Absorption and emission spectroscopy in Er\(^{3+}\)–Yb\(^{3+}\) doped aluminum oxide waveguides

The spectroscopic properties of Al\(_2\)O\(_3\) waveguides ion-implanted with Er\(^{3+}\) and Yb\(^{3+}\) are investigated in view of their application in optical amplifiers operating at 1530 nm. Absorption cross sections are obtained by means of waveguide transmission experiments, taking into account the overlap between optical mode and doped region of the waveguide. Emission cross sections for the Er\(^{3+}\):\(^4\)I\(_{13/2}\) and Yb\(^{3+}\):\(^2\)F\(_{5/2}\) levels are calculated from the absorption cross sections. The rate constant for energy transfer between Yb\(^{3+}\) and Er\(^{3+}\) under excitation around 980 nm is estimated by emission intensity and decay rate measurements. It amounts to approximately 3.6 \(\times\) 10\(^{-17}\) cm\(^3\)/s for concentrations of 0.29 at.% erbium and 0.28 at.% ytterbium.
Erbium-doped amplifiers are by now an indispensable element in optical fibre telecommunications systems. They are able to provide high gain in the spectral region around 1530 nm, where silica fibres have their transmission maximum. In the field of miniature integrated optics, erbium-doped waveguide amplifiers (Kitagawa et al., 1992; Ghosh et al., 1996; van den Hoven et al., 1996a; van Weerden et al., 1997; Yan et al., 1997) have proven their ability to provide optical gain over short distances. The first generation of integrated amplifiers used mainly laser diodes emitting at 1480 nm for optical pumping. Under this excitation scheme, the metastable $^4I_{13/2}$ level of the erbium ions is excited directly into its high-lying Stark states. The ions act as a quasi three-level laser system, which limits the population inversion with respect to the ground state to roughly 40% (corresponding to a population in the first excited state of 70%) because of stimulated emission by pump radiation. On the other hand, when pumping into the second excited state $^4I_{11/2}$ using 980 nm radiation, a population inversion between metastable level and ground state of close to 100% can be obtained.

This second excitation scheme of Er$^{3+}$ in waveguide amplifiers requires considerably higher intensities, since the absorption cross section of the $^4I_{11/2}$ state is small. The excitation cross section of Er$^{3+}$ around 980 nm can however be increased by co-doping with ytterbium (cf. figure 4.1 for a schematic of the process). The absorption cross section of Yb$^{3+}$ at 980 nm is about an order of magnitude larger than that of Er$^{3+}$, and its absorption band extends over a wider wavelength region, between 850 nm and 1000 nm. From Yb$^{3+}$ the energy is then transferred resonantly to the $^4I_{11/2}$ state of Er$^{3+}$. This energy transfer has been investigated in a wide range of materials, both glassy and crystalline (see e.g. Artem’ev et al. (1981); Zandi et al. (1994); Simondi-Teisseire et al. (1996); Hehlen et al. (1997); Cantelar et al. (1998)). Based on this excitation scheme, an integrated amplifier in phosphate glass has been reported (Delavaux et al., 1997).

Important characteristics of amplifier materials are the optical absorption and emission cross sections of the dopants. They determine, in conjunction with the efficiency of the energy transfer between Yb$^{3+}$ and Er$^{3+}$, the maximum gain and pumping efficiency of an amplifier. The cross sections of rare earth ions are too small to be easily obtained by standard normal-incidence spectroscopy in thin film structures. Transmission experiments through waveguides increase the interaction length of the light with the dopant ions, and therefore the total absorbance. For samples where only the guiding region is doped, several research groups have shown that absorbance spectra of the dopants can be obtained in this way (Lázaro et al., 1998; Orignac et al., 1999), yet the results are all of a qualitative nature.

In this chapter, we will investigate the absorption and emission properties of Er$^{3+}$ and Yb$^{3+}$ in Al$_2$O$_3$. Aluminum oxide has already been reported as a suitable host medium for Er$^{3+}$-doped optical waveguide amplifiers (van den Hoven et al., 1996a). It has also been shown that in this material energy transfer between Yb$^{3+}$ and Er$^{3+}$ (Chryssou et al., 1998) takes place. We need to obtain, however, quantitative data that will allow us to estimate whether ytterbium codoping will lead to an
Absorption and emission spectroscopy in Er$^{3+}$–Yb$^{3+}$ doped aluminum oxide waveguides

4.1 Sample preparation and characterisation techniques

Aluminum oxide films were deposited on thermally oxidized silicon wafers by RF-sputtering (Smit et al., 1986; Smit, 1991). The thickness of the Al$_2$O$_3$ and SiO$_2$ layers was 500 nm and 5 μm respectively. Erbium and ytterbium were introduced into the Al$_2$O$_3$ film by ion implantation at energies ranging from 1800 keV to 200 keV, creating a flat dopant profile throughout most of the film. The dopant concentrations were determined by Rutherford Backscattering Spectrometry (RBS) and amount to $3.35 \cdot 10^{20}$ Er/cm3 (0.29 at.%) and $3.28 \cdot 10^{20}$ Yb/cm3 (0.28 at.%). Besides the sample doped with erbium and ytterbium, samples containing only erbium or ytterbium were deposited.
prepared. For reference purposes, a piece was kept unimplanted.

Straight waveguides of widths ranging from 1 \(\mu \)m to 3.5 \(\mu \)m were defined by standard photolithographic techniques. Ridges were etched to a depth of approximately 200 nm with an argon atom beam. Subsequently a cover layer of 1.35 \(\mu \)m SiO\(_2\) was sputtered onto the waveguides. The samples were cut to a length of 8 mm and the cleaved edges were mechanically polished. Finally they were annealed in vacuum for an hour at 775 °C.

The exact shape of the waveguides was determined using Scanning Electron Microscopy on typical waveguide samples before the deposition of the cover layer. The acceleration voltage for these measurements was 15 kV.

Waveguide transmission measurements were performed by coupling white light from a halogen lamp into one facet of a waveguide with the help of a lensed fibre. The transmitted signal was collected at the output facet with a 40 x microscope objective and imaged onto the tip of a fibre with a core diameter of 600 \(\mu \)m. The collected light was dispersed in a 96 cm monochromator and detected with a thermoelectrically cooled AgOCs photomultiplier tube in the spectral region between 400 nm and 1100 nm, and with a liquid nitrogen cooled germanium detector in the region from 1100 nm to 1700 nm. Standard lock-in techniques were used to decrease the noise level. The wavelength resolution of these measurements was approximately 3 nm.

To obtain photoluminescence spectra and decay curves of Er\(^{3+}\) and Yb\(^{3+}\), the ions were excited with a continuous wave titanium sapphire laser, tunable in the range from 890 nm to 1030 nm. The pump radiation was mechanically chopped and coupled into the waveguide from an optical fibre. The photoluminescence signal was detected perpendicular to the waveguide through the top cladding using a fibre with an 600 \(\mu \)m core. The detection system was the same as described above. The AgOCs photomultiplier tube was used to measure the Yb\(^{3+}\) emission at wavelengths around 1000 nm, and the germanium detector to measure the photoluminescence of Er\(^{3+}\) around 1530 nm. Decay curves for the Er\(^{3+}\) emission were recorded using a digital oscilloscope, for the Yb\(^{3+}\) emission using a photon counting system. The time response of the detection set-up was 40 \(\mu \)s. Special care has been taken to ensure that all measurements were performed at excitation densities where both the Yb\(^{3+}\) and Er\(^{3+}\) emission intensities are directly proportional to pump power.

To obtain a calibration of the photoluminescence intensity at 1530 nm of erbium-only and erbium-ytterbium doped Al\(_2\)O\(_3\) relative to each other under 980 nm excitation, spectra of the \(^4I_{13/2}\) emission were taken in standard photoluminescence geometry: the excitation beam was incident onto the sample surface under an angle of 30°, and the emitted light was focussed onto the entrance slit of the monochromator.

4.2 Waveguide transmission measurements

The transmission of a 3.5 \(\mu \)m wide waveguide doped with Er\(^{3+}\) and a 2.5 \(\mu \)m wide waveguide doped with Yb\(^{3+}\) was measured as a function of wavelength. As reference served the spectrum of transmitted intensity through an undoped waveguide. In this
way the effects of absorption by the rare earths can be extracted from a signal which also contains the effects of the waveguiding properties of the structure itself. Since scattering effects can be excluded in this way, the transmission data is converted to absorbance assuming a Lambert-Beer dependency. The absorption cross section is related to the absorbance through

\[\sigma_{\text{abs}}(\lambda) = \frac{A(\lambda)}{\eta_{\text{overlap}}(\lambda) \cdot N_{\text{abs}} \cdot l} \] \hspace{1cm} (4.1)

where \(\sigma_{\text{abs}} \) is the absorption cross section, \(A \) the absorbance, \(\eta_{\text{overlap}} \) the overlap between waveguide mode and doped region, and \(N_{\text{abs}} \) and \(l \) the concentration of the dopant and the length of the waveguide respectively.

To obtain absolute values for the absorption cross section in waveguide transmission measurements, it is important to know the exact cross section of the waveguide and the development of the mode shape with wavelength over the range investigated. Figure 4.2 shows a Scanning Electron Microscope image of the cross section of a nomi-
CHAPTER FOUR

FIGURE 4.3: Absorption cross section of Er$^{3+}$ obtained from waveguide transmission experiments. Transitions are from the ground state to the indicated excited states. The absorption of the $^4I_{9/2}$ level was below the sensitivity of our measurement. Note that the absorption cross section in the wavelength range 475 nm to 560 nm has been reduced by a factor of two.

Finally, 2 µm wide waveguide. Included is a contour profile of the fundamental mode for 980 nm radiation calculated numerically using a finite difference algorithm. Although the image shows a waveguide without the SiO$_2$ cover layer for better contrast, the calculation has been performed taking account of the final geometry including the cover layer. For all waveguide widths used in the transmission measurements, mode profiles were calculated for several wavelengths, taking into consideration the dispersion of SiO$_2$ and Al$_2$O$_3$. The calculated profiles were approximated by two-dimensional Gaussian functions, and integrated over the dopant profile, measured by Rutherford Backscattering Spectrometry, and the waveguide profile to obtain the overlap η_{overlap}. A second order polynomial was used to phenomenologically describe the functional dependence of η_{overlap} with wavelength.

Although great care was taken to ensure that only the fundamental mode was present, it is possible that higher order modes propagate in the waveguide during measurement. These higher order modes have a smaller overlap with the doped core of the waveguide than the fundamental mode, reducing their modal absorption. Therefore, for accuracy, the values we calculate from the transmission data have to be seen as lower limits to the real absorption cross sections.
Figure 4.3 shows the absorption cross section of Er\(^{3+}\) in the Al\(_2\)O\(_3\) waveguides determined as described above. All energy levels up to \(^{4}\)I\(_{9/2}\) are given, and marked in the figure, except the \(^{4}\)I\(_{9/2}\) level, expected around 800 nm, whose absorbance was below the accuracy of our measurement. The highest absorption cross section occurs at 521 nm, belonging to the \(^{2}\)H\(_{11/2}\) level. The error on the peak cross section in this case amounts to \(1 \cdot 10^{-20}\) cm\(^2\), considerably larger than the error on the other absorption cross sections, since the intensity of the transmitted light is close to zero at that wavelength. The peaks around 600 nm are caused by noise in the measurement and can serve as an indication for the accuracy of the cross section values. Note that in figure 4.3 the absorption cross sections in the wavelength range 475 nm to 560 nm have been reduced by a factor of two. The peak cross sections for the individual energy levels are listed in table 4.1.

The measured absorption cross section of the Yb\(^{3+}\) \(^{2}\)F\(_{5/2}\) level is depicted in figure 4.4. At its peak, the ytterbium absorption cross section is seven times larger than the absorption cross section of the Er\(^{3+}\) \(^{4}\)I\(_{11/2}\) level. In the following section we will show that this high cross section can be used to advantage to increase the excitation rate of Er\(^{3+}\) by energy transfer from Yb\(^{3+}\). The determination of the cross sections from these waveguide transmission measurements is validated by the close correspondence between the absorption cross section values of the Er\(^{3+}\) \(^{4}\)I\(_{13/2}\) level
CHAPTER FOUR

TABLE 4.1: Peak absorption and emission cross sections in Al₂O₃ for Er³⁺ and Yb³⁺ energy levels. Absorption of the given levels originates from a ground state transition of the ion, emission involves a transition to the ground state.

<table>
<thead>
<tr>
<th>Ion</th>
<th>Energy level</th>
<th>λ<sub>peak</sub> [nm]</th>
<th>σ<sub>abs</sub> [10⁻²¹ cm²]</th>
<th>σ<sub>em</sub> [10⁻²¹ cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er³⁺</td>
<td>⁴I₃/₂</td>
<td>1529.0</td>
<td>5.7 ± 0.7</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>⁴I₁₁/₂</td>
<td>980.5</td>
<td>1.7 ± 0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⁴I₉/₂</td>
<td>< 0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>⁴F₀/²</td>
<td>652.0</td>
<td>4.0 ± 0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⁴S₃/₂</td>
<td>545.5</td>
<td>2.9 ± 0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>²H₁₁/₂</td>
<td>521.5</td>
<td>27.6 ± 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⁴F₇/₂</td>
<td>487.0</td>
<td>3.7 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>Yb³⁺</td>
<td>²F₅/₂</td>
<td>974.5</td>
<td>11.7 ± 1.0</td>
<td>11.6</td>
</tr>
</tbody>
</table>

obtained here and previously by prism coupling (van den Hoven et al., 1997).

Using the measured absorption cross sections, emission cross sections from the Er³⁺ ⁴I₃/₂ and Yb³⁺ ²F₅/₂ levels to the corresponding ground states were calculated using the theory developed by McCumber (1964) as applied to rare earth ions by Miniscalco and Quimby (1991). Since in both cases the measured cross sections in the wings of the absorption lines are not sufficiently accurate to calculate the emission cross sections, we scaled the photoluminescence emission spectra of the relevant transitions to the value of the cross section calculated at their peak. As an example the emission cross section of Yb³⁺ is included in figure 4.4. Numerical values of the cross section maxima are given in table 4.1.

4.3 Energy transfer

The effect of ytterbium codoping on the photoluminescence of Er³⁺ is depicted in figure 4.5. Two spectra of the emission from the ⁴I₃/₂ level of Er³⁺ are shown. The more intense one originates from the sample doped with erbium and ytterbium, the weaker one from the sample doped only with erbium. The photoluminescence was excited under identical conditions using radiation at 975 nm. On ytterbium codoping, the photoluminescence is increased sixfold. The lineshape of the emission remains unchanged by the introduction of ytterbium into the sample, as does the decay rate of the ⁴I₃/₂ level, measured at 1533 nm to be 625 s⁻¹.

To obtain a qualitative impression of the excitation mechanism, we have monitored the photoluminescence from the Er³⁺ ⁴I₃/₂ line as a function of excitation wave-
Absorption and emission spectroscopy in Er$^{3+}$–Yb$^{3+}$ doped aluminum oxide waveguides

FIGURE 4.5: Comparison of photoluminescence emission spectra of the Er$^{3+}$ $4I_{13/2}$ level in samples doped with erbium and with ytterbium and erbium. The emission is enhanced by a factor of six on ytterbium codoping under identical excitation conditions ($\lambda_{\text{excitation}} = 975$ nm, $I_{\text{excitation}} = 0.5$ W/cm2).

length between 890 nm and 1030 nm. Care was taken to optimize the coupling of the excitation light into the waveguide for all wavelengths used. The excitation spectra of samples doped with erbium and erbium-ytterbium are shown in figure 4.6. In the sample without ytterbium, erbium can only be excited in a narrow band centred at 975 nm and extending from 955 nm to 1000 nm. This band resembles the erbium absorption cross section shown in figure 4.3. In contrast, when the sample is codoped with ytterbium, an identical emission at 1532 nm can be excited over a much wider wavelength range, with a sharp peak at 975 nm. This peak is a characteristic of the Yb$^{3+}$ $2F_{5/2}$ absorption. The excitation spectrum of the erbium emission from the ytterbium codoped sample is replotted in figure 4.7, to compare it with the absorption cross section from figure 4.4. From the fact that both spectra show the same features, we can conclude that the pump radiation is mainly absorbed by Yb$^{3+}$. Energy transfer from Yb$^{3+}$ to Er$^{3+}$ then takes place as depicted in figure 4.1. Since the absorption line of Yb$^{3+}$ extends even to shorter wavelengths than were accessible in our experiment, excitation of Er$^{3+}$ emission is not limited to the wavelengths shown in the plot. Chryssou et al. (1998) have measured the excitation spectrum of Er$^{3+}$ in erbium-ytterbium codoped Al$_2$O$_3$ between 760 nm and 850 nm, which we extend here to longer wavelengths. The fact that excitation of the Er$^{3+}$ is possible even when ex-
FIGURE 4.6: Excitation spectra of the Er$^{3+}{}^4I_{13/2}$ emission from erbium doped Al$_2$O$_3$ and erbium-ytterbium codoped Al$_2$O$_3$.

FIGURE 4.7: Comparison of the excitation spectrum of the erbium emission at 1530 nm and the absorption cross section of Yb$^{3+}$ obtained by waveguide transmission experiments.
Absorption and emission spectroscopy in Er\(^{3+}\)–Yb\(^{3+}\) doped aluminum oxide waveguides

Citing outside the Er\(^{3+}\) \(4I_{11/2}\) absorption band is evidence for a thermalisation process within the ytterbium system, possibly involving migration of excitation.

The ratio of the Er\(^{3+}\) emission intensity in the Er-doped and Er/Yb-codoped samples (compare figure 4.6) contains information about the efficiency of the energy transfer process. The rate equations in the limit of low excitation density according to the schematic figure 4.1 are:

\[
\begin{align*}
\frac{dN_b}{dt} &= \sigma_{ab} \Phi_p N_{Yb} - W_b N_b - C_{tr} N_b N_{Er} \\
\frac{dN_2}{dt} &= \sigma_{02} \Phi_p N_{Er} + C_{tr} N_b N_{Er} - W_2 N_2 \\
\frac{dN_1}{dt} &= W_{21} N_2 - W_1 N_1
\end{align*}
\] (4.2)

In these equations \(N_1\) and \(N_2\) represent the population densities of the first and second excited states of Er\(^{3+}\), and \(N_b\) the population density in the excited state of Yb\(^{3+}\) (cf. the labels in figure 4.1), while \(N_{Er}\) and \(N_{Yb}\) are the total erbium and ytterbium concentrations. \(\sigma_{ab}\) and \(\sigma_{02}\) signify the absorption cross sections of Yb\(^{3+}\) and Er\(^{3+}\) at the excitation wavelength, respectively. \(W_1\), \(W_2\), and \(W_b\) represent the total decay rates of the corresponding levels in the absence of energy transfer, \(W_{21}\) is the transition rate from the \(4I_{11/2}\) to \(4I_{13/2}\) level in Er\(^{3+}\), and \(C_{tr}\) the energy transfer coefficient. \(\Phi_p\) is the photon flux density of the exciting radiation. The rate equations in absence of ytterbium are easily obtained by setting \(N_{Yb}\) and \(N_b\) zero.

\(C_{tr}\) is an effective energy transfer coefficient including forward and back energy transfer. As long as the populations of the Yb\(^{3+}\) \(2F_{5/2}\) and Er\(^{3+}\) \(4I_{11/2}\) levels are linear functions of excitation power, \(C_{tr}\) is independent of pump photon flux.

In steady state, the populations of the Er\(^{3+}\) \(4I_{13/2}\) level are given by

\[
\begin{align*}
N_{1}^{ErYb} &= \frac{W_{21}}{W_2 W_1} \left(\frac{\sigma_{02} N_{Er}}{W_b + C_{tr} N_{Er}} \right) \sigma_{ab} N_{Yb} \Phi_p \\
N_{1}^{Er} &= \frac{W_{21}}{W_2 W_1} \frac{\sigma_{02} N_{Er} \Phi_p}{\sigma_{02} N_{Er}}
\end{align*}
\] (4.3)

following rate equations (4.2). Here the superscripts \(ErYb\) and \(Er\) denote the cases with ytterbium codoping and without, respectively. Assuming the radiative decay rate of the Er\(^{3+}\) \(4I_{13/2}\) level is not changed on codoping with Yb\(^{3+}\), which is reasonable considering that the decay rate of the erbium emission does not change, the ratio \(R\) of the erbium emission intensity is given by the ratio of populations in the first excited state.

\[
R = \frac{N_{1}^{ErYb}}{N_{1}^{Er}} = 1 + \frac{C_{tr} N_{Er}}{W_b + C_{tr} N_{Er}} \frac{\sigma_{ab} N_{Yb}}{\sigma_{02} N_{Er}}
\] (4.4)

The term \((C_{tr} N_{Er})/(W_b + C_{tr} N_{Er})\) is the transfer efficiency, which can be obtained from equation (4.4) since all other parameters are known (\(R\) from figure 4.6, \(\sigma_{ab}\) and
FIGURE 4.8: Decay traces of the Yb\(^{3+}\) emission at 976 nm in ytterbium-doped and erbium/ytterbium-codoped Al\(_2\)O\(_3\), excited with 921 nm radiation. The increase in decay rate on codoping with erbium reflects the energy transfer from Yb\(^{3+}\) to Er\(^{3+}\).

The energy transfer efficiency can be estimated independently from the Yb\(^{3+}\) \(^{4}\)F\(_{5/2}\) decay rate. Figure 4.8 shows the Yb\(^{3+}\) decay traces of a reference sample doped only with ytterbium and of the codoped sample. For these measurements, the photoluminescence was excited at 921 nm and monitored at 976 nm. The faster decay of the codoped sample is caused by the fact that the energy transfer towards Er\(^{3+}\) constitutes an additional decay channel for the excited state of Yb\(^{3+}\). The absence of a detector response time-limited step in the decay traces at \(t = 0\) shows that decay components faster than the detector response are negligible. For single exponential decays, the energy transfer rate is simply given by

\[
W_{tr} = C_{tr}N_{Er} = W^{YbEr} - W^{Yb} \tag{4.5}
\]

Here \(W_{tr}\) represents the transfer rate from Yb\(^{3+}\) to Er\(^{3+}\), and \(W^{YbEr}\) and \(W^{Yb}\) the measured Yb\(^{3+}\) \(^2\)F\(_{5/2}\) decay rates in the codoped and Yb-doped samples, respectively. Both decay traces in figure 4.8, however, are multi-exponential, which has to be taken into account when calculating the transfer rates by using correct weights for...
the contributions to intensity of ions with different photoluminescence properties. A transfer efficiency of 0.68 ($C_{tr} = 4 \cdot 10^{-17} \text{ cm}^3/\text{s}$) is obtained, in close correspondence to the value calculated from equation (4.4).

4.4 Summary

In this article we have studied the spectroscopic properties of Al$_2$O$_3$ waveguides doped with Er$^{3+}$ and Yb$^{3+}$. The important parameters for application of these waveguides as optical amplifiers in the spectral region around 1530 nm are the absorption and emission cross sections of Er$^{3+}$ and Yb$^{3+}$, and the rate of the energy transfer between Yb$^{3+}$ and Er$^{3+}$.

By measuring the transmission through waveguides doped with Er$^{3+}$ and Yb$^{3+}$ we have been able to obtain absorption cross section data for most of the absorption lines of the two dopant ions in the spectral region between 400 nm and 1700 nm. Important for our procedure are an exact knowledge of the waveguiding structure and the development of the optical mode size with wavelength. From the absorption cross section of the Er$^{3+}$ 4$I_{13/2}$ and Yb$^{3+}$ 2$F_{5/2}$ states, the emission cross sections of these energy levels were obtained by application of McCumber theory.

The energy transfer was investigated by both photoluminescence intensity measurements of the 4$I_{13/2}$ level of Er$^{3+}$ and by decay rate measurements of the 2$F_{5/2}$ level of Yb$^{3+}$. The photoluminescence excitation spectrum of the Er$^{3+}$ 4$I_{13/2}$ emission around 1530 nm of erbium-ytterbium codoped Al$_2$O$_3$ resembles the Yb$^{3+}$ 2$F_{5/2}$ absorption line under excitation in the wavelength range between 890 nm and 1030 nm. This is clear evidence of energy transfer from Yb$^{3+}$ to Er$^{3+}$. By ytterbium codoping, the Er$^{3+}$ 4$I_{13/2}$ emission intensity is enhanced by a factor of six when excited at 975 nm. The rate coefficient for energy transfer between the Yb$^{3+}$ 2$F_{5/2}$ and the Er$^{3+}$ 4$I_{11/2}$ states amounts to approximately $3.6 \cdot 10^{-17} \text{ cm}^3/\text{s}$.