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Abstract

The development of the immune repertoire during neonatal life involves a strong se-
lection process among different clones. We investigate the hypothesis that repertoire
selection is carried out during early life by the immune network. There are at least
two processes in repertoire selection: clonal expansion and recruitment of clones by the
bone marrow. Because both processes occur on time scales of the order of a few days,
we argue that both have to be modeled. In a previous differential equation model (De
Boer & Perelson, 1991), studied by numerical integration, both clonal expansion and
recruitment were present but the rate of recruitment was kept low due to limitations in
computational resources.

Here we present a new model based upon a two-dimensional shape space. The model is
defined as an asynchronous cellular automaton (CA). In the CA model we vary (1) the
rate of recruitment and (2) the specificity of the lymphocyte receptors. The networks
attain an equilibrium in which the size of the repertoire remains fixed. However, the
equilibrium repertoire size increases when the recruitment rate or the receptor specificity
is increased. The number of functional idiotypic interactions per clone, i.e., the connec-
tivity, is less dependent on either the receptor specificity or the recruitment rate. These
observations confirm the results of our previous study. The CA model contributes to our
understanding of pattern formation in immune network models because of its straight-
forward visualization. Using it we show that the randomness involved in lymphocyte
recruitment may play a role in selecting the clones in the actual repertoire.
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Introduction

Due to the massive production of novel lymphocyte clones in the bone marrow the com-
position of the immune network (Jerne, 1974) is variable. The B lymphocyte network
is composed of a large number of clones, possibly as many as 106 to 108. Each clone is
characterized by the variable (V) portion of its immunoglobulin receptor. B cell clones
are produced in the bone marrow where reshuffling of gene segments leads to the gen-
eration of a large number of possible V regions. The diversity of receptor molecules
created by gene reshuffling in the bone marrow suggests that any particular arrange-
ment of gene segments and somatic mutations is likely to be unique. Thus, established
clones are not expected to be resupplied by the bone marrow.

If stimulated properly, recirculating B cells expand in the periphery by cell division,
giving rise to a clone of cells expressing the same receptor. The dynamics of recirculating
B cell clones are governed by cell division and cell death. Because B cells have a life
time of a few days, and because cell division typically takes less than one day, the
characteristic time scale of the growth of an individual clone is on the order of days. In
the adult mouse, it is estimated that the production in the bone marrow amounts to 2
- 5 x 107 B cells per day (Freitas et al., 1986). This is sufficient for replacing the entire
B cell population in just a few days. It thus seems that the time scale at which clones
are replaced by bone marrow production and the time scale at which clones grow. are
both on the order of days. In this respect, immune networks are very different from
neural networks where neurons live for years but may switch from resting to firing on a
time scale of milliseconds.

The importance of bone marrow recruitment as a means of generating novel clones was
first stressed by Farmer et al. (1986; 1987) and later by Varela and co-workers (Varela et
al., 1988; Varela & Stewart, 1990; Stewart & Varela, 1989, 1990, 1991). In the original
Varela papers recruitment was incorporated in a very rudimentary form. The bitstring
models of Farmer et al. (1986,1987) incorporated more elaborate attempts to model
recruitment but dealt with unrealistic dynamical equations. Two recent papers try to
remedy the situation. In De Boer & Perelson (1991) we succeeded in combining clonal
growth and recruitment in a bitstring model using a more realistic model. However, due
to computational problems we were unable to study the model for realistic recruitment
rates. Stewart & Varela (1991) modeled recruitment but ignored clonal growth.

The generation of novel clones by recruitment has been ignored in most mathematical
models of the immune network (see De Boer, 1991; De Boer et a)., 1992d; and Perelson.
1989 for reviews). For reasons of simplicity, it is usually assumed that each clone has
a continuous supply of cells from the bone marrow. This simplified view need not be
incorrect however. First, genetically different receptors may form the same idiotype.
Thus, one may view the populations of a network model as a collection of different
clones having the same idiotype. Second. it is known that the B cells that appear first in
ontogeny have receptors that are germ line encoded and are based upon a limited number
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VH gene families (Holmberg et al., 1989). This reduces the diversity and increases the
likelihood that established clones are recruited again by the bone marrow.

In this paper we take an intermediate position and assume that idiotypes (which may
correspond to multiple clones) are recruited on a stochastic basis. We develop a stochas-
tic cellular automaton model that allows us to combine clonal growth and recruitment
on any time scale. By varying the recruitment rate PR we study its impact on the
model's behavior.

Bell-Shaped Activation Function

Most recent immune network models are based upon the bell-shaped interaction function
proposed by De Boer (1988) or upon the two biphasic interaction functions proposed
by Varela et al. (1988). The bell-shaped activation function f(h) that we use takes the
form,

h 02

01 + h 02 + h ' (1)

where 01 < 02. The first factor in f(h) increases from 0 to 1, reaching its half-maximal
value at h = 01, the second factor decreases from 1 to 0, reaching its half-maximal
value at h = 02. For 02 >> 91, the maximum is approximately one. This maximum is
attained at h = \AT-G. The "field" h measures the effective amount of anti-idiotype a
clone interacts with, and depends on both the number of anti-idiotype clones and the
strength of their interaction with the idiotype (see below). Plotted as a function of
log h, the graph of f(h) is a bell-shaped curve. An important argument for the use of a
log bell-shaped function is that receptor crosslinking is involved in B cell activation. For
ligands that are bivalent the cross-linking curve is bell-shaped and symmetric around
its maximum (Perelson & DeLisi, 1980; Perelson, 1984).

Clonal growth is typically described in terms of differential equations. The most realistic
models require several differential equations for each idiotype describing the production
of antibody, B cell maturation, antibody recirculation, and so on. However, all previous
models are centered around a simple differential equation describing the growth of one
clone of B cells, b,

dbl dT = b[P f(h) - d] , (2)

where h is the field of the clone, f(h) is defined by Eq. (1), P the maximum rate of
proliferation, and d is the rate of cell death. The model is non-dimensionalized by
scaling the time T to the rate at which B cells turn over:

dbldt = b[pf(h) 1] , (3)

where t = Td and p = Pld. Because 0 < f(h) < 1, B cells can grow at a maximal rate
p - 1. Thus, in order to allow for net clonal expansion p must be greater than 1. Since
maximally stimulated cells divide about once every 16 h, and cells live a few days (e.g..
d = 0.5 d-I), p = 2 is a typical non-dimensional rate of proliferation.

f(h)

-
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Shape Space

IAA. .

A powerful formalism for defining the field h of each clone is the shape space theory
(Perelson Sz Oster, 1979; Segel & Perelson, 1988, 1989, 1990; De Boer et al., 1992a). In-
teractions amongst the clones depend on complernentarities between the immunoglobu-
lin receptors characteristic of each clone. The degree of binding of two idiotypes. usually
measured by their equilibrium binding constant or affinity, depends on the generalized
shapes of the two receptor molecules involved (Perelson & Oster. 1979). Thus, we let
each population be characterized by a generalized shape x. (In a multidimensional
shape space x is a vector.) To specify the field. h, one assumes cells of shape x are
mainly stimulated by cells of complementary or near-complementary shape St centered
around x = x. The affinity or the degree of interaction between shapes x and cc usu-
ally decreases according to a Gaussian function. The Gaussian function is based upon
an exponential fall off,

g(x,k) = exp[ (4)

where the standard deviation, a. defines the rate at which the affinity falls off with the
distance to the perfect match x = x, see Segel & Perelson (1988).

An Asynchronous Cellular Automaton Model

A CA is a lattice of finite state machines. Each mac,hine has a next state function
that usually takes the local neighborhood of the machine on the lattice as input. In
a previous paper (De Boer et al., 1992a) we derived a discrete lattice mapping from
a network model formulated in terms of partial differential equations (PDEs). This
has the advantage that the conditions for stability of equilibrium states which were
derived for the PDE system, provide an intuition for understanding the behavior of the
lattice model. Here we follow our earlier simplifications and derive a CA model from
the differential equation model defined by Eqs. (1-3).

First, we change to logarithmic variables B = ln b. Second, we approximate f(h) by the
window automaton w(h ), originally proposed by Neumann and Weisbuch (1991). and
defined as

{ 1 if exp(Oi ) < < exp(92) ; (3)
0 otherwise .

Inserting this approximation into Eq. (3), and changing to logarithmic variables, we
obtain

dBldt = pw(h) 1 . (6)

As a consequence dB Idt in Eq. (6) increases at a rate p-1 when w(h) = 1, and decreases
at a rate 1 when w(h) = 0. Choosing p = 2, dB/dt can be only 1 or 1. Third. we
discretize time and take integer variables for B to simplify Eq. (6) into the mapping

B(t +1) = B(t) 1 . (7)

44g.
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Fourth, in order to have a finite state machine we impose lower and upper limits on B(t).
A natural lower limit is b(x) = 1, i.e., B(x) = 0, which is thus the equivalent of a site
with a single B cell. In the CA with recruitment, sites can also be empty, i.e., contain
no B cells. We denote empty sites with B(x) = 1. Empty sites never contribute
to fields. As an upper limit we chose B(t) < 83, which corresponds to a population
maximum of exp[03] B cells. A population maximum seems reasonable because B cells
are not capable of infinite proliferation and typically go through a maximum of about
eight divisions (Klinman et al., 1984). This gives us the next state function for the
clonal growth

B(t +1) = min[03, max[-1, B(t)+ 2w(h.) , (8)

by which clones sizes are limited between 1 < B(t) < 03.

In one simplification of the CA we replace the recruitment by a continuous source of
cells. This is implemented by changing the lower limit for the population at a single
latice site to one B cell:

B(t + 1) = min[603, max[0, B(t) + 2w(h) 11] . (9)

Finally, in combination with the next state function Eq. (8), which models clonal growth.
we need a next state function for stochastic recruitment. If a recruitment event occurs.
then the bone marrow adds the equivalent of one B cell, i.e., B = 0, to sites that are
empty. Thus,

0 if B(t) = 1 ;B(t +1) = 1B(t) if B(t) 0 .
(10)

We implement the next state functions as a 2D cellular automaton using an integer 2D
shape vector x that is bounded between [N,N] < x < [N, N]. We thus have a CA
defined on a lattice of (2N + 1)2 sites. The self-complementary shape [0,0] is located in
the center of the lattice. Because we can scale distances using the standard deviation
a, we can use x for both shape and for the latice site index in the automaton.

Neighborhoods. The affinity falls off with the distance to the perfect match according
to the Gaussian fall-off g(x, cc) defined in Eq. (4). Thus, the contribution to the field
h(x) made by a single clone b(5t) = exp[B(i)] is given by

h(x) = b(ii)g(x,Z) h(x) = exp[B(i) G(x. ic)] (11)

where
1 x it 12

(12)

The field h(x) and the function G(x, it) are again integer variables. Because h(x) is
integer, all contributions for which exp[B(i) G(x, 5i)] < 1 are ignored by integer
truncation.

=> ,

+G(x, it) =
a2

_

{
>
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Figure 1. The CA's neighborhood weighting around the perfect match x = x
as it is defined by the Gaussian function G(x,*). The Gaussian is truncated at
A = 4: the sites indicated by a are ignored. Four neighborhoods correspond
to a = 1,2,3,4 are shown. For a = 1, , 5, the total number of sites in the
neighborhood is 13, 61, 137, 241, and 385, respectively.

In immunological terms this means that the affinity of the idiotypic interaction decreases
as a function of G(x,*) in the CA. Because low affinities do not seem to lead to B
cell stimulation (Fish et al., 1989; Riley & Klinman. 1986; Klinman. 1972) we have
implemented an affinity cut-off. In the CA formalism an affinity cut-off is naturally
defined by the size of the neighborhood (see also De Boer et a).. 1992a). Thus. we let A
be the value of G(x, it) at the maximum interaction distance in shape space and ignore
all larger values of G(x, SO. In Fig. 1 we show examples o our Gaussian function for
A = 4 and a = 1,2,3,4. The radius r of the neighborhood of the CA can be obtained
from Fig. 1. For a = 1, 2, 3. 4, 5, r = 2,4,6.8,11 respectively.

Finally, for the calculation of the field we will only consider populations for which
BOO > 0. We thus ignore empty lattice sites (B = 1) and sites that contain a single
B cell (B = 0). Thus contributions to the field are only made by populations that have
divided and are in a non-resting state. The reason for doing this is that a clone should
not be stimulated to grow by a field totally comprised of virgin clones. i.e.. clones that
just appeared from the bone marrow. Typically, interactions between clones are not
direct B cell-B cell interactions but are mediated by secreted antibodies carrying the
idiotype of the B cell. Since resting clones do not secrete antibody. the exclusion of
resting clones from the field seems desireable. Under this assumption. for any shape x
the total field h(x) correponds to

h(x) = E exp[B(*) G(x, )] . V B(*) > 0 . (13)
kEC(-x)

where C(-x) is the circle centered at -x with radius r. We assume fixed boundaries.
i.e., shapes outside the shape space [N, N1 < < [N, N] are fixed at concentration
-1.
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Scheduling. The sites of a CA can be updated in parallel, i.e. synchronously, or ran-
domly, i.e. asynchronously. Most of our results are based upon asynchronous updating.
We choose this method updating so that we can independently vary clonal growth and
recruitment events. Thus, for each update we randomly choose one of the two next
state functions Eqs. (8) or (10). The parameter PR defines the probability with which
the recruitment event is chosen. Because there are only two types of events, clonal
growth is chosen with probability 1 PR. The selection of the site to be updated is
also random. We will only present results for which the site selection is based upon a
uniform distribution in the interval [N, NI < x < [N, N]. Thus, the basic iteration
cycle is (1) select a site to be update, (2) select a transition function, and (3) perform
the update.

Parameters. We have previously studied models based upon Eq. (3) for 01 = 100 and
02 = 104. In the CA we convert 9 and h values to logarthmic variables. Thus, we round
these values of 0 to 01 = 5 because exp[5] 148 and 02 = 10 because exp[10] 2.2 x 104.
In order to reduce the effect of the maximum population size we set 03 > 02. Choosing
93 = 15, each B cell population can maximimally grow to exp[15] 3 x 106 cells. This
is probably a high estimate because B cell proliferation is typically limited to eight
divisions or so (Klinman et al., 1984). The affinity cut-off is set to A = 03 02 1. By
Eq. (11), the field contribution of a clone at maximum size, i.e., B = 03, must be at
least h = 03 A = 02 1.+ Thus, a clone at maximum size can only evoke a suppressive
field. This seems reasonable because we do not want the network to sustain clones at a
probably unreasonable maximum size. If equilibrium populations B(x) = 03 are allowed
to have stimulatory effects on other populations, i.e., if A > 03 02, the behavior of
the CA becomes reminiscent of the model of Stewart and Varela (1991) and De Boer
and Van der Laan (1992). The system forms stable lines of clones of maximum size.
The distance between the lines is such that they reciprocally activate each other (not
shown).

We choose N = 50, i.e., we work on a 101 x 101 lattice. This corresponds to a potential
repertoire of 101 104 clones. The results show that the CA never fills all sites of
the lattice. The sites filled with B cell populations correspond to the actual repertoire.
Choosing a = 3 as the standard value for the size of the neighborhood each clone can
have a maximum of 25 high affinity interactions, see Fig. 1. The total number of clones
in the a = 3 neighborhood is 137 idiotypes, which is roughly 1% of the total shape
space. As a default we choose equal time-scales for proliferation and recruitment, i.e.,
we set PR = 0.5.

Computation. The CA was implemented in the C programming language. The code is
available electronically from deboer@cc.ruu.nl. Simulations were performed on a Silicon
Graphics Personal Iris. Depending on the size of the neighborhood this took several
hours. In principle the code is efficient because the various exponents required for
umming the field, and for the Gaussian fall-off Eq. (12), can be stored as integer arrays

that need only be computed once. The remainder of the computation boils down to
stepping through the 2D shape space array, and performing the integer subtraction and
addition implied by Eq. (13). Random numbers for site selection and event selection
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were computed with the RAN3 routine described in "Numerical Recipes" (Press, et al.,
1988).

Since clones expand and decrease one order of magnitude on a time scale of days, we
base the time steps of our model on the clonal growth function. Time is increased one
unit after (2N + 1)2 evaluations of the next state functions Eq. (8) or (9). This means
that, on average, during each time step all clones in the CA will have updated their
state. Thus, the time clock clicks independent of the recruitment. Typically the CA
was studied for 500 time steps.

Previous Models

The two recent models of the recruitment of the immune system are very different
from each other. In the work of De Boer and Perelson (1991) the generalized shape
x takes the form of a bit-string, i.e., a point in a high-dimensional hypercube. Clonal
growth is modeled by means of a system of differential equations based on Eq. (2).
Recruitment is implemented by interrupting the numerical integration, and changing
number of differential equations that model clonal growth as clones are added or deleted.
The recruitment is based upon the addition of B cell populations created by an artificial
bone marrow, and the deletion of populations that have grown smaller than one single
cell. The main problem with this approach is that computational resources limit the
number of populations that the artificial bone marrow can add to the system. Thus the
system could not be studied for realistic recruitment rates.

In the work of Stewart and Varela (1991) the generalized shape x takes the form of a
point in a 2D shape space. Clones in the shape space are either present or absent, and
clonal growth is ignored. The equivalent of the bell-shaped interaction function of the
clonal growth process is put directly into the recruitment process. Clones are maintained
in the network if the number of interaction partners, weighted by the respective distances
in shape space according to Eq. (4), falls within a window set by two parameters 01
and 92. Clones can only be added to the network if their field falls within the window.
Once a clone is added to the network the fields of all established clones are checked.
If a clone's field falls outside the window that clone is deleted. The check then has to
be repeated because the fields have changed again. This iteration halts when all clones
have a field inside the window. In the worst case all clones are deleted. Note that the
algorithm depends on the order by which the clones are scanned, and hence, that it
may collapse, i.e., delete all clones, in situations where better solutions are possible.
However, because of the similar time scales of clonal growth and of the recruitment.
the main problem with this work is that clonal growth is ignored. Since the size of a
clone is important in determining the field that it generates, this model ignores a very
important aspect of network dynamics.
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Figure 2. Time plots of a two clone system h1 = expiN exp[A] and h2 =
exp[Bi]. Parameters: 01 = 5,02 = 10,03 = 15, and PR = 0.5. (a) Parallel up-
dating without recruitment, i.e., a model based upon Eq. (9). Initial conditions:
B1(0) = 15, B2(0) = 0. (b) Asynchronous updating with stochastic recruit-
ment, i.e., a model based upon Eqs. (8 Sz 10). Initial conditions: B1(0) = 15,
B2(0) = 0.

Results

In this paper we use an asynchronous CA model of the immune network. With this
model it is possible to combine clonal growth and recruitment at the correct time scales.
Our principle point of interested is whether the results of the CA model differ from
the results of our previous bit-string model (De Boer Sz Perelson, 1991). The main
parameters that we varied in the bit-string model were the specificity of the receptors
and the rate of production of new clones by the bone marrow. The latter parameter
corresponds to the recruitment in the CA. In the bit-string model the rate of recruitment
is expressed as the daily production of novel bit-strings by the artificial bone marrow.
The specificity of the receptors was determined by the rules by which two bit-strings
were matched. This was expressed as the "reactivity" of the receptors or P(motch).
i.e., the fraction of other receptors each receptor is expected to bind. The leactivity
was varied between binding probabilities of 0.005 and 0.205. Henceforth, we refer to
our previous model as the bit-string model.

Two Interacting Clones

The basic dynamics of the next state functions Eqs. (8-10) can be studied by simulating
two interacting clones instead of simulating the full CA. Thus, let Bi(t), for i = 1.2.
be defined by Eqs. (8-10), and let the field of clone B1 be h1 = exp[1121 and the field
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of clone B2 be hz = exp[B1]. (In the orginal formulation of differential equations like
Eq. (2) such two clone systems may give rise to stable equilibria, limit cycle oscillations,
or chaos, depending upon parameter values, see De Boer & Hogeweg, 1989a,b; De Boer
et al., 1990, 1992b,c).

The simplest case is a system with parallel updating of Bi and B2 according to function
Eq. (9). We show, in Fig. 2a, a simulation for the initial condition B1(0) = 03 and
B2(0) = 0, for the parameters 01 = 5, 02 = 10, 03 = 15. Because h1 = 0. B, decreases
due to a lack of stimulation. B2 cannot grow due to suppression. i.e., h2 > 02. B2 starts
to grow after 03 02 time steps, when B1 has decreased to B1 = 02. B1 stops decreasing
after another 01 time steps, when B2 has increased to B2 = 01. The two clones attain
an attractor around 01 alternating between giving stimulation while decreasing due to a
lack of stimulation, and not giving stimulation while increasing, see Fig. 2a. In a system
with parallel updating, such a stable attractor around 01 is always present. The other
attractors are the oscillator B1 = B2 = 02 B1 = B2 = 02 1 B1 = B2 = 012,
and the equilibriumBi = B2 = 0. It depends on the initial conditions which of the three
attractors is attained.

The same system with asynchronous updating, i.e., one based upon Eqs. (8 S.: 10).
behaves differently. See Fig. 2b for an example with PR = 0.5. The attractor around
01 is no longer stable because by random chance both clones may equal 01. They then
stimulate each other reciprocally until one of them equals 02. Typical behavior of the
asynchronous automaton is large variations in the population densities, see Fig. 2b. In
this respect the behavior resembles the oscillatory/chaotic behavior of the continuous
model (De Boer et al., 1990, 1992c,d).

Cellular Automaton

We study the immune network as it develops during early ontogeny. In vivo this cor-
responds to a situation in which most self-antigens are present and B cells are absent.
Network interactions could develop when autoreactive B cells are stimulated by self-
antigens and subsequently start to activate anti-idiotypic B cells. Another possibility
is that anti-idiotypic B cells are activated by so-called maternal antibodies which the
developing system obtains from the mother. In our previous work we started the net-
work with maternal antibodies (De Boer & Perelson, 1991). Here we start similarly by
setting 1% of the shapes to the stimulatory concentration B(x) = (01 + 02)12. These
populations represent the maternal antibodies. All other sites are assumed to be empty,
i.e., B(x) = 1.

In Figs. 3 and 4 we show an example of the model's behavior. In Figs. 3a and 3b we
show a snapshot of the CA after 500 time steps. The 2D distribution of the clone size
B(x) is shown in Fig. 3a and the log field size ln[h(x)] in Fig. 31). The size of the
population is indicated by gray-scales, where black means large and white means small.
The 2D distribution of clones typically takes the form of lines and circles. The 2D
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Figure 3. Shape space usage in an asynchronous CA. Parameters: a = 3, 01 =
5, 02 = 10, 03 = 15, = 4, and PR = 0.5. (a) The 2D clone size distribution
attained after 500 time steps. The gray-scales vary between white for B(x) = 1
and black for B(x) = 03. (b) The log fields, i.e., ln[h(x)], corresponding to
panel (a). The gray-scales vary between white for ln[h(x)] = 0 and black for
ln(11 (x)] = 17. (c) A space time plot for all clones along one diagonal of the shape
space, i.e., {V B(x, x) r = ,x = N). (d) The 2D clone size distribution
shown in panel (a). For each each point in shape space x the color is white if
B(x) < 01 and B(x) < 01, otherwise the color is black if B(x) > B(x) and
gray if B(x) < B(x). Thus the black image corresponds to the real distribution
of large clones. The gray pattern is the mirror image of the black pattern.
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distribution of the fields typically takes the form of circular areas with the maximum
field strength in the middle. This corresponds to a field landscape of hills and valleys.
The comparison of the two distributions reveals that large clones are typically located
at intermediate field strengths. This means that the clones live at the contour lines
of intermediate height of the field landscape. The reason for this is clear: the window
automaton w(h) specifies that clones can only expand at intermediate field strengths.
A more interesting observation is that the lines along which clones organize themselves
are much longer than the size of the neighborhood of the automaton (i.e., a circle with
radius r = 6). Thus the pattern that is attained by the self-organization has a much
larger scale than the local rules of the automaton have,

In Fig. 3c we show a space-time diagram of the CA by sampling clone sizes along one di-
agonal of the shape space from B(N,N) to B(N,N). Thus, the self-complementary
shape B(0,0) is located in the middle of the space axis. Time runs along the vertical
axis from 0 to 500. The figure shows that the 2D distributions fail to attain a steady
state but change and move about in shape space. The vertical dark lines in the figure
correspond to clones that temporarily attain a stationary state and remain large for
some time. The diagonal lines correspond to travelling waves. If one views these results
in the form of movies of consecutive 2D distributions, travelling waves are a striking
phenomenon. Fig. 3c shows that although the 2D distributions never attains a steady
state the patterns change on a time-scale that is much slower than the time-scale of
recruitment and clonal growth. The travelling waves and the patterns shown in Fig. 3a
are reminiscent of the self-organization of excitable media and reaction-diffussion sys-
tems (cf. Murray, 1989). This type of behavior was also seen in the bitstring model of
Farmer et al. (1986) as discussed by Perelson (1988).

To visualize which clones interact we project the mirror image of large clones onto the
opposite part of the shape space. In Fig. 3d, we color all clones x that are larger than
01 black, and project their mirror image at x in gray. The white spots correpond
to sites x for which B(x) < 191 and B(x) < 01. Thus, the distribution of black
spots corresponds to large clones, and is identical to the distribution of dark-gray spots
in Fig. 3a. The distribution of the gray spots is the mirror image of the black spots
reflected about [0,0]. The figure shows how the circles of clones enclose smaller circles of
complementary clones, and how lines of clones are aligned with lines of complementary
clones. The distance between the gray and the black patterns reflects the distance at
which large clones evoke a stimulatory field. In Fig. 3a or 3d the self-complementary
clone [0,0] does not seem to behave very different than any other clone.

Sampling global properties. In the bit-string model we showed that both the number
of clones in the network and the connectivity of the network attains a maximum value
during the early life of the network. Following this early peak the number of clones and
the connectivity approach a much lower equilibrium. These observations correspond to
experimental observations that show that the network connectivity is large during early
life (Holmberg et al., 1989). The notion of an equilibrium size of the immune network
has also been suggested by experimentalists, see the discussion in De Boer & Perelson
(1991). Here we study similar global properties of the CA networks. We sampled the
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Figure 4. Global properties of an asynchronous CA. Parameters: a = 3, 91 =
5, 02 = 10,03 = 15, A = 4, and PR = 0.5. (a) number of active clones. (b) actual
connectivity. (c) nominal distance. (d) number of populations per quadrant.

number of active clones and the functional connectivity of the clones in the network.
An active clone is a clone that is present and has divided, i.e., we count the number
of non-zero clones. The functional connectivity is the number of active interaction
partners of an active clone, i.e., we count the average number of non-zero clones in the
neighborhood of each non-zero cell. Both properties are sampled every ten time steps.

For the example network of Fig. 3 we show time plots of the number of clones an 1
the connectivity are shown in Figs. 4a and 4b. The results are very similar to the
results of the bit-string model. Both the size of the network, i.e., the number of clones.
and the connectivity go through an early peak, and then approach equilibrium levels.
During the last 100 days of the simulation the average network size is 2466 clones with
an average connectivity of 12 functional connections. Because the potential repertoire
corresponds to 10 clones it appears that by repertoire selection 259 of the possible
clones participate in the immune network.

Two other novel properties are shown in Figs. 4c and 4d. The -ate at which the 2D
distributions shown in Fig. 3 change is measured by the "nominal distance" between the
patterns. We classify clone sizes into three categories: B(x) < 01, 9 < B(x) < 02, and
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B(x) > 92, and increase the nominal distance between two time steps one unit for each
clone that switches to another category. A time plot of the nominal distance is shown
in Fig. 4c. Following an early peak, the rate at which the patterns change approaches
an equilibrium. Apparently, the actual repertoire is dynamic and continues to change.
After a 1000 time steps the nominal distance is still very similar to the one shown in
Fig. 4c (not shown). Finally, we counted the number of active clones in each of the four
quadrants of the shape space. Time plots are shown in Fig. 4d. The averages during the
last 100 time steps are 825, 570, 416, and 570, respectively. In order to test whether this
deviates from a random distribution we calculated that y2 = 145 for this distribution.
With three degrees of freedom, p < 10 4 , so this is a very significant deviation from a
random distribution.

Pattern Formation

The two main parameters that we varied in the bit-string model were the reactivity of
the receptors (i.e., the bit-string matching) and the productivity of the bone marrow.
In order to study the distribution of clones in the shape space of the bit-string model we
computed the Hamming distances between all of the pairs of bit-strings in the network.
If the coverage of shape-space is random, the distribution of Hamming distances is
expected to be binomial. We showed that the bit-strings tended to be similar to each
other, i.e., the Hamming distances were smaller than expected. The deviation increased
with the rate of recruitment. We argued that these deviations were due to the formation
of clusters of clones with similar bit-strings sharing the same stimulatory field. In
the CA the reactivity and the productivity parameters correspond to the size of the
neighborhood a and the probability of recruitment PR respectively. The effect of these
parameters on pattern formation in shape space is studied in Figs. 5 and 6.

The 2D distributions shown in Fig. 5 reveal that the scale of the pattern scales with
a. First, the distance between the black and the gray stripes increases with a. The
explanation is that for large neighnorhoods clones have to be located far from each other
to reduce the field strength. Second. the patterns become more global if a increases.
One striking "global" phenomenon which we observed repeatedly (Fig. 3c and 5d) are
the long stripes that span the entire shape space. Such lines change position but seem
to be anchored around shape [0,01. For large values of a (Fig. 5d) the line forms the
boundary between a density populated part of shape space and an empty part of shape
space. Another global pattern that appears for large values of a is that large regions
in shape space tend to be either black or gray. Thus it seems that the usage of shape
space changes from fine grained patterns to large scale clusters as a increases.

In Fig. 6 we show the 2D distributions of large clones for PR = 0.1.0.2,0.4. and 0.8.
First, the figure shows that increasing PR increases the thickness of the lines and the
density of populated regions. Thus, areas in which the field is stimulatory are more
densily populated. Because this increases the field strength. this implies that the dis-
tance between stripes has to increase. (This effect is so small that it is hardly visible.)
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(b)

(d)

Figure 5. Shape space usage as a function of a, the neighborhood size. Param-
eters: 01 = 5,02 = 10.03 = 15, = 4, and PR = 0.5. The gray-scales vary
between white for B(x) = -1 and black for B(x) = 03. (a) a = 2. (b) a = 3.
(c) a = 4. (d) a = 5.

A densily populated area in shape-space means that idiotypes tend to be similar. This
confirms the results of the bit-string model. The reason these patterns become more
pronounced as PR increases is that PR determines the rate at which clones can invade
areas with stimulatory fields. Second, on a larger scale, the figure shows that increasing
the recruitment rate causes the repertoire selection to become more global. In Fig. Ga
black and gray lines are distributed all over shape space. In Fig. 6d most clones are
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(a) (b)

-N Shape -N Shape

Figure 6. Shape space usage as a function of PR, the rate of recruitment. Pa-
rameters: a = 3, 01 = 5, 92 = 10,93 = 15, = 4. The gray-scales vary between
white for B(x) = 1 and black for B(x) 03. (a) PR = 0.1. (b) PR = 0.2. (C)
PR = 0.4. (d) PR = 0.8.

located in the upper right triangle of shape space. This is similar to what we observed
for a in Fig. 5.

As in Fig. 4d, we counted the number of active clones in each of the four quadrants. The
X2 of the average distributions is plotted in Fig. 7a.b. This confirms the suggestion made
above that the randomness of shape space usage decreases when a or PR increase. In

Fig. 7c,d we plot the average nominal distance over the last 100 days of two simulations.
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Figure 7. The scale and the rate of change of the shape space patterns. (a) 2
as a function of a. (b) X2 as a function of PR. (c) nominal distance as a function
of a. (d) nominal distance as a function of PR.

When a increases the rate of change of the patterns decerases. When PR increases the
rate of change of the patterns increases.

Pattern scale. We conclude that the scale of patterns increase with recruitment in both
the bit-string model and in the asynchronous CA. The present results contribute to
the understanding of these bit-string results because we now see how an increase in
the recruitment decreases the randomness of the selected repertoire. This appears due
to two effects. First, stimulatory areas are more rapidly invaded. This gives rise to a
cluster of similar shapes. Second, the randomness involved with recruitment may play
a role. Because novel clones are supplied at random sites and at random times, the rate
of recruitment determines the degree of randomness in these systems. The fact that
an increase in the randomness may increase the scale of the ordered regions in a CA
has been described for voting rules. In voting rule systems frustration due to annealing
(Vichnia, 1986), and/or simple random noise, create larger domains and a larger scale
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Figure 8. The number of clones in the repertoire. The network size as a function

of reactivity in the bit-string model (a), and as a function of reactivity (i.e.. a)

in the CA (b). The network size as a function of recruitment in the bit-string

model (c) and in the CA (d).

of order (Toffoli & Margolus, 1987). Despite the fact that our transition rules Eqs. (S-

10) are not voting rules, the randomness, which keeps boudaries fluid and which allows

separate domains to merge, seems to have a similar effect in our immune network.

Size

One of the main question that we addressed in the bit-string model was the number of

clones in the repertoire. Since there is no explicit regulation of the number of clones

in the model the size of the network was an emergent property which turned out to

vary around an equilibrium value. In Fig. 8 we show how the number of clones in the

bit-string model varied as a function of the reactivity (Fig. 8a) and the productivity

(Fig. 8c).
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Figure 9. The actual connectivity of the repertoire. The network connectivity as
a function of reactivity in the bit-string model (a), and as a function of reactivity
(i.e., a) in the CA (b). The network connectivity as a function of recruitment in
the bit-string model (c) and in the CA (d). The error bars indicate the average
standard deviation of ten samples.

In Figs. Sb and Sd we show that very similar results are obtained in the CA. Thus.
increasing a (i.e., the reactivity) decreases number of active populations. (Note that
graphs in Fig. Sa and Sb would look more similar if the data in Fig. 8b were plotted
as a function of the variance a2 instead of the standard deviation a). In Fig. Sb the
number of clones in the actual repertoire decreases from 5000 for a = 1 to 2000 for
a = 5. Thus the selection for participation in the actual repertoire becomes stronger if
a or the reactivity increases. Conversely, the number of clones in the actual repertoire
increases linearly as a function of the bone marrow production rate and of P. Thus.
the shape space becomes more densily covered when the rate of recruitment increases.
This can be explained by the formation of dense clusters of similar shapes.
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Connectivity

Another emergent property of the bit-string model was the connectivity among the
clone in the network, which like the network size varied around an equilibrium value.
Connectivity was defined as the average number of network connections per clone. The
results shown in Fig. 9a and 9c show that the connectivity of the network increases
with reactivity and with bone marrow production rate. However, the increase in the
connectivity is small compared to range over which the parameters are changed. Thus,
we concluded that the connectivity is mainly regulated by selection in the network and
is hardly dependent on the reactivity and bone marow production parameters.

In Fig. 9b and 9d we show that similar tendencies are found in the CA. Increasing
a increases the functional connectivity sligthly (Fig. 9b). In Fig. 9b the connectivity
increases from 4 for a = 1 (i.e.. 13 neighbors) to 13 for a = 5 (i.e.. 385 neighbors).
Similarly, the connectivity slightly increases with PR, see Fig. 9d. The fact that the
connectivity hardly depends on the neighborhood size is as counterintuitive as the fact
that connectivity hardly depended on the matching probability in the bit-string model.
The explanation for this counterintuitive phenomenon is similar for both systems. First,
repertoire selection reduces the number of clones in the actual repertoire when clones
have too many interactions. In the bit-string paper we discussed how this form of
self-organization can be interpreted as a form of self-regulatory completeness (De Boer

Perelson, 1991). Second, because of the pattern formation, clones tend to be more
similar which reduces the connectivity.

The error bars in Fig. 9b and Od indicate the average standard deviation of the con-
nectivity. (Each connectivity point is based upon ten samples, so each error bar is
the average of ten standard deviations). The figure shows that the standard deviation
increases with a and PR. This is another manifestation of the observation that the
patterns become more ordered if either a or PR increases. Due to the pattern formation
some areas are highly connected and some areas are lowly connected. Thus, the distri-
bution of connectivities becomes more variable. Interestingly, in Fig. 9c of the bit-string
model one can also see that the standard deviation of the connectivity increases with
bone marrow production. This can now also be explained in terms of the increase in
the order due to larger neighborhoods or the faster recuitment.

Fields

The histograms in Fig. 10 depict the distribution of field strengths for active B cells

(Fig. 10a,b) and for unused sites in the shape space (Fig. 10c,d). The white bars denote
the proportion of sites having a small field, i.e., h(x) < exp[01], the gray bars denote
stimulatory field strengths, i.e.. exp[91] < h(x) < exp[2], and the striped bars denote
suppressive fields, i.e., h(x) > exp[92j. Thus 45% of the used parts of shape space are
stimulated (Fig. 10a,b) and 80% of the unused parts of shape space (Fig. 10c.d) are
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Figure 10. The distribution of field strengths of clones in the actual repertoire
(a.b) and of the un-used sites (c,d). The white bars denote the proportion of sites
having a small field, i.e.. h(x) < exp[011, the gray bars denote stimulatory field
strengths, i.e., exp[01} < h(x) < exp[82], and the striped bars denote suppressive
fields, i.e., h(x) > exp[02].

(b)

(d)

suppressed. Both percentages hardly depend on a or PR. In the bit-string model we
found that the majority of clones in the repertoire were suppressed. Here we find that
only 20-30% of the actual repertoire is suppressed. An explanation for this discrepancy
might be that suppressed clones are more quickly removed in the CA model than in
the bit-string model. In the bit-string model we introduced more than one cell per
recruitment event. Thus it takes longer to for the population to disappear by natural
decay. Additionally, because in the bit-string model antibodies could be long-lived
clones could persist for longer times.

There seems to be a slight effect of the neighborhood size on the ratio of suppressed
and non-stimulated clones. Increasing a increases the proportion of non-stimulated
sites, and decreases the proportion of suppressed sites (Fig. 10c). This confirms earlier
observations of other shape space models (De Boer et a)., 1992a).
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Discussion

We have compared the behavior of an asynchronous CA model of the immune network
with our previous ordinary diifferential equation/bit-string model. Our most important
question was whether the inclusion of a realistic rate of the recruitment of new shapes
would affect the results obtained with the bit-string model. Because all results seem to
be similar this does not seem to be the case. Although we have been careful to point
out how the two models can be derived from each other, it is important to realize how
different the two approaches are. The fact that we find similar results for such a wide
class of network models suggests that these results are generic.

Apart from the confirmation of our previous results in a more realistic parameter range.
the CA model contributes to our understanding of the previous results on pattern for-
mation. This is mainly due to the straightforward two dimensional representation of
the CA. First, the 2D grayscale pictures of the CA really show that stimulatory ar-
eas become densily populated. This confirmed our interpretation of the same results
in the bit-string model. Second, we have agrued that patterns become more ordered
because recruitment may play the roles of annealing or randomness in voting rule sys-
tems (Toffoli & Margolus. INS). A similar effect of random recruitment has also been
demonstrated to increase the scale of spatial patterns of T and B cells in a CA model
of T cell B cell segregation (Hogeweg, 1989). Similar effects may have played a role in
the bit-string model and explain the observed deviation from a random distribution of
Hamming distances (De Boer & Perelson, 1991).

The CA formalism makes it feasible to study high recruitment rates and very large
networks. Thus, the more unrealistic formalism of a 2D CA shape space model has
made it feasible to study the immune network for more realistic parameter regimes.
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