Appendix B

Fields of Low Characteristic

Certain propositions about \(C(r, d) \) that are trivial when \(\text{char}(K) = 0 \) or \(\text{char}(K) > k \) become false or, if true, need extra arguments in low non-zero characteristics. This Appendix contains proofs of these properties.

Lemma B.0.1. Suppose \(d \in K^* \) and \(a \in K^* \). Then

\[
\hat{\varphi}(a) := \begin{cases}
[0, a, 0, 0, 4a^{-2}d] & \text{Tetrahedron}, \\
[0, a, 0, 0, 12a^{-1}d, 0] & \text{Octahedron}, \\
[0, a, 0, 0, 0, \frac{144d}{r}, 0, 0, 0, -a^{-1}(144d)^2, 0] & \text{Icosahedron}
\end{cases}
\]

is an element of \(C(r, d)(K) \). In particular \(C(r, d)(K) \neq \emptyset \).

Proof. This is verified by calculation.

Proposition B.0.2. Suppose \(K \) is a field and \(2, d \in K^* \). If \((X, Y, Z) \in D(r, d) - (0, 0, 0)\), there is a \(\varphi \in C(r, d)(K) \) so that \(\pi(\varphi) = (X, Y, Z) \).

Proof. If \(Z = 0 \), we let \(\varphi := \hat{\varphi}(-X/Y) \), where \(\hat{\varphi} \) is the function defined in Lemma B.0.1. One checks that \(\pi(\varphi) = (X, Y, Z) \).

If \(Z \neq 0 \), define

\[
\varphi := [Z, 0, \frac{Y}{Z}, \frac{2X}{Z}, \ldots],
\]

where the omitted terms are uniquely determined by the first \(k - 3 \) defining equations of \(C(r, d) \). The coefficients of \(\varphi \) can be expressed as elements in the ring \(\mathbb{Z}[X, Y, Z, Z^{-1}] \). With the help of PARI we get the algebraic identities

\[
\tau_4(\varphi) = 0, \quad 7\tau_6(\varphi) = -360 \left(\frac{X^2 + Y^3}{Z^5} \right), \\
7\tau_{12}(\varphi) = 3110400 \left(\frac{X^2 + Y^3}{Z^5} \right)^2,
\]

when \(r = 5 \), and similar identities when \(r = 3, 4 \). This shows that \(\varphi \) is a ‘generic’ lift of the element \((X, Y, Z)\). The result follows.
Proposition B.0.3. Suppose K a field and $d \in K^*$ then

$$\varphi \in C(r,d) \Rightarrow \lambda g \cdot \varphi \in C(r,d'),$$

where $d' = \lambda^{6-r} \det(g)^{-6} d$.

Proof. The claim about multiplication by $\lambda \in K^*$ is clear by examining the defining equations of $C(r,d)(K)$. Furthermore, any $g \cdot f$ can be written as $g \cdot f = \lambda g' \cdot f$ with $g' \in SL_2(K)$ and $\lambda \in K^*$ satisfying $\lambda^{6-r} = \det(g)^6$. Therefore we can assume $g \in SL_2(K)$.

We are left to show that if $g \in SL_2(K)$ and $\varphi \in C(r,d)(K)$ then $g \cdot \varphi \in C(r,d)$. The subsets of the equations defining $C(r,d)$ that are equivalent to the vanishing of a polynomial combination of covariants of φ, necessarily remain valid by the definition of a covariant. This is true for all equations, except the equations derived from the coefficients of the 4th covariant $\tau_4(\varphi)$, and the icosahedral equation labelled D_4^*. The equations obtained by requiring that τ_4 vanish remain valid after an $SL_2(K)$ substitution because of the covariance of τ_4. However, there is an added complication since the equations for $C(r,d)$ are obtained from the coefficients of $\tau_4(f)$ after dividing out by their content. Let V be the algebraic set defined by these equations.

Note that

$$\begin{pmatrix} \kappa & 0 \\ 0 & \kappa^{-1} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix},$$

where $\kappa \in K^*$ and $\nu \in K$, generate $SL_2(K)$. By inspection V is closed under the action of the first two generators. A calculation (e.g. with the help of a computer package) shows that it is also closed under the action of the last generator.

Finally, we must check the equations remain closed under $SL_2(K)$-substitutions if we also require that D_4^* is satisfied in the icosahedral case. This is also done by checking the claim on the generators (B.1) of $SL_2(K)$.

Lemma B.0.4. Suppose $d \in K^*$ and $\varphi \in C(r,d)(\bar{K})$. Then there is a $g \in SL_2(\bar{K})$ so that $a_0(g \cdot \varphi) = 0$. If $N \in K^*$, there is a $g \in SL_2(K)$ so that $g \cdot \varphi = [0, 1, 0, \ldots]$.

Proof. Let $f := f(\varphi)$. We can find $g \in SL_2(\bar{K})$ so that the binary form $g \cdot f$ has a zero at ∞. Since $\varphi \mapsto f(\varphi)$ is $SL_2(\bar{K})$-equivariant we have $a_0(g \cdot \varphi) = 0$.

If $N \in K^*$, f has no multiple roots, as the discriminant of f is non-zero. Therefore, by equivariance, $a_1(g \cdot \varphi) \neq 0$. Twisting with an $SL_2(K)$ matrix of the shape $\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ allows us to suppose $g \cdot \varphi = [0, 1, 0, \ldots]$. \hfill \square
Lemma B.0.5. Suppose $N, d \in K^*$. Then $C(r, d)(\bar{K})$ is a homogeneous $SL_2(\bar{K})$-space and $C(r)(\bar{K})$ is a homogeneous $GL_2(\bar{K})$-space.

Proof. Suppose $\varphi \in C(r, d)(\bar{K})$. By Lemma B.0.4, we can assume that $\varphi = [0, 1, 0, \ldots]$. However, as $N \in K^*$, the missing coefficients are determined by the defining equations of $C(r, d)$. We have shown that there is a single element of $C(r, d)$ to which every $\varphi \in C(r, d)$ is $SL_2(\bar{K})$-equivalent. This means that $C(r, d)(\bar{K})$ is a homogeneous $SL_2(\bar{K})$-space. As a corollary $C(r)(\bar{K})$ is a homogeneous $GL_2(\bar{K})$-space.

Remark B.0.6. Lemma B.0.5 is not true without some restrictions on the characteristic of K. For instance, if K has char$(K) = 2$ then $[0, 1, 0, 0, 1]$ and $[0, 1, 0, 1, 0]$ are elements of $C(3, 1)(K)$. These lie in distinct $SL_2(\bar{K})$-orbits, since being of the shape $[0, *, 0, *, 0]$ is an $SL_2(\bar{K})$-invariant property.

Proposition B.0.7. Suppose K is a field and $N \in K^*$. Suppose $(X, Y, Z) \in D(r, d) - (0, 0, 0)$. If $\varphi \in C(r, d)(K)$ and $\pi(\varphi) = (X, Y, Z)$ then there is a unique parabolic $g \in SL_2(K)$ so that

$$g \cdot \varphi := \begin{cases} [Z, 0, Y, 2X, \ldots] & \text{if } Z \neq 0, \\ [0, -X/Y, 0, \ldots] & \text{if } Z = 0, \end{cases}$$

where the omitted terms are uniquely determined by the defining equations of $C(r, d)$.

Proof. (Existence) Since $N \in K^*$, there is a parabolic $g \in SL_2(K)$ so that the φ has the shape $[* , 0 , \ldots]$ if $Z \neq 0$, and $[0, *, 0, \ldots]$ if $Z = 0$. Since $\pi(\varphi) = \pi(g \cdot \varphi) = (X, Y, Z)$, the initial coefficients of φ agree with the coefficients in the announcement of the proposition. The defining equations of $C(r, d)$ determine the rest of Ω_r.

(Uniqueness) Suppose φ has the canonical form given. Since $N \in K^*$, there is no non-zero parabolic $g \in SL_2(K)$ that fixes φ.

Lemma B.0.8. If $N, d \in K^* \neq 0$ and $\varphi \in C(r, d)$ then $\#\Gamma(\varphi) = 2N$. Furthermore, if φ corresponds to the coefficients of one of the forms chosen in § 4.3, then the explicit description of the group given in § 4.3 is the group $\Gamma(\varphi)(\bar{K})$.

Proof. Since $N \in K^*$, the space $C(r)(\bar{K})$ is a homogeneous $GL_2(\bar{K})$-space by Lemma B.0.5. This means that we can assume that φ corresponds to one of the Klein forms mentioned in § 4.3. Let Γ' denote the group of symmetries mentioned in § 4.3, and $\Gamma := \Gamma(\varphi)$ the full group of symmetries. Clearly $\Gamma' \subset \Gamma(\varphi)$. Indeed, the set of equations witnessing the truth of the statement $\Gamma' \subset \Gamma(\varphi)$ in \bar{Q} can be written as a set of polynomial equations in the ring generated by Z and the entries of elements of Γ'. These identities remain valid in the field K.

APPENDIX B. FIELDS OF LOW CHARACTERISTIC

Suppose that \(g \in \Gamma(\varphi) \). We will show that \(g \in \Gamma' \). Let \(f := f(\varphi) \). Calculating the discriminant we see that the roots of \(f \) are distinct if \(N, d \in K^* \). Since \(\Gamma' \) is transitive on the roots of \(f \), we can multiply \(g \) by an element of \(\Gamma' \) and assume that \(g \) fixes the root at \(\infty \). Therefore, \(g = \left(\begin{array}{cc} \kappa & \nu \\ 0 & \kappa^{-1} \end{array} \right) \) for some \(\kappa \in K^* \), \(\nu \in K \). Since \(\varphi = [0, *, 0, \ldots] \) and \(N \in K^* \) we calculate that \(\nu = 0 \). The matrix \(g \) is diagonal and we deduce that \(g \in G' \). Conclusion: \(\Gamma(\varphi) = \Gamma' \).

Finally, we must show that \(\#\Gamma' = 2N \). I.e. that \(\Gamma' \) has no kernel when we reduce from \(\text{SL}_2(\overline{\mathbb{Q}}) \) to \(\text{SL}_2(\overline{K}) \). Let \(f := f(\varphi) \). Suppose \(g \in \Gamma'(\overline{\mathbb{Q}}) \) is not \(\pm I \). Then \(g \) induces a non-trivial permutation of the roots of \(f \in \overline{\mathbb{Q}}[x, y] \). As \(N, d \in \overline{K} \), we have \(\text{disc}(f) \neq 0 \), so the roots of \(f \) remain distinct in \(\overline{K} \). Therefore the kernel is contained in \(\{\pm I\} \). As \(2 \in \overline{K} \), the matrix \(-I\) is not in the kernel. Conclusion: \(\#\Gamma(\varphi)(\overline{K}) = \#\Gamma(\varphi)(\overline{\mathbb{Q}}) = 2N \).

Remark B.0.9. Consider \(\varphi = [0, 144, 0, 0, 0, 0, 0, 0, 0, -144, 0] \). We have \(f := f(\varphi) = 1728d \, xy(x^{10} + 11x^5y^5 - y^{10}) \)

Suppose \(K \) is a field with \(\text{char}(K) = 11 \). Then \(f \) has distinct roots, as the discriminant is non-zero. However, \(\Gamma(f) \) contains the cyclic group of order 11 generated by \(g := \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \). This means that \(\Gamma(f) \neq \Gamma(\varphi) \). Set \(\varphi' := g \cdot \varphi \). Then \(\varphi, \varphi' \) are distinct elements of \(C(5, d) \) with \(f(\varphi) = f(\varphi') \).