:n)) u x:n

However, preOk:S implies that for all sons m of n, y:m = u(x � S�:m). It follows that
the expression (u� (x�) �S�) �S:n in the assignment above can be replaced by y �S:n.
So, the assignment y:n := (u(y � S:n)) u x:n will do the job, and since s = S, we can
replace any reference to the constant S with a reference to the variable s.

A program that meets requirement M3 is given in Figure 5.7. The program is
essentially similar as the �rst program given in Figure 5.6. Notice that the topology
of the tree is an input variable to the program (s). Hence, by M1 the program is
capable to recover from topology changes by the environment, as long as s de�nes a
�nite tree over A with root �. The reader may notice that the program doMin.n is
allowed to read all y:m's while it actually only reads from the y:m's of the sons of n.
This redundancy is necessary to accommodate topology changes (n may be coupled to
an entirely di�erent set of sons).
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doMin = ([]n : n 2 A : doMin:n) where doMin:n is:

prog doMin:n

read fy:m jm 2 Ag [ fs:n; x:n; y:ng
write fy:ng
init (A; s) is a �nite tree with root �
assign y:n := (u(y � s:n)) u x:n

J

Figure 5.7: A general algorithm to compute minimum.

5.4 Adding Asynchronicity

Any UNITY program can be directly implemented in a machine with a shared memory
system. However, in many distributed systems, processes have to communicate through
asynchronous channels. Unfortunately, adding asynchrony does not always preserve
properties of a program. Usually, self-stabilization in an asynchronous system is dealt
with as a separate problem. Dolev, Israeli, and Moran were the �rst to address the issue
[DIM90]. Until now, no theorem describing a uni�ed condition under which addition
of asynchrony preserves convergence exists. What one still can do is to parameterize a
proof with a variable degree of asynchrony. We will show an example of such a proof
in Section 5.5.

In their paper [DIM90] Dolev, Israeli, and Moran considered a system with registers,
called link-registers, inserted between any pair of processes. A link-register is written
by one process, and read by the other, but no two processes may write to the same
register. Dolev, Israeli, and Moran introduced a read/write daemon to enforce this
rule, but essentially their system is just a write-disjoint system. For example, by
adding link-registers, the minimum computing program in Figure 5.7 becomes:

prog doMin:n

read fr:l:m j l;m 2 Ag [ ff:n; s:n; x:n; y:ng
write fy:ng [ fr:m:n jm 2 Ag
init (A; s) is a �nite tree with root �
assign y:n := (u(r:n � s:n))u x:n

[] r:(f:n):n := y:n

where f:n stores the identity of the father of n, and r:m:n is the link-register between
processes m and n. It is intended to be m's view to y:n.

There are several ways to model asynchronous channels, for example by using
queues: a reader adds messages to the front of a queue, and a receiver retrieves from
the back. One can also use separate write and read histories. Another model using
write histories and read-counters was shown in Chapter 2 (this model of channels is
write-disjoint). In UNITY link-registers also, in a sense, abstract from unreliable chan-
nels. A datum in a link-register can be overwritten by the sender as the sender cannot
force the reader to immediately read the datum it has just written. So, data can be
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lost. If a program is proven to work correctly using link-registers, it will therefore also
works correctly using perfect channels.

The �rst problem in adding asynchrony has to do with atomicity. Consider the
following programs P []Q and P 0[]Q0. The latter is obtained by adding a link-register r
to the �rst.

prog P

assign x := f:x

prog Q

assign if b then y; b := x; false

[] if :b then b := true

prog P 0

assign x := f:x

[] r := x

prog Q0

assign if b then y; b := r; true

[] if :b then b := false

In P []Q, if a datum is being transferred from x to y, b will simultaneously set to
false. In particular, the following property holds for P []Q:

(8X :: ` b ^ (x = X) unless (:b ^ (y = x)) _ (x = f:X))

This property is however not satis�ed by P 0[]Q0, because the register may still contain
an old datum, and assigning the value to y will not establish :b ^ (y = x). In P []Q,
:b ^ (y = x) can be established by a single atomic action. Introducing r reduces the
atomicity, and the problem described above arises.

The second problem is caused by 'bad' registers or channel values which travel
around the system forever, preventing it from stabilization. Consider the following
programs P and Q:

P : a := b and Q : b := a

The program P []Q satis�es:

true ` true� (a = b) (5.4.1)

` � (a = b) (5.4.2)

Let us now add link-registers to P []Q: r:a is intended to be Q's view of a and r:b is P 's
view of b. We obtain a program R with the following actions:

(a1) a := r:b []
(a2) r:a := a []
(a3) b := r:a []
(a4) r:b := b

The transformation does not preserve (5.4.1). Consider the execution:

(a1; a3; a2; a4)
�

The execution is fair, but in this execution the value of r:a and r:b will simply rotate
around. Consequently, if initially r:a 6= r:b, then a = b may never happen. The
transformation does not preserve (5.4.2) either, since the described stability can be
destroyed by a1 or a2.
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prog MinDist

read fd:a:b j a; b 2 V g
write fd:a:b j a; b 2 V g
init true

assign ([]a : a 2 V : d:a:a := 0)
[] ([]a; b : a; b 2 V ^ a 6= b : d:a:b := minfd:a:b0 + 1 j b0 2 N:bg)

J

Figure 5.8: A self-stabilizing minimum distance algorithm in UNITY.

5.5 Lentfert's FSA Algorithm

Recall that one of the goals of this thesis is to present a (mechanical) veri�cation of
Lenfert's work in [Len93] on a general, self-stabilizing, and distributed algorithm |
what here is called Fair and Successive Approximation (FSA) algorithm| to compute,
for example, the minimal distance between all pairs of nodes in a network. Lentfert's
thesis included a detailed formal proof of the algorithm. For several reasons, we will
re-present the proof. First, we want to specify and reason about the algorithm in terms
of convergence rather than in terms of leads-to-a-stable or eventually-implies used in
[Len93]. The resulting proof is more concise and direct than the one in [Len93]. A
concise proof is also easier to verify mechanically. Second, the decision about the choice
of communication protocol will be postponed as long as possible. It will be highlighted
which results do not depend on the choice of communication model. Third, the proof
will show a quite clear separation between the programming and the more intrinsic
aspects of the problem.

An instance of the FSA algorithm was shown in Figure 2.2. The UNITY version
of the algorithm is given in Figure 5.8. The program computes the minimal distance
between any pair of nodes in the network (V;N). Here, V is the set of all nodes in
the network, and N is a function such that N:a is the set of all neighbors of a. The
network (V;N) will be assumed to be �nite. For the sake of simplicity we will also
assumed it to be bi-directional. We will start from this program. On the way, we will
generalize the results to obtain the FSA algorithm.

Note that the initial condition of the program is true, which suggests that the
program may be self-stabilizing. We will show that it is. The speci�cation of MinDist

can be stated as follows:

MD0 : true MinDist̀ true (8a; b : a; b 2 V : d:a:b = Dist:a:b) (5.5.1)

where Dist:a:b denotes the actual minimal distance between a and b 6 .

6 We carelessly call Dist:a:b the minimal distance between a and b, or sometimes also from a to

b. The network is assumed to be bi-directional, meaning that b 2 N:c = c 2 N:b. For the simple
notion of minimal distance as de�ned by (5.5.2) and (5.5.3) the above two interpretations are indeed
interchangeable. One may want to parameterize the network with a cost function, which speci�es the
cost, or 'distance' of going through a link. In the simple notion of distance this cost is always 1. If a
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It is known that the function Dist is characterized by the following equations:

(8a : a 2 V : Dist:a:a = 0) (5.5.2)

(8a; b : a; b 2 V ^ a 6= b : Dist:a:b = minfDist:a:b0 + 1 j b0 2 N:bg) (5.5.3)

One may remark that upon reaching its �x point, d in the program Mindist in Figure
5.8 will satisfy the above equation, and hence d = Dist. However, this does not help
us much since we still do not know whether the program will converge to its �x-point
from any given state. In fact, here lies the hardest part of the problem.

The program MinDist can be implemented as a distributed program by associating
a process for each node b. Each process b maintains the minimum distance between b

and any other node a, which is stored in a variable d:a:b. Notice that Mindist assumes
that a process b can read the variable d:a:b0 owned by a neighbor b0. Many distributed
systems require however a higher degree of asynchrony. For example, it may be required
that the processes communicate through channels. We also want to take this aspect
into account. So, we are going to design a slightly di�erent MinDist. For example, if
we use link-registers to model channels, then the program MinDist will look like:

prog MinDist

init true

assign ([]a : a 2 V : d:a:a := 0)
[] ([]a; b : a; b 2 V ^ a 6= b : d:a:b := minfr:a:b:b0+ 1 j b0 2 N:bg)
[] ([]a; b; c : a; b; c 2 V ^ b 2 N:c : r:a:c:b := d:a:b)

where r:a:c:b is intended to be c's view to d:a:b. However, for now we do not want
to concern ourselves with the speci�c model and implementation of the channels. It
su�ces to know that they exist.

First of all, we observe from equations (5.5.2) and (5.5.3) that Dist:a can be com-
puted without any information about Dist:a0, given a0 6= a. So, we can delegate the task
of maintaining d:a to a component program (which may consists of more components).
Let us call this component MinDist:a. If we also insists that these components are
pair-wise write-disjunct then we can use the Transparency law to delegate the above
mentioned task. More precisely, by applying the  Write-disjoint Conjunction92
|which is a corollary of the Transparency law|, we can re�ne MD0 to MD1 below.
For all a; b 2 V :

MD1:a : true MinDist:a` true (8b : b 2 V : d:a:b = Dist:a:b) (5.5.4)

MD1:b : MinDist = ([]a0 : a0 2 V : MinDist:a0) (5.5.5)

MD1:c : (a 6= b)) (MinDist:a�MinDist:b) (5.5.6)

We will now divide the execution of eachMinDist:a into imaginary phases or rounds.
The rounds are taken from N, ordered by <. Each round has its obligation such that

cost function is used, it may happen that the cost of the link from b to c di�ers from the cost of going
from c to b. So, despite the bi-directionality, distance has direction. Whether we should interpret
Dist:a:b as the 'distance' from a to b or from b to a depends on whether one interprets a 2 N:b as
'there exists a link from a to b' or the other way around.
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when all rounds are passed, MinDist:a has converged to a situation where d:a = Dist:a,
and hence MD1.a is ful�lled. A quite obvious choice is to require that at the end of
round n, all processes b with the actual distance n from a have converged to a situation
where d:a:b = Dist:a:b. Since convergence is conjunctive it follows that at the end of
of round n, all processes b with Dist:a:b � n have converged to d:a:b = Dist:a:b. Let
nmax be the greatest minimal distance across the network (V;N) |it is also called the
diameter of the network. It follows that at round nmax all processes b have converged
to d:a:b = Dist:a:b. Recall the Round Decomposition93 principle from Section 5.3. As
we will see soon, the strategy above is actually an instance of this principle. However,
let us generalize the strategy by taking a �nite set A instead of N as the domain of the
rounds, ordered by a well-founded relation �.

In addition to stabilizing the value of d, the obligation of a round must also cover
the stabilization of the channels. One may suspect that the channels initially contain
'bad' values which may keep circulating in the system, preventing it from stabilizing.
We have to show that this is not the case.

Let us �rst introduce a few abbreviations regarding the obligation of a round. Let
A be a �nite and non-empty set of rounds ordered by � which is well-founded. For all
n 2 A, b 2 V :

oknb :X = X is an acceptable value for node b at round n (5.5.7)

Oknb = oknb :(d:a:b) (5.5.8)

dataOkn = (8b : b 2 V : Oknb ) (5.5.9)

cOknb = the communication obligation of process b for round n (5.5.10)

comOkn = (8b : b 2 V : cOknb ) (5.5.11)

preOkn = (8m : m � n : dataOkm ^ comOkm) (5.5.12)

We intentionally leave the meaning of 'acceptable value' and 'communication obli-
gation' in the de�nition of ok and cOk unspeci�ed because �rst we want to expose a
general structure of MinDist |or in general, of the FSA algorithm| which is derivable
without detailed information of what is actually being computed. For now, the only
thing we know is that:

dataOk� ) (8b : b 2 V : d:a:b = Dist:a:b) (5.5.13)

for some � 2 A. This � is a generalization of nmax, the diameter of the network,
mentioned earlier.

Now let us do some calculation to re�ne MD1.a. For the sake of readability, con-
�nement constraints will be omitted from formulas.

true ` true (8b : b 2 V : d:a:b = Dist:a:b)

( f  Substitution91, (5.5.13) g

true ` true dataOk�

( f (y) � 2 A,  Substitution91 g
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true ` true (8n : n 2 A : dataOkn ^ comOkn)

( f (z) Round Decomposition93, De�nition of preOk g

(8n : n 2 A : preOkn ` true dataOkn ^ comOkn)

( f Accumulation91 g

(8n : n 2 A : (preOkn ` true dataOkn) ^ (preOkn ` dataOkn  comOkn))

( f  Stable Shift91 g

(8n : n 2 A : (preOkn ` true dataOkn) ^ (preOkn ^ dataOkn ` true comOkn))

( f de�nition of dataOk and comOk,  Conjunction91 g

(8n; b : n 2 A ^ b 2 V : (preOkn ` true Oknb ) ^ (preOkn ^ dataOkn ` true cOknb ))

The calculation implies that in order to meet MD1.a it su�ces for MinDist:a, at
each round n, to establish Oknb (the computation obligation of node b for round n) and
cOknb (the communication obligations of node b for round n), given that the obligations
of all preceding rounds have been ful�lled. This formalizes the strategy described a few
paragraphs earlier. Notice the application of the Round Decomposition principle (z).
Notice also how the communication obligation was taken into account (y). So, based
on the calculation we can re�ne MD1.a to MD2 de�ned as follows. For all a; b 2 V and
n 2 A:

MD2:a : preOkn MinDist:a` true Oknb (5.5.14)

MD2:b : preOkn ^ dataOkn MinDist:a` true cOknb (5.5.15)

Just as we have splitMinDist intoMinDist:a, we are now going to split eachMinDist:a

into smaller programs. It seems reasonable to delegate the task of establishing Oknb
and cOknb in the speci�cations above to a component b. Let us call this component
MinDist:a:b. Using the  Transparency92 law we can re�ne MD2 to MD3 de�ned as
follows. For all a; b; c 2 V and n 2 A:

MD3:a : preOkn MinDist:a:b` true Oknb (5.5.16)

MD3:b : preOkn ^ dataOkn MinDist:a:b` true cOknb (5.5.17)

MD3:c : MinDist:a = ([]a0 : a0 2 V : MinDist:a:a0) (5.5.18)

MD3:d : (b 6= c) ) (MinDist:a:b�MinDist:a:c) (5.5.19)

The decision to divideMinDist into write-disjoint components is a design decision. One
can opt not to do this, but then of course one cannot bene�t from the Transparency
law. Note that MD3.a suggests that MinDist:a:b writes to, at least, d:a:b.

Let us now add some more details to cOk. In establishing Oknb in MD3.a we know
that preOkn holds, which means that Okmc holds for any node c |in particular if c
is a neighbor of b| and round m � n. The computation required to establish Oknb
will have to, one way or another, exploit this fact. From its de�nition in (5.5.8) it
seems that Okmc is a predicate that only concerns d:a:c. If the communication between
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processes has to take place through channels, then the component MinDist:a:b cannot
read from d:a:c (for b 6= c). Therefore we introduce a new variable r, and decide that
each MinDist:a:b should maintain r:a:b:b0 as a copy of d:a:b0 for each neighbor b0 of b.
The obligation of the communication subsystem is simply to guarantee that the r's
eventually contain the copies of the d's. This suggests the following speci�cation for
cOk:

cOknb ) (8c : b 2 N:c : r:a:c:b= d:a:b)

Logical as it may seem, the above speci�cation is too strong. In MD3.b it is required
not only to establish cOknb , but also to converge to it. Roughly, this implies that
r:a:c:b = d:a:b must be held stable, which is not reasonable as d:a:b is likely to change
during an execution and we may not want to update r:a:c:b immediately after each
change of d:a:b. However, as will be made apparent in the next calculation, all that
we need is that r:a:c:b contains an acceptable value for round n. Whether or not it
contains the most recent copy of d:a:b is less important.

Below is a partial de�nition of cOk. For any a; b 2 V and n 2 A:

cOknb ) (8c : b 2 N:c : oknb :(r:a:c:b)) (5.5.20)

Now let us calculate for MD3.a:

preOkn ` true Oknb

( f  Introduction91 g

(` �preOkn) ^ (` �(preOkn ^Oknb )) ^ (` preOk ensures Oknb )

( f de�nition42 of ensures g

(` �preOkn) ^ (` �(preOkn ^Oknb )) ^ (` preOkn unless Oknb ) ^
(9a : a 2 a(MinDist:a:b) : fpreOkng a fOknb g)

( f unless Post-weakening46 g

(` �preOkn) ^ (` �(preOkn ^Oknb )) ^ (` preOkn unless false) ^
(9a : a 2 a(MinDist:a:b) : fpreOkng a fOknb g)

( f de�nition44 of � g

(` �preOkn) ^ (` �(preOkn ^Oknb )) ^
(9a : a 2 a(MinDist:a:b) : fpreOkng a fOknb g)

For the single Hoare triple in the last formula we continue our calculation:

fpreOkng a fOknb g

( f de�nition (5.5.12) of preOk, pre-condition strengthening g

f(8m :m � n : comOkm)g a fOknb g

( f de�nition (5.5.11) of comOk, pre-condition strengthening g

f(8m; b0 : m � n ^ b0 2 N:b : cOkmb0 )g a fOk
n
b g

( f de�nition (5.5.20) of cOk and (5.5.8), pre-condition strengthening g

f(8m; b0 : m � n ^ b0 2 N:b : okmb0 :(r:a:b:b
0))g a foknb :(d:a:b)g
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( f (y) choose a and introduce � g

(a = assign:(d:a:b):(�:a:b:(r:a:b))) ^
(8F :: (8m; b0 :m � n ^ b0 2 N:b : okmb0 :(F:b

0)) ) oknb :(�:a:b:F ))

In the last step, we have assumed the existence of a function �, such that when
applied to the array r:a:b, it yields an acceptable value for node b at round n. If such
a function exists, then the problem is almost solved.

To summarize the calculation above, MD3.a can be re�ned to MD4 de�ned below.
For all a; b 2 V and n 2 A:

MD4:a : MinDist:a:b` �preOkn (5.5.21)

MD4:b : MinDist:a:b` � (preOk
n ^ Oknb ) (5.5.22)

MD4:c : There exists a function � satisfying:

(8F :: (8m; b0 : m � n ^ b0 2 N:b : okmb0 :(F:b
0)) )

oknb :(�:a:b:F ) (5.5.23)

MD4:d : assign:(d:a:b):(�:a:b:(r:a:b)) 2 a(MinDist:a:b) (5.5.24)

Let us now turn our attention back to MD3. The most important part of MD3 is
MD3.a and MD3.b. The �rst has been re�ned to MD4 above. Up to this point the
results do not depend on the speci�c model of channels being used. MD3.b requires
convergence to cOknb , which is the communication obligation of MinDist:a:b for round
n. By (5.5.20) this means, at the very least, making the value of r:a:b:c of all neighbors
c to be acceptable for round n. What other obligation that remains depends on how the
channels are being modelled. For example if we are using history variables to record
messages that travel through the channels, we may have to require that eventually,
not only the message that has just arrived, but also the messages which are still under
way are all acceptable for the current round (and hence excluding the possibility that
the convergence process is hindered by the presence of 'bad' messages in the channels).
One may also want to expose some lower level communication protocol, such as the
use of a 4-phase handshake protocol. The same remark also applies: one has to extend
cOk to accommodate the obligation to stabilize every part of this protocol.

In this presentation we will take the simplest model for channels, namely the link-
register model introduced in Section 5.4. The copy variable r:a:b:c can be treated as a
link-register between process MinDist:a:c and MinDist:a:b. As the registers are the only
means of communication, it will su�ce to de�ne cOk as in (5.5.20) but in which the
) is replaced by equality:

cOknb = (8c : b 2 N:c : oknb :(r:a:c:b)) (5.5.25)

Using the above de�nition, and a calculation which is much similar to the calculation
for MD3.a, we can re�ne MD3.b to MD5 below. For all a; b; c 2 V such that b 2 E:c,
and n 2 A:



Page 106 Chapter 5. STABILIZATION

FSA = ([]a : a 2 V : FSA:a) where FSA:a = ([]b : b 2 V : FSA:a:b) where
FSA:a:b is de�ned as:

prog FSA:a:b

read fr:a:b:b0 j b0 2 V g [ fr:a:c:b j c 2 V g [ fd:a:bg
write fr:a:c:b j c 2 V g [ fd:a:bg
init true

assign d:a:b := �:a:b:(r:a:b)
[] ([]c : c 2 V ^ b 2 N:c : r:a:c:b := d:a:b)

J

Figure 5.9: Lentfert's FSA algorithm.

MD5:a : MinDist:a:b` � (preOk
n ^ dataOkn) (5.5.26)

MD5:b : MinDist:a:b` � (preOk
n ^ dataOkn ^ Oknb :(r:a:c:b)) (5.5.27)

MD5:c : assign:(r:a:c:b):(d:a:b) 2 a(MinDist:a:b) (5.5.28)

MD4.d and MD5.c already suggest what are the actions of MinDist:a:b. It remains
to be veri�ed that these actions respect all the stability requirements in MD4 and
MD5, and that the MinDist:a:b's are pair-wise write-disjoint. This is still a lot of
work, but does not require insight, so we will leave this part out. Without detailing
the veri�cation, in Figure 5.9 is we present algorithm which will satis�es MD4, MD5,
and other remaining speci�cations, provided MD4.c is satis�ed. The name MinDist

is replaced by FSA though, and indeed, it is the FSA algorithm mentioned so often
before.

Note that the two versions of MinDist given early in this section have the same
structure as the FSA algorithm in Figure 5.9. In fact, the latter is more general. The
reader may have noticed that nowhere in our calculation |incomplete though it was|
did we refer to any speci�c property of Dist. In fact, the algorithm in Figure 5.9 can
be used to compute any function � of a compatible type, as long as one can �nd a
predicate ok, a well-founded relation �, and a function � that satisfy MD4.c, and ok

is such that (5.5.13) is satis�ed, with Dist substituted by � of course. The condition
stated in MD4.c is called round solvability condition, due to Lentfert in [Len93]. A
function � 2 V!V!B is called round solvable if one can �nd some ok, �, and �
satisfying MD4.c. So, as a general result, the FSA algorithm self-stabilizingly computes
any round solvable function 7 . Whether or not a function is round solvable is, one can
say, a purely mathematical property of the function. The structure of the algorithm
itself does not depend on it.

7 The idea behind the name 'round solvable' is that a round solvable function can be self-stabilizingly
computed by 'traversing' the rounds. The function � abstracts the computation required before
advancing to the next round.
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The name FSA (Fair and Successive Approximation) algorithm is inspired by the
successive applications of �, which the algorithm basically does, and which can be
thought as an attempt to approximate a �x point of � |that is, if � has one. In
addition, the � belonging to FSA:a:b is typically parameterized by a and b. So, we
actually have a family of functions. The fact that FSA is a UNITY program means
that the order in which the �'s are applied does not matter, as long as the order is
fair.

We can also view the FSA algorithm in a slightly di�erent way. Forget about the �.
If we trace the calculation, the reader may notice that MinDist satis�es true dataOk�,
for some �. Whatever the objective of the algorithm, it su�ces to show that it is implied
by dataOk�. This is indeed a slightly more general view. For example, it is useful if
instead of converging to d = �, the program is required to converge to d 2 f�i j i 2 Ug.

Figure 5.10 displays an overview of the relation between the initial speci�cation
of MinDist, MD0, and the various other MD's obtained from the previous calculation.
Except for those concerning MD5, the re�nement relations displayed in the �gure do
not depend on the choice of how channels are being modelled. As the algorithm satis�es
MD0, it is therefore self-stabilizing: regardless of the initial values of r and d, it will
converge to d = �. It can also be made insensitive to changes in the network topology
N by making N a program variable instead of a constant. Or course only if N de�nes
a �nite and connected network then the algorithm is guaranteed to converge to d = �.

5.5.1 The Choice of ok and �

We have stated that Lentfert's FSA algorithm in Figure 5.9 is general enough to com-
pute any round solvable function �. But let us turn our attention back to the minimal
distance problem. A question that is still to be answered is whether the algorithm can
self-stabilizingly compute the minimal distance function Dist. To answer this question
we need to come up with concrete ok, �, and �, which so far are only partially speci�ed
by (5.5.13) and MD4.c.

The de�nition of Dist is given by (5.5.2) and (5.5.3). The function de�nes a simple
notion of minimum distance: the minimum distance between a and b is simply the
minimum length of the paths between a and b. However, we are also interested in a
more general notion of minimum distance as given by (2.3.2)18. In this subsection a
choice for ok, �, and � will be motivated. We will �rst take a look at the case of Dist,
and then generalize the result.

Inspired by equations (5.5.2) and (5.5.3) the reader may have guessed the � required
by the algorithm in Figure 5.9 in order to compute Dist. This is the function:

DistGen:a:b:F =

�
0 , if a = b

minfF:b0 + 1 j b0 2 N:bg , if a 6= b
(5.5.29)

where F is a function of the type, here, V!N. In the algorithm in Figure 5.9 this is
to be replaced by r:a:b.

We can generalize the above so that the FSA algorithm computes a general minimal
distance function � by replacing 0, the operator min, and the function +1 in the above



Page 108 Chapter 5. STABILIZATION

MD0

MD1.a MD1.b MD1.c

MD2.a MD2.b

MD3.a MD3.bMD3.c
MD3.d

Transparency Law

Round Decomposition

Transparency Law

MD4.c MD4.d MD5.c
MD4.a
MD4.b

MD5.a
MD5.b

The dash-boxed speci�cations concern the write-disjunction of the components of

FSA. The shaded-boxed speci�cations concern the stability of some predicates.

J

Figure 5.10: A re�nement scheme of the self-stabilizing minimal distance algorithm.

with, respectively, the bottom element ? of some lattice v, the greatest lower bound
operator u of v, and a function addW:

':a:b:F =

�
? , if a = b

ufaddW:b0:b:(F:b0) j b0 2 N:bg , if a 6= b
(5.5.30)

For example, one may let the cost of the links in the network vary (instead of being
always 1). Let say that the weight of the link from a to b is given by w:a:b. The
de�nition of ' becomes:

':a:b:F =

�
0 , if a = b

minfF:b0 + w:b0:b j b0 2 N:bg , if a 6= b
(5.5.31)

If the identity of a neighbor |so-called best neighbor| through which a path with
the minimal distance runs has also to be recorded, we can extend the result of ' 8 to
have the type N�V . So, when applied to a function F , the function yields a pair (x; c)

8 The function ' has a general type of (V!A)!A.
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where x is the newly computed distance and c is the identity of a best neighbor. The
de�nition of ':

':a:b:F =

�
0;?V , if a = b

uf(F 0:b0 + w:b0:b; b0) j b0 2 N:bg , if a 6= b
(5.5.32)

Here, it is also crucial that the relation on which u is based on is a lexicographic
product of a lattice over N and a lattice over V 9 . Best neighbor computation will be
exposed more thoroughly in Chapter 6.

The problem is however not only in �nding a right �, but also in �nding a right ok.
One of the requirements |in fact, the �rst requirement we came up with| for ok is
(5.5.13), stating that dataOk� should imply (8b : b 2 V : d:a:b = Dist:a:b), given that
� 2 A. Let us now do some calculation to see what ok should be:

dataOk� ) (8b : b 2 V : d:a:b = Dist:a:b)

= f de�nition102 of dataOk g

(8b : b 2 V : Ok�b ) ) (8b : b 2 V : d:a:b = Dist:a:b)

( f predicate calculus g

(8b : b 2 V : Ok�
b
) (d:a:b = Dist:a:b))

( f (y) predicate calculus g

(8b; n : b 2 V ^ n 2 A : Oknb = ((Dist:a:b � n)) (d:a:b = Dist:a:b))) ^
(8a; b : a; b 2 V : Dist:a:b � �)

( f de�nition102 of Ok g

(8b; n;X :: oknb :X = ((Dist:a:b � n) ) (X = Dist:a:b))) ^
(8a; b : a; b 2 V : Dist:a:b � �)

Recall that in (5.5.7), the only speci�cation that we have for ok is that oknb :X means
that X an 'acceptable' value for node b at round n. The calculation above suggests
when an X is considered 'acceptable', namely if it is equal to the actual minimal
distance between a and b, at least, it is so if Dist:a:b � n. More precisely:

oknb :X = (Dist:a:b � n)) (X = Dist:a:b) (5.5.33)

and hence Ok becomes:

Oknb :(d:a:b) = (Dist:a:b � n)) (d:a:b = Dist:a:b)

This is not quite surprising. Earlier we have remarked that our strategy is to 'stabilize'
the d:a:b's round by round. So, when the �nal round � is reached, all d:a:b's contain
the correct value. The above is just the same strategy expressed in formulas.

Notice that a choice has been made in the step marked with (y) in the calculation
above, namely that the domain of rounds A is required to include the range of Dist:a.

9 In addition, as we will see latter in Chapter 6, the operator + is required to have > as its unit
element.
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Note also that � is required to be larger than any Dist:a:b. But this is well expected as
� abstracts the diameter of the network.

The above de�nition of oknb is almost good. Let us see if we can ful�lMD4.c. For the
sake of simplicity, we will take the simple notion of minimal distance as characterized
by equations (5.5.2) and (5.5.2). As the domain of rounds, [0 : : : nmax] is taken, ordered
by <. The de�nition of � is as in (5.5.29). Let now, a; b 2 V such that Dist:a:b = n+1.
From equation (5.5.3) one can conclude that n � Dist:a:b0 holds for any neighbor b0 of
b, and some neighbors will have Dist:a:b0 = n. Let Z = fb0 j (Dist:a:b0 = n)^ b0 2 N:bg.
MD4.c requires:

okn+1
b :(DistGen:F )

= f de�nition of DistGen and ok g

minfF:b0 + 1 j b0 2 N:bg = Dist:a:b

given that for all m < n and c 2 V , oknc :(F:c) holds. This means that for the neighbors
b0 2 Z, F:b0 has a 'correct' value. That is, F:b0 = Dist:a:b0. However, nothing can be
concluded about the neighbors b00 2 N:bnZ. If one of those b00 has F:b00 < n then the
above equation will not hold. However, if:

(Dist:a:b0 � n ) (F:b0 = Dist:a:b0)) ^ (n � Dist:a:b0 ) n � F:b0) (5.5.34)

for all neighbors b0, this will su�ce for minfF:b0 + 1 j b0 2 N:bg to yield Dist:a:b.
The above suggests the following, more general, de�nition of ok. For all b 2 V and

n 2 A:

oknb :X =

�
X = �:a:b , if �:a:b � n

n � X , if n � �:a:b
(5.5.35)

Notice that (5.5.34) and (5.5.29), detailing the generator and the predicate ok for
the simple minimal distance function is an instance of (5.5.29) and (5.5.35) above,
obtained by replacing �, u, and addW with �, min, and +1. Notice that min happens
to be the greatest lower bound operator of �. This suggests a choice for �, namely the
(complete) lattice to which u belongs. Of course, by MD4.c the non-re
exive part of �,
namely�, is still required to be well-founded. Recall that A, the domain of � has been
required to be �nite. This is crucial, because otherwise we cannot apply the Round
Decomposition93 law used to break MD1.a to MD2. If � is a lattice over A, and it
is u-closed, or if A is �nite, then � is well-founded. Recall also that in decomposing
MD1.a to MD2 it is required that the minimal distance between any pair of nodes is
bounded by some � |the diameter of the network. It has been remarked before that
with the choice of generator and ok as in (5.5.29) and (5.5.35) the domain of rounds A
is necessarily the same as the domain of distances. If A is a lattice then >, the greatest
element, exists and therefore can be selected for �.

Under some condition on u and ', ok and ' as de�ned by (5.5.35) and (5.5.30)
satisfy MD4.c. The condition and its proof will however be postponed until Chapter 6.
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Theorem 5.5.1 Lentfert's General Theorem FSA sat MDC

Let (V;N) be a network with non-empty and �nite V . Let A be a non-
empty and �nite domain (of rounds). If there exist a well-founded and
transitive relation � over A, a predicate ok 2 A!V!V!B!B , and a
function � 2 V!V!V!(V!B)!B, such that they satisfy:

(8m; b0 : m � n ^ b0 2 N:b : okma;b0:(F:b
0)) ) okna;b:(�:a:b:F )

for all n 2 A, a; b 2 V , and F 2 V!B, then the program FSA in Figure
5.9 satis�es:

true ` true (8n; a; b : n 2 A ^ a; b 2 V : okna;b:(d:a:b))

Corollary 5.5.2

Let (V;N) be a network with non-empty and �nite V . Let A be a non-
empty and �nite domain of rounds. Let ok 2 A!V !V !A! B and
� 2 V!V!V!(V!A)!A be de�ned as:

okna;b:X = (�:a:b v n) (X = �:a:b)) ^ (n v �:a:b) n v X)

':a:b:F =

�
? , if a = b

ufaddW:b0:b:(F:b0) j b0 2 N:bg , if a 6= b

where � 2 V!V!A, v is a lattice over non-empty and �nite domain A,
and u is the greatest lower bound operator that belongs to v. If @, ok,
and ' satisfy the condition stated in Theorem 5.5.1, then the program FSA

in Figure 5.9 satis�es:

true ` true (8a; b : a; b 2 V : d:a:b = �:a:b)

J

Figure 5.11: The convergence properties of the FSA algorithm.

5.5.2 Conclusion

As a conclusion, in Figure 5.11 we present two theorems that summarize the results so
far regarding the FSA algorithm. The �rst theorem is more general. It states where
the algorithm can be expected to converge, and a condition |the round solvability
condition| required to guarantee the convergence. The second theorem is specialized
for a self-stabilizing computation of minimum-distance-like functions. The typing of
some objects will be extended to accommodate some parameters which so far were kept
implicit. We will also call a function � satisfying the condition stated in the second
theorem, that is, Corollary 5.5.2, as a round solvable function.
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As a �nal note, the reader may notice that nowhere in the previous calculation a
reference is made to the initial assumption that the network (V;N) is bi-directional.
Indeed, this is not required. However, suppose we want to compute Dist. The value
of Dist:a:b is to be stored in the variable d:a:b, which is maintained by the program
FSA:a:b, which is to be allocated in node b. To do its computation, this program
requires information from all neighbors of b, so links must exist from all nodes in N:b

to b. The intention of computing minimal distance is so that we can send messages
along some path yielding the minimal distance. That is, from b to its best neighbor,
and so on, until the destination is reached. This means that there should be a link to
the best neighbor of b from b. In other words, we need bi-directional links.
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Chapter 6

Round Solvability of Cost Functions

The most important condition for the FSA algorithm, when applied to the minimum distance

problem, is that the minimum distance function satis�es the round solvability condition. A

general notion of distance will be introduced, and its round solvability will be investigated.

The generalization is useful to handle a more sophisticated notion of distance.

I
N Chapter 5, the FSA algorithm |displayed in Figure 5.9| was derived. It was
stated in Theorem 5.5.1 that the algorithm can self-stabilizingly compute any round
solvable function. To prove the round solvability of any function, it is required that

we come up with a well-founded relation �, a predicate ok, and a function � satisfying
the (round solvability) condition stated in Theorem 5.5.1. The round solvability of a
function is unfortunately not a trivial condition. For minimal-distance-like functions,
in which we are particularly interested, a choice for these �, ok, and � was proposed
in Corollary 5.5.2. The choice has been motivated in Subsection 5.5.1. It remains now
to prove that this choice is indeed a good one.

Instead of focusing on some particular minimum distance functions, such as the
simple minimum distance function de�ned in 5.5.2101 and 5.5.3101, we are going to
consider minimum-distance-like functions. How one de�nes the 'minimal distance'
between two nodes depends on several things:

i. how one de�nes the cost of a link.

ii. how one 'sums' the link-costs to obtain the cost of a path.

iii. how one de�nes the 'minimum' of path-costs to obtain the minimum cost or
distance.

In the simple minimum distance function, the link-costs are simply the constant 1.
A more 
exible function can be obtained by allowing the link-costs to take di�erent
values instead of simply 1. In practice, one may want to de�ne the cost of a link as a
vector, say, (c; s; r; i) where c tells us about the cost of using the link in, say, $/kbit data
sent, s tells us the capacity of the link in kbit/sec, r is some measure of the reliability
of the link, and i is some information describing the identity or the status of the source
node of the link. If the link-costs are all 1 |or at least, they are natural numbers|,
we will have a good idea of how to 'sum' them up. For vectors, we usually take a point-
wise summation. Summing the c-components in the above example probably means
summing them using the usual '+' function. Summing the s-components may mean
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taking the minimum or the average of the values involved. How to sum up reliability
measures r and the source node descriptions i is not quite clear and will depend on the
way we are using the information. Because of this diversity we feel that it is better to
provide a general theory for the round solvability of minimal-distance-like functions 1 .

We have given equations (5.5.2) and (5.5.3) as the de�nition for the minimal dis-
tance function Dist. The equations do not really tell whether Dist:a:b will indeed return
the minimum length of the paths between a and b, that is, what is considered as the
intuitive or operational meaning of Dist. In this case the relation between the opera-
tional meaning and the more abstract de�nition is quite clear. However, when a general
notion of distance is being considered, one may ask in what respect it re
ects our in-
tuitive idea about distances. Instead of generalizing the equations (5.5.2) and (5.5.3)
we will start by generalizing the operational meaning of (minimum) distance. Then,
it will be investigated under what conditions it satis�es the properties that we expect
a decent notion of distance to satisfy, and under what conditions it is round solvable.
Although the general properties of a minimum-distance-like function are probably not
surprising, it is noteworthy that the condition required for the round solvability of such
a function is not much harder than the condition required to satisfy some of the most
basic properties of minimum distance.

If the readers recall, to compute the simple minimal distance function Dist using
the FSA algorithm we instantiate the function � in the algorithm with DistGen de�ned
in (5.5.29)107. This function DistGen happens to satisfy:

Dist:a:b = DistGen:a:b:Dist

The function DistGen is also called a generator 2 . The above states that Dist is a �x
point of its generator |or more precisely of: (�f; a; b: DistGen:a:b:f). One may ask
whether this �x point always exists for any round solvable function, and whether the
round solvability condition actually de�nes a unique �x point. This will also be investi-
gated in this chapter. Also, round solvability turns out to be a quite strong condition.
Given a generator � satisfying the (round solvability) condition in Theorem 5.5.1, one
can show that it generates, under some reasonable condition, a unique function. Or,
in other words, the round solvability of a function characterizes the function.

In addition, two special extensions |or instances, depending on how one looks at
them| of minimal distance functions will be discussed. The �rst extension can be
used to record the best neighbor, that is, a neighbor through which a best path goes.
The second extension can be used to broadcast data. Both extensions yield minimum-
distance-like functions again, and hence the general theory about such functions can
be applied.

1 As the name implies, the round solvability of a minimal-distance-like function can be argued |if
we are being very lazy| in a 'similar' way as the simple minimal distance function. However, let
us remind the reader, in mechanical veri�cations argument such as 'can be proven in a more or less

similar way' is not adequate, if at all recommended.
2 Because it is used by the FSA algorithm to generate Dist.
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6.1 Basic Lattice Theory

In this section we give an overview of notions and facts |mainly about lattices| which
are useful later. The reader may wish to skip this section if he feels familiar with lattice
theory, and later consult it when necessary.

Let v be a relation on a type A. v is called a partial order if it is re
exive,
transitive, and anti-symmetric. An m is said to be a lower bound of B, a subset of A,
if (8n : n 2 B : m v n) holds. The greatest lower bound of B, denoted by uB, does
not necessarily exist for any B. If v is a partial order (over A) and uB does exist for
any subset B of A, then v is said to form a lattice 3 . The u of A and � are usually
denoted by ? and >. If they exist, they correspond with, respectively, the least and
greatest element of A.

ufa; bg is also denoted by a u b. If v is a lattice, this binary u is idempotent,
commutative, associative, and has > as its unit element. Actually, if such a binary
operator is given, it de�nes a lattice by de�ning m v n = (m = m u n). For the
set-level u, its implicit commutativity and associativity are expressed by (5.3.8).

The non-re
exive part of a v is denoted by @. It is equal to @�I 4 . A lattice v is
said to be u-closed if uB 2 B, for all non-emptyB. A u-closed lattice is linear, meaning
that for any pair (x; y), we have either x v y or y v x. Usually, the 'minimum' of a
minimum distance function corresponds to the u operator of a u-closed lattice. Due to
its linearity, such a lattice is perhaps not a very exciting lattice to discuss. However,
as said, a lattice is not the only component we need to de�ne a minimum distance
function, and to investigate the exact role of the other components some amount of
lattice theory will be helpful.

If v is a u-closed lattice, then @ is well-founded. v and @ will satisfy:

(m 6v n = n @ m) ^ (m 6@ n = n v m) (6.1.1)

(8m0 : m0
@ m : m0

@ n) = m v n (6.1.2)

A function f 2 A!A is said to be u-distributive if f(uB) = u(f � B) for all
B � A. If it is only distributive over all non-empty subsets of A, then f is said to
be u-junctive 5 . A u-distributive function is also monotonic. If f is u-junctive and
f:> = > then f is u-distributive.

The lexicographic product of two relations v1 and v2, denoted by v1

N
v2, is

3 Usually, such a partial order is called a complete lattice. The term 'lattice' is reserved for a
partial order in which only the u of any pair fx; yg needs to exists. However, in this thesis all lattices
considered are complete, and we do not feel it necessary to mention the attribute 'complete' all the
time.
4 I denotes the identity relation: I:x:y = (x = y).
5 Another commonly used and closely related notion is continuity. Continuity requires f to be
distributive only over subsets of A that form 'chains'. It must be said that the literature often
disagrees on the exact de�nition of distributivity, junctivity, and continuity.
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De�nition 6.1.1 Partial Order PO

v is a partial order =

8<
:

(8n :: n v n) ^
Trans:v ^
(8n;m :: n v m ^m v n) (m = n))

De�nition 6.1.2 Lower Bound is LB

m is a lower bound of B = (8n : n 2 B : m v n)

De�nition 6.1.3 Greatest Lower Bound isCAP

(n = uB) =

�
n is a lower bound of B ^
(8m : m is a lower bound of B : m v n)

De�nition 6.1.4 Lattice CAP PLa

Lattice:v = v is a partial order ^ (8B :: (9n :: n = uB))

De�nition 6.1.5 u-Closed CAP Closed

v is u-closed = (8B :: B 6= � : uB 2 B)

De�nition 6.1.6 u-distributivity CAP Distr

f is u-distributive = (8B :: f(uB) = u(f �B))

De�nition 6.1.7 u-junctivity CAP Junct

f is u-junctive = (8B : B 6= � : f(uB) = u(f �B))

J

Figure 6.1: Some de�nitions from lattice theory.

de�ned by:

(m1;m2) (v1

N
v2) (n1; n2)

=
((m1 6= n1) ^m1 v1 n1) _ ((m1 = n1) ^m2 v2 n2)

(6.1.3)

If both v1 and v2 are lattices, then so is their lexicographic product. The construction
also preserves the u-closedness of the lattices involved. If we denote the u which
corresponds to v1 with u1, the one to v2 with u2, and the one to v1

N
v2 with u3,

it can be shown that u3 is characterized by:

u3A = (u1(fst �A);u2fsnd:n j n 2 A ^ (fst:n = u1(fst �A))g) (6.1.4)

A summary of the above de�nitions is given in Figure 6.1.
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6.2 Paths and Cost of Paths

In this section the notion of a path through a network will be formally de�ned, and
subsequently general notions of distance and minimum distance over paths will also
be de�ned and their basic properties discussed. To emphasize the distinction with the
simple notion of distance, in the sequel we will use the term cost instead of distance.

As said, a network (graph) is a pair (V;N) where V is the set of nodes in the
network, and N is a function describing the connectivity of the network. That is, N:a
is the set of all nodes in V to which a is connected to. We call the members of N:a
neighbors 6 of a. Naturally, we require (8a : a 2 V : N:a � V ).

We can de�ne the re
exive and transitive closure of the neighborhood function N

in the usual way: N�:a = [fNn:a j n 2 Ng where N0:a = fag and Nn+1 = N �Nn. A
node b is said to be reachable from a if b 2 N�:a. A network is said to be connected if
all nodes in the network are pair-wise reachable.

De�nition 6.2.1 Connected Network Connected

connected(V;N) = (8a; b : a; b 2 V : a 2 N�:b)
J

In the sequel, let (V;N) be a network.

There are several common ways to de�ne a path in a network. One of them is as a
non-empty sequence of nodes such that each node in the sequence is a neighbor of the
previous node. The �rst node is the destination of the path, and the last node is the
source (or the other way around, depending on how one orders the nodes). We will use
a slightly di�erent de�nition 7 :

De�nition 6.2.2 Path PATH

U
[]
�! b = b 2 U

U
b0;s
�! b = b0 2 N:b ^ U

s
�! b0

J

So, U
s
�! b means that b; s is a path |in the sense of the above conventional

de�nition| from U to b 8 . The source (U) is generalized by allowing it to be a set
instead of a single node. A path has U as its source if it starts somewhere in U . One
can show that a path de�ned as above satis�es its intended de�nition:

6 This term can be misleading. One tends to think that neighborhood is a symmetric relation. In
discussing the program MinDist in Chapter 5, the network is assumed to be bi-directional, in which
case the neighborhood relation is symmetric indeed. In general however, this should not be assumed.
7 The only reason is that at the moment we de�ned it in HOL, it seemed convenient.
8 Or a path from b to U , depending on how one interprets the 'direction' induced by the neighborhood
function N .
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a

b

c

d

e

f

g

h

J

Figure 6.2: A connected network

U
s
�! b ) (8i : i < `:s : s:i 2 N:((b; s):i)) (6.2.1)

U
s;a
�! b ) a 2 U (6.2.2)

It also satis�es the following 'split' property:

U
s
�! b = (9b0; t :: (s = b0; t)^ b0 2 N:b^ U

t
�! b0) _ (s = [] ^ b 2 U) (6.2.3)

Figure 6.2 shows a connected but non-bi-directional network. An arrow from a
node x to y means x 2 N:y. An example of a path is s = d; e; b; a which is a path from
fa; cg to g and to h. That is, fa; cg

s
�! g and fa; cg

s
�! h.

The connectedness of a network can also be expressed in terms of paths:

connected(V;N) = (8a; b : a; b 2 V : (9s :: fag
s
�! b)) (6.2.4)

The cost of a path, is simply the 'sum' of the cost of the links along the path:

De�nition 6.2.3 Path-cost PathCost

%:b:[] = e

%:b:(b0; s) = addW:b0:b:(%:b0:s)

for some e 2 A, addW 2 V!V!A!A, and type A.
J

The function addW abstracts the summation of the cost of the links along the path.
For the simple notion of cost we have e = 0 and addW:b0:b:X = 1 + X, and hence
%:b:s = `:s.

The minimum cost of going from a source U to a destination b is simply the greatest
lower bound, with respect to an ordering v, of the cost of all paths from U to b:
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De�nition 6.2.4 Minimum Cost MiCost

�:U:b = uf%:b:s j U
s
�! bg

where u belongs to some relation v over A.
J

Since there can be in�nitely many paths in a network (even if the network is �-
nite) exhaustively computing � is not likely to terminate. If the simple notion of cost
(distance) is used, it is known that the corresponding minimal cost function can be
computed in �nite time by exploiting its recurrence relation (5.5.2) and (5.5.3). Let us
see if a similar relation can be obtained for minimal cost functions in general.

Let in the calculation below v be a relation on which u is based. To guarantee
that �:U:b = uf%:b:s j U

s
�! bg always exists, we insist that v is a lattice. Two cases

can be distinguished, b 2 U and b 62 U .
If b 2 U and e = ?, then �:U:b = ?:

�:U:b = ?

= f de�nition of � g

uf%:b:s j U
s
�! bg = ?

( f v is a lattice, ? is the least element g

(9s :: U
s
�! b ^ (%:b:s = ?))

( f take s = [] g

U
[]
�! b ^ (%:b:[] = ?)

= f b 2 U , de�nition of �! and % g

e = ?

If the minimum cost to all neighbors of b is known, then the minimum cost to b can
be computed by applying addW to the minimum cost to each neighbor, and combine
the results using u. However, to be able to do this, several things are required. One of
them is that addW is u-distributive. The following calculation will show it. Let b such
that b 62 U .

�:U:b

= f de�nition of � g

uf%:b:s j U
s
�! bg

= f (6.2.3), b 62 U g

uf%:b:(b0; t) j b0 2 N:b ^ U
t

�! b0g

= f set theory g

u([ff%:b:(b0; t) j U
t

�! b0g j b0 2 N:bg)

= f (5.3.8)97, de�nition95 of � g

ufuf%:b:(b0; t) j U
t

�! b0g j b0 2 N:bg



Page 120 Chapter 6. ROUND SOLVABILITY OF COST FUNCTIONS

= f de�nition of % and � g

ufu(addW:b0:b � f%:b0:t j U
t

�! b0g) j b0 2 N:bg

= f (y) insist that addW:b0:b is u-distributive g

ufaddW:b0:b:(uf%:b0:t j U
t

�! b0g) j b0 2 N:bg

= f de�nition of � g

ufaddW:b0:b:(�:U:b0) j b0 2 N:bg

Notice that u-distributivity of addW is required in (y). Alternatively, we can
also require that addW is u-junctive, but then it must be guaranteed that the set

f%:b0:t j U
t

�! b0g is non-empty for all b0 2 N:b. This is met, for example if the network
is connected. There is however a good reason to require addW to be u-distributive.
The function addW:b0:b is intended to add the cost of the link (b0; b) to the so far com-
puted path-cost. In the literature it is always required that link-cost is a non-zero
positive number |this is crucial for the termination of any minimum cost algorithm.
This assumption can be expressed in terms of addW as follows:

x @ addW:b0:b:x (6.2.5)

However, what will happen if x already hits the >? Well, since we cannot go beyond
> we do not have much choice but to impose that addW:b0:b:> = >. This however
means that instead of requiring addW to be u-junctive we can as well require it to be
u-distributive.

The recurrence relation obtained from the above calculation is re-stated in Figure
6.3. In addition one can prove that for all neighbors b0, adding the cost of the link (b0; b)
to �:U:b should yield a value which is at least �:U:b. If the lattice v is also u-closed
|and hence total| there also exists a neighbor a 2 N:b |so-called a best neighbor|
such that �:U:a, plus the cost of the link (a; b), is exactly equal to �:U:b. Hence, there
is a path with the optimal cost which goes from U to b, and passes a |which is why
a is called a best neighbor. For example, using the simple notion of cost, the minimal
cost from a to g in the network in Figure 6.2 is 2, and the best neighbor of g is d. The
u-closedness is required because otherwise �:U:b = ufaddW:b0:b:(�:U:b0) j b0 2 N:bg may
not be an element of the set faddW:b0:b:(�:U:b0) j b0 2 N:bg and hence addW:a:b:(�:U:a)
|where a is the best neighbor of b| may not be exactly �:U:b.

Theorems � Self and � Split in Figure 6.3, stating a recurrence relation for �, do
not indeed speci�cally tell us how to compute �, but they do give an obvious suggestion.
In Section 6.4 the round solvability of � will be shown. Lentfert's FSA algorithm given
in Figure 5.9 can then be used to self-stabilizingly compute this function 9 .

6.2.1 Denoting the Context

Implicit in the de�nition of % and � are the relation v and the function addW which
can be considered parameters of the de�nition. To carry them around all the time will

9 Of course, we do not need round solvability just to show the computability of �. Still, recall that
self-stabilization is of a greater interest to this thesis.
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Theorem 6.2.5 � Self MiCost SELF

Lattice:v ^ (e = ?) ^ b 2 U

�:U:b = ?

Theorem 6.2.6 � Split MiCost SPLIT1

Lattice:v ^ (8a; b :: addW:a:b is u-distributive) ^ b 62 U

�:U:b = ufaddW:b0:b:(�:U:b0) j b0 2 N:bg

Theorem 6.2.7 � Less MiCost LESS NEIGHBOR1

Lattice:v ^ (8a; b :: addW:a:b is u-distributive) ^ b0 2 N:b

�:U:b v addW:b0:b:(�:U:b0)

Theorem 6.2.8 Best Neighbor Existence MiCost IN NEIGHBOR1

Lattice:v ^ (8a; b :: addW:a:b is u-distributive)
v is u-closed ^ b 62 U ^ (N:b 6= �)

(9a : a 2 N:b : addW:a:b:(�:U:a) = �:U:b)

J

Figure 6.3: Some basic theorems of minimal cost functions.

severely worsen the readability 10 of formulas. Still, in the sequel things will become
more complicated as objects with a similar structure but based on di�erent building
blocks will have to be considered and compared. Therefore we introduce the following
notation, which will only be used when necessary:

�; �; : : : `̀ f

The objects to the left of `̀ are called the context of f . The meaning of f is to be
interpreted by associating whatever implicit parameters it requires to the objects in
the context. Care will be taken that no confusion will arise as to which parameter
belongs to which object in the context. If it is clear from the surrounding text, it will
not be necessary to bind all implicit parameters to the context. For example:

f;v1

N
v2`̀ �

is a � function which is based on the function f (instead of addW) and the relation
v1

N
v2 (instead of v).

6.3 Best Neighbor

In Theorem 6.2.8 it is stated that if the lattice v is u-closed, and if b 62 U , there always
exists a best neighbor. That is, a neighbor through which the best path from U to b

10 Albeit being fairly formal, we are still arguing at the human level where dropping parameters
|or abusing notation in general| is a bad but a useful common practice. Once we are in HOL, all
formulas have to be written completely.
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passes. A frequently occurring task is to extend a minimal cost function that it also
yields the best neighbor. The problem has been touched upon several times before. In
this section we intend to give a more extensive analysis. To record the best neighbor,
the type of the results of %:b:s is extended from A to A � V . The second component
will be used to record the node in s, just prior to the destination b (thus that node is
hd:s). That is, let us call the resulting function d%e:

d%e:b:[] = (%:b:[]; e2)
d%e:b:(b0; s) = (%:b:(b0; s); b0)

(6.3.1)

for some node e2 2 V .
At the informal level this idea will sound quite natural. Expressed in formulas as

above, things may be quite disorienting. We will however restrain from arguing the
choice informally as this will prove to be lengthy. Instead, below we give a calculation
that will expose the choice above. Still, the reader is encouraged to relate the above
de�nition with his operational view towards the problem.

Let us de�ne the corresponding minimal cost function as follows:

d�e:U:b = u3fd%e:b:s j U
s
�! bg (6.3.2)

where u3 correspond to some lattice v3, the choice of which will be made apparent by
the calculation below. Let now b 62 U . We derive:

d�e:U:b

= f (6.3.2) g

u3fd%e:b:s j U
s
�! bg

= f (y) let d%e:b:s = (%:b:s; f:s) g

u3f(%:b:s; f:s) j U
s
�! bg

= f (z) let v3=v1
N

v2, (6.1.3) g

(u1f%:b:s j U
s
�! bg; u2ff:s j U

s
�! b ^ (%:b:s = u1f%:c:s j U

s
�! cg)g)

= f de�nition119 of � g

(�:U:b; u2ff:s j U
s
�! b ^ (%:b:s = �:U:b)g)

Note the choice for v3 was made in (z), namelyv3=v1

N
v2. It must also be assumed

that v1 and v2 are lattices.
If we choose f:s = hd:s, then the above derivation states that the second component

of d�e:U:b will be the �rst node of some path s to b, such that the cost of this path is
minimal. The �rst node of s, by de�nition of path, is a neighbor of b. Hence we have
obtained the best neighbor. Or at least, we hope so. A small complication arises if:

u2fhd:s j U
s
�! b ^ : : :g

does not yield something which is an element of the set fhd:s j U
s
�! b ^ : : :g. This

can be mended by requiring that uB 2 B, if B is non-empty. That is, by requiring the
lattice v2 to be u-closed.



6.3. BEST NEIGHBOR Page 123

In addition, one may also require that the minimal cost from U to b is equal to
|instead of being the best approximation of| the minimal cost to the best neighbor
b0, combined with the cost of the link b0 to b using addW:b0:b. In this case, v1 also
needs to be u-closed. This is a strong requirement, because a u-closed lattice has to
be linear.

Let us now do some more calculation to rewrite d%e:

d%e:b:(b0; s)

= f (6.3.1) g

(%:b:(b0; s); b0)

= f de�nition118 of % g

(addW:b0:b:(%:b0:s); b0)

= f (y) let >++:f:b0:b:(X; c) = (f:b0:b:X; b0) g

>++:addW:b0:b:(%:b0:s; snd:(d%e:b0:s))

= f (6.3.1) g

>++:addW:b0:b:(d%e:b0:s)

Now take a look at the de�nition118 of %: d%e satis�es the equations, only with a
di�erent choice for addW, namely >++:addW (the �sh-tail of addW). In other words,
d%e is just an instance of %, and consequently d�e is also an instance of the � function.
Notice that this higher order function �sh-tail is exactly the function required to extend
a minimal cost function to a function that also records the best neighbors. The reader
may want to compare the de�nition of >++:addW as given in (y) with an instance thereof
in (5.5.32)109.

This raises however a new question: if we extend the function addW and the lattice
v1 on which a � function is based to, respectively, >++:addW and v1

N
v2, does

the resulting � function satis�es the general properties of a minimal cost function? If
the reader goes over the properties in Figure 6.3 he will notice that those properties
require a lattice to be used, the u-closedness of the lattice, and the distributivity of
the function addW being used. The lexicographic product preserves lattices and the
u-closedness. So, if v1 and v2 are both lattices, then so is v1

N
v2, and if both u1

and u2 are u-closed, then so is v1

N
v2. Unfortunately, the function >++:addW as it

is now is not u-distributive because >++:addW:b0:b:(>;>) = (addW:b0:b:>; b0), which is
not necessarily equal to >. To make >++:addW distributive we will rede�ne it such that
when applied to > it yields >. This is displayed in Figure 6.4 11 . The distributivity of
this new de�nition and some other facts mentioned above are also displayed as theorems
in Figure 6.4.

11 A naive solution is to de�ne >++:addW:b0:b:(X; c) = > if (X; c) = >, and otherwise
>++:addW:b0:b:(X; c) = (f:b0:b:X; b0) as before. However this does not yield a function which satis-
�es the non-zero link-cost condition (6.2.5). That is, ((X; c) 6= >)) (X; c) @ >++:addW:b0:b:(X; c) is
not satis�ed by this de�nition of >++.
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De�nition 6.3.1 Fish-tail FishTail

For any f 2 V!V!(A� V )!(A� V ):

>++:v1 :v2 :f = g

where

[t]g:a:(>1; c) = >3

g:a:(X; c) = (f:a:b:X; b) , if X 6= >1

where >1 belongs to v1 and >3 to v1
N

v2.

De�nition 6.3.2 d%e and d�e

d%e = >++:v1 :v1 :addW; (e1; e2) `̀ %

d�e = >++:v1 :v1 :addW; (e1; e2); v1

N
v2 `̀ �

Theorem 6.3.3 >++ u-closedness CAP Closed LEXII

Lattice:v1 ^Lattice:v2 ^ v1 is u1-closed ^ v2 is u2-closed

v1
N

v2 is u3-closed

where v3 belongs to v1
N

v2.

Theorem 6.3.4 >++Distributive Fish Distr

Lattice:v1 ^Lattice:v2 ^ v1 is u1-closed ^ (8a; b :: f:a:b is u1-distributive)

>++:v1 :v2 :f:a:b is u3-distributive

where u3 corresponds to v1
N

v2.

Theorem 6.3.5 >++ First FST MiCost Fish

Lattice:v1 ^ Lattice:v2

fst:(d�e:U:b) = �:U:b

Theorem 6.3.6 Best Neighbor MiCost Fish THM

Lattice:v1 ^Lattice:v2

v1 is u1-closed ^ v2 is u2-closed ^ (8a; b :: addW:a:b is u1-distributive)
(�:U:b 6= >1) ^ (U 6= �) ^ (N:b 6= �) ^ b 62 U

�:U:b = addW:b0:b:(�:U:b0)

where >1 belongs to v1, u3 belongs to v1
N

v2, and b0 = snd:(d�e:U:b).

J

Figure 6.4: Some theorems on best neighbor function.
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6.4 Round Solvability

Theorems � Self121 and � Split121 give a recursive de�nition for the minimum cost
function �. This can be rewritten by introducing a higher order function ' to obtain
an equation of the form:

�:U:b = ':U:b:�

The function � is thus a �x point of (� f; U; b: ':U:b:f). One may ask whether � is
the least �x point with respect to some lattice (and hence can be approached by a
successive approximation), or even stronger: whether it is the only �x point. Much
more relevant to us, is the question whether � can be approached from any point,
and therefore a self-stabilizing computation will be possible. We already have half an
answer to this question: the FSA algorithm is our proof, but �rst we need to show that
� is round solvable. The function ' |also called generator| plays an important role,
as it is exactly the function required by the round solvability condition. Note that �
used here has a slightly di�erent type than the one expected by the FSA algorithm:
the type of � here is P(V )!V!A whereas the algorithm expects V!V!A. So, we
are not going to use the algorithm to fully compute �, but �0 = (�a; b: �:fag:b). We do
have a good reason to assume a more general type of �, this will be made clear later.
Hopefully, this will not cause too much confusion.

De�nition 6.4.1 Minimal Cost Generator GENmc

For any F 2 P(V )!V!A:

':U:b:F =

�
e , if b 2 U

ufaddW:b0:b:(F:b0) j b0 2 N:bg , otherwise

Theorem 6.4.2 MiCost SAT Spec

Lattice:v ^ (8a; b :: addW:a:b is u-distributive) ^ (e = ?)

�:U:b = ':U:b:�
J

In Corollary111 5.5.2 it was stated that the FSA algorithm will self-stabilizingly
compute � if � satis�es the round solvability condition stated in Theorem111 5.5.1.
The condition requires the existence of a well-founded relation @ over A, a predicate
ok 2 A!V!V!A!B , and a function � 2 V!V!(V!A)!A satisfying:

(8m; b0 : m @ n ^ b0 2 N:b : okma;b0:(F:b
0)) ) okna;b:(�:a:b:F )

for all a; b 2 V and F 2 V !A. The choice of @, ok, and � has been motivated
before and is summarized in Corollary111 5.5.2. Before we continue with verifying this
condition, recall that the � used here has a more general type. So, we will instead
prove a slightly stronger property:

(8m; b0 : m @ n ^ b0 2 N:b : okmU;b0:(F:b
0)) ) oknU;b:(�:U:b:F ) (6.4.1)
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The type of ok and � should also be lifted accordingly. The choice for ok is as according
to Corollary111 5.5.2, but generalized to accommodate the type change:

oknU;b:X = (�:U:b v n) (X = �:U:b)) ^ (n v �:U:b) n v X) (6.4.2)

The � suggested by the corollary is an instance of the one de�ned in De�nition 6.4.1.
The latter will be used now as it has the correct type for the above equation. For @ is
was proposed to take v �I where v is the relation on which the u operator used in
the function � is based.

The following abbreviation is useful for later:

prenU;b:F = (8m; b0 : m @ n ^ b0 2 N:b : okmU;b0:(F:b
0)) (6.4.3)

Or, alternatively:

prenU;b:F = (8m; b0 : m @ n ^ b0 2 N:b :

�
�:U:b0 @ n) (F:b0 = �:U:b) ^
m v �:U:b0 )m v F:b0

) (6.4.4)

Using pre we can rewrite (6.4.1) to the following, more compact, formula. For all
n 2 A, U � V , b 2 V , and F 2 V!A:

prenU;b:F ) oknU;b:(':U:b:F ) (6.4.5)

That is what we are going to prove now.
This is going to be the longest proof presented in this thesis. If the reader wishes,

he can skip the calculation. The results are presented in Theorems129 6.4.3 and 6.4.4.
Still, we encourage the reader to bear with the calculation. It is not really that di�cult
and it exposes in detail where and how various conditions required to obtain round-
solvability play their role.

Assume in the sequel that v is a lattice which is u-closed.
Let b 2 V . We distinguish two cases: b 2 U and b 62 U . For the �rst case we derive:

oknU;b:(':U:b:F )

= f de�nition125 of ', b 2 U g

oknU;b:e

= f de�nition (6.4.2) of ok g

(�:U:b v n) (e = �:U:b) ^ (n @ �:U:b) n v e)

= f let e = ?, � Self121 g

(? v n) (? = ?) ^ (n @ ? ) n v ?)

= f simple calculation g

true

So, (6.4.5) is satis�ed if e = ?.
Let us consider now the case if b 62 U . We derive:

oknU;b:(':U:b:F )

= f de�nition (6.4.2) of ok g
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(�:U:b v n) (':U:b:F = �:U:b)) ^ (n v �:U:b) n v ':U:b:F )

= f b 62 U , de�nition125 of ' g

(�:U:b v n) (ufaddW:b0:b:(F:b0) j b0 2 N:bg = �:U:b)) ^
(n v �:U:b) n v ufaddW:b0:b:(F:b0) j b0 2 N:bg)

( f de�nition of u g

(�:U:b v n ) (9a : a 2 N:b : addW:a:b:(F:a) = �:U:b) ^
(8b0 : b0 2 N:b : �:U:b v addW:b0:b:(F:b0))) ^

(n v �:U:b ) (8b0 : b0 2 N:b : n v addW:b0:b:(F:b0)))

( f v is u-closed, (6.1.2)115 g

(�:U:b v n ) (9a : a 2 N:b : addW:a:b:(F:a) = �:U:b) ^
(8b0 : b0 2 N:b : �:U:b v addW:b0:b:(F:b0))) ^

(n v �:U:b ) (8m; b0 : b0 2 N:b ^m @ n :m @ addW:b0:b:(F:b0)))

So, it su�ces to show:

prenU;b:F ^ �:U:b v n ) addW:a:b:(F:a) = �:U:b) (6.4.6)

prenU;b:F ^ �:U:b v n ) �:U:b v addW:b0:b:(F:b0) (6.4.7)

prenU;b:F ^ n v �:U:b ^ m @ n ) m @ addW:b0:b:(F:b0) (6.4.8)

for all n 2 A, U � V , b 2 V , b0 2 N:b, F 2 V!A, m 2 A, and some a 2 N:b 12 .
For 6.4.6 we have to show the existence of an a satisfying the equation. First we

derive:

addW:a:b:(F:a) = �:U:b

( f simple calculation g

(addW:a:b:(�:U:a) = �:U:b) ^ (F:a = �:U:a)

( f prenU;b is assumed, de�nition (6.4.4) of prenU;b g

(addW:a:b:(�:U:a) = �:U:b) ^ (�:U:a @ n) ^ a 2 N:b

( f �:U:b v n is assumed, v is transitive g

(addW:a:b:(�:U:a) = �:U:b) ^ (�:U:a @ �:U:b) ^ a 2 N:b

= f (y) insist that (x 6= >) ) x v addW:a:b:x g

(addW:a:b:(�:U:a) = �:U:b) ^ a 2 N:b ^ (�:U:a 6= >)

12 Note that this requires that N:b 6= �. So, what if N:b is empty? If this is the case, notice that,
by de�nition of ' we have ':U:b:F = >. So:

ok
n
U;b:(':U:b:F )

= f de�nition (6.4.2) of ok g

(�:U:b v n) (':U:b:F = �:U:b)) ^ (n v �:U:b) n v ':U:b:F )

= f the remark above g

(�:U:b v n) (> = �:U:b)) ^ (n v �:U:b) n v >)

which is satis�es if �:U:b = >. Since N:b = � and b 62 U , there exists no path from U to b and hence
by the de�nition of �, �:U:b is indeed equal to >.
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So, (6.4.6) can be satis�ed by taking the best neighbor of b as a. The existence
of such a neighbor is guaranteed by Theorem Best Neighbor Existence121. Notice
also the requirement (x 6= >) x v addW:a:b:x in (y). This is the non-zero link-cost
condition we mentioned earlier in (6.2.5).

For (6.4.7) we distinguish two cases: �:U:b v �:U:b0 and �:U:b 6v �:U:b0. For the �rst
case we derive:

�:U:b v addW:b0:b:(F:b0)

= f insists addW:b0:b is u-distributive, hence addW:b0:b:> = > g

(F:b0 6= >) ) �:U:b v addW:b0:b:(F:b0)

= f v is u-closed, (6.1.2)115 g

(F:b0 6= >) ) (8m : m @ �:U:b : m @ addW:b0:b:(F:b0))

( f insist that (x 6= >) ) x @ addW:a:b:x g

(8m : m @ �:U:b : m v F:b0)

( f prenb is assumed, de�nition (6.4.4) of prenb g

(8m : m @ �:U:b : m @ n ^m v �:U:b0)

= f v is transitive g

�:U:b v n ^ �:U:b v �:U:b0

So, (6.4.7) is satis�ed if �:U:b v �:U:b0. Now for the second case:

�:U:b v addW:b0:b:(F:b0)

( f addW:b0:b is u-distributive, hence monotonic g

�:U:b v addW:b0:b:(�:U:b0) ^ �:U:b0 v F:b0

= f b0 2 N:b, � Less121 g

�:U:b0 v F:b0

( f prenb is assumed, de�nition (6.4.4) of prenb g

�:U:b0 @ n ^ �:U:b0 v �:U:b0

( f v is re
exive and transitive g

�:U:b0 @ �:U:b ^ �:U:b v n

= f v is u-closed, (6.1.1)115 g

�:U:b 6v �:U:b0 ^ �:U:b v n

From the above calculation, and the previous one, we conclude that (6.4.7) too is
satis�ed, provided the non-zero link-cost property holds.

For (6.4.8) we derive:

m v addW:b0:b:(F:b0)

= f insists addW:b0:b is u-distributive, hence addW:b0:b:> = > g

(F:b0 6= >) ) m v addW:b0:b:(F:b0)

( f simple calculation, insist (x 6= >) ) x @ addW:b0:b:x g
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(m @ addW:b0:b:(�:U:b0) ^ (F:b0 = �:U:b0)) _ m v F:b0

( f prenb is assumed, de�nition (6.4.4) of prenb g

(m @ addW:b0:b:(�:U:b0) ^ �:U:b0 @ n) _ m v �:U:b0

( f v is transitive g

(m @ n ^ n v �:U:b ^ �:U:b v addW:b0:b:(�:U:b0) ^ �:U:b0 v m) _ m v �:U:b0

( f b0 2 N:b, � Less121, simple calculation g

(m @ n ^ n v �:U:b) ^ (�:U:b0 v m _ m v �:U:b0)

= f (6.1.1)115, some calculation g

m @ n ^ n v �:U:b

So, (6.4.8) is also satis�ed.
We conclude therefore that (6.4.5) is satis�ed. If @ is also well-founded 13 , then

it follows that the round-solvability condition126 6.4.2 is also satis�ed. Hence, �0 =
(�a; b: �:fag:b) can be computed self-stabilizingly by the FSA algorithm. Notice also
how the u-closedness of v and the non-zero link-cost condition, the latter is:

(x 6= >) ) x @ addW:b0:b:x

are repeatedly invoked, a fact which underscores the role of these two conditions.
Theorem 6.4.3 below re-states the result of the calculation. Since a best neighbor

function d�e |see Section 6.3| is also a minimal cost function124 (De�nition 6.3.2),
the round solvability result of Theorem 6.4.3 also applies to d�e. This is re-stated by
Theorem 6.4.4.

Theorem 6.4.3 � Round Solvability MiCost Round Solv

Lattice:v ^ v is u-closed
(8a; b :: addW:a:b is u-distributive) ^ (8a; b; x : x 6= > : x @ addW:a:b:x)

(e = ?) ^ (�:U:b 6= >) ^ (U 6= �)

(8b0; m : b0 2 N:b ^m @ n : oknU;b:(F:b
0)) ) oknU;b:(':U:b:F )

where oknU;b:X is as in (6.4.2).

Theorem 6.4.4 d�e Round Solvability MiCostFish Round Solv

Lattice:v1 ^ Lattice:v2 ^ v1 is u1-closed ^ v2 is u2-closed
(8a; b :: addW:a:b is u1-distributive) ^ (8a; b; x : x 6= >1 : x @1 addW:a:b:x)

(e1; e2 = ?1;?2) ^ (�:U:b 6= >) ^ (U 6= �)

>++:v1 :v2 :addW; (e1; e2); v3

`̀
(8b0; m : b0 2 N:b^m @3 n : oknU;b:(F:b

0)) ) oknU;b:(':U:b:F )

where v3=v1
N

v2 and oknU;b:X is as in (6.4.2).
J

13 Notice that the calculation requires v to be a u-closed lattice, and hence @ is well-founded.
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6.4.1 The Fix Point of a Generator

Basically, the FSA algorithm performs a successive and fair approximation using the
generator ', or perhaps one should say, a set of generators ':U:b's. The fact that the
algorithm is self-stabilizing means that the order in which the generators are applied
at each step is irrelevant, and that the process converges to the corresponding minimal
cost function � regardless of its initial state. Theorem125 6.4.2 states that � is also a �x
point of '. It is also the only �x point. If another �x point �0 exists, we can start the
FSA algorithm with d = �0 14 . Since it is a �x point, any application of a generator
will leave d to remain equal to �0. However, we have argued that the algorithm will
always converge to d = �. Hence � = �0.

Round solvability is actually a very strong condition. The above argument on the
uniqueness of the �x point of the generator ' extends to any generator satisfying the
round solvability condition. In addition, under some reasonable condition, the round
solvability implies the existence of the �x point itself.

Let � 2 P(V )!V!(V!A)!A be a generator satisfying (6.4.1) for some predicate
ok and some well-founded relation @. That is:

(8m; b0 : b0 2 N:b ^m @ n : oknU;b0:(F:b
0)) ) oknU;b:(�:U:b:F ) (6.4.9)

for all U � V , b 2 V , n 2 A, F 2 V!A. By Theorem111 5.5.1 the FSA algorithm will
satisfy:

true ` true (8n; a; b : n 2 A ^ a; b 2 V : oknfag;b:(d:a:b)) (6.4.10)

Let the goal be to compute �, or more precisely, to converge to (8a; b : a; b 2 V :
d:a:b = �:fag:b). By the convergence property above, it su�ces if ok is such that:

ok�:U:b
U;b :X ) (X = �:U:b) (6.4.11)

assuming that (8U; b : U � V ^ b 2 V : �:U:b 2 A). In terms of FSA algorithm, the
above will mean that it takes at most �:fag:b rounds for the algorithm to compute the
right d:a:b. The above seems to be a reasonable requirement. Notice that the minimal
cost generator ' (De�nition125 6.4.1) also satis�es the above.

In addition, oknU;b:X in intended to express when the value X is considered an
acceptable approximation of �:U:b at round n. Obviously, if X is �:U:b itself, then
oknU;b:X should be true. That is, ok has to be such that the following holds:

(8n;U; b : n 2 A ^ U � A ^ b 2 V : oknU;b:(�:U:b)) (6.4.12)

If we have the generator � and the predicate ok are such that (6.4.9), (6.4.11), and
(6.4.12) are satis�ed then we can show that � is a �x point of �:

(8n : n 2 A : oknU;b:(�:U:b))

) f simple calculation g

14 In addition |a minor detail|, assume that the link-registers do not contain 'bad' values
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(8m; b0 : b0 2 N:b ^m @ �:U:b : okmU;b:(�:U:b))

) f (6.4.9) g

ok�:U:b
U;b :(�:U:b:�)

) f (6.4.11) g

�:U:b = �:U:b:�

Hence we conclude that � is a �x point of �:

(8U; b : U � A ^ b 2 V : �:U:b = ':U:b:�) (6.4.13)

The uniqueness of � can be demonstrated as follows. Let r be a �x point of �.
That is, r satis�es equation (6.4.13). We derive:

�:U:b = r:U:b

( f (6.4.11) g

ok�:U:b
U;b :(r:U:b)

( f simple calculation g

(8n; b : n 2 A ^ b 2 V : oknU;b:(r:U:b))

( f @ is well-founded, well-founded induction g

(8n; b : b 2 V : (8m; b0 : m @ n ^ b0 2 V : okmU;b0:(r:U:b
0)) ) oknU;b:(r:U:b))

= f r is a �x point of � g

(8n; b : b 2 V : (8m; b0 : m @ n ^ b0 2 V : okmU;b0:(r:U:b
0)) ) oknU;b:(�:U:b:r))

( f predicate calculus g

(8n; b : b 2 V : (8m; b0 : m @ n ^ b0 2 N:b : okmU;b0:(r:U:b
0))) oknU;b:(�:U:b:r))

= f (6.4.9) g

true

So, we conclude that � and r are equal, or more precisely:

(8a; b : U � V ^ b 2 V : �:U:b = r:U:b) (6.4.14)

The fact that a round-solvable function is a �x point of its generator and that this �x
point is unique, is stated more precisely in the theorems in Figure 6.5.

6.5 Self-Stabilizing Broadcast

Recall that the function d�e returns not only the minimal cost between a source U and
a destination b, but also the best neighbor of b. Together, the best neighbors de�ne
the best paths from U to any node in the network. This information can be used to
broadcast data from U across the network by simply following the paths induced by
the best neighbors. Note that we do not actually have to record the best neighbors
since the minimum cost to the neighbors of a node de�nes the node's best neighbors.
Recall that d�e is obtained by replacing the lattice v1 and the function addW used
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Theorem 6.4.5 Generator's Fix Point FP Gen

Let f 2 V!A, @ be a relation over A, ok 2 A!V!A!B , and � 2 V!(V!A)!A.
We have:

(8n; b; g : b 2 V : (8m; b0 : m @ n ^ b0 2 N:b : okmb0 :(g:b
0)) ) oknb :(�:b:g))

(8b; x : b 2 V : okf:bb :x) (x = f:b)) ^ (8n; b : b 2 V : oknb :(f:b))

(8b : b 2 V : f:b = �:b:f)

Theorem 6.4.6 Generator's Unique Fix Point FP Gen UNIQUE

Let (V;N) be a network, and let f , @, ok, and � have the types as in Theorem 6.4.5.
In addition, @ is well-founded. We have:

(8n; b; g : b 2 V : (8m; b0 : m @ n ^ b0 2 N:b : okmb0 :(g:b
0)) ) oknb :(�:b:g))

(8b; x : b 2 V : okf:bb :x) (x = f1:b)) ^ (8b : b 2 V : f2:b = �:b:f2)

(8b : b 2 V : f1:b = f2:b)

J

Figure 6.5: Theorems about the Fix Point of a Generator.

in the minimal cost function with the lexicographic product v1

N
v2 and >++:addW.

We can apply a similar trick, namely by replacing v1 with v1

N
v2, and addW with

>�<:addW where >�<, we call it crab operator, is de�ned as follows:

De�nition 6.5.1 Crab Operator Crab

For all f 2 V!V!A!A:

>�<:v1 :v2 :f = g

where

g:a:b:(>1; Y ) = >3

g:a:b:(X;Y ) = (f:a:b:X; Y ) , if X 6= >1

where >3 belongs to v1

N
v2.

J

So, given an 'add link-weight function' addW, the function >�<:v1 :v2 :addW:a:b,
when applied to a pair (X;Y ) will simply pass Y to the second component of its result
(this corresponds with the message Y being passed from the node a to the node b in
the actual broadcast process), whereas the result of applying addW will be returned in
the �rst component of the result.

Let the corresponding path-cost and minimal cost functions be denoted by h%i and
h�i:

h%ig:b = >�<:v1 :v2 :addW; (e1; g:b) `̀ %:b (6.5.1)

h�ig:U:b = >�<:v1 : v2 :addW; (e1; g:b); v1

N
v2 `̀ �:U:b (6.5.2)
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The function g is intended to contain the data which are to be broadcasted. U contains
the source-nodes of the broadcast, and g:b is the datum which belongs to the source-
node b. These source data may all be identical, but we do not require them to be so.
We will return to this issue later.

The path-cost and minimal cost functions de�ned above have the following proper-
ties:

fst:(h%ig:b:s) = addW; e1 `̀ %:b:s (6.5.3)

snd:(h%ig:b:[]) = g:b (6.5.4)

snd:(h%ig:b:(s; a)) = g:a , if fst:(h%ig:b:s) 6= >1 (6.5.5)

fst:(h�ig:U:b) = addW; e1; v1 `̀ �:U:b (6.5.6)

Notice that the new path-cost and minimal cost functions return in their �rst com-
ponents the same values as the original functions. In the sequel we will denote
addW; e1 `̀ %:b:s simply by %:b:s, and addW; e1;v1`̀ �:U:b by �:U:b.

If h�i is really a broadcast function, we expect that evaluating snd:(h�ig:U:b) will
return a datum from a source node, that is, g:a for some a 2 U . Let us see if this is
the case. Let u3 be the greatest upper bound operator that belongs to v1

N
v2. We

derive:

snd:(h�ig:U:b)

= f (6.5.2), de�nition119 of � g

snd:(u3fh%ig:b:s j U
s
�! bg)

= f de�nition u3, (6.1.4)116 g

u2fsnd:(h%ig:b:s) j U
s
�! b ^ fst:(h%ig:b:s) = u1ffst:(h%ig:b0:t) j U

t
�! b0gg

= f (6.5.3), de�nition119 of � g

u2fsnd:(h%ig:b:s) j U
s
�! b ^ %:b:s = �:U:bg

= f (y) case analysis, (6.5.4), assume �:U:b 6= >1, and (6.5.5) g

u2(fg:b j U
[]
�! b ^ %:b:[] = �:U:bg [ fg:a j U

s;a
�! b ^ %:b:(s; a) = �:U:bg)

= f (6.2.2)117, (6.2.2)118, and (6.2.3)118 g

u2(fg:b j b 2 U ^ e1 = �:U:bg [ fg:a j U
s;a
�! b ^ a 2 U ^ %:b:(s; a) = �:U:bg)

If the argument of u2 in the last formula above is not an empty set then the formula
will yield g:a for some a 2 U , and hence we have proven our conjecture above. Note
that the argument is non-empty if there exists a path from U to b and its cost is exactly
equal to �:U:b. The latter is met if the lattice v1 is u1-closed. Notice also that in (y)
it is required that �:U:b should be less than >.

The next question is whether this broadcast function h�ig is round solvable. If it is,
then it can be computed self-stabilizingly using the FSA algorithm. For a minimum
cost function, Theorem129 6.4.3 states that such a function is round solvable. h�ig is
such a function, but the theorem is rather useless in this case. It requires that e = ?,
or in this case (e1; g:b) = (?1;?2) for all b, which means that the theorem can only
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De�nition 6.5.2 Broadcast Generator GENbc

Let g; F 2 V!A:

h�ig:U:b:F =

�
(e1; g:b) , if b 2 U

u3f>�<:v1 :v2 :addW:b0:b:(F:b0) j b0 2 N:bg , otherwise

where u3 belongs to v1

N
v2.

De�nition 6.5.3 OKbc

okBCn
U;b:P:(X;Y ) = oknU;b:X ^ (�:U:b @1 n) P:Y )

where ok is as in (6.4.2) and � as in (6.2.4).

Theorem 6.5.4 Round Solvability of Broadcast BC Round Solv

Lattice:v1 ^ Lattice:v2

v1 is u1-closed ^ v2 is u2-closed
(8a; b :: addW:a:b is u1-distributive) ^ (8a; b; x : x 6= >1 : x @1 addW:a:b:x)

(8a : a 2 U : P:(g:a)) ^ (e1 = ?1) ^ (�:U:b 6= >1) ^ (U 6= �)

(8b0; m : b0 2 N:b^m @1 n : okBCm
U;b0 :P:(F:b

0)) ) okBCn
U;b:P:(h�ig:U:b:F )

J

Figure 6.6: The round-solvability of broadcast functions.

guarantee the self-stabilization property of the broadcast if the value which is being
broadcasted is ?2. Obviously, this is not a very useful fact. So, we do not have much
choice but to do a new proof for h�ig, although a large part of it will bene�t from
intermediate results of the calculation of Theorem129 6.4.3

15 . But, let us worry less
about this. We are not going to present the proof anyway |the result is, of course,
veri�ed.

Usually a broadcast origins from a single node. However sometimes an application
requires a broadcast from multiple sources. The hierarchical version of the FSA algo-
rithm is an example thereof. In a multiple sources broadcast, usually the requirement
is only to make all copies maintained by all nodes in the network to satisfy some given
predicate P . All data g:a in the source nodes a are assumed to satisfy P . Therefore,
although the g:a's are not necessarily identical, all their copies will satisfy P . We
have de�ned minimal cost functions to have the type P(V )!V!A instead of simply
V!V!A, so we can have multiple sources. The reason behind this is now clear.

Without proof, in Figure 6.6 we present a theorem stating the round solvability of
a broadcast function.

Recall that the FSA algorithm (Figure 5.9) consists of parallel components FSA:a.

15 Alternatively, one can also try to generalize Theorem129 6.4.3
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BC:U = ([]b : b 2 V : BC:U:b) where BC:U:b is de�ned as:

prog BC:U:b

read fr:b0:b j b0 2 V g [ fr:b:c j c 2 V g [ fg:b j b 2 Ug [ fd:bg
write fr:b:c j c 2 V g [ fd:bg
init true

assign

d:b :=

�
(e1; g:b) , if b 2 U

u3f>�<:addW:b0:b:(r:b:b0) j b0 2 N:bg , otherwise
[] ([]c : b 2 N:c : r:c:b := d:b)

where u3 belongs to v1
N

v2.

J

Figure 6.7: A self-stabilizing broadcast algorithm.

Theorem129 6.4.3 gives a convergence property we can expect from the program. A
component level variant of this theorem can easily be obtained from the calculation in
Section 5.5. More precisely, if there exists a well-founded relation � over A, a predicate
ok 2 A!V!B!B , and generator � 2 V!(V!B)!B such that:

(8m; b0 : m � n ^ b0 2 N:b : okmb0 :(F:b
0)) ) oknb :(�:b:F )

then the component program FSA:a in Figure 5.9 satis�es 16 :

true ` true (8n; b : n 2 A ^ b 2 V : oknb :(d:a:b))

Combining the above and Theorem 6.5.4 we conclude that, using h�ig:U as the
generator, instantiating� withv1, and ok

n
b with okBC

n
U;b:P , the program FSA:a, a 2 V ,

will converge to:

(8n; b : n 2 A ^ b 2 V : okBCn
U;b:P:(d:a:b))

if (8a : a 2 U : P:(g:a)) holds. Let us do some calculation to see what the above means.

(8n : n 2 A : okBCn
U;b:P:(d:a:b))

) f �:U:b 2 A if U � V and b 2 V , simple calculation g

okBC�:U:b
U;b :P:(d:a:b)

) f de�nition of okBC g

P:(d:a:b)

In other words, the d:a:b's of all b in the network now satisfy P , which is exactly as
intended.

Figure 6.7 displays a program which is essentially equal to FSA:a. The name is
replaced, and its variables are renamed. As the conclusion of the above argumenta-
tion, the program self-stabilizingly broadcasts data from nodes in U to the rest of the

16 All a indices are now dropped since the a is now �xed.
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Let (V;N) be a network with non-empty and �nite V . Let A be a �nite domain of rounds
and C be a domain of the data which we want to broadcast. Let v12 A!A! B and
v22 B!B!B , addW 2 V!V!A!A, and e1 2 A satisfy:

i. Lattice:v1 ^ Lattice:v2

ii. v1 is u1-closed ^ v2 is u2-closed

iii. (8a; b :: addW:a:b is u1-distributive) and (8b : b 2 V : �:U:b 6= >1)

iv. (8a; b; x : x 6= >1 : x @1 addW:a:b:x)

v. (8s; a : a 2 U : J:s) (P � snd � s � g):a)

vi. (e1 = ?1) ^ (U 6= �)

for some given U � V and predicates P and J .

Theorem 6.5.5 BC sat MDC

BC:U` �J

J BC:U` true (8n; b : n 2 A ^ b 2 V : okBCn
U;b:P:(d:b))

Corollary 6.5.6 Self-stabilizing Broadcast

BC:U` �J

J BC:U` true (8b : b 2 V : P:(x:b))

Theorem 6.5.7 BC sat MDCC

BC:U` �J

J BC:U` true (8n; b; b0 : n 2 A ^ b 2 V ^ b0 2 N:b :
okBCn

U;b:P:(d:b)^ okBCn
U;b:P:(r:b:b

0))

J

Figure 6.8: Main results on the self-stabilizing broadcast program.

network, provided the condition required by Theorem 6.5.4 is met. In addition, there
is a change in that g is no longer a function of type V!A, but is an array of (input)
variables: g:b 17 is the input variable of a node b whose value is to be broadcasted. The-
orems stating the convergence property of BC are also included in Figure 6.8. Theorem
6.5.5 is a general theorem of self-stabilizing broadcast. Theorem 6.5.7 is a slight varia-
tion thereof in which it is also explicitly stated that eventually all communication links
will also be stabilized. This latter version will be used later in Chapter 7. Corollary
6.5.6 states it more clearly that all source-data will eventually be broadcasted. The
theorems are slightly stronger that the one which directly follows from Theorem129

6.4.3 in that g:b, for b 2 U , is not required to always satisfy P , but only under the
assumption of some stable predicate J . Consequently, only if J holds it is guaranteed
the broadcast will perform as expected.

17 And therefore the environment may control g.
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6.6 Some Further Generalization

One condition that keeps appearing is e1 = ?. Recall that e1 is the cost of an empty
path: %:b:[] = e1. The only reason we insist on the condition is to obtain the � Self121
property:

Lattice:v ^ (e = ?) ^ b 2 U

�:U:b = ?

Still, assuming (8a; b :: x v addW:a:b:x) we can conclude that the cost of any path will
be at least e1. Since the empty path is also a path from U to b if b 2 U , we have:

�:U:b

= f de�nition119 of � g

uf%:b:s j U
s
�! bg

= f e1 v %:b:s and U
[]
�! b g

e1

Hence:

Lattice:v ^ b 2 U

�:U:b = e1

If we drop the requirement e1 = ?, the variable d in the FSA algorithm may initially
have a value which is smaller that e1. Still, the FSA algorithm will self-stabilize. This
is nice because then 'negative' initial values may be allowed.

Another re-occurring requirement is �:U:b 6= >, which implies that b should be
reachable from U . Consider again the FSA algorithm in Figure 5.9106. For the sake
of simplicity, let us collect the code and simplify it by dropping the link registers. We
obtain the following program:

prog FSA

assign ([]a; b : a; b 2 V : d:a:b := ':fag:b:(d:a))

Let W be the set of nodes in V which are not reachable from a. Let b 2 W .
Evaluating ':fag:b:(d:a) always yields a value greater than d:a:b0 of any neighbor b0 of
b, unless if b = a, which is not the case since b is not reachable from a. Consequently,
the values of d's in the nodes inW will gradually rise until they hit the >, which is the
correct value of d:a:b for all b 2 W . This is of course assuming the d's will ever hit >,
which is only the case if the domain of the lattice v is �nite. So, under this condition,
the FSA algorithm will compute the minimum cost from a node a to any other node
b, regardless the reachability of b from a.

For the broadcast program the situation is a bit di�erent. Obviously, if b is not
reachable from a then no message from a will ever reach b.





Even the night must fail

For light sleeps in the eyes

And dark becomes dark on dark

Until the darkness dies.

Soon the eyes resolves

Complexities of night

Into stillness, where the heart

Falls into fabled light.

| Tas's Song of Courage

Chapter 7

Lifting the FSA Algorithm

L
ARGE scale computer networks are typically clustered and hierarchically divided:
computers are grouped to form domains, and domains are grouped to form larger
domains. An example of such a division was displayed in Figure 2.5. As more

and more services are o�ered, and the size of a network increases, so is the bulk of
information that has to be maintained to manage the network. At some point |one
should imagine a network at a multi-nation scale|, one may decide that some part
of the information is more a burden to keep around. For example, one may not want
to know the details of the interior of a domain, preferring to keep global information
about the domain. With only this kind of partial information, a node may only know,
or want to know, how to send messages to a domain. It is then up to the local network
in the destination domain to deliver a message to the message's real destination, which
is a node, inside the domain. Of course as a trade-o� some e�ciency may be lost: the
local network in the destination domain may turn out to be so slow that the destination
node can actually be better approached directly from outside, although this may mean
a slight detour. Indeed, people have used hierarchical division for a long time and for
various applications, ranging from cataloguing plants to computers networking, and
used it not only to organize things, but also to hide information.

A hierarchically network of domains is just an instance of a network of domains in
general. The hierarchy is an extra feature which can be exploited to de�ne a visibility

relation, with the intention that each domain will only have information on those
domains visible to it. The others are hidden. The existing network of communication
links will be restrained by the visibility relation |hence only communication to visible
domains is possible. This induces a new network of domains, which can subsequently be
treated without any reference to the hierarchical structure of the domains. Therefore,
we will �rst concentrate on generalizing the FSA algorithm to make it work on networks
of domains in general; later it will be discussed how a hierarchically divided network
�ts in the context.

The only di�erence between a network of domains and an ordinary network is that
a 'node' is now no longer an indivisible unit, but a domain with an interior. There
are various ways to distribute domain level information among the nodes that inhabit



Page 140 Chapter 7. LIFTING THE FSA ALGORITHM

it, but this is, one can say, more the concern of the communication backbone of the
system. When applied at the domain level, we expect the FSA algorithm to be self-
stabilizing under the same round solvability condition. If this is indeed the case, the
theory developed in Chapter 6 will be re-usable 1 . This approach di�ers considerably
from that of Lentfert [Len93]. Because in the latter no separation is made between
those properties which depend on the hierarchical feature and those that do not, the
proofs are more complicated.

This chapter will present the aforementioned generalization of the FSA algorithm.
Like the FSA algorithm, the generalization has also been veri�ed in HOL. Still, to show
the reader some important aspects of the algorithm, and also to provide the reader with
another good example of formal program development, a derivation of the algorithm
will be presented.

7.1 Domain Level FSA Algorithm

Imagine a network (V;N). The nodes in V represent real computers, and the neigh-
borhood function N represents the physical communication links between the nodes.
The nodes can be grouped into domains. Let us say that V is the set of domains we
want to de�ne on top of V and n is a function, called interior function, that expresses
the membership of a node with respect to a domain. So, given a domain b 2 V, b 2 n:b

means that the node b is inside the domain b 2 . The neighborhood function N can be
lifted to the domain level by de�ning that a domain a is a neighbor of another domain
b is we have a node a in a and a node b in b such that those two nodes are linked by
N . More precisely, we can de�ne N 2 V!P(V) such that:

a 2 N :b = (9a; b : a 2 n:a ^ b 2 n:b : a 2 N:b)

If we de�ne N as above, then (V;N ) is a new network. It is a network of domains
rather than a network of nodes, and N is the 'projection' of the physical connection
at the node level to the domain level.

Sometimes however, we want to have another neighborhood relation at the domain
level rather than the N as de�ned above. For example, a few paragraphs earlier we
have mentioned that in a hierarchically structured network of domains, we may want
to restrict N with a visibility relation. Therefore, in the sequel we will leave N as an
independent parameter of a network of domains rather than to have it de�ned in terms
of N .

In the sequel we will describe a network of domains with a tuple (V;N ; V;N;n)
(each parameter is independent). V is the set of domains in the network, and N is the
neighborhood function at the domain level. (V;N ) is required to form a network |that

1 In his thesis [Len93] Lentfert distinguished the round solvability condition for the hierarchical
networks from the one for ordinary networks. Both conditions are, in our opinion, the same, at least
as long as the problem does not rely on the details of the interior of the domains.
2 Another way to represent a domain is to represent it as a subset of V , rather than using an interior
function.
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Figure 7.1: A network of domains.

is, N :b should be restricted within V, for all b 2 V. (V;N) is the underlying network of
nodes. As said, this re
ects the physical communication network. n 2 V!P(V ) is the
interior function. The domains are typically non-empty and their interiors are �nite.
They are not required to have disjoint interiors though.

Figure 7.1 displays an example of a network of domains. The reader should bear
in mind that the connectivity function N does not have to re
ect the physical com-
munication links connecting the domains. Also, N is not necessarily bi-directional
(symmetric). For example, the visibility relation spanned by a hierarchically divided
network is typically not symmetric. If N has to be restricted by the visibility relation,
the resulting neighborhood function is also likely to be asymmetric. So, we should
be more careful in interpreting the 'direction' induced by N . However, the network
spanned by N is intended to be a subset of the physical network, and therefore when-
ever two domains are connected by N , we can assume that there are actually physical
links |which may even be bi-directional| connecting them.

The reader may notice that we used underlined variables such as a; b; : : : to denote
domains, whereas nodes were denoted by a; b; : : :. We will keep this convention.

Let in the sequel (V;N ; V;N;n) be a network of domains, with interiors. V is

�nite and non-empty and in addition n:a is non-empty for all a 2 V. The nodes
can be regarded as an abstraction of physical computing units. For each abstract link

|henceforth it means a link induced by N| we can de�ne its cost. A notion of
the minimal cost of going from one domain to another can subsequently be de�ned.
Since a network of domains is just like any other network, except that domains have
interiors, any instance, depending on the speci�c application, of the general minimal
cost function � discussed in Chapter 6 can be used. To distinguish such a � associated
with a network of domains and one associated with an ordinary network we will use '�'
to denote the �rst and reserve '�' for the latter. The distinction is of course arti�cial,
but denoting them di�erently will make things less confusing later. Suppose we are
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interested in self-stabilizingly computing the value of �:�:b for all b by a given � 3 .
Let in the sequel � be a �xed domain. We intentionally use a Greek letter � instead

of a Latin letter to help the reader later to recognize that � can be treated as a constant.
Before we go on discussing how to compute �:�, there is a question which we wish

to address �rst, namely: having computed �:�:b, where do we keep the result? We
can store this centrally in a node in the domain b (or �), or we can let each node in b

have its own duplicate of �:�:b, or anything between these two extremes. There are
good reasons for each choice. Centralized storage is easy to maintain, it saves space,
but is prone to failures on the central node. Distributed storage is robust, but less
space-e�cient and extra e�ort has to be spent to maintain its consistency. Which
one is the best may depend on the application, but in any case the choice does not
actually matter for the computation of �. Let us assume in the sequel that we have
a distributed store. Each node b 2 n:b maintains a variable d:b:b, which eventually
should contain the value �:�:b. If we call our program P:�, its speci�cation will be:

true P:�` true (8b; b : b 2 V ^ b 2 n:b : d:b:b = �:�:b) (7.1.1)

Let us now forget about �. Let us just say that we want P:� to converge to a
situation where the values of d:b:b for all b 2 V and b 2 nb satisfy some predicate ok.
More speci�cally, we generalize the speci�cation of P:a to:

true P:�` true (8n; b; b : n 2 A ^ b 2 V ^ b 2 n:b : oknb :(d:b:b)) (7.1.2)

As before, A is a domain of rounds. Indeed, we intend that P:� converges to its goal
above through a fair and successive approximation process along some ordering on the
domain of rounds. The domain of the rounds does not have to coincide with the domain
of the values of the d:b:b's. Let us denote the latter with B. Notice that (7.1.1) can be
obtained from (7.1.2) if there exists an � 2 A such that:

ok
�

b :x ) (x = �:�:b)

It is then up to us to �nd a suitable ok.
In establishing oknb :(d:b:b) we probably need to evaluate the values of d:c:c of other

domains c and other nodes c. So, values need to be communicated from one domain to
another, and from one node to another. Without detailing how they are communicated,
let us just say that cOknb is the communication obligation of domain b at round n. We
will strengthen speci�cation (7.1.2) to:

true (8n; b; b : n 2 A ^ b 2 V ^ b 2 n:b : cOknb ^ oknb :(d:b:b)) (7.1.3)

where |to emphasize what has just been said:

oknb :X = the value X is 'acceptable' for domain b at round n

cOknb = the communication obligation of domain b at round n

3 This is a slightly di�erent problem statement than the one we had in Chapter 5. There, it was
required to compute �:a:b, for all pairs (a; b). However, it has been remarked that �:a can be
computed without any information on �:a0, for any distinct a0. So, we can as well �x the a. This
simpli�es things.
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In particular, oknb :(d:b:b) can be viewed as describing the (computation) obligation of
(any node in) the domain b for the round n.

Let us introduce several abbreviations:

dataOkn = (8b; b : b 2 V ^ b 2 n:b : oknb :(d:b:b))

comOkn = (8b : b 2 V : cOknb )

preOkn = (8m : m @ n : comOkm ^ dataOkm)

for some given relation @ over the domain of the rounds A. Let in the sequel A be a

�nite and non-empty set and @ be a transitive and well-founded relation.

So, dataOkn and comOkn are, respectively, the whole computation and communica-
tion obligation for round n, whereas preOkn can be thought of as describing what has
been achieved when a new round n is entered.

Let us not call our program just P:�, but dFSA:�, which stands for Domain-level,

Fair, and Successive Approximation. Using the just introduced abbreviations we can
re-state our problem as expressed by (7.1.3) as:

DA0 : true dFSA:�` true (8n : n 2 A : comOkn ^ dataOkn) (7.1.4)

This is what we are going to consider as the speci�cation of the domain-level FSA
algorithm.

Just as with the FSA algorithm we can now use Round Decomposition
93
to reduce

the above into a round-based speci�cation, that is, a speci�cation stating where to
the system must converge at every round n. For the sake of readability, con�nement

constraints will be omitted from formulas. We derive:

true ` true (8n : n 2 A : dataOkn ^ comOkn)

( f (y) Round Decomposition
93
, De�nition of preOk g

(8n : n 2 A : preOkn ` true dataOkn ^ comOkn)

( f Accumulation
91
g

(8n : n 2 A : (preOkn ` true dataOkn) ^ (preOkn ` dataOkn  comOkn))

( f  Stable Shift
91

and Stable Background
91
g

(8n : n 2 A : (preOkn ` true dataOkn) ^ (preOkn ^ dataOkn ` true comOkn))

( f de�nition of dataOk and comOk,  Conjunction
91
g

(8n; b; b : n 2 A ^ b 2 V ^ b 2 n:b :
(preOkn ` true oknb :(d:b:b)) ^ (preOkn ^ dataOkn ` true cOknb ))

Note that the calculation above is practically the same calculation
102

as in Chapter
5, the one where we applied Round Decomposition to the speci�cation of the FSA
algorithm. This should not be surprising as so far we have not yet exploited aspects
which distinguish a network of domains from an ordinary one. Notice that to be able
to invoke Round Decomposition in (y) the domain of the rounds A is required to be
�nite and non-empty, and the relation @, with which we order the rounds, has to be
well-founded. These have been assumed before.
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Let us also divide the program dFSA:� into components. The core part of dFSA:� is
the computation part. In the FSA algorithm it is the part in which the generators are
invoked to re-compute new values of d. To each node b in each domain b a computation
component gFSA:�:b:b will be associated. The other part of dFSA is the communica-
tion part. The role of this part is obvious. To each domain b we will associate a
communication component cFSA:�:b 4 . The above calculation results in a round-wise
speci�cation, stating that at each round n the program dFSA:� should: (1) converge
to oknb :(d:b:b), and (2) converge to cOknb . If we insist that the components of dFSA are
write-disjoint, then using the Transparency

92
law we can delegate the computation

obligation (1) to gFSA:�:b:b and the communication obligation (2) to cFSA:�:b.
Hence, our original speci�cation DA0 can be re�ned to DA1 below. For all n 2 A,

b 2 V and b 2 n:b :

DA1:a : dFSA:� = ([]b : b 2 V : cFSA:�:b [] ([]b : b 2 n:b : gFSA:�:b:b)

DA1:b : P;Q 2 [ffgFSA:�:b:b; cFSA:�:bg j b 2 V ^ b 2 n:bg ^ P 6= Q ) P �Q

DA1:c : preOkn gFSA:�:b:b` true oknb :(d:b:b)

DA1:d : preOkn ^ dataOkn cFSA:�:b` true cOknb

DA1:e : gFSA:�:b:b` �(preOk
n ^ dataOkn)

DA1:f : cFSA:�:b` �preOk
n

Notice that some of the above speci�cations look very similar to MD3
103

of the FSA
algorithm. Let us �rst take a look at DA1.c, which is probably the most important
part of DA1. The speci�cation requires the value of d:b:b to be made 'acceptable' for
the domain b at the round n. From the calculation of the FSA algorithm in Chapter
5 we learned that, roughly stated, the application of a matching generator � to a set
of values that are acceptable for all rounds previous to n yields an acceptable value
for round n. In other words, it su�ces to require round solvability. The following
calculation will show this.

First, by exploiting Introduction
91
and the de�nition

42
of ensures in much the

same way as in the calculation
104

of MD3.a we can re�ne DA1.c to:

fpreOkng a foknb :(d:b:b)g (7.1.5)

for some a 2 a(gFSA:�:b:b) and:

gFSA:�:b:b` �preOkn (7.1.6)

gFSA:�:b:b` � (preOkn ^ oknb :(d:b:b)) (7.1.7)

Notice that there is nothing in the above speci�cations that forbids us from making an
a satisfying (7.1.5) to be the only action of gFSA:�:b:b. So, let us just assume this.

The speci�cation (7.1.7) is now super
uous as it is implied by (7.1.5) and (7.1.6). If
cOk is a predicate con�ned by some set of variables V that is ignored by a, by Corollary
3.4.6

33
it follows that comOkn is stable in gFSA:�:b:b for any n:

gFSA:�:b:b` �comOk
n (7.1.8)

4 Later, cFSA:�:b will be split further to node-level components.
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If gFSA:�:b:b only writes to d:b:b then oknc :(d:c:c) is stable, if (c; c) and (b; b) are
distinct. Then, given (7.1.5) one can prove:

fpreOkn ^ dataOkng a fdataOkng (7.1.9)

(7.1.8) and the above implies (7.1.6):

gFSA:�:b:b` �preOk
n

= f a is the only action of gFSA:�:b:b, de�nition
44
(4.3.8) of � g

fpreOkng a fpreOkng

( f Hoare triple conjunction, de�nition
143

of preOk g

(8m : m @ n : (fpreOkng a fcomOkmg) ^ (fpreOkng a fdataOkmg))

( f (y) de�nition
143

of preOk, pre-condition strengthening g

(8m : m @ n : (fcomOkmg a fcomOkmg) ^ (fpreOkm ^dataOkmg a fdataOkmg))

= f (7.1.8) and (7.1.9) g

true

So, we conclude that in this case, (7.1.6) too is super
uous. Note by the way that in
(y) step in the above calculation @ needs to be transitive.

This leaves only (7.1.5). We derive (the step marked with ywill be motivated later):

fpreOkng a foknb :(d:b:b)g

( f de�nition
143

of preOk and comOk, pre-condition strengthening g

f(8m; b0 : m @ n ^ b0 2 N :b : cOkmb0 )g a fok
n
b :(d:b:b)g

( f (y) introduce a new variable cp, insist cOkm
b0

implies (8b; b : b0 2 N :b ^ b 2 n:b :

okm
b0
:(snd:(cp:b:b:b0))), pre-condition strengthening g

f(8m; b0 : m @ n ^ b0 2 N :b : okmb0 :(snd:(cp:b:b:b
0)))g a foknb :(d:b:b)g

( f choose a and introduce � g

(a = assign:(d:b:b):(�:�:b:(snd � (cp:b:b)))) ^
(8F :: (8m; b0 : m @ n ^ b0 2 N:b : okmb0 :(F:b

0)) ) oknb :(�:�:b:F ))

The calculation yields none other than the same round solvability condition
105

as
in the FSA algorithm! The round solvability of minimal-cost functions has been inves-
tigated in Chapter 6 and the results can of course be applied here. At this point, we
are basically done. There is still the question as to how to establish the round-wise
communication obligation. In the FSA algorithm this is done by copying the data in
a node to all its neighbors. Now we have domains instead of nodes, so there will be a
slight variation to this 'copying' scheme. This will be discussed in the next subsection.

Notice that in the step marked with yin the deviation above, a new variable cp |
more precisely, an array of variables| is introduced. The idea is to establish oknb :(d:b:b)
by applying the function �:�:b. Given that the round solvability condition is met,
the function still requires values satisfying okmb0 for all rounds m that proceed n, and

neighbors b0 of b to be passed to it. By preOkn, we have these values kept in d:b0:b0 for
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Figure 7.2: Establishing cOk.

all neighbors b0 and nodes b0 2 n:b0. However, whichever component that maintains
d:b0:b0, it may not be directly linked with the one that keeps d:b:b. This is why we need
to introduce the variable cp:b:b0. It is intended as the 'copy' of d:b0 and intended to be
accessible to the component that maintains d:b0:b0.

More precisely, the second component of the variable cp:b:b0:b 5 is intended as the
view of the node b 2 n:b on d:b0:b0, for some node b0 2 n:b0. Recall that B is the domain
of the values of the variables d:b:b. The values of cp:b:b0:b's are pairs of type C�B, for

some type C. Why they have to be pairs will be explained later. In the FSA algorithm
we have the array r for the same purpose, except that in FSA the r's are also the link
registers between processes. The cp's are not link registers because now a node b in a
domain b may not have a direct communication link with a neighboring domain b0. We
will elaborate on this soon. Notice also that in addition, in (y) the predicate cOk has
been partially speci�ed.

To summarize the calculation above, we conclude that DA1.c can be re�ned to DA2
as follows. For all m;n 2 A, a; b 2 V and b 2 nb :

DA2:a : [cOknb ) (8c; c : c 2 V ^ b 2 N :c ^ c 2 n:c : oknb :(snd:(cp:c:c:b)))]

DA2:b : cOkma 2 Pred:((w(gFSA:�:b:b))c)

DA2:c : a(gFSA:�:b:b) = fassign:(d:b:b):(�:�:b:(snd � (cp:b:b)))g

DA2:d : (8F :: (8m; b0 : m @ n ^ b0 2 N:b : okmb0 :(F:b
0))

) oknb :(�:�:b:F ))

for some function �. Notice that DA2.c practically tells us what the choice of gFSA
should be.
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7.1.1 Broadcasting Data to Neighboring Domains

Let us now turn our attention to the second most important part of DA1, namely
DA1.d:

preOkn ^ dataOkn cFSA:�:b` true cOknb (7.1.10)

This looks very much like the speci�cationMD3.b
103

of the FSA algorithm. In the latter
case, the speci�cation requires that at every round n, the value of all the link registers
between a node b and its neighbors are made acceptable with respect to the node b.
From dataOkn we know that the datum kept by b is already acceptable, and therefore
MD3.b can be met by copying this datum to the link registers. This is illustrated by the
picture on the left in Figure 7.2. However, now we have a network of domains instead
of an ordinary network. We have decided to use a distributed store, so 'copying data
to a domain' will mean, as illustrated by the right picture in Figure 7.2, that we have
to broadcast the data across the nodes within the domain.

In the last calculation, a partial speci�cation for cOk is obtained. This is given
in DA2.a. In each node c 2 c, a variable cp:c:c:b is maintained for every neighbor-
domain b of c. As said, (the second component of) cp:c:c:b is intended to be the image
of d:b:b of some b 2 n:b. Based on DA2.a, (7.1.10) states that at every round n, all
images of d:b should be made acceptable with respect to the source-domain b. Since
dataOkn implies that all d:b:b's are already acceptable, this can be achieved by |to
re-state what has been hinted before| broadcasting the values of d:b:b's to all nodes in
all neighboring domains. The program BC presented in Chapter 6 is a self-stabilizing
broadcast program and can therefore be used for this purpose.

For each target domain, the broadcast will be carried out independently. That is,
we are going to divide cOk in (7.1.10) to a number of smaller predicates ccOk's and
let a component program converge to each of them independently. More precisely, we
insist cOk to have the following form:

cOknb = (8c : c 2 V ^ b 2 N :c : ccOknb;c)

Using  Write-disjoint Conjunction
92
we can re�ne (7.1.10) or DA1.d to DA3 as

follows. For all b 2 V:

DA3:a : cFSA:�:b = ([]c : c 2 V ^ b 2 N :c : cFSA:�:b:c)

DA3:b : (8c
1
; c

2
: c

1
; c

2
2 V ^ b 2 N :c

1
^ b 2 N :c

2
^ (c

1
6= c

2
) :

cFSA:�:b:c
1
� cFSA:�:b:c

2
)

and for all n 2 A and c 2 V such that b 2 N :c:

DA3:c : preOkn ^ dataOkn cFSA:�:b:c` true ccOknb;c

5 At this point, the increasing number of parameters will start to confuse the reader. Hopefully, this
does not discourage him. The essence of the problem is not more complicated than the case is with
ordinary networks. It is the details which now become a heavy load to drag around. Alas, there is
not much we can do: we still want to maintain some degree of precision in our arguments.
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We intend DA3.c to be implemented by the broadcast program BC, used to broad-
cast the values of d:b:b's in the domain b to all nodes in the domain c. Main theorems
about BC were given in Figure 6.7 in Chapter 6. We can use them, but in order to
do that we need a de�nition of ccOk, so that not only the partial speci�cation DA2.a

of cOk is met, but DA3.c should have the form that matches the conclusion of one of
those theorems. Later we will show some calculation to obtain ccOk, but �rst let us
remind the reader of some basic facts about the program BC.

Recall that the program BC silently builds a spanning-tree from the source-nodes
to the rest of the network. Data is then broadcasted along the tree. To build the tree,
a minimum cost function � 6 is required.

A communication network is also required. Recall that we have assumed a network
of domains (V;N ; V;N;n). The pair (V;N) represent the physical communication
network at the node level, which will be used to do the broadcast. Within each domain,
N de�nes a local network. Recall that we want to broadcast values from the domain
b to the nodes in c. To do this we will use the local network of c. Let us introduce the
following abbreviation:

(N �b):b = N:b \ n:b (7.1.11)

That is, (N �b):b contains all neighbor-nodes of the node b which are inside the domain
b. Note that (n:b; (N �b)) de�nes a local network within the domain b.

We also need source-nodes to broadcast from. What are they in the case of broad-
casting data from a domain b to a domain c? A natural choice seems to be n:b.
However, above we have agreed that (n:c;N � c) is the network across which data will
be spread. The program BC requires that the source-nodes are part of this network.
Therefore we will take the so-called border-nodes as the source-nodes. That is, those
nodes in c which have links to nodes in b. See Figure 7.3. The set of these nodes are
denoted by border:c:b:

border:c:b = fc j c 2 n:c ^ (9b : b 2 n:b ^ b 2 N:c)g (7.1.12)

Now let us return to DA2.a and DA3.c. To meet DA2.a, it su�ces if ccOknb;c implies
(8c : c 2 n:c : oknb :(snd:(cp:c:c:b))). Let us now see what ccOk should be. We should
also bear in mind that we should try to come up with a de�nition that matches with the
main theorems about BC given in Figure 6.7. Let b 2 V, n 2 A, and let U = border:c:b.
To keep formulas short we will use the following abbreviations:

P = oknb and J = preOkn ^ dataOkn

We derive now:

(8c : c 2 n:c : oknb :(snd:(cp:c:c:b)))

6 This is not to be confused with the function � mentioned early in this section. � is a generic
symbol we use to denote a minimumcost function on a network of domains. Computing such a � can
be the goal of the program dFSA. On the other hand, � here denotes a minimum cost function on the
underlying network of nodes. It will be used by dFSA to broadcast data from one domain to another.
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border−nodes

b

c

J

Figure 7.3: Border-nodes between domains.

= f de�nition of P g

(8c : c 2 n:c : P:(snd:(cp:c:c:b)))

= f (y) introduce a lattice v1, insist (8c : c 2 n:c : �:U:c @1 >1) g

(8c : c 2 n:c : �:U:b @1 >1 ) P:(snd:(cp:c:c:b)))

( f de�nition
134

of okBC g

(8c : c 2 n:c : okBC>1

c :P:(cp:c:c:b))

So, we can choose the above as ccOknb;c. If we do so DA3.c becomes:

J cFSA:�:b:c` true (8c : c 2 n:c : okBC>1

c :P:(cp:c:c:b)) (7.1.13)

Notice that in (y) it is required that �:U:c @1 >1 for all c 2 n:c. Since in a lattice
everything is less that >, this is equivalent with saying that �:U:c 6= >1, implying that
all nodes c in the domain c must be reachable from the source-nodes in U 7 .

The speci�cation (7.1.13) above looks almost like the conclusions of Theorem
136

6.5.5 |one of the main theorems of the program BC. However, this is too naive. The
program BC uses link-registers r to pass messages from one node to another. So far,
nothing is said about the behavior of this r. It is possible that certain initial values
of r may destroy the whole convergence process 8 . We have to prove that this is not
possible. So, we can expect ccOk to say something about r. The conclusion of another
theorem, namely Theorem

136
6.5.7, does say something about r:

J BC:U` true (8n; b; b0 : n 2 A ^ b 2 V ^ b0 2 N:b :
okBCn

b :P:(x:b) ^ okBCn
b0:P:(r:b:b

0)) (7.1.14)

7 Note that only reachability from source-nodes is required. This is weaker than requiring the
network of the nodes within a domain to be fully connected.
8 The reader may wonder why we avoid Corollary

136
6.5.6 which seems to assert the self-stabilizing

broadcasting ability of BC more explicitly. The reason is that the result, while it is �ne, is too sharp
for this particular purpose, just like Theorem136 6.5.5 is.



Page 150 Chapter 7. LIFTING THE FSA ALGORITHM

Inspired by the theorem we introduce a new array of variables r, and strengthen the
de�nition of ccOk to:

ccOknb;c =
(8c; c0 : c 2 n:c ^ c0 2 (N �c):c :

okBC>1

c :(oknc ):(cp:c:c:b) ^ okBC>1

c0 :(ok
n
c ):(r:c:b:c:c

0))

Recall that we have introduced the lattice v1. Let C be the domain of this lattice.
We derive:

ccOknb;c

= f de�nition ccOk and P g

(8c; c0 : c 2 n:c ^ c0 2 (N �c):c : okBC>1

c :P:(cp:c:c:b) ^ okBC>1

c0
:P:(r:c:b:c:c0))

( f insist C to be non-empty g

(8k; c; c0 : k 2 C ^ c 2 n:c ^ c0 2 (N �c):c : okBCkc :P:(cp:c:c:b) ^ okBCk
c0 :P:(r:c:b:c:c

0))

Hence, by Substitution
91
DA3.c can be re�ned to:

J cFSA:�:b:c`
true (8k; c; c0 : k 2 C ^ c 2 n:c ^ c0 2 (N �c):c :

okBCk
c :P:(cp:c:c:b) ^ okBCk

c0 :P:(r:c:b:c:c
0)) (7.1.15)

The above looks very much like (7.1.14)! In fact, it can be obtained from the latter.
Hence, by Theorem

136
6.5.7 the above is satis�ed by implementing cFSA:�:b:c as BC:U .

There is one more remark we wish to add. The program BC requires a function
g. For each source-node c, g:c is supposed to tell us where the to-be-broadcasted data
of c is stored. In our case here, the source-nodes are the border-nodes between c and
b. The source data are the d:b:b's stored in the domain b. Any one of these will do.
Since a border-node c 2 border:c:b will have a neighbor-node b in b we can use the
corresponding d:b:b as g:c. Possibly, there are more of such neighbor-nodes, so we will
have to pick one. Let us assume a function sel to do the selection:

(9b : b 2 n:b : b 2 N:c) ) sel:c:b 2 n:b ^ sel:c:b 2 N:c (7.1.16)

The result of applying Theorem
136

6.5.7 is summarized in Figure 7.4.
Note that C is the domain of the �:U:c's and B is the domain of the values of d:b:b.

When the variable cp is introduced, we insist that cp:c:.�b has the type of C �B. The
reason can be found in the code in Figure 7.4. To broadcast data, we need to compute
�, and this is maintained in the �rst component of cp.

Let us now discuss the conditions required by Theorem 7.1.1 one by one, and see if
they are reasonable.

We need two u-closed lattices and a distributive function addW which also satis�es
k @1 addW:a:b:k. These are not too di�cult to �nd. For example, as v1 we can take
the ordering � over the interval [0 : : : nmax], where nmax is the number of nodes in the
domain c. For addW we can take the +1 function used by the simple notion of minimal
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Theorem 7.1.1

Let v1 and v2 be two u-closed lattices over, respectively, C and B. Let u3

belongs to v1

N
v2. Let c 2 V and b 2 N :c. If cFSA:�:b:c is de�ned as:

cFSA:�:b:c = ([]c : c 2 n:c : cFSA:�:b:c:c)

where cFSA:�:b:c:c is de�ned as:

prog cFSA:�:b:c:c

read fr:c:b:c:c0 j c0 2 n:cg [ fr:c:b:c00:c j c00 2 n:cg [
fd:b:(sel:c:b)g [ fcp:c:c:bg

write fr:c:b:c00:c j c00 2 n:cg [ fcp:c:c:bg
init true

assign

cp:c:c:b :=

�
(e1; d:b:(sel:c:b)) , if c 2 border:c:b

u3f>�<:addW:c0:c:(r:c:b:c:c0) j c0 2 (N �c):cg , otherwise
[] ([]c00 : c00 2 n:c ^ c 2 (N �c):c00 : r:c:b:c00:c := cp:c:c:b)

for some function addW 2 V!V!C!C, then the following holds. For all
n 2 A:

(8a; b :: addW:a:b is u1-distributive)
(8a; b; k : k 6= >1 : k @1 addW:a:b:k)
(8c : c 2 n:c : �:(border:c:b):c 6= >1)

[(8c : c 2 border:c:b : preOkn ^ dataOkn ) oknb :(d:b:(sel:c:b)))]

( cFSA:�:b:c` �preOk
n ^ dataOkn) ^ (e1 = ?1) ^ (border:c:b: 6= �)

preOkn ^ dataOkn cFSA:�:b:c` true ccOknb;c

J

Figure 7.4: The broadcasting part of dFSA.

cost. That is: addW:a:b:k = k + 1 9 . As v2 we can take any u-closed lattice over the
domain B of the messages which are to be broadcasted.

The condition (8c : c 2 n:c : �:(border:c:b):c 6= >1) |as said before| can be
interpreted as a condition requiring that all nodes in the domain c should be reachable
from its' border-nodes. Notice that the network (n:c;N � c) does not have to be fully
connected to satisfy this.

For b 2 N :c, the condition border:c:b: 6= � means that if there are (abstract) links
connecting the domain b to the domain c, then there should also be (physical) links
connecting some nodes in b to some nodes in c. That is, we require:

b 2 N :c) (9b; c : b 2 n:b ^ c 2 n:c : b 2 N:c) (7.1.17)

This is a reasonable condition.

9 However, to make it distributive, an exception must be made: addW:a:b:nmax = nmax
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There are only two conditions left, namely:

i. [ (8c : c 2 border:c:b : preOkn ^ dataOkn ) oknb :(d:b:(sel:c:b))) ]

ii. cFSA:�:b:c` � (preOk
n ^ dataOkn)

The �rst is easy. dataOkn means that for all b and b 2 n:b, oknb :(d:b:b) holds. Since
if c 2 border:c:b then sel:c:b is a node in b, we conclude that oknb :(d:b:(sel:c:b)) holds.

For the second, we note that since the component program cFSA:�:b:c does not write
to the variable d, it cannot destroy dataOk. Hence, it su�ces to show the stability of
preOk:

DA4 : cFSA:�:b:c` �preOk
n

Notice also that by �Compositionality
60
the above implies cFSA:�:b` �preOk

n, which
is DA1.f. So, that is one more speci�cation less.

We have now a quite good idea of how the program dFSA is constructed. Its division
into gFSA and cFSA has been discussed. The choice of cFSA has been argued above,
and the speci�cation DA1 gives a clear indication what gFSA should be. The complete
code of dFSA is presented in Figure 7.5. Notice how the component cFSA is broken
to node-level components. A compacter code is displayed in Figure 7.6. The code
is obtained after collecting the code of the components. It is considerably compacter
than Lentfert's original dFSA algorithm in [Len93]. We have removed some redundant
parts from the algorithm. Besides, we employ a more concise notation.

7.1.2 Verifying the Speci�cations (an Overview)

Having given the program in Figure 7.5, there are still some speci�cations left to
argue about. An overview of the speci�cations we obtain, starting with DA0, and the
re�nement relation among them is given in Figure 7.7. The speci�cations which are
leaves of the tree are not yet investigated. Let us now go over these one by one.

All speci�cations regarding the form of the program dFSA:� and the write-disjoint
condition of its components are satis�ed. This can be directly veri�ed. These speci�-
cations are DA1.a, DA1.b, DA2.c, DA3.a, and DA3.b. Speci�cation DA2.a is a partial
de�nition for cOk, and is met by the choice of cOk and ccOk in page 147 and 150. Spec-
i�cation DA2.d is the round solvability condition which the generator � is required to
meet. Whether or not this is the case depends on the nature of the original problem
the program dFSA is required to solve, not on the code of dFSA itself. DA2.b is met
because the predicate cOk only refers to the variable cp and r whereas the program
gFSA only writes to d.

DA1.e requires the stability of preOkn ^ dataOkn in the component gFSA:�:b:b. By
unfolding the de�nition

143
of dataOk, preOkn ^ dataOkn is equal to:

preOkn ^ oknb :(d:b:b) ^ (8b0; b0 : b0 2 V ^ b0 2 n:b0 ^ (b0; b0 6= b; b) : oknb0:(d:b
0:b0))

The stability of preOkn^oknb :(d:b:b) in gFSA:�:b:b follows from (7.1.7) whose correctness
has been argued. The stability of the rest follows from the fact that gFSA:�:b:b only
writes to d:b:b.
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The program dFSA:� is de�ned as:

dFSA:� = ([]b; b : b 2 V ^ b 2 n:b : gFSA:�:b:b) [] ([]b : b 2 V : cFSA:�:b)

where gFSA:�:b:b is de�ned as:

prog gFSA:�:b:b

read fcp:b:b:b0 j b0 2 Vg [ fd:b:bg
write fd:b:bg
init true

assign d:b:b := �:�:b:(snd � (cp:b:b))

and where:

cFSA:�:b = ([]c : b 2 N :c : cFSA:�:b:c)

cFSA:�:b:c = ([]c : c 2 n:c : cFSA:�:b:c:c)

where cFSA:�:b:c:c is de�ned as:

prog cFSA:�:b:c:c

read fr:c:b:c:c0 j c0 2 n:cg [ fr:c:b:c00:c j c00 2 n:cg[
fd:b:(sel:c:b)g [ fcp:c:c:bg

write fr:c:b:c00:c j c00 2 n:cg [ fcp:c:c:bg
init true

assign

cp:c:c:b :=

�
(e1; d:b:(sel:c:b)) , if c 2 border:c:b

u3f>�<:addW:c0:c:(r:c:b:c:c0) j c0 2 (N �c):cg , otherwise
[] ([]c00 : c00 2 n:c^ c 2 (N �c):c00 : r:c:b:c00:c := cp:c:c:b)

where u3 belongs to v1

N
v2, for some lattices v1 and v2.

J

Figure 7.5: The domain-level FSA algorithm.

prog dFSA:�

init true

assign

([]b; b : b 2 V ^ b 2 n:b : d:b:b := �:�:b:(snd � (cp:b:b)))
[] ([] b; c; c : c 2 V ^ b 2 N :c ^ c 2 n:c :

if c 2 border:c:b then cp:c:c:b := (e1; d:b:(sel:c:b))
else cp:c:c:b := u3f>�<:addW:c0:c:(r:c:b:c:c0) j c0 2 N:cg

[] ([]c00 : c00 2 n:c^ c 2 N:c00 : r:c:b:c00:c := cp:c:c:b))

J

Figure 7.6: The domain-level FSA algorithm |the code has been collected.
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Figure 7.7: The re�nement scheme of DA0.

So, this leaves only DA4. We will stop at this point. Presenting the veri�cation of
DA4 will not reveal anything special which has not been mentioned so far |and it is
also awfully tedious. The reader is assured that we have mechanically veri�ed the �nal
result, which will be presented in the next subsection.

7.1.3 The Final Result

As a �nal result, we conclude that the program dFSA, under all conditions mentioned
in the previous subsections, satis�es the speci�cation

143
DA0, and hence also (7.1.2)

142
.

A summary of all those conditions is presented in the theorem in Figure 7.8. Notice
that the last condition, labelled by RS, asserts the round solvability of the problem.
Notice that it is the same round solvability condition as required by the FSA algorithm
for ordinary networks.

If the problem is to compute �:b, for all domains b and for a given function � 2
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Theorem 7.1.2

Let the network of domains (V;N ; V;N;n), the u-closed lattices v12 C!
C!B and v22 B!B!B , the constant e1, and function addW 2 V!V!
B!B be the ones used in the program dFSA in Figure 7.5. Let A be a
domain of rounds, ordered by @. If they satisfy the following conditions:

i. V , V , A and C are non-empty and �nite, and so is n:b, for all b 2 V .

ii. @ is transitive and well-founded.

iii. (8a; b :: addW:a:b is u1-distributive) and (8a; b; k : k 6= >1 : k @1

addW:a:b:k).

iv. (8b; c; c : c 2 V ^ b 2 N :c^ c 2 n:c : �:(border:c:b):c 6= >1).

v. e1 = ?1 and >1 2 C

vi. (8b; c : b; c 2 V : b 2 N :c ) border:c:b 6= �).

and in addition, the generator � satis�es:

RS : (8F :: (8m; b0 :m @ n ^ b0 2 N :b : okm
b0 :(F:b0)) ) oknb :(�:�:b:F ))

for all n 2 A and b 2 V, and for a given predicate ok, then the program
dFSA:� will satisfy:

true ` true (8n; b; b : n 2 A ^ b 2 V ^ b 2 n:b : oknb :(d:b:b))

J

Figure 7.8: The main result of the domain-level FSA algorithm.

V!B, then the predicate ok should be chosen in such a way that:

(8n; b; b : n 2 A ^ b 2 V ^ b 2 n:b : oknb :(d:b:b))

implies (8b; b : b 2 V ^ b 2 n:b : d:b:b = �:b). This is met |to repeat what has been
said early in this section| if there exists a � 2 A such that:

ok
�

b :x ) (x = �:b)

If � = �:�, for some minimal cost function �, then we already know something as
the round solvability of this kind of function has been investigated in Chapter 6, and
the results are of course applicable here.

7.2 Hierarchically Divided Network of Domains

In this section we will discuss the applicability of the domain-level FSA algorithm
presented in the previous section on networks of domains which are hierarchically
divided. The motivation behind such a division has been discussed before.
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A hierarchical division of domains is a tree de�ned over the domains. If a domain
b is a descendant of another domain c then b is said to have a lower hierarchy than c.
The leaves of the tree are nodes, which form the interior of the domains.

A tree is can be described by a triple (V;C;
) where V describes the elements of
the tree, 
 is the root, and C describes the 'sons' relationship in the tree. That is,
x C y means that x is a son of y. The transitive closure of C, denoted by C+ describes
the proper descendant relation among the domains, whereas the re
exive and transitive
closure of C, that is, C� , describes the descendant relation among the domains.

Let us say that we have a network of nodes (V;N). This network re
ects a physical
communication network among the nodes. We are also given a set of domains V
containing V , and a tree (V;C;
), such that V form the leaves of the tree. The tree
de�nes a hierarchy upon the domains. An interior function n can be de�ned:

n:b = fb j b 2 V ^ b C� bg (7.2.1)

The function n describes which nodes 'inhabit' a domain. Note that b 2 V = (n:V =
fbg). Note also that C� satis�es:

b C� c = n:b � n:c

and that N satis�es:

b 2 N:c ) (border:c:b 6= �) (7.2.2)

which is one of the condition required by the domain-level FSA algorithm. Any function
N 'smaller' than N |that is, N :b � N:b, for all b 2 V| will also satisfy above.

In addition the network N also de�nes a network at the domain level. We can
de�ne:

b 2 N:c = (9b; c : b 2 n:b ^ c 2 n:c : b 2 N:c) (7.2.3)

for all b; c 2 V. The network (V; N) fully describes the underlying communication
network. The idea is to restrict this network with a relation de�ning 'visibility' among
the domains, that is, de�ning which domains can be seen from a given domain. If a
domain is not visible, then no direct information on it will be available. The idea behind
this information hiding has been motivated before. A hierarchical division induces a
notion of visibility, although as far as the FSA algorithm is concerned, any notion of
visibility will do. The algorithm does not require much of the network on which it is
based. Only that the border between two domains should not be empty. However,
above it has been remarked that any network smaller than the 'full' network, that is
the one spanned by N , satis�es this requirement. If we are interested in computing
a minimal cost function �, the theorems in Chapter 6 guarantee correct results for all
�:�:b's such that b is reachable from �. However, at the end of Chapter 6 it has been
remarked that even this reachability condition can be dropped |if the lattice being
used is �nite.

Having said that, let us now take a look at the notion of visibility |as used by
Lentfert in his hierarchical FSA algorithm| induced by a hierarchical division. We will
then discuss the precise instantiation of the program dFSA:� to this speci�c problem.
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Figure 7.9: brother and visible domain

7.2.1 Visibility

Two domains are said to be brothers, denoted by b f c, if they are unequal and have
a common parent. A domain b is said to be visible from c, denoted by b x c if c has
an ancestor which is a brother of b. Consequently, brothers are pair-wise visible, and
if a domain is visible to another, the one cannot be a descendant of the other. See
the illustration in Figure 7.9. What is the idea behind this choice of visibility notion?
It is decided that any domain b should have some knowledge of what lies under any
super-domain |that is, an ancestor domain of b. This knowledge will not be complete
|otherwise b will have a complete knowledge of the whole system because the root
domain 
 is also a super-domain of b. It is decided that for each super-domain, we can
only go one step down, and that is all that we know about it. So, we know everything
about the sons of this super-domain, but not beyond.

Given a tree (V;C), below is the formal de�nition of f and x.

De�nition 7.2.1 Brothers

bf c = (b 6= c) ^ (9a :: b C a ^ c C a)

De�nition 7.2.2 Visibility

bx c = (9c0 : bf c0 ^ c C� c0)

J

In Figure 7.10 a tree is displayed. There is one point in the tree marked with
�. The darker area covers those domains to which � is visible, and the lighter area
covers the domains to which � is not visible. Since � itself is outside the dark area, we
cannot expect the relation x to be symmetric, and hence restricting the N with x
will not induce a relation which is bi-directional. This is the reason that we have, since
the beginning, avoided to rely the calculation on the bi-directionality. Admittedly,
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α

J

Figure 7.10: Area of domains that can see �.

bi-directionality is useful to simplify arguments, and we did abuse this by sometimes
using terms such as 'links between a and b' or 'distance between a and b' as if we have
a bi-directional network.

The visibility relation is also not transitive. Look again at the picture to the right
in Figure 7.9. We have c0 x b (because they are brothers) and b x c, but not
c0 x c. A transitive visibility relation |such a relation is often preferred since it
has interesting algebraic properties| can be obtained by re-de�ning the brotherhood
relation by allowing a domain to be a brother of itself:

bf c = (9a :: b C a ^ c C a)

A consequence of this choice is that all super-domains will become visible.

7.2.2 Hierarchical FSA Algorithm

Let (V;N) be a network re
ecting the physical communication network among the
nodes. Let V be a set of domains, containing V . Let (V;C;
) be a tree de�ning
the hierarchical division on the domains. Let n and N be de�ned as in (7.2.1) and
(7.2.3). As said, the quadruple (V; N; V;n) de�nes a network of domains. To restrict
this network with the visibility relation we de�ne N :

N :b = fb0 j b0 2 N:b ^ b0 x bg (7.2.4)

The quadruple (V;N ; V;n) de�nes a new network of domains. As an example of
how a walk through this network looks like, see Figure 7.11. It shows a hierarchy of
domains with the nodes forming the leaves. The broken lines depicts bi-directional
communication links between the nodes. Consider the sequence e; d; d; c; a;�. Each
domain in this sequence is visible to its predecessor. So, it is a path from � to e in
the network spanned byx. The path also has a corresponding path at the node level,
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Figure 7.11: A walk trough a visibility-constrained network.

for example: g; f ; e; d; c; b; a. Each node in this sequence is physically linked to its
predecessor. How to map this sequence to the sequence e; d; d; c; a;� is illustrated by
the diagram on the upper left in Figure 7.11. Each node, mapped with an arrow to
a domain, is a member of that domain. So, the sequence e; d; d; ca;� is a path in a
network spanned by N . So, we conclude that it is also a path in a network spanned
by N .

If we now apply the domain-level FSA algorithm on the network (V;N ; V;n) then
we obtain a hierarchical FSA algorithm, and that is all that it takes. We are done, but
before we close this chapter, let us add a few comments about how to interpret the
program dFSA in this context, and about hierarchical cost functions.

Let � be a domain in. The compact version of the program dFSA:� is re-displayed
below. Some parameters will be renamed so they will not con
ict with the names
introduced above.

prog dFSA:�

init true

assign

([]b; b : b 2 V� ^ b 2 n:b : d:b:b := �:�:b:(snd � (cp:b:b)))
[] ([] b; c; c : c 2 V� ^ b 2 N�:c^ c 2 n:c :

if c 2 border:c:b then cp:c:c:b := (e1; d:b:(sel:c:b))
else cp:c:c:b := u3f>�<:addW:c0:c:(r:c:b:c:c0) j c0 2 N:cg

[] ([]c00 : c00 2 n:c^ c 2 N:c00 : r:c:b:c00:c := cp:c:c:b))

Theorem 7.1.2 states that the program dFSA:� satis�es:

true ` true (8n; b; b : n 2 A ^ b 2 V� ^ b 2 n:b : oknb :(d:b:b))

For each domain b 2 V� the program can be thought as trying to obtain or to
construct some information about the domain �. For example, it can be that the algo-
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Figure 7.12: Hierarchical cost.

rithm is trying to compute �:�:b for each d:b:b |� is some minimal distance function.
Because the philosophy of introducing the notion of visibility is to keep only informa-
tion of visible objects, then � has to be visible to b. So, the set V� is the set of all
domains to which � is visible |the darker area in Figure 7.10| plus � itself. For the
connectivity function N� we can use N , restricted to V�. Note that even if the under-
lying network (V;N) at the node level is connected, the network (V;N ) is de�nitely
not: with N , only domains at the same or lower levels can be reached. One should
take this into account if he is given a problem that relies heavily on the connectivity of
the network being used. In any case, because � is visible to all domains in V� (except
for � itself), then if within every domain the nodes are connected, we can expect that
all those domains will be reachable from �. For a large class of problems, broadcasting
being an example, no full connectivity is required, and instead, reachability from a
given source node is su�cient.

As said, the algorithm can be used to compute the minimal cost of going from
one domain to another. For the algorithm itself it does not matter what choice of the
minimal cost function is taken, as long as it is round solvable. The choice depends on
how one de�nes the cost of a link, how one wants to 'sum' the cost, and how one de�nes
'minimum'. At the beginning of Chapter 6 some examples of link-cost were mentioned.
It can be, for example, simply a constant 1, or, in a more sophisticated case, a vector
carrying various information. In the case of a hierarchically divided network, one may
want to de�ne the cost in such a way that the cost of going to a higher level domain
is higher, for example because the involvement of a higher level domain may mean
the involvement of all nodes inside it, and higher level domains do tend to have more
nodes. Lentfert uses a vector [Len93] with the size of the height of the hierarchical tree
being used. See Figure 7.12. The cost of a link from a to b is the vector (0; 0; 0; 0; 1)
because the target domain b is on level 0. On the other hand, the cost of a link from
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a to c is (0; 1; 0; 0; 0) and to d is (1; 0; 0; 0; 0) since the target domains are on level,
respectively, 3 and 4. To give a greater weight on higher domains, the vectors are
lexicographically ordered, from left to right. The 'sum' function used by Lentfert is the
standard +, point-wisely applied to each component of the vectors. This is a pretty
standard operation. The function addW that is obtained can be expected to satisfy the
conditions discussed in Chapter 6, required for the round solvability of the resulting
minimal cost function.
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Part II

Mechanical Veri�cation of

Self-Stabilizing Programs





The robots! They're coming this way!

Chapter 8

Mechanical Theorem Proving with

HOL

The HOL system will be brie
y introduced: it will be explained how to write a formula in

HOL, how to add de�nitions, and how to prove a theorem.

L
ET us �rst make an inventory of what we have done so far. In Part I of this thesis
we have presented an extension of the programming logic UNITY. The extension
has been proven to support stronger compositionality results. We have also for-

malized the notion of self-stabilization |or more generally: convergence| in UNITY
and presented its various basic properties. The theories were applied to several exam-
ples, the largest example being Lentfert's FSA algorithm. The algorithm was motivated
by the problem of self-stabilizingly computing the minimal distance (cost) between any
pair of nodes in a network. The problem seems trivial. Besides, minimal cost is an old
problem which has been addressed many times before. However, proving that it can be
self-stabilizingly computed is a di�erent problem, and de�nitely not a trivial one. The
FSA algorithm is a general, distributed algorithm that can self-stabilize the underlying
network of processes to some common goal, provided the so-called round solvability

condition is met. The round solvability of minimal cost functions was also thoroughly
investigated. Finally, a generalization of the FSA algorithm is presented so that it can
be applied to clustered networks |that is, network in which nodes are grouped to form
domains| in general, and hierarchically divided networks in particular.

Many of the above mentioned results are useful |and not only for the speci�c ap-
plications addressed in this thesis. However, these are not really the main contribution
of our research. Our major contribution is the fact that we have mechanically veri�ed
(most) results mentioned above, using the theorem prover HOL. It is however quite
impractical to present the complete mechanical proofs we produced in this thesis, and
discuss them step by step. So instead, in this second part we would like to take the
reader on a short trip into the realm of mechanical veri�cation. In this chapter, we will
provide a brief introduction to the HOL system. Those who are familiar with HOL
may wish to skip this chapter, except perhaps Subsection 8.3.1 in which a tool that we
wrote to support an equational proof style is discussed. This chapter is not going to be
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a tutorial for the HOL system. We will brie
y show how formulas are written in HOL,
and how proofs are written and engineered in HOL. A complete introduction to HOL
can be found in [GM93]. In some places we also insert our personal opinions about
the HOL system. The reader should not be discouraged if the comments are not all
positive. HOL is a very potential system. It is, one can say, one of the best available
general purpose theorem prover at the moment. Still, a lot of work has yet to be done
to improve the system |the user interface, automatic decision procedures, and so on.
More people and investment seem to be badly needed.

In the next chapter, we will show how a UNITY program |and related concepts|
can be represented in HOL. We will give examples of a program veri�cation and prop-
erty re�nement. Finally, some main results concerning the round solvability of minimal
cost functions and the FSA algorithm will be shown.

HOL is, as said in the Introduction, an interactive theorem prover: one types a
formula, and proves it step by step using any primitive strategy provided by HOL.
Later, when the proof is completed, the code can be collected and stored in a �le, to
be given to others for the purpose of re-generating the proved fact, or simply for the
documentation purpose in case modi�cations are required in the future. One of the
main strengths of HOL is the availability of a so-called meta language. This is the
programming language |which is ML| that underlies HOL. The logic with which we
write a formula has its own language, but manipulating formulas and proofs has to be
done through ML. ML is a quite powerful language, and with it we can combine HOL
primitive strategies to form more sophisticated ones. For example we can construct
a strategy which repeatedly breaks up a formula into simpler forms, and then tries
to apply a set of strategies, one by one until one that succeeds is found, to each sub-
formula. With this feature, it is possible to invent strategies that automate some parts
of the proofs.

HOL is however not generally attributed as an automatic theorem prover. Full
automation is only possible if the scope of the problems is limited. HOL provides
instead a general platform which, if necessary, can be �ne-tuned to the application at
hand.

HOL abbreviates Higher Order Logic, the logic used by the HOL system. Roughly
speaking, it is just like predicate logic with quanti�cations over functions being allowed.
The logic determines the kind of formulas the system can accept as 'well-formed', and
which formulas are valid. The logic is quite powerful, and is adequate for most purposes.
We can also make new de�nitions, and the logic is typed. Polymorphic types are to
some extend supported. New types, even recursive ones, can be constructed from
existing ones.

The major hurdle in using HOL is that it is, after all, still a machine which needs
to be told in detail what it to do. When a formula needs to be re-written in a subtle
way, for us it is still a rewrite operation, one of the simplest things that there is. For
a machine, it needs to know which variables precisely have to be replaced, at which
positions they are to be replaced, and by what they should replaced. On the one hand
HOL has a whole range of tools to manipulate formulas: some designed for global
operations such as replacing all x in a formula with y, and some for �ner surgical
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standard notation HOL notation

Denoting types x 2 A or x : A "x:A"

Proposition logic :p, true, false "~p", "T", "F"
p ^ q, p _ q "p /\ q", "p \/ q"

p) q "p ==> q"

Universal quanti�cation (8x; y :: P ) "(!x y. P)"

(8x : P : Q) "(!y::P. Q)"

Existential quanti�cation (9x; y :: P ) "(?x y. P)"

(9x : P : Q) "(?x::P. Q)"

Function application f:x "f x"

� abstraction (�x: E) "(\x. E)"

Conditional expression if b then E1 else E2 "b => E1 | E2"

Sets fa; bg, ff:x j P:xg "{a,b}", "{f x | P x}"

Set operators x 2 V , U � V "x IN V", "U SUBSET V"

U [ V , U \ V "U UNION V", "U INTER V"

UnV "U DIFF V"

Lists a;s, s;a "CONS a s", "SNOC a s"

[a; b; c], st "[a;b;c]", "APPEND s t"

J

Figure 8.1: The HOL Notation.

operations such as replacing an x at a particular position in a formula with something
else. On the other hand it does take quite before one gets a su�cient grip on what
exactly each tool does, and how to use them e�ectively. Perhaps, this is one thing that
scares some potential users away.

Another problem is the collection of pre-proven facts. Although HOL is probably
a theorem prover with the richest collection of facts, compared to the knowledge of
a human expert, it is a novice. It may not know, for example, how come a �nite
lattice is also well-founded, whereas for humans this is obvious. Even simple fact such
as (8a; b :: (9x :: ax + b � x2)) may be beyond HOL knowledge. When a fact is
unknown, the user will have to prove it himself. Many users complain that their work
is slowed down by the necessity to 'teach' HOL various simple mathematical facts. At
the moment, various people are working on improving and enriching the HOL library
of facts. For example, for the purpose of proving the FSA algorithm we have also
produced libraries about well-founded relations, graphs, and lattices.

Having said all these, let us now take a closer at the HOL system.

8.1 Formulas in HOL

Figure 8.1 shows examples of how the standard notation is translated to the HOL
notation. As the reader can see, the HOL notation is as close an ASCII notation can
be to the standard notation.

Every HOL formula|from now on called HOL term| is typed. There are primitive
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types such as ":bool" and ":nat", which can be combined using type constructors.
For example, we can have the product of type A and B: ":A#B"; functions from A to
B: ":A->B"; lists over A: ":A list"; and sets over A: ":A set". The user does not
have to supply complete type information as HOL is equipped with a type inference
system. For example, HOL can type the term "p ==> q" from the fact that ==> is
a pre-de�ned operator of type ":bool->bool->bool", but it cannot accept "x = y"

as a term without further typing information. All types in HOL are required to be
non-empty. A consequence of this is that de�ning a sub-type will require a proof of
the non-emptiness of the sub-type.

We can have type-variables to denote, as the name implies, arbitrary types. Names
denoting type-variables must always be preceded by a * like in *A or *B. Type variables
are always assumed to be universally quanti�ed (hence allowing a limited form of
polymorphism). For example "x IN {x:*A}" is a term stating x is an element of the
singleton {x}, whatever the type of x is.

8.2 Theorems and De�nitions

A theorem is, roughly stated, a HOL term (of type bool) whose correctness has been
proven. Theorems can be generated using rules. HOL has a small set of primitive rules
whose correctness has been checked. Although sophisticated rules can be built from
the primitive rules, basically using the primitive rules is the only way a theorem can
be generated. Consequently, the correctness of a HOL theorem is guaranteed. More
speci�cally, a theorem has the form:

A1; A1; ... |- C

where the Ai's are boolean HOL terms representing assumptions and C is also boolean
HOL term representing the conclusion of the theorem. It is to be interpreted as: if all
Ai's are valid, then so is C. An example of a theorem is the following:

"P 0 /\ (!n. P n ==> P (SUC n)) |- (!n. P n)"

which is the induction theorem on natural numbers 1 .
As examples of (frequently used) rules are REWRITE_RULE and MATCH_MP. Given a list

of equational theorems, REWRITE_RULE tries to rewrite a theorem using the supplied
equations. The result is a new theorem. MATCH_MP implements the modus ponens
principle. Below are some examples of HOL sessions.

1 #DE_MORGAN_THM ;;

2 |- !t1 t2. (~(t1 /\ t2) = ~t1 \/ ~t2) /\ (~(t1 \/ t2) = ~t1 /\ ~t2)

3

4 #th1 ;;

5 |- ~(p /\ q) \/ q

6

7 #REWRITE_RULE [DE_MORGAN_THM] th1 ;;

8 |- (~p \/ ~q) \/ q

J

1 All variables which occur free are assumed to be either constants or universally quanti�ed.
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The line numbers have been added for our convenience. The # is the HOL prompt.
Every command is closed by ;;, after which HOL will return the result. On line 1 we
ask HOL to return the value of DE_MORGAN_THM. HOL returns on line 2 a theorem, de
Morgan's theorem. Line 4 shows a similar query. On line 7 we ask HOL to rewrite
theorem th1 with theorem DE_MORGAN_THM. The result is on line 8.

The example below shows an application of the modus ponens principle using the
MATCH_MP rule.

1 #LESS_ADD ;;

2 |- !m n. n < m ==> (?p. p + n = m)

3

4 #th2 ;;

5 |- 2 < 3

6

7 #MATCH_MP LESS_ADD th2;;

8 |- ?p. p + 2 = 3

J

As said, in HOL we have access to the programming language ML. HOL terms and
theorems are objects in the ML world. Rules are functions that work on these objects.
Just as any other ML functions, rules can be composed like rule1 o rule2. We can
also de�ne a recursive rule:

letrec REPEAT_RULE b rule x =

if b x then REPEAT_RULE b rule (rule x) else x

The function REPEAT_RULE repeatedly applies the rule rule to a theorem x, until it
yields something that does not satisfy b. As can be seen, HOL is highly programmable.

In HOL a de�nition is also a theorem, stating what the object being de�ned means.
Because HOL notation is quite close to the standard mathematical notation, new ob-
jects can be, to some extend, de�ned naturally in HOL. Above it is remarked that
the correctness of a HOL theorem is, by construction, always guaranteed. The cor-
rectness is however relative to the axioms of HOL. While the latter have been checked
thoroughly, one can in HOL introduce additional axioms, and in doing so, one may
introduce inconsistency. Therefore adding axioms is a practice generally avoided by
HOL users. Instead, people rely on de�nitions. While it is still possible to de�ne some-
thing absurd, we cannot derive false from any de�nition. Below we show how things
can be de�ned in HOL.

1 #let HOA_DEF = new_definition

2 (`HOA_DEF`,

3 "HOA (p,a,q) =

4 (!(s:*) (t:*). p s /\ a s t ==> q t)") ;;

5

6 HOA_DEF = |- !p a q. HOA(p,a,q) = (!s t. p s /\ a s t ==> q t)

J

The example above shows how Hoare triples can be de�ned (introduced). Here, the
limitation of HOL notation begins to show up. We denote a Hoare triple with fpg a fqg.
Or, we may even want to write it like this: p

a
�! q. A good notation greatly improves
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the readability of formulas. Unfortunately, at this stage of its development, HOL does
not support fancy symbols. Formulas have to be typed linearly from left to right (no
stacked symbols or such). In�x operators can be de�ned, but that is as far as it goes.
This is of course not a speci�c problem of HOL, but of theorem provers in general. If
we may quote from Nuprl User's Manual |Nuprl is probably a theorem prover with
the best support for notations:

In mathematics notation is a crucial issue. Many mathematical developments

have heavily depended on the adoption of some clear notation, and mathematics

is made much easier to read by judicious choice of notation. However mathe-

matical notation can be rather complex, and as one might want an interactive

theorem prover to support more and more notation, so one might attempt to

construct cleverer and cleverer parsers. This approach is inherently problematic.

One quickly runs into issues of ambiguity.

Notice that in the above de�nition, the s and the t have a polymorphic type of
":*var->*val". That is, they are states, functions from variables to values, whatever
'variables' and 'values' may be.

8.3 Theorem Proving in HOL

To prove a conjecture we can start from some known facts, then combine them to
deduce new facts, and continue until we obtain the conjecture. Alternatively, we can
start from the conjecture, and work backwards by splitting the conjecture into new
conjectures, which are hopefully easier to prove. We continue until all conjectures
generated can be reduced to known facts. The �rst yields what is called a forward

proof and the second yields a backward proof. This can illustrated by the tree in Figure
8.2. It is called a proof tree. At the root of the tree is the conjecture. The tree is said
to be closed if all leaves are known facts, and hence the conjecture is proven if we can
construct a closed proof tree. A forward proof attempts to construct such a tree from
bottom to top, and a backward proof from top to bottom.

In HOL, new facts can readily be generated by applying HOL rules to known facts,
and that is basically how we do a forward proof in HOL. HOL also supports backward
proofs. A conjecture is called a goal in HOL. It has the same structure as a theorem:

A1; A2; ... ?- C

Note that a goal is denoted with ?- whereas a theorem by |-. To manipulate goals
we have tactics. A tactic may prove a goal |that is, convert it into a theorem. For
example ACCEPT_TAC proves a goal ?- p if p is a known fact. That is, if we have the
theorem |- p, which has to be supplied to the tactic. A tactic may also transform a
goal into new goals |or subgoals, as they are called in HOL|, which hopefully are
easier to prove.

Many HOL proofs rely on rewriting and resolution. Rewrite tactics are just like
rewrite rules: given a list of equational theorems, they use the equations to rewrite
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g0

g1 g2 g3

g4 g5 g6

g7 g8

g9 g10 g11

g12

J

Figure 8.2: A proof tree.

the right-hand side of a goal. A resolution tactic, called RES_TAC, tries to generate
more assumptions by applying, among other things, modus ponens to all matching
combinations of the assumptions. So, for example, if RES_TAC is applied to the goal:

"0<x"; "!y. 0<y ==> z<y+z"; "z<x+z ==> p" ?- "p"

will yield the following new goal:

"z<x+z"; "0<x"; "!y. 0<y ==> z<y+z"; "z<x+z ==> p" ?- "p"

Applying RES_TAC to the above new goal will generate "p" and the tactic will then
conclude that the goal is proven, and return the corresponding theorem.

Tactics are not primitives in HOL. They are built from rules. When applied to a
goal ?- p, a tactic generates not only new goals |say, ?- p1 and ?- p2| but also
a justi�cation function. Such a function is a rule, which if applied, in this case, to
theorems of the form |- p1 and |- p2 will produce |- p. When a composition of
tactics proves a goal, what it does is basically re-building the corresponding proof tree
from the bottom, the known facts, to the top using the generated justi�cation functions
to construct new facts along the tree.

HOL provides much better support for backward proofs. For example, HOL pro-
vides tactics combinators, also called tacticals. For example, if applied to a goal,
tac1 THEN tac2 will apply tac1 �rst then tac2; tac1 ORELSE tac2 will try to apply
tac1, if it fails tac2 will be attempted; and REPEAT tac applies tac until it fails. On
the other hand, no rules combinators are provided. Of course, using the meta language
ML it is quite easy to make rules combinators.

HOL also provides a facility, called the sub-goal package, to interactively construct
a backward proof. The package will memorize the proof tree and justi�cation functions
generated in a proof session. The tree can be displayed, extended, or partly un-done.
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1 #set_goal ([],"!s. MAP (g:*B->*C) (MAP (f:*A->*B) s) = MAP (g o f) s");;

2 "!s. MAP g(MAP f s) = MAP(g o f)s"

3

4 #expand LIST_INDUCT_TAC ;;

5 2 subgoals

6 "!h. MAP g(MAP f(CONS h s)) = MAP(g o f)(CONS h s)"

7 1 ["MAP g(MAP f s) = MAP(g o f)s" ]

8

9 "MAP g(MAP f[]) = MAP(g o f)[]"

10

11 #expand ( REWRITE_TAC [MAP]);;

12 goal proved

13 |- MAP g(MAP f[]) = MAP(g o f)[]

14

15 Previous subproof:

16 "!h. MAP g(MAP f(CONS h s)) = MAP(g o f)(CONS h s)"

17 1 ["MAP g(MAP f s) = MAP(g o f)s" ]

18

19 #expand (REWRITE_TAC [MAP; o_THM]);;

20"!h. CONS(g(f h))(MAP g(MAP f s)) = CONS(g(f h))(MAP(g o f)s)"

21 1 ["MAP g(MAP f s) = MAP(g o f)s" ]

22

23 #expand (ASM_REWRITE_TAC[]);;

24 goal proved

25 . |- !h. CONS(g(f h))(MAP g(MAP f s)) = CONS(g(f h))(MAP(g o f)s)

26 . |- !h. MAP g(MAP f(CONS h s)) = MAP(g o f)(CONS h s)

27 |- !s. MAP g(MAP f s) = MAP(g o f)s

28

29 Previous subproof:

30 goal proved

J

Figure 8.3: An example of an interactive backward proof in HOL.

Whereas interactive forward proofs are also possible in HOL simply by applying rules
interactively, HOL provides no facility to automatically record proof histories (proof
trees). To prove a goal A ?- p with the package, we initiate a proof tree using a
function called set_goal. The goal to be proven has to be supplied as an argument.
The proof tree is extended by applying a tactic. This is done by executing expand tac

where tac is a tactic. If the tactic solves the (sub-) goal, the package will report it,
and we will be presented with the next subgoal which still has to be proven. If the
tactic does not prove the subgoal, but generates new subgoals, the package will extend
the proof tree with these new subgoals. An example is displayed in Figure 8.3.

We will try to prove g � (f � s) = (g � f) � s for all lists s, where the map operator
� is de�ned as: f � [] = [] and f � (a; s) = (f:a); (f � s). In HOL f � s is denoted by
MAP f s. The tactic LIST_INDUCT_TAC on line 4 applies the list induction principle,
splitting the goal according to whether s is empty of not. This results two subgoals
listed on lines 6-9. The �rst subgoal is at the bottom, on line 9, the second on line 6-7.
If any subgoal has assumptions they will be listed vertically. For example, the subgoal
on lines 6-7 is actually:

"MAP g(MAP f s) = MAP(g o f)s"

?- "!h. MAP g(MAP f(CONS h s)) = MAP(g o f)(CONS h s)"
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The next expand on line 11 is applied to �rst subgoal, the one on line 9. The tactic
REWRITE_TAC [MAP] attempts to do a rewrite using the de�nition of MAP 2 and succeeds
in proving the subgoal. Notice that on line 13 HOL reports back the corresponding
theorem it just proven.

Let us now continue with the second subgoal, listed on line 6-7. Since the �rst
subgoal has been proven, this is now the current subgoal. On line 19, we try to
rewrite the current subgoal with the de�nition of MAP and a theorem o_THM stating
that (g � f)x = g(fx). This results in the subgoal in line 20-21. On line 23 we try to
rewrite the right hand side of the current goal (line 20) with the assumptions (line 21).
This proves the goal, as reported by HOL on line 24. On line 29 HOL reports that
there are no more subgoals to be proven, and hence we are done. The �nal theorem is
reported on line 27, and can be obtained using a function called top_thm. The state
of the proof tree at any moment can be printed using print_state.

The resulting theorem can be saved, but not the proof itself. Saving the proof is
recommended for various reasons. Most importantly, when it needs to be modi�ed,
we do not have to re-construct the whole proof. We can collect the applied tactics |
manually, or otherwise there are also tools to do this automatically| to form a single
piece of code like:

let lemma = TAC_PROVE

(([],"!s. MAP (g:*B->*C) (MAP (f:*A->*B) s) = MAP (g o f) s"),

LIST_INDUCT_TAC

THENL

[ REWRITE_TAC [MAP] ;

REWRITE_TAC [MAP; o_THM] THEN ASM_REWRITE_TAC ])

J

Sometimes, it is necessary to do forward proving in HOL. For example, there are
situations where forward proofs seem very natural, or if we are given a forward proof to
verify. It would be nice if HOL provides better support for forward proving. During our
research we have also written a package, called the LEMMA package, to automatically
record the whole proof history of a forward proof. The history consists basically of
theorems. It is implemented as a list instead of a tree, however a labelling mechanism
makes sure that any part of the history is readily accessible. Just as with the subgoal
package, the history can be displayed, extended, or partly un-done. The package also
allows comments to be recorded. The theorems in the history can each be proven using
ordinary HOL tools such as rules and tactics (that is, the LEMMA package is basically
only a recording machine). There is a documentation included with the package, else,
if the reader is interested, he can �nd more information in [Pra93].

2 The name of the theorem de�ning the constant MAP happens to have the same name. These two
MAPs really refer to di�erent things.
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8.3.1 Equational Proofs

A proof style which is overlooked by the standard HOL is the equational proof style.
An equational proof has the following format:

E0

v f hint g

E1

= f hint g

E2

v f hint g

� � �

v f hint g

En

Each relation Ei is related to Ei+1 by either the relation v or =. The relation v is
usually a transitive relation so that at the end of the derivation, we can conclude that
E0 v En holds. Equational proofs are used very often. In fact, all proofs presented
in this thesis are constructed from equational sub-proofs. For low level applications,
in which one relies more on automatic proving, proof styles are not that important.
When dealing with a proof at a more abstract level, where less automatic support can
be expected, and hence one will have to be more resourceful, what one does is usually
write the proof on paper using his most favorite style, and then translate it to HOL.
Styles such as the equational proof style does not, unfortunately, �t very well in the
standard HOL styles (that is, forward proofs using rules and backward proofs using the
subgoal package). So, either one has to adjust himself with the HOL styles |which is
not very encouraging for newcomers, not to mention that this o�ends the principle of
user friendliness| or we should provide better support.

There are two extension packages that will enable us to write equational proofs in
HOL. The �rst is called the window package, written by Grundy [Gru91], the other is
the DERIVATION package which we wrote during our research. The window package is
more 
exible, namely because it is possible to open sub-derivations. The DERIVATION
package does not support sub-derivations, but it is much easier to use. The structure
and presentation of a DERIVATION proof also mimics the pen-and-paper style better.
The distinctions are perhaps rooted in the di�erent purposes the authors of the packages
had in mind. The window package was constructed with the idea of transforming
expressions. It is the expressions being manipulated that are the focus of attention.
The DERIVATION package is written speci�cally to mimic equational proofs in HOL.
Not only the expressions are important, but the whole proof, including comments, and
its presentation format.

A proof using the DERIVATION package has the following format:
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1 ADD_TRANS ("<",LESS_TRANS)

2

3 BD "<" "(x*x) + x" ;;

4

5 DERIVE ("=:num->num->bool",

6 "(x+1)*x",

7 `* distributes over +`,

8 REWRITE_TAC [RIGHT_ADD_DISTRIB; MULT_LEFT_1 ]) ;;

9

10 DERIVE ("<",

11 "(x+1)*(x+1)",

12 `monotonicity of *`,

13 (CONV_TAC o DEPTH_CONV) num_CONV THEN ONCE_REWRITE_TAC [ADD_SYM]

14 THEN REWRITE_TAC [ADD; LESS_MULT_MONO; LESS_SUC_REFL]) ;;

15

16 DERIVE ("=:num->num->bool",

17 "(x*x) + (2*x) +1",

18 `* distributes over +`,

19 REWRITE_TAC [RIGHT_ADD_DISTRIB; LEFT_ADD_DISTRIB; MULT_LEFT_1; MULT_RIGHT_1;

20 TIMES2; ADD_ASSOC]) ;;

J

Figure 8.4: An example of an equational proof in HOL.

1 BD Rel E_0 ;;

2

3 DERIVE (Rel, E_1, Hint_1, Tac_1) ;;

4 DERIVE (= , E_1, Hint_2, Tac_2) ;;

5 ...

6 DERIVE (Rel, E_n, Hint_n, Tac_n) ;;

J

Notice how the format looks very much like the pen-and-paper format. The only
additional components are the Tac i which are tactics required to justify each deriva-
tion step. The proof is initialized by the function BD. It sets E 0 as the begin expression
in the derivation and the relation Rel is to be used as the base of the derivation. This
relation has to be transitive. A theorem stating the transitivity of Rel has to be explic-
itly announced using a function ADD TRANS. Every DERIVE step, if successful, extends
the derivation history with a new expression, related either with Rel or equality with
the last derived expression. The supplied hint will also be recorded. An example is
shown in Figure 8.4 3 .

The tactics required to prove the DERIVE steps are usually not easy to construct
non-interactively. Therefore the package also provides some functions to interactively
construct the whole derivation. This is done by calling the sub-goal package. The
DERIVE package will take care that the right goal that corresponds to the current
derivation step |that is, something of the form ?- Rel E_i E_j or ?- E_i = E_j|
is passed to the subgoal package. The tactic required to prove the derivation step can
be constructed using the subgoal package. When the step is proven, the newly derived
expression is automatically added to the derivation history.

3 The proof in Figure 8.4 is not the shortest possible proof, but it will do for the purpose here.
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The derivation in Figure 8.4 corresponds to the following derivation:

x� x+ x

= f � distributes over + g

(x+ 1)� x

< f monotonicity of � g

(x+ 1)� (x+ 1)

= f � distributes over + g

x� x+ 2x + 1

from which we conclude x � x + x < x � x + 2x + 1. The derivation generated by a
DERIVATION package can be printed at any time using the function DERIVATION. For
example, if the code in Figure 8.4 is executed, calling DERIVATION will generate an
output like the nicely printed derivation above, except that it is in the ASCII format.
The conclusion of the derivation, that is the theorem

|- ((x*x) + x) < ((x*x) + (2*x) + 1)

can be obtained using a function called ETD (which abbreviates Extract Theorem from
Derivation). A complete manual of the package can be found along with the package.

8.4 Automatic Proving

As the higher order logic |the logic that underlies HOL| is not decidable, there exists
no decision procedure that can automatically decide the validity of all HOL formulas.
However, for limited applications, it is often possible to provide automatic procedures.
The standard HOL package is supplied with a library called arith written by Boulton
[Bou94]. The library contains a decision procedure to decide the validity of a certain
subset of arithmetic formulas over natural numbers. The procedure is based on the
Presburger natural number arithmetic [Coo72]. Here is an example:

1 #set_goal([],"x<(y+z) ==> (y+x) < (z+(2*y))") ;;

2 "x < (y + z) ==> (y + x) < (z + (2 * y))"

3

4 #expand (CONV_TAC ARITH_CONV) ;;

5 goal proved

6 |- x < (y + z) ==> (y + x) < (z + (2 * y))

J

We want to prove x < y + z ) y + x < z + 2y. So, we set the goal on line 1.
The Presburger procedure, ARITH CONV, is invoked on line 4, and immediately prove
the goal.

There is also a library called taut to check the validity of a formula from proposition
logic. For example, it can be used to automatically prove p ^ q ) :r _ s = p ^ q ^
r ) s, but not to prove more sophisticated formulas from predicate logic, such as
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(8x :: P:x) ) (9x :: P:x) (assuming non-empty domain of quanti�cation). There is a
library called faust written by Schneider, Kropf, and Kumar [SKR91] that provides
a decision procedure to check the validity of many formulas from �rst order predicate
logic. The procedure can handle formulas such as (8x :: P:x) ) (9x :: P:x), but not
(8P :: (8x : x < y : P:x) ) P:y) because the quanti�cation over P is a second order
quanti�cation (no quanti�cation over functions is allowed). Here is an example:

1 #set_goal([], "HOA(p:*->bool,a,q) /\ HOA (r,a,s)

2 ==>

3 HOA (p AND r, a, q AND s)") ;;

4 "HOA(p,a,q) /\ HOA(r,a,s) ==> HOA(p AND r,a,q AND s)"

5

6 #expand(REWRITE_TAC [HOA_DEF; AND_DEF] THEN BETA_TAC) ;;

7 "(!s t. p s /\ a s t ==> q t) /\ (!s t. r s /\ a s t ==> s t) ==>

8 (!s t. (p s /\ r s) /\ a s t ==> q t /\ s t)"

9

10 #expand FAUST_TAC ;;

11 goal proved

12 |- (!s t. p s /\ a s t ==> q t) /\ (!s t. r s /\ a s t ==> s t) ==>

13 (!s t. (p s /\ r s) /\ a s t ==> q t /\ s t)

14 |- HOA(p,a,q) /\ HOA(r,a,s) ==> HOA(p AND r,a,q AND s)

J

In the example above, we try to prove one of the Hoare triple basic laws, namely:

fpg a fqg ^ frg s fsg

fp ^ rg a fq ^ sg

The goal is set on line 1-3. On line 6 we unfold the de�nition of Hoare triple and the
predicate level ^, and obtain a �rst order predicate logic formula. On line 10 we invoke
the decision procedure FAUST TAC, which immediately proves the formula. The �nal
theorem is reported by HOL on line 14.

So, we do have some automatic tools in HOL. Further development is badly required
though. The arith library cannot, for example, handle multiplication 4 and prove, for
example, (x+1)x < (x+1)(x+ 1). Temporal properties of a program, such as we are
dealing with in UNITY, are often expressed in higher order formulas, and hence cannot
be handled by faust. Early in the Introduction we have mentioned model checking, a
method which is widely used to verify the validity of temporal properties of a program.
There is ongoing research that aims to integrate model checking tools with HOL 5 . For
example, Joyce and Seger have integrated HOL with a model checker called Voss to
check the validity of formulas from a simple interval temporal logic [JS93].

4 In general, natural number arithmetic is not decidable if multiplication is included. So the best
we can achieve is a partial decision procedure.
5 That is, the model checker is implemented as an external program. HOL can invoke it, and then
declare a theorem from the model checker's result. It would be safer to re-write the model checker
within HOL, using exclusively HOL rules and tactics. This way, the correctness of its results is
guaranteed. However this is often less e�cient, and many people from circuit design |which are
in
uential customers of HOL| are, understandably, quick to reject less e�cient product.





Chapter 9

Re�nement and Veri�cation in HOL

It will be discussed how programs and program properties are represented in HOL. A small

example of program-property re�nement and veri�cation will be presented. Finally, the

HOL version of the FSA and broadcast algorithms will be shown, along with some of the

main results.

As the title of this thesis implies, we try to address the issue of formal program
design. In general, we are interested in distributed programs, and in particular, self-
stabilizing ones. The use of formal methods has been recognized as a potential tool
|perhaps, in the long term also indispensable| to improve the trustworthiness of
distributed systems as such systems typically involve complex interactions where in-
tuitive reasoning becomes too dangerous. Formal methods have also been advocated
as a means to construct a proof of correctness hand in hand with the construction of
the program. This idea appeals us, which is why throughout the examples presented
in Part I, more emphasis was given to the design aspect. The trustworthiness that we
gain from a formal design can be signi�cantly increased if the design is mechanically
veri�ed with a theorem prover. To do so, �rst of all we need to embed the formal
method being used |a programming logic| into the theorem prover.

By embedding a logic into a theorem prover we mean that the theorem prover is
extended by all de�nitions required by the logic, and all basic theorems of the logic
should be made available |either by proving them or declaring them as axioms 1 .
There are two kinds of embedding: the so-called deep embedding and shallow embedding.
In a deep embedding, a logic is embedded down to the syntax level, whereas in a
shallow embedding only the semantic, or model, of the logic needs to be embedded.
A deep embedding is more trustworthy, but basically more di�cult as we have to
take the grammar of well-formed formulas in the logic into account. Alternatively,
an external compiler can be constructed to translate syntax-level representations of
programs and speci�cations to formulas at the semantic level. The reader should not
imagine something like a Lisp-to-C compiler. Rather, it is a compiler to do straight
forward translations, like converting:

IF x<y THEN x:=f.x ELSE x:=0

to:

1 However, adding axioms, as remarked before, is not a recommended practice.
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cond (\s. s x < s y) (assign x (\s. f (s x))) (assign x (\s. 0))

There are a number of programming logics suitable for designing distributed pro-
grams. UNITY is one of them. In Chapter 4 a brief introduction was provided.
Subsequently, we have extended it, by the introduction of compositional rules, to allow
a modular design of programs. We have also provided various laws for convergence to
facilitate reasoning about self-stabilizing systems. In the previous chapter the reader
has been brie
y introduced to the theorem prover HOL. A question that remains is:
how to use HOL to support the formal design of a distributed program? Well, UNITY
can be used to design a program from its speci�cation. We have embedded UNITY
and almost all extensions discussed in this thesis in HOL. Basically, because the whole
UNITY is available in HOL, the derivation can now take place entirely within HOL.
Still, if one prefers the 
exibility of pencil and paper, then one can do the derivation

by hand �rst, either in detail or only sketchy, and later verify it with HOL.

In UNITY, a program is derived by re�ning its initial speci�cation 2 . Various ba-
sic laws to do properties re�nement were provided in Chapters 4 and 5. The laws
also include compositionality laws, with which we can split a program into smaller
components. When the initial speci�cation has been re�ned to a set of directly veri-
�able speci�cations |for example if they are expressed solely in terms of unless and
ensures|, we can try to 'construct' a program satisfying those speci�cations. This
may be quite di�cult if we end up with a large number of speci�cations. It is true that
some of the speci�cations usually give a clear hint as to what kind of actions should or
should not be in the program. Besides, during the derivation the designer often makes
certain re�nement steps motivated by some idea as to how to implement the resulting
speci�cations. Still, we do recommend that the designer exploits the compositional-
ity laws, so that in the end he will have a separate speci�cation for each part of the
program, instead of a large set of speci�cations for the complete program.

An example of property (speci�cation) re�nement will be presented in this chapter,
but before we come to that, �rst it will be explained how we represent a UNITY
program in HOL. There are some choices, each having consequences on how convenient
certain manipulations will be. UNITY itself has been embedded in HOL by Andersen
[And92]. There are di�erences between our embedding of core UNITYwith Andersen's.
The main di�erence is that Andersen de�nes a program simply as a list of actions.
Reasoning about compositionality requires that we have information not only of which
actions belong to which programs, but also information on which variables belong to
which programs, and what their access-modes are. In addition, various extensions of
UNITY discussed in this thesis are not available in Andersen's embedding. Both the
embedding in [And92] and ours are shallow.

How we represent UNITY programs in HOL will be explained in Section 9.1, and
the HOL representation of program properties in Section 9.2. These are not too di�cult
since the HOL notation, as shown in the previous chapter, is basically quite close to
the (standard) hand notation. A small example of property re�nement and veri�cation

2 Another method is to apply program re�nement instead of property/speci�cation re�nement. This
method is beyond the scope of this thesis. See for example [UHK94]
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will be provided in Section 9.3. Finally, in Section 9.4 we will brie
y show how we
de�ne the FSA and the broadcast algorithms in HOL and how some main results about
them look like in HOL. Things may be a bit confusing here as the notation and naming
convention we used in HOL is somewhat outdated compared to the hand-notation used
in this thesis 3 . Apart from that, the reader should be able to recognize the relation
between the HOL de�nitions and theorems with their hand notated counterparts.

9.1 Representing a Program in HOL

In Chapter 4 we have de�ned a UNITY program as a quadruple (A; J; Vr; Vw) where A
is a set of actions, J is a state-predicate describing allowed initial states, Vr is a set of
variables intended to be the read variables of the program, and Vw those to be written.

We can represent the universe of all variables in HOL with a polymorphic type
*var and the universe of all values the variables can take with *val . When we have a
concrete program, we may want to, for example, use strings to represent variables, and
natural numbers as the domain of values. In this case we simply have to instantiate
the polymorphic type *var and *val to string and num.

In practice, people often want to have programs in which the variables have di�erent
types |and, which may include sophisticated types such as functions or trees. That
is, we want a multi-typed universe of values. This is possible, albeit not pleasant,
as our universe of values is the type *val and hence multi-typed values have to be
encoded within *val. For example, if we want both boolean and integer valued program
variables, we should de�ne a new type:

define_type = `int_bool_DEF` `int_bool = INT int | BOOL bool` ;;

The above de�nes a new type called int bool. A member of this type has the form
INT n or BOOL b where n has the type int and b the type bool. Hence, if we instantiate
*val with this type we will be able to accommodate both bool and integers values. The
problem is that all normal operations on integers and bool now have to be lifted to work
on this new type, which is quite tedious. There is another way to represent a program
in which di�erently typed variables are easy to represent. But this representation has
its own problem too, as we will see later.

Another interesting problem is how to encode, say, an array of variables? We can
consider an array variable f as, indeed, a variable whose values are arrays. This will
require the type array to be included in *val, and then we will have the same problem
as described above. There is also a problem if we want to distribute the array among
several processes. Each cell in a distributed array may have to be treated as a variable
of its own. In this sense, an array is a collection of variables, organized at some meta
level as an array. That is, f is represented by f:*A->*var where *A is the index type
of the array. Furthermore it must be required that f is an injective function, and hence

3 This is not to say that the HOL notation is obsolete. Only the notation that we use on top the
standard HOL notation is.
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each f i will yield a unique variable. If there are several arrays we must also insist
that they map to disjoint parts of *var, that is, the program is alias free.

The universe of program-states can be represented by State:

let State = ":*var -> *val" ;;

9.1.1 Predicates and Predicate Operators

State-predicates are mapping from program-states to B . The universe of program-
states is represented by Pred:

let Pred = ":^State -> bool" ;;

An example is (\s:^Pred. (s x = f (s y))) which is a predicate that characterizes
those program-states s satisfying s:x = f:(s:y).

We usually and conveniently denote this predicate as, x = f:y. This notation is
overloaded in several places. Since this kind of overloading is not possible in HOL,
basically everything has to be made explicit using � abstractions as above. Frequently
used operators, such as :, ^, _, and so on, can be de�ned using auxiliary functions:

HOL-de�nition 9.1.1

|- TT = (\s. T) |- FF = (\s. F)

|- (NOT p) = (\s. ~p s) |- (p AND q) = (\s. p s /\ q s)

|- (p OR q) = (\s. p s \/ q s) |- (p IMP q) = (\s. p s ==> q s)

|- (p EQUAL q) = (\s. (p s = q s)) |- (!!i::P. Q i) = (\s. (!i::P. Q i s))

|- (??i::P. Q i) = (\s. (?i::P. Q i s)) |- |== p = (!s. p s)

J

So, for example the predicate we usually denote by (x = f:y)^ q can be denoted by
(\s. s x = f (s y)) AND q in HOL. Notice that (!!i::P. Q i) and (??i::P. Q i)

above denote (8i : P:i : Q:i) and (9i : P:i : Q:i) at the predicate level. |== p is how
we denote [p] (everywhere p) in HOL.

A notion which keeps appearing in the calculational laws given in Chapters 4 and
5 is predicate con�nement. A predicate p is said to be con�ned by a set of variables V
if p does not contain any 'meaningful' information about variables outside V (see also
page 30):

p 2 Pred:V = (8s; t :: (s�V = t�V )) (p:s = p:t))

The function projection � is de�ned on page 23: (f � V ):x = f:x if x 2 V and (f �
V ):x = @ otherwise. Predicate con�nement is de�ned as follows in HOL:

HOL-de�nition 9.1.2

|- !V A x. (V Pj A)x = (A x => V x | Nov)

|- !A p. A CONF p = (!s t. (s Pj A = t Pj A) ==> (p s = p t))
J
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9.1.2 Actions

We de�ned an action as a relation 4 on program-states, describing possible transitions
the action can make. The universe of actions can be represented by Action in HOL:

let Action = ":^State -> ^State -> bool" ;;

As an example, recall that an assignment v := E can be de�ned as (�s; t: t:v =
E:s) u (skip�fvgc). This can be de�ned as follows in HOL:

let Assign_DEF = new_definition

(`Assign_DEF`,

"(Assign v E):^Action =

(Update v E) rINTER (SKIP a_Pj (\x:*var. ~(x=v)))") ;;

where Update is the action (�s; t: t:v = E:s), rINTER the conjunction (synchronization)
operator, SKIP the skip action, and a Pj the action-level projection. They are de�ned
as follows in HOL:

HOL-de�nition 9.1.3

|- !v E. Update v E = (\s t. t v = E s)

|- !a b. a rINTER b = (\s t. a s t /\ b s t)

|- SKIP = (\s t. s = t)

|- !a A. a a_Pj A = (\s t. a (s Pj A) (t Pj A))
J

So, an assignment x := x+ 1 can be represented by Assign x (\s. (s x) + 1).

9.1.3 Programs

The quadruple (A; J; Vr; Vw) representing a UNITY program can now be represented
by the product-type:

(^Action) set # ^Pred # *var set # *var set

However, as HOL is nimbler with predicates than with sets we decided to represent
sets with predicates 5 So, instead, we represent a UNITY program |or, to be more
precise: objects of type Uprog| as:

let Uprog = ":(^Action -> bool) # ^Pred #

(*var -> bool) # (*var -> bool)"

The destructors a, ini, r, and w used to access the components of an Uprog object
are called PROG, INIT, READ, and WRITE in HOL. The parallel composition [] is called
PAR in HOL:

4 Some people prefer to use functions instead of relations. If functions are used, then actions are
deterministic.
5 A better set library is under development.
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1 let MinDist = new_definition

2 (`MinDist`,

3 "MinDist d (V:*node, N) =

4 ( (??a::(\a. a IN V). (\act. act = Assign (d a a) (\s. 0))) OR

5 (??a::(\a. a IN V).

6 (??b::(\b. b IN V /\ ~(a=b)).

7 (\act. act = Assign (d a b) (\s:*var->num. MIN {(s (d a b')) + 1 | b' IN (N b)})))),

8 TT,

9 (??a::(\a. a IN V). (??b::(\b. b IN V). (\v. v = d a b))),

10 (??a::(\a. a IN V). (??b::(\b. b IN V). (\v. v = d a b))) )") ;;

J

Figure 9.1: The HOL de�nition of the program MinDist.

HOL-de�nition 9.1.4

|- !P In R W. PROG(P,In,R,W) = P

|- !P In R W. INIT(P,In,R,W) = In

|- !P In R W. READ(P,In,R,W) = R

|- !P In R W. WRITE(P,In,R,W) = W

|- !Pr Qr.

Pr PAR Qr = (PROG Pr) OR (PROG Qr),(INIT Pr) AND (INIT Qr),

(READ Pr) OR (READ Qr),(WRITE Pr) OR (WRITE Qr)

J

We will now give an example of the embedding/representation of a UNITYprogram.
Recall the program for computing the simple minimal distance between any pair of
nodes in a network ( Figure 5.8). For the reader's convenience it is re-displayed below:

prog MinDist
read fd:a:b j a; b 2 V g
write fd:a:b j a; b 2 V g

init true
assign ([]a : a 2 V : d:a:a := 0)
[] ([]a; b : a; b 2 V ^ a 6= b : d:a:b := minfd:a:b0 + 1 j b0 2 N:bg)

In this case the universe of values *val is the natural numbers num.
The code in Figure 9.1 is the HOL representation of the program above. It de�nes

the constant MinDist which has two parameters: a function d representing the array
d, and a pair (V,N) representing a network. These two parameters are kept implicit
in the hand-de�nition of MinDist above. Lines 4-7 de�nes the set of actions of the
program MinDist d (V,N); line 8 de�nes its initial condition, which is true; and lines
9 and 10 de�ne respectively the sets of read and write variables of the program.

In Chapter 4 we have also stated that in addition to having the type Uprog, a
well-formed UNITY program is required to satisfy some conditions given in Subsection
4.2.1. A predicate Unity was de�ned (page 40) to characterize the set of well-formed
(UNITY) programs. It is re-displayed below:

Unity:P = (aP 6= �) ^ (wP � rP ) ^ (8a : a 2 aP : �Ena) ^

(8a : a 2 aP : (wP )c 8 a) ^ (8a : a 2 aP : (rP )c 9 a)

The �rst and the second condition are obvious. The third states that all actions
should be always-enabled (that is, a transition is always possible from any state). The
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fourth states that variables not declared as write variable of P are ignored by P , hence
they cannot be written. The last conjunct states that variables not declared as read
variables of P are invisible to P , hence they do not in
uence P , and hence P does not
read from them.

Below, the de�nition of the operators �En, 8, and 9 is re-displayed. These oper-
ators have been discussed in detail in Chapter 3 6 .

i. �Ena = (8s :: (9t :: a:s:t))

ii. V 8 a = (8s; t :: a:s:t) (s�V = t�V ))

iii. V 9 a = (8s; t; s0; t0 ::

�
(s�V c = s0 �V c) ^ (t�V c = t0 �V c)

^(s0 �V = t0 �V ) ^ a:s:t

�
) a:s0:t0)

The corresponding HOL de�nition 7 :

HOL-de�nition 9.1.5

|- !A. ALWAYS_ENABLED A = (!s. ?t. A s t)

|- !V A. V IG_BY A = (!s t. A s t ==> (s Pj V = t Pj V))

|- !V A. V INVI A =

(!s t s' t'.

(s Pj (NOT V) = s' Pj (NOT V)) /\ (t Pj (NOT V) = t' Pj (NOT V)) /\

(s' Pj V = t' Pj V) /\ A s t

==>

A s' t')

J

Now, the HOL de�nition of the predicate Unity:

HOL-de�nition 9.1.6

|- !P In R W. UNITY(P,In,R,W) = (?A. P A) /\

(!A :: P. ALWAYS_ENABLED A) /\

(!A :: P. (NOT W) IG_BY A) /\

(!x. W x ==> R x) /\

(!A :: P. (NOT R) INVI A)

J

For example, the program shown in Figure 9.1 can be shown to satisfy the predicate
UNITY above.

How one represents each component of a program |variables, values, states, and
so on| in
uences how easily certain manipulations on programs can be carried out.
We have chosen to represent a state as a function from *var to *val. There is another
way to represent states, namely with tuples. This is for example used by Back and
von Wright in their embedding of the Re�nement Calculus in HOL [BvW90] and by
L�angbacka in his embedding of TLA in HOL [L�an94]. As an example, assume that
*var consists of only three variables x, y, and z. A state in which the values of these
variables are 0,1, and 3 is represented, using our representation, by the function:

(\v. (v = x => 0 | (v = y => 1 | 3)))

6 See pages 24, 26, and 27 for more details on �En, 8, and 9.
7 The projection operator Pj is de�ned in Subsection 9.1.1
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Using the tuple representation this is represented by the tuple:

(0,1,3)

Using tuples to represent states, an assignment x := y + z can be represented by:

(\(x,y,z) (x',y',z'). (x'=y+z) /\ (y'=y) /\ (z'=z))

The tuple representation does look simpler. Representing multi-typed universe of
values is also not a problem. For example if x and y in the above example are N-valued
variables and z is a B -valued variable, then a state in which these variables has the
values of 0,1 and true can be represented by the tuple (0,1,T) whereas if the function
representation is used we will have to make the e�ort to instantiate *val with a general
type to accomodate both N and B (for example, the type int bool de�ned earlier on
page 181 will do).

The problem is that with this representation it becomes almost impossible to treat
program-variables in isolation (as an objects of their own). In fact, they are not objects,
but only positions in the tuples. As a consequence, it will be more di�cult to de�ne
what a shared variable is. If a program P has fx; yg as its variables whose values
range over N, and if Q has fa; bg as its variables whose values also range over N, then
both program share the same universe of states, namely N � N. If those variables are
intended to be distinct then some trick will be required to impose the distinction. Also,
we may have a problem when dealing with a variable number of program-variables. For
example, the number of variables the program MinDist in Figure 9.1 has, depends on
how many nodes there are in the network (V,N). Consequently the length of the tuples
representing the states of this program also depends on (V,N), and hence it is not �xed.
This is a problem in HOL because tuples are required to have a statically determined
length, due to its strong typing rules.

9.2 Program Properties in HOL

In the previous section we have given examples of how a UNITY program and its var-
ious components can be represented in HOL. At its current development HOL does
not support a sophisticated notation interface |so, we have no fancy symbols or such.
The formulas do look rather long and un-friendly, but the components are easily rec-
ognizable and they are as close as an ASCII notation can get to the hand notation.
In this section we will give examples of how properties of a UNITY program can be
speci�ed in HOL.

In UNITY, there are two primitives operators to express the property of a program:
the unless operator to express safety and the ensures operator to express progress.
Notions such as stable predicates and invariants can be expressed in terms of unless .
Given a program, properties expressed in these two operators can be directly veri�ed.
A more general progress operator is provided by 7!, which is de�ned as the smallest
transitive and left-disjunctive closure of ensures . However, a 7! property cannot be
directly veri�ed and has to be proven using the UNITY laws of programming. Most of
these laws were presented in Chapter 4.
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Below is how we de�ne Hoare triples, unless , ensures , and � in HOL.

HOL-de�nition 9.2.1

1 |- !p A q. HOA(p,A,q) = (!s t. p s /\ A s t ==> q t)

2 |- !Pr p q. UNLESS Pr p q = (!A :: PROG Pr. HOA(p AND (NOT q),A,p OR q))

3 |- !Pr p. STABLE Pr p = UNLESS Pr p FF

4 |- !Pr p q. ENSURES Pr p q = UNITY Pr /\

5 UNLESS Pr p q /\ (?A :: PROG Pr. HOA(p AND (NOT q),A,q))

J

Line 1 de�nes Hoare triples; line 2 de�nes unless ; line 3 de�nes �; and lines 4-5
de�ne ensures . Compare them with their hand de�nition 8 9 :

i. fpg a fqg = (8s; t :: p:s ^ a:s:t) q:t)

ii. P` p unless q = (8a : a 2 aP : fp ^ :qg a fp _ qg)

iii. P`�p = P` p unless false

iv. P` p ensures q = (P` p unless q) ^ (9a : a 2 aP : fp ^ :qg a fqg)

As an example, a property of the program MinDist in Figure 9.1 is, expressed in
the hand notation, the following:

` � (8a; b : a; b 2 V : d:a:b = �:a:b)

where �:a:b denotes the actual (simple) minimal distance between a and b. Its de�nition
can be found in equations 5.5.2101 and 5.5.3. Expressed in HOL this is:

STABLE (MinDist d (V,N))

(!!a::(\a. a IN V). (!!b::(\b. b IN V).

(\s. s (d a b) = Delta (V,N) a b)))

where Delta corresponds to the function �. Delta has an extra parameter, namely the
network (V,N), which is kept implicit in �.

The general progress operator leads-to ( 7!) is de�ned as the TDC 10 |the least
transitive and left-disjunctive closure| of ensures :

P` p 7! q = TDC:(�rs: P` r ensures s):p:q

where TDC is de�ned as follows:

TDC:R:p:q = (8S : R � S ^ Trans:S ^ Ldisj:S : S:p:q)

8 The meaning of these operators has been discussed in Chapters 3 and 4. See pages 31, 42, and 44
for more details on them.
9 Notice that in the hand de�nition P` p ensures q does not explicitly require that P is a UNITY
program. It was implicitly assumed that we are talking about UNITY programs |most of the times.
This assumption is not crucial for safety laws, but it is for some progress laws. In HOL, one way
or another this assumption will have to be made explicit. We did that simply by putting it in the
de�nition of ENSURES.
10 See also Section 4.3 and Subsection 4.4.1 for a detailed discussion on 7! and TDC.
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We de�ne TDC and 7! as follows in HOL:

HOL-de�nition 9.2.2

1 |- !r s. r SUBREL s = (!x y. r x y ==> s x y)

2 |- !r. TRANS r = (!x y z. r x y /\ r y z ==> r x z)

3 |- !U. LDISJ U = (!W y. (?x. W x) /\ (!x::W. U x y) ==> U (??x::W. x) y)

4 |- !U x y. TDC U x y = (!X. (SUBREL U X) /\ (TRANS X) /\ (LDISJ X) ==> X x y)

5 |- !Pr. LEADSTO Pr = TDC(ENSURES Pr)

J

Line 1 de�nes the meaning of being a sub-relation; line 2 de�nes transitive relations;
line 3 de�nes left-disjunctive relations; line 4 de�nes the TDC, and �nally line 5 de�nes
7!. The 7! operator is the standard UNITY operator to express progress. Recall that
we proposed to replace this operator with a more complicated progress operator �
(the 'reach' operator) in order to facilitate reasoning on program compositions. The
� is de�ned as the TDC of a 'con�ned' and 'stabilized' variant of ensures . The hand
de�nition of� is as follows (see also page 54):

J P` p ensures q = p; q 2 Pred:(wP ) ^ (P`�J) ^ (P` J ^ p ensures q)

(�p; q: J P` p� q) = TDC:(�p; q: J P` p ensures q)

The HOL de�nition is as follows:

HOL-de�nition 9.2.3

|- !Pr J p q.

B_ENS Pr J p q =

ENSURES Pr(p AND J)q /\ STABLE Pr J /\ (WRITE Pr) CONF p /\ (WRITE Pr) CONF q)

|- !Pr J. REACH Pr J = TDC(B_ENS Pr J)

J

Finally, we also have a special operator to express the convergence property, namely
 . The entire Chapter 5 is dedicated to this operator. It is de�ned as follows:

J P` p q = q 2 Pred:(wP ) ^ (9q0 :: (J P` p� q0 ^ q) ^ (P` �(J ^ q0 ^ q)))

It is de�ned as follows in HOL:

HOL-de�nition 9.2.4

|- !Pr J p q.

CON Pr J p q =

(WRITE Pr) CONF q /\ (?q'. REACH Pr J p(q' AND q) /\ STABLE Pr(q' AND (q AND J)))

J

As an example, the program MinDist in Figure 9.1 has the following self-stabilizing
property |expressed in hand notation:

true ` true (8a; b : a; b 2 V : d:a:b = �:a:b)

Stating that the program will converges to a situation where all d:a:b's are equal to the
actual minimal distance between a and b. In the HOL notation this will look like:

CON (MinDist d (V,N))

TT

TT

(!!a::(\a. a IN V). (!!b::(\b. b IN V). (\s. s (d a b) = Delta (V,N) a b)))
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prog ABP
read fwire; Sbit; output;Rbit; ackg
write fwire; Sbit; output;Rbit; ackg
init Sbit 6= ack ^ Rbit = ack
assign
(Send) if Sbit = ack then wire; Sbit := Exp; next:ack
(Receive) [] output;Rbit := wire; Sbit
(ACK) [] ack := Rbit

Sender Receiver

wire

Ack

Sbit

ouput

J

Figure 9.2: Simple Alternating Bit Protocol

9.3 An Example

Now that we have shown how things can be de�ned in HOL, how theorems can be
proved, how a UNITY program can be represented in HOL, and how to formulate
its properties in HOL, the reader should have some idea how to do re�nement or
veri�cation with HOL. Basically both boil down to proving theorems. We will here
present a small example, just so that the reader will have a more concrete idea about
mechanical veri�cation.

Let us consider the program in Figure 9.2. It is a very simple version of an alter-
nating bit protocol. The accompanying picture may be helpful. The sender controls
the wire, and basically can assign any value to it through the assignment wire := Exp.
The receiver controls the output. For our convenience, on the left column of the assign
section we insert the names of the actions (Send, Receive, and ACK). Using the protocol
we want to synchronize output with wire so that it satis�es the following speci�cation:

(8X :: ALT BIT` J ^ (wire = X) 7! (output = X)) (9.3.1)

for some invariant J . To achieve this, the acknowledgement mechanism through Sbit,
Rbit, and Ack is used.

We are not going to show full derivation of the program ALT BIT |besides, it is
but a simple program. Part of it will su�ce for the purpose of illustration. Let us do
some simple calculation on the speci�cation above:

J ^ (wire = X) 7! (output = X)

( f 7! Disjunction52 g

(J ^ (Sbit = Rbit) ^ (wire = X) 7! (output = X)) ^
(J ^ (Sbit 6= Rbit) ^ (wire = X) 7! (output = X))
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By 7! Introduction52 the last formula above, and hence also (9.3.1), can be re�ned
to:

J ^ (Sbit = Rbit) ^ (wire = X) ensures (output = X) (9.3.2)

J ^ (Sbit 6= Rbit) ^ (wire = X) ensures (output = X) (9.3.3)

for some invariant J . If we also insist that J is such that Sbit = Rbit implies wire =
output then it follows from ensures Introduction47 and Post-weakening47 that
(9.3.2) automatically holds.

Let us now see how the derivation above can be done (veri�ed) in HOL.

Code 9.3.1

1let AB_PROG_lem = prove(

2 "ENSURES (ALT_BIT Exp Next)

3 (J1 AND J2 AND (\s:^XState. ~(s `Sbit` = s `Rbit`) /\ (s `wire` = X)))

4 (\s. s `output` = X)

5 /\

6 ENSURES (ALT_BIT Exp Next)

7 (J1 AND J2 AND (\s. (s `Sbit` = s `Rbit`) /\ (s `wire` = X)))

8 (\s. s `output` = X)

9 ==>

10 LEADSTO (ALT_BIT Exp Next)

11 (J1 AND J2 AND (\s. s `wire` = X))

12 (\s. s `output` = X)",

13 STRIP_TAC THEN SUBST1_TAC lemma

14 THEN MATCH_MP_TAC LEADSTO_SIMPLE_DISJ

15 THEN CONJ_TAC THENL

16 [ MATCH_MP_TAC LEADSTO_ENS_LIFT THEN ASM_REWRITE_TAC[] ;

17 MATCH_MP_TAC LEADSTO_ENS_LIFT THEN ASM_REWRITE_TAC[] ])

J

The above will prove a theorem stating that (9.3.2) and (9.3.3) together imply
(9.3.1). This theorem |actually, hypothesis| is stated in lines 2-12. Lines 2-4 formu-
late (9.3.3), lines 6-8 formulate (9.3.2), and lines 10-12 formulate (9.3.1). The previous
hand derivation is translated into HOL code in lines 13-17. Compare the following with
the hand derivation. Line 14 applies the 7! Disjunction. We obtain two speci�cations.
In lines 16 and 17 7! Introduction is applied to each speci�cation.

So that is an example of doing (verifying) property re�nement in HOL. The shown
re�nement does not lead to a decomposition of the program. For the latter, compo-
sitionality laws such as presented in Sections 4.7 and 4.8 are used, but in principle,
applying a compositionality law is no di�erent from applying any other theorem.

Let us now see some property veri�cation. Without proof, below is an invariant J
that will do for our purpose:

((Sbit = ack)) (Sbit = Rbit)) ^ ((Sbit = Rbit)) (wire = output)) (9.3.4)

Let us now verify that ALT BIT is a well-formedUNITY program, that J is an invariant,
and that (9.3.3) indeed holds. Before we can do that, �rst we need to de�ne ALT BIT

in HOL. This is given given below:
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HOL-de�nition 9.3.2

|- AB_Rd = [`wire`;`Sbit`;`output`;`Rbit`;`ack`]

|- AB_Wr = [`wire`;`Sbit`;`output`;`Rbit`;`ack`]

|- !Exp Next.

Send Exp Next =

(\s. s `Sbit` = s `ack`) THEN ((`wire`,`Sbit`) ASG2 (Exp,(\s. Next(s `Sbit`))))

|- Receive = (`output`,`Rbit`) ASG2 ((\s. s `wire`),(\s. s `Sbit`))

|- ACK = `ack` ASG (\s. s `Rbit`)

|- Init = (\s. ~(s `Sbit` = s `ack`) /\ (s `Rbit` = s `ack`))

|- !Exp Next. ALT_BIT Exp Next = UPROG AB_Rd AB_Wr Init [Send Exp Next;Receive;ACK]

|- J1 = (\s. (s `Sbit` = s `Rbit`) ==> (s `wire` = s `output`))

|- J2 = (\s. (s `Sbit` = s `ack`) ==> (s `Sbit` = s `Rbit`))

J

AB Rd and AB Wr are the lists of ALT BIT's read and write variables. Send, Receive,
and ACK are the actions of ALT BIT. The functions THEN, ASG, and ASG2 are the
conditional-action construct, the single assignment, and the simultaneous assignment
to two variables. Their exact HOL de�nition is not really important here, but they are
as explained in Chapter 3. Init de�nes the initial condition of ALT BIT, and ALT BIT

is how we de�ne the program ALT BIT in HOL. The function UPROG used there is a
function that forms an object of type Uprog from its arguments 11 . J1 and J2 are the
two conjuncts of the invariant J in (9.3.4).

To prove the well-formedness of a program, we have to check �ve conditions (see also
pages 184). The program is required to consist of at least one action, and its declared
write variables should also be declared as read variables. These are easy to check. Then
it must be shown that each action is always enabled. This is also easy. It must be shown
that no variable not declared as a write variable is written by the program. This can
be done by collecting the variables occurring in the left hand sides of the assignments
and then comparing them with the set of the declared write variables of the program.
Finally, it must be shown that no variable not declared as a read variable will actually
in
uence the program. This may not be easy if we do not do it systematically 12 . This
can be done by collecting all variables occurring in the right hand side of assignments,
and in the guards of conditionals. Note that we have the constants ASG, ASG2, and
THEN which are constructs for actions. These can be considered as de�ning a language
for actions. We de�ne no similar things for expressions (those that may appear at
the right hand side of an assignment and as a guard). Consequently, we cannot easily
'collect' the read variables. It does not matter now for we have but a small example.
In general though, de�ning some language for expressions would be handy. So, this
does suggest that for the purpose of checking the well-formness of a program, a shallow
embedding of UNITY |or of any programming logic, for that matter| is not going
to be good enough. The HOL proof of the well-formedness of ALT BIT is shown below.

11 Among other things, UPROG has to convert lists of variables into predicates characterizing the
membership of the variables.
12 The read access of a variable is de�ned in terms of the 9 operator (see page 185). The operator
has a quite complicated de�nition.
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Code 9.3.3

1 let AB_UNITY = prove

2 ("(NOT(L2P AB_Rd)) INVI (F2R(Send Exp Next))

3 ==>

4 UNITY (ALT_BIT Exp Next)",

5 STRIP_TAC THEN IMP_RES_TAC INVI_ABS

6 THEN FIRST_ASSUM (UNDISCH_TAC o concl)

7 THEN POP_ASSUM (\thm. ALL_TAC)

8 THEN REWRITE_TAC ALT_BIT_defs THEN UNITY_DECOM_TAC 5) ;;

J

The above will prove that ALT BIT satis�es the predicate UNITY and hence it is
well-formed:

|- (NOT(L2P AB_Rd)) INVI (F2R(Send Exp Next))

==> UNITY (ALT_BIT Exp Next)

Except for the read access constraint |that is: (8a : a 2 aP : (rP )c 9 a)| everything
is proven automatically by the tactic UNITY DECOM TAC on line 8. The above proof takes
about 3 seconds, generating 700 intermediate theorems in the process. The read access
constraint is proven by referring to a lemma INVI ABS on line 5. The lemma itself
is proven apart using some smart tactics. It takes about 12 seconds, generating 4400
intermediate theorems. On line 2 we assume that (r(ALT BIT))c is invisible to the Send
action. This has to be assumed because nothing was said about the expression Exp

on the right hand side of the assignment in Send |hence we do not know to which
variables it may refer.

To prove that J is an invariant we have to show that it is implied by the initial
condition of ALT BIT and that J unless false holds. The HOL proof of the latter is
shown below:

Code 9.3.4

1 let AB_INV2 = prove(

2 "Distinct_Next Next ==> UNLESS (ALT_BIT Exp Next) (J1 AND J2) FF",

3 REWRITE_TAC ALT_BIT_defs THEN DISCH_TAC

4 THEN UPROG_UNFOLD_TAC

5 THEN UNLESS_DECOM_TAC THENL

7 [ %-- send action --%

8 COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN EQ_PROVE_TAC 2 ;

9 %-- receive acti1on --%

10 EQ_PROVE_TAC 2 ;

11 %-- acknowledgement action --%

12 EQ_PROVE_TAC 2 ]) ;;

J

The above code will prove the following theorem:

|- Distinct_Next Next ==> UNLESS (ALT_BIT Exp Next) (J1 AND J2) FF

The assumption Distinct_Next Next states that Next x is unequal to x, which is
required to prove the above. The tactic UPROG UNFOLD TAC in line 4 unfolds a program
into its components, and the tactic UNLESS DECOM TAC in line 5 unfolds the de�nition
of UNLESS. After the application of these two tactics we obtain a goal expressed in the
�rst order predicate logic. This can be split into three subgoals, one for each action in
ALT BIT. If the reader looks closely at the the de�nition of J (J1 AND J2) in (9.3.4),
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it mainly involves equalities. Each subgoal referred above can be proven simply by
exploiting the transitivity and symmetry properties of the equality. This is done by
the tactic EQ PROVE TAC in lines 8, 10, and 12.

The proof above takes about 32 seconds and generates 16200 intermediate theorems.
As an illustration, the three generated subgoals after executing the steps in lines 3-5
look something like:

"(!n. ~(n = Next n)) ==> ((s `Sbit` = s `Rbit`) ==> (s `wire` = s `output`)) /\ ((s `Sbit` = s `ack`) ==>

(s `Sbit` = s `Rbit`)) ==> (t `wire` = s `wire`) ==> (t `Sbit` = s `Sbit`) ==> (t `output` = s `output`) ==>

(t `Rbit` = s `Rbit`) ==> (t `ack` = s `Rbit`) ==> ((t `Sbit` = t `Rbit`) ==> (t `wire` = t `output`)) /\

((t `Sbit` = t `ack`) ==> (t `Sbit` = t `Rbit`))"

"(!n. ~(n = Next n)) ==> ((s `Sbit` = s `Rbit`) ==> (s `wire` = s `output`)) /\ ((s `Sbit` = s `ack`) ==>

(s `Sbit` = s `Rbit`)) ==> (t `wire` = s `wire`) ==> (t `Sbit` = s `Sbit`) ==> (t `output` = s `wire`) ==>

(t `Rbit` = s `Sbit`) ==> (t `ack` = s `ack`) ==> ((t `Sbit` = t `Rbit`) ==>

(t `wire` = t `output`)) /\ ((t `Sbit` = t `ack`) ==> (t `Sbit` = t `Rbit`))"

"(!n. ~(n = Next n)) ==>

((s `Sbit` = s `Rbit`) ==> (s `wire` = s `output`)) /\ ((s `Sbit` = s `ack`) ==> (s `Sbit` = s `Rbit`)) ==>

(t `wire` = ((s `Sbit` = s `ack`) => Exp s | s `wire`)) ==>

(t `Sbit` = ((s `Sbit` = s `ack`) => Next(s `Sbit`) | s `Sbit`)) ==>

(t `output` = ((s `Sbit` = s `ack`) => s `output` | s `output`)) ==>

(t `Rbit` = ((s `Sbit` = s `ack`) => s `Rbit` | s `Rbit`)) ==>

(t `ack` = ((s `Sbit` = s `ack`) => s `ack` | s `ack`)) ==>

((t `Sbit` = t `Rbit`) ==> (t `wire` = t `output`)) /\ ((t `Sbit` = t `ack`) ==> (t `Sbit` = t `Rbit`))"

Each subgoal is handled by the tactics on lines 8,10, and 12 (respectively). Alter-
natively, we can also write a single, smarter tactic which can be applied to all subgoals:

((COND_CASES_TAC THEN ASM_REWRITE_TAC[]) ORELSE ALL_TAC)

THEN EQ_PROVE_TAC 2

The above attempts to apply a case analysis with COND CASES TAC �rst, and then
followed by a rewrite with assumptions with ASM REWRITE TAC[]. If the case analysis
fails (the rewrite cannot fail) nothing happens. Subsequently |regardless the success
of the case analysis| the tactic EQ PROVE TAC is invoked. The above can be used to
replace lines 7-12 in Code 9.3.4.

To prove (9.3.3), that is, J ^ (Sbit 6= Rbit) ^ (wire = X) ensures (output = X), we
will have to prove the unless part of the above �rst. This can be done in a very similar
way as the proof of J unless false in Code 9.3.4.

Code 9.3.5

1 let AB_SAFE1 = prove(

2 "Distinct_Next Next ==>

3 UNLESS (ALT_BIT Exp Next)

4 (J1 AND J2 AND (\s:^XState. ~(s `Sbit` = s `Rbit`) /\ (s `wire` = X)))

5 (\s. s `output` = X)",

6 REWRITE_TAC ALT_BIT_defs THEN DISCH_TAC

7 THEN UPROG_UNFOLD_TAC

8 THEN UNLESS_DECOM_TAC THENL

9 [ %-- send action --%

10 COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC

11 THEN REC_DISJ_TAC (EQ_PROVE_TAC 2) ;

12 %-- receive action --%

13 REPEAT STRIP_TAC THEN REC_DISJ_TAC (EQ_PROVE_TAC 2) ;

14 %-- acknowledgement action --%

15 REPEAT STRIP_TAC THEN REC_DISJ_TAC (EQ_PROVE_TAC 2) ]) ;;

J

The above takes about 50 seconds for HOL to prove, and generates about 28800 inter-
mediate theorems. It results in the following theorem:
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|- Distinct_Next Next ==> UNLESS (ALT_BIT Exp Next)

(J1 AND (J2 AND (\s. ~(s `Sbit` = s `Rbit`) /\ (s `wire` = X))))

(\s. s `output` = X)

The following code will prove (9.3.3):

Code 9.3.6

1 let AB_ENS1 = prove(

2 "(NOT(L2P AB_Rd)) INVI (F2R(Send Exp Next)) /\ Distinct_Next Next

3 ==>

4 ENSURES (ALT_BIT Exp Next)

5 (J1 AND J2 AND (\s:^XState. ~(s `Sbit` = s `Rbit`) /\ (s `wire` = X)))

6 (\s. s `output` = X)",

7 ENSURES_DECOM_TAC "Receive THENL

8 [ IMP_RES_TAC AB_UNITY ;

9 IMP_RES_TAC AB_SAFE1 THEN ASM_REWRITE_TAC[] ;

10 REWRITE_TAC [ALT_BIT; UPROG_DEF; PROG; L2P_DEF; MAP; IS_EL] ;

11 DEL_ALL_TAC THEN REWRITE_TAC ALT_BIT_defs

12 THEN (HOA_DECOM_TAC o fst o dest_list o rand o concl) AB_Rd THEN EQ_PROVE_TAC 2 ] ) ;;

J

The above takes only about 5 seconds to prove, mostly because most veri�cation
work was already done in proving the unless part of (9.3.3). By its de�nition, P `
p ensures q can be proven by showing that P is well-formed, that there exists an action
a 2 aP such that fp ^ :qg a fp _ qg, and that P ` p unless q holds. The tactic
ENSURES DECOM TAC in line 7 is a special tactic that we wrote to split a goal of the form

P ` p ensures q as described above. It requires one parameter, namely the action a

which we think will ensure the described progress 13 . As an illustration, after applying
the tactic ENSURES DECOM TAC with the action Receive as its parameter in line 7 we
will get the following four subgoals from HOL:

1 "HOA

2 ((J1 AND (J2 AND (\s. ~(s `Sbit` = s `Rbit`) /\ (s `wire`=X)))) AND (NOT(\s. s `output`=X)),

3 F2R Receive,

4 (\s. s `output` = X))"

5 2 ["(NOT(L2P AB_Rd)) INVI (F2R(Send Exp Next))" ]

6 1 ["Distinct_Next Next" ]

7

8 "PROG(ALT_BIT Exp Next)(F2R Receive)"

9 2 ["(NOT(L2P AB_Rd)) INVI (F2R(Send Exp Next))" ]

10 1 ["Distinct_Next Next" ]

11

12 "UNLESS (ALT_BIT Exp Next)

13 (J1 AND (J2 AND (\s. ~(s `Sbit` = s `Rbit`) /\ (s `wire` = X))))

14 (\s. s `output` = X)"

15 2 ["(NOT(L2P AB_Rd)) INVI (F2R(Send Exp Next))" ]

16 1 ["Distinct_Next Next" ]

17

18 "UNITY(ALT_BIT Exp Next)"

19 2 ["(NOT(L2P AB_Rd)) INVI (F2R(Send Exp Next))" ]

20 1 ["Distinct_Next Next" ]

J

13 We can gain more automation by letting the tactic ENSURES DECOM TAC search for an ensuring
action on its own. This is not too di�cult to do. One should take into account that this will cost
more computing time.
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The �rst subgoal is listed in line 18. It requires that ALT BIT is a well-formed
UNITY program. This has been proven before by Code 9.3.3 and the fact is stated by
theorem AB UNITY192. The second subgoal is listed in line 12-14 and requires the unless

part of the original ensures property to hold. This has been proven by Code 9.3.5 and
the fact is stated by theorem AB SAFE1. The third subgoal is in line 8. It requires that
Receive to be indeed an action of ALT BIT. This is easy to check. Finally, the last
subgoal in lines 1-4 states a Hoare triple which the action Receive must satisfy. This
can be proven using EQ PROVE TAC again.

9.4 The FSA and Broadcast Algorithms

In the previous section we have brie
y shown how re�nement and veri�cation of pro-
gram properties can be done in HOL. Now we want to turn our attention to the FSA
and broadcast algorithms presented in Chapters 5 and 6. The total code we produced
for the veri�cation is quite large: 120 KB (and another 110 KB for the domain level
FSA algorithm). So, it is quite impossible to present it here. We will however show
how the programs are formulated in HOL, and how the main theorems look like.

Let us also repeat the caution made earlier. The hand notation used in this thesis
is designed for the reader's convenience. The notation we used in our HOL codes is
somewhat more cumbersome. While it is easy to adapt the hand notation to one's
liking, the same cannot be said for the HOL codes. The reader will �nd the naming of
some variables to be di�erent. Also we were not quite consistent in representing sets.
Sometimes we represent them as sets, and sometimes as predicates. The latter dates
back to the early development of our UNITY package in HOL. In the beginning we
found that HOL can deal better with predicates. In the future, representing sets as
sets will be preferable. Fancy notation such as J P` p q does not directly transfer to
HOL, so we have to encode this as something like CON P J p q. Also many functions
used in the hand notation actually have hidden parameters. In HOL, those parameters
have to be mentioned explicitly. Apart from those distracting details mentioned above,
the HOL version the formulas presented soon will actually have the same structure as
their hand notated counterparts.

Let us now begin with the FSA algorithm.

9.4.1 The FSA Algorithm

The FSA algorithm is given in Figure 5.9 on page 106. Recall that the algorithm is a
general algorithm to self-stabilizingly compute the solution of so-called round solvable
problems. The de�nition of round solvability is given in pages 106 or 111.

Recall that the program FSA consists of components FSA:a: FSA = ([]a : a 2 V :
FSA:a). Note that the FSA:a's have disjoint sets of variables. In other words, they
do not interfere with each other. What we prove in HOL are properties of FSA:a, not
of FSA |this does not restrict the result in any way since, as said, the FSA:a's are
independent from each other. Since the a can be considered as a constant in FSA:a
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FSA = ([]b : b 2 V : FSA:b) where FSA:b is de�ned as:

prog FSA:b
read fr:b:b0 j b0 2 V g [ fr:c:b j c 2 V g [ fd:bg

write fr:c:b j c 2 V g [ fd:bg
init true
assign d:b := �:b:(r:b)
[] ([]c : c 2 V ^ b 2 N:c : r:c:b := d:b)

J

Figure 9.3: The FSA Algorithm

we will simply drop it. For the reader's convenience, the component is redisplayed in
Figure 9.3.

Here is how we de�ne the component FSA:b (of the program in Figure 9.3) in HOL:

HOL-de�nition 9.4.1

|- !Res V N x r a.

FSA Res (V,N) x r a =

(CHF ({Comp Res a x r} |_|

(GSPEC (\b. (Copy a b x r,(b IN V /\ a IN (N b)))))),

TT,

CHF ({x a} |_| (GSPEC (\b. (r a b,(b IN V))))

|_| (GSPEC (\b. (r b a,(b IN V))))),

CHF ({x a} |_| (GSPEC (\b. (r b a,(b IN V))))))

J

The notation deserves some explanation. a and b range over the type *Vert of
nodes (vertices). V ranges over sets of nodes and (V,N) is intended to be the network.
Comp Res a x r and Copy a b x r are actions 14 . They denote, respectively, the
assignments x:a := Res:a:(r:a) and r:b:a := x:a. The s and t range over State. x and
r are arrays of variables.

GSPEC (\x. (f x, P x)) is how we in general denote the set ff:xjP:xg in HOL.
This is usually pretty printed as {f x | P x}. However, the meaning of a set such as
fa + b j 0 < bg can be ambigous as it is not clear whether we mean a to be a bound
or a free variable |we usually deduct the status of a from the context. If a is bound
then the set can be denoted by {a+b | 0<b} in HOL, otherwise we should revert to
the GSPEC notation as in 9.4.1.

If V is a set, CHF V is the predicate that characterizes V. Recall that we use predi-
cates to represent sets of actions and variables when representing a program, as in the
de�nition of the type Uprog on page 183.

In the hand notation, the program in HOL-de�nition 9.4.1 will look like this:

prog FSA:Res:(V;N):x:r:a
read fx:ag [ fr:a:b j b 2 V g [ fr:b:a j b 2 V g

14 The exact de�nition of these two actions can be found in Appendix A.
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write fx:ag [ Setr:b:a j b 2 V

init true
assign x:a := Res:a:(r:a)
[] ([]b : b 2 V ^ a 2 N:b : r:b:a := x:a)

which is the same program as the component FSA:b in Figure 9.3 except for some extra
parameters |which throughout Chapter 5 were kept implicit| and the renaming of
some variables.

The mapping of a function f to a set V , denoted here as f � V , which is the set
ff:xjx 2 V g, is usually denoted by IMAGE f V in HOL. We denote it with *> f V.
Quanti�ed (UNITY) parallel composition, as in ([]P : P 2 V : P ), is denoted as gPAR
V. If we de�ne Net as follows:

|- !P V. Net P V = gPAR (*> P V)

we can write the program FSA = ([]b : b 2 V : FSA:b) as NET (FSA Res (V,N) x r)

V.
The main result for the FSA algorithm is stated in Theorem 5.5.1111. The theorem

states that under some conditions, the algorithm will self-stabilize to a situation in
which a predicate okna;b for all rounds n and all pairs of nodes (a; b) holds. The theorem
is re-displayed below |it will be adapted for the program FSA in Figure 9.3:

(V;N) is a network ^ (V 6= �) ^ V is �nite ^ (A 6= �) ^ A is �nite
Trans: � ^ � is well-founded

(8n; F : n 2 A : (8m; b0 : m � n ^ b0 2 N:b : okmb0 :(F:b
0)) ) oknb :(�:b:F ))

true FSA` true (8n; b : n 2 A ^ b 2 V : oknb :(d:b))
(9.4.1)

If we now de�ne the following abbreviations:

HOL-de�nition 9.4.2

|- !V OK n x. dataOK V OK n x = (\s. !a. a IN V ==> OK n a x s)

|- !Pr J V A OK x.

MDC Pr J V A OK x = CON Pr J TT (!!n:: CHF A. dataOK V OK n x)

J

The conclusion of (9.4.1) can now be written in terms of MDC. Now, here is how (9.4.1)
looks like in HOL |some variables are named di�erently:

HOL-theorem 9.4.3

|- sWF A R /\ ~(A={}) /\ ~(V={}) /\ TRANS R /\ FINITE A /\ FINITE V /\ GRAPH (V,N) /\

(!n a. n IN A /\ a IN V ==> Resolve N (A,R) Res ok n a) /\

Proper (FSA Res (V,N) x r) V /\

ONE_ONE x /\ ONE_ONE2 r /\ Distinct x r

==>

MDC (Net (FSA Res (V,N) x r) V) TT V A (MSP ok) x

J

sWF A R means that R, restricted on A, is a well-founded relation. GRAPH (V,N)

means that (V,N) is a network. Proper (FSA Res (V,N) x r) V means that we
assume that for each node a in V, FSA Res (V,N) x r a is a well-formed UNITY
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program. ONE ONE x and ONE ONE2 r mean that x and r are injective functions, and
Distinct x r states that x:a and r:b:c are distinct variables 15 16 .

The most important condition from the theorem above is:

(!n a. n IN A /\ a IN V ==> Resolve N (A,R) Res ok n a)

It states the round solvability of the problem. The predicate Resolve is de�ned as
follows:

HOL-de�nition 9.4.4

|- !N A R Res ok n a.

Resolve N (A,R) Res ok n a =

(!f. (!m b. m IN A /\ R m n /\ b IN (N a) ==> ok m b (f b)) ==> ok n a (Res a f))

J

9.4.2 Round Solvability of Minimal Cost Functions

Round solvability is a strong condition, strong enough in some cases to even characterize
the original problem. This has been discussed in Chapter 6. In that chapter, the round
solvability of minimum-distance-like functions was also thoroughly investigated. Such
a function computes the minimal cost of going from one node to another in a network.
This cost depends on, for example, the way we de�ne the cost of going through a link
|that is, two physically connected nodes| and on the way we 'sum' the cost of the
links that were used as we go from the source node to the destination node. The round
solvability of such a function is stated by Theorem 6.4.3129. We will show how the
theorem looks like in HOL.

Recall that a minimum cost function � is de�ned as:

�:U:b = uf%:b:s j U
s
�! bg

where %:b:s is the cost of the path s. That is, the minimal cost of going from a set of
nodes U to a node b is the 'minimal' (u) of the cost of the paths from U to b. The cost
of a path is de�ned as follows:

%:b:[] = e

%:b:(b0; s) = addW:b0:b:(%:b0:s)

where e is the cost of an empty path |usually it is ?| and addW is a function we
use to 'sum' the cost of the links a path goes through. For a more thorough discussion
see Section 6.2. The function � can be generated with the FSA algorithm using the
following generator:

':U:b:f =

�
e , if b 2 U

ufaddW:b0:b:(f:b0) j b0 2 N:bg , otherwise

15 The exact (HOL) de�nition of all these constants can be found in Appendix A.
16 Recall that the injective and distinct functions are required to represent arrays of variables (see
the discussion in page 181).
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For the simple notion of minimal cost |see equations (5.5.2)101 and (5.5.3)| � is
also the �x point of the function (�f; U; b: ':U:b:f). In general, Theorems 6.4.5132 and
6.4.6132 give conditions under which � is a unique �x point of its generator.

The above functions are de�ned as follows in HOL:

HOL-de�nition 9.4.5

|- (!N A b. PATH N A b[] = b IN A) /\

(!N A b a s. PATH N A b(CONS a s) = a IN (N b) /\ PATH N A a s)

|- !N A b. PATHS N A b = {s | PATH N A b s}

|- (!addW e b. PathCost addW e b[] = e) /\

(!addW e b a s. PathCost addW e b(CONS a s) = addW a b(PathCost addW e a s))

|- !N r addW e A b. MiCost N r addW e A b = CAP r (*> (PathCost addW e b) (PATHS N A b))

|- !N r addW e f A b.

GENmc N r addW e f A b = (b IN A => e | CAP r (*> (\a. addW a b (f a)) (N b)))

J

PATH N U b s denotes U
s
�! b in HOL. It states that s is a path from U to b. Note

the parameter N which is kept hidden in U
s
�! b. In fact, all functions de�ned above

have extra parameters which are all kept hidden in the hand notation. PATHS N U b

denotes the set of all paths from U to b. PathCost addW e b s denotes %:b:s, MiCost
N r addW e U b denotes �:U:b, and GENmc N r addW e f U b denotes ':U:b:f . In the
de�nition above, CAP r V denotes uV |the greatest lower bound of V| with respect
to r and *> f V denotes f � V |the map of the function f on the set V .

As said, the round solvability of � is stated by Theorem 6.4.3129. This is how the
theorem looks like in HOL:

HOL-theorem 9.4.6

|- GRAPH(V,N) /\ CAP_PLa r /\ CAP_Closed r /\

(!a b. CAP_Distr r r (addW a b)) /\ ~(MiCost N r addW e A a = Top r) /\

(e = Bot r) /\ (!n a b. ~(n = Top r) ==> I_r r n(addW a b n)) /\

A SUBSET V /\ ~(A = {}) /\ a IN V /\

(!a0 m. a0 IN (N a) /\ I_r r m n ==> OKmc r m (MiCost N r addW e A) a0 (f a0))

==>

OKmc r n (MiCost N r addW e A) a (GENmc N r addW e f A a)

J

If r is a relation on type *A, CAP PLa r means that r is a (complete) lattice. That
is, for every subset V of *A, the u of V, that is, CAP r V exists. Bot r and Top r

denote the ? and > of the relation r and I r r denotes the relation r� I, that is the
greatest non-re
exive subrelation of r. Basically, the meaning of a round-solvability
theorem such as above still depends on the choice of predicate OKmc. For example, if
true is chosen then the above does not mean anything useful. Instead, OKmc should be
de�ned in such a way, so that when the generator GENmc is used in the FSA algorithm,
upon reaching its goal |which is described in HOL-theorem 9.4.3| the generator will
indeed generate MiCost. The choice of OKmc has been discussed in Chapter 6. For
minimum-distance-like functions, it is de�ned in (6.4.2)126. It is de�ned as follows in
HOL:
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HOL-de�nition 9.4.7

|- !r n f a X.

OKmc r n f a X = (r (f a) n ==> (X = f a)) /\ (r n(f a) ==> r n X)

J

9.4.3 The Broadcast Algorithm

Another example that we discussed in Part I is a self-stabilizing broadcast algorithm
BC. This is presented in Figure 6.7135. Given a network (V;N) the program BC:U

broadcasts the data from the nodes in U � V to the rest of the network. The program
BC:U consists of write-disjoint components BC:U:b: BC:U = ([]b : b 2 V : BC:U:b). For
the reader's convenience the code of BC:U:b is re-displayed below:

prog BC:U:b
read fr:b0:b j b0 2 V g [ fr:b:c j c 2 V g [ fg:b j b 2 Ug [ fd:bg
write fr:b:c j c 2 V g [ fd:bg

init true
assign

d:b :=

�
(e1; g:b) , if b 2 U

u3f>�<:addW:b0:b:(r:b:b0) j b0 2 N:bg , otherwise
[] ([]c : b 2 N:c : r:c:b := d:b)

where u3 belongs to v1

N
v2

The expression at the right hand side of the assignment to d:b can also be written
as genBC:U:b:(r:b) for an appropriately de�ned genBC. Note that the function genBC

has the role of a generator. This how it is de�ned in HOL:

HOL-de�nition 9.4.8

|- !N r1 r2 addW e f g A b.

GENbc N r1 r2 addW e f g A b =

(b IN A => (e,g b) |

CAP (r1 >>> r2) (*> (\a. >-< r1 r2 addW a b (f a)) (N b)))

J

r >>> s is how we denote r
N

s, the lexicographic product of r and s, in HOL.
>-< is how we denote the crab operator >�< (see page 132 for the de�nition of >�<).
in HOL.

The program BC:U:b is de�ned as follows in HOL |some variables are renamed:

HOL-de�nition 9.4.9

|- !V N R1 R2 addW e g Org x r a.

BC (V,N) R1 R2 addW e g Org x r a =

( CHF ({Comp_bc N R1 R2 addW e g Org a x r} |_|

(GSPEC (\b. (Copy a b x r, (b IN V /\ a IN (N b)))))),

TT,

CHF({x a,g a} |_| ({r a b | b IN V} |_| {r b a | b IN V})),

CHF({x a} |_| {r b a | b IN V}))

J
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Comp bc N R1 R2 addW e g Org a x r corresponds to the assignment x:a :=
genBC:Org:a:(r:a) in the hand notation. Copy a b x r b corresponds to the assign-
ment r:b:a := x:a. The reader can check for himself that the above program is |except
for a number of extra parameters and the renaming of some variables| in fact the same
program as the one in the hand notation presented earlier.

The main result of the program BC is stated in Theorem 6.5.5136. The HOL version
of this theorem is displayed below.

HOL-theorem 9.4.10

|- ~(A = {}) /\ ~(V = {}) /\ FINITE A /\ FINITE V /\ GRAPH(V,N) /\

CAP_PLa r1 /\ CAP_PLa r2 /\ CAP_Closed r1 /\ CAP_Closed r2 /\

(!a b. CAP_Distr r1 r1 (addW a b)) /\

(!a. a IN V ==> ~(MiCost N r1 addW e Org a = Top r1)) /\

(!n a b. ~(n = Top r1) ==> I_r r1 n (addW a b n)) /\

dClosed r1 A /\ ONE_ONE x /\ Distinct x r /\ ONE_ONE2 r /\

Org SUBSET V /\ ~(Org = {}) /\

(!s a. J s /\ a IN Org ==> (P o (SND o (s o g)))a) /\

(e = Bot r1) /\ (ok = (\n a val. OKbc P r1 n (MiCost N r1 addW e Org) a val)) /\

(Pr = BC (V,N) r1 r2 addW e g Org x r) /\

(!a. a IN V ==> STABLE (Pr a) J) /\ Proper Pr V

==>

MDC (Net Pr V) J V A (MSP ok) x

J

OKbc is de�ned as De�nition 6.5.3134. That the above implies that upon reaching its
goal the program BC:U will indeed have the data in U broadcasted across the network
has been discussed before in Section 6.5.

9.4.4 The Domain Level FSA Algorithm

In Chapter 7 we have discussed how we can generalize the FSA algorithm so that it
also works for a network of domains. This is useful especially since in practice many
networks of computers are organized in domains. Basically the generalization amounts
to lifting the actions done by the algorithm at the node level to the domain level.
However, since a domain is no longer an indivisible unit as a node is |it consists of
nodes| some complications do arise: domain level information which has to be shared
by all nodes within a domain will have to be broadcasted across the domain. This is
re
ected in the proof (of the domain level FSA algorithm): it shows many similarity
to that of the ordinary FSA algorithm, except for the broadcasting part.

The domain level FSA algorithm (also called dFSA algorithm) is presented in Figure
7.5153. Its HOL representation is in Figure 9.4.

Lines 1-5 de�ne the component gFSA. gFSA...B b corresponds to gFSA:�:b:b in Fig-
ure 7.5153. It consists of only one action, namely applyGen gen d cp B b which ap-
plies the generator gen (denoted as � in gFSA:�:b:b). Lines 7-14 de�nes the component
ccFSA. ccFSA...B C c corresponds to cFSA:�:b:c:c in Figure 7.5153. This component
program is de�ned in terms of the broadcast program (BC). Lines 16-17 de�nes cFSA.
cFSA...B C corresponds to cFSA:�:b:c in Figure 7.5153. The program is formed from
the broadcasting components ccFSA. Together they broadcast data from the boder
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1 |- gFSA V gen d cp B b =

2 (CHF{applyGen gen d cp B b},

3 TT,

4 CHF((*> (cp B b) V) |_| {d B b}),

5 CHF{d B b})

6

7 |- ccFSA Nd Nn r1 r2 addW_bc e_bc d cp r B C c =

8 BC (Nd C, (\c1. {c2 | c2 IN (Nd C) /\ c2 IN (Nn c1)}))

9 r1 r2 addW_bc e_bc

10 ((d B) o (Sel Nn Nd B))

11 (Border Nn Nd C B)

12 (\c'. cp C c' B)

13 (r C B)

14 c

15

16 |- cFSA Nd Nn r1 r2 addW_bc e_bc d cp r B C =

17 Net (ccFSA Nd Nn r1 r2 addW_bc e_bc d cp r B C) (Nd C)

18

19 |- dFSA_Collect Nd Nn (V,N) r1 r2 addW_bc e_bc Gen d cp r =

20 (GSPEC (\(B,b). (gFSA V (Gen (V,N) B) d cp B b, (B IN V /\ b IN (Nd B)))))

21 |_|

22 (GSPEC(\(B,C). (cFSA Nd Nn r1 r2 addW_bc e_bc d cp r B C, (C IN V /\ B IN (N C)))))

23

24 |- dFSA Nd Nn (V,N) r1 r2 addW_bc e_bc Gen d cp r =

25 flatUprogs (dFSA_Collect Nd Nn (V,N) r1 r2 addW_bc e_bc Gen d cp r)

J

Figure 9.4: The HOL version of the dFSA algorithm.

nodes between domains, say, B and C to all nodes in C.
Lines 19-22 de�nes dFSA Collect which is a set containing all component programs

in the dFSA algorithm. Lines 24-25 de�nes dFSA, the dFSA algorithm. dFSA...

there corresponds to dFSA:� in Figure 7.5153. It is de�ned as the flatUprogs of
dFSA Collect. The �rst simply combines all programs in the second using the UNITY
parallel composition.

Figure 9.5 presents the HOL version of the main theorem on the domain level
FSA algorithm presented in 7.1.2. The theorem states the conditions under which the
program will satisfy the speci�cation DA0, which is the HOL version of DA0 de�ned in
page 143:

DA0 : true dFSA:�` true (8n : n 2 A : comOkn ^ dataOkn)

In HOL, DA0 is de�ned as follows:
|- DA0 P J Nd (V,N) A ok ccok d r0 =

CON P

J

TT

(!!n::(\n. n IN A). (D_dataOK V Nd ok d n) AND (D_comOK V N ccok n))

Compare it with the hand de�nition above, the reader will be able to recognize which
part corresponds to which. We will not go further into detailing the de�nition of
D dataOK and D comOK. They can be found in the Appendix. Su�ces here to say that
they correspond to dataOk and comOk.

Let us now take a closer look at the conditions stated in Theorem 9.4.11. We will
brie
y explain what they mean (the meaning of most functions has been explained
previously in this section).
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HOL-theorem 9.4.11

1 |-

2 sWF A r0 /\ TRANS r0 /\ ~(A={}) /\ FINITE A /\

3 CAP_PLa r1 /\ CAP_Closed r1 /\ (Top r1) IN (A_bc) /\ dClosed r1 A_bc /\

4 (e1 = Bot r1) /\ FINITE A_bc /\ CAP_PLa r2 /\ CAP_Closed r2 /\

5 GRAPH(V,N) /\ ~(V={}) /\ FINITE V /\

6 (!B. B IN V ==> FINITE (Nd B)) /\ (!B. B IN V ==> ~(Nd B = {})) /\

7 (!B C c. C IN V /\ B IN (N C) /\ c IN (Nd C) ==>

8 ~(MiCost (\c1. {c2 | c2 IN (Nd C) /\ c2 IN (Nn c1)})

9 r1 addWbc e1 (Border Nn Nd C B) c

10 =

11 Top r1)) /\

12 (!c c'. CAP_Distr r1 r1 (addWbc c c')) /\

13 (!i c c'. ~(i = Top r1) ==> I_r r1 i (addWbc c c' i)) /\

14 (!B n. B IN V /\ n IN A ==> Resolve N (A,r0) (Gen (V,N)) ok n B) /\

15 (!B b. B IN V /\ b IN (Nd B) ==> UNITY (gFSA V (Gen (V,N) B) d cp B b)) /\

16 (!B C c. C IN V /\ (B:*Dom) IN (N C) /\ c IN (Nd C) ==>

17 UNITY (ccFSA Nd Nn r1 r2 addWbc e1 d cp r B C c)) /\

18 (!B b. B IN V /\ b IN (Nd B) ==> STABLE (gFSA V (Gen (V,N) B) d cp B b) J) /\

19 (!B C c. C IN V /\ B IN (N C) /\ c IN (Nd C) ==>

20 STABLE (ccFSA Nd Nn r1 r2 addWbc e1 d cp r B C c) J) /\

21 (!B C. C IN V /\ B IN (N C) ==> ~(Border Nn Nd C B ={})) /\

22 (!B1 b1 B2 C1 c1. ~(d B1 b1 = cp C1 c1 B2)) /\

23 (!B1 b1 B2 C1 c1 c2. ~(d B1 b1 = r C1 B2 c1 c2)) /\

24 (!B1 C1 c1 c2 B2 C2 c3. ~(r C1 B1 c1 c2 = cp C2 c3 B2)) /\

25 (!B1 b1 B2 b2. ~((B1,b1)=(B2,b2)) ==> ~(d B1 b1 = d B2 b2)) /\

26 (!B1 C1 c1 B2 C2 c2. ~((B1,C1,c1)=(B2,C2,c2)) ==> ~(cp C1 c1 B1 = cp C2 c2 B2)) /\

27 (!B1 C1 c1 c2 B2 C2 c3 c4. ~((B1,C1,c1,c2)=(B2,C2,c3,c4)) ==> ~(r C1 B1 c1 c2 = r C2 B2 c3 c4))

28 ==>

29 DA0 (dFSA Nd Nn (V,N) r1 r2 addWbc e1 Gen d cp r)

30 J Nd (V,N) A

31 ok (ccOK Nd Nn r1 e1 addWbc ok cp r)

32 d r0

J

Figure 9.5: The Main Theorem of the Domain Level FSA Algorithm

V is the set of domains, N is the neighborhood function at the domain level. Nd is
the interior function: given a domain B, Nd A returns the set of all nodes inside the
domain. Nn is the neighborhood function at the node level. A is the domain of the
rounds and ok is our satisfaction predicate. The goal of the algorithm is to converge to
states where the value of d B b satis�es ok n B, for all domains B and nodes b inside B.
We need three relations to prove the correctness of the program: r0, r1, and r2. The
last two are only used by the broadcasting part of the program. A bc is the domain
of rounds, also to be used by the broadcast components. addWbc is a function to add
link-weight, just as in the standard FSA algorithm (see the discussion in Subsection
9.4.2). It is also used in the broadcast components. The domain of rounds A has to be
non-empty, transitive, and well-founded (line 1).

In lines 7-11 it is required that the minimum cost (with respect to the cost function
used by the broadcast components) of going from the border nodes between a domain
B and a domain C to any node in C is not equal to >. In other words, all nodes in a
domain should be reachable from the nodes bordering with that domain (otherwise we
cannot do the broadcasting within the domain C).

Lines 15-17 requires that all components of the dFSA program are all well-formed
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UNITY programs. Actually, this should be veri�able from the de�nition of dFSA, but
we did not have the time to do it. This should not be a problem though.

Lines 22-27 simply state that all variables involved are all distinct (no aliasing).
The most important condition is stated by line 14, requiring that the problem is round
solvable. Notice that this is the same requirement as the one for the ordinary FSA
algorithm (see Hol-theorem 9.4.3197). This emphasizes what has been said before: the
domain level FSA algorithm is just an 'upwards' generalization of the FSA algorithm.

9.5 A Closing Note

Translating UNITY and its extension into HOL was fairly easy. Despite its ASCII
format, the HOL notation is quite close to the hand notation. Much of our e�ort in
embedding UNITY went into proving the various calculation laws presented in Part I.
Some laws such as the Completion52 law are quite hard to prove.

Programs with a �xed number of variables and actions such as the program ALT BIT

are quite easy to de�ne in HOL. On the other hand, an abstract algorithm the size
of which depends on some parameters tends to get complicated when manipulated in
HOL, especially if various sophisticated mathematical structures such as lattices or
trees are involved in the parameters of the algorithm, or in the speci�cations of the
algorithm. The FSA and broadcast algorithms, which are quite typical distributed
algorithms, are examples of such an algorithm. The examples of HOL de�nitions and
theorems presented in the previous section readily suggests that a notation interface is
a great 'must' to make theorem provers more accessible to computer scientists seeking
to use the tools to increase the trust-worthiness of their distributed programs.

Our embedding of UNITY in HOL itself, although it serves very well in our ex-
periment, is still not adequate for more practical applications on a routine basis. For
such an application we would want, for example, more structuring mechanisms other
than the parallel composition |sequential composition is an example thereof; we may
also want to have laws that govern communications through channels; we are likely
going to need multi-typed universe of values and so on. These areas are all open to
further investigation. Each addition of a feature will likely add to the complexity of
the (UNITY) logic. It is still an open question how long we can keep adding features
before the logic becomes so complicated that we start losing our grip. Surely we can
expect that some features can be handled automatically by the computer, but, as said,
this is still an untrodden area.



Chapter 10

Concluding Remarks

D
URING our four years research, most time and energy was expended on the
veri�cation work with the theorem prover HOL. As a beacon, we took the FSA
algorithm (Chapter 5) and set the veri�cation of this algorithm as a goal. The

path was more or less laid out since a formal proof, written in UNITY, for the algorithm
was provided in [Len93]. Basically all that one has to do is to translate the proof to
HOL codes. However, we rejected this option, preferring to �rst re-write the proof in
[Len93]. We wanted a more intuitive proof. After all, the philosophy of program design
is to be able to go back and forth between the intuition level and the formula level. The
programming logic UNITY itself, which we chose as our framework, also needed to be
enriched: dealing with complicated formulas with only low level calculational laws at
hand is not very practical. Many things can be added: local variables, input variables,
loops, exceptions, clocks, procedures, and so on. We are particularly interested in two
issues: self-stabilization and compositionality. So we extended UNITY with a notion
of stabilization, provided a set of basic properties, veri�ed various compositionality
results, and even added laws for write-disjoint parallel composition. These have been
discussed in Chapter 4 and Chapter 5. The extension has been mechanically veri�ed
in HOL, and the result is available for everyone. Combined with proof tools available
in HOL, this will provide an environment for a user to directly verify a program as he
designs it using HOL |here, the assumption is of course that one employs a formal
method in designing.

We produced lots of theorems from a code of more than 750 KB of proofs. As a
comparison, the HOL library of sets contains 90 KB proofs, the library of real numbers,
which is quite large, contains 480 KB proofs, and a library of some temporal program-
ming logic by G. Tredoux contains 260 KB proofs. Of the 750 KB we produced, 70
KB deals with the core UNITY |that is, UNITY with unless , ensures and 7! as in
[CM88]. Twice that much is dedicated to the extensions we talked about above.

A large portion, about a half, of it does not actually have anything to do with
program design and veri�cation |that is, not directly. This portion contains proofs
for standard mathematical facts, such as those from graph theory or lattice theory,
which were not available in HOL. This is a common problem: anyone seriously using
a theorem prover is likely to have experienced it. As it stands, theorem prover is a
new technology. People are still working on it, improving it, and together building the
library of facts. As the library gets larger and larger, new problems can be expected to
arise. The notation will need to be standardized, good documentation will be needed,
and there should be some kind of a dictionary of mathematical facts. As people work
on the technology in various institutions across the world, it will be di�cult to couple
them in a tight cooperation. That way as it is now, everyone who ever worked on
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embedding some programming logic in HOL seems to have written his own version of
a CPO library, his own predicate library, his own weakest pre-condition library, and so
on. This is de�nitely not the way to do it. Just like an encyclopedia, the whole library
of a theorem prover has to be well organized.

In addition to the above 750 KB, another 120 KB was spent to prove the FSA
algorithm and 110 KB to prove the domain level version of it. The algorithm is thus
veri�ed. If we learn anything from the the experiment, it is the blowing up of the hand
proof as provided in Chapters 5 and 7 to a 230 KB piece of code. This is mainly to
be blamed to the problem itself. To make the FSA algorithm as general as possible,
we parameterized it with various things: the network, the generator, the function to
be computed, a domain of rounds, and so on. The proof will involve manipulation of
these parameters. This has been omitted from the hand proof in Chapters 5 and 7
because we consider it as less interesting. In the world of mechanical theorem proving
we have to work in detail, and it is quite possible that details overwhelm the principle.
As many abstract distributed algorithms are also parameterized with a whole range of
parameters, one can expect a similar scaling up. By this remark we do not mean to
discourage the reader from attempting mechanical veri�cation. On the contrary, we
urge him. It is just that we feel we should warn a new user of what lies awaiting for
him.

Finally, we certainly hope that others can now bene�t from the extended UNITY
package that we wrote and use it to verify distributed programs. Such an endeavor
may cost some work, especially since abstract algorithms often involve higher order
formulas which are likely cannot be automatically veri�ed. We believe however that
such work still lies within the limits of practicality.
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HOL De�nitions and Theorems

T
HIS appendix provides lists of de�nitions and veri�ed theorems as they are in
HOL. They concern the core UNITY, the extension thereof as discussed in Chap-
ter 4, the convergence operator as discussed in Chapter 5, the FSA algorithm

presented in Chapter 5, and the round solvability of minimum-distance-like functions
as presented in Chapter 6. Not all de�nitions and theorems that we produced will be
listed |it would take too much space. Only those we consider relevant or interesting
for the reader will be included. As warned in the Introduction, there will be a discrep-
ancy between the HOL de�nitions and theorems and the 'hand' versions as presented
in earlier chapters. Not only that the HOL notation di�ers from the standard hand
notation, but objects may be called by other names and the order of arguments of a
function may be di�erent. In Chapter 9 we have explained how some major de�nitions
and theorems relate with their HOL version, but in general the reader can always try
to go over the lists here and �nd out that the discrepancy between the HOL version
and the hand version of the de�nitions and the theorems is not really that big.

In the sequel IN, UNION, and INTER are HOL names for the set operators 2, [, and
\. |_| is sometimes used instead of UNION.

A.1 Standard Operators on Relations

SUBREL: % sub-relation relation %

|- !r s. r SUBREL s = (!x y. r x y ==> s x y)

rUNION: % union of two relations %

|- !r s. r rUNION s = (\x y. r x y \/ s x y)

rINTER: % intersection of two relations %

|- !r s. r rINTER s = (\x y. r x y /\ s x y)

rSEQ: % sequential compositon of relations %

|- !R1 R2.

R1 rSEQ R2 = (\x y. (?y. R1 x y /\ R2 y z))

rId: % the identity relation %

|- rId = (\x y. (x=y))

rBOT: % the empty relation (bottom) %

|- rBOT = (\x y. F)

rTOP: % the full relation (top) %

|- rTOP = (\x y. T)

TRANS_DEF:

|- !r. TRANS r =

(!x y z. r x y /\ r y z ==> r x z)

REFL_DEF:

|- r. REFL r = (!x. r x x)

ANTI_REFL:

|- !r. ANTI_REFL r = (!x. ~r x x)

ANTI_SYM:

|- ANTI_SYM r =
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(!x y. r x y /\ r y x ==> (x=y))

REL_LEXII: % lexicographic product of

two relations %

|- !R1 R2 x y.

(R1 >>> R2)x y =

R1(FST x)(FST y) /\ ~(FST x = FST y) \/

(FST x = FST y) /\ R2(SND x)(SND y)

I_remove: % the largest non-reflexive

sub-relation $

|- !r a b. I_r r a b = r a b /\ ~(a = b)

A.2 Predicate Operators

Below are the de�nition of the boolean operators :, ^, 8, 9, and so on, lifted to the
predicate level.
pSEQ_DEF: % everywehere operator %

|- !p. |== p = (!s. p s)

RES_qOR:

|- !W P. (??i::W. P i) = (\s. ?i. W i /\ P i s)

RES_qAND:

|- !W P. (!!i::W. P i) = (\s. !i. W i ==> P i s)

EQUAL_DEF:

|- !p q. p EQUAL q = (\s. p s = q s)

pIMP_DEF:

|- !p q. p IMP q = (\s. p s ==> q s)

pOR_DEF:

|- !p q. p OR q = (\s. p s \/ q s)

pAND_DEF:

|- !p q. p AND q = (\s. p s /\ q s)

pNOT_DEF:

|- !p. NOT p = (\s. ~p s)

FF_DEF:

|- FF = (\s. F)

TT_DEF:

|- TT = (\s. T)

IMPBY:

|- !p q. p <== q = q ==> p

A.3 Well-Founded Relations

Here are some de�nitions and theorems about well-founded relations which are relevant
for latter.

sWF : % well-founded relation %

|- !V R. sWF V R =

(!A. (!y. y IN V /\ y IN A ==> (?x. x IN V /\ R x y /\ x IN A))

==>

(V INTER A = {}))

ADMIT_sWF_Ind: % well-founded induction %

|- !V R.

ADMIT_sWF_Ind V R =

(!P. (!y. y IN V /\ (!x. x IN V /\ R x y ==> P x) ==> P y)

==>

(!x. x IN V ==> P x))

ADMIT_WF_INDUCTION: % also well-founded induction %

|- !R. ADMIT_WF_INDUCTION R =

(!P. (!y. (!x. R x y ==> P x) ==> P y) ==> (!x. P x))

ADMIT_sWF_WF:

|- !R. ADMIT_WF_INDUCTION R = ADMIT_sWF_Ind UNIV R
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sWF_EQU_IND:

% well-foundedness and admitance of well-founded induction are equivalent %

|- !V R. sWF V R = ADMIT_sWF_Ind V R

FIN_ADMIT_sWF_Ind:

|- !V R. TRANS R /\ ANTI_REFL R /\ FINITE V ==> ADMIT_sWF_Ind V R

A.4 Transitive and Disjunctive Closure

Below, the de�nition of the smallest transitive and left-disjunctive closure of a relation
is given, along with its general properties.
LDISJ_DEF: % define left-disjunctive relation %

|- !U. LDISJ U =

!W y. (?x. W x) /\ (!x::W. U x y)

==>

U (??x::W. x) y

DISJ_DEF: % define generally disjunctive

relation %

|- !W U.

DISJ W U =

(!f g. (?i. W i) /\ (!i::W. U (f i) (g i))

==>

U (??i::W. f i) (??i::W. g i))

TDC_DEF: % define smalles transitive and

left-disjunctive closure %

|- !U x y.

TDC U x y =

(!X. (SUBREL U X) /\ (TRANS X) /\ (LDISJ X)

==>

X x y)

CANCEL: % general cancelation law %

|- !U p q r s.

TRANS U /\ DISJ TT U /\

U q q /\ U p (q OR r) /\ U r s

==>

U p (q OR s)

BOUNDED_REACH_: % bounded reach induction

principle %

|- ADMIT_WF_INDUCTION LESS /\

TRANS U /\ LDISJ U /\ U q q /\

(!m. U (p AND (\s. M s = m))

((p AND (\s. LESS (M s) m)) OR q))

==>

U p q

BOUNDED_ALWAYS_REACH_i :

|- ADMIT_WF_INDUCTION LESS /\

TRANS U /\ LDISJ U /\ U p p /\

(!m. U ((NOT p) AND (\s. M s = m))

((\s. LESS (M s) m) OR p))

==>

U TT p

TDC_LIFT:

|- !U. SUBREL U (TDC U)

TDC_LDISJ:

|- !U. LDISJ (TDC U)

TDC_INDUCT1: % the TDC induction principle %

|- !U X. SUBREL U X /\ TRANS X /\ LDISJ X

==>

(TDC U) SUBREL X

TDC_SUBREL:

|- !U V. (U SUBREL V) ==> (U SUBREL (TDC V))

TDC_MONO:

|- !U V.

(U SUBREL V) ==> (TDC U) SUBREL (TDC V)

A.5 Variables and Actions

Below is the de�nition of skip, miracle, assignment, conditional, and so on. The notion
of predicate con�nement, ignored variables, and invisible variables will also be de�ned.
A list of some basic properties follows. These properties were discussed in Chapter 3.
Pj_DEF: % projection on functions %

|- !V A x. (V Pj A)x = (A x => V x | Nov)

p_Pj_DEF: % projection of state predicates %

|- !p A. p_Pj p A = (\s. p (s Pj A))

a_Pj_DEF: % projection of actions %

|- !a A.

a_Pj a A = (\s t. a (s Pj A) (t Pj A))
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SKIP_DEF:

|- SKIP = rId

MIRA_DEF: % miracle %

|- MIRA = rBOT

CHAOS_DEF:

|- CHAOS = rTOP

Update_DEF:

|- !v E. Update v E = (\s t. t v = E s)

Assign_DEF: % assignment %

|- !v E.

Assign v E =

(Update v E) rINTER (SKIP a_Pj (\x. ~(x=v)))

Cond_DEF % conditional action %

|- !g a b.

Cond g a b =

(\s t. (g s ==> a s t) /\ (~g s ==> b s t))

aREF: % action refinement %

|- !r s. r aREF s = s SUBREL r

CONF_DEF: % predicate confinement %

|- !A p.

A CONF p

=

(!s t. (s Pj A = t Pj A) ==> (p s = p t))

ALWAYS_ENABLED: % always enabled action %

|- !a. ALWAYS_ENABLED a = (!s. ?t. a s t)

IG_BY_DEF: % ignored variables %

|- !V A.

V IG_BY A

=

(!s t. A s t ==> (s Pj V = t Pj V))

INVI_DEF: % invisible variables %

|- !V A.

V INVI A =

(!s t s' t'.

(s Pj (NOT V) = s' Pj (NOT V)) /\

(t Pj (NOT V) = t' Pj (NOT V)) /\

(s' Pj V = t' Pj V) /\

A s t ==>

A s' t')

HOA_DEF: % Hoare triple %

|- !p A q.

HOA(p,A,q) = (!s t. p s /\ A s t ==> q t)

CONF_ADEF:

|- V CONF p = (p = p p_Pj V)

CONF_MONO:

|- !A B p.

|==(A IMP B) /\ A CONF p ==> B CONF p

CONF_qOR:

|- !V W P.

(?i. W i) /\ (!i :: W. V CONF (P i))

==>

V CONF (?? i :: W. P i)

CONF_qAND:

|- !V W P.

(!i :: W. V CONF (P i))

==>

V CONF (!! i :: W. P i)

CONF_IMP:

|- !V p q.

V CONF p /\ V CONF q

==>

V CONF (p IMP q)

CONF_OR:

|- !V p q.

V CONF p /\ V CONF q

==>

V CONF (p OR q)

CONF_AND:

|- !V p q.

V CONF p /\ V CONF q

==>

V CONF (p AND q)

CONF_NOT:

|- !V p. V CONF p ==> V CONF (NOT p)

CONF_FF:

|- !V. V CONF FF

CONF_TT:

|- !V. V CONF TT

IG_BY_ADEF:

|- V IG_BY a = (SKIP a_Pj V) aREF a

IG_BY_MONO:

|- !A V W.

|==(V IMP W) /\ W IG_BY A ==> V IG_BY A

INVI_ADEF:

|- V INVI a

=

((a aREF ((a a_Pj (NOT V))

rINTER (SKIP a_Pj V)))

/\

((a a_Pj (NOT V)) aREF a))

INVI_MONO:

|- !A V W.

|==(V IMP W) /\ W IG_BY A /\ W INVI A

==>

V INVI A

HOA_REF:

|- a aREF b /\ HOA(p,a,q) ==> HOA(p,b,q)

HOA_Pj_MAP:

|- HOA (p,a,q)

==>

HOA(p p_Pj V, a a_Pj V, q p_Pj V)

HOA_INVI:
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|- (NOT V) INVI a /\ HOA(p,a,q)

==>

HOA(p p_Pj V, a, q p_Pj V)

HOA_ADD_FRESH:

|- V IG_BY b /\ (NOT V) INVI a /\

HOA(p,a,q)

==>

HOA (p p_Pj V, b rSEQ a, q p_Pj V)

Action_Wr_Pred:

|- (NOT V) IG_BY a /\ W CONF p

==>

HOA ((\s. s Pj (V AND W) =

f Pj (V AND W)) AND p,

a,

(\s. s Pj (V AND W) =

f Pj (V AND W)) IMP p)

Action_Wr_Pred_Cor:

|- V IG_BY a /\ V CONF p ==> HOA(p,a,p)

A.6 Core UNITY

Below are the de�nition of the predicate Unity, de�ning the well-formedness of a UNITY
program, and the de�nitions of all basic UNITY operators.
UNLESS:

|- !Pr p q.

UNLESS Pr p q =

(!A :: PROG Pr. HOA(p AND (NOT q),A,p OR q))

ENSURES:

|- !Pr p q.

ENSURES Pr p q =

UNITY Pr /\

UNLESS Pr p q /\

(?A :: PROG Pr. HOA(p AND (NOT q),A,q))

LEADSTO:

|- !Pr. LEADSTO Pr = TDC(ENSURES Pr)

STABLE:

|- !Pr p. STABLE Pr p = UNLESS Pr p FF

Inv: % strong invariant %

|- !Pr J.

Inv Pr J =

|==((INIT Pr) IMP J) /\ UNLESS Pr J FF

FPp_DEF: % fix point of a program %

|- !Pr p.

FPp Pr p =

(!a s t. PROG Pr a /\ p s /\ a s t

==>

(s = t))

PROG: % the action set of a program %

|- !P In R W. PROG(P,In,R,W) = P

INP: % the input variables set of a program %

|- !Pr. INP Pr = (NOT(WRITE Pr)) AND (READ Pr)

WRITE: % the write variables set of a program %

|- !P In R W. WRITE(P,In,R,W) = W

READ: % the read variables set of a program %

|- !P In R W. READ(P,In,R,W) = R

INIT: % the initial condition of a program %

|- !P In R W. INIT(P,In,R,W) = In

UNITY: % define a UNITY program %

|- !P In R W.

UNITY(P,In,R,W) =

(?A. P A) /\

(!A :: P. ALWAYS_ENABLED A) /\

(!A :: P. (NOT W) IG_BY A) /\

(!x. W x ==> R x) /\

(!A :: P. (NOT R) INVI A)

A.7 Semantics of UNITY

Below is the de�nition of the trace semantics of UNITY programs. Various basic
temporal operators are given, and an operational meaning of the unless and leads-to
operator is given. Some soundness results are also given |these were discussed in
Section 4.10.
EXEC_DEF: % define fair executions of a program %

|- !P Sig.

EXEC P Sig =

(!i. PROG P (Sig i)) /\

(!i a. PROG P a ==>

(?j. i <= j /\ (Sig j=a)))

TRACE_DEF: % define trace semantics of a prog. %

|- !P Tau.

TRACE P Tau =
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INIT P (Tau 0) /\

(?Sig. EXEC P Sig /\

(!i. Sig i (Tau i) (Tau (SUC i))))

SATISFACTION: % define when a program P satisfies

a temporal property tp %

|- !P tp.

|--- P tp = !Tau. TRACE P Tau ==> tp Tau

NOW_DEF: % temporal operator 'now'%

|- !p Tau. NOW p Tau = p (Tau 0)

DRop_DEF:

|- !m f. DRop m f = (\n. f (n+m))

NEXT_DEF: % temporal operator 'next' %

|- !tp Tau. NEXT tp Tau = tp (DRop 1 Tau)

ALWAYS_DEF: % temporal operator 'always' %

|- !tp Tau.

ALWAYS tp Tau = !i. tp (DRop i Tau)

EV_DEF: % temporal operatow 'eventually' %

|- tp Tau. EV tp Tau = ?i. tp (DRop i Tau)

tUNLESS_DEF: % operational meaning of 'unless' %

|- !tp tq.

tUNLESS tp tq =

ALWAYS

((tp AND (NOT tq)) IMP (NEXT (tp OR tq)))

tLEADSTO_DEF: % operational meaning of `leads to`

|- !tp tq.

tLEADSTO tp tq = ALWAYS (tp IMP (EV tq))

UNLESS_IMP_tUNLESS: % soundness result for unless %

|- UNLESS P p q ==> (P |--- tUNLESS (NOW p) (NOW q))

LEADSTO_IMP_tLEADSTO: % soundness result for leads-to %

|- LEADSTO P p q ==> (P |--- tLEADSTO (NOW p) (NOW q))

A.8 Sander's Subscripted UNITY

Below we give the de�nitions of Sander's subscripted UNITY operators and the result-
ing Substitution Rules. The de�nitions were originally given in [San91], which were
faulty, and repaired in [Pra94]. Sander's subscripted UNITY were brie
y discussed in
Section 4.6.
UNL: % subscripted unless operator %

|- !Pr J p q.

UNL Pr J p q =

UNLESS Pr(p AND J)(q AND J) /\ Inv Pr J

ENS: % subscripted ensures operator %

|- !Pr J p q.

ENS Pr J p q =

ENSURES Pr(p AND J)(q AND J) /\ Inv Pr J

LTO: % subscripted leads-to operator %

|- !Pr J. LTO Pr J = TDC(ENS Pr J)

UNL_SUBST: % substitution rule for unless %

|- !Pr J p q r s.

|== (J IMP (p EQUAL r)) /\

|== (J IMP (q EQUAL s)) /\

UNL Pr J p q

==>

UNL Pr J r s

ENS_SUBST: % substitution rule for ensures %

|- !Pr J p q r s.

|== (J IMP (p EQUAL r)) /\

|== (J IMP (q EQUAL s)) /\

ENS Pr J p q

==>

ENS Pr J r s

LTO_SUBST: % substitution rule for leads-to %

|- !Pr J p q r s.

|== ((J AND r) IMP p) /\

|== ((J AND q) IMP s) /\

LTO Pr J p q

==>

LTO Pr J r s

A.9 the � operator

Below the HOL de�nition of the reach operator, �, is given. A list of its basic
properties follows. Most of these properties were listed in Chapter 4.
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B_ENS:

|- !Pr J p q. B_ENS Pr J p q = ENSURES Pr(p AND J)q /\

STABLE Pr J /\

(WRITE Pr) CONF p /\

(WRITE Pr) CONF q)

REACH:

|- !Pr J. REACH Pr J = TDC(B_ENS Pr J)

REACH_ENS_LIFT:

|- !Pr J. (B_ENS Pr J) SUBREL (REACH Pr J)

REACH_IMP_gLIFT:

|- !Pr J p q.

UNITY Pr /\ STABLE Pr J /\

(WRITE Pr) CONF p /\ (WRITE Pr) CONF q /\

|==((p AND J) IMP q)

==>

REACH Pr J p q);

REACH_TRANS:

|- !Pr J. TRANS(REACH Pr J)

REACH_LDISJ:

|- !Pr J. LDISJ(REACH Pr J)

REACH_DISJ:

|- !W Pr J. DISJ W(REACH Pr J)

REACH_INDUCT1:

|- !X Pr J.

(B_ENS Pr J) SUBREL X /\ TRANS X /\ LDISJ X

==>

(!p q. REACH Pr J p q ==> X p q)

REACH_REFL:

|- !Pr J p.

UNITY Pr /\ STABLE Pr J /\

(WRITE Pr) CONF p

==> REACH Pr J p p);

REACH_gMONO:

|- !Pr J p q r.

(WRITE Pr) CONF r /\ REACH Pr J p q /\

|==((q AND J) IMP r)

==>

REACH Pr J p r

REACH_gANTIMONO:

|- !Pr J p q r.

(WRITE Pr) CONF p /\ REACH Pr J q r /\

|==((p AND J) IMP q)

==>

REACH Pr J p r

REACH_SUBST:

|- !Pr J p q r s.

(WRITE Pr) CONF r /\ (WRITE Pr) CONF s /\

|==((r AND J) IMP p) /\

|==((q AND J) IMP s) /\

REACH Pr J p q

==>

REACH Pr J r s);

REACH_IMP_CONF:

|- !Pr J p q.

REACH Pr J p q

==>

(WRITE Pr) CONF p /\ (WRITE Pr) CONF q

REACH_IMP_STABLE:

|- !Pr J p q. REACH Pr J p q ==> STABLE Pr J

REACH_IMP_LEADSTO:

|- !Pr J p q.

(WRITE Pr) CONF J /\ REACH Pr J p q

==>

LEADSTO Pr(p AND J)q

REACH_CANCEL:

|- !Pr J p q r s.

(WRITE Pr) CONF q /\

REACH Pr J p(q OR r) /\

REACH Pr J r s

==>

REACH Pr J p(q OR s)

REACH_GEN_PSP:

|- !Pr J L p q a b.

(WRITE Pr) CONF a /\ (WRITE Pr) CONF b /\

REACH Pr J p q /\

UNLESS Pr(a AND L)b /\ STABLE Pr L

==>

REACH Pr(J AND L)(p AND a)((q AND a) OR b)

REACH_STAB_MONO:

|- !Pr J H p q.

STABLE Pr H /\ REACH Pr J p q

==>

REACH Pr(H AND J)p q

REACH_STABLE_SHIFT:

|- !Pr J a p q.

(WRITE Pr) CONF a /\

REACH Pr(J AND a)p q /\ STABLE Pr J

==>

REACH Pr J(p AND a)q

REACH_WF_INDUCT:

|- !U :: ADMIT_WF_INDUCTION. !Pr M J p q.

(WRITE Pr) CONF q /\

(!m. REACH Pr J (p AND (\s. M s = m))

((p AND (\s. U(M s)m)) OR q))

==>

REACH Pr J p q

REACH_EVENTUALLY_FALSE:

|- !U :: ADMIT_WF_INDUCTION. !Pr M J p.

(WRITE Pr) CONF p /\
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(!m. (WRITE Pr) CONF (\s. U(M s)m)) /\

(!m. REACH Pr J((NOT p) AND (\s. M s = m))

(\s. U(M s)m))

==>

REACH Pr J TT p

REACH_COMPLETION:

|- !W Pr J P Q b.

CHF_FINITE W /\ UNITY Pr /\

(WRITE Pr) CONF b /\

STABLE Pr J /\

(!i :: W. REACH Pr J(P i)((Q i) OR b)) /\

(!i :: W. UNLESS Pr((Q i) AND J)b)

==>

REACH Pr J (!! i :: W. P i)

((!! i :: W. Q i) OR b)

A.10 Convergence

The convergence operator is de�ned as follows in HOL:
CON:

|- !Pr J p q.

CON Pr J p q =

(WRITE Pr) CONF q /\

(?q'. REACH Pr J p(q' AND q) /\ STABLE Pr(q' AND (q AND J)))

Below is a list of its basic properties. The operator was discussed in Chapter 5.
Most of the properties below were also listed there.
CON_IMP_LIFT:

|- !Pr J p q.

UNITY Pr /\

(WRITE Pr) CONF p /\ (WRITE Pr) CONF q /\

STABLE Pr J /\ STABLE Pr(q AND J) /\

|==((p AND J) IMP q)

==>

CON Pr J p q

CON_ENSURES_LIFT:

|- !Pr J p q.

(WRITE Pr) CONF p /\ (WRITE Pr) CONF q /\

STABLE Pr J /\ STABLE Pr (q AND J) /\

ENSURES Pr (p AND J) q

==>

CON Pr J p q);

CON_REACH_LIFT:

|- !Pr J p q.

REACH Pr J p q /\ STABLE Pr(q AND J)

==>

CON Pr J p q

CON_REFL:

|- !Pr J p.

UNITY Pr /\ (WRITE Pr) CONF p /\

STABLE Pr J /\ STABLE Pr(p AND J)

==>

CON Pr J p p

CON_gMONO:

|- !Pr J p q r.

(WRITE Pr) CONF r /\

CON Pr J p q /\ |==((q AND J) IMP r)

==>

CON Pr J p r

CON_gANTIMONO:

|- !Pr J p q r.

(WRITE Pr) CONF p /\

CON Pr J q r /\ |==((p AND J) IMP q)

==>

CON Pr J p r

CON_SUBST:

|- !Pr J p q r s.

(WRITE Pr) CONF r /\ (WRITE Pr) CONF s /\

|==((r AND J) IMP p) /\

|==((q AND J) IMP s) /\

CON Pr J p q

==>

CON Pr J r s

CON_SPIRAL:

|- !Pr J p q r.

CON Pr J p q /\ CON Pr J q r

==>

CON Pr J p(q AND r)

CON_TRANS:

|- !Pr J p q r.

CON Pr J p q /\ CON Pr J q r

==>

CON Pr J p r

CON_LDISJ:

|- LDISJ(CON Pr J))

CON_DISJ:

|- DISJ W(CON Pr J)

CON_CONJ:

|- !W Pr J P Q.

CHF_FINITE W /\

UNITY Pr /\

STABLE Pr J /\

(!i :: W. CON Pr J(P i)(Q i))

==>

CON Pr J(!! i :: W. P i)(!! i :: W. Q i)
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CON_IMP_REACH:

|- !Pr J. (CON Pr J) SUBREL (REACH Pr J)

CON_CONF_LIFT:

|- !Pr J p q.

CON Pr J p q

==>

(WRITE Pr) CONF p /\ (WRITE Pr) CONF q

CON_IMP_STABLE:

|- !Pr J p q. CON Pr J p q ==> STABLE Pr J

CON_STABLE_SHIFT:

|- !Pr J a p q.

(WRITE Pr) CONF a /\

CON Pr (J AND a) p q /\ STABLE Pr J

==>

CON Pr J (p AND a) q

CON_WF_INDUCT: % bounded progress induction

principle for convergence %

|- ADMIT_WF_INDUCTION LESS /\

CON Pr J q q /\

(!m. CON Pr J

(p AND (\s. M s = m))

((p AND (\s. LESS(M s)m)) OR q))

==>

CON Pr J p q

CON_BY_sWF_i: % the round decomposition

principle %

|- sWF A U /\ ~(A = {}) /\ FINITE A /\

STABLE Pr J /\

(!y::\y. y IN A.

CON Pr

(J AND

(!! x :: \x. x IN A /\ U x y. Q x))

TT

(Q y))

==>

CON Pr J TT(!! y :: \y. y IN A. Q y)

A.11 Parallel Composition

Below is the de�nition of UNITY parallel composition together with some other op-
erators used later. A list of theorems stating the compositionality of various UNITY
operators follows. This includes the Singh law for the reach operator, 'until'-like com-
positionality, compositionality achieved through �x point, and the transparency laws.
PAR: % parallel composition of programs %

|- !Pr Qr.

Pr PAR Qr =

( PROG Pr) OR (PROG Qr),

(INIT Pr) AND (INIT Qr),

(READ Pr) OR (READ Qr),

(WRITE Pr) OR (WRITE Qr)

DVa: % 'shared' variables %

|- !Pr Qr.

DVa Pr Qr = (READ Pr) AND (WRITE Qr)

UP_DEF: % lift a relation to the predicate

level %

|- !V R C.

UP V R C = (\s. !x. V x ==> R(s x)(C x))

WD_DEF: % write disjoint programs %

|- !Pr Qr.

Pr <w> Qr = (!v. WRITE Pr v ==> ~WRITE Qr v)

PAR_UNIT:

|- !Pr. Pr PAR (FF,TT,FF,FF) = Pr

PAR_SYM:

|- !Pr Qr. Pr PAR Qr = Qr PAR Pr

PAR_ASSOC:

|- !Pr Qr Rr.

(Pr PAR Qr) PAR Rr = Pr PAR (Qr PAR Rr))

UNITY_PAR:

|- !Pr Qr.

UNITY Pr /\ UNITY Qr ==> UNITY(Pr PAR Qr)

CONF_PAR:

|- !Pr Qr p.

(WRITE Pr) CONF p \/ (WRITE Qr) CONF p

==>

(WRITE(Pr PAR Qr)) CONF p

UNLESS_PAR_i:

|- UNLESS Pr p q /\ UNLESS Qr p q

=

UNLESS(Pr PAR Qr)p q

STABLE_PAR_i:

|- STABLE Pr p /\ STABLE Qr p

=

STABLE(Pr PAR Qr)p

Inv_PAR:

|- !J Pr Qr.

Inv Pr J /\ Inv Qr J ==> Inv(Pr PAR Qr)J

ENSURES_PAR:

|- !Pr :: UNITY. !p q Qr.

UNLESS Pr p q /\ ENSURES Qr p q

==>

ENSURES(Pr PAR Qr)p q
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REACH_SINGH_g: % Singh law for reach %

|- UNITY Qr /\

(WRITE(Pr PAR Qr)) CONF a /\

(WRITE(Pr PAR Qr)) CONF b /\

((WRITE Pr) OR ((READ Pr)

AND (WRITE Qr))) CONF p0 /\

STABLE(Pr PAR Qr)J /\

(!C. UNLESS Qr (J AND (a AND (UP(DVa Pr Qr)$= C)))

b ) /\

REACH Pr (J AND p0) p q

==>

REACH (Pr PAR Qr)

J

(p AND (p0 AND a))

(q OR ((NOT a) OR ((NOT p0) OR b)))

UNTIL_COMPO1:

|- UNITY Qr /\

STABLE Qr J /\

(!C. UNLESS Qr

(J AND (p AND (UP(DVa Pr Qr)$= C)))

q ) /\

UNLESS Pr( p AND J) q /\

REACH Pr J p q

==>

REACH (Pr PAR Qr) J p q

UNTIL_COMPO2`,

|- UNITY Qr /\

((WRITE Pr) OR ((READ Pr)

AND (WRITE Qr))) CONF p /\

STABLE (Pr PAR Qr) J /\

(!C. UNLESS Qr

(J AND (p AND (UP(DVa Pr Qr)$= C)))

q ) /\

REACH Pr (J AND p) TT q

==>

REACH (Pr PAR Qr) J p q

REACH_COMPO_BY_FPp:

|- UNITY Qr /\ FPp Qr a /\ STABLE Pr(J AND a) /\

REACH Pr J p q

==>

REACH(Pr PAR Qr)(J AND a)p q

REACH_TRANSPARANT: % transparency law for reach %

|- !Pr Qr J p q.

UNITY Qr /\ Pr <w> Qr /\

STABLE Qr J /\ REACH Pr J p q

==>

REACH(Pr PAR Qr)J p q

CON_TRANSPARANT:

% transparency law for convergence %

|- !Pr Qr J p q.

UNITY Qr /\ Pr <w> Qr /\

STABLE Qr J /\ CON Pr J p q

==>

CON(Pr PAR Qr)J p q

REACH_CONJ_WD:

|- !Pr Qr J p q r s.

Pr <w> Qr /\

REACH Pr J p q /\ STABLE Pr(q AND J) /\

REACH Qr J r s /\ STABLE Qr(s AND J)

==>

REACH(Pr PAR Qr)J(p AND r)(q AND s)

CON_CONJ_WD:

|- !Pr Qr J p q r s.

Pr <w> Qr /\ CON Pr J p q /\ CON Qr J r s

==>

CON(Pr PAR Qr)J(p AND r)(q AND s)

REACH_SPIRAL:

|- !Pr Qr J p q.

Pr <w> Qr /\

STABLE Pr(J AND q) /\ STABLE Qr J /\

REACH Pr J p q /\ REACH Qr(J AND q)TT r

==>

REACH(Pr PAR Qr)J p(q AND r)

A.12 Lattice Theory

Below are some de�nitions from lattice theory which we will need later.
PO: % partial order %

|- !r. PO r = REFL r /\ TRANS r /\ ANTI_SYM r

IS_LB: % lower bound %

|- !r X a. IS_LB r X a = (!b. b IN X ==> r a b)

isCAP:

|- !r X c.

isCAP r X c

=

IS_LB r X c /\ (!b. IS_LB r X b ==> r b c)

CAP: % greatest lower bound %

|- !r X. (?a. isCAP r X a) ==> isCAP r X (CAP r X)

CAP_PLa: % (complete) CAP-lattice %

|- !r.

CAP_PLa r = PO r /\ (!X. ?b. isCAP r X b)

Bot: % bottom %

|- !r. Bot r = CAP r UNIV

Top_ADEF: % top %

|- CAP_PLa r ==> (Top r = CAP r{})

IMAGE_DEF : % mapping on sets %

|- !f s. *> f s = {f x | x IN s}

CAP_Junct: % CAP-junctivity of a function %

|- !r s f.

CAP_Junct r s f =

(!X. ~(X = {}) ==>

(f(CAP r X) = CAP s(*> f X)))
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CAP_Distr: % CAP-distributivity of a function %

|- !r s f.

CAP_Distr r s f =

(!X. f(CAP r X) = CAP s(*> f X))

A.13 Minimal-Distance-Like Functions

Below is the de�nition of minimal-distance-like (minimal-cost-like) functions, along
with some other de�nitions required later. A list of properties of such a function
follows.
ONE_ONE_DEF: % define injective functions %

|- !f. ONE_ONE f =

(!x1 x2. (f x1 = f x2) ==> (x1 = x2))

GRAPH: % define a graph (network) %

|- !V N. GRAPH(V,N) =

(!a. a IN V ==> (N a) SUBSET V)

PATH: % define what is a path in a network %

|- (!N A b. PATH N A b[] = b IN A) /\

(!N A b a s. PATH N A b(CONS a s)

=

a IN (N b) /\ PATH N A a s)

PATHS:

|- !N A b. PATHS N A b = {s | PATH N A b s}

PathCost: % define the cost of a path %

|- (!addW e b. PathCost addW e b[] = e) /\

(!addW e b a s.

PathCost addW e b(CONS a s)

=

addW a b(PathCost addW e a s))

MiCost: % define minimal cost from source to

destination %

|- !N r addW e A b.

MiCost N r addW e A b =

CAP r (*> (PathCost addW e b) (PATHS N A b))

FishBone:

|- !addW b c r a.

>+- addW b c(r,a) = addW b c r,b

FishTail:

|- !r1 r2 addW b c x a.

>++ r1 r2 addW b c(x,a)

=

((x = Top r1) => Top(r1 >>> r2)

| >+- addW b c(x,a))

CrabPlus:

|- !addW a b X.

>+< addW a b X = addW a b(FST X),SND X)

Crab:

|- !r1 r2 addW b c x a.

>-< r1 r2 addW b c(x,a) =

((x = Top r1) => Top(r1 >>> r2)

| >+< addW b c(x,a))

MiCost_SELF:

|- CAP_PLa r /\ (e = Bot r) /\ a IN A

==>

(MiCost N r addW e A a = e)

MiCost_SPLIT1:

|- CAP_PLa r /\

(!a b. CAP_Distr r r (addW a b)) /\

~c IN A

==>

(MiCost N r addW e A c

=

CAP r (*> (\b. addW b c (MiCost N r addW e A b)) (N c)))

MiCost_LESS_NEIGHBOR1:

|- CAP_PLa r /\

(!a b. CAP_Distr r r (addW a b)) /\

a IN (N b)

==>

r (MiCost N r addW (Bot r)A b)

(addW a b (MiCost N r addW (Bot r)A a))

MiCost_IN_NEIGHBOR1:

|- CAP_PLa r /\ CAP_Closed r /\

(!a b. CAP_Distr r r (addW a b)) /\
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~(N b = {}) /\ A SUBSET V /\

b IN V /\ ~b IN A

==>

(MiCost N r addW e A b) IN

(*> (\a. addW a b (MiCost N r addW e A a)) (N b))

Fish_Distr:

|- CAP_PLa r1 /\ CAP_PLa r2 /\

CAP_Closed r1 /\ (!a b. CAP_Distr r1 r1 (addW a b))

==>

CAP_Distr (r1 >>> r2) (r1 >>> r2) (>++ r1 r2 addW a b)

FST_MiCost_Fish:

|- CAP_PLa r1 /\ CAP_PLa r2 /\

(!a b. CAP_Distr r1 r1 (addW a b))

==>

(FST o (MiCost N (r1 >>> r2) (>++ r1 r2 addW) (e,ep) a)

=

MiCost N r1 addW e a)

SND_MiCost_Fish:

|- GRAPH(V,N) /\ CAP_PLa r1 /\ CAP_PLa r2 /\

CAP_Closed r1 /\ CAP_Closed r2 /\

(!a b. CAP_Distr r1 r1(addW a b)) /\

~(MiCost N r1 addW e A b = Top r1) /\

~(N b = {}) /\ A SUBSET V /\ ~(A = {}) /\ b IN V /\ ~b IN A

==>

(SND (MiCost N (r1 >>> r2) (>++ r1 r2 addW)(e,ep)A b))

IN (N b)

MiCost_Fish_THM:

|- GRAPH(V,N) /\ CAP_PLa r1 /\ CAP_PLa r2 /\

CAP_Closed r1 /\ CAP_Closed r2 /\

(!a b. CAP_Distr r1 r1 (addW a b)) /\

~(MiCost N r1 addW e A b = Top r1) /\

~(N b = {}) /\ A SUBSET V /\ ~(A = {}) /\ b IN V /\ ~b IN A /\

(b0 = SND (MiCost N (r1 >>> r2) (>++ r1 r2 addW) (e,ep) A b))

==>

(MiCost N r1 addW e A b = addW b0 b(MiCost N r1 addW e A b0))

Crab_Distr:

|- CAP_PLa r1 /\ CAP_PLa r2 /\ CAP_Closed r1 /\

(!a b. ONE_ONE (addW a b)) /\

(!a b. CAP_Distr r1 r1(addW a b))

==>

CAP_Distr (r1 >>> r2) (r1 >>> r2) (>-< r1 r2 addW a b)

FST_MiCost_Crab:

|- CAP_PLa r1 /\ CAP_PLa r2 /\ (!a b. CAP_Distr r1 r1(addW a b))

==>

(FST (MiCost N (r1 >>> r2) (>-< r1 r2 addW) (e,X)A a)

=

MiCost N r1 addW e A a)

SND_MiCost_Crab:

|- CAP_PLa r1 /\ CAP_PLa r2 /\ CAP_Closed r1 /\

(!a b X. r1 X (addW a b X)) /\

(!a b. CAP_Distr r1 r1 (addW a b)) /\

~(MiCost N r1 addW e A b = Top r1) /\

b IN V /\ A SUBSET V /\ ~(A = {})

==>

(SND (MiCost N (r1 >>> r2) (>-< r1 r2 addW) (e,X)A b)

= X)
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A.14 Round Solvability

Below are the round solvability theorems for minimal-distance-like functions, for minimal-
distance-like functions with best neighbors recording, and for broadcast functions. First
some de�nitions:

OKmc: % define the OK predicate for minimum-distance-like functions %

|- !r n f a X.

OKmc r n f a X =

(r (f a) n ==> (X = f a)) /\ (r n(f a) ==> r n X)

GENmc: % define the generator for minimum-distance-like functions %

|- !N r addW e f A b.

GENmc N r addW e f A b =

(b IN A => e | CAP r (*> (\a. addW a b (f a)) (N b)))

OKbc: % define the OK predicate for a broadcast function %

|- !P r n f a X.

OKbc P r n f a X =

OKmc r n f a (FST X) /\ (I_r r(f a)n ==> P(SND X))

GENbc: % define generator for broadcasting %

|- !N r1 r2 addW e f g A b.

GENbc N r1 r2 addW e f g A b =

(b IN A => (e,g b) |

CAP (r1 >>> r2) (*> (\a. >-< r1 r2 addW a b (f a)) (N b)))

MiCost_Round_Solv: % the round solvability of a minimum-distance-like

function %

|- GRAPH(V,N) /\

CAP_PLa r /\ CAP_Closed r /\

(!a b. CAP_Distr r r(addW a b)) /\

~(MiCost N r addW e A a = Top r) /\ (e = Bot r) /\

(!n a b. ~(n = Top r) ==> I_r r n(addW a b n)) /\

A SUBSET V /\ ~(A = {}) /\ a IN V /\

(!a0 m.

a0 IN (N a) /\ I_r r m n

==>

OKmc r m (MiCost N r addW e A) a0 (f a0))

==>

OKmc r n (MiCost N r addW e A) a (GENmc N r addW e f A a)

MiCostFish_Round_Solv:

% the round solvabilit minimum-distance-like functions,

with best neighbors recording %

|- GRAPH(V,N) /\ CAP_PLa r1 /\ CAP_PLa r2 /\

CAP_Closed r1 /\ CAP_Closed r2 /\

(!a b. CAP_Distr r1 r1(addW a b)) /\

~(MiCost N r1 addW e A a = Top r1) /\

(e = Bot r1) /\ (ep = Bot r2) /\

(r3 = r1 >>> r2) /\

(!a b. CAP_Distr r1 r1(addW a b)) /\

(!n a b. ~(n = Top r1) ==> I_r r1 n(addW a b n)) /\

A SUBSET V /\ ~(A = {}) /\ a IN V /\

(!a0 m.

a0 IN (N a) /\ I_r r3 m n

==>

OKmc r3 m (MiCost N r3 (>++ r1 r2 addW) (e,ep)A) a0 (f a0))

==>

OKmc r3 n

(MiCost N r3(>++ r1 r2 addW)(e,ep)A)
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a

(GENmc N r3(>++ r1 r2 addW)(e,ep)f A a)

BC_Round_Solv: % the round solvability of broadcast functions %

|- GRAPH(V,N) /\ CAP_PLa r1 /\ CAP_PLa r2 /\

CAP_Closed r1 /\ CAP_Closed r2 /\

(e = Bot r1) /\

(!a b. CAP_Distr r1 r1(addW a b)) /\

(!n a b. ~(n = Top r1) ==> I_r r1 n(addW a b n)) /\

(!a. a IN A ==> P(g a)) /\

~(MiCost N r1 addW e A a = Top r1) /\

A SUBSET V /\ ~(A = {}) /\ a IN V /\

(!a0 m.

a0 IN (N a) /\ I_r r1 m n ==>

OKbc P r1 m (MiCost N r1 addW e A) a0 (f a0))

==>

OKbc P r1 n (MiCost N r1 addW e A) a (GENbc N r1 r2 addW e f g A a)

A.15 The FSA Algorithm

Below is the de�nitions of the FSA and the broadcast algorithms, followed by several
theorems stating their self-stabilizing properties. However, �rst let us say something
about the notation being used. The function CHF used in the de�nition of the algorithms
is a function to convert sets to predicates:

|- !x s. x IN s = CHF s x

That is, if s is a set, then CHF s is a predicate characterizing s. Using predicates instead
of sets often saves some proof steps. Another function which needs some explanation
is GSPEC. It is used to encode set abstractions in HOL:

|- GSPEC (\x. (f x, g x)) = {f x | g x}

The notation {...} is just the result of pretty printing in HOL, and that is also how
we usually denote sets. However, in a formula like ff:x:yjx 2 Ag it is not clear whether
the 'y' is a constant or a bound variable like x. We usually decide this from the context.
HOL cannot do this, so in a dubious case such as above we have to revert to the GSPEC
notation.
ONE_ONE2_DEF: % define injective functions %

|- !g. ONE_ONE2 g =

(!a b c d. (g a b = g c d)

==>

(a = c) /\ (b = d))

Proper_DEF:

|- !P V.

Proper P V = (!a. a IN V ==> UNITY(P a))

Distinct_DEF:

|- !f g. Distinct f g = (!a b c. ~(g b c = f a))

dClosed:

|- !r A. dClosed r A =

(!m n. n IN A /\ r m n ==> m IN A)

Resolve_DEF: % the round solvability condition %

|- !N A R Res ok n a.

Resolve N (A,R) Res ok n a =

(!f. (!m b. m IN A /\ R m n /\ b IN (N a)

==> ok m b (f b))

==>

ok n a (Res a f))

MSP: % lift a predicate to the state-

predicate level %

|- !ok n a x s. MSP ok n a x s = ok n a(s(x a))

Comp_DEF: % an action 'x.a := Res.a.(r.a)' %

|- !Res a x r s t.
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Comp Res a x r s t

=

(!v. (v = x a) ==> (t v = Res a(s o (r a))))

/\

(!v. ~(v = x a) ==> (t v = s v))

Copy_DEF: % a copy action 'r.b.a := x.a' %

|- !a b x r s t.

Copy a b x r s t =

(!v. (v = r b a) ==> (t v = (s o x)a)) /\

(!v. ~(v = r b a) ==> (t v = s v))

FSA : % the FSA algorithm %

|- !Res V N x r a.

FSA Res(V,N)x r a =

( CHF({Comp Res a x r} |_|

(GSPEC (\b. (Copy a b x r,

(b IN V /\ a IN (N b)))))),

TT,

CHF({x a} |_|

({r a b | b IN V} |_|

{r b a | b IN V})),

CHF({x a} |_| {r b a | b IN V}) )

Comp_bc_DEF: % the core action of the

broadcast program %

|- !N R1 R2 addW e g Org a x r s t.

Comp_bc N R1 R2 addW e g Org a x r s t

=

(!v. (v = x a)

==>

(t v = GENbc N R1 R2 addW e

(s o (r a))

(SND o (s o g)) Org a))

/\

(!v. ~(v = x a) ==> (t v = s v))

BC: % the broadcast program %

|- !V N R1 R2 addW e g Org x r a.

BC (V,N) R1 R2 addW e g Org x r a =

( CHF ({Comp_bc N R1 R2 addW e g Org a x r}

|_|

(GSPEC (\b. (Copy a b x r,

(b IN V /\ a IN (N b)))))),

TT,

CHF({x a,g a} |_|

({r a b | b IN V} |_|

{r b a | b IN V})),

CHF({x a} |_| {r b a | b IN V}))

Net_DEF:

|- !P V. Net P V = gPAR (*> P V)

% NOTE: gPAR P V denotes (PAR i: i IN V: P i) %

dataOK:

|- !V OK n x.

dataOK V OK n x

=

(\s. !a. a IN V ==> OK n a x s)

comOK:

|- !V N OK n r.

comOK(V,N)OK n r =

(\s. !a b. a IN V /\ b IN (N a)

==>

OK n b (r a) s)

MDC_DEF: % the specification of the FSA

algorithm %

|- !Pr J V A OK x.

MDC Pr J V A OK x

=

CON Pr J TT (!! n :: CHF A. dataOK V OK n x)

MDCC_DEF: % a stronger variant of MDC %

|- !Pr J V N A OK x r.

MDCC Pr J (V,N) A OK x r

=

CON Pr J TT (!! n :: CHF A. (dataOK V OK n x)

AND (comOK(V,N)OK n r))

FSA_sat_MDC: % the general theorem for the FSA algorithm %

|- sWF A R /\ ~(A = {}) /\ ~(V = {}) /\

FINITE A /\ FINITE V /\ GRAPH(V,N) /\

(!n a. n IN A /\ a IN V ==> Resolve N (A,R) Res ok n a) /\

Proper(FSA Res(V,N)x r)V /\

ONE_ONE x /\ ONE_ONE2 r /\ Distinct x r

==>

MDC (Net (FSA Res (V,N) x r) V) TT V A (MSP ok) x

MiCost_sat_MDC:

% the theorem for the FSA algorithm, instantiated to compute

minimal-distance-like functions %

|- ~(A = {}) /\ ~(V = {}) /\ FINITE A /\ FINITE V /\ GRAPH(V,N) /\

CAP_PLa R /\ CAP_Closed R /\

(e = Bot R) /\ (!a b. CAP_Distr R R (addW a b)) /\

(!a. a IN V ==> ~(MiCost N R addW e Org a = Top R)) /\

(!n a b. ~(n = Top R) ==> I_r R n(addW a b n)) /\

Org SUBSET V /\ ~(Org = {}) /\ dClosed R A /\

(Res = (\a f. GENmc N R addW e f Org a)) /\

(ok = (\n a val. OKmc R n(MiCost N R addW e Org)a val)) /\

Proper(FSA Res(V,N)x r)V /\ ONE_ONE x /\ ONE_ONE2 r /\ Distinct x r

==>

MDC (Net (FSA Res (V,N) x r) V) TT V A (MSP ok) x
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MiCostFish_sat_MDC:

% the theorem for the FSA algorithm, instantiated to compute

minimal-distance-like functions with best-neighbors

recording %

|- ~(A = {}) /\ ~(V = {}) /\ FINITE A /\ FINITE V /\ GRAPH(V,N) /\

CAP_PLa R1 /\ CAP_PLa R2 /\ CAP_Closed R1 /\ CAP_Closed R2 /\

(!a b. CAP_Distr R1 R1 (addW a b)) /\

(!a. a IN V ==> ~(MiCost N R1 addW e Org a = Top R1)) /\

(!n a b. ~(n = Top R1) ==> I_r R1 n (addW a b n)) /\

Org SUBSET V /\ ~(Org = {}) /\ dClosed(R1 >>> R2)A /\

(e = Bot R1) /\ (ep = Bot R2) /\

(Res = (\a f. GENmc N(R1 >>> R2)(>++ R1 R2 addW)(e,ep)f Org a)) /\

(ok = (\n a val. OKmc (R1 >>> R2) n

(MiCost N(R1 >>> R2)(>++ R1 R2 addW)(e,ep)Org)

a val)) /\

Proper (FSA Res(V,N)x r) V /\

ONE_ONE x /\ ONE_ONE2 r /\ Distinct x r

==>

MDC (Net (FSA Res (V,N) x r) V) TT V A (MSP ok) x

BC_sat_MDC: % the theorem for self-stabilizing broadcast %

|- ~(A = {}) /\ ~(V = {}) /\ FINITE A /\ FINITE V /\ GRAPH(V,N) /\

CAP_PLa r1 /\ CAP_PLa r2 /\ CAP_Closed r1 /\ CAP_Closed r2 /\

(!a b. CAP_Distr r1 r1 (addW a b)) /\

(!a. a IN V ==> ~(MiCost N r1 addW e Org a = Top r1)) /\

(!n a b. ~(n = Top r1) ==> I_r r1 n (addW a b n)) /\

dClosed r1 A /\ ONE_ONE x /\ Distinct x r /\ ONE_ONE2 r /\

Org SUBSET V /\ ~(Org = {}) /\

(!s a. J s /\ a IN Org ==> (P o (SND o (s o g)))a) /\

(e = Bot r1) /\

(ok = (\n a val. OKbc P r1 n (MiCost N r1 addW e Org) a val)) /\

(Pr = BC (V,N) r1 r2 addW e g Org x r) /\

(!a. a IN V ==> STABLE (Pr a) J) /\

Proper Pr V

==>

MDC (Net Pr V) J V A (MSP ok) x

BC_sat_MDC2: % a stronger variant of BC_SAT_MDC %

|- ~(A = {}) /\ ~(V = {}) /\ FINITE A /\ FINITE V /\ GRAPH(V,N) /\

CAP_PLa r1 /\ CAP_PLa r2 /\ CAP_Closed r1 /\ CAP_Closed r2 /\

(!a b. CAP_Distr r1 r1 (addW a b)) /\

(!a. a IN V ==> ~(MiCost N r1 addW e Org a = Top r1)) /\

(!n a b. ~(n = Top r1) ==> I_r r1 n(addW a b n)) /\

dClosed r1 A /\ ONE_ONE x /\ Distinct x r /\ ONE_ONE2 r /\

Org SUBSET V /\ ~(Org = {}) /\

(!s a. J s /\ a IN Org ==> (P o (SND o (s o g)))a) /\

(e = Bot r1) /\

(ok = (\n a val. OKbc P r1 n (MiCost N r1 addW e Org)a val)) /\

(Pr = BC(V,N)r1 r2 addW e g Org x r) /\

(!a. a IN V ==> STABLE(Pr a)J) /\

Proper Pr V

==>

MDCC (Net Pr V) J (V,N) A (MSP ok) x r

A.16 The Domain Level FSA Algorithm

Below are the de�nition of the domain level FSA algorithm, its speci�cation (DA0), and
a theorem detailing the conditions required for the algorithm to satisfy DA0.

applyGen_DEF:
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|- !gen d cp B b s t.

applyGen gen d cp B b s t =

(!v. (v = d B b) ==> ((SND o t) v = gen (SND o s o (cp B b)))) /\

(!v. (v = d B b) ==> ((FST o t) v = (FST o s) v)) /\

(!v. ~(v= d B b) ==> (t v = s v))

gFSA_DEF:

|- !V gen d cp B b.

gFSA V gen d cp B b =

(CHF{applyGen gen d cp B b}, TT, CHF((*> (cp B b) V) |_| {d B b}), CHF{d B b})

Boder_DEF:

|- !Nn Nd C b. Border Nn Nd C B = {c | c IN (Nd C) /\ (?b. b IN (Nd B) /\ b IN (Nn c))}

Sel_DEF:

|- !Nn Nd C B c.

c IN (Border Nn Nd C B) ==> (Sel Nn Nd B c) IN (Nd B) /\ (Sel Nn Nd B c) IN (Nn c)

ccFSA_DEF:

|- !Nd Nn r1 r2 addW_bc e_bc d cp r B C c.

ccFSA Nd Nn r1 r2 addW_bc e_bc d cp r B C c =

BC (Nd C, (\c1. {c2 | c2 IN (Nd C) /\ c2 IN (Nn c1)}))

r1 r2 addW_bc e_bc

((d B) o (Sel Nn Nd B))

(Border Nn Nd C B)

(\c'. cp C c' B)

(r C B)

c

cFSA_ADEF:

|- !Nd Nn r1 r2 addW_bc e_bc d cp r B C.

cFSA Nd Nn r1 r2 addW_bc e_bc d cp r B C =

Net (ccFSA Nd Nn r1 r2 addW_bc e_bc d cp r B C) (Nd C)

dFSA_Collect:

|- !Nd Nn V N r1 r2 addW_bc e_bc Gen d cp r.

dFSA_Collect Nd Nn (V,N) r1 r2 addW_bc e_bc Gen d cp r =

(GSPEC(\(B,b). (gFSA V (Gen (V,N) B) d cp B b, (B IN V /\ b IN (Nd B)))))

|_|

(GSPEC(\(B,C). (cFSA Nd Nn r1 r2 addW_bc e_bc d cp r B C, (C IN V /\ B IN (N C))))

flatUprogs:

|- !Pset. flatUprogs Pset =

((??P::(\P. P IN Pset). PROG P), (!!P::(\P. P IN Pset). INIT P),

(??P::(\P. P IN Pset). READ P), ??P::(\P. P IN Pset). WRITE P))

dFSA_DEF:

|- !Nd Nn V N r1 r2 addW_bc e_bc Gen d cp r.

dFSA Nd Nn (V,N) r1 r2 addW_bc e_bc Gen d cp r =

flatUprogs (dFSA_Collect Nd Nn (V,N) r1 r2 addW_bc e_bc Gen d cp r)

D_dataOK:

|- !V Nd ok d n.

D_dataOK V Nd ok d n =

(\s. !b B. b IN (Nd B) /\ B IN V ==> ok n B ((SND o s) (d B b)))

D_comOK:

|- !V N ccok n. D_comOK V N ccok n =

(\s. !B C. C IN V /\ B IN (N C) ==> ccok n B C s)

DA0_DEF:

|- !P J Nd (V,N) A ok ccok d r0.

DA0 P J Nd (V,N) A ok ccok d r0 =

CON P

J

TT

(!!n::(\n. n IN A). (D_dataOK V Nd ok d n) AND (D_comOK V N ccok n))
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ccOK:

|- !Nd Nn r1 e1 addWbc ok cp r n B C.

ccOK Nd Nn r1 e1 addWbc ok cp r n B C =

(!!c::(\c. c IN (Nd C)).

(\s. OKbc (ok n B) r1 (Top r1)

(MiCost (\c1. {c2 | c2 IN (Nd C) /\ c2 IN (Nn c1)})

r1 addWbc e1 (Border Nn Nd C B))

c

(s (cp C c B))))

AND

(!!c::(\c. c IN (Nd C)).

(!!c'::(\c'. c' IN (Nd C) /\ c' IN (Nn c)).

(\s. OKbc (ok n B) r1 (Top r1)

(MiCost (\c1. {c2 | c2 IN (Nd C) /\ c2 IN (Nn c1)})

r1 addWbc e1 (Border Nn Nd C B))

c'

(s (r C B c c')))))

Here is the main theorem on the domain level FSA algorithm:

D_FSA_thm0:

|- sWF A r0 /\ TRANS r0 /\ ~(A={}) /\ FINITE A /\

CAP_PLa r1 /\ CAP_Closed r1 /\ (Top r1) IN (A_bc) /\ dClosed r1 A_bc /\

(e1 = Bot r1) /\ FINITE A_bc /\

CAP_PLa r2 /\ CAP_Closed r2 /\

GRAPH(V,N) /\ ~(V={}) /\ FINITE V /\

(!B. B IN V ==> FINITE (Nd B)) /\ (!B. B IN V ==> ~(Nd B = {})) /\

(!B C c. C IN V /\ B IN (N C) /\ c IN (Nd C) ==>

~(MiCost (\c1. {c2 | c2 IN (Nd C) /\ c2 IN (Nn c1)})

r1 addWbc e1 (Border Nn Nd C B) c

=

Top r1)) /\

(!c c'. CAP_Distr r1 r1 (addWbc c c')) /\

(!i c c'. ~(i = Top r1) ==> I_r r1 i (addWbc c c' i)) /\

(!B n. B IN V /\ n IN A ==> Resolve N (A,r0) (Gen (V,N)) ok n B) /\

(!B b. B IN V /\ b IN (Nd B) ==> UNITY (gFSA V (Gen (V,N) B) d cp B b)) /\

(!B C c. C IN V /\ B IN (N C) /\ c IN (Nd C) ==>

UNITY (ccFSA Nd Nn r1 r2 addWbc e1 d cp r B C c)) /\

(!B b. B IN V /\ b IN (Nd B) ==> STABLE (gFSA V (Gen (V,N) B) d cp B b) J) /\

(!B C c. C IN V /\ B IN (N C) /\ c IN (Nd C) ==>

STABLE (ccFSA Nd Nn r1 r2 addWbc e1 d cp r B C c) J) /\

(!B C. C IN V /\ B IN (N C) ==> ~(Border Nn Nd C B ={})) /\

(!B1 b1 B2 C1 c1. ~(d B1 b1 = cp C1 c1 B2)) /\

(!B1 b1 B2 C1 c1 c2. ~(d B1 b1 = r C1 B2 c1 c2)) /\

(!B1 C1 c1 c2 B2 C2 c3. ~(r C1 B1 c1 c2 = cp C2 c3 B2)) /\

(!B1 b1 B2 b2. ~((B1,b1)=(B2,b2)) ==> ~(d B1 b1 = d B2 b2)) /\

(!B1 C1 c1 B2 C2 c2. ~((B1,C1,c1)=(B2,C2,c2)) ==> ~(cp C1 c1 B1 = cp C2 c2 B2)) /\

(!B1 C1 c1 c2 B2 C2 c3 c4.

~((B1,C1,c1,c2)=(B2,C2,c3,c4)) ==> ~(r C1 B1 c1 c2 = r C2 B2 c3 c4))

==>

DA0 (dFSA Nd Nn (V,N) r1 r2 addWbc e1 Gen d cp r)

J Nd (V,N) A

ok (ccOK Nd Nn r1 e1 addWbc ok cp r)

d r0
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Samenvatting

H
ET schrijven van een programma is vaak veel gemakkelijker dan te bewijzen dat
een programma doet wat het moet doen. Daarbij wordt onze samenleving steeds
afhankelijker van computers; men denke daarbij aan complexe programmatuur

die de verkeersleiding van treinen of vliegtuigen regelt, die de administratie van de
e�ectenhandel bijhoudt of die besluit of de stormvloedkering al dan niet neergelaten
moet worden.

Om de kwaliteit van programmatuur te kunnen garanderen, wordt ze uitgebreid
getest. Dit wordt meestal gedaan met de probeer-en-faal methode, waarbij een pro-
gramma op testinvoer wordt losgelaten en er vervolgens wordt gekeken of het aan de
verwachtingen van de programmeur en klant voldoet. Deze manier van testen elimi-
neert helaas niet alle fouten. We horen dan ook vaak mensen over bugs in programma's
praten. Softwarefabrikanten komen regelmatig met nieuwe versies van hun produkten
die de bugs van de vorige versie niet meer bevatten. Dat klopt vaak wel, maar helaas is
het eerder regel dan uitzondering dat de nieuwere versie nieuwe bugs bevat. Kortom,
bugs lijken als een soort onvermijdbare erfenis in programma's voor te komen. Voor
een programma zoals een tekstverwerking kunnen we best wel met een bug of twee
leven, maar van een studenten-administratiesyteem verwachten we toch dat het pro-
gramma niet onbedoeld met de cijfers van de studenten omgaat. We verwachten ook,
om een paar andere voorbeelden te noemen, dat onze priv�e brieven die elektronisch
via het Internet worden verzonden niet per ongeluk aan het verkeerde adres worden
afgeleverd, of dat een elektronisch besturingsysteem van een vliegtuig niet plotseling
weigert. Met de genoemde probeer-en-faal testmethode kunnen wij slechts constateren
dat tijdens een test alles goed ging. Helaas is het veelal onmogelijk alle toestanden
waarin een computersysteem zich kan bevinden na gaan met een test. Dat zou veel
te veel tijd kosten of is soms zelfs theoretisch niet uitvoerbaar, nog daargelaten of het
commercieel acceptabel zou zijn.

Een andere methode die tot een betere softwarekwaliteit kan leiden is de volledig
formele aanpak; hierbij is een programmeur verplicht om een wiskundig bewijs van
de correctheid van zijn programma te leveren. Meestal wordt een programma hierbij
ontworpen tegelijkertijd met het construeren van een bewijs dat het programma aan
de speci�catie voldoet. Er wordt gebruik gemaakt van een speciaal soort wiskunde
(vaak programma-logica genoemd) voor het redeneren over eigenschappen van een pro-
gramma. Met deze methode kan men bewijzen dat een programma qua ontwerp fout-
loos is, zonder dat men het programma zelf hoeft te testen. Dit betekent nog niet dat
in de praktijk het geproduceerde programma echt foutloos zal zijn, want het ontwerp
is maar een van de vele stadia |alhoewel een van de belangrijkste| in het produceren
van software. Wel kunnen wij zeggen dat het resultaat betrouwbaarder zal zijn.

Net zoals dat wij fouten kunnen maken bij het schrijven van een programma, kun-
nen wij helaas ook fouten maken bij het geven van een bewijs. Een gecompliceerd
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programma vraagt meestaal ook een gecompliceerd bewijs. De kans om fouten te
maken zal toenemen, en het is niet onwaarschijnlijk dat een denkfout die gemaakt
wordt bij het ontwerpen van een programma ook gemaakt wordt bij het construeren
van een correctheidsbewijs voor dat programma.

Parallel met het ontwikkelen van formele methoden, is ook de technologie om bewi-
jzen te kunnen veri��eren met de computer ge�evolueerd. Deze technologie noemen we
mechanisch veri�catie en het computerprogramma die dat doet noemen we (niet echt
passend) een stellingbewijzer. Een stellingbewijzer wordt gebaseerd op een handvol
axiomas en bewijsregels. De consistentie en zinvolheid van deze axiomas en bewijs-
regels zijn veelal al uitgebreid bestudeerd en er bestaat consensus over hun consis-
tentie. Het bewijs van een nieuwe stelling kan alleen worden geconstrueerd door het
herhaaldelijk toepassing van de bewijsregels, uitgaande van de axiomas. De juistheid
van deze nieuwe stellingen wordt dus afgedwongen door de manier waarop ze wor-
den gebouwd. In veel stellingbewijzers kan men ook nieuwe bewijsregels de�nieren in
termen van reeds bestaande (primitieve) bewijsregels. Deze nieuwe stellingen en bewi-
jstactieken zijn vaak krachtiger dan de ingebouwde en kunnen dus leiden tot kortere
en meer inzichtelijke bewijzen.

In dit proefschrift wordt speciaal aandacht besteed aan zogenaamde gedistribueerde
programma's. Een gedistribueerd programma is een programma dat bestaat uit samen-
werkende componenten|elke component heeft meestal een eigen processor. Zulke pro-
gramma's worden heel veel gebruikt, bijvoorbeeld in het Internet waarbij computers
uit de hele wereld in een groot elektronisch netwerk worden verbonden. Boodschappen
van de ene computer moeten, via tussen-computers, worden verstuurd naar de bestem-
mingscomputer. Op elk van deze tussen-computers draait een component van een
routeringsprogramma. Deze routeringsprogramma's hebben kennis van (een gedeelte)
van de structuur van het netwerk. Omdat het netwerk voortdurend van vorm veran-
dert (er kunnen verbindingen bijkomen of wegvallen, en er kunnen tussen-computers
aangezet en uitgezet worden) moeten deze computers het netwerk zelf gebruiken om
samen uit te vinden hoe de globale structuur is. Zo'n routeringsprogramma is een
voorbeeld van een gedistribueerd programma.

Omdat het vaak om veel componenten gaat die over, tussen, met en door elkaar
werken, is het redeneren over een gedistribueerd programmamoeilijk. In dit proefschrift
bestuderen we de programma-logica UNITY die speciaal ontworpen is om te redeneren
over eigenschappen van gedistribueerde programma's [CM88]. UNITY is klein en sim-
pel, en daarom aantrekkelijk. Toch is programma's ontwerpen met UNITY, in onze
ervaring, vaak erg lastig. Er ontbreekt een systematische ontwerpmethodologie, en
sommige ontwerptechnieken bleken niet ondersteund te (kunnen) worden. We hebben
dus UNITY uitgebreid, vooral om technieken rond het opsplitsen van programma in
parallel werkende componenten beter te ondersteunen. Er worden voorbeelden gegeven
om te laten zien hoe we de speci�catie van een probleem kunnen vereenvoudigen door
een geschikte opsplitsing te kiezen.

We besteden daarbij vooral aandacht aan zogenaamde zelf-stabiliserende, gedis-
tribueerde programma's. Een zelf-stabiliserend programma is een programma dat het
systeem weer in een gewenste toestand kan brengen als het daar, door een externe
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verstoring, uit geraakt is. Ook als er tijdens dit herstellen weer nieuwe verstoringen
optreden is dat geen probleem voor dergelijke systemen. We hebben UNITY uitge-
breid met een reeks van stellingen om over zulke programma's te kunen redeneren. We
behandelen een groot voorbeeld, het zogenaamde Eerlijk en Herhaaldelijk Toepassing
(EHT) programma. Het EHT programma is een gedistribueerd programma dat een
bepaalde klasse van problemen zelf-stabiliserend kan oplossen (uitrekenen).

Dit boek is uniek omdat het niet alleen over formele methoden of over het bewi-
jzen van een of ander moeilijk programma gaat, maar omdat vrijwel alle resultaten
mechanisch geveri�eerd zijn met een stellingbewijzer! Onze ervaring met mechanisch
veri�catie wordt ook in dit boek beschreven. Mensen die ook met mechanisch veri�-
catie van gedistribueerde programma's willen beginnen zullen veel onderwerpen in dit
boek interessant vinden.

Tot slot willen we benadrukken dat het beoefenen van formele methoden vereist dat
programmeurs een goed ontwikkelde wiskundige handvaardigheid hebben. Het e�ectief
opereren met een stellingbewijzer is tot nu toe, helaas, slechts voorbehouden aan een
handjevol specialisten. Het is begrijpelijk dat de industrie twijfelt aan de economisch
waarde van formele methoden. Toch zullen mensen vroeg of laat, naar mate wij steeds
afhankelijker worden van computers, ontdekken hoe kwetsbaar ze zijn als er fouten
in computers optreden. In de toekomst zullen mensen dus gedwongen zijn om naar
stellingbewijzers te kijken. Investeren in de technologie van mechanisch veri�catie en
in het opleiden van 'formele' programmeurs, is daarom, naar onze mening, geen weg
gegooide moeite.
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