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Introduction

Surprisingly, immunosuppressive treatment can
enhance the efficacy of conventional HIV-1 antiretro-
viral treatment, and can be beneficial for HIV-1-
infected patients. This argues for a role of target cell
availability in limiting the HIV-1 infection, and is in
agreement with mathematical models suggesting that
immunosuppression may limit the outgrowth of drug-
resistant escape mutants. Immunosuppressive drugs like
hydroxyurea (HU) may therefore be powerful and
aftordable supplements to HIV-1 antiretroviral therapy.

Clinical trials

Recent clinical trials in HIV-1-infected patients have
investigated the long-term synergistic eftect of HU on
conventional antiretroviral therapy with the nucleoside
analogue didanosine (ddI). Vila et al. [1] treated ddI-
naive individuals with CD4 cell counts above
200 x 10%/1 with HU and ddI, and reported that after
1 year, 10 out of 20 patients had no detectable virus in
plasma or lymphoid tissue. Two of these patients
stopped therapy and had extracellular virus remain
undetectable in both lymph nodes and plasma for
1 year [2]. Similarly, Lori et al. [3] reported that after

72 weeks of ddI-HU treatment, three out of six
patients had no detectable plasma virus, and that there
was no rebound of the plasma viral load in any patient
on uninterrupted treatment. There is also an intriguing
anecdotal report of a patient on indinavir, ddl and HU,
who after having had HIV driven down to an unde-
tectable level stopped taking these drugs, and remained
undetectable for 9 months [4].

Short-term studies report similar encouraging results of
the ddI-HU combination in patients naive for ddI.
During the first month of treatment the viral load
decreases sharply by 1-2 log,, copies/ml, and several
patients had undetectable virus levels after 3 months
[5], 4 months [6], or 6 months [7] of treatment. In
another study, 1000 mg daily HU treatment added to
chronic ddI therapy decreased viral load by approxi-
mately 1 log,, copies/ml and decreased CD#4 cell count
by 25% [8]. The combination of HU with ddI is more
potent than combinations with other nucleoside ana-
logues [9], probably because HU preferentially depletes
intracellular dATP concentrations [10,11]. However,
monotherapy with HU failed to have a beneficial eftect
on plasma HIV RNA load (but may decrease CD4 cell
count) [12,13]. Two studies have compared ddl
monotherapy with the ddI-HU combination. They
either failed to find a difterence [14], or reported a sig-
nificantly stronger decrease in plasma viraemia with the
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ddI-HU combination [7]. Patients on ddI-HU treat-
ment routinely develop mutations known to confer
resistance to ddI [7,11]. However, since ddI-resistant
mutants grow poorly in the presence of HU [11], these
patients have a lower plasma virus concentration than
those on ddI monotherapy [7,11].

Efficacy of ddI-HU

Why is long-term treatment with ddI-HU effective?
HU blocks the cellular enzyme ribonucleotide reduc-
tase, which thus decreases the intracellular concentra-
tions of nucleosides required for DNA synthesis [9,15].
By decreasing the intracellular dATP pool, HU may
favour the incorporation of ddI [11]. HU is also a cell
cycle-specific toxin [16] that inhibits the S-phase of the
cell cycle [17]. It is a routinely prescribed cytostatic
drug used in the treatment of leukaemia [18] and to kill
dividing T cells [19,20]. Although the HU dosage
employed in ddI-HU trials should be low enough to
avoid haematological side-effects [18], most (but not all
[5]) of the HU trials in HIV patients report suppression
[8,12,13] or poor recovery [1,3,6] of peripheral blood
CD#4 cell counts. This negative impact on peripheral
blood CD4 cell counts is an important difference
between the ddI-HU combination and other forms of
antiretroviral therapy. By killing dividing CD4+ T cells
and by depleting intracellular dATP concentrations HU
reduces the availability of suitable target cells for HIV.
Using mathematical models we have shown that such a
reduction of target cell availability during antiretroviral
treatment can strongly reduce the growth rates of drug-
resistant escape mutants [21]. This effect, we believe,
explains the encouraging long-term effects of the
ddI-HU combination [1-3], even in the apparent pres-
ence of ddI-resistance mutations [7,11].

There 1s ample evidence that the availability of acti-
vated CD4+ T cells limits HIV-1 levels during clinical
latency. Stimulating the immune system with inter-
leukin-2 in the absence of potent antiretroviral therapy
may increase the viral load [22]. Immunization of HIV-
1-infected patients with either influenza vaccine
[23,24], hepatitis B vaccine [25], pneumococcal vaccine
[26], or tetanus toxoid [27], which should all activate T
cells, tends to increase the viral load. A similar increase
in HIV levels is seen during infection with pathogenic
organisms [28,29]. The early rebound of wild-type
virus observed during zidovudine treatment [30] finds a
straightforward explanation in the increased target cell
availability when the CD4 cell counts recover [30-33].
Finally, the high CD4+ T-cell production in children
[34] may explain the high viral loads that HIV-infected
children tend to have [35,36]. If HIV is target-cell-
limited during clinical latency [37,38], one should be
able to exploit this by immunosuppressive therapies

decreasing target cell levels. Suppression with
cyclosporine [39—42], prednisolone [43,44] and HU
[1,3,5,6,8] indeed have beneficial effects.

Mathematical models

Analysing mathematical models in which the HIV
infection is target-cell-limited one finds that for any
strain of HIV there exists 2 minimum target cell num-
ber below which the strain cannot be maintained [21].
This threshold number is set by various viral character-
istics, such as its infection rate, burst size, and lifespan
[21]. This finding is identical to classical results in
epidemiology stating that any infectious disease has a
critical host density below which the infection cannot
maintain itself. Because HIV-1 infection is at
quasi-steady state during clinical latency [45,46], the
steady-state target cell level should be close to this
epidemiological threshold. Target cell numbers higher
than this would allow a target-cell-limited virus to
expand, which is consistent with the data reviewed
above, while target cell numbers below this threshold
will lead to viral decay [21,47].

Analysing antiretroviral therapy in the same mathemati-
cal model, we have predicted precisely the long-term
effects that are observed now with the ddI-HU combi-
nation: the major beneficial effect of supplementing
antiretroviral therapy with target cell suppression
should be a reduced expansion of drug-resistant
mutants [21]. Pre-existing drug-resistant variants, hav-
ing a lower fitness than the pretreatment wild-type
virus [48,49], require higher target cell levels than the
wild-type virus in order to expand. Likewise, novel
mutants arising under drug pressure are unlikely to
attain a fitness higher than that of wild-type virus
before the onset of treatment. Thus, the recovery of
the CD4+ target cell population seems the ‘Achilles
heel’” of conventional antiretroviral therapy: the
increased target cell availability allows drug-resistant
mutants to escape [21,30,33,47]. The encouraging
long-term effect of ddI-HU treatment on the viral
load, allowing in most cases only for a limited CD4 cell
recovery, is therefore in good agreement with our con-
jecture that HU decreases target cell availability and
consequently reduces, or even prevents, the outgrowth
of drug resistant escape mutants [21].

Conclusion

Importantly, our results suggest that similar long-term
beneficial effects are to be expected from the combina-
tion of HU, or other immunosuppressive agents, with
other antiretroviral drugs. Obviously this should be
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tested carefully because lowering CD4+ T cells may
put patients at risk of even more opportunistic
infections, and because immunosuppression would be
harmful if the HIV infection is largely controlled by
immune responses rather than by target cell availability.
The current encouraging results with the ddI-HU
combination nevertheless supports our conjecture that
some degree of target cell depletion could be very ben-
eficial by preventing drug resistance [21]. If this turns
out to be true, it would open up inexpensive and well-
tolerated new therapeutic strategies for patients not
responding to current therapies, and for countries
unable to afford them.
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