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Abstract. For parasites with a clearly defined life-cycle we give threshold 
quantities that determine the stability of the parasite-free steady state for 
autonomous and periodic deterministic systems formulated in terms of mean 
parasite burdens. We discuss the biological interpretations of the quantities, 
how to deal with heterogeneity in both parasite and host populations, how to 
incorporate the effects of periodic discontinuities, and the relation of the 
threshold quantities to the basic reproduction ratio Ro. Examples from the 
literature are given. The analysis of the periodic case extends easily to 
'micro-parasitic' systems. 
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1. Introduction 

Our aim in this paper is to develop a biologically and mathematically rigorous 
definition of a threshold quantity that determines whether or not an intro- 
duced helminth infection will persist in a population of susceptible hosts, both 
in a constant and in a periodic environment. We will be concerned with the 
class of deterministic models formulated in terms of mean parasite burdens, 
which is the most frequently used in applications. We do not consider here 
models that explicitly take variation in individual parasite burden into ac- 
count (such as in [-10] and [-14]). Neither will we consider stochastic models 
(see, e.g., [3]). Previous authors have often applied the concept of basic 
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reproduction ratio Ro, borrowed from 'microparasitic' infections (e.g. viral, 
bacterial, protozoan) to the invasion problem, see for example [1]. Ro has 
then been defined for helminths as the expected number of adult worms that 
reach reproductive maturity produced by one adult worm during its lifetime, 
in the absence of density dependent constraints. The calculation of Ro defined 
in this way is often based on ad hoc methods. A mathematical definition and 
a frame for calculation, as they have been given for microparasitic diseases 
[7], are lacking in the case of 'macroparasitic' infections. 

Characteristically, helminths do not reproduce within the host, and a rise 
in parasite level is due to re-infection (see discussion). An additional character- 
istic of helminths is that they possess a clearly defined life-cycle that contains 
a number of distinct consecutive parasite stages (e.g., adults lay eggs, eggs 
hatch to release a larva, and larvae turn into adults). An attempt at a generally 
applicable theory for R0 for cyclic infections was made in [17]. In the 
present paper we give three threshold quantities for cyclic infections, one of 
which bears a strong resemblance to the threshold quantity derived in that 
paper. 

In Section 2, we define a quantity denoted by Qo, the basic reproduction 
quotient, and prove that Qo = 1 is a threshold determining the stability of the 
parasite-flee steady state of autonomous systems describing the dynamics of 
a parasite with a given cycle-length. The biological interpretation of Q0 is the 
expected number of adult worms that reach reproductive maturity produced 
by one adult worm during its lifetime, in the absence of density dependent 
constraints. In Section 6 we show that Q0 = Ro, as defined above, for auto- 
nomous systems. In Section 3, we show how these ideas can be extended to 
allow for heterogeneity in the parasite, and in the various hosts. 

The analysis of the autonomous case is straightforward and serves as an 
introduction to the treatment of the more important problem of defining 
a threshold quantity for periodic systems. In the context of branching pro- 
cesses, the influence of a periodically varying environment has been discussed 
in e.g. [13]. In Section 4 we define three different quantities for periodic 
systems and prove that all have the same threshold behaviour. A mathemat- 
ical point of view leads to the dominant Floquet multiplier to determine the 
stability of the trivial steady state after linearisation of the periodic system. 
A biological point of view leads to a generalisation of the definition of Qo from 
the autonomous case. Finally, as an 'afterthought', we give a quantity P with 
an 'explicit' formulaic definition (though difficult to evaluate) but with a differ- 
ent biological interpretation than Qo. If periodicity is neglected, and we return 
to an autonomous system, then Qo and P coincide in value and are equal to 
what one would call Ro. The fact that none of the three can be identified with 
the basic reproduction ratio R0 in the periodic case, because the concept of 
Ro does not make sense in a nonautonomous setting, will be discussed in 
Section 6. There, we also indicate how the analysis of the periodic case extends 
to rnicroparasitic infections in periodic environments. 

In Section 5, we extend the ideas from Section 4 to include the influence of 
periodic discontinuities. 
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2. The autonomous case 

In this section, we assume that there is no heterogeneity in either the parasite 
or host populations. We assume that the parasite has a life-cycle involving 
k consecutive stages 1 . . . .  , k, which live in various habitats (hogts, environ- 
ments), and where the parasite individuals in stage i determine the rate of 
increase in stage i + 1 and stage k determines the inflow of stage 1. We will call 
this a parasite with cycle-length k. Some transitions i ~ i + 1 will entail only 
a physiological change (for example one larval stage to the next, or larva into 
adult), while other transitions will involve reproduction of some sort in order 
for one individual of stage i to give rise to many individuals of stage i + 1 (for 
example an adult laying eggs). The term 'habitat' has to be interpreted in 
a broad sense. For example, in the ruminant/nematode system of Example 2 
below, we recognise larvae living in a habitat called 'pasture', and adults living 
in a habitat called 'sheep'. For the schistosomiasis Example 3 below, miracidia 
and cercaria live in the habitat 'water', one gives rise to the other in the habitat 
'snail', and adults live in humans. 

Define g~ > 0 as the rate of leaving stage i (either due to death or transition 
to the i + 1 stage), and mi as the rate of giving rise to stage i + 1 individuals (or 
the rate of being transformed into a stage i + 1 individual), under optimal 
conditions (i.e. in the absence of density-dependent constraints)• Without loss 
of generality we assume that certainly the transition from stage k to stage 
1 consists of actual reproduction leading to the birth of new parasite indi- 
viduals• We then regard newborns in stage 1 and remark that the individual's 
future progress is independent of the environment (the various rates being 
constants)• We can therefore use a simple age-representation when following 
a newborn through life (see, e.g., [15], Chapter IV)• It is then easy to calculate 
the expected number of stage 1 individuals that will be produced from one 
newborn stage 1 individual during its entire life, by describing the progress 
through the life-cycle as a continuous time Markov-chain on {1 . . . .  , k}. 

Let G be the k x k-transition matrix of the Markov process, 

- {1 0 ... 0 0 \ 

ma - -  ~2 "'• 0 0 ) G =  0 m2 "'. 0 0 
• " .  , ,  ". 

0 ... 0 mk-1 --'{k 

and let (0 ... 0 mk) be the vector of length k, describing the rate of production 
of stage 1 individuals by individuals in the k different stages. Then Qo, the 
expected number of stage 1 parasites produced per stage 1 parasite, is given 
by [15], 

Qo = (0 ... 0 mk) e6ad a O. = . . . .  (0 0 mk) G - l  0 
.1o 

o 
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Direct calculation of this expression leads to 

Qo - mkml  mk-------2 -- I]k=lm~i (2.1) 
k 

It is clear that Qo has threshold value 1. If we define x~ as the mean number 
of parasite individuals of stage i per (relevant) host (i ~ {1, . . : ,  k}), and write 
x = (xl, . . . ,  Xk) r for the vector of mean parasite burdens, we can write the 
associated system of ordinary differential equations, that describes the dynam- 
ics of x, as 

with [15] 

d x  
-;7(t) = Ax( t ) ,  x(O) = Xo (2.2) 
a [  

A : = G +  

1) 
0 

0 

(0 ' "  0mk).  

One easily shows that Qo < 1 implies that the trivial steady state x~ = O, Vi 
is locally asymptotically stable, whereas this parasite-flee state is unstable for 
Qo > 1 (see end of section)• 

Example  1. In [-1] (eqn. 16.7-8) the following simple prototype system is given 
to model the life-cycle of a directly transmitted parasite with two stages, larvae 
(living in some unspecified habitat) and adults (living in a host). 

dx 1 

dt 
- -  - -  (/.t2 -t- f iN) x l  + sc~d22Nx2 

d x  2 

dt 
- - =  - (# + # l )  x z  + dxf lXl  

where dl, d2 are the respective proportions of individuals that reach maturity 
as larvae and adults; tt is the death-rate of the host; #1 and ]22 are the 
death-rates of adults and larvae respectively; N is the constant host density; 
fl is a measure for the rate for contact of the host with infective larvae times the 
probability that any one contact results in establishment of the parasite; s is 
the proportion of female worms in the population, ¢ is the probability to 
mate, and 2 is the rate of egg-production. 

Equation (2.1) for Qo leads to 

QO ~- 
sO2f lNdld2 

(u + u,) (u2 +/~N)' 

which is equal to the formula given in equation 16.9 for Ro in [1], with ¢ = 1. 
Anderson & May include an explicit time-delay for development to maturity 
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in both equations, but all that is important for (2o and Ro is the proportion of 
individuals that live through the development period. 

Example  2. In [19], the following model is proposed for the dynamics of 
nematode infections of ruminants. 

dxl  
d t =  - (p + ti) x l  + q2(r) xz 

dx2 
dt = - #(r) x2 + tip(r) x l  

dr 
d--7 = tixl  - ~r 

where x, is the density of infective larvae on the pasture (i.e. mean number of 
larvae per 'host'), x2 is the mean number of adult parasites per host and r is 
a measure of acquired immunity. The parameters have the following inter- 
pretations: p is the death rate of larvae on the pasture; ti is the per capita rate 
of ingestion of larvae by ruminants; p is the probability that an ingested larva 
develops into an adult worm; p is the death rate of adult worms; 2 is the per 
capita rate of egg-production by adult worms; a is the rate of loss of immunity 
and q is the probability that an egg develops into an infective larva. 

In the linearised system, we have r = 0 and we obtain from (2.1) 

ti2(O)p(O)q 
Q o -  

(p + ti)#(0) 

which was used as a threshold quantity in [19]. The authors also considered 
a variant of their model where the state variables were subject to periodic 
resetting, and in a subsequent paper [20] generalised the system to a model 
where p, ti and q were periodic functions of time, see Sections 5 and 4 of the 
present paper respectively. 

Example  3. Anderson & May [1] (p. 564) discussed a model for schis- 
tosomiasis with three types of parasite stage (adults, miracidia and cercaria) 
and three types of 'host' (humans, snails (intermediate host) and water) as 
a prototype of an indirectly transmitted parasite. The adult worms live in 
humans, both parasite stages live in water and miracidia give rise to cercaria 
through infection of snails. We neglect the latency period in snails and only 
take a death rate of infected snails into account. In a mix of their and our 
notation their model reads 

dx1 
dt 

dx2 
dt 

~1xl + tilx3 

1 
- (#2 q- ti2N2) x2 -{- xtqNlq~X1 z 

dx3 ti2,~zN2 
. . . .  (/is + tiaN1) x3 + x2 

dt la4 
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where xl is the mean number of adults per human host, and x2 and x3 
are the densities of miracidia and cercaria in water, respectively. The #i are 
the various death rates; fll and flz are the per capita rates of establishment 
in human and snail hosts respectively; N1 and N2 are the total densities 
of humans and snails respectively; 21 is the per capita fecundity of mature 
female worms; the factor ½ arises out of an assumption of 1:1 sex ratio of 
adult worms; ~b is the probability that a female worm is mated; and finally, 
21 is the per capita production of cercaria per shedding snail. All terms in 
the above equation then speak for themselves, except perhaps the production 
term in the last equation. This term describes the effect of passing through 
the intermediate host: one miracidium infects a susceptible snail with rate 
f12N2 and this snail will generate after infection )~2 cercaria per unit of 
time, for a time period of average length 1/fl 4 (mean life-time of infected 
snails). 

We calculate Qo according to equation (2.1) and find 

fl lf12212 2N1N 2(a 
Qo = 

2~lm(m + fl,N1) (m +/~2N2) 

which corresponds to equation (20.35) given for Ro for this model in 
[ I ] .  

To end this section, we give an alternative way, though for the auto- 
nomous case more cumbersome, of deriving expression (2.1) for Q0. We give 
this approach in some detail because it paves the way for our treatment of the 
periodic case in Sections 4 and 5. 

System (2.2) describes the linearisation around the trivial steady state of 
a nonlinear system of differential equations describing the dynamics of the 
mean parasite loads for the k parasite stages. We rewrite (2.2) as 

dx 
-~(t)  = Ax(t)  = (M - L) x(t), x(O) = Xo (2.3) 

where and M and L are the positive matrices 

00 0 ( 0  ...... 0) 
ml 0 -.. 0 0 0 E2 . . . . . .  0 

M =  0 m2 "-. 0 0 , L =  " ' . .  ' . .  ' • 
' " .  . °  • • • • • 

0 . "  0 mk - 1 0 0 . . . . . .  0 ffk 

Let s(A) := sup{Re2:2 ~ a(A) be the largest real part of the eigen- 
values making up the spectrum of A, then, if s(A) < 0 the trivial steady state is 
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locally stable. Define a matrix 

K = - L - 1 M  = 

0 0 

rn~/f 2 0 

0 mz/{3 

. . .  

. . . . . .  mk/~ l 

• " "  0 

. . . . . .  

" . .  ~ • 

0 rnk- t/(k 0 

(2.4) 

It is well-known that, under our conditions on M and L, s(A) < 0 ,,* r(K) < 1, 
where r(K) is the spectral radius of K (i.e. r(K) : = sup{121: ~. s o-(A)}). So, if 
r(K) < 1, the trivial steady state (corresponding to absence of the parasite) is 
locally stable. Observe that if Qo is any monotonically increasing function 
of r(K) with Qo = 1 ,**,r(K) = 1, we have the result that if Q0 < 1, the 
trivial solution of (2.3) is locally asymptotically stable, and if Q0 > 1 it is 
unstable. 

We define Qo - r(K) k, where k is the number of stages in the model life 
cycle (cycle length). By direct computation from (2.4) this again leads to the 
expression (2.1) for Qo. One sees that a biological interpretation of Qo is the 
expected number of adults produced by one adult during its life-time in the 
absence of density dependent constraints. 

Taking r(K) to the power of the cycle-length (see also [11] ) not only 
gives the correct expression (2.1) for Q0, but also resolves the unfortunate 
situation that a biologically meaningful quantity in terms of parasite transmis- 
sion and mortality rates would be different for models of the same system 
that employ different degrees of simplification. To illustrate this, the model 
of Roberts & Grenfell [19,20] (see Example 2 above) is a simplification of 
a more detailed model for nematode parasites (see for example [-8] ) that 
takes, among other things, more different consecutive larval stages into 
account (and has therefore a larger cycle-length). The simplification utilises 
differences between the time-scales of the various stage-changes in the life- 
cycle of the parasite. One would want the value of the threshold quantity 
to be independent of the amount of detail, hence the kth power. Note 
that the straightforward approach via the age-representation and Markov- 
chains does not give these problems and automatically leads to (2.1) in all 
cases. 

3. Heterogeneity in the autonomous case 

We consider two kinds of heterogeneity: differences within a given host or 
habitat-type, and differences within a given parasite stage. The former could, 
for example, be host-age (class) or resistance level, the latter might reflect 
differences in resistance to control measures. We can deal with both types of 
heterogeneity in a single formalism. 
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Remark:  We present only the approach via differential equations because the 
generalisation to periodic systems is then straightforward using the theory of 
Section 4. One should realise however, that in the autonomous case the 
approach via Markov chains taken in Section 2 is equally suitable, and 
perhaps even preferable because it leads to a lower dimensional problem. If we 
regard again the case where the transition k ~ 1 involves reproduction and if 
we can distinguish nl, say, different types of stage 1 individuals, then instead of 
a single stage 1 birth-state, we now have nl possible birth-states. We then have 
to calculate, for each given type s e {1 . . . .  , n~}, how many stage 1 individuals 
of type r e  {1 . . . . .  n~ } are expected to arise if we follow one newborn of type 
s during its life-cycle. The result is not one number (as in Section 2) but 
a matrix, and Q0 will be the spectral radius of that matrix. A detailed example 
of this analysis can be found in [6], where a different application of the same 
basic theory is given. 

Suppose, for the sake of illustration, that we have two parasite stages (cycle 
length 2) and that for both stages, we recognise two different types. The types 
of stage 1 parasites will be denoted by (1,1) and (1,2), and mutat is  mutandis  for 
parasites of stage 2. The cycle length of course remains 2, the life-cycle could 
just, at least in theory, take a number of different routes of length two. 
We order the different types lexicographically, i.e. we regard, for this 
particular case, the map ~z: {(1, 1), (1, 2), (2, 1), (2, 2)} --. {1, 2, 3, 4} where 
rc((i,j)) < n((k, l)) iff either i < k or i = k a n d j  < l. The matrices m and L in 
(2.3) then become 

0 0 m13 m14 ) 

0 0 m23 m24 
M =  

m31 m32 0 0 ' 

m41 m42 0 0 

L = 

{1 0 0 0 \ 

) 0 ~2 0 0 

0 0 f3 0 ' 

0 0 0 E4 

(3.1) 

where m,s is the rate of giving rise to type ~-  l(r) individuals by a n-  l(s) type 
individual, and {, is the rate of leaving its current stage for an individual of 
type z~-l(r) . Since the cycle length has not changed, (2o = r(K) 2 with 
K = L - 1 M ,  but with M and L now given by (3.1). 

In general, suppose we recognise, for a parasite with cycle length k, 
ni different types (i, 1), . . . ,  (i, nl) , for stage i. The matrix L then becomes 
L = diag(L1 . . . .  , Lk) , with Li = diag({1 . . . . .  gOni ) and 

M = 

0 0 .-. 0 Mlk 

M21 0 ... 0 0 

0 M32 "'.  0 0 
: ".. ".. ".. 

0 ..- 0 Mk,~- 1 0 
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where each entry 0 is a zero-matrix of appropriate dimension and each 
M,, is a matrix of dimension ni x nj where i = 7z-l(r) and j = z -  l(s) (as 
illustrated in the particular case k - - 2  above). A cycle is any path 
(1, il) ~ (2, iz) ~ "" ~ (k, ik) "-* (1,jl), with i~ ~ {1, . . . ,  nr}, r ~ {1, . . . ,  k} and 
Jl e {1 . . . .  , nl}. The cycle length is still k and Q0 = r(K) k where K = L - 1 M  

with L and M as given above, i.e. 

K = 

0 0 ... 0 Klk 

K21 0 .-- 0 0 

0 K32 " .  0 0 

• . . , * . " 

0 "'" 0 K k , k -  1 0 

where Krs = L7 1Mr,. 
In the illustration with k = 2 above, one can easily verify that 

Qo = r (K12K21)  = r (KE1K12) .  In general: the kth power of K is a matrix with 
permutated products of the k matrices Krs on the diagonal, and zero-matrices 
off-diagonal (a direct generalisation of the non-heterogeneous case), and Qo is 
the spectral radius of the product of the K,s: 

k j=0 

(with indices calculated modulo k). 

If instead of (or in addition to) the heterogeneity in parasite types, we 
distinguish different types of habitat or host, then the formalism remains 
unchanged and it is a matter of book-keeping to keep track of the various 
types• The reason for this to work is that each parasite stage is linked to 
a particular habitat (more than one can live in the same habitat, but any given 
stage only lives in one habitat). Therefore, we can mimic the effect of having, 
say, two types of the habitat of stage 1 parasites, and two types of the habitat 
of stage 2 parasites, by introducing 'mock' parasite types for each habitat type, 
and acting as if the parasites differed and not the habitats themselves. Any 
difference in habitat will have its effects on the stages that live in it by affecting 
'survival' ~ and 'reproduction' m, so it is not unnatural to model habitat 
heterogeneity in this way. This means that the whole formalism above carries 
over to the case of heterogeneity in habitats. 

Examples where heterogeneity can be important are provided by the 
nematode/ruminant systems• A ruminant population may be infected with 
several different species of nematode parasite, or the host population itself 
may consist of 'classes' of animals with different susceptibilities to infection, 
either due to differences in age or genetic background. Furthermore, the 
parasite population may exhibit a genetic diversity, with a strain or strains 
resistant to nematode control procedures. These situations may be modelled 
by complications of Example 2. 
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4. The periodic case 

In the study of the transmission of helminth infections, periodicity in factors 
that may influence the dynamics can be explicitly taken into account. Let the 
matrices M and L below (2.3) now be time-dependent and periodic, with the 
same period (which we have scaled to 1), i.e. assume that 

~-[(t) = A(t) x(t) = M(t) - L(t) x(t), x(O) = Xo , (4.1) 

with M(t  + 1) = M(t), L(t  + 1) = L(t), Vt >0  and consequently 
A(t + 1) = A( t ) .  

DefineJ}(t) > 0, i E {1, . . . ,  k}, as the mean duration of stage i, given that 
the parasite individual enters stage i at time t (either by birth or transforma- 
tion). It follows as a special case from Proposition 1 (to be proved in 
Section 5), that 

and 

~t (t) = Y,( t ) f~( t)-  1, f~(0) = f ( 1 )  

f o°e- S~ ~.(t + z) dz f ( t )  = ' da. 

If we write F(t) = diag(fl(t), ... ,fk(t)), a diagonal matrix of the mean stage 
durations, we can summarise these equations as 

dF 
--~(t) = L(t) F(t) - I, F(0) = F(1).  (4.2) 

Let 4 (0  be the standard fundamental solution of (4.1), so 

--~-(t)d4 . . . .  (M(t) L(t)) 4(0,  4(0) I (4.3) 

This fundamental solution is obtained by solving (4.1) with the k standard unit 
vectors of ~k as initial conditions and taking the resulting vectors as columns 
of 4. Then, 4(t) > 0 is a positive matrix for all t > 0, because ~ is positively 
invariant for (4.3) (we write M > 0 if all entries mij of a matrix M are > 0, i.e. if 
M is pasitive). The solution to (4.1) can then be written as x(t) = 4(t) Xo. 

The stability of the trivial steady state of periodic systems is determined by 
a quantity related to 4. To be more precise, we can write 

4( t  + 1) = 4(t)E 

where E is a constant (i.e. independent of t) k x k matrix whose eigenvalues are 
uniquely determined by A(t) (see e.g. [5], [-9] for standard results in this 
direction). Setting t = 0, we find that E = 4(1) ,  and moreover that E > O, in 
our setting. The dominant eigenvalue of E (the dominant characteristic, 
or Floquet, multiplier) determines the stability of the trivial steady state; 
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essentially it describes the asymptotic behaviour of the discrete sequence 
x (0) --. x (1) --, x ( 2 ) ~  ..-. Therefore, from a mathematical point of view, a 
sensible threshold quantity for system (4.1) is the dominant eigenvalue 2d(E) 
of E. 

Although )we(E) is probably also the 'easiest' threshold quantity to calcu- 
late numerically, it is not very satisfying that 2d(E) is defined in an implicit 
way, making it less suitable for the development of meaningful approximating 
expressions. Before we show how to derive an alternative threshold quantity 
for the periodic case with the same interpretation as Qo, let us first examine the 
relation between Qo and 2d(E) in the autonomous case. 

The fundamental solution of (2.3) is given by ~(t) = etA, so one could write 
E = 4(1) = e a in the autonomous case. By the Spectral Mapping Theorem 
(see e.g., [21-1 ) the spectra of E and A are related as a(E) = exp(a(A)) .  

Lemma 1. In the autonomous case 2e(E) < 1 ¢*- Q0 < 1, where Qo = r(K) k. 

Proof: We have the relation Qo < 1 ,=- s(A) < 0 (see Section 2). If # ~ a(A) is 
the eigenvalue with largest real part, i.e. s(A) = Rep, then the eigenvalue 2 of 
E with largest absolute value, is 2 = e". By the positivity of E, the 
spectral radius r (E)=  2d(E), which implies that 2e(E)sN. Therefore, 
s(A) < 0 *~. 2d(E) < 1. [] 

We turn to the definition of Qo for the nonautonomous case. We start by 
multiplying equation (4.2) from the right with matrix 4 (0 ,  and equation (4.3) 
from the left by F( t ) ,  and adding the results 

d~  dF 
F--;-= + --;74 = FM~) + (LF - FL) • - 4. 

a[  a t  

Now note that L F  = F L  because both L and F are diagonal matrices, and 
integrate the above expression over t from 0 to 1, to obtain 

4(1) - I = Fo 1 F(t) M(t)  4(t)  - 4 ( 0  dt (4.4) 

where we have used 4(0) = I and F(0) = F(1) = Fo. We now rewrite (4.4) as 

4 ( 1 ) -  I = F o l C ( Y  - I) (4.5) 

where 

C:=  f~4(t)  dt 

(note that C is a positive matrix) and 

= C - I f ~ F ( t )  M(t)  4(t)  dr .  

Define Qo -- r(aY') k, the spectral radius of JY" raised to the power k. 

(4.6) 
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Lemma 2. In the autonomous case :U is similar to K, 9ff ~ K, where K is given 
by (2.4). 

Proof: If L is a constant matrix, then solving (4.2) leads to F = L -  ~. If M is 
also constant, then from (4.6) we find ,Y{ = C - : L - 1 M C  = C - : K C  and the 
result follows. [] 

As a result of the previous lemma, the spectrum of 3¢" is equal to the 
spectrum of K and therefore r(uT') = r(K) in the autonomous case. 

In the nonautonomous  case, we have the following elementary relation 
between the spectra of E and the matrix on the right-hand side of (4.5). 

Lemma 3. 2 G a(E) ¢¢, 2 - 1 E a(FolC(JY" - I)). 

Proof: Let ¢ be the eigenvector of E = <b(1) corresponding to eigenvalue 2. 
Then (4.5) leads to (2 - 1) ¢ = FolC(o,'ff - 1) ~ and we conclude that ~ is also 
an eigenvector of FoXC(~g " - 1 )  , but with eigenvalue 2 - 1 .  We have 
2 ~ ~r(E) ,**, 2 - 1 ~ a (Fo  ~C(aUf - I)). [] 

For  the proof  of the main threshold result in Theorem 1 we use the 
following lemma. 

Lemma 4. Let  A be a real n x n  matrix with a o >  O, i :# j .  Then 
s(A) < 0 ,**- detA #: 0 and A -  1 < O. 

Proof: 
First of all s(A) < 0 ~ det A # 0 because det A = 0 implies 0 G a(A) which 
contradicts s(A) < 0. Then for A we have by assumption aij > 0, i # j ,  and 
hence: e ta > 0 for all t > 0 (see e.g. [4] Theorem 3.12). So, as det A # 0 

co t A  and all eigenvalues have negative real parts we have So e d t >  0 
- A - : _ > 0 ~ A - :  =<0. 

By assumption there exists 0 > 0 such that A + Ol > 0 where I is the 
identity matrix. We can now deduce from the Perron-Frobenius Theorem 
(see e.g. [16]) that s(A) is an eigenvalue with nonnegative eigenvector. So 
A x  = s (A)x  for some vector x _> 0. Applying A-1 to both sides we find 
x = s(A) A - i x .  But A - i x  < 0, x > 0 and x :# 0 (because x is an eigen- 
vector), hence s(A) < O. [] 

Theorem 1. In the periodic case ),d(E) < 1 ,*~ Qo < 1, where Qo = r(JT') k. 

Proof: Since E => 0, we have r(E) < 1 ~ s(E) < 1 ,¢~ s(E - I) < 0. This leads 
to the following chain of inferences: s(E - I) < 0 ~ s(Fo :C(Yf - I)) < 0 (by 
(4.5)) ~ ( F o l C ( X  - I ) )  -1 < 0, by Lemma 4. Then 

(FolC(J~ff - I))-a <= 0 ¢~,(~ff - I) - l C - l F o  ~ 0"ee" (~/" - -  I )  - 1  ~ 0 

and by invoking Lemma 4 once more ( Y -  I ) - 1 <  0 ¢~, s ( J { " -  I ) <  0 ~  
s(~ff) < 1 and finally s(,,~) < 1 ~r (aY ' )  < 1. This ends the proof of 
Theorem 1. [] 
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In the autonomous case, 5¢ = L-1M,  and Q0 is equal to the expression 
(2.1) given in Section 2, or alternatively the product of the k f~'s and the 
k mi's. In the periodic case the biological interpretation of (2o is the same 
as in the autonomous case. Save for a normalisation, ~f  is, in analogy to 
models in demography, the integral over the reproduction function FM, i.e. 
the product of fertility M with life expectancy (stage duration) F, and 
the spectral radius of • or some power of it, is the threshold quantity 
for growth or decline of the parasite population. Qo < 1 implies that 
the average number of stage i parasite individuals per (relevant) host decreases 
to zero, for all i E{1, . . . ,k}.  Qo > 1 implies that average parasite 
burdens for all stages will increase, which, under certain conditions of homo- 
geneous mixing, can be described as an epidemic in the host populations 
involved. 

The threshold quantity ).d(E) is probably easier to calculate in applica- 
tions. For this calculation, remember that E = ~b(1) where cb is the standard 
fundamental matrix solution to (4.1). Numerically, the idea would be to solve 
system (4.1) k times over one period starting with the consecutive standard 
unit vectors in Nk. The resulting numerical solutions written as column- 
vectors then make up the matrix E. 

The components eij of E can be interpreted as measures for the mean 
parasite burdens for the various stages at the end of one period, if we start the 
period with unit-vector distributions. Therefore, if2d(E) > 1, and an epidemic 
develops, 2a(E) is likely to be a very large number indeed. One only has to look 
at the sheep/nematode examples we discussed before where larvae live on 
a pasture, to appreciate that, in an epidemic situation, the number of larvae 
living on the pasture at the end of a period can be very large. In the case k -- 2 
above, this will cause ~ to be very large, and therefore 2a(E). For example, in 
Roberts & Heesterbeek (in prep.) we present calculations for a model concern- 
ing the nematode Trichostrongylus eolubriforrnis in sheep in New Zealand, 
where we find that for a set of realistic parameter choices, Qo ~ 8 while 
2a(E) ~ 6 x 1016. This shows that, whereas Qo and 2a(E) have the same 
threshold behaviour, their values can differ widely. In a sense 2d(E) has an 
interpretation on the population level, whereas Q0 has an interpretation on 
the individual level. 

To end this Section, we introduce a third threshold quantity for the 
same system. This is not an option from a numerical point of view, because 
its calculation requires calculating )re(E) as a first step. However, it 
might be useful in generating meaningful approximating expressions. 
In addition, it is interesting from a biological point of view because it 
has an interpretation different from Qo and has previously been used in the 
literature. 

Regard the following generalisation of (2.1), 

mi(t ) xi( t ) dt 
P = H (4.7) 

, = 1  d t  ' 
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where x(t) is the solut ion of (4.1) with initial condit ion x(0) = {d, the eigen- 
vector corresponding to the dominant  eigenvalue of E. Then P has the same 
threshold behaviour  as 2a(E) and Qo. 

Theorem 2. In the periodic c a s e  ]td(E ) < 1 ¢*" P < 1, where P is given by (4.7). 

Proof: We first prove that  2a(E) = 1 implies P = 1, next that 
~oa(E) < 1 ~ P < 1, and 2e(E) > 1 ~ P > 1, and finally (trivially from the 
previous) that  P < 1 ~ 2d(E) < 1. 

(1) Let ~a be the eigenvector of E corresponding to 2a(E) = 1. F rom (4.6) 

JY~a = ~a ~ f]  F(t)M(t)~(t)~adt = f]  ~(t)~adt. 

But ~(t)~a = x(t) if we solve (4.1) with Xo -- Ca and we obtain the series of 
equalities 

f2 f+~(t)m,( t )x , ( t )dt=~xi+,( t )dt ,  iE{1,  . . . , k}  

with k + 1 - 1 mod  k. All k equalities are fulfilled and this implies P = 1. 
(2) Let ~.a be the eigenvector of E corresponding to 2a(E), and assume that 

2e(E) < 1, we show that  this implies P < 1 (the case 2a(E) > 1 ~ P  > 1 is 
completely analogous).  F r o m  (4.5) we obtain 

o~e = FolC(YK - I)~a 

where e: = 2a(E) - 1 < 0, by assumption.  This leads to 

Fo 1CYf~a <= Fo 1C~a (4.8) 

with strict inequali ty in at least one component .  
F r o m  (4.8) we obtain 

f/ <= f] 
which leads to 

fi+l(t)mi(t)xi(t)dt< xi+l(t)dt, i e  {1, . . . , k}  

with at least one i for which the inequality is strict. This implies that P < 1. 
(3) F r o m  (1) it follows that P ~ 1 ~) , a (E)  4= 1. (2) gives 

)va(E) < 1 ~ P < 1. Assume P < 1 then 2a(E) 4: 1, so suppose )~a(E) > 1. This 
leads to a contradic t ion with (2), which proves that 2a(E) < 1. [ ]  

Looking  carefully at (4.7) we arrive at the following biological interpreta- 
tion of P. P is the expected number  of years of adult life that is produced per 
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year of adult life. In the autonomous case, the interpretations of P and Q0 (as 
the expected number of adult individuals produced per adult individual 
during its life-time) coincide because the various mean stage durations are 
constant in time. Indeed, P = Qo of course in the autonomous case. In the 
nonautonomous case however, where life-expectancy depends on the time of 
birth of a parasite individual, the interpretations of P and Q0 do not coincide 
and P and Qo can have different values. 

If fluctuations in f and m are sufficiently small, then one could, 
by expanding f~(t) and m~(t) in their respective Taylor-series around t = 0, 
crudely approximate P by 

P ~ +l(0)m~(0) + [fi+l(0)m~(0) +f~+l(0)m'~(0)] ~ ] .  (4.9) 

If f and m are constant, then (4.9) is exact and equal to (2.1). With nonconstant 
f and m (4.9) could be useful if one knows the values of f and m (and 
their derivatives) at the beginning of the season (t -- 0). In that case, the 
only unknown in (4.9) is the quotient of integrals in the last term. 
This quotient however, can be interpreted as the approximate time that the 
epidemic peaks for parasites of stage i (if the epidemic is sufficiently well 
behaved within one season), and this information might be obtainable from 
data. 

In [18] and [20], P was taken as the threshold property for the non- 
autonomous periodic version of the ruminant/nematode system described 
in Example 2 of Section 2. These authors considered a model for nematode 
infections of ruminants with seasonal transmission, and analysed the 
system described as Example 2 above, but with p, fl and q periodic functions 
of time. They showed, inter alia, that P = 1 (which they incautiously 
referred to as Ro, see Section 6) is a bifurcation point for the stability of their 
system. 

Finally, we remark that adding heterogeneity in the periodic case is 
a straightforward generalisation of the ideas in Section 3. 

5. The influence of periodic discontinuities 

In many practical applications there are, apart from the continuous 'environ- 
mentally caused' periodic perturbations treated in Section 4, additional dis- 
continuous 'man caused' perturbations that affect the mean duration of 
various parasite stages. For example, in the sheep/nematode system discussed 
in Section 2, the sheep are removed from the pasture after one year and 
replaced by lambs. The effect is an immediate reduction of the adult parasite 
population to practically zero. One could envisage that systems where new 
hosts are born at specific times of the year might also be better represented by 
equations with periodic discontinuities, than by equations with periodic 
functions such as those discussed in Section 4. 
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In general, suppose that at regular intervals, the parasite population 
density in a given stage is reduced by a factor d. We derive a differential 
equation for the mean stage duration f as a function of time. 

Proposition 1. Consider an individual that enters a certain stage at time t. 
Define ~(t) as the time-dependent rate of leaving that stage, and f ( t )  as the 
expected stage duration. Every time t equals an integer value, let 0 <_ d <_ 1 be 
the probability that the individual remains in the same stage. Then f ( t )  satisfies 
the following differential equation 

~ t ( t ) = E ( t ) f ( t ) - l ,  d f ( n - ) = f ( n + ) ,  n 6 N .  

Proof: Define ((a, t) to be the probability that an individual entering the 
stage at time t, remains there to age a. Then ( (a, t) is given by 

( (a, t) = e -I~' ~t + x)~x = e-IV"~x~ d~. 

We obta inf ( t )  by calculating the average over all possible stage durations 

f o  ad,(1 - ( (a, t)) f ( t )  

where 1 - ~ (a, t) is the probability of no longer being in the given stage at age 
a, if one entered (age O) at time t. After partial integration we find for the case 
d = 1 (no periodic discontinuities)f (t) = So ((a, t)da. In general, let n be the 
smallest integer larger than t, thenf( t )  is calculated as 

f ( t )  = ( (a, t) da + di+ 1 ~ (a, t) da. 
i = 0  d n - t + i  

We rewrite this as 

f ( t )  = ( (a , t )da  + d I+1 e -I[ .... ax)dXdv 
i = 0  

and differentiate with respect to t. Then, 

t )  = - -  e - I ' ) L t x ) d x  - -  ( { ( t  + a) -- { ( t ) )  e - Ix t ( '  + x ) d X d a  

+ ,=0 d,+lf]  (t)e-IV"+'t( )dXdv 
which after some rewriting becomes 

If:-' fl 1 (t) = g(t) ((a, t)da + di+ 1 e-I t  . . . .  e(x)a~dv 
i ~ O  

__ e - S ' ~ t ( x ) d x  + de-S;e(, + x)ax 
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and finally 

~ ( t )  = d (t) f (t ) -- [] 1. 

I fd  = 1, it is clear from the proof that if E(') is a periodic function, then f( ' )  
is periodic with the same period. 

The durations of the k parasite stages are independent, and therefore 
the differential equation for the diagonal matrix of mean stage durations is 
given by 

~ t  (t) = L ( t )  F( t )  - I, DF(n  - ) = F(n + ) (5.1) 

where D = diag(dx, . . . ,  dk) is the matrix containing the various resetting 
factors 0 < di =< 1, for all i t  {1 . . . . .  k}. Note that D and F(0) commute 
because both are diagonal. 

It is easy to show that equation (4.4) for ~(1) is, under periodic resetting, 
replaced by 

) D~(1) - I = F o  1 F ( t ) M ( t )  ~ ( t )  - q~(t) dt 

and Qo is defined as in Section 4, as the kth power of the spectral radius of Jg. 
The solution of (4.1) with resetting is x ( t ) =  ~)(t)xo, for 0 < t < 1, with 
x(1 + ) = Dx(1  - ) = D~(1)xo. So the dynamics of the map x(0) ~ x(1) are 
determined by Dq~(1) and the appropriate threshold quantity is 

Qo = r(J{') k 

where Yd is the matrix defined by (4.6), taking into account that the matrix F is 
now the solution of (5.1). 

In [19], Roberts & Grenfell introduced periodic resetting into the auto- 
nomous equations for the ruminant/nematode system of Example 2, and 
determined the threshold quantity to be P as defined by (4.7). This analysis 
was extended to the periodic case in [20] (see also [18]). We have demon- 
strated in Theorem 1 and 2 that P and (2o are equally valid as threshold 
quantities for this system. 

6. Discussion 

The rigorous mathematical definition of Ro for micro-organisms is based on 
the assumption that the infection develops as an autonomous process within 
the host [7] ; one assumes multiplication of the parasite within the host is so 
fast that additional reinfections play no part, the environment is constant. 
One then regards generations of infected hosts and determines, given a hetero- 
geneous population, a positive operator that describes the next generation in 
terms of the present generation and defines Ro as the dominant eigenvalue of 
this (next-generation) operator. The fact that we may assume autonomy 
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within the host once infection has occured, justifies the use of an age-repre- 
sentation for the development of the infection within the host and one can 
meaningfully discuss the infectiousness of the host-individual as a function of 
the time elapsed since infection took place. To keep track of the infectious 
'output' of an infected host, one need only to know the age-of-infection. The 
interpretation given to Ro is then the expected number of newly infected hosts 
caused by a typical infected host during its entire period of infectivity in an 
ideal population consisting of susceptibles only. 

For helminth infections, the picture is very different. The infective output 
depends largely on how many parasites are present in the host and because 
reproduction within the host is rare (it is possible for some intermediate stages 
of helminths), the rise in parasite levels within a host is purely due to frequent 
re-infection. Because the infection has to 'pass through' the environment to 
increase the infectiousness of a host individual, and the environment is as 
a rule not constant, one can realistically not make the assumption that 
a helminth infection develops as an autonomous process within the host. It 
makes no sense therefore for these infections to define a threshold quantity in 
terms of a next generation operator as in the micro-parasite case above. An 
age-representation is not possible, and the quantities 2d(E) and Qo (and to 
a lesser extent P) defined in Section 4 could be used instead. 

Of course, if one assumes from the outset that the environment is constant, 
the life-cycle of the helminth is an autonomous process (i.e. if all rates that 
determine births, deaths or transitions of one stage to the next are constants), 
and then an approach very similar to the microparasite case can be meaning- 
ful. In contrast to the variable environment case, where the expected stage- 
durations depend on the time of 'birth'  into those stages, if the physiological 
development and reproduction are autonomous, then all parasites in a given 
stage of the life-cycle have the same expected stage-duration and are thus born 
equal. It therefore makes sense to regard an age-representation and to define 
a threshold quantity in that setting. In analogy to the microparasite-case, one 
could then call this quantity R0. Essentially, one then has Ro = Qo = P. In the 
above sense is the concept of Ro from [7] meaningful for helminth infections. 

In the case that we do not regard mean parasite burdens but the more 
general models that take variation in parasite burden into account, see e.g. 
[10], [14], there does not yet exist a theory of threshold quantities. However, 
see Barbour [2] for an approach for stochastic models. 

For the same reason that the generation based reproduction ratio Ro is 
not meaningful for nonautonomous helminth systems, it is not meaningful for 
nonautonomous microparasite systems. However, the approach that we have 
taken in Section 4 can easily be applied to microparasitic infections in 
heterogeneous host populations as well. Suppose there are k different groups 
of individuals. We then consider the vector x in (4.1) as describing the 
population density of the infecteds in the k groups, A to be the matrix of 
transmission rates between the various groups and (4.1) to describe the 
linearised real-time development of the epidemic (where the susceptible 
population density is in a demographic, possibly periodic, steady state 
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in the absence of infection). The quantities 2e(E), Q0 and P then indicate 
whether an introduction of the microparasite in a virgin population will 
result in an epidemic. 

Of course, after having defined the thresholds 2e(E) and Qo in a rigorous 
way, thereby reducing the original difficulty of numerically solving the full 
nonlinear periodic system considerably, the main problem is to find useful 
approximations to these quantities to make calculations more practical. In 
Roberts and Heesterbeek (in prep.), we will combine calculation of Qo and 
),d(E) from data with the evaluation of various control-strategies involving 
chemotherapy for sheep/parasitic nematode systems. In systems like that all 
elements touched upon in the present paper are of importance and should 
ideally be taken into account when evaluating optimal control methods. 
Indeed, the probabilities of eggs and larvae maturing into larvae and adults 
respectively, are influenced by a periodic environment; there are differences in 
nematode resistance between adult sheep and lambs; there are varying degrees 
of resistance to chemical treatment in the nematode species; and finally, 
periodic man-induced discontinuities by removal of sheep strongly influence 
the adult worm population. In reviewing various control strategies, the 
quantity Qo might prove to be more useful than 2d(E) because of the very large 
values the latter quantity can take in an epidemic situation. Finally, P might 
be the best candidate for which to find approximating expressions. 
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