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In ecological modeling the interaction between a predator and its prey, is usually implemented as a linear
or saturated function of the prey density. The main advantages of such a “functional response” are
its simplicity, general applicability, and well understood mechanistic basis. In systems where predators
compete directly for the available prey however, the functional response should depend not only on
the prey density but also on the predator density. We aim here to devise a simple and generic
“predator-dependent” functional response. We derive such a functional response by making
quasi-steady-state assumptions for models, in which we allow predators and prey to form interaction
complexes. We end up with the—previously proposed—*“‘Beddington” functional response. Because of
our formal derivation this simple predator-dependent functional response is now based on clear
mechanistic reasoning. The direct predator interference of this functional response emerges from the
interaction between a predator and a prey, and not from direct predator-predator interactions. We
conclude however that, although the Beddington functional response is generic for a two-dimensional
system of one prey interacting with one predator, it is difficult to generalize it to higher dimensional

systems consisting of several prey and predator species.

1. Introduction

Most predator prey interactions are modeled with a
linear functional response or with the saturated
Holling type II functional response. Following the
introduction of the ratio-dependent functional re-
sponse by Arditi & Ginzburg (1989) there has been an
extended debate between its proponents (Arditi &
Ginzburg, 1989; Arditi & Akgakaya, 1990; Ginzburg
& Akgakaya, 1994; Berryman, 1992) and its
opponents (Oksanen et al., 1992; Diehl et al., 1993,
Gleeson, 1994; Abrams, 1994). Because the ratio-de-
pendent function lacks a mechanistic basis, and
because it allows for artificial model behavior when
predator and prey densities are low, we are also
opposed to the ratio dependent view.

The most important advantage of the Holling type
II functional response is that it is mathematically and
mechanistically simple. The Holling type II function
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can be derived mechanistically and requires only the
intuitive assumption that a predator cannot eat an
unlimited amount of prey per unit of time. This
simplicity allows the Holling type II functional
response to be employed in a wide variety of models,
ranging from simple two-dimensional models with
one predator and one prey species to higher
dimensional models involving, say, n prey and m
predator species.

The classic ‘“Paradox of enrichment” paper
(Rosenzweig, 1971) is based upon a Lotka—Volterra
model without predator interference, and upon a
Holling type II functional response. Such a model has
a vertical predator nullcline and a humped prey
nullcline. The result of Rosenzweig’s model was that
enriching an aquatic ecosystem by increasing the
carrying capacity of the prey may destabilize the
non-trivial equilibrium point and give rise to high
amplitude oscillations. In a stochastic environment
such limit cycles can lead to the extinction of one of
the species, hence the paradox of enrichment
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(Rosenzweig, 1971). The same simple model also
predicts that the eutrophication is reflected only by an
increase in the predator density. The biomass of the
prey is not expected to increase. The latter result
however, is an artifact of the vertical predator
nullcline of this over-simplified model. Rosenzweig
was right to illustrate his Paradox of Enrichment with
the simplest model available, i.e., one without
predator interference.

Field observations in aquatic ecosystems cast doubt
on the occurrence of the Paradox of Enrichment for
algae-zooplankton interactions in euthrophic sys-
tems. Limit cycles in natural systems are typically of
limited amplitude (i.e., 2 < Nua/Nmin < 4), and the
amplitude does not seem to correlate with nutrient
richness (McCauley & Murdoch, 1987, 1990). If
realistically estimated parameters are applied Rosen-
zweig’s simple model predicts large amplitude
oscillations. In order to obtain a model behavior that
is more in line with these field observations, several
modifications and extensions of the Lotka—Volterra
Holling type II models have been proposed. Some
examples are prey inedibility (McCauley et al., 1988;
Leibold, 1989), size- or age-structured interactions
(Mittelbach et al., 1988; Persson et al., 1992; De Roos
et al., 1990), spatial heterogeneity (Scheffer & De
Boer, 1995), and predator interference (Persson et al.,
1992; Arditi & Ginzburg, 1989).

The simplest way of obtaining predator interfer-
ence is to introduce a self-limitation term for the
predators (Berryman, 1992). Such a form of predator
interference is however independent of the prey
density. It seems more realistic to have strong
interference when the amount of available prey per
predator is low. This ratio of prey per predator, is the
one on which the ratio-dependent functional response
is based (Arditi & Ginzburg, 1989; Arditi &
Akgakaya, 1990; Ginzburg & Akgakaya, 1994;
Berryman, 1992). Indeed, in Appendix A.1 we
demonstrate that ratio dependent models cannot be
destabilized by eutrophication, i.e., by increasing the
carrying capacity only. Additionally, because ratio-
dependent models have a diagonal predator nullcline,
both prey and predator increase with eutrophication.

Another, and in our opinion better, functional
response that allows for predator interference is the
one proposed by Beddington (1975). The Beddington
functional response lacks the artificial behavior of
ratio-dependent models, and can be derived mecha-
nistically (Ruxton et al., 1992). The predator nullcline
of a Beddington model is also slanted, and hence
allows for the same results as the ratio-dependent
model, with the exception that eutrophication can
destabilize the non-trivial equilibrium.

Recently we demonstrated that the Beddington
functional response can also be derived from
predator-prey interaction lacking explicit interference
(Borghans et al., 1996). This derivation followed from
an extension of the conventional Michaelis—Menten
quasi-steady-state (QSS) approximation for a repli-
cating substrate. In this way we developed models
where the replication of the predator is “catalysed’ by
the prey. Here we repeat our previous analysis more
rigorously in an ecological context by allowing for
predator handling time, growth of the prey and death
of the predator.

2. Properties of the Beddington Functional Response

The general model for a predator prey interaction
is

%/zf(N)N—g(N, P)P, (1a)
dpP
5, = ¢V, P)P — mP, (1b)

where the variables N and P denote the prey and
predator density, respectively. The parameter ¢ is a
conversion efficiency and m is the mortality rate of the
predators.

The function f(N) describes the growth of the
predator population, which is most often modeled as
a logistic growth term f(N)=r(1l — N/K), where r
denotes the growth rate of the prey and K is the
carrying capacity. The function g(N, P) describes the
functional response. The Beddington functional
response is

bN

SN B =3 NP @

where the parameter b is the maximum number of
prey that can be eaten by a predator per unit of time,
h is a saturation constant, and w scales the impact of
the predator interference. For w = 0 the Beddington
function simplifies to the Holling type II function.
In Fig. 1 we analyse this model graphically by
phase plane analysis. Following Arditi & Ginzburg
(1989) we distinguish two qualitatively different
parameter regions, i.e., the “limited predation” case
[Fig. 1(a)], and the “humped isocline” case [Fig. 1(b)].
The two cases can be distinguished by the slopes of
the production curve f(N) and the maximum
consumption curves, i.e., Pg(N, P) for P - co. In
Fig. 2 we plot these functions as a function of N. Near
the origin, i.e., for N — 0, their slopes are r and b/w
respectively. When r < b/w the production and
consumption curves may intersect at two points and
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F1G. 1. Nullclines of the Beddington-model for two qualitatively different parameter regions. In the “limited predation” configuration (a)
the prey isocline has a vertical asymptote at N = N;. Panel (b) shows the humped isocline case. Parameters panel (a): r = K =1, b = 0.85,
h=0.1,w=1,¢=0.1,and m = 0.05. In panel (b) » = 1 and w = 0.4 are changed, all other parameters are identical. See the text for further

explanation.

the humped isocline case is obtained; otherwise there
will be just one point of intersection and one will
obtain the limited predation case (Fig. 2). For less
than maximum predation the initial slope of the
consumption curve is b/(h/P 4+ w), which increases
with P [see Fig. 2(b)]. Therefore, for low predator
densities there is only one intersection point, implying
that the prey nullcline cannot pass through the origin.

(a) ,

Production / consumption
o]

Additionally, like the Holling type II model, but
unlike the ratio-dependent model, the Beddington
model has a minimum prey density, below which the
predators cannot survive (see Fig. 1).

Because the Beddington model has a slanted
predator isocline, it tends to be more stable than the
Holling type II model. For the limited predation case,
i.e., r > b/w, the equilibrium cannot be destabilized

(b) ’

F1G. 2. Production and Consumption curves of the Beddington model. The heavy lines depict the production curve f(N), the light lines
the consumption curves Pg(N, P), and the dashed lines the maximum consumption curves, i.e., Pg(N, P) for P — co. In panel (a) we set
r > b/w such that the slope of the production curve exceeds that of the maximum consumption curve. For each value of P there can therefore
be only one point of intersection, and all intersection points occur for N > N;. This yields the limited predator nullclines of Fig. 1(a). In
panel (b) we set r < b/w. Now we have either one or two points of interaction for every value of P, and we obtain the humped isocline
case of Fig. 1(b). Similar results were found for the ratio dependent functional response (Arditi & Ginzburg, 1989).



392 G. HUISMAN AND R. J. DE BOER

Holling 4D model 2D QSS 2D Padé Mini model
~—
1z 10
~—
5
/
0 5 10 5

F1G. 3. Phaseplot (thick black lines) and nullclines (thin black lines) for five model types (columns) and two escape probabilities (rows)
for a parameter setting for algae zooplankton interactions (Scheffer & De Boer, 1995). In the first row the probability of escaping is 90%

(k-1 = 36.0, k> = 0.4), in the second row 10% (k_, = 0.004, k> = 0.4).

by increasing the carrying capacity K only. The
humped isocline case destabilizes at higher values of
K than does the Holling type II model. Conversely,
the ratio dependent model cannot be destabilized at
all by increasing K only (see Appendix A.1).

3. Derivation of the Beddington Functional Response

Our approach is to derive a functional response
from reaction schemes like:

ki k ks
P+N=C—H—(+0P, 3)

where P denotes predator density, N prey density, C
an interaction complex of predator and prey, and H
the density of handling predators.

A predator handling a prey is a well-established
concept in ecology. The interaction complex of
predator and prey requires further explanation. We
think of the complex as a prey being in the “field of
attention” of a predator. The general argument is that
a predator “locks in” on a certain prey. This prey is
still alive, and can still escape, but no other predator
will lock in on it. As an example one can think of a
“sit and wait” predator, that locks in on a nearby
prey. The predator is focused on that single prey and
no other predator will attempt to catch that prey.
Such a predator and prey can be regarded as an
interacting complex that is not interacting with other
predators and prey. Another example is a predator
chasing a prey. Again there is a short period in which
the prey is still alive, and has the possibility to escape.
In this short period neither the prey nor the predator
is involved in interactions with other predators and
prey. The complex need not be a direct interaction,

but can also arise from a spatial distribution. For
example a territorial predator can be regarded as
being in complex with the prey in its territory. The
predator will only catch prey in its own territory, and
prey in this territory are protected from other
predators. Such a complex falls apart when the prey
leaves the territory.

Thus, in eqn (3) the parameter k, denotes the
frequency with which predators and prey meet, k_, is
the rate of prey escape, k; is the rate of prey capture,
1/k; is the handling time, and c is a conversion factor.
This scheme is inspired by the well-known reaction
scheme for enzyme kinetics, where an enzyme and a
substrate molecule form a complex which can either
fall apart, or produce the intended product in an
irreversible reaction. We here replace substrate by
predator, enzyme by prey, and interpret the product
formation as an increase in predator density. The
handling predator is added to the scheme, because it
is a well-known concept in ecological models, and
because it allows us to derive a more general
functional response. To show how a functional
response can be derived from such a reaction scheme,
we will start with a simplified example.

3.1. HOLLING TYPE II

The mechanistic argument for the Holling type II
functional response is the handling time. The Holling
function can formally be derived by splitting the
available time into time spent searching for the prey
and time spent handling the prey, and by calculating
the net effort in the total time (Metz & Diekman,
1986; Stephens & Krebs, 1986). To set the stage for
the work presented below we here derive the Holling
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function from a simplified version of scheme (3), i.e.,
from

ks k3
N+PSHSPI+ o). @)

As a general example we assume logistic growth for
the prey and a linear turnover for the predators. This
yields the ODE model

393

—mH+ kzNP — k3H, (SC)

where r denotes the intrinsic growth rate of the prey,
K the carrying capacity and m is the death rate of the
predator (which we assume to be equal for both
handling and searching predators).

Defining total number of predators as

P=P+ H, (6)
and simplifying the system by making a quasi-steady-
% = rN(1 — N/K) — k;NP, (5a)  state assumption for eqn (5c) we obtain
NP kit m
4P H= LN where k;, = o (7a, b)
—=—mP+ k(1 + c¢)H — kaNP, (5b)
dt Thus, the model can be reduced to the well-known
Holling 4D model 2D QSS 2D Padé Mini model
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F1G. 4. Phaseplot (thick black lines) and nullclines (thin black lines) for five model types (columns) in a parameter setting for Microtine
rodent Mustelid interactions (Hanski & Korpimiki, 1995). Predator interference is high in the two upper rows and low in the two lower
rows (e ~ 0.93 in row 1 and 2, € ~ 0.18 in rows 3 and 4). Escape probabilities are high (90%) in rows 1 and 3, and low (10%) in rows

2 and 4.
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two-dimensional system

dN NP
$_1N(1 —N/K)—(k3+m)m, (8a)
L P ok, ]QN%V, (8b)

in which we easily recognize the disk equation as
proposed by Holling (1959).

3.2. PREDATOR-DEPENDENT MODEL

We now perform the same analysis for the full
version of scheme (3). Additionally, we extend the
above analysis by changing variables into total
numbers of predators and total numbers of prey
(Borghans et al., 1996). This yields a predator-depen-
dent functional response. Note however that we do
not introduce explicit predator interference into
scheme (3), i.e. the interference emerges naturally
from scheme (3).

The ODE model that follows from scheme (3) is

%V:,N(l — N/K)— kPN +k_,C, (9a)
% = —mP +k_,C+ ki(1 + ¢)H — kPN, (9b)
‘L—’f — koC — kyH — mH, (%)
t—f:klNP—k,lC—kZC, (9d)

where we make the same assumptions as in Section
3.1. An additional assumption is that the complexes
are short lived, which allows us to neglect the death
rate of the predators and preys in the complex (which
greatly simplifies the analysis).

Reducing eqn (9) to a two-dimensional model with
a simple functional response requires three simplifica-
tion steps. First we make a quasi-steady-state (QSS)
approximation to decrease the number of variables
from four to two. Thereafter, we simplify a
complicated quadratic expression for C with a Padé
approximation [see our previous paper (Borghans
et al., 1996) and Baker & Gravis-Morris (1984) for an
explanation of the Padé¢ approximation]. Finally, we
neglect some terms in the model to arrive at the
Beddington model. In total we thus have four models
that we will refer to as the “full” model, the “QSS”
model, the “Padé” model and the “minimal” model.
The full model is given by eqn (9).

Changing variables to total number of prey and
total number of predators, i.e.,

N=N+C, and P=P+ H+ C,(10a, b)

and making a QSS assumption for eqns (9c) and (9d),
ie.,

sz-k3H—mH:0, (IOC)
ki(N — C)(P— H—C)—k,C)=0, (10d)
we obtain
C 1 = _
H=-—, and C=7(Pe+ N+ ke
ki 2
+ /(Pe + N + k,e)> — 4PNe),  (10e, f)
where k, is defined by eqn (7b), and
_ k,l + kz _ kh
km = kl , €= kh + 1 < 1. (IOg, h)

Since the positive root violates the condition C < N
given by the conservation law (see the Appendix A.2),
we only consider the negative root of eqn (10f). Thus,
we obtain our two-dimensional QSS system, i.e.,

%L r(N — C)(1 — (N — C)/K) — k,C, (11a)
dpP _ 5 ks

where C is defined by the negative root of eqn (10f).
This model is too complicated for two reasons. First,
the square root term of eqn (10f) is too complex for
the model to be elegant. Second, the logistic growth
and the predator turnover terms still depend on the
complexes. The next two simplifications serve to
eliminate both complications.

The complicated solution for C, i.e., eqn (10f), can
be simplified by a Padé¢ approximation (Borghans
et al., 1996). This yields

NPe

Czﬁ—i—ﬁe—i—k,ﬂe’

(12a)
which holds when N is either large or small compared
with P (Borghans et al., 1996). Even when N = P the
approximation should be reasonable whenever
1«2 + k,,/P (Borghans et al., 1996). Thus we expect
our Padé model, i.e., eqns (11) and (12a), to be a
reasonable approximation of the QSS model. Note
that for ¢k,, = h and ¢ = w, eqn (12a) is equivalent to
the Beddington functional response given in eqn (2).
With respect to the predation terms, the Padé model
therefore repeats the result of our previous work,
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namely that the Beddington functional response can
be derived from an interaction scheme of predators
and prey lacking predator interference. However,
because of the complicated growth and death terms in
eqn (11), the Padé model is much more complicated
than the original Beddington model.

Thus, our final simplification step is to assume that
C is indeed small compared with N and P, such that

N—Ca~N, and P—C~P. (12b,0)

Thus, we have to assume that the fraction of predators
and prey involved in interaction complexes C is
always a small fraction of the total prey densities P
and the total predator densities N. Note that for this
assumption the Padé approximation should always be
allowed. This final simplification step is in fact implicit
in our previous paper (Borghans et al., 1996), where
the logistic growth of the prey, and the turnover of the
predator, were added to the model after the functional
response had been calculated. By approximation 12
we finally obtain the Beddington model.

In our previous paper (Borghans et al., 1996)
predator interference was always maximal, i.e., ¢ = 1.
The same form is provided by our current model
when the predator handling time becomes negligible,
i.e., for 1/k; — 0 [see eqns (7b) and (10h)]. Thus, the
current form, i.e., 0 <e < 1, is more general, and
allows us to tune the importance of the predator
interference. For instance, in the absence of
interference, i.e., for ¢ — 0, the Holling functional
response is obtained.

Approximation (12) limits our derivation to
predator-prey systems in which complexes are short
lived and predation events are rare. Neglecting C in
the predator mortality term of eqn (11b) seems
acceptable, because it is a more or less arbitrary
choice to let the predators in the complex die or not.
Additionally, one can compensate for this approxi-
mation by adjusting the mortality parameter m. The
C terms in the logistic growth of the prey in eqn (11a)
pose a more serious problem however. Because of the
nonlinear nature of the logistic growth, these terms
cannot simply be adjusted for by changing the growth
parameters r and K. Neglecting the C term in the
logistic growth term, we in fact assume that prey in
complex grow just as fast as free prey individuals.
Whenever a prey is not aware that a predator has
locked-in to it, this could therefore still be a
reasonable assumption.

4. Numerical Examples

Whether or not our full model based upon scheme
(3), and the various simplification steps that we need

to obtain the minimal model, are of any relevance for
predator-prey systems in nature remains an open
question, however. Here we approach this question
numerically. We have searched the ecological
literature for publications estimating the parameter
values of predator-prey systems resembling eqn (1).
We have found two examples: an algae zooplankton
system (Scheffer & De Boer, 1995) and a microtine
rodent mustelid predator (Hanski & Korpimiki,
1995). Assuming that these two predator prey systems
can be described by our full model of scheme (3) we
estimate the unknown parameters ki, k_, k>, and k.
For the two examples we thus found a full model
behavior that seemed to be realistic. Hence scheme (3)
can indeed describe the predator-prey interaction.

Next we test the three simplification steps of the full
model. Assuming that the behavior of the full model
is indeed realistic we study how its behavior is affected
by the various simplifications. The results will show
that all simplification steps except for the last one
hardly affect the model behavior. Therefore, making
a minimal model by assuming that the complexes are
a small fraction of the total predator-prey densities is
the most dubious simplification step.

The ultimate aim of our procedure is to see if our
two examples can be fitted to the Beddington model,
ie.,

dN gNP

7_VN(]_N/K)_I1+WP+N’

Th (13a)

dp gNP

G Chirwps NP (13b)

where we have defined the lumped parameters as

ks
ot m ~c¢, (13cHf)

g=¢cky, h=c¢ck,, w=e¢, e=c

and where the parameters k,, and ¢ are still defined as

km:w’ and €
ki

k3+m

=———"—<1, (I3gh
<L (13gh

and the parameters ki, k_, k,, and k; are defined by
scheme (3). For the ecological systems considered
here it natural to assume that the handling time 1/k;
should be much shorter than the average life-span of
a predator 1/m. This set a constraint on the realistic
values of k; and shows that the conversion parameter
e in eqn (13f) is approximately the same as the
conversion parameter ¢ in scheme (3), i.e., e ~c.
Another constraint is that ¢ cannot equal 0, because
this would assume an infinitely high prey capture rate
k» [see eqn (13h)], which is unrealistic.

Our first numerical example is a Lotka—Volterra
Holling type II algae zooplankton model that was
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published with realistically estimated parameters
(Scheffer & De Boer, 1995). The published parameter
estimates are r=0.5 day™!, K=10mgDWI1',
e=0.6,g=04day ', h=0.6mg DW, and m = 0.15
day~'. To test our assumption that this model could
have scheme (3) as its underlying interaction scheme,
our first job is now to estimate or calculate the
unknown parameters k;, k_,, k», and ks.

Since we require that k;>m, we assume that the
handling time of a Daphnia is on the order of 1 min,
ie., ky=1440 day ' Substituting k;= 1440,
m=0.15, and eqn (13h) into g=0.4=ck, we
compute that k, ~ 0.4. Hence ¢ ~ 1 and £, ~ 0.6.
Assuming that 90% of the prey-predator complexes
dissolve because the prey escapes, i.e., assuming that
k-1 =90k, ~ 36.0, we obtain k, ~ 66.6. Conversely,
assuming that 10% of the complexes dissolve because
the prey escapes, i.e., assuming that k_, ~ 0.004, we
obtain k, ~ 0.67.

These calculations are quite robust because they
change very little when we pick a different value for
the handling time. For instance, for k; = 24, i.e., a
handling time of one hour, we obtain virtually
indistinguishable values. Even for a handling time of
one day we obtain similar values, i.e., k» ~ 0.6,
€ ~ 0.6, and k, ~ 1. Thus, fitting scheme (3) to the
algae zooplankton parameters we always obtain
maximum interference, i.e., ¢ ~ 1.

We numerically test our various simplification steps
in Fig. 3 where the behavior and the nullclines of the
algae zooplankton model (Scheffer & De Boer, 1995)
and of our four models for the same parameters are
depicted. The five columns in the Fig. 3 depict the
algae-zooplankton, the four-dimensional, the QSS,
the Padé, and the minimal model, respectively. In the
first row we assume that most of prey in complexes
escape, i.e., we set k_; ~ 36.0>k, ~ 0.4, whereas in
the second row most of the prey in complexes are
eaten by the  predator, ie., we  set
ko1 ~0.004«<k, ~04.

Figure 3 shows that for these parameters the
QSS and the Padé approximation fit the full model
and the original Holling model of Scheffer & De
Boer (1995) reasonably well. The behavior always
remains a limit cycle. Our models may even fit the
actual data somewhat better because the algae and
zoo-plankton densities are not depleted as much
during the troffs of the limit cycle (cf. Scheffer &
De Boer, 1995). This is due to the stabilizing
effects of the predator interference. The same
stabilizing effect is however much too strong in the
minimal model where our parameter estimates
force us into the limited predation regime with a
stable equilibrium. The fact that the minimal model

provides a rather poor fit indicates that for the
current parameters too large a fraction of the prey
or predators forms complexes, i.c., indicates that
eqn (12b) does not hold. The conventional Daphnia
model can however be considered as a ‘“‘worst”
case for our test because of its large amplitude
limit-cycles for both predator and prey (Scheffer &
De Boer, 1995), i.e., the complexes are bound to
cover too large a fraction of the total number of
predators and prey, at least somewhere along the
trajectory. It is well known, however, that the
conventional model fits the data on oscillating
algae and zooplankton densities rather poorly
because of these large amplitude limit-cycles
(Scheffer and De Boer, 1995). We conclude that for
these parameters the minimal model fits the data
poorly, but that from the Padé model onwards our
models may fit the data better than does the
Holling type IT model.

4.1. MICROTINE RODENTS AND MUSTELID PREDATORS

Secondly, we applied the same numerical analysis
to a parameter setting estimated for microtine rodents
(Microtus) and mustelid predators (Mustela nevalis)
(Hanski & Korpimaki, 1995). In this system the prey
density is much higher than the predator density, thus
C is always small compared with N. The parameter
estimates for this model were r = 4.05 year™', K = 75
individuals ha~!, e = 0.0023, g = 600 year~', i = 5.0
individuals ha™', and m = 1.0 year~' (see Appendix
A.3 for calculations).

Our estimate for the interference parameter ¢ now
depends on the estimate for the handling time.
Picking a fast handling time of about one hour, i.e.,
ks = 8760 year~!, we find k,~ 644, ¢ ~0.93, and
k,=5.4. Again assuming that 90% of the prey
escape, i.e., setting k_; ~ 57970 we obtain k, ~ 10929.
Conversely, assuming that only 1% of the prey
escape, i.e., setting k_;, ~ 6.5, we obtain k; ~ 121.
Picking a slow handling time of about 12 hr, i.e.,
k; = 730, we obtain k, ~ 3348, ¢ ~ 0.18, and k,, = 28.
Thus, for 90% of the prey escaping we find
k_, ~ 301328 and k; ~ 10920, whereas for 10% of the
prey escaping we find k_, ~ 37 and k, ~ 121.

Figure 4 depicts that for the parameter setting of
the Microtine rodent Mustelid predator interaction,
the behavior of all our simplified models fits the
four-dimensional model and a Holling type II model
reasonably well. Hence, we conclude that (i) scheme
(3) can apply to this particular system, (ii)) our
derivation of the minimal model seems justified, and
(iii) we can obtain weak and strong predator
interference. Our simplifications now work much
better because the prey densities are much higher than
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the predator densities, i.e., eqn (12b) should always
hold.

5. High-Dimensional Models

An essential property of a general functional
response is that it is applicable to ecosystems with
several (say n) prey species and several (say m)
predator species. In order to keep the model as simple
as possible such systems are often modeled with a
linear functional response (Yodsis, 1989). In this
section we show that a generalization to an n x m
system is straightforward for the Holling type II
functional response. Unfortunately, predator-depen-
dent functional responses seem to be too complex to
allow for such a generalization.

5.1. HOLLING MODEL IN N X M DIMENSIONS

Following the same derivation scheme as above,
the equations for an n x m dimensional system with
Holling type II functional response can be derived by
writing down the n x m dimensional form of eqns (5),
where k; is replaced by o;:

dnN; N < )
T rN,~<1 — K> — N, ; Py, (14a)
dP,‘ n n
d[ = —WZP,- + (1 + C)kq ZH,:/' — P,‘ Z MOC/'I', (14b)
j j
dgi‘ = OC,‘,’P,'N/' — mHi/ — k3Hi,’ = 0 (140)
We define total predators as
P;=P;+ ) H;, and obtained
j
ddp;[z —mP/+C'Zk3H//. (153., b)
j

Solving (14c) for H; and substituting the result in
(15a) yields

(m + ks)P[

P = (16)

(m + ks) + Y 0N,
j
For the general predator prey model we thus obtain

dN,
dr

Ni m ['N,‘F'
VN1<1—K>—(n1+k3)Z % :

/' n
(m+ ks) + > 0N,
!

. (17a)

dp; = —mP;+ ck; ).

,‘ n
(m + k3) + Y oaN,
!

O‘ifPfN/

» (17b)

where the Z; means that for each predator each prey
species functions as an independent resource, and the
%, term weights the availability of this resource by the
“time” this predator spends at all other resources.

5.2. PREDATOR DEPENDENT MODEL IN N X M DIMENSIONS

Models with a predator dependent functional
response are more complex and much more difficult
to generalize to higher dimensional systems. De Boer
& Perelson (1995) propose a generalization to an
n x 1 system in a similar model describing T-lympho-
cyte proliferation. Following their approach the Padé
approximation for C in a system with one predator
and n prey species becomes:

C~ eN,P ,
= = P+ k.
€k, + €P + / N; Pk,
where ¢ = _fegm , (18a, b)

ks +m+ ) ky,
J

which is unfortunately too complicated for a minimal
model.

For systems with n predator and n prey species a
generalization is not possible at all (De Boer &
Perelson, 1995). As we prefer to have models which
can be applied generally, we here pinpoint a major
disadvantage of the Beddington functional response.
Thus, we definitely pay a price for having a
predator-dependent functional response.

6. Discussion

Our approach, which uses reaction schemes and
quasi-steady-state assumptions for the formal deri-
vation of a functional response, has given us a clear
mechanistic argument for the Beddington functional
response. This fulfils our first requirement for a good
functional response. The requirement of general
applicability is however not fulfilled because the
Beddington functional response cannot be general-
ized to systems of several interacting prey and
predator species. Thus, for two-dimensional systems
of one prey and one predator species the Beddington
functional response seems an elegant choice, because
it allows for higher stability and for the Paradox of
Enrichment.
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Our numerical tests show that the behavior of the
quasi-steady-state model and the Padé model is
normally a good approximation of the behavior of the
four-dimensional model. The most critical simplifica-
tion step is to ignore the complexes of predator and
prey in the logistic growth term. This point was
missed in our previous analysis (Borghans et al.,
1996). An important issue now is therefore the growth
of the prey in complex, i.e., those prey individuals on
which predators have locked-in. Prey individuals that
are being chased by a predator are indeed unlikely to
contribute to the growth of the prey population. The
individual algae that a zooplankton individual is
trying to catch are, however, probably unaware of
being in the field of attention of a predator, and will
therefore continue to contribute to population
growth. Then, our derivation simplifies because the
growth term of the prey can be added on to the
quasi-steady-state model [as was done previously
(Borghans et al., 1996)].

One can think of several ecological explanations for
our complex of predator and prey. The only general
restriction is that the interaction complex should not
necessarily result in the death of the prey. The
functional response we obtain from the various
reaction schemes depends on our definition of total
numbers of prey and total numbers of predators.
Mathematically one can still derive the Beddington
functional response from scheme (3) if the complex is
not allowed to fall apart into predator and prey (i.e.
k_, = 0). Sticking to our original definition of total
numbers of prey [eqn (10a)], one obtains the same
functional response because the only effect of k_, in
eqn (11) is a quantitative influence on the value of k.
In an ecological context however, it is not arbitrary
how one defines the total numbers of prey (i.e. our
variable N). If k_, equals zero the prey in complex are
dead, and hence should no longer contribute to the
total numbers of prey. Excluding the prey in complex
from the total prey numbers (i.e. define N = N) we
obtain a normal (Holling type II) functional response.
Thus the Beddington functional response can only be
derived from scheme (3) if we interpret the predator
prey complex as an interaction where the prey can still
escape from.

Elsewhere we provide an alternative approach for
deriving a predator-dependent functional response.
This other approach focuses on situations where the
prey is unaware of being in the field of attention of
the predator. One visualization of this is a prey species
that is distributed randomly over a certain area. The
predators defend a territory within this area, and
interact with the prey within their territory only. The
territory size has a maximum when the predator

density is low, and declines when the predator density
increases. The latter is responsible for the predator
interference. Depending on the form of the (monoton-
ically decreasing) function describing the relation
between the territory size and the predator density we
obtain (i) the ratio-dependent model, (ii) the
Beddington model, or (iii) a functional response with
quadratic predator interference (Huisman & De Boer,
in preparation). Again we find that the ratio-depen-
dent model is obtained when we pick unrealistic
functions, i.e., those that allow for infinite territory
sizes at low predator densities.

The numerical analysis of the Microtine rodents
Mustelids parameters shows that the behavior of our
models is almost identical to that of the Holling type
IT model. This is due to the high difference in the
abundance of predator and prey, which ensures that
the number of complexes is always a small fraction of
the total prey population. This confirms the
prediction in our previous paper (Borghans et al.,
1996), namely that for N>P the Beddington
functional response can be approximated by a
Holling type II functional response.

The Beddington functional response is definitely
superior to the ratio-dependent model. It can be
derived from clear mechanistic reasoning and it lacks
the strange behavior at low predator and prey
concentrations. All of the advantages of the
ratio-dependent models claimed by Arditi &
Ginzburg (1989) also holds for the Beddington model.
Additionally the Beddington functional response can
be regarded as a generalization of the Holling type 11
function. Unfortunately the Beddington functional
response cannot be generalized to high-dimensional
systems with many prey and predator species. Thus,
we pay a price for predator interference, and in
high-dimensional systems the Holling type II function
remains the superior functional response.
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APPENDIX

A.1. Stability of the Ratio-dependent Model

The ratio-dependent model (Arditi & Ginzburg,
1989) cannot account for the Paradox of Enrichment.
We here prove that the non-trivial equilibrium point

of the ratio-dependent model (Arditi & Ginzburg,
1989), i.e.,

dN N bNP
dz_’N<1_K>_hP+N’ 1)
dpP cbNP
G TprN o (A2

cannot be destabilized by increasing the carrying
capacity K only. The equations for the nullclines of
the prey and predator are

__aKN —aN’
~ aKh — ahN — bK®

and (A4.3)

_ ¢cbN — mN

P mh

, (A4)
respectively. Thus the non-trivial equilibrium point is
found at

b m
N—K<1—ah+cah>.

The stability of the equilibrium point is determined by
the relative positions of the top of the humped prey
isocline and this equilibrium point. The position of
the top is found where the derivative of the prey
isocline [eqn (A.3)] with respect to N equals zero.
Thus, the top is located at

N K<ah + b+ /b(b— ah)) (A6)

(A.5)

ah
As both the top [eqn (A.6)] and the equilibrium point

[eqn (A.5)] change proportional to K, a stable system
can never be destabilized by increasing K only.

A.2. Positive root of C

Equation (10f) can be written as

C=%(Pe + N+ ke

+ /(N — Py + ¢k, 2Pe + ke + 2N)). (A.7)

The square-root term is thus larger than

(N — Py = N — Pe. (A.8)
Thus, for the positive root of eqn (A.7) we obtain
C>N+ kgg, (A.9)

which violates the condition C < N that follows from
the conservation law. Thus, only the negative root of
eqn (10f) is valid.
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A.3. Parameter Derivation for the Microtine Model

The parameters used in the Microtine rodent
Mustelid model are derived from a more complicated
model used by Hanski & Korpimiki (1995). These
authors used two different models for summer
(Ni, P)) and winter (N>, P;), and a third model for low
prey density (P,). These basic models are

. N cPN
NI—rN<1—K>—N+D, (A.10)
P =vP<1 J;f), (A.11)
., N\  ¢PN
Nz—rN<1—K,>—N+D, (A.12)
PZ = *dhighpa (A'13)
P, = —d,.P, (A.14)
and they are joined to one model in
%’ — QN + (1 — Q)N (A.15)
dpP . . .
E:Q(Pz-i-A(Pl—Pz))
+ (1 = Q)P + A(P; — P,)), (A.16)

where Q is a sinusoidal function of time and describes
the seasonal fluctuation. A is a smooth switching
function of the prey density that is on whenever the
prey density is above a critical value.

Hanski & Korpiméki (1995) provide estimates for
all parameters of this model. Here we employ these
parameter values for estimating the parameters of a
corresponding Holling type II model. Some par-
ameters in the Holling type II model (i.e., r, K, g, h)
have exact counterparts in the seasonal model (i.e.,
r, K, ¢, D). For these parameters we simply took the
average of the summer and winter values, or the
average of a range used in the seasonal model. The

estimates found were r=4.05 year!, K=75
individuals ha™!, g =600 year™!, h =5 individuals
ha™'.

The conversion factor for the two trophic levels (e)
was not defined in the seasonal model. We therefore
calculated it by dividing the intrinsic growth rate of
the predator (v) in eqn (A.11) by the prey capture
rate. This value was divided by two because winter
growth rate is zero. This yielded ¢ = 0.0023, and will
slightly overestimate the conversion factor, because
summer mortality is included in the intrinsic growth
rate.

The seasonal model has two different mortality
rates for the predator, i.e., d,, = 0.1 for high prey
densities, and d;,, = 5 for low prey densities. We took
an arbitrary value between d,,, and dj,. Our estimate
lies closer to dj,, because most of the time the system
is in the region where d,, is valid. Thus we picked
m = 1.0 year~' as a reasonable estimate.



