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Introduction

String theory

In recent decennia string theory has become a leading candidate for a
unified theory of particle physics, gravity and quantum mechanics, see
[1, 2, 3, 4]. As the name suggests, the starting point of string theory
is to consider strings instead of point particles. One can consider closed or
open strings, which both sweep out two-dimensional surfaces as they move
through spacetime. Such a surface is called the world-sheet.
String theory has one dimensionfull coupling constant called α′ with dimen-
sion of length squared. The vibrations of the string correspond to particles
in spacetime. For example, in closed string theory there is a massless rank
two traceless symmetric tensor which we must identify with the graviton
if we view string theory as a unified theory. There is also a massless rank
two antisymmetric tensor. Furthermore, there is a whole tower of massive
states, with masses proportional to

√

1/α′.
When considering string theory as a unified theory, as we are, α′ is of
the order of the natural scale determined by the fundamental constants
of gravity and quantum mechanics. This scale is given by M−2

P where

MP ≡
√

~c/GN is the Planck mass, roughly 1.2 × 1019 GeV. Put differ-

ently,
√
α′ which sets the scale of the string length is of the order of the

Planck length lP ≡
√

~GN/c3, which is about 1.6 × 10−33cm.
Furthermore, there is a dimensionless parameter called the string coupling
constant gs. This constant organizes the perturbative expansion of string
theory. Just as in normal field theory we can set up a perturbation theory
with the difference that in- and outgoing lines are now tubes, in the case
of the closed string. A one-loop diagram, for a four-point amplitude for
example, then takes the form of a donut with four tubes attached. This
diagram comes with a higher power of gs, compared with the tree level
diagram (a sphere with four tubes attached). Higher order loop diagrams
come with higher powers of gs, this parameter therefore counts the order
of the diagram. In general the perturbative expansion of string theory is a
genus expansion in the world-sheet where each genus comes with a certain
power of gs. The result is a power series in gs:

∑

n g
2n
s A(n). Here A(n)

denotes the diagram, that is, A(0) the tree level diagram, A(1) the one-loop

vii



viii Introduction

diagram (the donut) and so on. We see that such an expansion makes sense
as long as gs � 1.
The parameter gs is not an arbitrary parameter. It is related to the vacuum
expectation value of the dilaton, a scalar field which is one of the massless
modes. However, in general it is not clear what the vacuum expectation
value of the massless scalar fields should be. In chapter 5 we will consider a
scenario in which we can dynamically provide a vacuum expectation value
for the dilaton. We will come back to this issue below on page xiv.

If one considers only the coordinates which describe the embedding of the
string in spacetime, one has bosonic string theory. A next step is to add
fermions on the world-sheet. This gives rise to the so-called superstring the-
ories, which contain additional massless states besides the massless states
of the bosonic string. There are actually five different superstring theories,
which seems to be a bit of a setback if one would like string theory to
be a unique and unifying theory. About ten years ago though, it became
clear that these five theories are actually different phases of a more general
theory dubbed M theory, [5, 6]. However, not only is it as yet unclear what
this theory looks like, it is also unclear where the ‘M’ stands for: dial M
for mystery!
Without going into the specifics of these five string theories, we remark that
we will be concerned only with one of them in this thesis, namely with the
‘type IIA’ theory. For reasons of consistency, the superstring theories have
to live in 10 spacetime dimensions and the bosonic string in 26. Naturally
this seems excessive and has to be remedied. We will come back to this
issue in a moment.
The name ‘string’ theory has become a misnomer since the discovery [7]
of ‘D-branes’. These are extended objects on which strings can end. For
example, in type IIA theory there are membranes and four-branes which
sweep out three- and six-dimensional world-volumes respectively.
Such D-branes are nonperturbative objects, like solitons in field theory,
because these object are heavy when the string coupling constant is small,
but become lighter when it increases. The reason is that their tension is
inversely proportional to gs, so when the perturbative expansion breaks
down (large gs) these branes are light.
Moreover, string theory contains also a NS five-brane. This object is dual
to the fundamental string in the same sense that a magnetic monopole is
dual to an electric charge by means of electric-magnetic duality. The ten-
sion of the NS five-brane is proportional to 1/g2

s , this NS five-brane will be
very important to us and we will discuss it more extensively in chapter 2.
For some general references on D-branes see [3, 4, 8, 9].
These branes are solitonic objects, but below we will see that there are sit-
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uations in which the soliton will appear in a lower dimensional spacetime
as an instanton.
This reminds us of nonperturbative effects in Yang-Mills theories. Apart
from the trivial vacuum, (Euclidean) Yang-Mills theory has a vacuum which
consists of an infinite number of topologically distinct vacua. The instanton
solution represents a transition from one vacuum class to another. The tun-
nelling amplitude for such a transition is proportional to exp(−SE), with
SE the Euclidean action. The action for a Yang-Mills instanton is propor-
tional to 1/g2

ym, with gym the Yang-Mills coupling constant. So when one
computes amplitudes in the presence of such instanton configurations in
doing a semiclassical approximation, one finds an additional weight factor
of the form exp(−1/g2

s). We therefore see that instanton contributions to
physical processes are heavily suppressed for small gym. However, when gym

becomes large this factor becomes more important. Thus starting from the
perturbative description of Yang-Mills theory, one can construct solutions
which give insight into nonperturbative effects. Instantons are, for instance
important in the context of CP violating processes, see [10] for a review and
references. For a very nice introduction to instantons in Yang-Mills theory
see [11, 12], for a clear account of the topological details of instantons see
[13].
In this thesis we will approach the NS five-brane in a similar fashion. That
is, in chapter 4 we will use the semiclassical approximation to compute its
contribution to correlation functions. We should stress that we will use
an effective description of the NS five-brane. We will not make use of a
worldvolume description of the brane. How this brane can be effectively
described is discussed below. For more information on the semiclassical
approach see for instance [12].

Effective theories

As remarked above, the massive states of the string theories have masses
proportional to the Planck mass. This means that only when considering
processes with extremely high energies the massive states start to play a
role. Such energies are far beyond the reach of any man-made accelerator.
Therefore one can restrict to the massless modes only and describe them by
an effective theory. As long as one considers processes with energies much
lower than the Planck mass, this is a good approximation. The low energy
effective theories of the superstring theories take the form of supergravity
theories. The low energy theory of the type IIA superstring, for instance,
is type IIA supergravity which is a theory with two local supersymmetry
generators. The universal (since it occurs in other superstring theories as
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well) part of its bosonic sector is given by

∫

d10x
√−g

(

R− 1

2
(∂φ)2 − 1

12
e−φH2

)

.

H is the field strength of the massless rank two antisymmetric tensor and
φ is the dilaton. The Einstein-Hilbert term describes the graviton. This
action captures the massless states already present in the bosonic string
theory. In type IIA superstring theory there are in addition massless tensor-
and fermionic fields. The nonperturbative objects from string theory, i.e.,
the D-branes are then described by so-called p-branes which are solitonic
solutions of the supergravity theory. For references on branes from a su-
pergravity point of view see [14, 15].

We can illustrate this by the well-known example in the context of type
IIB string theory and its low energy effective theory, type IIB supergravity.
This is the example of the D-instanton. It is a D-brane with no spatial
extension and which is moreover located in time, hence the name instan-
ton. In the context of type IIB it is a BPS solution which preserves half
of the spacetime supersymmetries. In [16] the supergravity solution cor-
responding to the D-instanton was found. Consider the following bosonic
subsector of the Euclidean type IIB action

∫

d10x
√
g

(

R− 1

2
(∂φ)2 +

1

2
e2φ(∂a)2

)

.

In flat Euclidean space we can solve the equation of motion for φ by

eφ = eφ∞ +
c

r8
,

with eφ∞ and c integration constants. The axion a is determined in terms
of φ. The above solution for the dilaton solves the field equation ∂2eφ = 0
except at the origin where a delta function source term is needed. Conse-
quently we can add the source term δ(10)(x) e−φ to the action which cancels
the singularity in the field equation. This source term tells us that we have
a new object in the theory at x = 0, namely the D-instanton. So we see
that we can use supergravity to describe the objects in string theory.
The action of the D-instanton is given by

SD-inst =
|Q|
gs

,

where we have defined gs ≡ eφ∞, note the 1/gs behaviour. This action
derives from the fact that one has to consider an additional boundary
term to the action. The charge Q is due to the existence of a conserved
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current and is related to the integration constant c, see also [17]. By
studying certain amplitudes in the background of the D-instanton one can
compute the effective vertices due to this instanton, [18]. For a review of
D-instantons and more references see [19].
We will make a similar effort in this thesis for the NS five-brane and two-
brane. However, we will not be working in ten dimensions but in four
dimensions, as we will discuss first.

Compactification

The superstring theories, and therefore their low energy effective theories,
live in ten spacetime dimensions. Of course we are interested in the case of
four spacetime dimensions. One way to go from ten to four spacetime di-
mensions, is to compactify six space dimensions on some internal manifold.
If these six dimensions are taken to be very small, they are effectively not
seen anymore in experiment. Consequently, the fields have to be expanded
in the compact directions. This leads to massless states and a tower of
massive states, determined by the manifold the theory is compactified on.
The mass is inversely proportional to the characteristic radius Rc of the
compactified dimensions. This defines a compactification scale mc = 1/Rc,
the characteristic mass of states with momentum in the compactified di-
rections. When Rc is sufficiently small, mc is high enough to enable us to
work with the massless modes only. This means that a four-dimensional
theory can be constructed: compactify the low energy effective action of
string theory on some (small) internal manifold. This then gives a theory
in four spacetime dimensions. If mc is high enough this theory can be ap-
proximated by an effective theory which only describes the massless modes.
This is done by integrating out the heavy degrees of freedom (which can
give corrections to the massless degrees of freedom). The idea of com-
pactifying higher dimensional theories to four dimensions was initiated by
Kaluza and Klein. See [20] for a historical overview.
The effective theory in four dimensions can be (depending on the internal
manifold) rather complicated. An interesting choice for manifolds to com-
pactify on are the so-called Calabi-Yau manifolds, which we will describe
in chapter 1. In the eighties it was found that compactifying the heterotic
string theory on a Calabi-Yau manifold gives rise to phenomenologically
interesting models, see [21]. Furthermore, these manifolds preserve super-
symmetry. For example, compactifying type IIA supergravity in ten di-
mensions on a six-dimensional Calabi-Yau manifold gives an N = 2 super-
gravity theory with vector and hypermultiplets [22]. This theory describes
the massless degrees of freedom. The fact that it has (local) supersymme-
try means that the theory is more constrained, thus making it easier to
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work with. In chapter 2 we will review the process of compactifying type
IIA supergravity on a Calabi-Yau manifold of six dimensions.
To summarize: the reason why we study type IIA supergravity on a Calabi-
Yau manifold is that this allows us to work with a theory which has just
enough supersymmetry. In contrast, N = 4 or N = 8 (which does not even
allow for matter multiplets) supersymmetry is too constraining and N = 1
supersymmetry is not constraining enough, see also [23].

The aim of this thesis can now be formulated as follows: to study the

nonperturbative effects of NS five-branes and membranes on the underlying

N = 2 supergravity theory in four dimensions.

Just as one can describe these branes in the supergravity approximation in
ten dimensions, so can one construct corresponding solutions which de-
scribe them in four dimensions. Intuitively this can be understood as
follows. Consider the five-brane with its six dimensional worldvolume1,
which we can embed entirely in the six-dimensional internal Calabi-Yau
manifold. This means that the five-brane is then completely localized in
four-dimensional spacetime. From a four-dimensional point of view it will
then appear as an instanton. This will also be described in chapter 2.
In chapter 4 we will perform a semiclassical computation to compute the
instanton effects. Contrary to the case of Yang-Mills instantons, we will
not consider instantons as giving tunnelling amplitudes between different
vacua, because such an interpretation is not clear in our case. Instead in-
stantons will be regarded as solutions to the equations of motion which
have finite (Euclidean) action. These solutions furthermore saturate lower
bounds of the action and will be derived using Bogomol’nyi equations in
chapter 3.
Similarly to the five-brane, the three-dimensional worldvolume of the mem-
brane can be wrapped around a three-dimensional submanifold of the
Calabi-Yau. This will also correspond to an instanton solution in four
dimensions which will be constructed in chapter 3 as well. In chapter 5 we
will then consider the effect of these membranes on the four-dimensional
supergravity theory.

Geometry

As said above, we will be working with the supergravity theory describing
the massless sector of the theory which arises when compactifying type
IIA supergravity on a Calabi-Yau manifold. This is an N = 2 supergravity

1Assume for the moment that we have performed a Wick rotation, such that we are wrapping
an Euclidean brane around the Calabi-Yau manifold.
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theory coupled to hypermultiplets and vector multiplets.
Such a theory can be thought of in geometrical terms. We can consider
the various scalars, appearing in these multiplets, as maps from space-
time to some target space manifold. The scalars are then coordinates on
this manifold. The kinetic terms of the scalars function as the metric on
such a target space. Supersymmetry relates the various terms in the ac-
tion and puts constraints on them. This means that the ‘metrics’ are also
constrained to be of a certain type, thus determining the geometry of the
target space.
This has a (relatively) long history. For instance, N = 1 matter-coupled su-
pergravity in four dimensions has a number of complex scalar fields. These
fields are governed by Kähler geometry: they parametrize a Kähler mani-
fold, as discovered by Zumino and others [24, 25].
The geometric interpretation of hypermultiplets coupled to N = 2 super-
gravity in four dimensions was emphasized by Bagger and Witten [26]. For
more information on the interplay between supergravity and geometry see
for instance [27] and its references.
This geometrical formulation of the constraints obeyed by the scalars of
the hypermultiplets coupled to N = 2 supergravity will be very important
to us, because this is the sector of the theory we will be working with.
The target space of the hypermultiplet sector is a so-called quaternionic
manifold, which we will review in chapter 1. The crucial point is that the
conditions for unbroken supersymmetry force the hypermultiplet sector of
the supergravity theory to have such a target space. So when we compute
our instanton corrections to this theory, the corrections will in general per-
turb the target space but in such a way that it is still quaternionic. In
chapter 4 we will establish that after computing the five-brane instanton
effects on the supergravity theory, and thus on the target space, this target
space is still of the quaternionic type.
We will be focussing on the hypermultiplet sector of the theory because
this is where the instanton effects appear, as we will discuss. Furthermore,
since the vector multiplet sector decouples, we will not consider it in our
calculations.
In chapter 1 we will present some background material on the quaternionic
geometry. Furthermore, we will (briefly) consider the geometry correspond-
ing to the vector multiplets, for the sake of completeness. These geometries
will reappear in chapter 2 where we sketch how the N = 2 supergrav-
ity theory emerges when compactifying type IIA supergravity theory on a
Calabi-Yau manifold.

We can now reformulate the aim of this thesis: to compute the nonper-

turbative corrections induced in the quaternionic target space of the hyper-
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multiplet sector of the four-dimensional N = 2 supergravity theory.

Moduli

The massless scalar fields resulting from a compactification are sometimes
referred to as ‘moduli’. The reason is that they are closely related to the
parameters labelling the geometry of the internal manifold, which are also
called moduli2. The point is that the various couplings in four dimensions
are determined by the internal geometry and typically depend on the vac-
uum expectation values of the scalar fields in four dimensions. As long as
these vacuum expectation values are undetermined, the couplings are free
as well and the four-dimensional theory has no predictive power. In other
words, every vacuum expectation value corresponds to a different ground-
state of the four-dimensional theory. One would like to find a mechanism
that (spontaneously) fixes these moduli, this is called moduli stabiliza-
tion. One such mechanism is that of ‘compactification with fluxes’. When
compactifying to four dimensions one can switch on fluxes in the internal
manifold. This alters the four-dimensional theory and in particular gives
rise to a potential for the scalar fields, i.e., the moduli.
Alternatively one can describe such effects by staying in four dimensions
and gauging certain isometries in the supergravity theory. This also gives
rise to a potential which can in principle stabilize (some of) the moduli, we
will come back to this in chapter 5. This subject has attracted considerable
and renewed attention in recent years. For some recent reviews see [28, 29].
In chapter 5 we will gauge an isometry in the hypermultiplet3 which will
generate a potential. The membrane instanton corrections to the poten-
tial make it possible to stabilize all the fields in the hypermultiplet. The
membrane instanton correction furthermore makes it possible for the po-
tential to have a positive minimum. This value appears in the action as a
cosmological constant term. This is very interesting because a positive cos-
mological constant corresponds to a de Sitter universe and at the moment
our own universe seems to be of that type, see for instance the review [30]
and references therein.

Outline of this thesis

After having introduced the main topics of this thesis, let us for clarity’s
sake summarize them and specify where they will be discussed. This will

2In chapter 2 we will closely investigate this relation for Calabi-Yau manifolds
3We will consider only one hypermultiplet.This is related to the fact that we choose a simple

type of Calabi-Yau compactification, as explained in chapter 2.
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hopefully make the relations between the various chapters and sections
more clear.

• Chapter 1
Because quaternionic geometry will be important in this thesis, we
devote the first half of this chapter to reviewing the geometry rele-
vant to quaternionic manifolds and Calabi-Yau compactifications in
general. The second part will be a short review of Calabi-Yau mani-
folds and some differential geometry, which will be especially relevant
for chapters 2 and 5.

• Chapter 2
We discuss the process of compactifying type IIA supergravity on a
Calabi-Yau manifold. We shall derive the bosonic field content of the
resulting four-dimensional supergravity theory. We will concentrate
in particular on the massless fields obtained by compactifying on a
simple type of Calabi-Yau manifold.

• Chapter 3
By making use of Bogomol’nyi bounds, we construct solutions to the
equations of motion that provide local minima to the action and as
such can be interpreted as instantons. This will be done for a certain
description of a hypermultiplet that is introduced in chapter 2. We
construct two types of instanton solutions. The first corresponds to
the NS five-brane and the second to the membrane. Their actions,
which agree with results from string theory, and theta angles will be
given.

• Chapter 4
This is the chapter where we will perform a detailed instanton cal-
culation for the NS five-brane in the context of the four-dimensional
effective supergravity theory. This is a fairly traditional field theoretic
semiclassical approximation, although it does contain (apart from the
final results) some novel features.
The result is the effective N = 2 supergravity theory. Effective now
means that the theory can reproduce at tree level the corrections
to the action due to the five-brane instanton. We will examine the
consequences for the quaternionic target space, in particular the con-
sequences for its isometries.

• Chapter 5
A chapter in which the membrane instanton corrections to the four-
dimensional action are derived. The material from chapter 1 is used
and elaborated on. Where we can compare our results with string
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theory we find beautiful agreement. Furthermore, the effect of these
membrane instanton corrections to the potential obtained by gauging
a certain isometry is studied. This is the mechanism referred to above,
it will be explained in this chapter. The result can lead to a de Sitter
vacuum in which all the moduli of the universal hypermultiplet sector
are stabilized. The effect of the membrane instanton is to make it
possible for the minimum to be positive.

• Appendices
Because there are a number of technical details we have collected
them in a few appendices. These contain further information on cal-
culations or extra background material. They will be referred to in
the text as needed.

We must stress again that, apart from a section in chapter 5, we will
always perform our calculations within the supergravity approximation.
This means that when we speak of branes we think of them in a supergravity
sense. Moreover, they will always be treated from a four-dimensional point
of view, where they appear as instanton field configurations.
Furthermore, this thesis is not about supergravity as such. We shall use it
as a tool to consider nonperturbative effects. Consequently we will treat
it as such. We will neither explain nor construct the N = 2 supergravity
theory we will be working with from first principles, as this would warrant
another thesis. Instead we will present the necessary information such
as supersymmetry transformation rules and such when needed, especially
in chapter 4. We will mainly focus on the geometry of the target space
manifold of the theory.
Lastly let us indicate which chapters contain new material. Chapter 3 is
largely based on [31], chapter 4 on [32] and chapter 5 on [33].
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Some geometrical concepts

In a non-linear sigma model the scalars can be viewed as maps from space-
time to a ‘target-space’. The scalars are then coordinates on this target-
space. The kinetic terms of the scalars function as a metric on the target
space. If the theory is supersymmetric, this imposes conditions on the
fields. In particular, the conditions on the metric of the target-space de-
termine its geometry. In this thesis we will mainly be concerned with
N = 2 supergravity in four dimensions coupled to vector multiplets and
hypermultiplets. The scalars of the hypermultiplet sector parametrize a
‘quaternionic’ target-space. The main purpose of this chapter is to ex-
plain the geometrical concepts involved in such spaces. Furthermore, we
present some material on Calabi-Yau manifolds. For more information on
the geometry discussed in this chapter see [13, 34, 35, 36, 37, 38]. For more
specific texts on supergravity and geometry see [27, 39, 40, 41, 23].

1.1 Kähler manifolds

Let M be a manifold of real dimension 2n with a complex structure J which
maps the tangent space into itself, i.e. J : TM → TM with J2 = −11. A
metric g on M is called Hermitian with respect to J if

g (J~u, J ~w) = g (~u, ~w) . (1.1)

We can always choose a local frame such that

Jβ
α =

(
0 11
−11 0

)

.

In this frame we can define complex coordinates such that

J
∂

∂zi
= +i

∂

∂zi
and J

∂

∂z̄ ı̄
= −i

∂

∂z̄ ı̄
, (1.2)

furthermore we can write

g(u,w) = giju
iwj + gı̄̄u

ı̄w̄ + gi̄u
iw̄ + gı̄ju

ı̄wj .

1
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Reality and symmetry of g(u,w) dictate

gij = (gı̄̄)
?

gij = gji

gı̄j = (gi̄)
?

g̄i = gi̄

and the Hermiticity condition (1.1) gives

gij = gı̄̄ = 0 . (1.3)

Given this metric, one can define a two-form K:

K (~u, ~w) = g (J~u, ~w) , (1.4)

or in components,

Kαβ = gβγJ
γ
α .

This 2-form is called the Kähler form. Note that this implies that g is
Hermitian if and only if K is antisymmetric. In the complex basis the
2-form is written as

K = igi̄ dz
i ∧ dz̄ ̄ .

An important theorem states that a Hermitian metric g on a complex
manifold is called Kähler if one of the following three equivalent conditions
is met:

dK = 0 ∇J = 0 ∇K = 0 (1.5)

and consequently the manifold is called a Kähler manifold, see [35]. The
∇ denotes the covariant derivative containing the Levi-Civita connection
of g. The symbol d denotes the exterior derivative. For a short review on
holonomy, differential forms and cohomology, both real and complex, see
page 11-15.
The holonomy of a Kähler manifold is contained in U(n): Hol(g) ⊆ U(n).
This means that a metric on the 2n-dimensional manifold M is Kähler with
respect to an (integrable1) complex structure if and only if Hol(g) ⊆ U(n).
This is often used as the definition of a Kähler manifold: if the holonomy
group of a Riemannian manifold is contained in U(n), then it is a Kähler
manifold and therefore a complex manifold.
As a 2-form, the Kähler form lies in a cohomology class: K ∈ H2(M),
the second De Rahm cohomology class. In the complex basis the Kähler
form is a (1, 1)-form and therefore lies in the Dolbeault cohomology class

1Alternatively we could have considered an almost complex structure instead of the complex
structure J , but the U(n) holonomy ensures the vanishing of the Nijenhuis tensor and thus the
integrability of the structure.
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H(1,1)(M). This cohomology class is referred to as the Kähler class of the
metric. In any local chart we can solve dK = 0 by

gi̄ = ∂i∂̄K , (1.6)

where K = K
? = K (z, z̄) is a real function of the complex coordinates

zi, z̄ ı̄. This function is called the Kähler potential, defined up to so-called
Kähler transformations:

K → K + f(z) + f̄(z̄) , (1.7)

since this does not change the metric.
Note that K is closed but not exact in general. Locally it can be defined
as K = i∂∂̄K , a closed real (1, 1)-form. If two Kähler metrics g, g̃ on M
belong to the same Kähler class, they differ by a Kähler transformation.

1.2 Hodge-Kähler manifolds

A next step is to consider a line-bundle (a complex 1-dimensional vector
bundle) over the Kähler manifold: L → M. There is only one Chern class
for such a bundle, namely the first:

c1(L) = i∂̄
(
h−1∂h

)
= i∂̄∂ ln(h) , (1.8)

where h(z, z̄) is some Hermitian fibre metric on L. If we define

θ ≡ h−1∂h =
1

h
∂ihdz

i

θ̄ ≡ h−1∂̄h =
1

h
∂ı̄hdz̄

ı̄ ,

then θ and θ̄ are the canonical Hermitian connections on L. The connection
Q on the associated principal U(1)-bundle is given by

Q = Im θ = − i

2

(
θ − θ̄

)
.

If we introduce a holomorphic section s(z) of L then we can re-express (1.8)
as

c1(L) = i∂̄∂ ln ||s(z)||2 ,

where the norm of s(z), i.e. ||s(z)||2 is given by ||s(z)||2 = h(z, z̄)s(z)s̄(z̄).
This leads us to the definition of a Hodge-Kähler manifold.
A Kähler manifold is a Hodge-Kähler manifold if and only if there exists
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a line bundle L → M such that c1(L) = [K] where [K] denotes the coho-
mology class of the Kähler form. Locally this implies that there exists a
holomorphic section W (z) such that

K = igi̄ dz
i ∧ dz̄ ̄ = i∂̄∂ ln ||W (z)||2 .

So if M is a Hodge manifold, comparing with (1.6) tells us that h(z, z̄) =
eK (z,z̄) and the U(1) connection is also determined in terms of K :

Q = − i

2

(
∂iK dzi − ∂ı̄K dz̄ ı̄

)
.

The Hodge condition has profound topological implications in the case of
compact Kähler manifolds. It can be shown that the first Chern class of
any U(1)-bundle L → M belongs to the integral cohomology class, i.e.
H2(M,Z). The Hodge condition in turn implies that the same property
holds for the Kähler form: K ∈ H2(M,Z).
There is much more to be said about Hodge-Kähler manifolds, especially
in relation with N = 1 supergravity. However, they will only be needed
here as an ingredient of special Kähler geometry.
We must distinguish between two kinds of special Kähler geometry: the
one of the local type and the one of the rigid type. The first type describes
the geometry of the scalar fields in the vector multiplet sector of N = 2
supergravity and the second type describes the same sector in N = 2 super
Yang-Mills theories with rigid supersymmetry. The second type will not
play a role in the rest of this thesis and will therefore be ignored.
One way to define a special Kähler manifold in the local case is to consider
again the line bundle L whose first Chern class equals the Kähler form K
of an n-dimensional Hodge-Kähler manifold M.

1.3 Special Kähler manifolds

For more information and references on special Kähler manifolds see [42,
43]. Let H be a flat projective holomorphic Sp(2n + 2,R) vector bundle
over M and −i〈 | 〉 the symplectic Hermitian metric on H. Then M is a
special Kähler manifold if there is a holomorphic section Ω of H⊗L with
the property

K = i∂̄∂ ln
(
i〈Ω|Ω̄〉

)
. (1.9)

We define the compatible metric as

i〈Ω|Ω̄〉 = −iΩ†
(

0 11
−11 0

)

Ω .
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Such a section Ω has the following structure:

Ω =

(
XA

FB

)

A,B = 0, 1, . . . , n (1.10)

and is related on two different patches Ui,Uj ⊂ M by
(
X
F

)

i

= efijMij

(
X
F

)

j

,

where fij are holomorphic maps Ui∩Uj → C and Mij is a constant Sp(2n+
2,R) matrix. Equation (1.9) gives us an expression for the Kähler potential:

K = − ln ||Ω|| = − ln
(
i〈Ω|Ω̄〉

)
= − ln

(
iX̄AFA − iF̄BX

B
)
. (1.11)

Note that the XA and FB are projective coordinates, i.e., they are defined
up to multiplications with a complex number2 which give rise to an equiv-
alence class of Kähler forms and potentials. Indeed, if one multiplies Ω
with a complex number (function) the effect on (1.11) is precisely that of
a Kähler transformation, see (1.7).
Historically, this ‘special geometry’ was introduced in so-called special co-

ordinates which are defined by zi = Xi

X0 i = 1, . . . , n, see [44, 45]. If we
then define F(z) = (X0)−2F(X), where F(X) is homogeneous of degree
two and identify FA = ∂AF , the Kähler potential becomes

K (z, z̄) = − ln i
[
2(F − F̄) − (∂iF + ∂ı̄F̄)(zi − z̄ ı̄)

]
.

1.4 Hypergeometry

So far we have discussed geometry relevant for the vector multiplets of an
N = 2 supergravity theory in four spacetime dimensions. Next we turn to
the geometry relevant for the hypermultiplets of such a theory. We again
focus on the geometry itself. The supergravity and its relation with this
geometry will be discussed later on, see also [46, 47, 26]. More details on
the group theory and quaternionic geometry have been collected in appen-
dices A, C and H. The presentation of the group theory aspects follows
[40], we use the notation of [33].
In the hypermultiplet sector of an N = 2 supergravity theory in four space-
time dimensions, there are four real scalars per hypermultiplet whose target
space is a quaternion-Kähler manifold3 in the case of local supersymmetry

2Because we are considering the bundle H ⊗ L one has to multiply the bundle H and its
section with a (local) complex number.

3Contrary to what the name suggests, quaternion-Kähler manifolds are not necessarily
Kähler. In the following we will simply use the term ‘quaternionic’ to denote these manifolds,
for more precise definitions see for instance [48, 49].
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and a hyperkähler manifold in the case of rigid supersymmetry. In both
cases supersymmetry requires the existence of a principal SU(2)-bundle S
which plays a similar role for hypermultiplets as the line bundle L → M in
section 1.3. The difference between hyperkähler and quaternionic geometry
is that in the first case the SU(2)-curvature is zero, whereas in the second
case the SU(2)-curvature is proportional to the Kähler forms.
Consider as before a product bundle, this time of the form

TM = SU(2) ⊗ Sp(2n,R) ,

such that TM (the tangent bundle on M) is a real 4n-dimensional mani-
fold. The connection on the tangent bundle is just the sum of the connec-
tion on the SU(2)-bundle and on the Sp(2n,R)-bundle.
Both the hyperkähler and the quaternionic manifold are real 4n-dimensional
manifolds with a metric G:

ds2 = GAB dq
A ⊗ dqB A,B = 1, . . . , 4n

and three almost complex structures

Jr : TM → TM r = 1, 2, 3 ,

which satisfy a quaternionic algebra

JsJ t = −δst11 − εstrJr . (1.12)

The metric is Hermitian with respect to each of these complex structures
and instead of just one Kähler form we can introduce three:

Kr =
1

2
Kr

AB dq
A ∧ dqB

Kr
AB = GAC(Jr)C

B , (1.13)

Kr is now called the hyperkähler form. This is a generalization of the con-
cept Kähler form. The presence of the hyperkähler form on a quaternionic
manifold does not mean that the manifold is a Kähler manifold as defined
in section 1.1 (we will come back to this below).

The SU(2)-bundle S → M over the 4n-dimensional real manifold M has a
connection ωr. To obtain a hyperkähler or quaternionic manifold we must
impose4

DKr ≡ dKr − εrstωs ∧Kt = 0 . (1.14)

4For any p-form Ψ we have dΨ = ∇Ψ where ∇ is the covariant derivative with respect to
the Levi-Civita connection.
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The difference between the two manifolds is that in the hyperkähler case
S is flat and in the quaternionic case it is proportional to the hyperkähler
form. Specifically, if the SU(2) curvature is defined by

Ωr ≡ dωr − 1

2
εrstωs ∧ ωt , (1.15)

then

Ωr = 0 in the hyperkähler case

Ωr = λKr in the quaternionic case, (1.16)

where λ is a real nonvanishing number, related to the scale of the manifold.
In the context of the effective supergravity theory which will be introduced
in a later chapter, it will turn out that appropriate normalizations of the
kinetic terms determine λ to be −κ2, where κ is the Newton constant. We
will come back to this in chapter 5.
For practical purposes we introduce a set of quaternionic 1-form vielbeins
V a

i ≡ V a
i Adq

A, where we have the flat indices i = {1, 2} and a = {1, . . . , 2n}
that run over the fundamental representations of SU(2) and Sp(2n,R)
respectively. In terms of these vielbeins we can write the metric of the
quaternionic manifold as

GAB = V a
i AV

b
j Bε

ijεab , (1.17)

where εab = −εba and εij = −εji are the Sp(2n,R) and SU(2) invariant
metrics5. A different expression for the metric (line element) is given by

ds2 = GābV
b

i ⊗ V̄ iā . (1.18)

Gāb is the tangent space metric appearing in front of the kinetic terms of
the fermions in the supergravity action. V̄ iā is the complex conjugate of
the vielbein, i.e.

V̄ iā ≡ (V a
i )

?

and Gāb is given in terms of the inverse vielbeins V i A
b satisfying

V i A
b V b

i B = δA
B ,

as follows:

Gab̄ =
1

2
GABV

i A
a V̄ B

ib̄ . (1.19)

5Note that SU(2) is isomorphic to Sp(1) and USp(2). Furthermore, Sp(2n, R) is isomorphic
to Sp(n).
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An important result is that the Riemann tensor RABCD, is decomposed into
two parts, one containing the field strength of the Sp(2n,R) connection and
the other the SU(2) curvature Ωr, see [50]. This means that the Levi-Civita
connection associated to the metric GAB has a holonomy group contained
in SU(2) ⊗ Sp(2n,R). In the hyperkähler case the SU(2)-bundle is flat, so
we have the following identification:

Hol(M) = SU(2) ⊗H quaternionic manifold (1.20)

Hol(M) = 11 ⊗H hyperkähler manifold

H ⊆ Sp(2n,R) .

Equation (1.20) is often used as the definition of a quaternionic manifold,
i.e., if we have a manifold whose holonomy is of this form, then it is a
quaternionic manifold. A consequence of the above definition of quater-
nionic manifolds is that for n > 1 the Ricci tensor is proportional to the
metric:

RAB = λ(2 + n)GAB . (1.21)

In other words, quaternionic manifolds are Einstein. Contracting with the
metric then gives the Ricci scalar curvature

R = λ4n(2 + n) = −κ24n(2 + n) ,

which is negative. However, for n = 1, a manifold of real dimension four,
the holonomy group is SU(2) ⊗ Sp(2,R) ∼= O(4) which is the maximal
holonomy group of a manifold anyhow, so the definition is of no use. Con-
sequently the Einstein property6 is no longer guaranteed. Instead we will
define a quaternionic manifold of four real dimensions (n = 1) to be a man-
ifold such that it is Einstein, as in (1.21), and has a (anti-)selfdual Weyl
curvature

W = ±?W that is WABCD = ±ε EF
AB WEFCD .

It is not very surprising that the holonomy group factorizes as in (1.20) be-
cause we started with a product bundle with exactly such a structure group.
However, starting from the scalars in the supergravity theory and investi-
gating their supersymmetry transformation rules precisely determines the
bundle TM. Supersymmetry requires that the SU(2) curvature is non-
zero, giving rise to the geometry described above.
A note on the the introduced terminology. When the SU(2)-bundle is triv-
ial, i.e., when the curvature (1.15) is zero, we can take its connection ωr to

6The metric still has this property for n = 1 if certain conditions on the Riemann curvature
tensor, which are automatically satisfied for n > 1, are imposed as part of the n = 1 definition.
For a complete discussion see [49] and references therein.
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vanish. If its connection vanishes we can write for (1.14) dKr = 0. From
(1.5) we see that this means that the metric is Kähler with respect to these
three Kähler forms and their combinations7. This is why the manifold with
such a metric is called a hyperkähler manifold.

1.5 Calabi-Yau manifolds

If we compactify type IIA/B supergravity on a Calabi-Yau manifold, the
effective supergravity theory in four dimensions has N = 2 supersymmetry.
In chapter 2 the 4-dimensional bosonic field content obtained after com-
pactifying on a Calabi-Yau manifold will be derived. For the geometry of
Calabi-Yau manifolds see for instance [37, 42].
By a Calabi-Yau manifold of complex dimension n (CY n-fold, often de-
noted by Yn), we shall mean a compact Kähler manifold of vanishing first
Chern class. As a differential form, the first Chern class is the cohomology
class of the curvature two-form:

c1 = [R] R ≡ iRi̄ dz
i ∧ dz̄ ̄ ,

where Ri̄ is the Ricci tensor and R the Ricci 2-form. Therefore the CY
condition, c1 = 0 implies that the Ricci form is exact. In complex coordi-
nates that means,

Ri̄ dz
i ∧ dz̄ ̄ = (∂iA̄ − ∂̄Ai) dz

i ∧ dz̄ ̄ , (1.22)

where A = Aidz
i + Aı̄dz̄

ı̄ is a globally defined 1-form.
A famous theorem of Yau states that given a CY manifold Yn with associ-
ated Kähler form K0, there exists a unique Ricci-flat metric for Yn whose
associated Kähler form K is in the same cohomology class as K0.
This basically means that the parameter space of CY manifolds is the
parameter space of Ricci-flat Kähler metrics. In other words: for a CY
manifold we can find a representative metric in each Kähler class that is
Ricci-flat8.
One of the characteristics of a CY n-fold is that the Ricci-flatness implies
SU(n) holonomy and vice versa. We will treat this in some detail.

On a complex n-fold with a Hermitian metric, the Levi-Civita connection
Γi

j ≡ Γi
jkdz

k is U(n) Lie-algebra valued. This is nothing else than the
fact that a connection on some vector (tangent in this case) bundle, takes
values in the structure group, which is U(n) for a complex manifold9. Note

7If J1, J2, J3 are the three complex structures then there exists in fact a whole family of
complex structures parametrized by J = aJ1 + bJ2 + cJ3, where a2 + b2 + c2 = 1.

8It is often difficult to construct this metric explicitly.
9In general one writes for the connection 1-form Ai

j = AA
µdxµ (TA)

i
j where the (TA)

i
j are a

set of generators of the structural group Lie algebra in the representation carried by the fibre.
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that in the case of a Kähler manifold the only nonvanishing components of
the connection and the Riemann curvature tensor are respectively Γi

jk and

Ri
jk̄l

(and their complex conjugates). Next we introduce a vielbein form,

adapted to the complex structure:

ea = ea
idz

i eā
ı̄dz̄

ı̄ = (ea)
?

(a = 1, . . . , n)

where a and ā are the flat indices, taking values in U(n). The metric is
related to the vielbeins by gi̄ = ea

ie
b̄
̄ ηab̄ , where ηab̄ =diag(+, . . . ,+) is the

flat Hermitian metric left invariant by U(n) transformations.
The U(n) Lie algebra valued curvature

Ra
b ≡ dωa

b − ωa
c ∧ ωc

b

is related to the ordinary Riemann tensor as

Ra
b = Ri

mn̄jdz
m ∧ dz̄n̄ea

ie
j
b ,

where ωa
b = −ω̄b̄

ā is a U(n) valued spin connection10. Since ea
ie

j
a = δi

j, the

Ricci 2-form is equal to the U(1) part of the U(n) curvature11. Specifically:
U(n) is not semi-simple and can be decomposed as SU(n) ⊗ U(1), or on
the level of the algebra as su(n)⊕u(1). For the spin connection this means
that we can write

ωa
b = ω̃a

b +
1

n
δa

bAU(1) ,

where ω̃a
b is the traceless part and A is the U(1) part. This gives us

R = Ra
a = iRi̄ dz

i ∧ dz̄ ̄ = FU(1) ≡ dAU(1) . (1.23)

When the first Chern class vanishes, the curvature is an exact (1, 1)-form.
The gauge field (1.23) is precisely the globally defined one from equation
(1.22). For a Ricci-flat metric this means that (1.23) vanishes, so the U(1)
form A is globally defined and closed. The holonomy group is not U(n)
but SU(n), since the U(1) part is trivial.

We have shown that for a CY n-fold the vanishing of the first Chern class
implies that it has SU(n) holonomy. We will now discuss how this leads
to the existence of a covariantly constant spinor. The existence of such a

10The spin connection is related to the affine connection in the usual way:

∂ie
a
j − Γk

ije
a
k − ω a

i be
b
j = 0 ∂[̄ıe

a
j] − ω a

[̄ı be
b
j] = 0 .

The second equation states that the torsion vanishes, which means that the connection is in
fact the Levi-Civita connection.

11This can easily be seen by evaluating Ra
a
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spinor in turn implies that the Calabi-Yau is Ricci flat, as we shall demon-
strate. Let us consider for simplicity the case of a CY 3-fold which has
SU(3) holonomy, we can make a similar argument for CY n-folds.
The covering group of SO(6) is SU(4), so spinors of SO(6) are in the
fundamental representation (or its conjugate) of SU(4). Consider such a
spinor ζ. By an SU(4) transformation ζ can always be put in the form
ζ = (0, 0, 0, ζ0). This spinor is left invariant by SU(3) rotations, i.e., it is
left invariant by the holonomy group. This implies that it is covariantly
constant.
We now show that a consequence of the existence of a covariantly constant
spinor is Ricci flatness. We will give this argument for a CY n-fold for which
there exists a spinor ζ which obeys DAζ = 0, where (A,B,C, . . .) denote
2n-dimensional indices. Multiplying with another covariant derivative and
antisymmetrizing yields

R AB
CD ΓABζ = 0 ,

where ΓAB is the (antisymmetrized) product of the gamma matrices. Mul-
tiplying by yet another gamma matrix gives

R CB
CD ΓBζ = RDBΓBζ = 0 , (1.24)

where we used the gamma matrix identity ΓAΓBC = ΓABC+gABΓC−gACΓB

and the curvature identity RABCD + RACDB + RADBC = 0. This implies
that the Ricci tensor vanishes.
An important property of Calabi-Yau n-folds is given by the following
theorem, see for instance [27]. A compact Kähler manifold of complex
dimension n has a vanishing first Chern class (in which case it is a Calabi-
Yau manifold) if and only if it admits a unique non-vanishing holomorphic
n-form,

Ω =
1

n!
Ωi1...in(z) dzi1 ∧ . . . ∧ dzin .

This form has the following properties:

1. Ω is harmonic

2. the components of Ω are covariantly constant in the Ricci-flat metric.

This n-form will play an important role in section 5.3.1.
We can characterize CY-folds by their Hodge numbers. To this end we
shall first review some material on cohomology.
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Differential geometry and (co)homology

We will start by considering a real manifold M of dimension m. A differ-
ential r-form ωr on M is defined as

1

r!
ωµ1...µr

dxµ1 ∧ . . . ∧ dxµr ,

where ωµ1...µr is a totally antisymmetric tensor and the differentials dxµ

are antisymmetrized, denoted by the wedge products ∧. The Hodge ?
operation is defined as

?ω =

√

|g|
r!(m− r)!

ωµ1...µr
εµ1...µr

νr+1...νm
dxνr+1 ∧ . . . ∧ dxνm ,

where g is the determinant of the metric. The Levi-Civita symbol ε is
defined as

εµ1...µm
=







+1 for (µ1 . . . µm) an even permutation of (1 . . .m)
−1 for (µ1 . . . µm) an uneven permutation of (1 . . .m)
0 otherwise ,

furthermore εµ1...µm = gµ1ν1 . . . gµmνmεν1...νm
= g−1εµ1...µm

. So we see that
the Hodge operation is a linear map from the space of r-forms Ωr(M) to
the space of (m− r)-forms Ωm−r(M). Applying the operation twice yields

??ω = (−1)r(m−r)ω

if M if Riemannian and

??ω = (−1)r(m−r)+1ω

if M is Lorentzian. The exterior derivative d on an r-form ω is defined as

dω =
1

r!

(
∂

∂xν
ωµ1...µm

)

dxν ∧ dxµ1 ∧ . . . ∧ dxµm ,

it is a map Ωr(M) → Ωr+1(M). If we act twice with d on an arbitrary
r-form the result is zero:

d2 = 0 ,

thus this operator is nilpotent. This allows us to define a cohomology. An
r-form ωr is closed if dωr = 0 and exact if ωr = dγr−1 with γr−1 some
(r− 1)-form. Although a closed r-form can locally always be written as an
exact form, in general this is not true globally.
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This leads to the definition of the r-th de Rahm cohomology group of a
manifold M :

Hr(M) =
closed r-forms on M

exact r-forms on M
.

The dimension of Hp(M) is called the Betti number br. They depend only
on the topology of M . The operator

∆ = ?d?d+ d?d? = (d+ ?d?)2 , (1.25)

is a second order differential operator which reduces to the Laplacian in
flat space. An r-form is harmonic if it obeys ∆ωr = 0. It can be shown
that each equivalence class in Hr(M) has a unique harmonic representa-
tive. Therefore, the space of harmonic r-forms Harmr(M) is isomorphic to
Hr(M). The Hodge map turns harmonic r-forms into harmonic (m − r)-
forms, which implies br = bm−r.

Similar (in construction) to cohomology one can define homology which
is based on the boundary operator δ. This boundary operator acts on
submanifolds of M and gives their boundary. If the submanifold has no
boundary, acting with δ produces zero. A boundary has no boundary, so
acting with δ on a submanifold which is a boundary of a higher dimensional
submanifold necessarily produces zero. The real12 linear combinations of
the submanifolds are called chains. A chain that is closed with respect to
δ is called a cycle and exact if it is obtained by acting with δ on another
submanifold. This leads us to the definition of the r-th homology group for
r-dimensional submanifolds (r-chains):

Hr(M) =
closed r-chains on M

exact r-chains on M
.

Hr consists of closed submanifolds that are not themselves boundaries.
There is a one-to-one correspondence between the homology and cohomol-
ogy classes. A theorem by de Rham states that if M is a compact manifold,
Hr(M) and Hr(M) are finite-dimensional. Moreover, the map

Λ : Hr(M) ×Hr(M) → R

is bilinear and non-degenerate. This map is defined by

Λ(c, ω) =

∫

c

ω ,

12This defines real homology. One can also consider integer, indicated with a Z, combinations
which defines integer homology.
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where c ∈ Hr(M) and ω ∈ Hr(M). Thus Hr(M) is the dual vector space
of Hr(M).

On a complex manifold N of real dimension d = 2n we can define very
similar structures. To start with, we can define (p, q)-forms as having p
antisymmetric holomorphic indices and q antisymmetric antiholomorphic
indices

ω(p,q) =
1

p!q!
ωµ1...µpν̄1...ν̄q dz

µ1 ∧ . . . ∧ dzµp ∧ dz̄ν̄1 ∧ . . . ∧ dz̄ν̄q .

Furthermore any ωr form can be uniquely decomposed as

ωr =
∑

p+q=r

ω(p,q) .

The exterior derivative splits into a holomorphic and an anti-holomorphic
part

d = ∂ + ∂̄ , (1.26)

where ∂ = dzi∂i and ∂̄ = dz̄ ı̄∂ı̄. Then ∂ and ∂̄ take (p, q)-forms into
(p + 1, q)- and (p, q + 1)-forms respectively. Each is nilpotent separately:
∂2 = ∂̄2 = 0. This means that we can define the complex version of the de
Rham cohomology called the Dolbeault cohomology:

H
(p,q)

∂̄
(N) =

∂̄-closed (p, q)-forms in N

∂̄-exact(p, q)-forms in N
.

The dimension of Hp,q

∂̄
(N) is called the Hodge number h(p,q). One can

construct a similar cohomology for ∂, but the information they contain is
the same. Because d splits up as in (1.26) we can define the two ‘Laplacians’

∆∂ ≡ (∂∂† + ∂†∂) ∆∂̄ ≡ (∂̄∂̄† + ∂̄†∂̄) ,

where ∂† = ?∂? and ∂̄† = ?∂̄?. Then the ∆∂̄-harmonic (p, q)-forms are in
one-to-one correspondence with Hp,q

∂̄
(N), similarly for the unbarred ver-

sion:

Harm
(p,q)
∂

∼= H
(p,q)
∂ . (1.27)

The de Rham cohomology groups can be written as

Hr(N) =
⊕

p+q=r

H(p,q)(N) . (1.28)
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If the manifold is also Kähler (see for instance [51]) we have the additional
property that

∆ = 2∆∂ = 2∆∂̄ , (1.29)

which means that the Hodge numbers obey h(p,q) = h(q,p). The Hodge num-
bers furthermore satisfy h(p,q) = h(n−p,n−q), h(p,0) = h(0,n−p) and h(n,0) = 1.
On a 3-fold of non-vanishing Euler character13 (we are specifying to CY
3-folds now, since they are physically the most interesting) h(1,0) = 0, h(1,2)

and h(1,1) are left as free ‘parameters’ (see also [27]).
The Euler character is defined as

χ ≡
6∑

r=0

(−1)rbr =
3∑

r=0

(−1)r

(
r∑

k=0

h(r−k,k)

)

= 2
(

h(1,1) − h(1,2)
)

, (1.30)

where br are the rth Betti numbers, giving the dimension of the real rth
cohomology class. The second equality reflects property (1.28). Note that
for a so-called rigid CY-fold, which has by definition h(1,2) = 0, the Euler
characteristic is given by 2h(1,1) and is therefore manifestly positive.
Summarizing, on a CY 3-fold the only non-vanishing Hodge numbers are

h(0,0) = h(3,3) = 1

h(3,0) = h(0,3) = 1

h(2,1) = h(1,2)

h(1,1) = h(2,2) , (1.31)

the (0, 0)-form equals a constant.

Holonomy

Consider again an m-dimensional Riemannian manifold M . Take a vector
from the tangent space at point p and parallel transport it around a closed
loop back to p. The vector will (in general) be transformed, the set of
these transformations is called the holonomy group. Explicitly, if we take a
vector Xµ ∈ TpM , the parallel transported vector is given by X

′µ = hµ
νX

ν .
When we consider an infinitesimal parallelogram, we have the result

X
′µ = Xµ +XνRµ

νκλδ
κ
1 δ

λ
2 ,

where δ1, δ2 are the edges of the parallelogram. We see that (infinitesi-
mally) hµ

ν = δµ
ν + Rµ

νκλδ
κ
1 δ

λ
2 , so the Riemann curvature tensor determines

the holonomy group.

13Its definition will be provided shortly.
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The moduli space of Calabi-Yau manifolds

As discussed above, Yau’s theorem states that, given a Kähler manifold
Y3 with associated Kähler form K0, there exists a unique Ricci-flat Kähler
metric for Y3 whose Kähler form is in the same cohomology class as K0. We
can therefore consider the parameter space of CY-folds to be the parameter
space of Ricci-flat Kähler metrics. Suppose that we have two Ricci-flat
metrics for Y3, gµν and gµν + δgµν :

Rµν(gµν) = 0 Rµν(gµν + δgµν) = 0 ,

with µ, ν real indices Together with the coordinate condition ∇νδgµν = 0
we have that δgµν satisfies the Lichnerowicz equation:

∇ρ∇ρδgµν + 2R ρ σ
µ ν δgρσ = 0 ,

∇ρ is the covariant derivative in real coordinates. Using the properties of
Kähler manifolds discussed above, we find that (in complex coordinates)
δgi̄, δgij and δgı̄̄ satisfy this equation separately. This means that there are
two distinct deformations of the metric. To the first, δgi̄, we can associate
the real harmonic (1, 1)-form

iδgi̄ dz
i ∧ dz̄ ̄ . (1.32)

With the second, the pure type variations, we can form

Ω k̄
ij δgl̄k̄ dz

i ∧ dzj ∧ dz̄ l̄ , (1.33)

a complex (2, 1)-form and similarly for its complex conjugate. This means
that the zero modes of this Lichnerowicz equation are in one-to-one cor-
respondence with the elements of H(1,1)(Y3) and H(2,1)(Y3) . Clearly the
mixed type modes, i.e. (1.32), are variations of the Kähler class, giving rise
to h(1,1) real parameters.
The variations of the pure type give rise to variations of the complex struc-
ture. This can be seen as follows: gµν + δgµν is a Kähler metric on a
manifold close to the original one, therefore a coordinate system must ex-
ist in which the pure parts of the metric vanish, see (1.3). Consider e.g.
the holomorphic part. Under a change of coordinates zi → zi + f i and
z̄ ı̄ → z̄ ı̄ + f̄ ı̄ the (holomorphic part of the) metric varies as

δgij → δgij −
∂f̄ l̄

∂zi
gl̄j −

∂f̄ l̄

∂zj
gil̄ .

If this is to be zero then f̄ ̄ is to be a function of the zi’s and vice versa for
the antiholomorphic part. This means that the coordinate transformations
are not holomorphic, in other words, the complex structure changes.
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The conclusion of the above is that the moduli space Mmod of CY-folds is
the product of the space spanned by Kähler class deformations M1,1 and
the space spanned by the complex structure deformations M1,2,

Mmod = M1,1 ×M1,2 .

It turns out that both M1,1 and M1,2 are special Kähler manifolds.
Let us for the moment restrict our attention to the complex structure defor-
mations which parametrize H(1,2)(Y3) and include H(3,0)(Y3) and H(0,3)(Y3)
(with elements Ω and Ω̄) which together form H3(Y3) = H(3,0) ⊕H(0,3) ⊕
H(2,1)⊕H(1,2). Choose a real basis of harmonic 3-forms (αI , β

J) onH3(Y3,Z),
where I, J = 0, . . . , h(1,2), obeying

∫

Y3

αI ∧ βJ = −
∫

Y3

βJ ∧ αI = δJ
I

∫

Y3

αI ∧ αJ =

∫

Y3

βI ∧ βJ = 0 . (1.34)

Note that these relations are invariant under integer valued symplectic
reparametrizations

(
β
α

)

→
(
U Z
W V

)

︸ ︷︷ ︸

A

(
β
α

)

A ∈ Sp(2h(1,2) + 2) , (1.35)

with the submatrices obeying

UTV −W TZ = V TU − ZTW = 11

UTW = W TU ZTV = V TZ .

When the periods of Ω are defined as

ZI =

∫

Y3

Ω ∧ βI GI =

∫

Y3

Ω ∧ αI

Ω can be expressed as Ω = ZIαI − GIβ
I , which is invariant under (1.35).

This implies that (ZI ,GI) transforms as a symplectic vector. The GI are
in fact functions of the ZI and can be determined in terms of G(Z), a
homogeneous function of degree two as

GI =
∂G
∂ZI

≡ ∂IG .

On the other hand, Ω is of degree one in Z, i.e. Ω = ZI∂IΩ with
∂IΩ = αI − GIJβ

J and GIJ ≡ ∂I∂JG.
As a result, the ZI are projective coordinates, allowing us to choose the
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patch ZI = (1, za), where za = Za

Z0 , a = 1, . . . , h(1,2): precisely the com-
plex structure deformation parameters. The metric on M1,2 is Kähler:
gab̄ = ∂a∂̄b̄K with K given by

K = − ln i

∫

Y3

Ω ∧ Ω̄ = − ln i
(
Z̄IGI − ḠIZI

)
. (1.36)

Comparing with (1.11) (where ZI is called XI and G(I) F(I)) tells us that
M1,2 is a special Kähler manifold.
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Calabi-Yau compactifications

In the first part of this chapter we will schematically review the compacti-
fication of 11-dimensional supergravity to 4 dimensions, using a CY 3-fold.
Specific attention shall be given to the M5-brane and the M2-brane.
We start by compactifying the bosonic fields of 11-dimensional supergrav-
ity on a circle, which gives the fields of type IIA supergravity. We then
outline the compactification of type IIA on a general Calabi-Yau manifold.
This gives rise to a certain set of fields in four dimensions: the bosonic field
content of N = 2 supergravity coupled to vector multiplets and hypermul-
tiplets. We focus on the universal sector which arises as a tensor multiplet
that does not depend on the details of the Calabi-Yau manifold. Next we
will investigate this tensor multiplet by considering its alternative formu-
lations: the universal hypermultiplet and the double-tensor multiplet. We
will focus on this sector because we will restrict ourselves for simplicity to
compactifications on rigid Calabi-Yau manifolds.
A point worth emphasizing is that although we speak about ‘branes’ fre-
quently, no worldvolume actions or boundary states will be used. They
will always be dealt with from the point of supergravity. The branes will
always appear as solitonic objects and consequently will be treated in a
‘macroscopic’ manner.

2.1 11 dimensions

In this section we follow the conventions of [52].
The bosonic part of the 11-dimensional supergravity action [53], is given
by

S11 =
1

2

∫

d11x
√

−ĝR̂− 1

4

∫ (

F̂4 ∧? F̂4 −
1

3
Â3 ∧ F̂4 ∧ F̂4

)

. (2.1)

We have set the 11-dimensional gravitational coupling constant κ11 to 1.
The supergravity action contains a 3-form potential Â3 with field strength

19
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F̂4 = dÂ3 which obeys the Bianchi identity

dF̂4 = 0 (2.2)

and the field equation

d ?F̂4 +
1

2
F̂ 2

4 = d

(

?F̂4 +
1

2
Â3 ∧ F̂4

)

= 0 . (2.3)

This equation gives rise to the conservation of an ‘electric’ type charge1

qe =

∫

∂M8

(

?F̂4 +
1

2
Â3 ∧ F̂4

)

, (2.4)

the integral is over the boundary at infinity of some spacelike 8-dimensional
subspace of 11-dimensional spacetime, [54, 55, 56]. On the other hand, (2.2)
gives a ‘magnetic’ conserved charge

qm =

∫

∂N5

F̂4 , (2.5)

where we now integrate over the boundary (at infinity) of a spacelike 5-
dimensional subspace.
Just as the Maxwell 1-form couples naturally to the worldvolume (a world-
line in fact) of a charged particle, Â3 couples naturally to the worldvolume
of a 2-dimensional charged extended object. The charge is given by (2.4)
and represents the charge of a membrane with a 3-dimensional worldvol-
ume. The integration surface ∂M8 is a surface surrounding the membrane.
The second way to come up with an extended object is to think about the
dualized field strength ?F̂4, a 7-form. Suppose one would find an underly-
ing potential for ?F̂4, then this potential would couple to a 6-dimensional
worldvolume. This ‘solitonic’ or ‘magnetic’ object is called the fivebrane2,
which means that ∂N5 in (2.5) actually surrounds this 5-brane.
One procedure to go from 11 to 10 dimensions is to compactify on a circle,
i.e., x11 ∼ x11+2π. By compactifying 11-dimensional supergravity on a cir-
cle one obtains type IIA supergravity in 10 dimensions3. The Kaluza-Klein
ansatz for the metric is

ds2
11 = e−2φ/3gABdx

AdxB + e4φ/3
(
dx11 − AAdx

A
)2

, (2.6)

1Actually, these charges are quantized, as we will see later explicitly, in a slightly different
setting in section 5.3.1.

2M5-brane really: the 5-brane from M-theory, of which the low energy effective theory is
presumably given by 11-dimensional supergravity.

3For more information on this procedure see [4].
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where AA is a vector field, A = 0, . . . , 9, φ is the 10-dimensional dilaton.
The 11-dimensional 3-form Â3 gives the 10-dimensional objects

AABC = ÂABC BAB = ÂAB11 , (2.7)

with 10-dimensional field strengths H3 = dB2, F2 = dA and F4 = dA3.
Using the same reasoning as before, the 5-brane charge in 10 dimensions is
associated to

∫

∂N4

H3 (2.8)

and the membrane charge to
∫

∂M7

(

eφ/2 ?F4 + A3 ∧H3

)

. (2.9)

Let us take a closer look at these objects. Consider, for instance, the 5-
brane, the magnetic dual of the fundamental string (in 10 dimensions).
This object was originally discovered as a consistent background for su-
pergravity, see [57, 58, 15]. In the case of type IIA supergravity it is
characterized by the following equations:

e2φ = e2φ∞ +
Q

r2
Hµνρ = ε σ

µνρ ∂σφ , (2.10)

where Q is the charge of the 5-brane and e2φ∞ is a integration constant.
The (conformally) flat 4-dimensional space transversal to the 5-brane is
parametrized by xµ. The transversal distance r = |x| is measured from a
point x in transversal space to the brane which is located for simplicity at
the origin. The longitudinal space can taken to be flat. Actually, since the
geometry of this solution is simply a direct product, we can insert more
complicated geometries in the direction of the 5-brane, as long as they
satisfy the Einstein equations. The transversal geometry will remain the
same. For example, one can take the geometry of a CY 3-fold. However,
note that we must perform a Wick rotation such that the brane becomes
a Euclidean brane before wrapping it around the Calabi-Yau. The result
is then a 5-brane which is wrapped around the CY, thus appearing in the
transversal space as an instanton located at the origin. We can construct
a similar setup for the membrane, but in this case the membrane cannot
wrap around the whole of the CY, but it has to wrap a 3-cycle.

2.2 4 dimensions

One can compactify type IIA supergravity to four dimensions on a 4-
dimensional Minkowski space times an internal Calabi-Yau 3-fold, i.e.,
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M1,3 × Y3. The result is an N = 2 supergravity theory coupled to vector
multiplets and hypermultiplets. It is instructive to consider the amount of
supersymmetry preserved by such a compactification first.
A compactification specifies a background for the 10-dimensional super-
gravity theory. This background preserves a certain amount of supersym-
metry. The precise amount preserved by this groundstate is determined
by the number of independent supersymmetry parameters for which the
fermionic supersymmetry variations vanish. If one specifies the background
by setting the background values for the fermionic fields in the theory to
zero, the only supersymmetry variation which is not trivially zero is the
variation of the gravitino:

δψi
A = ∇Aε

i ,

with A a 10-dimensional index. In type IIA supergravity in 10 dimensions,
there are two independent supersymmetry parameters εi , i = 1, 2 and two
gravitino’s. We see that the variation only vanishes if there are covariantly
constant spinors in our Kaluza-Klein background.
For the compactification ansatz of 4-dimensional Minkowski space times a
Calabi 3-fold, the spinors εi decompose as

εi ∝ η̄i ⊗ ζ(y) + ηi ⊗ ζ†(y) ,

where ζ(y) is a covariantly constant spinor on the CY 3-fold, ζ†(y) its com-
plex conjugate and the ηi are complex 4-dimensional Weyl spinors.
A CY n-fold admits one covariantly constant spinor, see the discussion in
section 1.5. This means that in 4 spacetime dimensions we are left with
the two supersymmetry parameters η1 and η2, together providing 8 super-
charges, i.e., N = 2 supergravity. For more information about the details
and consistency of this Kaluza-Klein program see [59, 60, 61, 62].
In chapter 4 we will elaborate on the notion of Killing spinors and perform
a detailed analysis on the amount of supersymmetry preserved when we
choose a non-trivial bosonic background in 4 dimensions, namely the in-
stanton background.

Next we illustrate how the scalar fields of the hypermultiplets and the
gravitational and vector multiplets of the N = 2 supergravity theory in 4
dimensions arise.
We follow the Kaluza-Klein program and expand the 10-dimensional fields
in harmonics on the internal CY 3-fold Y3. If we collectively denote the
fields by Φ(I)(x, y), where xµ are the Minkowski spacetime coordinates and
ym (or (zi, z̄ ı̄)) are the internal (complex) coordinates, we can write

Φ(I)(x, y) =
∑

α

Φ(I)
α (x)Y α

(I)(y) ,
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with Y α
(I)(y) the appropriate harmonics.

The light fields appearing in 4 dimensions are those coefficient functions

Φ
(I)
0 (x) whose harmonics Y 0

(I)(y) are zero modes of the internal Laplacian
∆(I) which acts on them in the field equations.

For instance, consider a 2-form field B̂2 in 10 dimensions with action
∫

dB̂ ∧? dB̂ .

Decomposing the 10-dimensional space as M1,3 × Y3, the 10-dimensional
Laplacian decomposes as ∆10 = ∆4 +∆6. The equation of motion d?dB̂2 =
0 together with the gauge condition d?B̂2 = 0 can be written as ∆10B̂2 = 0,
see (1.25). Upon decomposing this becomes

(∆4 + ∆6) B̂2 = 0 .

A massless B2 field in 4 dimensions should obey ∆6B̂2 = 0. This means
that we must expand B̂2 in harmonics of ∆6. We know, see (1.27), (1.29)
and (1.31), that such harmonics correspond to the various cohomology
groups on Y3. Therefore the following reductions of B̂2 can be associated
to the cohomology groups, in complex coordinates

Bµν ↔ H(0,0)(Y3)

Bµi ↔ H(1,0)(Y3) = ∅ (2.11)

Bij ↔ H(2,0)(Y3) = ∅
Bi̄ ↔ H(1,1)(Y3) .

Explicitly this means that we can expand B̂2 as

B̂2 = B2 + biωi , (2.12)

where the ωi are (1, 1)-forms, i = 1, . . . , h(1,1). B2 is a 2-form in 4 dimen-
sions and the bi are real scalar fields in 4 dimensions: bi(x).
The other fields are treated in a similar manner. Reducing to 10 dimensions
gave us the following NS-NS fields:

B2 , gAB , AA and φ

and the R-R field A3, B2 has just been discussed. The metric field gAB(x, y)
can be decomposed as gµν(x) (the 4-dimensional graviton) gµm and gmn, or
gmi, gij, gi̄ and their complex conjugates. In section 1.5 we have discussed
the zero modes of gij and gi̄ and we have seen that they correspond to
deformations of the Kähler class and the complex structure, see (1.32) and
(1.33), which means that they can be expanded as

iδgi̄ =
h(1,1)
∑

l=1

vl(x)ωl (2.13)
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and

δgij =
h(1,2)
∑

a=1

za(x)b̄aij . (2.14)

The b̄aij are related to the (1, 2)-forms γa a = 1, . . . , h(1,2) (not in a real
basis this time) by

b̄aij =
i

||Ω||2Ω l̄k̄
i γ̄a;l̄k̄j , (2.15)

where ||Ω||2 ≡ 1
3!ΩijkΩ̄

ijk. Furthermore gµi = 0 because h(1,0) = 0, which
we used in (2.11) as well. Similarly, the 1-form A only gives a 1-form in
4 dimensions: the graviphoton A0. The 10 dimensional dilaton gives a
4-dimensional dilaton, φ(x). Lastly, the R-R 3-form A3 is expanded as

A3 = C3 + Ai ∧ ωi + ξAαA + ξ̃Bβ
B , (2.16)

where C3(x) is a 3-form on M1,3, the h(1,1) Ai(x)’s are 1-forms. As before,
see (1.34), the (αA, β

A) form a real basis of H3(Y3), consequently A3 gives
us 2(h(1,2) + 1) real scalars.
These fields organize themselves into the following multiplets: the gravita-
tional multiplet

(
A0, gµν

)
(2.17)

and the vector multiplets
(
Ai, vi, bi

)
,

containing h(1,1) vectors and twice as many real scalars4. The hypermulti-
plets

(

za, ξa, ξ̃a

)

, (2.18)

contain the h(1,2) complex scalar fields za from (2.14) and in total 4h(1,2)

real scalar fields.
Finally there is the tensor multiplet, TM for short:

(

ξ0, ξ̃0, φ, B2

)

, (2.19)

a multiplet which is always present and does not depend on the details
of the CY 3-fold since B2 and φ are related to the 0-form of the CY and

4These scalars are often treated in one go by complexifying the Kähler cone: write B2 +iJ =
(bi + ivi)ωi ≡ tiωi, where we now have h(1,1) complex scalars ti.
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(ξ0, ξ̃0) are the expansion coefficients of A3 w.r.t. the unique Ω. This means
that if we were to consider a rigid (h(1,2) = 0) CY this multiplet would still
be present.
Often the tensor multiplet is dualized to an additional hypermultiplet since
a 2-form field in 4 dimensions is dual to a (pseudo) scalar field, generally
called the axion. The resulting multiplet is called the universal hypermul-

tiplet (UHM) because it must be present in any CY-compactification.
Due to supersymmetry [47] (see also [23] for a geometrical argument) the
total target manifold parametrized by the various scalars factorizes as a
product of vector and hypermultiplet manifolds:

Mscalar = MV ⊗MH . (2.20)

MV is a special Kähler manifold and MH is a quaternionic manifold.
This is a very important result, since it means that string corrections,
whether perturbative or nonperturbative, only affect the hypermultiplets,
since the dilaton belongs to a hypermultiplet and gs ≡ e−φ/2. The vector
multiplet geometry remains unaffected5.

The 3-form C3 is dual in 4 dimensions to a constant e0. It turns out that
taking this space-filling C3 along in the compactification (or conversely e0)
has the effect of gauging the axion, see [63]. The graviphoton A0 acts as the
gauge field and the gauging gives rise to a potential, this will be discussed
at a later stage.
In the above we have schematically derived the bosonic field content of
(N = 2) supergravity in 4 dimensions. Similarly one can reduce the whole
10-dimensional action to obtain the 4-dimensional one and relate in this
way all the terms appearing in the 4-dimensional action to the original
fields and the geometric data of the CY 3-fold. This is done in the seminal
paper [22], see also the useful appendices in [63].
Conversely, knowing that the reduction gives one supergravity multiplet,
4(h(1,2) + 1) hypermultiplets and h(1,1) vector multiplets, one could con-
struct such an action from first principles. One could also choose to leave
out the vector multiplets, since the moduli space factorizes anyway. Such
an action has been constructed in [26], in which the most general action
for hypermultiplets coupled to N = 2 supergravity is constructed. This ac-
tion is a non-linear sigma model6 where the Lagrangian contains all kinds of
complicated non-linear terms, specifically the kinetic terms which provide a
metric for the target space. Supersymmetry constrains these ‘complicated
terms’ such that the hypermultiplet sector of the theory parametrizes a

5Just as the hypermultiplet metric receives no α′ corrections, in type IIA that is. For a
general discussion on the corrections to the moduli spaces of both type IIA and type IIB, see
[23].

6See [64] and the references therein for non-linear sigma models in supergravity.
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quaternionic manifold. This means that if we assume supersymmetry is
unbroken in the 4-dimensional supergravity theory, quantum corrections
cannot give new terms in the effective action. The various quantities, such
as the metrics for the kinetic terms, may change, but only in such a way
that the supersymmetry relations are still obeyed. Geometrically speaking,
the scalars keep parametrizing a quaternionic manifold, although perhaps
a different one.
This is a very powerful and useful concept which will be put to use in
chapter 5. In that chapter we will construct perturbations of the classical
hypermultiplet space (corresponding to the classical UHM action). These
perturbations respect the quaternionic geometry of the target-space and
describe, as it will turn out, effects that must be attributed to membrane
instantons.
The conclusion of the above discussion is that the possible effects the 5-
brane and the membrane can have, must show up in the (universal) hyper-
multiplet(s) sector of the effective action, which is why we will be neglecting
the vector multiplets from now on.

The aim of the next sections is to investigate the 4-dimensional theory for
which we will compute instanton corrections in chapters 4 and 5.

2.3 The universal hypermultiplet

The easiest situation to consider is compactifying type IIA supergravity on
a rigid CY 3-fold, because we then only have to deal with the universal
tensor multiplet. The vector multiplets can be consistently truncated to
zero for the purposes of this chapter. The resulting four-dimensional low
energy bosonic effective Lagrangian is given by

e−1LT = −R− 1

2
∂µφ∂µφ+

1

2
e2φHµHµ − 1

4
F µνFµν (the NS-NS sector)

−1

2
e−φ (∂µχ∂µχ+ ∂µϕ∂µϕ) − 1

2
Hµ (χ∂µϕ− ϕ∂µχ) (the R-R sector)

The R-R scalars ϕ and χ were formerly known as ξ0 and ξ̃0, compare
with (2.19). Notice that both χ and ϕ have constant shift symmetries.
Hµ = 1

2ε
µνρσ∂νBρσ is the dual NS 2-form fields strength (i.e. H3 = dB2).

The tensor B2 also has a shift symmetry and is dual to the axion. F µν is
the field strength associated to the graviphoton Aµ, previously denoted by
A0 (see (2.17)). As before the dilaton is denoted by φ.

We can transform this Lagrangian into the Lagrangian of the UHM by
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dualizing7 B2 to the axion σ giving

e−1LUH = −R− 1

2
∂µφ∂µφ− 1

4
F µνFµν (2.21)

−1

2
e−φ (∂µχ∂µχ+ ∂µϕ∂µϕ) − 1

2
e−2φ (∂µσ + χ∂µϕ)

2
,

which is the classical UHM at string tree-level. It is a non-linear sigma
model [65, 66] with a quaternionic target space corresponding to the coset
space

SU(1, 2)

U(2)
, (2.22)

where SU(1, 2) is the isometry group8 of the Lagrangian. This space is
actually Kähler as well, as can be seen by going to the frequently used
parametrization

eφ =
1

2

(
S + S̄ − 2CC̄

)
χ = C + C̄

σ =
i

2

(
S − S̄ + C2 − C̄2

)
ϕ = −i

(
C − C̄

)
. (2.23)

In these coordinates Kähler potential is given by

K = − ln
(
S + S̄ − 2CC̄

)

and the line element on the target space by

ds2 = e2K
(
dSdS̄ − 2CdSdC̄ − 2C̄dS̄dC + 2(S + S̄)dCdC̄

)
,

the pullback of which, to M1,3, precisely gives the Lagrangian. The 8
isometries which leave the Lagrangian invariant were analyzed in [69, 70].
The shift isometries of the R-R scalars and the axion mentioned above form
a subgroup of the isometry group. This group is known as the Heisenberg
group and acts on the fields as

S → S + iα + 2ε̄C + |ε|2

C → C + ε , (2.24)

where the finite α and ε are respectively real and complex. In the real basis
(2.23) the Heisenberg group acts as

φ→ φ χ→ χ+ γ ϕ→ ϕ+ β σ → σ − α− γϕ , (2.25)

7This will be explained later after giving some information about the isometries of the UHM.
8See for instance [67, 68] for some alternative parametrizations of this metric.
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β = i(ε− ε̄) and γ = (ε+ ε̄). The generators of the Heisenberg group obey
the commutation relations

[δα, δβ] = [δα, δγ] = 0 [δβ, δγ] = δα .

Furthermore there is a U(1) symmetry which acts as a rotation on ϕ and
χ, together with a compensating transformation on σ. Its finite transfor-
mation can be determined from the results in [71, 31] and reads

ϕ→ cos(δ)ϕ+ sin(δ)χ χ→ cos(δ)χ− sin(δ)ϕ ,

σ → σ − 1

4
sin(2δ)

(
χ2 − ϕ2

)
+ sin2(δ)χφ . (2.26)

Four of the eight isometries have now been specified.
The isometries of the Heisenberg group are expected to survive at the
perturbative level. The reasons for expecting this are as follows. The
Heisenberg group does not act on the dilaton, i.e., on gs. This means that
we can examine the Heisenberg group order by order in perturbation theory.
Furthermore, the shifts in χ and ϕ are preserved because they originated
from the gauge transformation of the 3-form A3 in ten dimensions, see
(2.16). The field strength of this 3-form will involve its derivative, dA3.
The gauge symmetry is therefore given by δA3 = dΛ2, where Λ2 is a 2-
form. If one works out dA3 using (2.16) one finds (among others) the
terms dξ0α0 + dξ̃0β

0 for which the gauge symmetry becomes

ξ0 → ξ0 + γ ξ̃0 → ξ̃0 + β .

We gave the constant shifts the same name as in (2.25), to which these
transformations correspond. We can think about the shifts in the axion in
a similar way.
Finally there are the 4 remaining isometries we do not give here. They in-
volve non-trivial transformations on the dilaton and hence will change the
string coupling constant. We will not consider these isometries nonpertur-
batively, in fact it is not even known what happens to them perturbatively.
Although the isometries of the Heisenberg group (2.24, 2.25) are unaffected
by quantum corrections, which appear at one-loop only in the string frame
see [72, 73, 74, 75], nonperturbative effects will quantize these isometries.
This will be discussed in chapter 4.

2.4 The double-tensor multiplet

Instead of working with the UHM we will find it convenient to work with
the so-called double-tensor multiplet, or DTM for short. As the name sug-
gests, the DTM contains 2 tensors and arises by dualizing a R-R scalar
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(ϕ or χ) from the tensor multiplet to an additional tensor. We shall start
by discussing the DTM in Lorentzian signature and the actual dualization
process. In the next section we shall give its Euclidean formulation and
the reason why we choose the Euclidean DTM over the Euclidean UHM.
The bosonic part of the DTM Lagrangian is given by

e−1LDT = −R− 1

2
∂µφ∂µφ− 1

4
F µνFµν −

1

2
e−φ∂µχ∂µχ+

1

2
M IJHµ

I HµJ ,

(2.27)

where we have dualized ϕ into another H. Comparing with the UHM gives
φI = (ϕ, σ) ↔ HI = (H1, H2). In effect we can go from the UHM to the
DTM, the reason is that the UHM possesses two commuting isometries
over which we can dualize, for instance the shift symmetries in ϕ and σ
corresponding to α and β. The DTM also possesses such symmetries since
B1 and B2 only appear through their derivatives.
The kinetic term (metric) for the 3-form field strengths Hµ

I = 1
2ε

µνρσ∂νBρσI

is given by

M IJ = eφ

(
1 −χ
−χ eφ + χ2

)

. (2.28)

The remaining two scalars φ and χ parametrize the coset Sl(2,R)/O(2),
see appendix D for the various target manifolds. However, the two tensors
break this Sl(2,R) symmetry to a 2-dimensional subgroup generated by
rescalings of the tensors and by the remaining generator of the Heisenberg
algebra (2.25) acting on χ and B1 as

χ→ χ+ γ B1 → B1 + γB2 , (2.29)

φ and B2 are invariant. Summarizing: in going from the UHM to the DTM
two of the shift symmetries of the Heisenberg group, namely α and β (see
(2.25)), have been used to dualize to two tensors, which now in turn have
shift symmetries. The remaining shift symmetry γ now acts on χ and B1

as in (2.29).
We will sometimes use the ‘Heisenberg invariant’

Ĥ1 ≡ H1 − χH2 , (2.30)

which, as the name suggests, is invariant under (2.29).

Let us now finally be more specific about the process of dualization, for
more details see [76]. In general one can dualize the scalars of a bosonic
sigma model into tensors if they appear only through their derivatives.
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This means that the target manifold has a set of Abelian Killing vectors9,

δΘφ
Â = ΘIkÂ

I (φ) [kI , kJ ] = 0 .

We can choose coordinates φÂ = (φA, φI), where φA = (φ, χ), such that
these transformations act as constant shifts on the φI and leave the φA

invariant. When writing φÂ we mean to denote all the scalars in the UHM,

i.e. φÂ = (φ, χ, ϕ, σ). φI are the scalars in the UHM which are dualized
into the two tensors of the DTM and φA are the scalars in the DTM. As
the notation suggests, tensors can be dualized as well if they appear solely
through their fields strengths. Furthermore they guarantee commuting
isometries in the corresponding scalar sigma model, so if we go from the
DTM to the UHM we have the two commuting shift isometries discussed
earlier.
This procedure also works at the perturbative level, as mentioned before,
since the Heisenberg group is preserved, [72]. At the nonperturbative level
things are slightly more subtle, we will discuss this.
To dualize from the UHM to the DTM one replaces the derivatives on
φI by covariant derivatives. Add Lagrange multipliers BµνI with Hµ

I =
1
2ε

µνρσ∂νBρσI . Integrating out these multipliers sets the gauge fields to
zero and gives the original action back. Alternatively one can integrate out
the gauge fields, giving the dual action. Explicitly: consider the bosonic
part of the UHM,

e−1LUH = −1

2
GÂB̂∂

µφÂ∂µφ
B̂ −R− 1

4
F µνFµν ,

in which GÂB̂ is the scalar (quaternionic) metric one can read off from
(2.21). Now we gauge two isometries by replacing ∂µφ

I → ∂µφ
I − AI

µ and

by adding the Lagrange multiplier term Hµ
I A

I
µ , I = 1, 2. The Lagrangian

density becomes

e−1L = −1

2
GAB∂µφ

A∂µφB −GAI∂µφ
A
(
∂µφI − AµI

)
−R− 1

4
F µνFµν

−1

2
GIJ

(
∂µφ

I − AI
µ

) (
∂µφJ − AµJ

)
−Hµ

I A
I
µ , (2.31)

remember that A = 1, 2. The next step is to integrate out the gauge field,
the equation of motion for AI

µ is

AI
µ = AI

A∂µφ
A + ∂µφ

I −HI
µ ,

9Actually, the Killing vectors have to leave the complex structures invariant and the isome-
tries have to commute with supersymmetry. For a quaternionic manifold this is automatically
the case. For more details see [77].
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where AI
A ≡M IJGJA. Inserting this back into (2.31) gives

e−1LDT = −1

2
GAB∂

µφA∂µφ
B +

1

2
M IJHµ

I HµJ −R− 1

4
F µνFµν (2.32)

where M IJ has been defined in (2.28), the relation with the UHM metric
GÂB̂ is M IJ ≡ (GIJ)−1. The metric for the 2 remaining scalars is also a
subset of GÂB̂, namely

GAB = GAB −GAIM
IJGJB =

(
1 0
0 e−φ

)

. (2.33)

Together these components form the hypermultiplet metric, or the other
way around: the hypermultiplet metric decomposes as

GÂB̂ =

(

GAB + AI
AMIJA

J
B AK

AMKJ

MIKA
K
B MIJ

)

. (2.34)

We have obtained the DTM by dualizing two scalars from the UHM to
tensors. Perturbatively, the DTM guarantees10 two commuting shift sym-
metries in the dual UHM description. Nonperturbatively, however, the
duality also involves the constant modes of the dual scalars ϕ and σ by
means of theta-angle-like terms. These are surface terms which have to be
added11 to the DTM Lagrangian and are non-vanishing in the presence of
instantons and anti-instantons. In Euclidean space they can be written as
integrals over 3-spheres at infinity:

SE
surf = i

(

ϕ

∫

S3
∞

H1 + σ

∫

S3
∞

H2

)

= iϕQ1 + iσQ2 , (2.35)

The charges Q1 and Q2 are related to the membrane and fivebrane in-
stantons associated with the two tensors H1 and H2, as we will discuss
in chapter 3 (see (3.9)). ϕ and σ are now some parameters that play the
role of coordinates on the moduli space in the dual UHM theory. The du-
alization back to the UHM is performed by promoting σ and ϕ to fields
that serve as Lagrange multipliers enforcing the Bianchi identities on the
tensors. This gives back the fields ϕ and σ in the UHM, in the DTM there
are no ϕ and σ fields because they have been dualized to two tensors.
Boundary terms such as these are also added in 3-dimensional gauge the-
ories in the Coulomb phase where the effective theory can be described in
terms of a vector which can be dualized into a scalar (the dual photon) in a
similar manner as described above, see [78, 79, 80] and in particular [81, 82].

10Because the Heisenberg group is preserved in perturbation theory.
11The dualization process is defined up to such surface terms.
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2.5 Wick rotations and duality

Having constructed the DTM we still need to analytically continue it. We
use the Wick rotation to analytically continue (the details are given in
appendix B). The result is

e−1LE
DT =

1

2
∂µφ∂µφ+

1

2
e−φ∂µχ∂µχ+

1

2
M IJHµ

I HµJ +R +
1

4
F µνFµν .

(2.36)

In performing our Wick rotation we have assumed that we are dealing with
a class of metrics for which we can perform this procedure. In general this
is a subtle issue. However, in the next chapter we will limit ourselves to
flat space, for which the rotation is well defined. We will do so because
the instanton configurations we will discuss must have vanishing energy
momentum tensor. This requirement will be satisfied by working in flat
space. We see that in general the presence of the Einstein-Hilbert term
causes our otherwise positive definite Euclidean action to be unbounded
from below. Again, in flat space this is not an immediate problem since
the Ricci scalar vanishes. However, gravitational fluctuations around the
instanton configuration could ruin this.
From this Lagrangian two Bogomol’nyi equations can be derived, one cor-
responding to a NS 5-brane and another to a membrane instanton, which
will be the subject of the next chapter. However before continuing, we will
discuss the reason for working with the Euclidean DTM, as promised.

Apart from the Einstein-Hilbert term, the action corresponding to (2.36)
is positive definite and has real saddle points for the 3-forms, which we will
construct in the next chapter. In principle one could work with the UHM
as well, but then one would have to deal with imaginary saddle points. To
see this, let us reconsider the dualization process of a single (for simplicity)
3-form H to a scalar, the generalization is straightforward.
In Minkowski space the path integral involving a 2-form is given by

∫

[dH]eiSH

∏

x

δ[dH(x)] (2.37)

=

∫

[dH]

∫

[da] exp

(

iSH +
i

3!

∫

d4x a εµνρσ∂µHνρσ

)

.

The Bianchi identity is enforced by including a delta function in the path
integral, which is given in its functional representation in the second line.
Note that a is just a (real) dummy variable at this point. The action is
given by

SH =
1

3!

∫

d4x
√−g

(

−1

2
HµνρH

µνρ

)

.



2.5 Wick rotations and duality 33

The functional integral over H is a Gaussian integral and can be explicitly
performed. To do so shift the integration variable:

Hµνρ =
1√−g εµνρσ∂

σa+ hµνρ ,

where the first part is the familiar dualization relation between a 3-form
and a pseudoscalar in 4 dimensions. The exponent in (2.37) becomes

− i

2

∫

d4x ∂µa∂
µa− 1

2

i

3!

∫

d4x
√−g hµνρh

µνρ .

The functional integral over the fluctuations hµνρ can easily be performed
since they appear undifferentiated, so we are left with the dualization re-
lation

Hµνρ =
1√−g εµνρσ∂

ρa .

In Euclidean space, there is no factor of i in front of SH , see (2.37). This
has the consequence that one obtains an extra factor of i in the dualization
relation:

HE
µνρ =

i√
g
εµνρσ∂

ρa .

This factor of i is crucial in ensuring that a positive 3-form action in Eu-
clidean space dualizes correctly to a positive scalar action.
Hence we see that performing a real saddle point calculation for the DTM
in Euclidean space, corresponds to an imaginary saddle point calculation
for the UHM, for more details see [83].
Note that this factor of i one needs in the integral representation of the
delta function in Euclidean space is exactly provided for by the way we
define our Wick rotation. That is to say, after Wick rotating our Lagrange
multiplier term precisely has the right factor of i, see (B.1), and we thus
have a consistent framework: dualizing commutes with the analytic con-
tinuation.
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The instanton solutions

In the previous chapter we have shown how the tensor multiplet (and its
equivalent formulation the DTM and UHM) arises in Calabi-Yau compact-
ifications. We will proceed to demonstrate explicitly how NS 5-branes and
membranes appear in the DTM closely following [84, 31].
We derive two Bogomol’nyi bounds for the DTM. Then we shall construct
NS 5-brane solutions corresponding to the first bound and membrane so-
lutions corresponding to the second Bogomol’nyi bound.

3.1 The Bogomol’nyi bound

It is convenient to use form notation in deriving the Bogomol’nyi bound.
The Euclidean DTM Lagrangian (2.36) is then written as

LE
DT = d4x

√
gR +

1

2
|dφ|2 +

1

2
e−φ|dχ|2 +

1

2
M IJHI ∧HJ . (3.1)

Note that we have dropped the term 1
4F

µνFµν , since from now on we will
choose a vanishing graviphoton and focus our attention exclusively on the
scalar-tensor sector. Defining

H ≡
(
H1

H2

)

E ≡
(

dφ
e−φ/2dχ

)

N ≡
(

0 eφ/2

1 −χ

)

,

such that NTN = M one can rewrite (3.1) as

LE
DT = d4x

√
gR +

1

2
? (N?H +OE)

T ∧ (N?H +OE) +HT ∧NTOE ,

where O is some scalar dependent orthogonal matrix. We explicitly include
this matrix since N and E are defined only up to O(2) rotations. This
formulation shows that the action is bounded from below by

SE ≥
∫

M

(
d4x

√
gR +HT ∧NTOE

)
, (3.2)

35
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which is a topological term because it is independent of the spacetime
metric. The action attains its lowest value for configurations satisfying the
Bogomol’nyi bound

?H = −N−1OE . (3.3)

Naturally this condition must imply the equations of motion, which will
fix the matrix O. Furthermore, field configurations satisfying (3.3) have
vanishing energy-momentum tensor which allows us to restrict ourselves to
the case gµν = δµν . The equations of motion for the tensors, i.e. d(M?H) =
0, are satisfied if

d
(
NTOE

)
= 0 ,

which also guarantees that the topological term in (3.2) is closed and can
therefore be written as a total derivative. Consequently this term does
not affect the equations of motion for the scalars, which are determined
by demanding that the Bianchi identity holds (dH = 0) which gives upon
using (3.3)

d
(
N−1O?E

)
= 0 .

We have enough information to determine the possible O’s. The first solu-
tion is given by

O1 = ±
(

1 0

0 −1

)

. (3.4)

The second solution is given by

O2 = ± 1

|τ ′|

(
Reτ ′ −Imτ ′

Imτ ′ Reτ ′

)

, (3.5)

with τ ′ ≡ (χ− χ0) + 2ieφ/2 and χ0 a real integration constant.

3.2 The NS 5-brane

Using (3.4) the Bogomol’nyi bound for the 5-brane takes the form

(
Hµ1

Hµ2

)

= ±∂µ

(
e−φχ

e−φ

)

(3.6)

and as this configuration defines a lower bound of the action, it is the
background we will be expanding around. The + corresponds to instantons
and the − to anti-instantons. The second equation in (3.6) comes from the
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NS sector and specifies the NS 5-brane, compare with (2.10). The first
equation determines the R-R background in which the 5-brane lives.
It is often useful to use the basis of (2.30) in which the Bogomol’nyi bound
takes the form Ĥµ1 = ±e−φ∂µχ.
Since the tensors have to obey the Bianchi identity, the scalars in (3.6)
have to obey Laplace-like equations. One could either use source terms for
these equations or excise points {xi} from the flat spacetime R

4, we will
use the latter method. These excised points correspond to the locations of
the instantons. We find multi-centered solutions of the form

e−φ = e−φ∞ +
∑

i

|Q2i|
4π2(x− xi)2

(3.7)

e−φχ = e−φ∞χ∞ +
∑

i

Q1i

4π2(x− xi)2
, (3.8)

whereQ1i , Q2i , χ∞ and φ∞ are independent integration constants. In equa-
tion (3.7) we write |Q2i| because the exponential function has to be positive
everywhere in spacetime. In our conventions the string coupling constant
is identified as gs ≡ e−φ∞/2. As already anticipated, the two charges are
defined by integrating the tensor field strengths HµνρI = −εµνρσH

σ
I over

3-spheres at infinity,

QI =

∫

S3
∞

HI , I = 1, 2 (3.9)

which are related to (3.7) and (3.8) via (3.6). Explicitly calculating (3.9)
gives

Q2 = ∓
∑

i

|Q2i| Q1 = ∓
∑

i

Q1i ,

which means that for instantons Q2 is negative and for anti-instantons
positive. Q1 can be anything since the combination e−φχ does not have to
be positive.
The (anti-)instanton action (3.2) is found to be

Scl = ±
∫

∂M

(

χH1 −
(

eφ +
1

2
χ2

)

H2

)

, (3.10)

where the integral is over the boundaries of R
4: ∂M = S3

∞ ∪∑i S
3
i , i.e.

the sphere at infinity together with the infinitesimal spheres around the
excised points. This action is finite only if χ(x) is finite near the excised
points:

χi ≡ lim
x→xi

χ(x) =
Q1i

|Q2i|
, (3.11)
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which is finite if Q2i 6= 0, for nonvanishing Q1i. This implies that the
integrated Heisenberg invariants (2.30) vanish,

Q̂1i ≡ Q1i − χi|Q2i| = 0 . (3.12)

The result for the action is

Scl =
|Q2|
g2

s

+
1

2

∑

i

|Q2i| (χ∞ − χi)
2
, χ∞ ≡ lim

x→∞
χ(x) . (3.13)

This action has an inversely quadratic dependence on gs which is precisely
as expected for a 5-brane wrapped around a CY 3-fold, [71].
If we consider a single-centered instanton around x0, the action simplifies
to

Scl =
|Q2|
g2

s

(

1 +
1

2
g2

s(∆χ)2

)

, (3.14)

where ∆χ ≡ χ∞ − χ0. In contrast to the dilaton, χ remains finite and
thus regular at the origin, so no source term can be associated to it. We
can therefore regard this as a R-R background in which the instanton lives.
Consequently, the ‘bare’ instanton configuration is obtained by turning this
background off, which lowers the value of the action. Turning it off means
taking χ∞ = χ0 and using (3.8) one finds that this implies that χ(x) is
constant everywhere: χ(x) = χ0.
The actual instanton calculation performed in chapter 4 will be for a single-
centered instanton with action (3.14). The multi-centered solutions1 can
then be obtained by making a multipole expansion around the single-
centered one, the dominant term of which corresponds to the single-centered
one.
To complete action (3.14) we have to combine it with the theta-angle terms
of (2.35) which we can rewrite as

Ssurf = iϕQ1 + iσQ2 = ∓i (σ + χ0ϕ) |Q2| + iϕQ̂1 , (3.15)

the total single-centered instanton action thus becomes

S±
inst = Scl + Ssurf . (3.16)

The reason for rewriting (3.15) in this way is because we will associate Q̂1

to the membrane charge in the following section. The surface term allows
us to distinguish instantons from anti-instantons in the action, again with
the + denoting the former and − the latter.

1In chapter 4 we demonstrate that these solutions can be constrained further by requiring
them to preserve half of the supersymmetries.
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3.3 The membrane

The second Bogomol’nyi bound is somewhat more complicated and be-
comes, using (3.5),

(
Hµ1

Hµ2

)

= ± 1

|τ ′|

(
χ(χ− χ0)∂µe

−φ + e−φ(χ+ χ0)∂µφ+ 2eφ∂µe
−φ

(χ− χ0)∂µe
−φ + 2e−φ∂µχ

)

.

(3.17)

Remember that τ ′ ≡ (χ − χ0) + 2ieφ/2 and χ0 is an arbitrary constant
which will be identified below with the previously introduced χ0 for a single-
centered instanton. It is convenient to consider the Heisenberg combination

Hµ1 − χ0Hµ2 = ±∂µh h ≡ e−φ|τ ′| , (3.18)

the Bianchi identities imply that h must be harmonic and positive every-
where. We can write χ as follows:

χ− χ0 = eφ
√

h2 − 4e−φ , (3.19)

where we have taken the positive branch, the negative branch only dif-
fers by some unimportant minus signs in the following calculations. The
Bogomol’nyi equation for Hµ2 now becomes

Hµ2 = ± 1√
h2 − 4e−φ

(
2e−φ∂µh− h∂µe

−φ
)

(3.20)

and together with the Bianchi identities, the fact that h is harmonic gives

(
h2 − 4e−φ

)
∂µ∂

µe−φ + 2∂µe
−φ∂µe−φ − 2h∂µh∂

µe−φ + 2e−φ∂µh∂
µh = 0 .

(3.21)

For simplicity we limit ourselves to spherically symmetric solutions2 for h:

h = e−φ∞|τ ′∞| + |Q̂1|
4π2(x− x0)2

, (3.22)

which validates the assumption that the dilaton depends on the coordinates
only through h.
Differentiating (3.21) allows us to solve for φ:

e−φ = ah2 + bh+ c ,

where a, b, c are three integration constants. Combining this with (3.20)
yields c = −β2 where β ≡ ±Q2/|Q̂1|, b = −β

√
1 − α and α = 4a. Since

2Some multi-centered solutions were constructed in [85].
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Hµ2 is real and e−φ must be positive this requires that 0 ≤ α ≤ 1 where
α = 0 must be treated separately.
Evaluating ∆χ using (3.19) fixes α in terms of the charges and asymptotic
values of the fields,

α = 1 −
(
∆χ− 2βeφ∞

)2

|τ ′∞|2 |τ ′∞|2 = (∆χ)2 +
4

g2
s

.

Furthermore, the solution for χ can be directly read off from (3.19), using
the information obtained above one can check that limx→x0 χ(x) is indeed
χ0, as in the case of the 5-brane instanton.
Note that, contrary to the 5-brane system, χ does require a source at the
excised point. Since α has to lie in the interval [0, 1] we must have

∆χ− |τ ′∞|
2eφ∞

≤ β ≤ ∆χ+ |τ ′∞|
2eφ∞

, (3.23)

for fixed gs and (positive) ∆χ.
All the integration constants of the solution have now been expressed in
terms of the charges and the asymptotic values of the scalar fields. The
formula for the action (3.10) gives us

S = |τ ′∞|
(

|Q̂1| +
1

2
∆χQ2

)

,

which is manifestly positive by virtue of (3.23). The simplest form of the
action is obtained by switching off the R-R background by taking Q2 =
∆χ = 0 and including the appropriate theta-angle term3, which gives

Sinst =
2|Q1|
gs

+ iφsQs
1 , (3.24)

where φs is either ϕ or χ and Qs
1 either Qϕ

1 or Qχ
1 . Note the factor of 2

in (3.24), which will be very nicely confirmed in chapter 5. As discussed
in section 2.4 the imaginary term is related to a surface term that arises
in the dualization process. In the dual UHM formulation the parameter ϕ
(or χ) in (3.24) can be identified with the value of ϕ (or χ) at infinity. Its
presence breaks the shift symmetry in ϕ (or χ) to a discrete subgroup.
The explanation of the choice of theta-angle terms in (3.24) is as follows.
Instead of dualizing from the tensor multiplet to the double tensor multi-
plet using the shift symmetry in ϕ, as we did in section 2.4, we could as
well dualize using the shift symmetry in χ. Or in the case of going from
the UHM to the DTM, dualizing over σ and χ .
The point is that dualizing over χ, i.e. using the shift generated by γ (see

3Remember that in the DTM formulation the φs (i.e. ϕ or χ) are just parameters.
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(2.25)), would have given a (formally) different 2-form with associated field
strength and consequently a different charge. This means that there are
two different charges: Qϕ

1 and Qχ
1 , the first charge corresponds to the shift

γ and the second to β. Hence they are associated to two different mem-
branes (see also [52]).
This means that we can either dualize to a DTM in which the Bogomol’nyi
bound leads to a membrane configuration with charge Qϕ

1 , or to a config-
uration with charge Qχ

1 . We cannot dualize over the two scalars simulta-
neously, since the shift symmetries in χ and ϕ do not commute. This fact
will be re-derived from a string theory point of view in chapter 5 (it will
have to do with the fact that the membrane can wrap either along the one
or the other supersymmetric cycle). The 5-brane charge Q2 corresponds to
the shift in σ by α.

This action also has exactly the right dependence on gs, [71], for a mem-
brane instanton with charge Q̂1, note that Q̂1 = Q1 if Q2 = 0.
One could add 5-brane charge which raises the action until, for fixed gs

and ∆χ, one reaches α = 0 in (3.23). From that point on, the solution is
no longer valid and one must restrict to the 5-brane, without membranes.

A short summary and outlook

We have constructed the 5-brane and membrane solutions in N = 2 super-
gravity in 4 dimensions. These solutions can be identified with the 5-brane
and membrane respectively, since we know from string theory, [5, 86, 71],
what their actions should look like in four dimensions (in terms of gs any-
way) and we find agreement. As explained above, we will perform an
instanton calculation for the 5-brane in chapter 4 and compute in this way
the instanton corrections to the UHM. To do this it is necessary to calcu-
late the (Euclidean) supersymmetry transformations, Killing spinors and
instanton measures, for this particular background. All of this will be done
in the subsequent chapter.

In principle one could try to do the same for the membrane solution, that
is, perform an instanton calculation as for the 5-brane. Instead we will use
knowledge of the isometries of the the UHM to directly construct nonper-
turbative corrections to the UHM, without the usual instanton calculations.
Comparison to string theory permits us to identify these corrections with
loop expansions around membrane instantons. This will be the subject of
chapter 5.
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The NS 5-brane

In this chapter we compute the instanton effects originating from the NS
5-brane, using the DTM formulation. The underlying idea is that, for small
coupling constant gs, the path integral is dominated by the configurations
of lowest Euclidean action and one may proceed by expanding around these
configurations.
Naturally, the simplest such configuration is the ordinary perturbative vac-
uum of the theory, which has SE = 0. However, as we have seen in chapter
3, there are other minima of the action we have to expand about. These
minima are the ones corresponding to the 5-brane and membrane. For
reasons that will become clear later on, we will not follow such a program
for the membrane and we will restrict ourselves to the 5-brane only.
We expand the action up to second order around the instanton configura-
tion, which will be discussed further in section 4.4. Ideally on would like to
compute the determinant of the resulting quadratic operator acting on the
fluctuations, thus doing a one-loop computation. However, we are dealing
with a difficult non-linear sigma model coupled to supergravity and the
resulting quadratic operator is rather complicated, therefore we will not
compute its determinant.
The instanton solutions (3.7) and (3.8) break the translation invariance of
the theory, since they are located at specific points {xi}, these are the so-
called collective coordinates. Furthermore, the instanton solution partially
breaks supersymmetry, which gives rise to fermionic collective coordinates.
We will discuss the relation between broken symmetries and collective co-
ordinates in section 4.3.
As we shall see in section 4.4, the collective coordinates are related to zero
modes of the quadratic operator acting on the fluctuations. This means
that one has to be careful in constructing the path integral measure.
In section 4.4 we will construct the path integral measure suitable for a
(1-loop) calculation in the presence of the NS 5-brane instanton. We shall
see that we have to trade the integration over a certain set of quantum
fluctuations (zero modes of the quadratic operator) for integrations over
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the collective coordinates. Apart from the integration over the position
(the bosonic collective coordinates) there are also the integrations over the
fermionic collective coordinates, these are Berezin integrals. Such integrals
are very restrictive because they will only be nonzero if we compute cor-
relation functions which contain enough fermions to ‘soak up’ the Berezin
integrals.
This leads us to consider specific correlators in section 4.5. By computing
these correlators we can construct the effective action1. To be precise: the
action of the DTM (with N = 2 local supersymmetry) with 5-brane in-
stanton corrections.
In section 4.6 we shall consider the consequences for the moduli space of
the UHM, which is what we were after all along, and examine the breaking
of certain isometries of the Heisenberg algebra to a discrete subgroup.
We have to keep in mind that we are approximating a NS 5-brane wrapped
along the Calabi-Yau by this instanton. Stated differently, in string theory
the 5-brane instanton is described by an embedding of the 6-dimensional
worldvolume into the 10-dimensional space R

4 × Y3 such that the world-
volume ends up entirely on the Calabi-Yau. The embedding maps are then
thought of as the collective coordinates of the 5-brane and performing a
genuine path integral would involve doing an integration over these maps.
This amounts to a path integral over the worldvolume theory in the super-
gravity background R

4 × Y3, as advocated in [71], see also [87].
Due to the complicated and somewhat mysterious nature of that world-
volume theory, this would be difficult. We will not try to include such
worldvolume effects and limit ourselves to an integration over the collec-
tive coordinates in their capacity as positions in Euclidean space.

First we will present some background material, in section 4.1, on the
general N = 2 supergravity theory coupled to tensors and scalars. This is
the theory into which the DTM fits. In section 4.2 we will restrict ourselves
to the case of only the DTM for which we will be doing the calculations of
the rest of the chapter. Many technical details and calculations have been
directed to the appendices, they will be referred to as needed.

4.1 Supersymmetry

In chapter 2 we have explained that we will be performing the NS 5-
brane instanton calculation in the Euclidean DTM. One can Wick rotate
to Lorentzian signature and dualize back to the UHM, so that we do not

1Part of the effective action actually, namely the corrections to the kinetic terms of the
scalars and tensors and some vertices. To compute corrections to the other terms in the action
(4.1) one can apply supersymmetry.
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need the (Euclidean) supersymmetric UHM.
The most general form of the action for scalars and tensors coupled to
N = 2 supergravity has been constructed in [76] for spacetimes with
Lorentzian signature. In Euclidean space the action is given by

e−1L =

1

2κ2
R +

1

4
FµνFµν +

1

2
GAB D̂

µφA D̂µφ
B +

1

2
M IJHµ

I HµJ

− iAI
AH

µ
I ∂µφ

A + iεµνρσ(Dµψ
i
νσρψ̄σi + ψi

σσρDµψ̄νi)

+
i

2
haā (λaσµDµλ̄

ā −Dµλ
aσµλ̄ā) + iκM IJHµ

I (gJia ψ
i
µλ

a + c.c.)

− κGAB(D̂µφ
A + ∂µφ

A) (γB
ia λ

aσµνψi
ν + c.c.) + iκM IJHµ

I (gJia ψ
i
µλ

a + c.c.)

− i
κ

2
√

2
(F̃µν + F̃ µν) (ψi

µψνi + ψ̄i
µψ̄νi) +

iκ

2
√

2
Fµν (Eab λ

aσµνλb − c.c.)

+ iM IJkJaā λ
aσµλ̄ā

[
HµI + iκ (gIib ψ

i
µλ

b + c.c.)
]

+ κ2M IJ(gIia ψ
i
µλ

a + c.c.) (gJjb λ
bσµνψj

ν + c.c.)

+
κ2

8
(EacEbd λ

aλb λcλd + c.c.) − 1

4
Vab āb̄ λ

aλb λ̄āλ̄b̄ . (4.1)

This action is based on nT tensors BµνI , I = 1, . . . , nT and 4n − nT

scalars φA, A = 1, . . . , 4n − nT , together with 2n 2-component spinors
λa, a = 1, . . . , 2n, called the hyperinos. Furthermore there are the fields
from the supergravity multiplet: the vielbeins e m

µ , the graviphoton Aµ and

the gravitinos ψi
µ , i = 1, 2. We have performed the Wick rotation as dis-

cussed in appendix B.
Our conventions are such that all the field dependent quantities, such as
M IJ , GAB and so on, are the same as in the Lorentzian case. Sign changes
or different factors of i are never absorbed, but always written explicitly.
The condition that the supersymmetry algebra closes and that the action
is invariant, imposes constraints on (and relations between) the various
quantities appearing in the action. They are the same as in the Lorentzian
case. We list a number of them in appendix C, where we will also specify
the various covariant derivatives. For more details see [76].
In this chapter we only need transformation rules and supersymmetry re-
lations for the instanton background. We will work up to linear order in
the fermions. The supersymmetry transformations of the scalars are given
by

δεφ
A = γA

iaε
iλa + γ̄i A

ā ε̄iλ̄
ā . (4.2)
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The transformation rules for the fermions (up to linear order in the fermions)
are

δελ
a =

(
i∂µφ

AW ai
A +HµIf

Iai
)
σµε̄i + . . .

δελ̄
ā =

(
i∂µφ

AW̄ ā
Ai +HµI f̄

Ia
i

)
σ̄µεi + . . . , (4.3)

with scalar dependent functions γ, W and f . We have left out higher order
terms in the fermions, denoted by the ellipses.
The transformation of the tensors is given by

δεBµνI = 2i gIia ε
iσµνλ

a − 4κ−1ΩI
i
j ε

jσ[µψ̄ν]i + c.c. . (4.4)

The transformations of the supergravity multiplet are given by

δεeµ
m = iκ (εiσmψ̄µi − ψi

µσ
mε̄i)

δεAµ = i
√

2 (εiψ
i
µ + ε̄iψ̄µi)

δεψ
i
µ = κ−1 Dµε

i +
1√
2
εijF+

µν σ
ν ε̄j − iκ−1HµIΓ

Ii
j ε

j + . . .

δεψ̄µi = κ−1 Dµε̄i +
1√
2
εijF

−
µν σ̄

νεj + iκ−1HµIΓ
Ij

i ε̄j + . . . ,

where, in the last two lines, we have denoted the (anti-) selfdual gravipho-
ton field strengths by F±

µν = 1
2(Fµν ± F̃µν) and we have dropped fermion

bilinears.
The quantities gIia, W

ai
A , etc. appearing in the above equations are func-

tions of the scalar fields and satisfy the relations (C.1)–(C.9). Moreover,
we have the relation

ΓIi
j = M IJΩJ

i
j , (4.5)

between the coefficients which appear in the supersymmetry transforma-
tions of the gravitinos and tensors, respectively.
Note that the fermions (and gravitini) are no longer related to each other
by complex conjugation. If we write ‘c.c.’ in the action or anywhere else,
we mean the analytic continuation of the complex conjugated expressions
in Lorentzian signature. We work in the so-called 1.5 order formalism.
This means that the spin connection is a function of other fields which is
determined by its own (algebraic) field equation.

4.2 The supersymmetric DTM

We will discuss the supersymmetry transformation rules of the DTM at
linear order in the fermions. Action (4.1) is a general action for scalars
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and tensors coupled to N = 2 supergravity. The action of the DTM is a
specific example of action (4.1). We can obtain it by taking n = 1 and
nT = 2 so there are 2 scalars and 2 tensors, as discussed in section 2.3.
Furthermore there are 2 spinors (λ1 , λ2), 2 gravitini (ψ1

µ , ψ
2
µ) and their

conjugate counterparts. Specifying, as in section 2.3, to

M IJ = eφ

(
1 −χ
−χ eφ + χ2

)

GAB =

(
1 0
0 e−φ

)

AI
A = 0 (4.6)

we obtain the bosonic part of the DTM. From now on we will work in units
of κ2 = 1

2 and rescale the supersymmetry parameters εi by a factor of
√

2
for convenience.
Note that we have set2 AI

A equal to zero. Strictly speaking we could
have allowed for a nonvanishing connection AI

A with trivial field strength
F I

AB = 2∂[AA
I
B] = 0. Such connections are pure gauge and lead to total

derivatives in the action, which could be dropped in perturbation theory.
Nonperturbatively they can be nonvanishing and lead to imaginary theta-
angle-like terms. We have discussed and included such terms separately in
(2.35) and (3.15), so it suffices to set AI

A = 0. In appendix D we list the
functions gIia, W

ai
A , etc. for the DTM.

The linearized Euclidean supersymmetry transformations of the fermions
can be written as

δελ
a = i

√
2 Eai

µ σµε̄i , δεψ̄µi = 2D̄µ i
j ε̄j + εijF

−
µν σ̄

νεj

δελ̄
ā = i

√
2 Ē ā

µ i σ̄
µεi , δεψ

i
µ = 2Dµ

i
j ε

j + εijF+
µν σ

ν ε̄j , (4.7)

where we have introduced

Eai
µ = ∂µφ

AW ai
A − iHµIf

Iai , D̄µ i
j = δj

i∇µ − ∂µφ
AΓA

j
i + iHµIΓ

Ij
i

Ē ā
µ i = ∂µφ

AW̄ ā
Ai − iHµI f̄

Iā
i , Dµ

i
j = δi

j∇µ + ∂µφ
AΓA

i
j − iHµIΓ

Ii
j ,

(4.8)

with ∇µ the Lorentz-covariant derivative. The observation that Ēµ and Dµ

are related to their counterparts Eµ and D̄µ according to3

Ē ā
µ j = −hāaEabE

bl
µ εlj , Dµ

i
j = εikD̄µ k

l εlj , (4.9)

will prove useful.
The first identity is due to the relation (C.9), while the second is a conse-
quence of SU(2)-covariant constancy of εij.

2AI
A ≡ M IJGJA and arises in the dualization process from the UHM to the DTM, as

discussed in section 2.4.
3Note that in the second identity the covariant derivatives in Dµ and D̄µ are in the same

representation of Spin(4), whereas in (4.7) they are not.
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More explicitly, we have, at the linearized level,

δε

(

λ1

λ2

)

= i

(

e−φ/2∂µχ− eφ/2Ĥµ1 ∂νφ+ eφHν2

−∂µφ+ eφHµ2 e−φ/2∂νχ+ eφ/2Ĥν1

)(

σµε̄1

σν ε̄2

)

δε

(

λ̄1

λ̄2

)

= i

(

e−φ/2∂µχ+ eφ/2Ĥµ1 ∂νφ− eφHν2

−∂µφ− eφHµ2 e−φ/2∂νχ− eφ/2Ĥν1

)(

σ̄µε1

σ̄νε2

)

(4.10)

for the matter fermions, and

δε

(

ψ1
µ

ψ2
µ

)

=

(

2∇µ + 1
2e

φHµ2 −e−φ/2∂µχ+ eφ/2Ĥµ1

e−φ/2∂µχ+ eφ/2Ĥµ1 2∇µ − 1
2e

φHµ2

)(

ε1

ε2

)

+ . . .

δε

(

ψ̄µ1

ψ̄µ2

)

=

(

2∇µ − 1
2e

φHµ2 −e−φ/2∂µχ− eφ/2Ĥµ1

e−φ/2∂µχ− eφ/2Ĥµ1 2∇µ + 1
2e

φHµ2

)(

ε̄1

ε̄2

)

+ . . .

(4.11)

for the gravitinos, where we have omitted the graviphoton terms.
We end this section by giving the fermionic equations of motion, at the
linearized level. For the hyperinos we find

iσµDµλ̄
ā +HµI Γ̄Iā

b̄ σ
µλ̄b̄ +

i

2
hāaEab F

+
µν σ

µνλb = − 1√
2
σνĒ ā

µ iσ̄
µψi

ν (4.12)

iσ̄µDµλ
a +HµI ΓIa

b σ̄
µλb − i

2
hāaĒāb̄ F

−
µν σ̄

µνλ̄b̄ = − 1√
2
σ̄νEai

µ σ
µψ̄ν i .

(4.13)

For the definition of the covariant derivative Dµ see appendix C. What
makes these different from the usual Dirac-like equation is the presence
of the mixing term with the (anti-) selfdual graviphoton field strength and
the inhomogeneous gravitino term originating from its coupling to the rigid
supersymmetry current of the double-tensor multiplet. This will become
important in the discussion of the fermionic zero modes. The gravitino
field equations read

iεµνρσσρDσψ̄ν i − εµνρσHσIΓ
Ij

i σρψ̄νj − iF µν−ψν i =
1

2
√

2
haāĒ

ā
ν i σ

νσ̄µλa

(4.14)

iεµνρσσ̄ρDσψ
i
ν + εµνρσHσIΓ

Ii
j σρψ

j
ν + iF µν+ψ̄i

ν = − 1

2
√

2
haāE

ai
ν σ̄νσµλ̄ā .

(4.15)

Note that one can combine the first two terms on the left-hand side into
the operator Dµ

i
j, as defined in (4.8).
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4.3 (Un)broken supersymmetry

Often a specific solution to the equations of motion will break most (or all)
of the symmetries of the theory. The symmetries which are not broken by
the solution are called unbroken of residual symmetries and form a sym-
metry group. The symmetries which are broken by the solution are called
the broken symmetries and can be used to generate new solutions.
For instance, the single-centered4 instanton solution (4.23) is not transla-
tionally invariant because it is located at a specific point {x0}. This is
sometimes phrased by saying that the instanton ‘breaks translational in-
variance’. Because the underlying theory is translationally invariant, this
will manifest itself in the degeneracy of the solutions related to each other
by translations. Indeed, the action (3.14) does not depend on {x0}. These
solutions can be translated into each other by acting with the broken sym-
metry. This leads to the notion of collective coordinates. These are the
coordinates generated by the broken symmetries, in this case simply the
position {x0}.
Similarly, the solutions of a supergravity theory are in general not invariant
under the supersymmetry transformations that leave the theory invariant.
The solutions that are preserve part of the supersymmetries are often called
BPS5 solutions.
Schematically (local) supersymmetry transformations take the form

δεB ∼ εF

δεF ∼ ∂ε+Bε , (4.16)

where B stands for bosons and F for fermions. Typically one is interested
in purely bosonic configurations. According to the general definition given
above, the bosonic solutions will be supersymmetric if there is an ε(x) such
that (4.16) vanishes. The bosonic fields are trivially invariant (because the
fermionic fields are zero) and one only needs to examine the equation

δκF ∼ (∂ +B)κ = 0 . (4.17)

The commutator of 2 such spinors will give an (infinitesimal) Killing vector
which generates an isometry of the bosonic background. Equation (4.17)
is often called the Killing spinor equation.

As we shall see in the next subsection, the instanton configuration pre-
serves only part of the supersymmetries. The supersymmetric vacuum is

4The multicentered case is similar, but we will mainly use the single-centered one in this
chapter.

5After Bogomol’nyi-Prasad-Sommerfield [88, 89]. For more information on BPS solutions
and supersymmetry see for example [90, 15] and references therein.
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the trivial one with all fields equal to zero. The broken supersymmetries
will generate new solutions characterized by their fermionic collective co-
ordinates. Thus if we start with a purely bosonic configuration which is a
solution to the equations of motion, acting with the broken supersymme-
tries generates fermionic fields. Naturally, this new configuration is also a
solution to the equations of motion because the broken supersymmetries
are symmetries of the theory.
There is a lot more to say about this subject, and we refer to the literature,
e.g. [91, 92, 15] and the references therein. In the following we present a
detailed inspection of the (un)broken supersymmetries in the background
of our instanton solution. The case of the anti-instanton is similar.

4.3.1 Unbroken supersymmetry

Which supersymmetries leave the instanton solution (3.7, 3.8, 3.6) invari-
ant, or equivalently, which supersymmetries are left unbroken by this so-
lution? The background is determined by the instanton solution for the
bosonic fields as in (3.7, 3.8, 3.6). The fermionic fields are all equal to zero
The supersymmetry transformation rules of the bosonic fields contain the
fermionic fields, which means that the bosons are always invariant under
supersymmetry transformations. To find the unbroken supersymmetries
we therefore only have to examine the conditions

δελ
a = δελ̄

ā = δεψ
i
µ = δεψ̄µi = 0 (4.18)

where {a, ā, i} = 1, 2. This will put certain constraints on the supersym-
metry parameters ε̄i(x) and εi(x). We will focus on the ε̄i(x) because the
εi(x) can easily be obtained from those as we shall see.

It is convenient to consider δεψ̄µ2 first. Using (4.11) and (3.6) we obtain

0 =
1

2
δεψ̄µ2 =

(

∂µ − 1

4
∂µφ

)

ε̄2 ,

defining ε̄2 ≡ e1/4φη̄2 gives

eφ/4∂µη̄2 = 0 ,

which means that η̄2 is a constant spinor. We can rewrite the λa variations
(4.10) as

δελ
1 = −2iσµ

(

∂µ − 1

2
∂µφ− 1

4
eφHµ2

)

ε̄2 + iσµδεψ̄µ2 (4.19)

δελ
2 = +2iσµ

(

∂µ − 1

2
∂µφ+

1

4
eφHµ2

)

ε̄1 − iσµδεψ̄µ1 . (4.20)
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Upon using (3.6) these equations simplify. Equation (4.19) becomes

δελ
1 = −2iσµ

(

∂µ − 1

4
∂µφ

)

eφ/4η̄2 = 0 ,

where we used that ε̄2 ≡ e1/4φη̄2 and the fact that δε̄2ψ̄µ2 = 0. Because this
equation is identically zero, it imposes no new constraints. Next on the list
is δεψ̄µ1 which is, using (3.6) and the result for ε̄2

0 =
1

2
δεψ̄µ1 =

(

∂µ +
1

4
∂µφ

)

ε̄1 − e−φ/4∂µχ η̄2 = e−φ/4 (∂µη̄1 − ∂µχ η̄2)

where we have defined ε̄1 ≡ e−φ/4η̄1 in the last step, η̄1 is some spinor. So
if η̄1 is related to η̄2 through

∂µη̄1 = ∂µχ η̄2 , (4.21)

we have δεψ̄µ2 = δεψ̄µ1 = δελ
1 = 0. This leaves only one equation, namely

δελ
2 = 0. Using (4.20) , (3.6) and the above results we find

0 = δελ
2 = σµ

(

∂µ − 3

4
∂µφ

)

e−φ/4η̄1 ,

which means that ∂µη̄1 = ∂µφ η̄1 which is solved by η̄1 = eφc̄1 for some
constant spinor c̄1, giving ε̄1 = e3φ/4c̄1. Note that a more general solution
for η̄1 is

η̄1 = eφc̄1 + ∂νh σ̄
νξ ,

with h a harmonic function and ξ a constant spinor. However we still have
to deal with equation (4.21) and we did not find any non-trivial solutions
for the ∂νhσ̄

νξ part. Therefore we only consider η̄1 = eφc̄1. Relation (4.21)
then becomes

eφ∂µφ c̄1 = ∂µχ η̄2 ,

which is only satisfied for

χ = aeφ + b , (4.22)

with some constants a, b and c̄1 = aη̄2.
In the calculations above we have not used single-centeredness of our in-
stanton solutions, so φ and χ were still determined by (3.7) and (3.8). Now
we see that equation (4.22) imposes a new constraint because we can only
write χ in this particular form if, see (3.11), all χi are equal. Note that
(4.22) follows automatically, for some constants a and b that we will de-
termine in a moment, if one imposes spherical symmetry as in that case
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the harmonic function e−φχ depends linearly on the harmonic function e−φ.
This means that we are dealing with a single-centered instanton. Equations
(3.7) and (3.8) then simplify:

e−φ = e−φ∞ +
|Q2|

4π2(x− x0)2
(4.23)

e−φχ = e−φ∞χ∞ +
Q1

4π2(x− x0)2
(4.24)

and the last equation can indeed be rewritten as

χ = eφ∞∆χeφ + χ0 = g2
s∆χe

φ + χ0 ,

with ∆χ ≡ χ∞−χ0 and χ0 = Q1

|Q2| , see (3.11). We can thus make the iden-

tifications a = g2
s∆χ and b = χ0. The action for multi-centered instantons

(3.13) reduces to single-centered one (3.14).
In the following we will always consider single-centered instantons, or equiv-
alently, spherically symmetric ones.
The same analysis can be performed for anti-instantons, the total result is

ε̄1 = eφ/2(g2
s∆χ)(1±1)e±φ/4η̄ (4.25)

ε̄2 = ±eφ/2(g2
s∆χ)(1∓1)e∓φ/4η̄ , (4.26)

where the (lower) upper sign corresponds to (anti-)instantons. We have
given η̄2 the new name η̄. We can write this result concisely as ε̄i(x) =
ui(x)η̄, where the ui(x) can be read off from (4.25) and (4.26).
The Killing spinors of opposite chirality are then given by εi(x) = εijuj(x)η
with η another (unrelated) constant spinor. This immediately follows from
(4.9): if ui are (spinless) zero modes of Eµ and D̄µ, then εijuj are zero
modes of Ēµ and Dµ. The conclusion of this analysis is that the NS 5-brane
instanton in flat space leaves one half of the supersymmetries unbroken. In
other words, the instanton solution is a BPS configuration.
Although saying that the instanton preserves half of the supersymmetries
is the standard way in which to phrase this result, it is slightly misleading.
Namely, we go from 4 arbitrary spinors (ε̄i, ε

i) to 2 constant spinors (η̄, η)
together with a very specific space dependence via eφ. So we really go from
4 times ‘infinitely many’ supersymmetries, to 2 very specific ones.
Note that the trivial solution with both e−φ and χ constant, preserves all
the supersymmetries. Thus the instanton configuration tends asymptoti-
cally to the maximally supersymmetric vacuum.

The membrane

For the sake of completeness we briefly discuss the unbroken supersym-
metries in the case of the membrane instanton configuration in a similar
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fashion, although we will not need them explicitly. As explained in section
3.3, the simplest membrane instanton solution is characterized by taking
Q2 = ∆χ = 0 which means that Hµ2 = 0. The solution is then specified by

Hµ1 = ±∂µh ,

with h given by (3.22). To find the unbroken supersymmetries we again
have to examine the conditions (4.18), but now in the membrane back-
ground. For convenience we define

λ± ≡ 1

2
(λ1 ± λ2) ψ±

µ ≡ 1

2
(ψ1

µ ± ψ2
µ) ε± ≡ 1

2
(ε1 ± ε2)

and similarly for barred quantities. The supersymmetry variations (4.10)
and (4.11) become

δελ̄
+ = −2i∂µφ σ̄

µε− δελ̄
− = 0

δψ+
µ = 2(∂µ − 1

2
∂µφ)ε+ δεψ

−
µ = 2(∂µ +

1

2
∂µφ)ε− .

The unbroken supersymmetries are then given by

ε+ = eφ/2η+ ε− = 0 ,

with η+ a constant spinor. This means that the membrane instanton pre-
serves half of the supersymmetries as well, it is also a BPS solution. The
broken supersymmetries can be used to generate solutions for the fermions
as will be shown in the case of the 5-brane instanton in the next section.
We will not demonstrate this explicitly for the membrane.

4.3.2 Broken supersymmetries

Now we will turn our attention to the broken symmetries. As we have
explained, these will generate new solutions. Specifically, starting from
a purely bosonic background (as determined by the instanton solution
(3.7, 3.8, 3.6)) the broken supersymmetries will generate solutions for the
fermions. Alternatively, if we are going to generate new (classical) solutions
for the fermions, we can also try to construct them by directly solving the
equations of motion (linear in the fermions).
This will be the plan for this section: we will solve the equations of motion
(up to linear order in the fermions) for the fermions and then show how
to obtain these solutions by means of the broken supersymmetries. The
solutions therefore will depend on fermionic collective coordinates. These
will appear as integration constants if one uses the equations of motion
and as supersymmetry parameters in the other approach. The importance
of these solutions will become clear in the next section, where we will see
that a more apt name for them is zero modes.
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The hyperinos

First we shall solve the equations of motion for the hyperinos, which are
coupled to the gravitinos, (4.12, 4.14). For the DTM we have (see appendix
D) ΓA

a
b = Γ1a

b = 0 and Γ2a
b is given by (D.2). Using (3.6) we obtain6

iσµ

(

∂µλ̄
1 − 3

4∂µφ λ̄
1

∂µλ̄
2 + 3

4∂µφ λ̄
2

)

= −σν σ̄µ

(

e−φ/2∂µχψ
1
ν + ∂µφψ

2
ν

0

)

(4.27)

and similarly for the λa:

iσ̄µ

(

∂µλ
1 + 3

4∂µφλ
1

∂µλ
2 − 3

4∂µφλ
2

)

= σ̄νσµ

(

0

∂µφ ψ̄ν1 − e−φ/2∂µχ ψ̄ν2

)

. (4.28)

It is convenient to start with λ̄2 and λ1 because they decouple from the
gravitinos. To this end, consider the more general operator

D/ k ≡ σµ(∂µ − k∂µφ) = ekφ∂/ e−kφ , k ∈ R . (4.29)

The zero modes of D/ k are in one to one correspondence to those of ∂/. But
whereas the zero modes ζ̄ of ∂/ (∂/ζ̄ = 0) are not normalizable7 the corre-
sponding modes of D/ k (λ = ekφζ̄) are only normalizable for appropriate
values of k.
In flat Euclidean space the only solution for ζ̄ is a constant spinor. How-
ever, when the origin is cut out, as it is in our case, there is a nontrivial
solution:

ζ̄(x) = 2i∂µh(x)σ̄
µξ ,

where ξ is a constant spinor, h is a harmonic function and we included the
factor of 2i for later convenience. This is the only solution as one can show
by writing ζ̄ as

ζ̄(x) = 2ifµ(x)σ̄µξ

for an arbitrary real function fµ. The equation ∂/ζ̄ = 0 then imposes

∂[µfν] = ∂µf
µ = 0 .

The constant solution cannot lead to a normalizable solution and must
therefore be discarded. The possible normalizable solutions to D/ kλ̄ = 0
are given by

λ̄ = 2iekφ∂µhσ̄
µξ .

6Unless stated otherwise we choose the instanton background, i.e., the plus sign. The cal-
culation with the minus sign is of course similar.

7Normalizable zero modes Z must satisfy
∫∞

0
drr3|Z|2 < ∞. This implies that Z must go

to zero as r−5/2 or faster at infinity and it may not diverge faster that r−3/2 at the origin.
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As we are dealing with spherical solutions (4.23, 4.24), the only harmonic
function available is given by e−φ. Thus the normalizable zero modes to
D/ k are given by

λ̄ = 2iekφ∂µe
−φσ̄µξ k ≥ 3

4
,

where k ≥ 3/4 can be found by inspecting the asymptotic behaviour.
Using these results we can now easily write down the solutions for the
hyperinos:

λ̄2 = 0 λ1 = 0 . (4.30)

Because their equations of motion correspond to k = −3/4, which would
lead to non-normalizable zero modes, they must be set to zero.
If there would be no gravitinos present in (4.27, 4.28) the solutions for λ̄1

and λ2 would be given by

λ̄1 = 2ie3φ/4∂µe
−φσ̄µξ1 λ2 = 2ie3φ/4∂µe

−φσµξ̄2 , (4.31)

with ξ1 and ξ̄2 constant spinors.
As we will demonstrate now, there are in fact no normalizable solutions for
the gravitinos.

The gravitinos

In the instanton background the equations of motion for the gravitinos
(4.14, 4.15) become, using appendix D,

iεµνρσσρ

(

∂σψ̄ν1 + 1
4∂σφ ψ̄ν1 − e−φ/2∂σχ ψ̄ν2

∂σψ̄ν2 − 1
4∂σφ ψ̄ν2

)

=
1

2

(

e−φ/2∂νχ

∂νφ

)

σνσ̄µλ1 .

(4.32)

We notice that only λ1 couples to the gravitino, but we just (4.30) con-
cluded that λ1 = 0. This means that the gravitinos decouple. If we define

ψ̄µ2 ≡ eφ/4ζ̄µ2 ,

we can, using (B.2), rewrite the second equation in (4.32) as

σµ
(
∂µζ̄ν2 − ∂ν ζ̄µ2

)
= 0 . (4.33)

There are many solutions to this equation, e.g. ζ̄µ2 = ∂µζ̄2, but we still
have to impose a (supersymmetry) gauge. We choose to work with the
standard gauge

σ̄µψi
µ = σµψ̄µi = 0 , (4.34)
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in particular σµζ̄µ2 = 0. Equation (4.33) simplifies to ∂/ζ̄µ2 = 0 which has
the solution

ζ̄µ2 = ∂µ∂νh σ̄
νξ , (4.35)

with ξ a constant spinor and h a harmonic function. For a given solution
one can still act with a supersymmetry transformation. These supersym-
metry transformations can either transform the solution for the gravitino
in such a way that it still respects the gauge (4.34), or not. We must
therefore check if there are residual supersymmetry transformations that
produce new solutions for the gravitino that still obey the gauge condition
(4.34).
The supersymmetry transformations for the gravitinos (4.11) simplify to

δεψ̄µ1 = 2

(

∂µ +
1

4
∂µφ

)

ε̄1 − 2e−φ/2∂µχ ε̄2

δεψ̄µ2 = 2

(

∂µ − 1

4
∂µφ

)

ε̄2 , (4.36)

where we again have used the values for the instanton background and
appendix D. We can write δεψ̄µ2 as

δεψ̄µ2 = 2∂µ

(

e−φ/4ε̄2

)

,

a total derivative, which vanishes in (4.33). We should also impose the
gauge condition, i.e.

0 = σµ
(
δεψ̄µ2

)
= ∂/

(

e−φ/4ε̄2

)

. (4.37)

The solutions are given by a constant or by the derivative of a harmonic
function. Acting with such a residual supersymmetry transformation gives
a solution which is contained within the class of solutions (4.35). Therefore
the only solution for ψ̄µ2 is given by

ψ̄µ2 = eφ/4∂µ∂νh σ̄
νξ ,

where we can again choose h = e−φ for spherically symmetric harmonic
functions.
However, this solution is not normalizable because it diverges too fast at
the origin. Consequently there is no normalizable solution for ψ̄µ2 and we
must set it to zero in the hyperino equations of motion.
A similar analysis shows that there are no normalizable solutions for ψ̄µ1

and the unbarred gravitinos either, so we set them to zero in (4.27) and
(4.28). Summarizing, we have the following results

ψ̄µi = ψi
µ = λ1 = λ̄2 = 0

λ̄1 = 2ie3φ/4∂µe
−φσ̄µξ λ2 = 2ie3φ/4∂µe

−φσµξ̄ ,
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with two constant8 spinors ξ and ξ̄.

Using the broken supersymmetries

We have constructed all the solutions to the equations of motion (linear in
the fermions) with certain boundary conditions9. We shall now show that
we can generate these solutions with the broken supersymmetries.
As it turns out, the broken supersymmetries are contained in the residual
supersymmetry transformations left after gauge fixing the gravitinos, i.e.
those ε̄1 and ε̄2 satisfying σµδεψ̄µ1 = σµδεψ̄µ2 = 0. The nontrivial solutions
to this equation are given by

ε̄2 = eφ/4η̄ , (4.38)

with ∂µη̄ = 0. This is precisely the Killing spinor from (4.26), so it leaves
the hyperinos invariant. The broken supersymmetries for ε̄1 are determined
by those transformations that leave ψ̄µ1 invariant and preserve the gauge
condition (4.37) but act nontrivially on the hyperinos. Using (4.36) and
(4.38) we find

ε̄1 = e−φ/4
(
χη̄ + ξ̄′

)
,

where ξ̄′ is another constant spinor. If we insert ε̄1 and ε̄2 into the trans-
formations of the λa we find that (after a redefinition ξ̄′ = ξ̄ − χ0η̄) the
spinor proportional to η̄ is precisely the Killing spinor (4.25). The spinor10

proportional to ξ̄ does generate a new solution for λ2:

(1)λ1 = 0 (1)λ2 = −2ie−φ/4∂µφσ
µξ̄ , (4.39)

where we included a factor of 2i for convenience. These are precisely the so-
lutions obtained earlier, see (4.30, 4.31). Equation (4.9) relates the Killing
spinors of opposite chirality11, which gives

ε1 = 0 ε2 = −e−φ/4ξ .

These generate

(1)λ̄1 = −2ie−φ/4∂µφ σ̄
µξ (1)λ̄2 = 0 , (4.40)

8Note that we use a slightly different notation now, compare with (4.31). The spinors ξ and
ξ̄ are unrelated.

9Namely that they are normalizable, which imposes certain conditions on their asymptotic
behaviour.

10The supersymmetry parameters which generate new solutions for the hyperinos are sum-
marized in (4.42).

11Remember that is really just a very concise way of doing the same calculation for the barred
sector.
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also a perfect match with (4.31).
Note that these solutions depend on x and the collective coordinate {x0}.
We have introduced some new notation: the superscript (1) left of the λ’s
indicates that this solution is obtained by applying a supersymmetry trans-
formation once. The resulting function therefore contains one Grassmann
collective coordinate (GCC). We omit the superscript (0).
Later on we will construct the scalar superpartner of the solutions for the
hyperinos found above. The solution for the superpartner can be found
by using (4.2) and the solutions for the hyperinos and the supersymmetry
parameter which generated them. These solutions for scalars will carry
the label (2) because they contain two fermionic collective coordinates (one
from the supersymmetry parameters and one from the hyperinos).
We can perform a similar analysis for the anti-instanton in which case we
find

(1)λ2 =(1) λ̄1 = 0
(1)λ1 = −2ie−φ/4∂µφσ

µ ˜̄ξ (1)λ̄2 = +2ie−φ/4∂µφ σ̄
µξ̃ .

For future convenience, we will introduce a very compact notation that
links the hyperino labels ‘1′ and ‘2′ to the (anti-)instanton labels (−)+.
This is done in such a way that the hyperino labels 1 and 2 are denoted
by upper and lower indices respectively. These indices are then further
specified by indicating the background, i.e. instanton or anti-instanton.
In this notation the absence of fermionic zero modes is expressed by the
equations (1)λ± = 0 where the upper index is associated to the first hyperino
in the instanton (+) background and the lower label to the second hyperino
in the anti-instanton (−) background. Similarly we have (1)λ̄∓ = 0. For
the broken supersymmetry parameters we have ε± = ε̄∓ = 0 and for the
λ’s we can write

(1)λ∓ = −2ie−φ/4∂µφσ
µξ̄∓ (1)λ̄± = ∓2ie−φ/4∂µφ σ̄

µξ∓ . (4.41)

These are generated by

ε∓ = −e−φ/4ξ∓ ε̄± = ±e−φ/4ξ̄± , (4.42)

where the fermionic collective coordinates ξ̄∓ are two independent constant
spinors which distinguish between instantons and anti-instantons, similarly
for ξ±.
Where it is clear from the context what is meant, we shall drop the ±
indices on ξ and ξ̄ for clarity.
As a last remark in this section, note the difference with Yang-Mills the-
ories where fermionic zero modes only appear in one chiral sector. In the
situation described above they are evenly distributed over the two (barred
and unbarred) sectors.
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4.4 The instanton measure

In the previous section we have seen how broken symmetries and collective
coordinates are related. In this section we shall examine the consequences
collective coordinates have for the path integral.
Consider a generic bosonic system without gauge invariance, with fields ΦM

and Euclidean action S[Φ]. We can expand the fields around the instanton
solution (which solves the equation of motion) as follows:

ΦM(x) = ΦM
cl (x,C) + ΦM

qu(x,C) . (4.43)

The collective coordinates are collectively denoted by Ci0 and the fluc-
tuations ΦM

qu depend on them as well. Note however that the field as a

whole, i.e. ΦM(x) does not. For a general field ΦM(x), collective coor-
dinates do not exist as such. These coordinates only become meaningful
when the fields are expanded around a configuration which minimizes the
action. Only then can some symmetries be broken, giving rise to collective
coordinates. The collective coordinates in turn parametrize (by construc-
tion) only the classical solution and the fluctuations. Expanding the action
around the instanton background gives

S = Scl +
1

2

∫

d4xΦM
quMMNΦN

qu + O(Φ3) , (4.44)

where MMN results from taking the second variation of the action with
respect to the fields and is given by MMN = GMP∆P

N . ∆P
N is a Hermitian

operator with respect to the inner product for the fields defined by GMN

and can explicitly be calculated by expanding in the fluctuations. Being
Hermitian it possesses a basis of eigenfunctions FM

i in which we can expand
the fluctuations:

∆M
NF

N
i = εiF

M
i (4.45)

ΦM
qu =

∑

i

ξiF
M
i . (4.46)

There is a big caveat however, because the operator ∆ is guaranteed to
have zero modes, which we can see by starting with the equations of motion
δS
δΦ

∣
∣
Φcl

= 0 and deriving with respect to the collective coordinates.

0 =
δ

δCi0

δS

δΦN

∣
∣
∣
Φcl

=
δ2S

δΦMδΦN

∂ΦM
cl

∂Ci0
,

which means that ZN
i0 ≡ ∂ΦN

cl

∂Ci0
is a null vector12 of ∆.

We see that if we have a solution to the equations of motion and take

12Admittedly, the question whether there are zero modes which cannot be obtained in this
fashion remains an unsolved problem.
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the derivative with respect tot the collective coordinates, we obtain a zero
mode. In the previous section we concluded that we can either generate
fermionic solutions to the equations of motion by directly solving them or
by applying the broken supersymmetries, naturally the results agreed. The
collective coordinates were nothing but the fermionic parameters ξ and ξ̄
and for reasons which have just become clear we referred to those solutions
as zero modes.
The following general treatment of zero modes in the path integral and the
relation with collective coordinates focuses on bosonic fields for simplicity.
The fermionic case is similar.

Some of the modes in (4.45) and (4.46) will have zero eigenvalue ε but
nonzero fluctuation coefficient ξ. It is convenient to split (4.46) into two
sets13 :

ΦM
qu =

∑

i0

ξi0F
M
i0 +

∑

iq

ξiqF
M
iq ,

such that the {i0} run over the zero mode fluctuations FM
i0 which have

εi0 = 0 but ξi0 6= 0 and the {iq} run over the non-zero mode fluctuations
FM

iq . We see that we can identify ZM
i0 = FM

i0 .
We can define an inner product for the fluctuations as follows:

Uij ≡
∫

d4xFM
i GMNF

N
j .

The action (4.44) then becomes14

S = Scl +
1

2

∑

i,j

ξjξiεjUij = Scl +
1

2




∑

i0,j0

ξj0ξi0εj0Ui0j0 +
∑

iq,jq

ξjqξiqεjqUiqjq



 .

The path integral measure is defined as
∫

[dΦM ] ≡
∫
√

detU0

∏

i0

dξi0√
2π

[
dΦ̃A

]
. (4.47)

We have separated the zero and non-zero fluctuations. The measure of the
latter is indicated by

[
dΦ̃A

]
, corresponding to an integral over the fluc-

tuation coefficients ξiq . Including the zero modes in this measure would

13These sets are mutually orthogonal, in fact we can always choose an entirely orthogonal
basis for the fluctuations, because ∆ is a Hermitian operator.

14The part involving the zero mode fluctuations is zero, because εj0 = 0. Thus these fluctu-
ations are also ‘zero modes’ in the sense that they represent physical fluctuations in field space
which do not change the value of the action.
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lead to a determinant of M which would equal zero, thus invalidating this
approach. Instead, the non-zero modes now lead to an amputated deter-
minant det′∆. The U0 is the inner product over the zero modes only, it
actually defines a metric on the moduli space of collective coordinates.
The integral over the zero modes must be treated separately, by converting
it into an integral over the collective coordinates by an Faddeev-Popovish
trick, [93, 94]. This means that we insert the number 1, suitably repre-
sented, into the path integral measure (4.47). A suitable representation for
1 is

1 =

∫
∏

i0

dCi0

∣
∣
∣
∣
det

∂fi0

∂Cj0

∣
∣
∣
∣

∏

j0

δ [fj0(C)] , (4.48)

which holds for any set of (invertible) functions fi0. We identify the C with
the collective coordinates (as in (4.43)) and we let the labels run over the
zero mode set. An apt choice for the functions fi0 is

fi0 ≡ −
∫

d4xΦM
quGMNF

N
i0 = ξj0Uj0i0 .

Taking the derivative yields

∂fi0(C)

∂Ck0
= −

∫

d4x

{

∂ΦM
qu

∂Ck0
GMNF

N
i0 + ΦM

qu∂Ck0

(
GMNF

N
i0

)

}

and because ΦM does not depend on the collective coordinates C, see (4.43),
we can replace ΦM

qu by −ΦM
cl in the first term, which gives

∂fi0(C)

∂Ck0
= −

∫

d4x
{
−FM

k0
GMNF

N
i0 + ΦM

qu∂Ck0

(
GMNF

N
i0

)}

= Uk0i0 −
∫

d4xΦM
qu∂Ck0

(
GMNF

N
i0

)
.

Equation (4.48) can thus be expressed as

1 =

∫
∏

i0

dCi0

∣
∣
∣
∣
det

{

Uk0i0 −
∫

d4xΦM
qu∂Ck0

(
GMNF

N
i0

)
}∣
∣
∣
∣

∏

j0

δ

[
∑

i0

ξi0Ui0j0

]

which has to be inserted into (4.47). The delta function over the ξi0’s
forces them to be zero, because Ui0j0 is invertible and thus has no zero
eigenvectors. This means that ΦM

qu in the second term in the determinant
only contains the genuine quantum fluctuations which gives this term an
extra factor of ~ (had we kept ~ in the game) meaning that it contributes
at 2-loop instead of 1-loop. We will therefore drop this term, see also
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[95, 96, 97].
The total measure15 becomes

∫

[dΦM ]e−S =

∫
∏

i0

dCi0

√
2π

√

detU0 e
−Scl (det′∆)

− 1
2 .

This is the general procedure to obtain the one-loop measure in the pres-
ence of instantons, for reviews of instanton calculations in supersymmetric
theories, see [98, 17].

4.4.1 The bosonic measure

The general treatment above can be directly applied to the NS 5-brane
instanton solution. Let us start with the bosonic collective coordinates.
For the single centered instanton there are 4 collective coordinates, namely
the location of the instanton xµ

0 in R
4. This means that the moduli space is

four dimensional and has a 4-dimensional metric which we shall denote by
(U0)µν . This metric receives contributions from both the scalars and the
tensors. In the above treatment we considered a generic bosonic system
with fields ΦM . For the instanton solution we must consider the fields
(φA, BµνI), so we can identify

ΦM = {φA, BµνI} and GMN =

( GAB(φcl) 0

0 M IJ(φcl)

)

.

The Hermitian operator reads

∆M
N =

( −δA
B∂

2 + . . . . . .

. . . −δ J
I ∂

2 + . . .

)

, (4.49)

the ellipses stand for operators at most linear in derivatives. In the scalar
sector we have a block diagonal metric GAB, see (2.33), hence we can com-
pute the contributions coming from φ and χ separately. For the case of the
dilaton zero mode, i.e. ∂φ

∂xµ
0
, we have to compute

U (φ)
µν =

∫

d4x
∂φ

∂xµ
0

∂φ

∂xν
0

=

∫

d4x
xµxν

r2
e−2φ

(
∂re

−φ
)2

=
1

4
δµν

∫

d4xe2φ
(
∂re

−φ
)2

(4.50)

where we used ∂φ
∂xµ

0
= eφ∂µe

−φ and the spherical symmetry of the single-

centered instanton. To compute the last expression in (4.50) we use the

15Note that his measure is invariant under general coordinate transformations on the moduli
space.
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slightly more general integral

Ip ≡
∫

d4xh−p(∂rh)
2 h ≡ h∞ +

Q

4π2r2

for some power p > 1. Using dr
r3 = −2π2 dh

Q this integral becomes

Ip =

(
Q

2π2

)2

Vol(S3)

∫ ∞

0

drr−3h−p = Q

∫ ∞

h∞

dhh−p =
Q

p− 1
h1−p
∞ ,

which diverges for p ≤ 1. Applying this to (4.50) yields the result

U (φ)
µν =

|Q2|
4g2

s

δµν .

Similarly, we have for the χ zero mode,

∂χ

∂xµ
0

= g2
s∆χe

2φ∂µe
−φ ,

the metric

U (χ)
µν =

∫

d4 xe−φ ∂χ

∂xµ
0

∂χ

∂xν
0

=
|Q2|
8

(∆χ)2δµν ,

remember that Gχχ = e−φ.
The tensors are slightly more subtle. Tensors have gauge symmetries which
have to be gauge-fixed, we choose the background gauge condition

∂µ
(

M IJBqu
µνJ

)

= 0 . (4.51)

The instanton configurations are solutions to the classical, gauge invari-
ant equations of motion and taking derivatives with respect to xµ

0 do not
yield zero modes of the gauge-fixed operator ∆M

N in general. Therefore we
consider the following zero modes

ZµνIρ ≡ ∂BµνI

∂xρ
0

− 2∂[µΛν]Iρ ,

where we added the second part to make sure the Z obey the background
gauge condition (4.51). If we then choose ∆νIρ = BνρI we obtain

ZµνIρ = −HµνρI = εµνρσH
σ
I ,

which manifestly satisfies (4.51) because of the classical tensor field equa-
tions, see section 3.1. The tensorial part of the metric consequently be-
comes

U (B)
µν =

1

2

∫

d4xM IJZρσ
IµZρσJν =

∫

d4xM IJ (δµνH
ρ
IHρJ −HµIHνJ) ,
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spherical symmetry and the Bogomol’nyi equation (3.6) give

U (B)
µν =

3

4
δµν

∫

d4x
(

eφĤρ
1 Ĥρ1 + e2φHρ

2Hρ2

)

= 3
(

U (χ)
µν + U (φ)

µν

)

,

where Ĥµ
I was defined in (2.30). The total bosonic metric becomes

(U0)µν = U (φ)
µν + U (χ)

µν + U (B)
µν = Sclδµν ,

with Scl given in (3.14). This compact result is similar to the case of Yang-
Mills instantons.
With these results we can finally write down the bosonic part of the single-
centered (anti-)instanton measure:

∫
d4x0

(2π2)
(detU0)e

−S±

inst (det′∆)
− 1

2 =

∫
d4x0

(2π2)
S2

cle
−S±

inst (det′∆)
− 1

2 . (4.52)

4.4.2 The fermionic measure

In section 4.3.2 we have shown that there are (nonzero) solutions for some of
the hyperinos and none for the gravitinos. This means that the equations
of motion (linear in the fermions) are given by (4.27, 4.28) with zeroes
on the right hand sides. We can reproduce these equations of motion by
starting from the action

S =

∫

d4x iλa
(
D/ 3/4

)

ab̄
λ̄b̄ ,

where

(
D/ 3/4

)

ab̄
≡
(

D/ 3/4 0

0 D/−3/4

)

and D/±3/4 has been defined in (4.29).
When expanding the fermionic fields as in (4.43), the quadratic part of this
action (which includes the zero modes) becomes

S2 =

∫

d4x iλa
qu

(
D/ 3/4

)

ab̄
λ̄b̄

qu .

We have to proceed along the same lines as for the bosons. Contrary to
∆M

N however, D/ k is not an Hermitian operator, but it satisfies16

(D/ k)
†
= D/−k .

16This is different from one’s usual twisted Dirac operator, because we twist with an anti-
Hermitian connection. As a result, it is not clear how to calculate the index of such an operator.
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On the other hand, the operators

Mk ≡ D/−k D̄/ k M̄k ≡ D̄/−k D/ k

are Hermitian. Furthermore, the spectrum of nonzero modes of M−3/4

and M̄3/4 is identical, similarly for M3/4 and M̄−3/4. This can be seen
as follows, let F 1

i and F 2
i denote a basis of eigenfunctions of M−3/4 and

M3/4 respectively. F̄ 1
i and F̄ 2

i denote a basis of eigenfunctions of M̄3/4 and
M̄−3/4.
The eigenfunctions of M−3/4 and M̄3/4 are then related, with the same
eigenvalue ε1i = ε̄1i 6= 0, by

F̄ 1
i = (ε1i )

−1/2D̄/−3/4F
1
i F 1

i = (ε1i )
−1/2D/ 3/4F̄

1
i .

Similarly, the spectrum of nonzero modes of M3/4 and M̄−3/4 is identical
and the relation between the eigenfunctions is given by

F̄ 2
i = (ε2i )

−1/2D̄/ 3/4F
2
i F 2

i = (ε2i )
−1/2D/−3/4F̄

2
i .

Here we assumed for simplicity that the eigenvalues are positive. Bearing
in mind that both M3/4 and M̄3/4 have zero modes, together with the fact
that the fermion zero modes are in λ2 and λ̄1, we can expand the fermions
in a basis of eigenfunctions (suppressing spinor indices),

λa
qu =

∑

i

ξa
i F

a
i , λ̄ā

qu =
∑

i

ξ̄a
i F̄

ā
i , (4.53)

with ξa
i and ξ̄a

i anticommuting (there is no sum over a). Substituting this
into the action and using the relation between the different eigenfunctions
as discussed above we get

S2 = i
∑

a,i,j

ξa
i U

aa
ij (εa

j )
1/2 ξ̄a

j , Uab
ij ≡

∫

d4x F a
i F

b
j . (4.54)

We then define the fermionic part of the path-integral measure as (up to a
sign from the ordering of the differentials)

[dλ] [dλ̄] ≡
∏

a

∏

i

dξa
i dξ̄a

i (detUaa)−1 , (4.55)

such that the fermion integral gives the Pfaffians of D̄/ 3/4 and D/ 3/4 in the
nonzero mode sector. In the zero mode sector, we are left over with an
integral over the four GCCs (Grassmann collective coordinates). These
are combined into two spinors, multiplied by the inverses17 of the norms

17Note that to ensure invariance under reparametrizations of the GCCs we have to use the
inverse determinant on the moduli space of GCCs, instead of the square root, as in the case of
bosonic collective coordinates (4.47).
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of the zero modes. The zero mode eigenfunctions have the form Z2
αβ′ =

∂(1)λ2
α/∂ξ̄

β′

given in (4.39), so that we find for their inner product

U22
α′β′ =

∫

d4xZ2α
α′ Z2

αβ′ = −4

∫

d4x e−φ/2∂µφ ∂νφ (ε σ̄µσν)α′β′

= 4 εα′β′

∫

d4x e3φ/2(∂re
−φ)2 =

8 |Q2|
gs

εα′β′ . (4.56)

The fermionic measure on the moduli space of collective coordinates then
is ∫

d2ξ d2ξ̄
( gs

8 |Q2|
)2 (

det′M3/4 det′M̄3/4

)1/2
. (4.57)

The convention is that d2ξ ≡ dξ1 dξ2.
The complete measure is then given by combining (4.57) with (4.52) (which
contains the determinant due to the fluctuations in the hypermultiplet) this
gives

∫
d4x0

(2π)2

∫

d2ξ d2ξ̄
( gs Scl

8 |Q2|
)2

K±
1-loop e

−S±

inst . (4.58)

Although the classical values in the instanton background of the gravita-
tional and vector multiplets are trivial (flat metric and vanishing vector
multiplets) their quantum effects cannot be ignored. This is a complicated
calculation which is beyond the scope of our computations. Moreover,
these loop effects would have to be computed in the full ten-dimensional
string theory. We will be pragmatic and denote with K±

1-loop the ratio of
all fermionic and bosonic determinants in the one-(anti-)instanton back-
ground.

4.5 Correlation functions

In this section instanton effects to the effective action will be computed
by calculating correlators that receive instanton corrections. The (single-
centered anti-)instanton measure (4.58) is used to compute the instanton
contributions to the correlators. We again notice that it contains an integral
over the four GCCs. Hence a generic correlation function 〈A〉 will only be
nonzero if the ‘A’ is able to saturate the fermionic measure. Clearly there
will be at least a nonzero four-point fermion correlation function, which will
correct the four point vertex. Diagrammatically, such a four-point vertex
consists of four fermion zero modes connected to an instanton at position
x0 which is integrated over. If one computes this diagram, one can read off
the four-index tensor that determines the four-fermi terms in the effective
action, i.e., one can see how Vabāb̄ would get corrected, see (4.1).
This would be difficult to do in practice due to the fact that we are working
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in the 1.5 order formalism as explained in section 4.1. Additional four-fermi
terms are hidden in the spacetime curvature scalar R(ω) as a function of
the spin connection. Moreover, the four-fermi correlator would merely
give information about the target-space curvature-like terms rather than
the fundamental objects M IJ , GAB and AI

A. The latter are much more
interesting because they determine the metric of the hypermultiplet, see
(2.34).
We can obtain instanton corrections to these fundamental quantities by
studying the GCC dependence of the scalars and tensors. For instance, the
correlator

〈φA(x)φB(y)〉
will give one-loop corrections to GAB in the presence of an instanton. But
what to insert for φA(x)?
Obviously this φA(x) must be something with two GCCs. We must again
use the broken supersymmetries which generate fluctuations that are re-
lated by supersymmetry to the purely bosonic instantons and are genuine
zero modes which leave the action unchanged as we saw in section 4.3.2. We
observed that applying them once (at linear order) generated the fermionic
zero modes, see (4.41) and (4.42). To these solutions for the hyperinos cor-
respond bosonic superpartners. These are obtained by acting twice with
the broken supersymmetries on the scalars. Put differently, substitute the
values for the hyperinos and the broken supersymmetry parameters ((4.41)
and (4.42)) into (4.2). This induces a quadratic GCC dependence in the
scalars, i.e., the scalar superpartner contains two GCCs. Similarly, by using
(4.4) the tensor superpartners can be constructed. The relevant correlators
to study will thus be 2-point functions of scalars and tensors.

At second order in the GCCs the scalars are given by (see (4.2))

(2)φA =
1

2
δ2
εφ

A|cl =
1√
2

(
γA

ia(φcl) ε
i (1)λa + γ̄iA

ā (φcl) ε̄i
(1)̄λā

)
,

where we write 1
2 δ

2
εφ

A|cl because on has to exponentiate the infinitesimal
(broken) supersymmetry transformations18. In section 4.3.2 we have seen
that (1)λ± =(1) λ̄∓ = 0 and for the broken supersymmetry parameters
ε± = ε̄∓ = 0. This means that only terms proportional to γA

∓∓ and γ̄±A
±

contribute, they are both zero for the dilaton. Only χ gets corrected (at
this order)

(2)χ = 2i ∂µφ ξσ
µξ̄ , (2)φ = 0 . (4.59)

Due to our conventions for the fermionic zero modes chosen in (4.41), this
expression for χ is the same in the instanton and anti-instanton background.

18Remember that we have rescaled the supersymmetry parameters by a factor of
√

2.
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Analogously, the second order corrections of the tensors follow from (4.4).
The instanton and anti-instanton cases yield, up to a sign, the same answer,

(2)Bµν1 = ∓2i εµνρσ ∂
ρe−φ ξσσξ̄ , (2)Bµν2 = 0 , (4.60)

notice again that only the R-R sector is turned on. One can easily check
that the Bogomol’nyi equation (3.6) still holds at this order in the GCCs:

(2)Hµ1 = ±∂µ

(
e−φ (2)χ

)
, (4.61)

the second equation in (3.6) is trivially satisfied. It may surprise those
familiar with instanton calculus, that the equations of motion are satisfied
without any fermion-bilinear source term. One would expect such a source
term to be present, since (4.59) and (4.60) are obtained by acting with those
broken supersymmetries that also generate the fermionic zero modes. This
is typically what happens with the Yukawa terms in N = 2 or N = 4
SYM theory in flat space; in that theory the adjoint scalar field is found by
solving the inhomogeneous Laplace equation with a fermion-bilinear source
term. The fermionic zero modes in the presence of a YM instanton then
determine the profile and GCC dependence of the adjoint scalar field. Some
references where this is discussed in more detail are given in [99, 98, 100].
In the case at hand, the fermion bilinear source term actually vanishes when
the zero modes are plugged in. To see this, let us consider the tensors, for
which the full equations of motion read

e−1 δS

δBµνI
= εµνρσ∂ρ

[
M IJHσJ − iAI

A∂σφ
A +

i√
2
M IJ(gJiaψ

i
σλ

a + c.c.)

+ iM IJkJaā λ
aσσλ̄

ā
]
. (4.62)

The fermionic zero modes we have found above do not enter these equations
directly, because (1)ψi

µ = (1)ψ̄µi = 0, and the two matrices M IJ , kJaā are

diagonal (actually zero for I = 1) but for a = ā either (1)λa or (1)̄λā vanishes.
Hence, up to second order in the GCC, only the bosonic fields contribute.
This is consistent with the fact that the BPS condition still holds at this
order. A similar analysis can be done for the equations of motion for the
scalars.

4.5.1 2-point functions

We have seen above that the objects of prime interest are bilinears in the
R-R fields (2)χ and (2)Hµ

1 . In this section we will compute correlators of
these R-R combinations. In the next section we will compute combinations
of one R-R field with the zero modes (1)λ∓ and (1)λ̄±.
The total measure for the single-centered (anti-) instanton has been found
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in the previous section, see (4.58). Using this measure, one computes a
correlator by integrating the fields over the collective coordinates. However,
computing the correlator of two χ’s for instance (as given in (4.59)) is not
straightforward due to the integration over x0. For simplicity we therefore
take a large distance limit. We then express the fields (for convenience) in
terms of propagators, which will enable us to read off the effective vertices
from the correlation functions by stripping off the external legs. For the
bosons we find

(2)χ(x) = −2i |Q2| g−2
s ξσµξ̄ ∂µG(x, x0)

(
1 + . . .

)

(2)Hµ
1 (x) = ∓2i |Q2| ξσν ξ̄

(
∂µ∂ν − δµ

ν∂
2
)
G(x, x0) , (4.63)

where G(x, x0) = 1/4π2(x− x0)
2 is the massless scalar propagator.

In the first equation in (4.63) we only keep the leading term in the large
distance expansion valid when (x − x0)

2 � |Q2|/4π2g2
s . In this limit the

dilaton is effectively given by e−φ ≈ e−φ∞ = g2
s and similarly χ ≈ χ∞. So

the fields are replaced by their asymptotic values and these will be used
to describe the asymptotic geometry of the moduli space in a next sec-
tion. The second equation in (4.63) is exact: for correlators involving (2)Hµ

1

it is not necessary to make a large distance approximation. For correla-
tors involving the fermions it is also necessary to make a large distance
approximation. In this approximation the fermion zero modes are given by

(1)λ∓α (x) = −2 |Q2| g−3/2
s Sαβ′(x, x0) ξ̄

β′(
1 + . . .

)

(1)λ̄±β′(x) = ±2 |Q2| g−3/2
s ξαSαβ′(x, x0)

(
1 + . . .

)
, (4.64)

where the ellipses again indicate terms of higher order in the large distance
expansion and S(x, x0) = −i∂/G(x, x0) is the λλ̄ propagator.
Let us begin with the purely bosonic correlators. With the GCC measure

dµξ ≡ d2ξ d2ξ̄
(
gs/8|Q2|

)2
from (4.57) and the Fierz identity ξσµξ̄ ξσν ξ̄ =

−1
2δµν ξξ ξ̄ξ̄, we find in the large distance limit

∫

dµξ
(2)χ(x) (2)χ(y) =

1

8g2
s

∂µ
0 G(x, x0) ∂

0
µG(y, x0) ,

where we have replaced ∂µ with −∂0
µ ≡ −∂/∂xµ

0 , denoting the derivative

with respect to the bosonic collective coordinates. Using (2)φ = 0, we then
obtain for the leading semiclassical contribution to the correlation function
of two scalars in the one-(anti-)instanton background

〈φA(x)φB(y)〉inst = g−2
s δA

χ δ
B
χ

∫

d4x0 Y± ∂
µ
0 G(x, x0) ∂

0
µG(y, x0)

= g−2
s Y± δ

A
χ δ

B
χ G(x, y) . (4.65)
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Here we denote (remember that the difference between Scl and S±
inst is given

by the surface terms (3.16, 3.15))

Y± ≡ 1

32π2
S2

cl e
−S±

instK±
1-loop , (4.66)

which is small for small string coupling constant gs. Since translation
invariance implies that neither Scl nor K±

1-loop depends on the collective

coordinates x0, we were allowed to integrate by parts and use ∂2
0 G(x, x0) =

−δ(x− x0). There is no boundary term because the domain of integration
covers all of R

4 with no points excised (the instanton can be located at any
point) and the integrand vanishes at infinity.
The result (4.65) is to be compared with the propagator derived from an
effective action with instanton and anti-instanton corrected metric Geff

AB =
GAB +Ginst

AB , with GAB as in (4.6). Similarly we write for the inverse GAB
eff =

GAB + GAB
inst, with GACGCB = δB

A . At leading order in Y±, we find

GAB
inst =

(

0 0

0 g−2
s (Y+ + Y−)

)

. (4.67)

Note that since Y− = (Y+)?, instanton and anti-instanton contributions
combine into a real correction19. This result receives of course corrections
from perturbation theory and from terms that become important beyond
the large distance approximation in which e−φ ≈ g2

s . Such terms play a role
when inverting the result of (4.67) to obtain the effective metric Geff

AB. They
correspond to higher order powers in Y± and interfere with multi-centered
(anti-)instanton effects. Dropping all these subleading terms we find

Geff
AB =

(

1 0

0 e−φ − g2
s(Y+ + Y−)

)

, (4.68)

for more details see appendix E.

Having computed the correlator of two R-R scalars in the (anti-)instanton
background, we now turn to the correlator of two R-R tensors using (4.63).
This will give instanton corrections to the tensor metric M IJ . The inte-
gration over the GCCs gives

∫

dµξ
(2)Hµ1(x)

(2)Hν1(y) =
g2

s

8
Gµρ(x, x0)G

ρ
ν(y, x0) , (4.69)

19We are assuming here that K− = (K+)?. Presumably, the one-loop determinants K± only
differ by a phase coming from the fermionic determinants. If this phase can be absorbed in the
corresponding surface terms (3.15), the instanton and anti-instanton determinants are real and
equal.
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where Gµν(x, x0) =
(
∂µ∂ν − δµν∂

2
)
G(x, x0) is the gauge-invariant propaga-

tor of the dual tensor field strengths. We then have to integrate over x0,
use (2)Hµ2 = 0 and the convolution property20 Gµρ ? G

ρ
ν = Gµν , it follows

that
〈HµI(x)HνJ(y)〉inst = g2

s Y± δ
1
I δ

1
J Gµν(x, y) . (4.70)

From the right-hand side we read off the (anti-) instanton correction to the
inverse metric MIJ , which multiplies the tensor propagators. We find for
the sum

M inst
IJ = g2

s (Y+ + Y−) δ1
I δ

1
J , (4.71)

In the large distance approximation (for which χ ≈ χ∞) we then obtain

M IJ
eff = M IJ − g−2

s (Y+ + Y−)

(

1 −χ∞

−χ∞ χ2
∞

)

, (4.72)

with M IJ as in (4.6). This seems to suggest that both R-R and NS-NS
sectors get corrections in front of the tensor kinetic terms. However, when
expressed in terms of Ĥ1 = H1 − χH2, the tensor kinetic terms in the
effective action simplify to

e−1Leff =
1

2

(
eφ − g−2

s (Y+ + Y−)
)
Ĥµ

1 Ĥµ1 +
1

2
e2φHµ

2Hµ2 + . . . , (4.73)

In this basis, which is the one to distinguish between fivebrane and mem-
brane instantons (see the discussion in section 3.3), the NS-NS sector does
not receive any instanton corrections.

There is also the combination of the tensor and scalar (see (4.63)) we can
consider. The GCC integration over this mixed bosonic combination yields

∫

dµξ
(2)Hµ1(x)

(2)χ(y) = ∓1

8
Gµν(x, x0) ∂

ν
0 G(y, x0) , (4.74)

which vanishes when integrated over x0 thanks to the Bianchi identity
∂µGµν = 0. We conclude that

〈HµI(x)φ
A(y)〉 = 0 . (4.75)

This was to be expected, since for constant coefficients AI
A the vertex

−iAI
AH

µ
I ∂µφ

A

20This convolutions is defined as

Gµρ ? Gρ
ν =

∫

d4z Gµρ(x, z)Gρ
ν(y, z) = Gµν(x, y) .
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is a total derivative and therefore does not contribute to the propagator.
However, we will argue later that instantons must induce such a vertex with
field-dependent coefficients. To determine this vertex explicitly we would
have to go beyond the leading and large distance expansion, see appendix
F.

The calculation of the bosonic 2-point functions is sufficient to determine
the instanton-corrected moduli space metric, which we present in the next
section. The full geometry, or the full effective action, does not follow from
the metric alone, but also from various connections that appear e.g. in the
supersymmetry transformation rules. As we now show, these connections
can be read off from the three-point functions.

4.5.2 3-point functions

First we compute ΓIa
b in the instanton background. It appears in the ef-

fective action (4.1) through the relation (C.7) and measures the strength of
the coupling between the tensors and the fermions. We therefore compute

〈λa
α(x) λ̄b̄

β′(y)HµI(z)〉

= −i
|Q2|
gs

Y±δ
a
∓ δ

b̄
± δ

1
I

∫

d4x0

[
S(x, x0)σ̄

νS(y, x0)
]

αβ′ Gµν(z, x0) .

These two correlators induce an effective vertex −haā(Γ
I
inst)

a
b λ

bσµλ̄āHµI

with coefficients

(ΓI
inst)

a
b = −i

|Q2|
gs

M I1
∞ (Y+ δ

a
2hb1 + Y− δ

a
1hb2) = −i

|Q2|
gs

M I1
∞

(

0 Y−

Y+ 0

)

.

(4.76)
Here we have used that hab̄ is not corrected at leading order21. We also
used the notation that M IJ

∞ stands for M IJ with the fields replaced by their
asymptotic values at infinity.

The last two correlators contribute to the connection ΓA
a
b, which appears

in the covariant derivative on the fermions (C.12). This connection was
zero on tree-level, see (D.1), but it receives instanton corrections as follows
from

〈λa
α(x) λ̄b̄

β′(y)φA(z)〉

= ∓i
|Q2|
g3

s

Y±δ
a
∓ δ

b̄
± δ

A
χ

∫

d4x0

[
S(x, x0)σ̄

µS(y, x0)
]

αβ′ ∂µG(z, x0) .

21The 2-point function of two fermion insertions vanishes in the semiclassical limit.
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This corresponds to an effective vertex −ihaā(Γ
inst
A )a

b λ
bσµλ̄ā ∂µφ

A with

(Γinst
A )a

b =
|Q2|
g3

s

G∞
Aχ

(

0 −Y−
Y+ 0

)

.

The above connections induce instanton corrections to the curvature ten-
sors that appear in the four-fermi couplings of the effective action (4.1).
Indeed, the fact that these curvatures receive instanton corrections also
follows from the computation of 4-point functions of fermionic insertions.
These results should be consistent with the instanton corrections to the
curvatures as determined by the connections. For reasons explained in the
beginning of this section, checking this consistency may be a complicated
task.
Note however, that there is another four-fermi term in (4.1) proportional
to the product of two antisymmetric tensors Eab. It is easy to see that this
tensor cannot receive instanton corrections since it multiplies only λa in the
action, not λ̄ā. Due to the even distribution of fermionic zero modes among
λa and λ̄ā there are thus no non-vanishing correlation functions that could
induce an effective vertex involving Eab. A similar argument shows that
the connections ΓIi

j do not get corrected: they occur in the action only in
combination with gravitinos. For example in the vertex 2ΓIi

jH
µνρ
I ψj

µσνψ̄ρi,
hidden in the square of the supercovariant field strengths of the tensors
(C.11), which have no zero modes to lowest order in the GCC. Correlation
functions of fields corresponding to vertices involving ΓIi

j then do not sat-
urate the GCC integrals and vanish. If we were to continue the procedure
of sweeping out solutions by applying successive broken supersymmetry
transformations to the fields, the gravitinos could obtain a GCC depen-
dence at third order, but then the number of GCCs in the correlators of
interest exceeds the number of degrees of freedom and they therefore vanish
as well. However, due to (C.13) the coefficients ΩI

i
j do get corrected:

(Ωeff
I )i

j = M eff
IJ ΓJi

j = ΩI
i
j + g2

s(Y+ + Y−)δ1
I Γ1i

∞j . (4.77)

These quantities appear in the supersymmetry transformations of the ten-
sors (4.4).

4.6 The universal hypermultiplet moduli space

In order to determine the instanton corrections to the universal hypermul-
tiplet, we first Wick-rotate back to Lorentzian signature and then dualize
the tensors HI into two pseudoscalars φI = (ϕ, σ), using the same notation
as in section 2.3, i.e. ϕ is a R-R field and σ the NS axion. If we combine
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the latter and φA = (φ, χ) into a four-component field φÂ = (φA, φI), then
in this basis the universal hypermultiplet metric reads, see (2.34)

GÂB̂ =

(GAB + AI
AMIJA

J
B AK

AMKJ

MIKA
K
B MIJ

)

. (4.78)

Using (4.68), (4.71) and AI
A = 0, we find for the asymptotic effective La-

grangian

e−1LUH = −1

2
(∂µφ)2 − 1

2
e−φ(1 − g2

se
φY ) (∂µχ)2

− 1

2
e−φ(1 + g2

se
φY ) (∂µϕ)2 − 1

2
e−2φ(∂µσ + χ∂µϕ)2 + . . . , (4.79)

where the ellipses stands for subleading terms and Y = Y+ +Y− is the sum
of the instanton and anti-instanton contributions, as introduced in (4.66).
It can be written as

Y =
1

32π2
S2

cl e
−Scl
(
eiσ̂|Q2|K+

1-loop + e−iσ̂|Q2|K−
1-loop

)

=
1

16π2
S2

cl e
−SclK1-loop cos(σ̂Q2) , (4.80)

where we introduced σ̂ ≡ σ+χ0ϕ such that Y is periodic in σ̂. The second
equality in (4.80) holds only under the reality assumption made in footnote
19. Furthermore note that only the R-R sector receives corrections from
the NS5-brane instanton.

4.6.1 The metric and isometries

In this section we present the instanton corrected line element of the quater-
nionic target space of the UHM. First we write down the general form of
the line element, which is given by (using AI

A = 0)

ds2
UH = GÂB̂ dφ

Â ⊗ dφB̂ = GAB dφ
A ⊗ dφB +MIJ dφ

I ⊗ dφJ .

We remind the reader that the classical metric is given by the line element

ds2
UH = dφ2 + e−φdχ2 + e−φdϕ2 + e−2φ(dσ + χdϕ)2 , (4.81)

and describes the homogeneous quaternion-Kähler space SU(1, 2)/U(2),
see (2.22). As discussed in section 2.3, the isometry group SU(1, 2) can be
split into three categories. First, there is a Heisenberg subgroup of shift
isometries,

φ→ φ , χ→ χ+ γ , ϕ→ ϕ+ β , σ → σ − α− γ ϕ , (4.82)
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where α, β, γ are real (finite) parameters. This Heisenberg group is pre-
served in perturbation theory [73, 74]. We have not discussed these per-
turbative corrections, which only appear at one-loop in the string frame,
here. They are discussed in [72, 75] and should be added to our final result
for the metric.
Second, there is a U(1) symmetry (2.26) that acts as a rotation on ϕ and
χ, accompanied by a compensating transformation on σ,

ϕ→ cos(δ)ϕ+ sin(δ)χ χ→ cos(δ)χ− sin(δ)ϕ ,

σ → σ − 1

4
sin(2δ)

(
χ2 − ϕ2

)
+ sin2(δ)χφ . (4.83)

We now present the instanton corrected moduli space metric. As shown
above, instanton effects are proportional to Y , given by (4.80), and depend
on the instanton charge Q2 and the R-R background specified by χ0. More-
over, also the asymptotic values of the fields, gs and χ∞, appear. They are
treated as coordinates in the asymptotic regime of the moduli space, i.e.,
where χ = χ∞ and e−φ = g2

s . For fixed values of χ0 and Q2, the moduli
space metric is given by

ds2
UH = dφ2 + e−φ(1−Y )dχ2 + e−φ(1+Y )dϕ2 + e−2φ(dσ+χdϕ)2 , (4.84)

up to subleading terms. This metric therefore satisfies the constraints from
quaternionic geometry only up to leading order22. It remains to be seen
to what extent the quaternionic structure can fix these subleading correc-
tions. The result written in (4.84) depends on Q2 and on the chosen R-R
background. To obtain the full moduli space metric, one must sum over
all instanton numbers Q2. It would be very interesting to do this sum
explicitly and to see of which function we have the asymptotic limit. Un-
fortunately, for that we need more knowledge of the one-loop determinants
and the subleading corrections, which is not available at present.
We can also deduce the leading-order instanton corrections to the vielbeins
and other geometric quantities. These can be computed from the vielbeins
that determine the double-tensor multiplet geometry, which we give in ap-
pendix F.

What happens to the isometries (4.82) and (4.83)? For the Heisenberg
group, this amounts to investigating which isometries are broken by the
quantity Y , as the other terms are invariant. First we focus on the γ-shift
in χ. For a given, fixed R-R background χ0, the γ-shift is broken completely.
This is because Y is proportional to Scl, which contains ∆χ = χ∞ − χ0,
see (3.14). However, this symmetry can be restored if we simultaneously

22As we have checked explicitly.
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change the background as χ0 → χ0+γ. Since χ0 is subject to a quantization
condition (see section 3.2), this induces a quantization condition on the
possible values for γ. This means that the γ-shift is broken to a discrete
subgroup.
With this in mind, we find that under the action of a generic element in the
Heisenberg group the metric is invariant only if the following quantization
condition is satisfied:

α− (χ0 + γ)β =
2πn

|Q2|
, (4.85)

with n an integer. As explained before, the γ-dependence is not relevant
here since we could shift the R-R background again. As for the other two
isometries generated by α and β, only a linear combination is preserved.
Stated differently, the β-isometry is preserved as a continuous isometry if
we accompany it by a compensating α-shift, where α is determined from
(4.85).
If we solely perform an α-transformation, only a discrete Z|Q2| subgroup
survives as a symmetry. In fact, since the full metric includes a sum over
Q2, only shifts with α = 2πn are unbroken. In conclusion, for the Heisen-
berg group one isometry remains continuous and two are broken to discrete
subgroups. This is precisely in line with the proposal made in [75].
The remaining isometry we discuss is (4.83). Since the last term in (4.84)
is invariant by itself, we should only look at the R-R sector. Due to the
fact that Y is independent of ϕ, but depends on χ2, this continuous rota-
tion symmetry is broken. In fact, the terms proportional to Y break this
isometry down to the identity δ = 0 and the discrete transformation with
δ = π,

χ→ −χ , ϕ→ −ϕ , σ → σ . (4.86)

This conclusion is different from [52], where also δ = π/2 was claimed to
survive as an isometry. It is not excluded though, that the full answer may
have more symmetries. This full answer should contain (all the) subleading
corrections and perhaps membranes. At the end of appendix F we in fact
argue that the connection AI

A becomes nonzero at subleading order, away
from the asymptotic region. After dualization, this induces new terms in
the metric, as follows from (4.78), so one has to reanalyze the breaking of
isometries. Clearly, this is an interesting point that deserves further study.
Finally note the existence of another discrete isometry which changes the
sign in χ (or ϕ) together with a sign flip in σ. This is because the (leading)
instanton plus anti-instanton corrections are even in χ and σ. This discrete
isometry is however not part of (a discrete subgroup of) SU(1, 2).
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4.7 Short summary and outlook

Having reached our goal, (4.84), we need to reflect on its meaning. In
the range of approximations we are working in, using supergravity and the
large distance approximation for the fields (see (4.63) and (4.64)), this is
a solid result. Note that one should actually combine our result with the
one-loop correction found in [72]. We shall elaborate on this one-loop cor-
rection in the next chapter.
To make further progress, one should really perform this calculation in
string theory, which then includes the worldvolume theory of the 5-brane,
and calculate the one-loop determinants. Another generalization is the
case of more hypermultiplets, which corresponds to more general Calabi-
Yau manifolds with h(1,2) 6= 0. To advance in the UHM case, one should
try to take a closer look at the constraints coming from the quaternionic
geometry. We saw in section 1.4 that the definition of a four (real) dimen-
sional quaternionic manifold is that it is Einstein and has (anti-)selfdual
Weyl curvature. It is easy to check that the classical metric, (4.81) obeys
these conditions. If we include the 5-brane contributions as in (4.84), these
conditions are still obeyed up to leading order in Y . In fact, this already
imposes some constraints on Y . One could try to systematically analyze
these conditions and find the corrections to the metric which obey the
constraints. This is exactly what we will do in the next chapter where
we will construct the possible deformations of the metric allowed by the
quaternionic constraints.
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The membrane

In the previous chapters we discussed the classical geometry of the UHM
metric and the corrections due to NS 5-brane instantons. In this chapter we
compute the corrections arising from membranes wrapped along 3-cycles
of the internal rigid CY 3-fold.
This will be done in a different way from the semiclassical instanton cal-
culation of chapter 4. The reason is that the most general 4-dimensional
quaternionic metric with (at least) one isometry is known and can be used
to describe the membrane corrected metric. As it turns out, this metric is
governed by the Toda equation, a complicated nonlinear differential equa-
tion in three variables. We will construct solutions to this equation and
demonstrate that they correspond to membranes by comparing to results
from string theory.
Having obtained these membrane corrections (to the effective action) we
can proceed by gauging the isometry, which corresponds to a certain flux

compactification. This gauging will induce a scalar potential in the low
energy effective action. It turns out that the membrane corrections lead to
a (meta-stable) de Sitter vacuum.

5.1 Toda equation and the UHM

Let us recall some results from the previous chapters. We saw in equation
(3.24) that the simplest membrane action is given by

Sinst =
2|Q1|
gs

+ iφsQs
1 , (5.1)

with φsQs
1 given either by ϕQϕ

1 or χQχ
1 . This means that there are two

distinct membrane instantons depending on whether one dualizes over ϕ
or χ (see also sections 3.3 and 2.4). We shall confront this with string
theory. We note again the factor of 2 appearing in front of |Q1|, we will
come back to this in section 5.3.1.
The presence of the theta angles in (5.1) breaks the shift symmetry in ϕ

79
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(or χ) to a discrete subgroup. Furthermore, we have seen that the theta
angle term of the NS 5-brane is proportional to the axion σ, see (3.15),
which means that the continuous shift symmetry in σ remains exact as
long as we do not switch on 5-branes. In other words, in the absence of
fivebrane instantons, the quantum corrected UHM moduli space will be a
quaternionic manifold with a shift isometry in σ. Such manifolds have been
classified in terms of a single function.
In [101] Przanowski derived the general form of 4-dimensional quaternionic
manifolds with at least one isometry, this was later re-derived by Tod [102].
The Prazanowski-Tod (PT) metric reads, in adapted coordinates,

ds2 =
1

r2

[

fdr2 + feh(du2 + dv2) +
1

f
(dt+ Θ)2

]

, (5.2)

where the isometry acts as a constant shift on t. The function h = h(r, u, v)
is determined by the 3-dimensional continuous Toda equation

(∂2
u + ∂2

v)h+ ∂2
re

h = 0 . (5.3)

The function f = f(r, u, v) is given in terms of h as follows

f = − 3

2Λ
(2 − r∂rh) . (5.4)

The 1-form Θ = Θ(r, u, v) = Θrdr + Θudu + Θvdv is a solution to the
equation

dΘ = (∂ufdv − ∂vfdu) ∧ dr + ∂r(fe
h)du ∧ dv . (5.5)

Manifolds with such a metric are Einstein with anti-selfdual Weyl tensor
and thus1 quaternionic (see section 1.4). The constant Λ in (5.4) is the
‘cosmological’ constant of the target-space, RAB = ΛGAB.

To apply the above results to our situation we have to recast the line
element (4.81) into the PT form (5.2), i.e., we have to identify the PT
coordinates with the UHM moduli. If we consider the Heisenberg algebra
of isometries (4.82), we see that we can either identify t with σ or with ϕ. In
the first case the shift is generated by α and in the second case by β. This
leads to two possible representations of the PT metric that describe the
same moduli space. We call these bases the membrane and the fivebrane
bases respectively. In the membrane basis, which is the relevant basis, we
identify the coordinate t with σ such that the α-shift symmetry is manifest.

1Conversely one can check that starting with (5.2) and demanding that the metric is Einstein
and has an anti-selfdual Weyl tensor forces h, f and Θ to obey (5.3, 5.4, 5.5) respectively.
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The reason is the absence of 5-brane instantons, which ensures a continuous
α-shift symmetry. The coordinates can then be chosen as

t = σ r = eφ u = χ v = ϕ . (5.6)

In this basis the classical moduli space metric of the UHM (4.81) corre-
sponds to the solution eh = r, which gives f = 1 and Θ = udv. Note that
Θ is only defined up to an exact form.
Previously (see section 4.6.1 for instance) we have mentioned that there are
perturbative (1-loop only) corrections to the UHM [73, 72]. We can easily
incorporate those in the PT framework by using the following observation.
The Toda equation is insensitive to constant shifts in r (or in u and v for
that matter) which means that h(r + c, u, v) is also a solution to the Toda
equation, c ∈ R. Applying this to the classical solution r = eh, gives

eh = r + c f =
r + 2c

r + c
Θ = udv . (5.7)

This exactly reproduces the 1-loop corrected metric (in the string frame)
of [72] provided we identify

c = −4ζ(2)χ(Y3)

(2π)3
=
h(1,2) − h(1,1)

6π
,

where χ(Y3) is the Euler number of the CY 3-fold on which the type IIA
string theory has been compactified (see (1.30)). We consider only rigid
Calabi-Yau’s so h(1,2) = 0, which gives the bound

c < 0 . (5.8)

The PT coordinate r is related to ρ in [72] through r = ρ2 − c = eφ, the
relation between the fields and PT coordinates receives no (perturbative)
quantum corrections.
Note that for c < 0 the metric becomes negative-definite because f becomes
negative for r < 2|c|. As a result, we have to restrict ourselves to the open
interval 2|c| < r <∞.

Relation with other work

The 1-loop correction to the classical UHM was derived in [72] by searching
for deformations that respect both the Heisenberg group and the quater-
nionic structure of the UHM. This can be done systematically because the
most general form of a 4-dimensional quaternionic manifold with (at least)
two commuting isometries has been constructed in [103]. This metric is
expressed in terms of a single function which is determined by a linear dif-
ferential equation. This is different from the PT metric that is governed
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by a nonlinear differential equation (5.3).
We should also mention work of Ketov [67, 104, 105] in which membrane
(and five-brane) solutions are discussed. An important difference with our
work is that Ketov works on the basis that the membrane instantons pre-
serve two isometries, which allows him to use [103]. However, we have seen
explicitly that membrane instantons preserve only one continuous isome-
try. That is, we can either use the shift in ϕ or χ to dualize to the DTM for
which we can construct membrane instanton solutions, with action (5.1).
In section 5.3.1 we shall see that this corresponds to either wrapping the
membrane over the ‘A-cycle’ or ‘B-cycle’. In the end one should sum them
both up to obtain the effect of the two membrane2 (instantons), to correla-
tion functions for instance. In that situation both isometries are broken to
a discrete subgroup and only the shift in σ is left, in the absence of 5-brane
instantons at least.

The 5-brane

By now the reader might wonder why we have not used the PT metric
to calculate 5-brane corrections to the UHM moduli space. This would
require that we identify t with ϕ (or χ). However, it then turns out that
the mapping of the other PT coordinates to the classical (plus one-loop)
UHM metric is much more complicated.

5.2 Solutions to the Toda equation

We would like to find a solution that mimics an (infinite) series of expo-
nential corrections describing membrane instantons. We have seen that the
real part of the action (5.1) is inversely proportional to gs. In PT coordi-
nates this real part is given by −2

√
r. Therefore we make a fairly general

ansatz of the form

eh = r +
∑

n≥1

∑

m

fn,m(u, v)r−m/2+αe−2n
√

r , (5.9)

where we expand in the (1/gs part of the) instanton action: (e−Sinst)n.
A slightly more general ansatz is given by replacing the exponent with
e−δn

√
r where δ is a constant. However, it turns out that this ansatz only

satisfies the Toda equation (with certain functions f that we will construct
shortly) if δ = 2. There exist interesting solutions to the Toda equation, see
[106, 107], but with the mapping of PT coordinates to the fields that we use
(5.6), these do not describe physically interesting solutions. In particular,

2So if one considers only one membrane instanton there are two isometries left, although
they are not the same as the one Ketov uses.
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they do not describe a membrane instanton expansion. As observed earlier,
we can always shift r with a constant to produce a new solution. This means
that we can first find a solution for eh(r, u, v) and then take r → r+c in this
solution, thus incorporating the one-loop correction in one go. The ansatz,
apart from the classical piece, consists of a double sum. There is the sum
over n which gives an expansion in e−2/gs, meaning that n is the instanton
number. For each n there is an expansion in m. This is a perturbative
(loop) expansion in a given instanton sector, since it goes as r−m/2 = (gs)

m

and the sum m runs over integers. To account for the possibility that m
does not3 run over integers, we have added a parameter α ∈ [0, 1

2). We will
later show that the Toda equation is satisfied for α = 0 only, see appendix
G. At each instanton level n there is, by definition, a lowest value mn that
defines the leading term in the expansion

fn,m(u, v) = 0 for m < mn .

Because we have spelled out the r dependence explicitly, the Toda equation
gives a series of differential equations for the fm,n(u, v). These equations
can be solved iteratively, order by order in n andm to any desired order. To
examine the Toda equation (5.5) in detail we first write it in the equivalent
form

eh
(
∂2

u + ∂2
v + eh∂2

r

)
eh − (∂ue

h)2 − (∂ve
h)2 = 0 . (5.10)

Using ansatz (5.9) equation (5.10) can be written as

0 =
∑

n,m

r−m/2 e−2n
√

r
{

(∆ + n2) fn,m+2 + n am+2 fn,m+1 + bm+2 fn,m

+
∑

n′,m′

e−2n′
√

r
[
2n am′+1 fn′,m−m′−1 + 2bm′+2 fn′,m−m′−2

+ fn′,m−m′ (∆ + 2n2) −∇fn′,m−m′ · ∇
]
fn,m′

+
∑

n′,m′

∑

n′′,m′′

e−2(n′+n′′)
√

r fn,m′fn′,m′′

[
n2fn′′,m−m′−m′′−2

+ n am′+1 fn′′,m−m′−m′′−3 + bm′+2 fn′′,m−m′−m′′−4

]}

,

(5.11)

where ∇ ≡ (∂u, ∂v), ∆ ≡ ∇2 and

am ≡ 1

2
(2m− 1) , bm ≡ 1

4 m(m− 2) . (5.12)

Equation (5.11) is organized in terms of single-, double- and triple sums.
We can write a generic exponential in (5.11) as e−2N

√
r. In the (N = 1)-

instanton sector only the single-sum terms contribute. The double- and

3As is the case in [108] for instance.
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triple-sums have to be taken into account beginning with the (N = 2)-
and (N = 3)-instanton sectors, respectively. We will save some details for
appendix G where we prove that mn ≥ −2 for all n and α = 0.

5.2.1 The one-instanton sector

We shall start with the one-instanton sector, N = 1, in which case equation
(5.11) reduces to

(∆ + 1) f1,m + am f1,m−1 + bm f1,m−2 = 0 . (5.13)

If for simplicity we consider first a one-dimensional truncation, we can
prove that the general solution is given by

f1,m(x) = Re
∑

s≥0

1

s! (−2)s
k1,m(s)Gs(x) , (5.14)

where x ∈ {u, v}. The coefficients are defined recursively as

k1,m(s+ 1) = amk1,m−1(s) + bmk1,m−2(s) . (5.15)

The Gs(x) are complex functions related to spherical Bessel functions of
the third kind, see appendix G. The coefficients k1,m(s) have as their lowest
values in s

k1,m(0) = A1,m ,

which are the complex integration constants originating from the homoge-
neous part of (5.13). By definition we have f1,m = 0 for m < m1, which
implies that k1,m(s) = 0 and in particular A1,m = 0 for m < m1. The
recursion relation (5.15) furthermore implies k1,m(s > m−m1) = 0, which
means that the highest monomial in x contained in f1,m(x) is of order
m−m1. This is nicely illustrated by the first two solutions

f1,m1(x) = Re
{
A1,m1e

ix
}
,

f1,m1+1(x) = Re
{
A1,m1+1e

ix +
1

2
am1+1A1,m1 ix eix

}
. (5.16)

To solve (5.13) for a (u, v)-dependent solution one can proceed by sepa-
ration of variables, which yields a basis of solutions. The most general
solution is then obtained by superposition and can be written as

f1,m(u, v) =

∫

dλRe
∑

s≥0

1

s! (−2ω2)s
k1,m(s, u;λ)Gs(ωv) ,

k1,m(s+ 1, u;λ) = amk1,m−1(s, u;λ) + bmk1,m−2(s, u;λ) , (5.17)
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where

k1,m(0, u;λ) = B1,m(λ)A1,m(λ)eiλu .

The basis is parametrized by a continuous real parameter λ which is inte-
grated over in (5.17) and ω ≡

√
1 − λ2. A1,m(λ) and B1,m(λ) are arbitrary

complex integration constants which determine the ‘frequency spectrum’
of the solution.
The (u, v)-dependent solution (5.17) is too general for our physical prob-
lem, the reason being that the general form with its integration over λ has
products of exponents in iu and iv. These correspond in the supergravity
description to the theta-angle-like terms. However as we were reminded of
by (5.1), we can have either the χ or the ϕ theta-angle and correspond-
ing charges switched on. One either has the ‘u-instanton’ (χ) or the ‘v-
instanton’ (ϕ), not both simultaneously. Consequently we must restrict
(5.17) to reflect this property.
This can be done by letting the coefficient functions peak around λ = 0
and λ = 1. If we set

A1,m(λ) = A1,m , B1,m(λ) = δ(λ) ,

we obtain (5.14) as a function4 of v: f1,m(v) with k1,m(0) = A1,m. Similarly
one can produce a solution independent of v (x = u) by taking

A1,m(λ) = δ(λ− 1) B1,m(λ) = B1,m ,

which produces f1,m(u) with k1,m(0) = B1,m as integration constants. Nat-
urally, the sum of these two solutions is a solution to (5.13) as well. The
one-instanton sector eh can therefore completely be expressed in terms of
the one-dimensional solutions as

exp[h(r, u, v)] = exp[hpert(r)] + exp[h1-inst(r, u)] + exp[h1-inst(r, v)] + . . .

exp[hpert(r)] = r + c

exp[h1-inst(r, u)] = e−2
√

r+c
∑

m≥m1

f1,m(u) (r + c)−m/2 (5.18)

and similarly for h1-inst(r, v). We see that the u- and the v-instanton con-
tribute separately to eh and thus to the line element (5.2). The ellipses
denote the higher (n > 1) instanton contributions. We have applied the
shift in r: r → r+ c to incorporate the one-loop result. For later reference,
we also give the leading order expression for eh in the regime r � 1 (small

4We will refer to this configuration as the ‘v-instanton’. The v-anti-instanton has opposite
signs in the exponentials: e−iv instead of eiv. Similarly for the ‘u-instanton’.
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string coupling). To leading order in the semi-classical approximation, the
instanton solution (5.18) reads

eh = r+c+
1

2
r−m1/2

(
A1,m1 e

iv+A?
1,m1

e−iv+B1,m1 e
−iu+B?

1,m1
eiu
)
e−2

√
r+. . .

(5.19)
Note that we need to include both instantons and anti-instantons to obtain
a real solution. To find the leading-order instanton corrected hypermulti-
plet metric, we first compute the leading corrections to f defined in (5.4):

f =
r + 2c

r + c
+ (5.20)

1

2
r−(m1+1)/2

(
A1,m1 e

iv + A?
1,m1

e−iv +B1,m1 e
−iu +B?

1,m1
eiu
)
e−2

√
r + . . .

Substituting this result into (5.5) yields the leading corrections to the Θ
1-form. Setting

Θ = u dv + Θinst , (5.21)

these are given by

Θinst = r−m1/2 e−2
√

r Im{A1 e
iv du+B1 e

−iu dv} + . . . . (5.22)

The leading order corrections to the hypermultiplet scalar metric are then
obtained by substituting these expressions into the PT metric (5.2).

5.2.2 The two-instanton sector

We now briefly discuss the N = 2 sector. The Toda equation requires at
this level

0 = (∆ + 4) f2,m + 2am f2,m−1 + bm f2,m−2

+
∑

m′

[
f1,m−m′−2 + am′+1 f1,m−m′−3 + bm′+2 f1,m−m′−4

−∇f1,m−m′−2 · ∇
]
f1,m′ , (5.23)

where we have used (5.13) for ∆f1,m′ in the double sum. We have not
derived the general solution to these equations in closed form. The one-
dimensional truncation is straightforward to solve order by order in m. At
lowest order5 m2 we have

(∆ + 4) f2,m2 + δm2,−2

[
(f1,m2)

2 − (∇f1,m2)
2
]

= 0 . (5.24)

5In appendix G we show that −2 ≤ mn ≤ mn′ for n ≥ n′.
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Note that the inhomogeneous term is present only for the lowest possible
value m2 = −2. The one-dimensional truncation yields the equation

(∂2
x + 4) f2,m2(x) + δm2,−2 Re

{
A2

1,m2
e2ix
}

= 0 , (5.25)

where we have inserted the solution (5.16) for f1,m1(x). The general solution
then reads

f2,m2(x) = Re
{
A2,m2e

2ix + 1
4δm2,−2A

2
1,m2

ix e2ix
}

= Re
{
A2,m2G0(2x) − 1

8δm2,−2A
2
1,m2

G1(2x)
}
, (5.26)

A2,m2 being a further complex integration constant.
The solution form > m2 can now be constructed by solving the appropriate
equation arising from (5.23). Based on (5.17) we can also construct the
general (u, v)-dependent solution for f2,m2(u, v). The idea is to decompose
the products of cos(λ1u) cos(λ2u), etc., appearing in the inhomogeneous
part of (5.24) into a sum of cos and sin terms using product formulae for
two trigonometric functions. We can then construct the full inhomogeneous
solution by superposing the inhomogeneous solutions for every term in the
sum. We refrain from giving the result, since it is complicated and not
particularly illuminating.
We conclude this subsection by giving an argument that the iterative so-
lution devised above indeed gives rise to a consistent solution of the Toda
equation. The general equations which determine a new fn,m(u, v) are
two-dimensional Laplace equations to the eigenvalue n2 coupled to an in-
homogeneous term, which is completely determined by the fn,m(u, v)’s ob-
tained in the previous steps of the iteration procedure. These equations
are readily solved, e.g., by applying a Fourier transformation. It then turns
out that the iteration procedure is organized in such a way that any level
in the perturbative expansion (5.11) determines one ‘new’ fn,m(u, v), i.e.,
there are no further constraints on the fn,m(u, v) determined in the previ-
ous steps. This establishes that the perturbative approach indeed extends
to a consistent solution of the Toda equation (5.3).

5.2.3 The isometries

Based on the Toda solution (5.18) we now discuss the breaking of the
Heisenberg algebra (4.82) in the presence of membrane instantons to a
discrete subgroup. We start with the shift symmetry in the axion σ →
σ − α. By identifying t = σ, this shift corresponds to the isometry of the
PT metric, so that it cannot be broken by the instanton corrections.
Analyzing the β and γ-shifts is more involved. Under the identification
(5.6) the β-shift acts as v → v+β. Taking the leading order one-instanton
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solution (5.19)-(5.22), we find that eh as well as the resulting functions f
and Θ appearing in the metric depend on v through e±iv or dv only. These
theta-angle-like terms break the β-shift to the discrete symmetry group6

Z. Going beyond the leading instanton corrections by taking into account
higher loop corrections around the single instanton will generically break
the β-shift completely. This is due to the appearance of polynomials in v
multiplying the factors e±iv. We point out that by setting the integration
constants multiplying the terms odd in v to zero, there is still an unbroken
Z2 symmetry. This symmetry is defined by v → −v, t → −t, which
amounts to interchanging v-instantons and anti-instantons.
To deduce the fate of the γ-shift, u → u + γ, t → t − γv, we first observe
that t→ t− γv implies that the combination dt+udv is invariant. Apply-
ing the same logic as for the β-shift above, we then find that the one-loop
corrections of a single u-instanton break the γ-shift to the discrete sym-
metry Z, which will be generically broken by higher order terms appearing
in the loop expansion. Similar to the β-shift, however, we can arrange the
constants of integration appearing in the solution in such a way that there
is also a Z2 symmetry. We expect that these two Z2 symmetries could play
a prominent role when determining (some of) the coefficients appearing in
the solution (5.18) from string theory.

5.3 String theory

So far we have calculated membrane effects from a supergravity point of
view. We already noted that this construction by itself was too general
and needed to be tailored to the physical problem. Therefore we would
like to compare these results with a microscopic string derivation of mem-
brane effects. In [71] Becker, Becker and Strominger did precisely that,
i.e., they considered the compactification of M-theory on a CY 3-fold (and
a circle) with membranes wrapped along 3-cycles. These membranes give
rise to certain corrections to 4-fermion correlation functions. This is not
surprising: we already saw in section 4.3.1 on page 52 that the membrane
preserves one half of the supersymmetries. Conversely, it breaks one half
of the supersymmetries. The resulting four fermionic zero modes lead to
nonvanishing 4-fermion correlators.
We will review the analysis of [71] and explicitly evaluate their result for
the 4-fermion correlation functions in the case of a rigid Calabi-Yau mani-
fold. Then we shall compute the same object, but starting with the results
obtained in the previous sections. We will find that these results agree
beautifully.

6This agrees with earlier observations made in [52].
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5.3.1 The string calculation

In section 2.1 we gave the 11-dimensional supergravity action. Let us write
it down again in Euclidean signature with the conventions of [71]

S11 =
1

2π2

∫

d11x
√
g
[
−R +

1

48
(dA3)

2
]
+

i

12π2

∫

A3 ∧ dA3 ∧ dA3 ,

(5.27)

where A3 is the 3-form potential, as in (2.1), note that we leave out the
hat. We work in units in which the 11-dimensional Planck length equals
one.
The membrane solutions can effectively be described (for scales large com-
pared to the thickness of the membrane) by its worldvolume action. This
action is completely fixed by supersymmetry [109]7 to be

S3 =

∫

d3σ
√
h
[1

2
hαβ∂αX

M∂βX
NgMN

− i

2
Θ̄Γα∇αΘ +

i

3!
εαβγAMNP∂αX

M∂βX
N∂γX

P + . . .
]
,

where σα with α, β, γ = 1, 2, 3 are the worldvolume coordinates and hαβ is
the (auxiliary) worldvolume metric with Euclidean signature. The XM (σ)
with M,N = 1, . . . , 11 describe the membrane configuration: the maps
embedding the membrane into the 11-dimensional space. Θ is an 11-
dimensional Dirac spinor. Only the leading terms in powers of the fermions
are given, ellipses denote higher order terms.
The global fermionic symmetries of S3 act on the membrane fields as

δεΘ = ε δεX
M = iε̄ΓMΘ ,

where ε is a constant spinor in 11 dimensions. The worldvolume theory is
also invariant under the so-called κ symmetries, local fermionic transfor-
mations

δκΘ = 2P+κ(σ) δκX
M = 2iΘ̄ΓMP+κ(σ) , (5.28)

with κ a spinor in 11 dimensions. The projection operators

P± =
1

2

(

1 ± i

3!
εαβγ∂αX

M∂βX
N∂γX

PΓMNP

)

,

obey (see [71])

P 2
± = P± P+P− = 0 P+ + P− = 1 . (5.29)

7See also [110, 55, 111].
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A general bosonic membrane configuration X(σ) breaks all the global su-
persymmetries generated by ε. Some unbroken supersymmetries remain
only if they are compensated by a κ-transformation such that

δεΘ + δκΘ = 0 .

If we apply P− and use (5.28) we find that the supersymmetry parameter
which leaves the configuration invariant must obey

P−ε = 0 . (5.30)

Such spinors are left invariant under P+, that is, P+ε = ε as can be seen us-
ing (5.29). On the other hand, if we have a spinor ε0 which obeys P+ε0 = 0,
(5.29) gives P−ε0 = ε0. So this spinor breaks supersymmetry and will there-
fore generate zero modes, compare with the discussion in section 4.3.

Condition (5.30) must be examined in the case when we compactify on a
CY 3-fold Y3 while the membrane is wrapped along its 3-cycles. To this
end introduce complex coordinates Xm, X n̄ m, n̄ = 1, 2, 3 for the Calabi-
Yau manifold. Furthermore, let ε+ = (ε−)? be two covariantly constant
6-dimensional spinors with opposite chirality, ε+ has by definition positive
chirality. Their normalization can be chosen such that

γmnpε+ = e−KΩmnpε− γm̄npε+ = 2iKm̄[nγp]ε+ γm̄ε+ = 0 , (5.31)

with K the Kähler form, see section 1.1. We have introduced

K ≡ 1

2
(KV −KH) , (5.32)

where KH is the Kähler potential on the moduli space of complex struc-
tures8 and KV the potential on the Kähler moduli space

KH = − ln

(

i

∫

Y3

Ω ∧ Ω̄

)

KV = − ln

(
4

3

∫

Y3

K ∧K ∧K
)

. (5.33)

If we split up the spinor ε in a 6- and a 5-dimensional9 part as εθ ⊗ λ with
λ the 5-dimensional spinor and

εθ ≡ eiθε+ + e−iθε− ,

P−ε = 0 implies P−εθ = 0. We can examine this condition using (5.29) and
(5.31) which give two conditions:

∂[αX
m∂β]X

n̄Kmn̄ = 0 (5.34)

∂αX
m∂βX

m∂σX
pΩmnp = eiϕeKεαβγ , (5.35)

8This potential was already introduced in equation (1.36).
9Later we will go to four spacetime dimensions, for now it does not matter.
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with ϕ ≡ 2θ + π/2. Thus the pullback of the Kähler form onto the mem-
brane must vanish and the membrane volume element has to be propor-
tional to the pullback of Ω onto the membrane. If these two conditions are
met, the map X(σ) is called a supersymmetric cycle because then P−ε = 0
is satisfied and supersymmetry is (partially) preserved.

We will consider the case where the membrane is wrapped around such a
supersymmetric cycle, denoted by C3, such that we have four broken and
four unbroken supersymmetries.
As in the previous chapter, the broken supersymmetries will give rise to
corrections to the low energy effective action. We saw that the broken
supersymmetry parameters are those ε0 such that P+ε0 = 0. With these
spinors we can generate zero modes for the fermions in the hypermulti-
plets10 of the low energy effective theory. In [71] they are denoted by χI ;
these are symplectic-Majorana spinors (see page 96). The correlator

〈(χ̄IχJ)(χ̄KχL)〉inst , (5.36)

gives rise to membrane instanton corrections to a symmetric tensor RIJKL

with indices I, . . . , L = 1, . . . , 2n, with n = h(1,2) + 1. By constructing
vertex operators for the spinors χI the correlator can be evaluated giving
the correction

∆C3RIJKL = Ne−Sinst

∫

C3

dI

∫

C3

dJ

∫

C3

dK

∫

C3

dL , (5.37)

where N is some normalization factor which includes an unknown deter-
minant which may very well depend on gs. The instanton action Sinst is
given by

Sinst = e−K
∣
∣
∣
∣

∫

C3

Ω

∣
∣
∣
∣
+ i

∫

C3

A3 , (5.38)

where A3 is the 3-form potential from 11-dimensional supergravity, see
(5.27). The dI form a real symplectic basis of H3(Y3,Z) which obeys

∫

dI ∧ dJ = εIJ ,

with εIJ the invariant antisymmetric tensor11 of Sp(2h(1,2) + 2) and I, J =
1, . . . , 2h(1,2) + 2. Note that this is the same as (1.34), although for a

10The hypermultiplet sector is (almost) identical in four and five spacetime dimensions, see
page 96.

11Remember that we can use this tensor to raise and lower indices of the fermions, in this
case of the χI .
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different basis. Equation (5.37) is the object we have to evaluate explicitly.
Introduce a basis of real 3-cycles (Aa,Ba) of H3(Y3,Z) satisfying

∫

Aa

αb =

∫

Y3

αb ∧ βa = δa
b

∫

Bb

βa =

∫

Y3

βa ∧ αb = −δa
b

∫

Aa

βb =

∫

Ba

αb = 0 . (5.39)

We have used the basis of harmonic 3-forms (αa, β
b) with a, b = 0, . . . , h(1,2)

as in (1.34). Note that to avoid confusion with the notation of [71] we have
used the indices a, b.
For rigid Calabi-Yau manifolds h(1,2) = 0 and because we have only the one
index a = 0, we might as well omit it. As in section 1.5 we then proceed
to define the periods of the holomorphic 3-form Ω as

Z =

∫

A
Ω G =

∫

B
Ω

and thus Ω = Zα−G(Z)β. The Z are projective coordinates and we have
only one Z, so we can take it to be equal to 1. We choose the normalization
such that12 G = −iZ2, Ω then becomes

Ω = α+ iβ . (5.40)

Together with the conventions in (5.39) this results in the volume of Y3

being normalized to 1. In general we have, see [22], for a CY 3-fold

∫

Ω ∧ Ω̄ =

(
1

3!

)2 ∫

d6ξ ΩijkΩ̄l̄m̄n̄ε
ijkεl̄m̄n̄

= −i ||Ω||2
∫

dVol(Y3)

= −i ||Ω||2 Vol(Y3) , (5.41)

with ξ some complex coordinates on Y3. This means that the volume form
equals

dVol(Y3) =
Ω ∧ Ω̄

−i ||Ω||2
= α ∧ β , (5.42)

where we have used (5.40) and ||Ω||2 ≡ 1
3!ΩijkΩ̄

ijk = 2 . If we now use (5.39)
we see that Vol(Y3) =

∫
α ∧ β = 1.

12This choice of G also ensures that KH is real.
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Our next job is to find the supersymmetric cycle C3 for the rigid Calabi-
Yau manifold. We shall demonstrate that the real 3-cycles A and B are
themselves supersymmetric cycles.
The first condition (5.34) states that the pullback of the Kähler form of Y3

onto the membrane, that is onto A or B, has to vanish.
To prove this, let us generalize the argument given in section 2.2 of [71].
Suppose Y3 has an antiholomorphic involution: an isometry θ : Y3 → Y3

such that θ2 = 11 and θ?J = −J with J the complex structure. The effect
on the Kähler form will then be θ?K = −K, see (1.4). The fixed points
Fix(θ) of θ constitute a special Lagrangian submanifold13 and the pullback
of the Kähler form behaves as

K
∣
∣
Fix(θ)

= θ?K
∣
∣
Fix(θ)

= −K
∣
∣
Fix(θ)

,

which holds if K
∣
∣
Fix(θ)

= 0. Note that this (discrete) isometry is nothing

but complex conjugation: interchanging barred and unbarred coordinates

θ : Xm → Xm̄ .

We see from (1.2) that (the action of) J indeed reverses sign under this
isometry. The fixed points of θ are then the real submanifolds, specifically
the real 3-cycles A and B.

The second condition (5.35), which states that the pullback of Ω must
be proportional to the volume form of C3, is also satisfied for A and B.
From equation (5.40) we see that the pullback of Ω onto cycle A or B is
either (proportional to) α or β respectively. Equation (5.42) states that
the volume form on Y3 is given by α ∧ β. The Riemann bilinear identity

∫

Y3

Ψ ∧ Ξ =
∑

a

(∫

Aa

Ψ

∫

Ba

Ξ −
∫

Ba

Ψ

∫

Aa

Ξ

)

,

for arbitrary 3-forms Ψ and Ξ, can be applied to the volume integral giving

Vol(Y3) =

∫

Y3

α ∧ β =

∫

A
α

∫

B
β .

Thus α and β correspond to the induced volume forms on A and B respec-
tively. We can therefore conclude that A and B are the supersymmetric
cycles.
Suppose we take a linear combination of the cycles A and B:

C3 = mA + nB , (5.43)

13For more information on special Lagrangian manifolds and calibrated geometry see [112,
113]. In [114] it was shown that the two conditions (5.34, 5.35) are actually equivalent.
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with m and n integers, then this is not a supersymmetric cycle. The
reasoning is as follows. We concluded that the (induced) volume forms on
A and B are α and β respectively. The volume of m times A then becomes

∫

mA
α = m

∫

A
α = m ,

using (5.39), similarly for nB. Together they determine the volume of the
C3 cycle to be m + n. On the other hand, integrating (the pullback of) Ω
gives

∫

C3

Ω = m− in (5.44)

which is not proportional to m+n. The two are only proportional if either
m or n is zero. Consequently, a membrane wrapping A and B simulta-
neously is not a supersymmetric configuration and will not contribute to
RIJKL. The membrane needs to be wrapped either on A or on B to be
supersymmetric.

Having identified the supersymmetric cycles, we can evaluate (5.38) and
(5.37). The integral over Ω in Sinst (5.38) is easily evaluated using (5.44)

∣
∣
∣
∣

∫

C3

Ω

∣
∣
∣
∣
=
√

m2 + n2 . (5.45)

To do the integral of A3 over C3 in (5.38) we must expand the 3-form
potential A3 as

A3 = C3 + vα + uβ , (5.46)

where C3 is the spacetime 3-form potential dual to e0. v and u are func-
tions of the four dimensional spacetime coordinates, we left out the vector
multiplet terms. This is the same expansion as in (2.16) (see also the dis-
cussion on page 25). Evaluating this A3 on the general cycle C3, see (5.43),
results in

i

∫

C3

A3 = imv − inu . (5.47)

In calculating K, see (5.32), we must be a bit careful. The KH part is easy,
using (5.42) and (5.41) we obtain

i

∫

Y3

Ω ∧ Ω̄ = 2 . (5.48)
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To compute KV we use a different (but equivalent) formula for the volume
of a Calabi-Yau manifold:

Vol(Y3) =
1

3!

∫

Y3

K ∧K ∧K .

This formula is not directly applicable because we have to compactify14 one
dimension, since we are still in 5 dimensions and we would like to compute
the corrections to the geometry of the UHM in 4 spacetime dimensions. In
the string frame this is achieved (compare with (2.6)) by decomposing the
10-dimensional metric as

ds2
11 = e−2φ/3(dx11 + Amdx

m) + eφ/3ds2
10 , (5.49)

where the 10-dimensional part incorporates Y3. For the Kähler form it has
the consequence that it picks up a dilaton dependence:

K = eφ/3Ks.f. ,

where Ks.f. is the Kähler form in the string frame. This means that the we
can write

4

3

∫

Y3

K ∧K ∧K = 8Vol(Y3)e
φ = 8eφ ,

as measured in the string frame. Using this result and (5.48) we calculate

e−K = 2eφ/2 .

The total result for Sinst using the PT variable r can thus be written as

e−Sinst = e−2
√

m2+n2
√

re−imv+inu . (5.50)

Observe that we really can interpret the m and n as instanton charges.
Keep in mind though that for a supersymmetric configuration only one in-
stanton can be switched on at a time, as we already anticipated in section
3.3. Comparing the result for Sinst in (5.50), which originated from (5.38),
with the supergravity result (5.1), we find agreement. In (5.50) we should
consider only m or n unequal to zero. Similarly, in (5.1) we have either
the membrane charge due to dualizing with respect to ϕ or to χ. We see
that in the string picture the charges (n and m) are quantized, i.e., they
are integers. Furthermore, not only is the gs(=

√
r) behaviour correct, but

the numerical factor of 2 matches as well.
14We could have done this in an earlier stage, but it does not matter for the decomposition

(5.46) since that is with respect to the Calabi-Yau. This is why we left out the hat on A3 from
the beginning, compare also with (2.7).
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Lastly there is the tensorial structure of (5.37). The supersymmetric cycle
is either A or B which means that the dI (I = 1, 2) should all be equal, A
giving corrections to R1111 and B to R2222.
Summarizing, we can write for the corrections to R due to the two super-
symmetric cycles:

∆AR1111 = Ne−2|m|√re−imv

∆BR2222 = Ne−2|n|√re+inu , (5.51)

the other combinations are zero. In the next subsection we will make the
comparison between the string theory result and the results in the PT
framework more precise.

A note on the spinors

In (5.36) the correlator is written down which corrects the tensor R as
in (5.37). This expression is valid for five spacetime dimensions, with
Lorentzian signature. We have evaluated (5.37) giving the result (5.51).
In the process we went down to four spacetime dimensions, by compact-
ifying on a circle (5.49). In five spacetime dimensions the 2n spinors χI

are symplectic-Majorana spinors. The point is that in four space and one
time dimension, one cannot impose a Majorana condition. But if one has
an even number of Dirac spinors χI , one can impose a reality condition:

χI? = ΩIJBχJ , (5.52)

with I = 1, . . . , 2n. The matrix Ω is real and satisfies

ΩIJ ΩJK = −δIK .

Equation (5.52) is consistent if B?B = −1. The B matrix has to do with
the fact that if the set {Γa} represents the Clifford algebra, in a certain
number of dimensions with a certain signature, then {±Γa?} does so as
well. The B matrices then provide a similarity transformation relating the
Γa and Γa?

B±ΓaB−1
± = ±Γa? .

The existence of the B± depends on the number of dimensions and the
signature. In five spacetime dimensions they do exist and obey B?

±B± = −1,
so we can either use B− or B+ in (5.52), which is why we denoted it by
B. The B± matrices are related to the charge- and the Dirac conjugation
matrix. For a nice account see [91].
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If one then goes to four spacetime dimensions, one can impose the normal
Majorana condition, which reads in this notation

χI? = BχI .

The reduction of the spinors can be obtained by the following identification

λ̄ā ∼ (1 + γ5)χ
I λa ∼ (1 − γ5)(Ωχ)I ,

where a, ā = 1, . . . , 2n as in chapter 4. With this notation we mean to
indicate that a single χI gives two spinors: λa and λ̄ā. The projection
operators (1 ± γ5) thus give us chiral spinors. Because under complex
conjugation the indices are interchanged we indeed have a system of 2n
Majorana spinors. For more information on the relation between the ge-
ometry of hypermultiplets in five and four spacetime dimensions and the
reduction, see [115].

5.3.2 Comparing to the PT metric

We explicitly constructed the corrections to the completely symmetric ten-
sor (see (5.51)) and we must compare this with the instanton corrections to
a completely symmetric tensor in the four-dimensional N = 2 supergravity
theory. This tensor has been constructed in [48, 49]. The symmetric tensor
Wabcd (where the indices are Sp(2n,R) indices, with n = 1 in our case) can
be obtained from the curvature decomposition

RÂB̂ĈD̂ = ν(RSU(2))ÂB̂ĈD̂ +
1

2
LD̂Ĉ

ab Wabcd LÂB̂
cd . (5.53)

In our conventions, see appendix H, we have ν = −1/2. RÂB̂ĈD̂ is the

curvature tensor of the quaternionic manifold, so Â, . . . , D̂ = 1, . . . , 4n and
the SU(2) part of the tensor is given by

(RSU(2))ÂB̂ĈD̂ =
1

2
gD̂[Â gB̂]Ĉ +

1

2
JΛ

ÂB̂
JΛ

D̂Ĉ
− 1

2
JΛ

D̂[Â
JΛ

B̂]Ĉ
,

with
LÂB̂a

b = VÂia V̄
ib
B̂

. (5.54)

We can solve (5.53) for Wabcd by using the inverse relation for LÂB̂
ab:

−1

2
V iB̂

c V Â
id LÂB̂

ab = δa
c δ

b
d .

The resulting expression for Wabcd then reads:

Wabcd =
1

2
εijεkl V Â

id V
B̂
jc V

D̂
kb V

Ĉ
la

(
RÂB̂ĈD̂ − ν(RSU(2))ÂB̂ĈD̂

)
. (5.55)
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Starting from the general PT metric (5.2) we can compute the rather com-
plicated curvature tensor and by using our expressions for the vielbeins and
complex structures, see appendix H, we can compute Wabcd. The result is

W1111 = 4r2f−3e−h
[
f(∂2

z̄f − ∂z̄h ∂z̄f) − 3(∂z̄f)2
]

W2111 = r2f−3e−h/2
[
2f ∂r∂z̄f − 3(f ∂rh+ 2∂rf) ∂z̄f + f2∂r∂z̄h

]

W2211 = −r2f−3
[
f
(
r∂3

rh− (∂rh)
2
)
− 4e−h ∂zf ∂z̄f + 2(∂rf)2

]

W2221 = −r2f−3e−h/2
[
2f ∂r∂zf − 3(f ∂rh+ 2∂rf) ∂zf + f2∂r∂zh

]

W2222 = 4r2f−3e−h
[
f(∂2

zf − ∂zh ∂zf) − 3(∂zf)2
]
. (5.56)

We have introduced the complex variable z ≡ u+iv to keep the expressions
compact15. Note that W1111 = W?

2222, W2111 = −W?
1222 and W2211 is real.

Given this general form of Wabcd we compute its instanton contributions.
We find that at the perturbative level (the classical plus 1-loop correction
but no instantons) specified by (5.7), the only nonvanishing component is
given by

W2211 = − r3

(r + 2c)3
.

As for the leading order instanton corrections: the 1-instanton sector up
to 1-loop, specified by (5.19) and (5.20), gives the following contributions
to Wabcd

∆W1111 = N̂
[
A1 e

iv + A?
1 e

−iv −B1 e
−iu −B?

1 e
iu
]

∆W1112 = N̂
[
A1 e

iv − A?
1 e

−iv + i(B1 e
−iu −B?

1 e
iu)
]

∆W1122 = N̂
[
A1 e

iv + A?
1 e

−iv +B1 e
−iu +B?

1 e
iu
]

∆W1222 = N̂
[
A1 e

iv − A?
1 e

−iv − i(B1 e
−iu −B?

1 e
iu)
]

∆W2222 = N̂
[
A1 e

iv + A?
1 e

−iv −B1 e
−iu −B?

1 e
iu
]
. (5.57)

We have defined N̂ ≡ (r+ c)(1−m1)/2e−2
√

r+c. Comparing the r-dependence
of N̂ with the r-dependence of N in (5.51) then fixes the value of m1. In
particular, if N is r-independent m1 = 1, in order to match N̂ to N .
Let us repeat (5.51) for the case of the the single instanton:

∆AR1111 = Ne−2
√

re−iv ∆BR2222 = Ne−2
√

re+iu . (5.58)

This indicates that the integration coefficient A1 must be associated to the
A-cycle and B1 to the B-cycle.
Yet (5.57) seems very different from the string result (5.58). However,

15The fact that we have such a compact expression is absolutely delightful given the very

unwieldy result for the curvature tensor, which we will not give.
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the latter result expresses something different: it is the result from one

membrane wrapping one supersymmetric cycle, either A or B. In contrast,
(5.57) includes both types of instantons and anti-instantons. Moreover, the
fermion frame used by [71] is different from ours. So result (5.58) is in a
different frame from ours. Still, these frames can differ at most by a local
SU(2) (Sp(2,R)) rotation. The rotation group has to be compatible with
the reality condition imposed on the pair of symplectic Majorana spinors
coupling to Wabcd and preserve fermion bilinears. These conditions then
lead to the fact that the most general transformation is given by SU(2),
this is discussed in [116]. We can parametrize such a SU(2) rotation by

U =

(
eiξ cos η eiρ sin η

−e−iρ sin η e−iξ cos η

)

,

where the parameters η, ξ, ρ can depend on the scalars, although we will
find that this will not be necessary. Consider the contribution to ∆W
arising only from the B-instanton. This requires setting A1 = 0. Upon
performing a global SU(2) rotation of the fermion frame with parameters
η = π/4 and ξ = ρ+ π/2 we obtain

∆W̃1111 = −4N̂B?
1e

iu ∆W̃2222 = −4N̂B1e
−iu , (5.59)

with the other components vanishing identically. Note that the remaining
free parameter ρ in the transformation only induces a phase on the compo-
nents of ∆W̃abcd. We can set it to zero for convenience. This reproduces16

(5.58), which is due to one instanton without anti-instantons. The cor-
rection (5.59) incorporates both the instanton and anti-instanton, which
necessarily appear in different sectors of the theory17.
Likewise, we can consider the contribution of the A-instanton by setting
B1 = 0. In this case the transformation η = π/4 and ξ = ρ = 0 leads to
the correction

∆W̃1111 = 4N̂A1e
iv ∆W̃2222 = 4N̂A?

1e
−iv , (5.60)

with the other components vanishing identically. This is again of the form
predicted by string theory (5.58), although in a different fermionic frame
from (5.59). Summing these two corrections involves rotating some of the
contributions into the proper fermionic frame. Hence, our result precisely
agrees with the one obtained in [71].
In order to sum the two contributions, we go to the B-instanton frame, i.e.,

16Take u → −u, which corresponds to an orientation reversal of the cycle, see (5.47).
17Just as in the case of the NS 5-brane for which the zero modes in the fermions due to the

5-brane instanton were in a different sector than those due to the 5-brane anti-instanton see
(4.41).
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the frame in which we obtained (5.59), but now we also include A1. The
corrections to the W-tensor are then given by

∆W̃1111 = −N̂
(
A1e

iv + A?
1e

−iv + 4B?
1e

iu
)

∆W̃1112 = N̂
(
A1e

iv − A?
1e

−iv
)

∆W̃1122 = −N̂
(
A1e

iv + A?
1e

−iv
)

∆W̃1222 = N̂
(
A1e

iv − A?
1e

−iv
)

∆W̃2222 = −N̂
(
A1e

iv + A?
1e

−iv + 4B?
1e

iu
)
. (5.61)

This result implies that the four fermionic zero modes ψ1, ψ2 arising from
a membrane wrapping the A and the B cycle, respectively, are not orthog-
onal. If in the B-frame we denote the two zero modes giving rise to the
eiu corrections by ψ1, then the corrections proportional to eiv arise from
the zero modes ψ1 − ψ2. This zero mode configuration produces all the
signs appearing in (5.61), since the A-anti-instanton has its zero modes in
ψ1 + ψ2.

5.4 Compactification with fluxes

In chapter 2 we sketched the compactification from 10 to 4 dimensions,
without fluxes. However, in a compactification also more complicated field
strengths can be considered. This introduces more parameters and is re-
ferred to as compactification with fluxes.
Ideally one would like to compactify while turning on all possible fluxes,
because this gives the most general effective action in four dimensions. It
is a rather extended subject and we will refer to the literature for more
information, specifically [63, 117, 28] and references therein.
We will illustrate the mechanism by considering again the 2-form potential
from section 2.2. In (2.12) the 10-dimensional 2-form B̂2 was expanded as
B̂2 = B2 + biωi, where the ωi are (1, 1)-forms and the bi scalar fields in four
dimensions. The corresponding field strength is defined as

H3 ≡ dB2 + dbiωi .

Remember that dωi = 0, so this quantity obeys the field equation dH3 = 0.
More generally we can include fluxes in the definition of the field strength:

H3 = dB2 + dbiωi +Hflux
3 , (5.62)

where Hflux
3 is a 3-form on the Calabi-Yau 3-fold

Hflux
3 ≡ pAαA + qAβ

A
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and the (αA, β
A) again form a real basis of H3(Y3). This gives rise to extra

flux parameters pA and qA which have to be constant. They are obtained by
integrating Hflux

3 over the 3-cycles of the Calabi-Yau. In the 4-dimensional
effective action these parameters gauge certain fields, namely the scalars ξa

and ξ̃a from the hypermultiplets (2.18) with a = 1, . . . , h(1,2). Concretely,
the action will now contain terms

Dµξ
a ≡ ∂µξ

a − paAµ Dµξ̃
a ≡ ∂µξ̃

a − qaAµ ,

where Aµ is the graviphoton, similarly for the axion (see [63]). In addi-
tion there will be a potential containing these parameters. The parameters
gauge certain isometries of the scalar manifold (2.20). The scalar man-
ifold18 possesses a number of isometries. For instance, we have seen in
section 2.3 that the quaternionic target space of the classical (and pertur-
bative) UHM has a number of shift symmetries acting on the scalars, see
(2.24). These are collectively denoted by

δφÂ = ΛIkÂ
I (φ) ,

where the φÂ are the 4 scalars in the UHM19. kÂ
I are the Killing vectors and

ΛI their parameters, the I denotes the various isometries. For example,
the action of the α shift on σ in (2.24) can be written as

δσ = ΛIkσ
I = Λαkσ

α ,

with Λα = −α and kσ
α = 1.

To gauge such isometries one introduces gauge covariant derivatives

Dµφ
Â ≡ ∂µφ

Â − kÂ
I (φ)AI

µ , (5.63)

where AI
µ are the vectors from the vector multiplets plus the graviphoton.

In addition one has to gauge the various connections, which give rise to
gauged curvatures. Furthermore, a potential has to be added to the action
in order to preserve supersymmetry.
The part of the potential which involves quaternionic quantities is of the
form

V = eK XIX̄J
(

2κ−2GÂB̂k
Â
I k

B̂
J − 3P r

I P
r
J

)

. (5.64)

The Kähler potential K is given by (1.11) and the XI (I = 0, . . . , nv

with nv the number of vector multiplets) are holomorphic functions of the
scalars20 ti in the vector multiplets, precisely the sections from (1.10). The

18We will ignore the vector multiplets, and thus MV , for the moment.
19The generalization to more hypermultiplets is straightforward.
20These scalars are defined as ti ≡ bi + ivi, see the footnote on page 24.
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Killing vectors kÂ
I (φ) satisfy the Killing equations which in N = 2 su-

pergravity can be solved in terms of a triplet of Killing prepotentials P r
I ,

r = 1, 2, 3, also called ‘moment maps’. See appendix H for more informa-
tion on the potential and moment maps.

By sketching the effect of turning on a flux inH3, (5.62), we have introduced
two different topics: compactification with fluxes and gauged supergravity.
The reason for introducing the latter is that the effect including fluxes has
on the 4-dimensional effective theory, can be reproduced by gauging the
4-dimensional supergravity theory one obtains by compactification without
fluxes. This means that the powerful machinery of gauged supergravity can
be used to study the effect of fluxes in the internal Calabi-Yau manifold
on the effective theory. For more details on N = 2 gauged supergravity we
refer to [118, 40, 119, 77] and references therein.
There are a few points that must be made. In gauged supergravity, the
hypermultiplet scalars can acquire charges under vectors, as in (5.63). This
means, contrary to the ungauged case, that the hypermultiplets and vector
multiplets no longer decouple. However, the structure of the Lagrangian is
encoded in the same data as before the gauging with the addition of the
Killing vectors encoding the isometries of the scalar manifold. In spite of
the presence of a potential, no mixing of the metrics is allowed. Therefore
the metric of the vector multiplets still receives no string loop corrections.
Furthermore, the presence of fluxes in general distorts geometry of the
Calabi-Yau causing it to change into something else. In such cases the
appropriate internal manifold is a generalized Calabi-Yau manifold, see
[120, 29].

It turns out that the case we are considering corresponds to a very simple
type of flux compactification. Remember that we are in a situation in which
membranes break all the continuous isometries of the UHM save one. The
4-dimensional quaternionic scalar manifold of the UHM only has the shift
in the axion σ left, or in PT coordinates t. As demonstrated in [63], the
presence of a nontrivial spacetime part in the 3-form A3 gauges this shift.
In other words, the presence21 of C3 gauges the α-shift in t, see (5.6) and
(5.46).
The reason is that the field strength dC3 of a 3-form in four spacetime
dimensions is dual to a 0-form field strength and carries no local degrees
of freedom. One can therefore eliminate it from the action by dualizing
it to a constant. We will denote this constant by e0 (see also [117]). In
the 4-dimensional action the derivative of the axion will then become a

21Note that in [22] the spacetime filling C3 was set to zero.
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covariant derivative:

∂µσ → Dµσ ≡ ∂µσ + 2e0Aµ ,

where Aµ is again the graviphoton. Comparing to (5.63) we see that kÂ =

−2e0δ
Âσ, where we have left out the index I because we are considering just

one isometry. The precise form of this Killing vector is not important, as

we shall see, and is taken equal to e0δ
Âσ. Since we will only be gauging this

one isometry, we only need one vector field and thus can suffice with the
graviphoton. No vector multiplets need to be used. In the 10-dimensional
supergravity theory we have the field strength corresponding to A3: F4 =
dA3, see (2.16). This is (Hodge) dual to a 6-form field strength F6 = ?F4.
Consequently, the nontrivial spacetime part dC3 is equivalent to turning
on F6 flux in the Calabi-Yau manifold. Conversely one could say that
turning on F6 flux can be dealt with after reducing on the Calabi-Yau by
considering a nontrivial spacetime part C3. This means that the F6 flux
does not backreact on the internal Calabi-Yau geometry.
In string theory the inclusion of fluxes can lead to tadpoles, but it was
shown in [117] that only by turning on F0 and H3 flux simultaneously in a
type IIA compactification tadpoles can arise, so that is not an issue here.
The potential (5.64) simplifies considerably in our case. As we are consid-
ering the UHM with only one isometry, we have only nontrivial components
of P r

I for I = 0. Furthermore, there are no vector multiplets present and
the potential simplifies to

V = 4GÂB̂k
ÂkB̂ − 3P rP r ,

as in appendix H. The labels Â, B̂ run over the PT coordinates. Substi-
tuting the results for the the moment maps (H.11) and the Killing vector
(H.10) we obtain

V =
1

r2

(
4

f
− 3

)

e20 . (5.65)

We see that the constant e0 which multiplies the Killing vector appears as
an overall factor, hence we will set it to one.

5.5 The potential

We are now in a position to study the effect of membranes on the 4-
dimensional theory in a very concrete manner: through the potential. This
potential will consist of three parts:

V = Vclass + V1-loop + Vinst . (5.66)
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Figure 5.1: The scalar potential Vclass (left) and Vclass +V1-loop (right) for c = −10. Including

the 1-loop correction with c < 0 leads to a pole at r = −2c.

Using (5.7) we calculate

Vclass =
1

r2
V1-loop = − 4c

r2(r + 2c)
,

we will discuss Vinst shortly, first we shall discuss Vclass and V1-loop.

The perturbative potential

Vclass is a positive monotonically decreasing function with a typical ‘run-
away’ behaviour in r. For r → 0 or gs → ∞ (remember that gs = 1/

√
r) it

diverges. Vclass is displayed in figure 5.1, it has no vacua except the trivial
one at r = ∞.
If we add the 1-loop contribution the behaviour changes drastically. In
figure 5.1 Vclass + V1-loop is displayed for the ‘generic’ value c = −10. For
different values of c the location of the pole shifts but the (qualitative)
properties of the potential remain the same. We found in (5.8) that c is
always smaller than zero. Since the region 0 < r < |2c| has to be discarded,
see the discussion below (5.8), we also have to discard this region of the
potential. For r > |2c| the behaviour of the potential is similar to the
behaviour of Vclass.
These two pieces of the potential are independent of (u, v, t) which means
that these scalars parametrize flat directions. The absence of u and v is
just a consequence of their absence in (5.7). The fact that the potential
does not depend on t is a different matter. Because we have gauged the
isometry in t, gauge invariance implies that the potential cannot depend
on t. Consequently we only have to stabilize u and v in the potential to lift
the flat directions, since t is stabilized no matter what. We now demon-
strate that we can stabilize u and v by taking into account the membrane
contributions.
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The potential including membrane effects

Vinst is the part containing the contributions from the infinite instanton
expansion. If we limit ourselves to small string coupling, that is r �
1, a good approximation is given by (5.19, 5.20). We will consider the
leading contributions coming from the one-instanton sector. Furthermore,
we will consider the effect of the v-instanton sector while switching off the
u-instanton sector. We can do this because both sectors enter separately
in exactly the same manner in the potential, as can be seen from (5.18,
5.19, 5.20). Therefore we can first study the effect of one sector and then
draw similar conclusions for the other sector.
To leading order the instanton part of the potential becomes

V1-inst = −4 r−(m1+5)/2
(
Â1,m1 cos(v) − Ã1,m1 sin(v)

)
e−2

√
r , (5.67)

where we have used (5.20). We have defined A1,m1 = Â1,m1 + iÃ1,m1 and
have set B1,m1 = 0. Vinst has no poles except at r = 0. In fact, this is
an artefact of the expansion in (5.67). If we would not have expanded
the denominator which contained (r+ 2c), V1-inst also would develop a sin-
gularity at r = −2c, which even dominates over the one in V1-loop, and
the potential is no longer bounded from below. Resolving this singularity
presumably requires resumming the entire instanton expansion to obtain
expressions which are valid at small values of r ≤ −2c. It is unclear how
to resum the expansion and we will continue to work with the expanded
expressions (5.67). Note that resolving singularities by nonperturbative
effects has been shown to work in the context of the Coulomb branch of
three-dimensional gauge theories with eight supercharges [78, 79, 80, 121].
In these cases the moduli space is hyperkähler instead of quaternionic.
Furthermore, since Vinst is exponentially suppressed for large r, the large r
behaviour of V is dominated by Vclass +V1-loop. This means that for r → ∞
V still approaches 0 from above. The total potential is bounded from be-
low and diverges to +∞ for r ↓ |2c|. Due to the transcendental nature of
the potential we have to analyze the vacuum structure numerically. Fur-
thermore, since we do not know anything about the gs dependence of the
determinant in the background of instantons, contained in the factor N in
(5.37), we will choose m1 = −2, see (5.57). This is of little importance
since the qualitative behaviour of the potential is not very sensitive to this
value. We can obtain similar results for different values of m1.

We can simplify this potential by imposing the symmetry which inter-
changes v-instantons with v-anti-instantons: v → −v, t → −t, see section
5.2.3. This means that we have to take Ã1,m1 = 0. Furthermore, we can

take Â1,m1 positive because negative values merely correspond to shifting
v → v+ π. The local minimum in the v-direction is then located at v = 0.
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Knowing the minimum in the v-direction, we can seek out the minimum
in the r-direction. This depends on the value of the one remaining param-
eter Â1,m1. For a given value of c we can distinguish three different cases

characterized by two values for Â1,m1: Amin and Amax. These have to be

determined numerically for each value of c. If Â1,m1 < Amin there is no
local minimum in the r-direction except for the one at r = ∞. The (quali-
tative) picture is just that of Vclass +V1-loop in figure 5.1. For Â1,m1 > Amax

we do find a minimum in the r-direction. The value of the potential at
this point, let us call it rAdS, is negative22. The most interesting situation
occurs when Amin < Â1,m1 < Amax. In such a situation the minimum of
the potential, occurring at rdS, is positive, which is significant as we will
learn in the next section. As in the previous case this stabilizes both the
v and the r modulus. We are thus able to stabilize all the moduli of the
UHM. This situation is depicted in figure 5.2 for the value c = −10 and
Â1,m1 = 9867. Note that the only difference with the case Â1,m1 > Amax

21 30 40 60 80 100
r

0.001
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0.003
VHr,vL

Figure 5.2: A view of V (r, v) in the r-direction along v = 0.

is that the minimum is now positive. The effect of increasing Â1,m1 is to
move the location of the minimum to the left: closer to the singularity.
This means that the value for which the string coupling is smallest is ob-
tained by taking Â1,m1 = Amin. In table 5.1 we give the relevant values for
the parameters for the cases c = −6/π ≈ −1.9 and c = −10. The first case
corresponds to the so-called Z -manifold (see for instance [122]). The case
c = −10 corresponds to a fictitious rigid CY 3-fold with h(1,1) ≈ O(100).
We see from table 5.1 that decreasing |c| also decreases the values for Amin

and Amax while their relative difference stays about the same. Decreasing
|c| also moves rdS closer to the singularity. This is a generic feature and
does not depend on the particular values of c in the table.

22In the next section we will explain the names for these minima.
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c = −1.9 c = −10
Amin 53.0 8180
Amax 60.8 9900
rdS 7.4 27.5

Table 5.1: Illustrative values for Amin, Amax, and rdS for the Z -manifold h(1,2) = 0, h(1,1) =

36, c ≈ −1.9) and a fictional rigid CY3 where c = −10, corresponding to h(1,1) = O(100).

For Amin < Â1,m1
< Amax the potential (5.66) has a meta-stable dS vacuum at which all

hypermultiplet moduli are stabilized.

To check that the minimum in the r-direction is also a minimum in the
v-direction, we plot the total potential (5.66) in the neighbourhood of the
minimum, see figure 5.3. To obtain this graph we used the values c = −10
and Â1,m1 = 9867, as before. If we would extend the graph in the v-
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Figure 5.3: A detailed view of the meta-stable dS minimum of the potential
V (r, v) in the r and v direction.

direction we would see that it is periodical due to the cosine in (5.67).
This periodicity can be lifted by including higher order terms in r. One
can check that by taking such higher order terms into account one can still
construct a minimum with positive value. The values of the other minima
(the ‘copies’) are generically lowered to negative values.
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5.6 De Sitter space

De Sitter spacetime (dS) is a maximally symmetric solution to Einstein’s
equations with a positive cosmological constant Λ (see [123, 124] for more
details). We can describe d-dimensional de Sitter space as a hyperboloid
embedded in flat (d + 1)-dimensional Minkowski space Md,1. If Md,1 has
coordinates XA, A = 0, . . . , d and metric ηAB = diag(−1, 1, . . . , 1), the
hypersurface

ηABX
AXB = R2

defines a d-dimensional dSd, with ‘radius’ R. For the metric on dSd we
can use the induced metric from the embedding space Md,1. One can show
that dSd is an Einstein space with positive scalar curvature and an Einstein
tensor satisfying

Gµν + Λgµν = 0 ,

where

Λ =
(d− 2)(d− 1)

2R2

is the cosmological constant.

We have been considering an N = 2 supergravity theory in four spacetime
dimensions. We have discussed that gauging an isometry gives rise to a
potential (the relevant terms are given in (H.7) and (H.8)). If we take the
variational derivative with respect to gµν of the (hypermultiplet) action we
find

0 =
δS

δgµν
= Rµν − 1

2
gµνR + T µν ,

where T µν is the variational derivative of the part of the action containing
the fields and the potential. This means that when considering the scalar
fields at the minimum of the potential, T µν contributes to an effective
cosmological constant term:

gµνVmin(r, u, v) .

Vmin(r, u, v) is the constant value of the potential at its minimum (we de-
noted the fields as in the previous section). When this value is larger than
zero (if this is the only contribution to the vacuum energy) it can be asso-
ciated to a de Sitter spacetime23.

23Alternatively, if the minimum of the potential is less than zero it corresponds to an Anti-de
Sitter space, hence the name rAdS.
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Supergravity cannot be realized in a de Sitter space. This means that the
N = 2 supergravity theory has no supersymmetry for a de Sitter vacuum
(see e.g. [125]). We will not discuss the breaking of supersymmetry in
the case of an AdS or Minkowski24 vacuum. There is much more to say
about de Sitter vacua in supergravity and supersymmetry breaking, see for
instance [126, 127, 128, 129].
The reason that de Sitter space is relevant, is that astronomical observa-
tions indicate that our own universe is in a de Sitter phase, see [30, 130]
and references therein for more information. Therefore it is exciting that
we can reproduce a de Sitter vacuum from our supergravity setup. Note
that one really should compute the coefficient Â1,m1 in string theory be-
cause in our supergravity approach it is still a free parameter. This means
that only if the result is such that Amin < Â1,m1 < Amax we can conclude
that we can produce a de Sitter vacuum from string theory.
Naturally we are not the first to have searched for a de Sitter vacuum in
string theory (see [129, 128]). There is, for instance, the work of ‘KKLT’
[131], to which we will compare our results.
The work of KKLT consists of three parts. Firstly, all moduli, apart from
the dilaton, are fixed by the inclusion of fluxes. Secondly, the dilaton is
stabilized by nonperturbative instanton effects, but at an AdS vacuum.
Thirdly, a positive energy contribution in the form of anti D3-branes25 is
added to lift the minimum of the potential to a positive value, i.e., a dS
vacuum.
In our approach the inclusion of a single R-R 3-form spacefilling flux pro-
vides a potential. Classically this is of the runaway type in the dilaton
and both R-R scalars χ and ϕ are flat directions. Only when we include
the membrane corrections (plus the one-loop corrections) does this change,
leading to a (meta-)stable vacuum. Depending on Â1,m1 this is an AdS,
Minkowski or dS vacuum.
Note that, in contrast to KKLT, we do not have to include additional pos-
itive energy contributions by hand. This contribution is already provided
for by the background flux at the classical level. Furthermore, by making a
suitable choice for the numerical parameters corresponding to the one-loop
determinant around a one-instanton background, the moduli can be stabi-
lized in a meta-stable de Sitter vacuum at small string coupling constant
gs � 1. This is consistent with the fact that we only took into account the
terms dominating for small gs (5.20).

We have examined a simple model in which we have one hypermultiplet

24This corresponds to a zero cosmological constant, so a vanishing value of the potential at
its minimum.

25They work in type IIB string theory.
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and no vector multiplets. As this hypermultiplet is present in any N = 2
supergravity theory in four dimensions obtained by compactifying type
IIA supergravity on a Calabi-Yau manifold, the results are expected to
have validity for more general Calabi-Yau compactifications as well (that
is h(1,2) 6= 0). A next step would then be to include vector multiplets
and hypermultiplets and consider more general fluxes, e.g. 2- and 4-form
fluxes related to the even homology cycles of the Calabi-Yau manifold, thus
stabilizing the Kähler moduli26. One could also try to include the nonper-
turbative effects coming from the 5-brane, as calculated in the previous
chapter, into the potential.

26Remember that these moduli reside in the vector multiplets.



A

Symplectic groups and
quaternions

The quaternions are the associative algebra H = 〈1, i1, i2, i3〉 ∼= R
4 with

multiplication i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2 and
i21 = i22 = i23 = −1. If we have a quaternion x = x0 +

∑3
j=1 xjij then its

conjugate is given by x̄ = x0 −
∑3

j=1 xjij. The symplectic group, Sp(n) is
the subgroup of Gl(n,H), the invertible n×n quaternionic matrices, which
preserves the standard Hermitian form on H

n:

〈x, y〉 =
n∑

i=1

x̄iyi .

This means that if A ∈ Sp(n), ĀTA = AĀT = 11, it is the quaternionic
unitary group U(n,H), sometimes called the hyperunitary group. Sp(n) is
a real Lie group of dimension n(2n+ 1), compact and (simply) connected.
The Lie algebra is given by the n× n quaternionic matrices B that satisfy

B + B̄T = 0 .

A different, but closely related, type of symplectic group is Sp(2n, F ) the
group of degree 2n over a field F , in other words, the group of 2n × 2n
symplectic matrices with entries in F and with group operation that of
matrix multiplication. If F is the field of real/complex numbers the Lie
group Sp(2n, F ) has real/complex dimension n(2n+ 1).
Since all symplectic matrices have unit determinant, the symplectic group
is a subgroup of the special linear group Sl(2n, F ), in fact for n = 1 this
means that Sp(2, F ) = Sl(2, F ). If D ∈ Sp(2n, F ) then

DTCD = C with C =

(
0 11
−11 0

)

. (A.1)

The Lie algebra of Sp(2n, F ) is given by the set of 2n × 2n matrices E
(over F ) that satisfy

CE + ETC = 0 .
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The symplectic group Sp(2n, F ) can also be defined as the set of linear
transformations of a 2n-dimensional vector space (over F ) that preserve
a nondegenerate antisymmetric bilinear form. This precisely leads to the
property (A.1).
Unitary-symplectic groups are the intersection of unitary groups and sym-
plectic groups, both acting in the same vector space. That is, the elements
of the unitary-symplectic groups are elements in both unitary and sym-
plectic groups:

USp(n, n) = U(n, n; C) ∩ Sp(2n; C) .

Explicitly we can construct such groups by considering (A.1) with D a
2n× 2n complex matrix which has to satisfy the additional condition

D†HD = H with H =

(
11n×n 0

0 −11n×n

)

. (A.2)

The general block form of this D is

D =

(
T V ?

V T ?

)

(A.3)

making (A.2) equivalent to

T †T − V †V = 11

T †V ? − V †T ? = 0 .

These groups are isomorphic to symplectic groups in the hyperunitary
sense:

USp(2n) ∼= Sp(n) .

Finally there is the following isomorphism

Sp(2n; R) ∼= USp(2n) , (A.4)

from which we see that Sp(2n; R) ∼= Sp(n).

A quaternionic manifold is Riemannian but not necessarily complex, which
means that the holonomy group Sp(n) × Sp(1) is contained in O(4n) as
a subgroup. On the other hand, hyperkähler manifolds are in fact Kähler
(with respect to all three complex structures, see also (1.5)) and must
therefore have their holonomy contained in U(2n). In terms of holonomy
groups, the difference between the two types of manifolds is the factor of
Sp(1). This arises from the fact that (1.12) is defined up to local SO(3) ∼=
Sp(1) rotations. This feature is absent in the hyperkähler case since the
complex structures are covariantly constant and globally defined. For more
information on the relation between holonomy groups, symplectic groups
and quaternions, see [23, 39, 68, 35, 132].
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The Wick rotation

In this appendix we clarify the Wick rotation introduced in section 2.3,
furthermore the calculations in chapter 4 will be performed in Euclidean
space and require the use of appropriate fermions.
First let us Wick rotate the DTM Lagrangian (2.32). In Minkowskian space
the action appears in the path integral as eiS with ηµν =diag(−+++). We
rotate t → it ≡ x4 which implies ∂

∂t = i ∂
∂x4

and the integration measure

becomes d4x = −id4xE. This means that a massless scalar appears in the
path integral as

exp{i
∫

d4x

(

−1

2
∂µφ∂

µφ

)

} → exp{−
∫

d4xE
1

2
∂E

µ φ∂
µ
Eφ} ≡ exp{−SE}

where in the second half the indices run over 1 to 4. We will always extract
an overall minus sign out of the action giving a damped exponential, since
the action has become positive definite.
Having seen how scalars transform we turn to the double tensor term:

Ldt =
1

2
M IJHµ

I HµJ , Hµ
I =

1

2
εµνρσ∂νBρσI =

1

3!
εµνρσHνρσ

Using εµνρσεµλτδ = −3!δ
[ν
[λδ

ρ
τδ

σ]
δ] , the conventions ε0123 = −ε0123 = 1 and

ε1234 = 1, we can rewrite this (up to unimportant I, J quantities) as

−HνρσH
νρσ = 3H0ijH

0ij +HijkH
ijk ,

where i, j = 1, 2, 3. Now we Wick rotate according to

B0i = iB4i → H0ij = iH4ij

and since H0ijH
0ij = H4ijH

4ij the double tensor term becomes

LE
dt =

1

2
HE

µIH
E
µJM

IJ .
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Then there is the scalar-tensor term

Lst = −AI
AH

µ
I ∂µφ

A

∼ −1

2

(
ε0νρσHνρσ∂0φ+ 3εi0ρσH0ρσ∂iφ

)
.

Using ε0νρσ = −ε4νρσ and εi0ρσH0ρσ = −iεi4ρσH4ρσ we obtain

LE
st = −iAI

AH
µE
I ∂µφ

A . (B.1)

When using these expressions we will leave out the superscript E and un-
derstand that µ = 1, . . . , 4.

Lastly there is the matter of the spinors. The spinors we work with are
Lorentzian 2-component Weyl spinors, say λα, λ̄

α̇, related to each other
by complex conjugation. However, in Euclidean space the Lorentz group
factorizes as Spin(4) ∼= SU(2) × SU(2) and to each SU(2) belongs a 2-
component spinor, λα and λ̄α′

which are not related to each other by
complex conjugation, they constitute inequivalent representations of the
Lorentz group. The same remarks hold for the supersymmetry parameters
εi and ε̄i. The sigma matrices σµ and σ̄µ have lower and upper indices re-
spectively, i.e., (σµ)αα′ and (σ̄µ)α′α where we instead of dotted indices use
indices with a ′ to denote the inequivalent representations. In Euclidean
space these matrices take the form

σµ = (~σ,−i) σ̄µ = (−~σ,−i)

where ~σ are the Pauli matrices, note that this is consistent with σ0 = −iσ4.
We have the properties (slightly different from Lorentzian signature)

σµσ̄ν = −gµν + 2σµν 1

2
εµνρσσρσ = σµν ,

where σµν ≡ 1
2σ

[µσ̄ν] and

σµσ̄νσρ = gµρσν − gνρσµ − gµνσρ + εµνρσσσ .

Other often used properties of the sigma matrices are

(σ)µ
αβ′(σµ)γα′ = −2εαγεβ′α′

(σ̄µ)β′α(σµ)γα′ = −2δα
γ δ

β′

α′

(σµνε)αβ(σν)γα′ = −εγ(βσ
µ
α)α′ . (B.2)

Finally, the gravitini and the graviphoton are rotated as follows

ψi
0 = iψi

4 ψ̄0i = iψ̄4i A0 = iA4 .

For more information on the conventions we used, see Wess and Bagger
[133].



C

Scalar-tensors and
supersymmetry

In this appendix we will list some of the relations (as determined by super-
symmetry) between the various quantities which appear in the action. We
will only give the ones needed for our calculations, consult [76] for more
information. For more details on the construction of such non-linear sigma
models see also [134, 135, 26]. We will also expand a little on the geometry
of the hypermultiplets as determined by supersymmetry.
To start with some algebraic relations

γA
iaW

bj
A + gIia f

Ibj = δj
i δ

b
a

γA
ia W̄

ā
Aj + gIia f̄

Iā
j + (i↔ j) = 0 , (C.1)

for contractions over A and I, and

(

γA
iaW

aj
B γA

ia f
Jaj

gIiaW
aj

B gIia f
Jaj

)

+ c.c.(i↔ j) = δj
i

(
δA
B 0

0 δJ
I

)

. (C.2)

Furthermore, we have

GAB γ
B
ia = hab̄ W̄

b̄
Ai , M IJgJia = haāf̄

Iā
i . (C.3)

These relations imply among others that

GAB = hab̄W
ai

A W̄ b̄
Bi , M IJ = hab̄ f

Iaif̄Jb̄
i

δj
i hab̄ = GAB γ

A
ia γ̄

jB
b̄ +M IJgIia ḡ

j

Jb̄
. (C.4)

Barred and unbarred objects are related by complex conjugation which
raises or lowers the SU(2) index i, e.g. W̄ b̄

Bi = (W bi
B )?. An interesting

relation is the following:

FAB
I = 2iM IJkJaāW̄

ā
AiW

ai
B − 2haāW̄

ā
Ai Γ

Ii
jW

aj
B , (C.5)
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where the field strength is defined as FAB
I = 2∂[AA

I
B]. This field strength

also measures the nonvanishing of the covariant derivatives of γA
ia and W ai

A ,
that is

DAW
ai

B = −1

2
FAB

I ḡi
Iāh

āa , (C.6)

where the covariant derivative DA contains connections ΓA
a
b and Γ C

AB and
similarly for γA

ia. The right-hand side of (C.6) is antisymmetric in A,B and
can be interpreted as the torsion of the target space connection. Interest-
ingly enough FAB

I = 0 classically, but in the presence of instantons it is
nonzero, as we will see in appendix F.
The higher order fermion terms in the supersymmetry transformation rules
(4.3) contain tensors ΓIa

b that satisfy

M IJkJaā = ihbāΓ
Ib

a . (C.7)

Finally, one can define a covariantly constant tensor

Eab =
1

2
εji (GAB γ

A
ia γ

B
jb +M IJgIia gJjb) , (C.8)

which satisfies

Eab

(
W bi

A

f Ibi

)

= εijhaā

(
W̄ ā

Aj

f̄ Iā
j

)

. (C.9)

This tensor appears explicitly in the four-fermi terms in the supergravity
action (4.1). The covariant derivatives of the fermions are given by

Dµλ
a = ∇µλ

a + ∂µφ
AΓA

a
bλ

b

Dµψ
i
ν = ∇µψ

i
ν + ∂µφ

AΓA
i
jψ

j
ν , (C.10)

where ∇µ is the Lorentz covariant derivative. The connection coefficients
Γ specified to the case of the DTM are given in appendix D.
In the action appear certain ‘supercovariant’ quantities such as Hµ

I

Hµ
I =

1

2
εµνρσ

[
∂νBρσI + 4ΩI

i
jψ

j
νσρψ̄σi − 2iκ

(
gIiaψ

i
νσρσλ

a − c.c
)]

.

(C.11)

The difference with the familiar HI
µ is precisely given by terms quadratic

in fermions which can be dropped, as we are working at linear order in
the fermions. The general supersymmetry rules for the hyperino’s contain
these Hµ

I and simplify to (4.3) when working at linear order in the fermions.
Similarly for the supercovariant derivative of the scalars in (4.1)

D̂µφ
A = ∂µφ

A − κ
(
γA

iaψ
i
µλ

a + γ̄iA
ā ψ̄µiλ̄

ā
)
,

where again the second term can be dropped. In the same fashion, the
supercovariant field strength Fµν reduces to Fµν .
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Scalars versus tensors

Let us for a moment remind ourselves where the scalar-tensor system comes
from. It can be obtained by starting with the n hypermultiplets coupled
to N = 2 supergravity. This theory contains 4n scalars together with
fermionic fields. In section 2.3 we sketched how to dualize the UHM with its
4 scalars to the DTM with its 2 scalars and 2 tensors. The same procedure
can be followed if one starts with 4n scalars and dualizes nT of them into
tensors, thus ending up with the scalar-tensor system containing nT tensors
BµνI , I = 1, . . . , nT and 4n−nT scalars φA, A = 1, . . . , 4n−nT . Naturally
this has an effect on the fermionic sector of the hypermultiplet theory. For
instance, in (C.10) we gave the covariant derivatives on the fermions with
certain connections. These connections have their origin in the theory with
n hypermultiplets where the covariant derivatives are given by

Dµλ
a = ∇µλ

a + ∂µφ
ÂΩÂ

a
bλ

b Dµψ
i
ν = ∇µψ

i
ν + ∂µφ

ÂΩÂ
i
jψ

j
ν , (C.12)

with Â = 1, . . . , 4n. These are the Lorentz and SU(2)⊗Sp(2n,R)-covariant
derivatives. Specifically, ΩÂ

a
b is the Sp(2n,R) connection and ΩÂ

i
j the

SU(2) connection. The connections in the scalar-tensor theory (C.10) are
related to these connections as follows

ΓA
i
j = ΩA

i
j − AI

AΩI
i
j

ΓA
a
b = ΩA

a
b − AI

AΩI
a
b

ΓIi
j = M IJΩJ

i
j , (C.13)

where as in section 2.3,

AI
A ≡M IJGJA M IJ ≡ (GIJ)−1 ,

with GÂB̂ the metric on the quaternionic space. We note that the geomet-
ric structure of the target space of the scalar-tensor theory is not as clear
as the geometry of the hypermultiplet theory.

Hypergeometry

In chapter 1 the hypergeometry was described. As indicated there, the
geometry for the target space of the hypermultiplets is determined by su-
persymmetry.
Let us therefore consider n hypermultiplets without tensors (nT = 0) in
the case of Lorentzian signature, we will follow [136] but use the slightly
different notation of [76]. The supersymmetry transformation of the (real)
4n scalars is

δεφ
Â = γÂ

iaε
iλa + γ̄iÂ

ā ε̄iλ̄
ā , (C.14)
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with 2n positive-chirality spinors λa and 2n negative-chirality spinors λ̄ā,
they are related by λ̄ā = (λa)? together there are then 2n Majorana1

spinors. The two supersymmetry parameters εi obey the relation ε̄i = (εi)?,
with i = 1, 2.
The transformation of the scalars is thus manifestly real, because also for
the inverse vielbein γ the indices are barred and raised, respectively, under

complex conjugation, i.e. (γ̄iÂ
ā )? = γÂ

ia. The δεφ
Â therefore take values in a

real 4n-dimensional tangent bundle T .
The supersymmetry algebra is invariant under the automorphism group
SU(2)R × U(1)R which rotates the supersymmetry generators into each
other. This group is often referred to as the R-symmetry group, hence
the label R. This means that the supersymmetry parameters εi take their
value in the SU(2)R group2. As it concerns local transformations it is re-
ally a SU(2)-bundle. So the εi take their values in the SU(2)-bundle. Note
that for rigid supersymmetry the εi are constant and are therefore global
sections of the SU(2)-bundle, which is equivalent to the triviality of this
bundle.
In addition to the γ’s there are related objects V which appear in the
supersymmetry variation of the fermions

δελ
a = iD̂µφ

ÂV ai
Â
σµε̄i − δεφ

ÂΩÂ
a
bλ

b .

Supersymmetry imposes a number of relations and constraints on these
objects, among which

γÂ
ibV

aj

Â
= δj

i δ
a
b γÂ

iaV
ai
B̂

= δÂ
B̂
,

implying that γ and V are each others inverse. Furthermore one has

GÂB̂ = hab̄V
ai
Â
V̄ b̄

B̂i
hab̄ =

1

2
GÂB̂γ

Â
iaγ̄

iB̂
b̄ , (C.15)

where hab̄ is the Hermitian metric for the fermions, determining the kinetic
terms as in (4.1). As before GÂB̂ determines the kinetic terms for the
hypermultiplet scalars. This means that if we interpret GÂB̂ as the (real)
metric on the target space, we can view the V ai

Â
as the vielbeins on it. In

addition one can construct a covariantly constant antisymmetric tensor

εab =
1

2
εjiGÂB̂γ

Â
iaγ

B̂
jb ,

1Remember that a Majorana spinor in the Weyl basis is written as ΨM =

(
χα

χ̄α̇

)

.

2The supersymmetry variations are consistent with a U(1) chiral invariance under which
the scalars remain invariant, whereas the fermion fields and the supersymmetry transformation
parameters transform, this is the U(1)R part of the R-symmetry group.
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which satisfies

εijεabV
jb

Â
= GÂB̂γ

B̂
ia = hab̄V̄

b̄
Âi

.

Because V̄ b̄
Âi

= (V bi
Â

)? the complex conjugated vielbein V ? is related to V ,
i.e.,

V̄ c̄
Âi

= hc̄aεabV
b
Âi

.

In other words, we can use hāa and εab to change barred- into unbarred
indices. Consequently the vielbeins are pseudoreal and the a indices are
Sp(2n,R) indices3. Observe that we now have an explicit representation
for the εab, see also (1.17), with the right properties.
The vielbein V ai

Â
maps the tangent bundle T with indices Â to a product

of two symplectic vector bundles with indices a and i. Consequently, the
geometric quantities such as the connection and curvature decompose into
a SU(2) and a Sp(2n,R) part. By considering the antisymmetrized action
of two covariant derivatives on the covariantly constant (inverse) vielbein
one can compute [26] that the Riemann curvature tensor of T , RÂB̂ĈD̂,
decomposes into the SU(2) and Sp(2n,R) curvatures, RÂB̂ab and RÂB̂ij

respectively. The holonomy is then contained in SU(2) × Sp(2n,R). The
tangent bundle T is thus effectively decomposed as the product of two
vector bundles T = SU(2) ⊗ Sp(2n,R) as in section 1.4. Note that the
tensor product of two pseudoreal representations is a real representation,
as it should be because T is a real 4n-dimensional manifold. We can also
use the vielbeins to construct complex structures which satisfy the quater-
nionic algebra (1.12), another way of demonstrating the fact that we are
dealing with a quaternionic target space. We will explicitly construct them
in (H.1).

Consider again rigid supersymmetry. In this case the supersymmetry pa-
rameters are constant and the SU(2)-bundle is trivial: a zero connection
form and RÂB̂ij equal4 to zero. This means that the holonomy is con-

tained solely in Sp(2n,R), by definition a hyperkähler manifold. On the
other hand, it can be shown [26] that if the εi are nonconstant the SU(2)-
curvature is nonzero. Summarizing: the above relations which determine
the quaternionic geometry follow entirely from supersymmetry.

In the above we have tacitly introduced the so-called chiral notation, which
amounts to keeping track of spinor chiralities through writing the SU(2)R

3A pseudoreal representation is a group representation that is equivalent to its complex
conjugate, but that is not a real representation. One can show that the definition of ‘symplectic’
and ‘pseudoreal’ are equivalent, see for a very compact review for instance [137].

4In section 1.4 the SU(2) curvature is denoted by Ωr.
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index as an upper or lower index, [138]. Thus, upper and lower SU(2)R

indices are correlated with a fixed spinor chirality and with either the fun-
damental or antifundamental representation. Depending on the spinor, an
upper index might be associated with left or with right chirality. As a con-
sequence SU(2)R indices are raised and lowered by complex conjugation,
or by using εij.

Notation

We have introduced several objects using a different notation. If we leaf
back to section 1.4 where the geometry of hypermultiplets was discussed,
we observe the introduction of a set of vielbeins V a

i ≡ V a
i Adq

A. These
vielbeins characterized the quaternionic geometry with inverse vielbeins
given by V i B

a . In this appendix a different notation for the vielbeins is used,
because the conventions of [76] are followed (as in chapter 4). However, in
section 1.4 the slightly different conventions of [33] (the subject of chapter
5) are followed, see also appendix H. These two notations are easily related
though. Comparing (C.15) to (1.17) and (1.19) one observes that

V a
i A ↔ V ai

Â
V i A

a ↔ γÂ
ia ,

for the vielbeins and their inverses. Note that the metric hab̄ is called Gab̄

in section 1.4.



D

The double tensor multiplet

The DTM provides a solution to the constraints in the previous appendix.
In the following we list the coefficient functions appearing in its classical
action and transformation laws which satisfy the relations given above.
They receive quantum corrections from instantons, some determined in
this paper, and 1-loop effects [72]. For the scalar zweibeins we have

γφ
ia = (W ai

φ )† =
1√
2

(
0 −1

1 0

)

, γχ
ia = eφ(W ai

χ )† =
1√
2
eφ/2

(
1 0

0 1

)

,

while the tensor zweibeins are given by, for I = 1, 2,

g1 ia = − i√
2
e−φ

(−eφ/2 χ

χ eφ/2

)

, g2 ia = − i√
2
e−φ

(
0 1

1 0

)

,

and

f1 ai =
i√
2
eφ/2

(−1 0

0 1

)

, f2 ai =
i√
2
eφ/2

(
χ eφ/2

eφ/2 −χ

)

.

One may check that these quantities satisfy the relations (C.1)–(C.9), with

haā =

(
1 0

0 1

)

, Eab =

(
0 −1

1 0

)

,

where we also have taken ε12 = 1.
The target space connections for the double-tensor multiplet are particu-
larly simple:

ΓA
a
b = 0 , Γφ

i
j = 0 , Γχ

i
j =

1

2
e−φ/2

(
0 −1

1 0

)

. (D.1)

Since FAB
I = 0, the scalar zweibeins W ai

A , γA
ia are covariantly constant

with respect to these connections. The tensor kIaā can be determined from
(C.7), with

Γ1 a
b = 0 , Γ2 a

b = −3i

4
eφ

(
1 0

0 −1

)

. (D.2)
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Other quantities are the gravitino coefficients in the supersymmetry trans-
formations of the tensors

Ω1
i
j =

i

4
e−φ

(
χ 2 eφ/2

2 eφ/2 −χ

)

, Ω2
i
j =

i

4
e−φ

(
1 0

0 −1

)

and, by using (C.13), the coefficients in the transformations of the graviti-
nos

Γ1 i
j =

i

2
eφ/2

(
0 1

1 0

)

, Γ2 i
j = − i

4
eφ/2

(−eφ/2 2χ

2χ eφ/2

)

.

Just as in the universal hypermultiplet, the four-λ terms come with field-
independent coefficients,

1

4
Vab āb̄ λ

aλb λ̄āλ̄b̄ = −3

8

(
λ1λ1 λ̄1λ̄1 − 2λ1λ2 λ̄1λ̄2 + λ2λ2 λ̄2λ̄2

)
. (D.3)

Dualization and target spaces

As we have mentioned several times, the geometry of the UHM is a quater-
nionic one, in Minkowski space at least. When dualizing one or two scalars
this must change, since the target manifold is parametrized by the scalars,
see also [84]. For the Lorentzian theory we have the following dualization
chain, i.e. UHM → TM → DTM:

SU(1, 2)

U(2)
→ SO(1, 3)

SO(3)
∼= Sl(2,C)

SU(2)
→ Sl(2,R)

O(2)
.

The scalar manifold for the tensor multiplet corresponds to Euclidean
AdS3. After Wick rotating we have a very different chain:

Sl(3,R)

Sl(2,R) × SO(1, 1)
→ SO(2, 2)

SO(2, 1)
∼= Sl(2,R) → Sl(2,R)

O(2)
,

where the tensor multiplet now corresponds to AdS3.
The geometry of these constraints must be consistent with supersymmetry.
These constraints are different for Lorentzian and Euclidean signatures1. In
general the precise constraints on the geometry of hypermultiplets scalars
is not known.

1For Euclidean N = 2 supergravity in four dimensions see [139].



E

Corrections to the propagators

In this section we compute (4.67). Knowing that the (anti-)instanton will
give corrections to GAB we can include its general form and derive the
corresponding propagator. Including such a term gives for the kinetic terms
of the two scalars in the DTM

(
GAB + Ginst

AB

)
∂µφ

A∂µφB , (E.1)

which has to be used to derive the instanton corrected propagator. Write
this term as

φA
[
G∞

AB + Ginst
AB

]
2φB , (E.2)

which means that the propagator is given by

(
GAB
∞ + GAB

inst

)
G(x, y) (E.3)

and comparing with 〈φA(x)φB(y)〉inst in (4.65) tells us that

GAB
inst =

(
0 0

0 g−2
s (Y+ + Y−)

)

, (E.4)

precisely (4.67). Note that in (E.2) we write G∞
AB, because we have to take

the asymptotic (constant) values of the field dependent GAB. Otherwise
we would end up with all kinds of interaction terms, we are dealing with
a non-linear sigma model after all. The computation for the instanton
corrections to the metric of the tensors (4.72) is similar.

123





F

Instanton corrections to the
vielbeins

Although we are mostly interested in instanton corrections to the scalar and
tensor metrics, it is also worthwhile to compute the corrected zweibeinsW ai

A

etc. Once these are known, one can compute the vierbeins on the quater-
nionic side by using the results of [76]. Obviously, they are determined
only up to SU(2) rotations. We use this fact to choose the components as
simple as possible.
We begin with determining W ai

A from the first relation in (C.4),

GAB = Tr(W †
A h

T WB) .

Since as noted above both Eab and haā are given by their classical expres-
sions, (C.9) implies that WA (and f I) are of the form

W ai
A =

(
uA vA

−v̄A ūA

)

.

We solve Ginst
φφ = Ginst

φχ = 0 by setting W inst
φ = 0. Furthermore, we can

choose uχ real and vχ = 0 and Ginst
χχ = −g2

sY then implies

W eff ai
χ =

1

2
√

2

(
2e−φ/2 − gsY

)
(

1 0

0 1

)

.

The γA now follow from (C.3), γA = GABW †
B h

T ,

γφ
eff ia = γφ

ia , γχ
eff ia =

1

2
√

2

(
2eφ/2 + g−1

s Y
)
(

1 0

0 1

)

.

Determining the gI is similar, from

MIJ = Tr(g†I gJ h
−1T )
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and M inst
12 = M inst

22 = 0 we conclude that ginst
2 = 0. For g1 we take

geff
1ia = g1ia +

i

2
√

2
gsY

(
1 0

0 −1

)

.

The coefficients f I are given by the relation f I = M IJg†J h
−1T :

f1ai
eff = f1ai+

i

2
√

2
g−1

s Y

(
1 0

0 −1

)

f2 ai
eff = f2 ai− i

2
√

2
χ∞ g−1

s Y

(
1 0

0 −1

)

.

In section 4.6 we have observed that the NS sector in the effective action is
not affected by instantons. With the above vielbeins we can check whether
this holds for the supersymmetry transformations as well. Indeed, ginst

2 = 0
and Ωinst

2 = 0 imply that the transformation (4.4) of the NS 2-form Bµν2,

dual to the axion σ, is not corrected, while γφ
inst = 0 leaves the dilaton

transformation unchanged.
As explained above, we have access only to the asymptotic region of mod-
uli space, where instanton corrections are constant. One question we can
answer nevertheless is whether the metric components AI

A, which vanish
classically and which receive no corrections at leading order, receive sub-
leading field-dependent corrections. Although we are not able to determine
them explicitly, we now show their existence. Toward this end, we compute
the leading instanton correction to the curvature FAB

I = 2∂[AA
I
B] by using

the above results in identity (C.5),

FAB
I = −2Tr

(
W †

A h
T ΓIWB

)
− 2Tr

(
W †

A h
T WBΓIt

)
.

This relation must also hold in the effective theory if supersymmetry is to
be preserved. The first trace on the right contains the connection ΓIa

b,
the second trace the connection ΓIi

j. As argued above, the latter is not
corrected by instantons. It is then readily verified that the second trace
vanishes identically as a result of ΓIi

j being symmetric. On the other hand,
the first trace does receive a contribution from the instanton-corrected con-
nection (4.76). We find

F eff 1
χφ = i

|Q2|
g2

s

(Y+ − Y−) , F eff 2
χφ = −χ∞F

eff 1
χφ , (F.1)

the other components vanish because of antisymmetry. A nonvanishing
field strength implies a nonvanishing connection, hence we conclude that
AI

A does get corrected after all. This is not in contradiction to what we
found in section 4.5, where AI

A = 0 to leading order. The way out is that to
determine the connection from the field strength, one has to integrate over
the moduli space. For that, one needs information about the subleading
corrections that allow us to go beyond the asymptotic region such that we
can integrate and differentiate. The derivative of this connection, taken at
its asymptotic value, should then coincide with the field strength in (F.1).



G

The Toda equation

This appendix collects several technical details about the solution of the
Toda equation constructed in section 5.1. In the first part we prove that
mn ≥ −2. The proof that α = 0 is given the second part. In the third part
the derivation of the one-instanton solution is given.

The lower bound on mn

In this subsection we establish mn ≥ −2. Our starting point is the ansatz
(5.9), which we substitute into the Toda equation (5.10). This results in
the following power series expansion1

0 =
∑

n,m

r−m/2+α+1 e−2n
√

r
[
(∆ + n2)fn,m + (n am+1 r

−1/2 + bm+2 r
−1)fn,m

]

+
∑

n,m

∑

n′,m′

r−(m+m′)/2+2α e−2(n+n′)
√

r
[
fn′,m′(∆ + 2n2)fn,m

−∇fn,m · ∇fn′,m′ + 2(am+1 r
−1/2 + bm+2 r

−1)fn,m fn′,m′

]

+
∑

n,m

∑

n′,m′

∑

n′′,m′′

r−(m+m′+m′′)/2+3α−1 e−2(n+n′+n′′)
√

rfn,m fn′,m′ fn′′,m′′

×
[
n2 + n am+1 r

−1/2 + bm+2 r
−1
]
, (G.1)

where we have extended the definitions for am, bm given in (5.12) to non-
zero α:

am =
1

2
(2m− 4α− 1) , bm =

1

4
(m− 2α)(m− 2α− 2) . (G.2)

In order to obtain a bound on mn (for which the fn,mn
6= 0), we extract

the leading order contributions in the r-expansion arising from the single,
double and triple sum in (G.1). Starting at n = 1 and working iteratively

1Here we have not performed the splitting into instanton sectors yet.
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towards higher values n = 2, 3, . . ., we find that at a fixed value of n these
contributions are proportional to

single sum ∝ r−mn/2+α+1

double sum ∝ r−mn+2α

triple sum ∝ r−3mn/2+3α−1 . (G.3)

Investigating the mn-dependence of these relations, we find that for mn ≤
−3 the leading order term in r arises from the triple sum, which decouples
from all the other terms in (G.1).

We now assume that for a fixed value n there exsists an fn,mn
6= 0 for

mn ≤ −3. Extracting the equation leading in r from (G.1), we find that

n2 f3
n,mn

= 0 , mn ≤ −3 , (G.4)

which has fn,mn
= 0 as its only solution. Hence, we establish the lower

bound

mn ≥ −2 (G.5)

for all values of n or, equivalently, all instanton sectors2.

Fixing the parameter α

When making the ansatz (5.9) in order to describe membrane instanton
corrections to the universal hypermultiplet, we included the parameter
α ∈ [0, 1/2) to allow for the possibility that the leading term in the instan-
ton solution occurs with a fractional power of gs. Based on the plausible
assumption that the perturbation series around the instanton gives rise to
a power series in gs (and not fractional powers thereof) we now give a proof
that a consistent solution of the Toda equation requires α = 0.

Splitting (G.1) into instanton sectors gives us the following analogue of

2Notice that this argument is not quite sufficient to also fix α = 0, as for α = 1/4 the single
and triple sums do not decouple, which has been crucial in establishing (G.4).
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(5.11)

0 =
∑

n,m

r−m/2+α e−2n
√

r
{

(∆ + n2) fn,m+2 + n am+2 fn,m+1 + bm+2 fn,m

+
∑

n′,m′

rα e−2n′
√

r
[
2n am′+1 fn′,m−m′−1 + 2bm′+2 fn′,m−m′−2

+ fn′,m−m′ (∆ + 2n2) −∇fn′,m−m′ · ∇
]
fn,m′

+
∑

n′,m′

∑

n′′,m′′

r2α e−2(n′+n′′)
√

r fn,m′fn′,m′′

[
n2fn′′,m−m′−m′′−2

+ n am′+1 fn′′,m−m′−m′′−3 + bm′+2 fn′′,m−m′−m′′−4

]}

.

(G.6)

Based on this equation we can now make several observations. First, we
find that the N = 1 sector of (G.6) still gives rise to (5.13), with the
coefficients am, bm now replaced by (G.2). To lowest order, m = m1, this
is just the equation

(∆ + 1)f1,m1(u, v) = 0 . (G.7)

Second, we observe that the equation describing the N = 2 sector is mod-
ified to

0 = (∆ + 4) f2,m + 2am f2,m−1 + bm f2,m−2 +
∑

m′

rα
[
f1,m−m′−2

+am′+1 f1,m−m′−3 + bm′+2 f1,m−m′−4 −∇f1,m−m′−2 · ∇
]
f1,m′ .

Note that for α = 0, the sum appearing in the second line is just an inho-
mogeneous term to the equations determining f2,m. For α 6= 0, however,
the sum decouples due to the different powers in r. Therefore, in the case
α 6= 0, the sum gives rise to an additional constraint equation, which is
absent for α = 0. Since the sum contains the f1,m only, this additional
relation imposes a restriction on the N = 1 instanton solution. Upon using
(G.7), this additional constraint reads at the lowest level

f2
1,m1

− (∇f1,m1)
2 = 0 . (G.8)

For α 6= 0 a non-trivial 1-instanton solution has to satisfy both (G.7) and
(G.8), so that for establishing α = 0 it suffices to show that these equations
have no common non-trivial solution.
Suppose that f1,m1 6= 0, which by definition of f1,m1 has to hold. We then
multiply (G.7) with f1,m1, giving

0 = f1,m1 ∆f1,m1 + f2
1,m1

= f1,m1 ∆f1,m1 + (∇f1,m1)
2 =

1

2
∆f2

1,m1
,
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where we have used (G.8) in the first step. In terms of complex coordinates
z = u+ iv it is ∆ = 4∂z∂z̄, and the general solution reads

f2
1,m1

(z, z̄) = g(z) + ḡ(z̄) .

Substituting this back into (G.7), we find

0 = (∆ + 1)f1,m1 = f−3
1,m1

[
− ∂zg(z) ∂z̄ḡ(z̄) + (g(z) + ḡ(z̄))2

]
,

which is equivalent to

∂zg(z) ∂z̄ḡ(z̄) = g(z)2 + 2g(z)ḡ(z̄) + ḡ(z̄)2 .

Since the right-hand side of this expression contains terms which are (anti-
) holomorphic, whereas the left-hand side does not, we find that the only
solution is given by g(z) = ic with c ∈ R constant. Thus f1,m1 = 0,
which contradicts our assumption and shows that the ansatz (5.9) does
not give rise to a one-instanton sector if α 6= 0. Conversely, a non-trivial
one-instanton sector exists for α = 0 only, which then fixes α = 0.

The one-instanton solution

The general one-dimensional solution in the one-instanton sector was given
in (5.14). The functions Gs(x) introduced there are defined by

Gs(x) = xs+1hs−1(x) ,

where hs(x) = js(x) + iys(x) are the spherical Bessel functions of the third
kind. For s ≥ 0 the Gs(x) have no poles, they read

G0(x) = eix , Gs>0(x) = 2−s eix
s∑

k=1

(2s− k − 1)!

(s− k)! (k − 1)!
(−2ix)k .

Using the properties

x2h′′s + 2xh′s +
[
x2 − s(s+ 1)

]
hs = 0 , h′s +

s+ 1

x
hs = hs−1 ,

we easily verify the relation

(∂2
x + 1)Gs(x) = 2sGs−1(x) .
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The proof of (5.14) is now simple:

(∂2
x + 1)f1,m(x) = Re

∑

s≥0

1

s! (−2)s
k1,m(s) (∂2

x + 1)Gs(x)

= −Re
∑

s≥1

1

(s− 1)! (−2)s−1
k1,m(s)Gs−1(x)

= −Re
∑

s≥0

1

s! (−2)s
k1,m(s+ 1)Gs(x)

= −Re
∑

s≥0

1

s! (−2)s

[
amk1,m−1(s) + bmk1,m−2(s)

]
Gs(x)

= − amf1,m−1(x) − bmf1,m−2(x) . (G.9)

For the general (u, v)-dependent solution given in (5.17), the proof is almost
identical.





H

The moment maps

In this appendix we will elaborate on the quaternionic geometry introduced
in section 1.4. Since we will apply the quaternionic geometry to supergrav-

ity we will call the coordinates φÂ, Â = 1, . . . , 4n with n the number of
hypermultiplets. For example, the quaternionic 1-forms are now expressed

as V a
i ≡ V a

i Â
dφÂ. We can rewrite the hyperkähler 2-forms of equation

(1.13) as

Kr =
i

2
GābV

b
i ∧ V̄ jā(τ r)i

j , (H.1)

with τ r the Pauli matrices, r = 1, 2, 3, i = 1, 2 and a, ā = 1, . . . , 2n. These
2-forms satisfy the quaternionic algebra (1.12). As in (1.15) we have the

SU(2) connection 1-form ωr = ωr
Â
dφÂ with SU(2) curvature1

Ωr ≡ dωr − 1

2
εrstωs ∧ ωt . (H.2)

In the conventions of [48, 49] we write the Einstein property as

RÂB̂ =
1

4n
GÂB̂R ,

with R the constant Ricci scalar. The relation between the SU(2) curvature
2-forms and the hyperkähler 2-forms (1.16) reads

Ωr = νKr with ν ≡ 1

4n(n+ 2)
R . (H.3)

The SU(2) curvature obeys

dΩr = εrstωs ∧ Ωt , (H.4)

1The convention for the SU(2) connection and curvature is chosen to be the same as e.g. in
[77]. With respect to [48, 49], our SU(2) connection is chosen (minus) twice the one in [48, 49],
and therefore also the SU(2) curvature is (minus) twice as large.
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compare with (1.14) and (1.16). For the potential we need the moment
maps. They are defined from2

Kr
ÂB̂
kB̂

I = DÂP
r
I = ∂ÂP

r
I − εrstωs

Â
∧ P t

I ,

where I labels the various isometries and DÂ is the SU(2) covariant deriva-
tive, as in (1.14). One can solve this relation for the moment maps which
yields [77]

P r
I = − 1

2nν
Kr

ÂB̂
DÂkB̂

I . (H.5)

In supergravity, the value of ν is fixed in terms of the gravitational coupling
constant. If we normalize the kinetic terms of the graviton and scalars in
the supergravity action as

e−1Lkin = − 1

2κ2
R(e) − 1

2
GÂB̂∂µφ

Â ∂µφB̂ , (H.6)

then local supersymmetry fixes ν = −κ2. This is in accordance with [48, 49]
and with [26] after a rescaling of the metric GÂB̂ with a factor 1/2. For the
universal hypermultiplet, we will work with conventions in which ν = −1/2,
so we set κ2 = 1/2 below. To compare with [77], we have to multiply the
Lagrangian (H.6) by 2 and then set κ2 = 2.

We now include the scalar potential that arises after gauging a single isom-
etry, so we can leave out the subscript I. The isometry can then be gauged
by the graviphoton and in the absence of any further vector multiplets, the
relevant terms in the Lagrangian are

e−1L = − 1

2κ2
R− 1

2
GÂB̂Dµφ

ÂDµφB̂ − V , (H.7)

the potential V is given by

V =
(
2κ−2GÂB̂ k

ÂkB̂ − 3 ~P · ~P
)
. (H.8)

Dµ is the covariant derivative with respect to the gauged isometry that

corresponds to the Killing vector kÂ. The factor of κ has to appear on
dimensional grounds. For κ2 = 2 this agrees precisely with the result in
[77], we will set κ2 = 1/2.
Our conventions are chosen such that they apply to the universal hyper-
multiplet metric and the conventions used in [32, 76]. At the classical level
we have

ds2 = GÂB̂ dφ
Â ⊗ dφB̂ = dφ2 + e−φ(dχ2 + dϕ2) + e−2φ(dσ + χdϕ)2 .

2Our definition of the moment map is the same as in [77]. This normalization is different
from [48, 49], and our moment maps are (minus) two times the ones defined in [48, 49].
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For the corresponding Ricci tensor we find

RÂB̂ = −3

2
GÂB̂ .

The Ricci scalar is then R = −6 and therefore we have ν = −1/2. This
implies that in these conventions we should set κ2 = 1/2, which is equiv-
alent to a cosmological constant Λ = −3/2, see (5.4) on the quaternionic
manifold. Note that the constant ν is identical to the λ introduced in
(1.16).

Quaternionic geometry of the PT metric

We present the quaternionic geometry of the UHM in the PT framework.
The quaternionic properties of the PT metric can be demonstrated by
constructing the corresponding quaternionic 1-form vielbeins which we pa-
rameterize as

V a
i =

(
ā −b̄
b a

)

.

Substituting this ansatz into (1.18) we obtain

ds2 = a⊗ ā+ b⊗ b̄+ c.c. . (H.9)

Comparing this expression with the PT metric (5.2) leads to

a =
1√
2 r

(
f1/2 dr + if−1/2 (dt+ Θ)

)
, b =

1√
2 r

(feh)1/2
(
du+ i dv

)
.

The computation of the quaternionic 2-forms (H.1) then yields

K1 = −i(a ∧ b− ā ∧ b̄) , K2 = a ∧ b+ ā ∧ b̄ , K3 = −i(a ∧ ā+ b ∧ b̄) .

These satisfy the quaternionic algebra (1.12). Using (H.3) and (H.4), we
then determine the SU(2) connection for the PT metric,

ω1 =
1

r
eh/2dv , ω2 =

1

r
eh/2du ,

ω3 = − 1

2r
(dt+ Θ) − 1

2
(∂vh du− ∂uh dv) .

The PT metric has a shift symmetry in t. In coordinates (r, u, v, t) the
corresponding Killing vector is given by

kA = ( 0 , 0 , 0 , e0 )T . (H.10)

The moment maps of this shift symmetry can be computed from (H.5).
The result is independent of the functions f , h, and Θ and reads

P 1 = 0 , P 2 = 0 , P 3 =
e0
r

. (H.11)





Samenvatting

De twintigste eeuw was een tijd van grote veranderingen voor de natuur- en
sterrenkunde. De ontwikkeling van de quantummechanica heeft ertoe geleid
dat we zeer kleine deeltjes (moleculen, atomen, etc.) kunnen beschrijven.
De elementaire deeltjes (elektronen, quarks, e.d.) en hun wisselwerkingen
worden beschreven door het zogeheten Standaard Model, dat gestoeld is
op de quantummechanica. Dit model werkt zeer goed en is bijna helemaal
door experiment geverifieerd. Er zijn nog enkele losse eindjes die hoogst-
waarschijnlijk met de nieuwe versneller in CERN (die op dit moment wordt
afgebouwd) zullen worden afgehandeld. Natuurlijk is er altijd ruimte voor
nieuwe ontdekkingen in de elementaire deeltjesfysica, maar we hebben nu
een heel behoorlijk begrip van deze fysica.

Aan de andere kant is er de kosmos die op grote schalen beschreven kan
worden met behulp van de befaamde ‘algemene relativiteitstheorie’ van
A. Einstein. Deze theorie beschrijft de werking van de zwaartekracht op
macroscopische schaal. Dit is dan ook waar we hem voor gebruiken, want
de zwaartekracht is zo zwak dat we hem op kleine schalen kunnen nege-
ren. Als we bijvoorbeeld een elektron op een positron schieten, kunnen we
met een gerust hart de zwaartekracht negeren, deze valt in het niet bij de
elektrische kracht. Het Standaard Model neemt de effecten van de zwaar-
tekracht dan ook niet in rekening.
Pas wanneer er objecten met grote massa in het spel zijn komt de relati-
viteitstheorie tot zijn recht. Als we bijvoorbeeld de loop van de planeten
om de zon precies willen beschrijven, of de bewegingen van sterrenstelsels
willen begrijpen moeten we de algemene relativiteitstheorie gebruiken.
En dit is nou ook juist de moeilijkheid met deze theorie: hij is niet ge-
schikt voor microscopische (lengteschalen waarop de quantummechanica
belangrijk is) afstanden. Er zijn namelijk situaties denkbaar in het heelal
waarvoor we juist een theorie nodig hebben die de quantummechanica en
de relativiteitstheorie in zich verenigt. Zo zijn er bijvoorbeeld de zwarte
gaten. Dit zijn regionen in het weefsel van de ruimte tijd die zo verwrongen
zijn dat niets eruit kan ontsnappen, zelfs licht niet. Deze objecten worden
voorspeld door de algemene relativiteitstheorie maar, zoals aangegeven,
deze theorie kan niet het laatste woord hebben over zwarte gaten omdat
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quantummechanische effecten waarschijnlijk ook een belangrijke rol in de
beschrijving van zwarte gaten zullen vervullen.

Er zijn wel meer knelpunten in ons begrip van het universum op te noemen.
Zo is het in het laatste decennium, dankzij de immer preciezer wordende
astronomische observaties, duidelijk geworden dat het heelal voor het over-
grote deel is gevuld met een voor ons onbekende energie en materie! Het
Standaard Model dat zo uitstekend werkt in de elementaire deeltjesfysica
biedt ons geen uitkomst, aangezien dit model nou juist de materie beschrijft
die we wel kennen.
Tijd voor een nieuwe theorie dus, een theorie die de quantummechanica
en de algemene relativiteitstheorie in zich verenigt. Een goede kandidaat
voor zo’n theorie is de ‘snaartheorie’. In plaats van als uitgangspunt punt-
deeltjes te nemen (zoals gebruikelijk in de quantummechanica en dus het
Standaard Model) gaat deze theorie van snaren uit. De trillingen van deze
snaartjes zijn op te vatten als elementaire deeltjes. Deze snaren zijn zo klein
(willen ze de mogelijkheid bieden quantummechanica en de zwaartekracht
te verenigen) dat men hun lengte nooit zal ervaren in een experiment.
Een zeer belangrijke eigenschap van de snaartheorie is dat het de quan-
tummechanica en de algemene relativiteitstheorie in zich kan verenigen.
Deze snaartheorie (‘string theory’) kan echter nog niet gebruikt worden om
processen mee te berekenen die we kunnen meten. Een reden hiervoor is
het feit dat snaartheorie in tien ruimte-tijd dimensies leeft, zes ruimte di-
mensies meer dan we gewend zijn. Het feit dat we maar vier (drie ruimte en
een tijd) dimensies ervaren, betekent niet dat er niet nog eens zes kunnen
zijn die we niet opmerken. Bijvoorbeeld omdat ze heel erg klein zijn, zo
klein dat we ze niet zien in experimenten en hun effecten verwaarloosbaar
zijn. Als we snaartheorie in tien dimensies beschouwen en vervolgens zes
dimensies heel klein maken (‘compactificeren’) krijgen we snaartheorie in
vier dimensies. Het is bekend wat de vierdimensionale effectieve theorie
is die men krijgt voor (zekere) compactificaties van de tiendimensionele
snaartheorie naar vier dimensies.
Iets wat minder goed bekend is, is het volgende. De naam snaartheorie is
enigszins misleidend aangezien het tien jaar geleden duidelijk is geworden
dat de theorie behalve uit snaren ook uit hoger dimensionale objecten be-
staat, genaamd branen. Denk bijvoorbeeld aan een (grote) zakdoek, deze
heeft twee ruimte dimensies (een zogenaamd ‘membraan’ dus) in plaats van
een zoals de snaar heeft. Deze branen hebben zo hun eigen effecten op de
tien-dimensionale fysica. De effecten van de branen zijn sterk wanneer die
van de snare zwak zijn en omgekeerd.
Dit betekent dat wanneer we snaartheorie naar vier dimensies compac-
tificeren we ook het effect van die branen moeten berekenen. Dit is geen
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sinecure. Het is echter wel precies wat we hebben gedaan in dit proefschrift,
voor een bepaald model. We hebben snaartheorie naar vier dimensies ge-
compactificeerd door zes dimensies heel klein te maken. De resulterende
vierdimensionale effectieve theorie is een gëıdealiseerde versie van meer rea-
listische theorieën, zoals het Standaard Model. Dit betekent dat de theorie
makkelijker is om mee te werken, maar de behaalde resultaten bieden wel
inzicht in soortgelijke berekeningen in moeilijkere theorieën.
Vervolgens hebben we bepaalde branen in tien dimensies genomen en geke-
ken wat hun effect op de vierdimensionale fysica is. Aangezien we nog nooit
elementaire braanachtige objecten in experimenten zijn tegengekomen ei-
sen we van deze branen dat ze zich beperken tot de klein gemaakte zes
dimensies. De effecten van deze branen op de effectieve vierdimensionale
theorie hebben we berekend. Tot slot hebben we ook aangetoond dat de
effecten van (sommige) branen op de vierdimensionale theorie belangrijke
implicaties hebben voor de beschrijving van het universum op grote schaal.
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[127] P. Fré, L. Girardello, I. Pesando, and M. Trigiante, “Spontaneous
N = 2 −→ N = 1 local supersymmetry breaking with surviving compact gauge
groups” Nucl. Phys. B493 (1997) 231–248, hep-th/9607032.
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