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Chapter 1

Introduction

It is not enough for a wise man to study na-
ture and truth; he should dare state truth for
the few who are willing and able to think. As
for the rest, who are voluntarily slaves of preju-
dice, they can no more attain truth, than frogs
can fly.

Julien Offray de la Mettrie, Man a Machine

The science of linguistics is concerned with discovering and defining the
form and structure of natural languages, and focuses on issues in the fields
of e.g. syntax, semantics and pragmatics. In contrast, the study of language
acquisition is concerned with the question of how and when children master
the thing linguistics sets out to define. All normal children learn the language
they are exposed to, the so called ambient language. The task of getting from a
necessarily limited range of input to (implicit) knowledge of the complete adult
grammar is known as the projection problem (Peters (1972)) or the logical
problem of language acquisition (Hornstein and Lightfoot (1981); Baker and
McCarthy (1981)).

Most linguists are convinced that the projection problem implies the exis-
tence of a substantial innate component of linguistic knowledge. They believe
that the gap between the evidence available to the child and the linguistic
competence the child ultimately achieves is so great that language acquisition
can only be accounted for if we assume that children have access to some kind
of linguistic knowledge. This innate knowledge is generally called universal
grammar.1

Ever since Chomsky’s review of Skinner’s Verbal Behavior (Chomsky (1959))
the notion of explanatory adequacy, defined from the viewpoint of acquisition,
has been a major goal in syntactic theory. Any syntactic theory is required in

1The role of universal grammar in language acquisition was discussed in the influential
Chomsky (1965a).
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the end to account for how acquisition is possible given the ambiguous relation
between sentence and grammar. In other words, any proposed characterization
of the class of all possible natural languages must have the property of being
learnable.

Even though the term learnable has since then frequently been used in
informal linguistic discourse, it is very seldom clear what exactly it is intended
to signify. Instead vague terms like ‘poverty of the stimulus’, and biological
metaphors like ‘language organ growth’ are used in generativist discourse to
defend some kind of nativist theory of acquisition that presumably renders
learnability issues irrelevant. Most critics of this approach use arguments on a
similar informal level, emphasizing the existence of ‘data-driven’ and ‘general’
learning mechanisms, with either no or ad-hoc justifications for such claims,
and quite often displaying complete ignorance of linguistic fact. It seems that
proponents on both sides see themselves as defending either the rationalist or
empiricist tradition in western philosophy, i.e. they are involved in a form of
the age-old nature/nurture debate.

We will not concern ourselves with these issues in this thesis.2 Instead,
we will focus on the question of learnability from a formal point of view; we
apply Gold’s mathematical model of learning known as identification in the
limit. More specifically, we will take as starting point the results presented
in Kanazawa (1998), where Gold’s was model applied to work by Wojciech
Buszkowski and Gerald Penn. These results were obtained from a synthesis
of formal learning theory, classical categorial grammar (CCG),3 and learning
algorithms based on unification.4

One can regard this type of research as belonging to the field of mathe-
matical linguistics, which has two separate objects of study; the mathematical
properties of natural language and the mathematical properties of theories
about natural language. This thesis is clearly concerned with the latter kind of
research, we will make no claims about psychological plausibility for example.

In the influential Gold (1967) the concept of identification in the limit was
applied to the language classes in the Chomsky hierarchy.5 In this model of
(language)6 learning a learning function receives an endless stream of sentences

2There are of course links between philosophy and formal learning theory. In Kelly et al.
(1994) it is pointed out that Putnam invented computational learning theory in a critique
of Carnap’s confirmation theory, and in Kelly and Glymour (1992) it is argued (somewhat
frivolously) that Plato was the first computational learning theorist.

3The abbreviation CCG is commonly used for combinatory categorial grammar. Since we
will be discussing both classical and combinatory systems however, we will use notation from
Kanazawa (1998). We reserve the acronym GCG, which is short for General Combinatory
Grammars, for the combinatorial type of system. We trust this will not lead to confusion.

4Unification, in all its forms, seems to be a good starting point when designing algorithms
for learning grammars in a lexicalized linguistic formalism, see Nicolas (1999).

5This is a good occasion to dismiss a common misconception: Gold did not introduce this
concept. As is pointed out in the article itself, identification in the limit was discussed before
in the pattern recognition literature, and Aizerman et al. (1964) is cited. To the best of the
author’s knowledge, the earliest (formal) work in this direction was Moore (1956).

6In this model languages are considered to be simply sets of sentences. In formal language
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from the target language, called a text, and hypothesizes a grammar for the
target language at each time-step.

A class of languages is called learnable if and only if there exists a learning
function that guesses the right language on every text for every language from
that class after the presentation of a finite number of sentences and does not
deviate from this hypothesis. Note that the learner may not be aware of its
success,7 and that no claim is made about processes internal to the learner, only
an external criterion for succes is given. However, using recursion theoretic
methods it is possible to obtain results about these internal processes, given
external criteria.

Gold’s early work was and is widely known among linguists, it is cited in
Chomsky (1981), and Pinker (1979), for example. References to later work
in the field can be found in for example Chomsky (1986) (notes 86 and 89,
Chapter 3), in Chomsky (1980), papers reprinted in Lasnik (1990), a chapter
in the introductory book on acquisition Atkinson (1992), or Bertolo (2001).8

The most important result was considered to be the proposition that no
superfinite class (any class containing all finite languages and at least one in-
finite language) is learnable from positive data. Since all non-trivial classes in
the Chomsky-hierarchy are superfinite this result was interpreted as showing
that identification in the limit is just ‘too hard’ and thus a trivial model of
learning. It seems that this result has even been advanced as strong evidence
for the existence of a nativist Universal Grammar. In hindsight this seems hard
to understand, since few linguists would claim that there are finite natural lan-
guages, let alone that all finite languages are natural languages. It is also true
that the Chomsky-hierarchy is just one of many different ways of classifying
languages, there are other ways that are better suited to visualize properties
related to learnability, as we shall see in Section 2.4.

It seems that formal learning theory has had little impact on (mainstream)
linguistics.9 In fact, it seems that most linguists are not familiar with learning
theoretic work after Gold (1967). After Gold’s (supposedly)10 negative results,

theory sentences are often called words, and all the elements found in words for a given
language form the alphabet of that language.

7A variant of this criterion has been studied where it is demanded that the learner signal
its own convergence, this is known as finite identification. Gold cites Gill (1961), and there
seems to be other work from the same period discussing this variant.

8The reader should exercise great caution when dealing with these informal discussions!
9The results by Wexler, Hamburger and others collected in Wexler and Culicover (1980)

are a notable exception.
Work by Angluin, Angluin (1980b), has inspired the claim that the so-called subset-

principle is a necessary condition for learnability in Berwick (1982, 1985). See Kapur et al.
(1993) for a critical discussion.

10These results could also be considered positive, in the sense that they show that learn-
ability considerations impose non-trivial constraints on what the class of human languages
looks like. Learning theory could therefore be a very useful tool for any researcher interested
in human language. To give one example, in Osherson et al. (1984) it was shown that the
assumption that the data a child encounters is noisy (that is, contains a finite amount of un-
grammatical sentences and (systematically) omits a finite number of grammatical sentences)
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subsequent work showed that highly expressive non-trivial learnable classes ex-
ist. In the seventies (sometimes referred to as the Dark Age of formal learning
theory) people like Bārzdiņš, Freivald, Wiehagen and Jantke worked mostly
on characterizing learnable classes under different learning criteria, most of
this work was published in German or Russian. Work by Angluin in the early
eighties rekindled interest in the paradigm. She presented non-trivial learn-
able classes that cross-cut the Chomsky Hierarchy, demonstrating that the
pessimism following Gold’s earlier results was due to misinterpretation. To get
an impression of the power of identification in the limit, see Subsection 2.3.1.

Although numerous impressive results were obtained during the eighties
and nineties, deepening our understanding of identification in the limit, the
impact of formal learning theory on linguistics was still almost negligable. The
focus in formal learning theory is on general results within the highly theoretic
framework of recursion theory, whereas most linguists seem to be after highly
specific results applicable only to one particular type of formalism (c.f. Wexler
and Culicover (1980)).

To bridge this gap, concrete examples of learnable classes are required that
are expressed in linguistically relevant grammar formalisms. Some work in
this direction has been done; in Shinohara (1990a,b) it was shown that the
languages generated by context-sensitive grammars with a bounded number of
rules can be identified from positive data. This result follows from more general
results on monotonic systems11 based on a formalism called Elementary Formal
System (EFS, see Smullyan (1961)). These results suggest that monotonicity of
the grammar formalism is a desirable property when dealing with learnability
issues in linguistics. This paradigm will be discussed in Section 2.5.

Once a class has been shown to be learnable, the question arises how hard it
is to learn languages from that class. This question is difficult to answer since
there is no generally accepted definition of tractability for Gold’s paradigm.12

It turns out that this raises all sorts of interesting questions, which will be
discussed in Section 2.9. We motivate the choice for a necessary condition for

restricts the space of learnable classes to finite classes. They also showed that the assumption
that the class of all humanly learnable languages is of finite size (common in generative ling-
uistics) does not by itself yield a learnable class: classes exist that contain just two languages
that are not learnable with this type of noisy input. Thus the notion that assuming finite
variation for natural languages trivializes learnability is shown to be a misconception.

11In a monotonic system it is always the case that for any two grammars G and G′ such
that G ⊆ G′, the language associated with G is a subset of the language associated with
G′. Very informally this could be described as ‘adding rules to a grammar will never block
derivations that were previously accepted’.

12The learning paradigm known as Probably Approximately Correct (PAC) learning (in-
troduced in Valiant (1984)) has the notion of efficiency built right into its definition of
learnability, and (maybe) partly because of this it has been much more widely applied than
Gold’s paradigm. A thorough discussion of PAC learning is outside the scope of this thesis.
The author feels that the PAC model is probably too restrictive to deal with the task of
natural language learning. Even minor adaptations of this model potentially trivialize the
learning task (see e.g. Parekh and Honavar (2000)), thus the paradigm is not flexible enough
to cover a wider range of learning situations.



5

tractability, namely the tractability of coming up with a hypothesis consistent
with the data. This definition is applied in Chapter 5 to the classes examined
in Kanazawa (1998).

These classes will be detailed in Chapter 4. One unique13 and interesting
aspect of this approach is the emphasis on structure languages.14 Most studies
assume the input to consist just of strings and expect the final hypothesis to
be a grammar that generates the right string language (note that the nature of
data and the identification criterion are logically independent). When modeling
language acquisition, however, it could be assumed that information about
structure is accessible to the learner, be it from prosody (c.f. Wanner and
Gleitman (1982)), semantics, or pragmatics (Snow (1977), Slobin (1977)).

Also, from a linguistic point of view it makes a lot of sense to use convergence
on the right structure language as the identification criterion: one expects a
learner to eventually derive and analyze sentences the same way as any other
speaker, if only for the semantic implications. Since trees and tree languages
play such an important role in this kind of research, background on regular
tree languages and some known learnability results are presented in Chapter
7. Using these results an alternative and much shorter proof of a learnability
result on CCG from Kanazawa (1998) is given.

We also turn our attention to a different kind of Categorial Grammar,
namely the Lambek calculus (and its variants). Although this formalism is
superficially very similar to CCG, its interpretation is very different, it is not a
combinatory system but a form of positive intuitionistic linear logic. Although,
like CCG, the Lambek calculus is context-free and thus not expressive enough
to cover the full range of natural language phenomena, it is still relevant to
linguistics because of the systematic way in which it relates syntactic deriva-
tions (proofs) to meaning. Surprisingly, the Lambek calculus has completely
different learnability properties when compared to CCG as we will see in Chap-
ter 9. Most of the results are negative, we give one positive result using results
from Chapter 7.

The general moral of this chapter is that the paradigm of identification in
the limit has been, and continues to be, relevant for linguists, especially for
those working in acquisition (and also seems to be a promising approach for
the field of Grammatical Inference). Hopefully it has also become clear that

13Learning (reversible) context-free languages from structured data was also investigated
in Sakakibara (1992). The notion of structure used there is weaker than in Kanazawa (1998):
the input consists of ‘skeletal phrase structures’, i.e., unlabeled trees. Also see Chapter 7 for
work on learning from structures.

14The reader with a (generative) syntactic background may wonder just what is meant
with structure language: constituent structure, head projections or licensing relations, for
example. In this particular case the structures can be regarded as head projections. However,
all of these notions are theory-specific; when dealing with associative Lambek grammars it
can be misleading to talk about constituency, for example. Even the distinction of weak and
strong generative capacity is not theory-neutral and is associated with Chomsky’s original
definition. Also see Miller (1999); Cornell and Rogers (to appear) for a discussions of strong
generative capacity.indexstrong generative capacity
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one cannot rely on informal discussions to learn about formal learning theory:
there is no substitute for reading a standard work like Jain et al. (1999) (or
perhaps still better, the original papers cited therein).

There are as yet few results for grammar formalisms that are actually used
in linguistics: Kanazawa’s classes of categorial grammars are restricted to the
context-free realm, while natural language has been shown to go beyond this
bound. Unfortunately our results for more expressive formalisms are all nega-
tive. It would be very interesting to see how much of the recent results can
be adapted to frameworks like HPSG (see e.g. Pollard and Sag (1987)), for
example. A natural approach would be to embed them in Elementary Formal
Systems (EFS) and to place bounds on the size of the resulting logic programs,
as in Shinohara (1990a,b), although results discussed in this thesis demonstrate
that this is not always feasible.

We now give an overview of the structure of this thesis. First we will dis-
cuss the history and basis of formal learning theory in Chapter 2. Classical
Categorial Grammar is discussed in Chapter 3. Chapter 4 gives a (condensed)
presentation of work from Kanazawa (1998), and in Section 4.3 an open ques-
tion from that book is answered.

New results are presented concerning the complexity of learning classes of
Categorial Grammars in Chapter 5.

Chapter 6 takes a closer look at learnability aspects of Combinatory CG (a
topic first addressed in Kanazawa (1998)), of collections of Generalized Quan-
tifiers, extending work from Tiede (1999b), and of some severely restricted
classes of Tree Adjoining Grammar (TAG), and of Minimalist Grammar (MG).

Our results for TAG are all negative, this is due to the optionality of adjoin-
ing, among other things. We conjecture that by restricting the use of adjoining
it becomes possible to define learnable classes of TAGs by imposing numerical
bounds on the complexity of a grammar. Our result for MG relies essentially
on allowing the assignment of an unbounded number of licensee features to
the same category, and, analogous to the TAG case, a restriction on such as-
signments may allow the existence of learnable classes of MGs of bounded
complexity.

Chapter 7 presents results on the learnability of tree languages, mainly from
Sakakibara (1990, 1992); Besombes and Marion (2001, 2002a).

Chapter 8 presents the Lambek calculus and variations, and the results
from Chapter 7 are used in Chapter 9, where new results concerning Lambek
grammars are presented, as well as work from Foret and Le Nir (2002a,b);
Bechet and Foret (submitted).



Chapter 2

Formal Learning Theory

As was pointed out in the previous chapter, questions concerning learning are
relevant to linguistic research, and thus a precise model of (language) learning
is needed. Formal Learning Theory (or Learning Theory) can provide just such
a model, or perhaps more accurately, a framework for formulating such models.

In this chapter1 the formal concepts and terminology of learning theory
are presented. We will mostly use notation from Kanazawa (1998). For a
comprehensive overview and references, see Osherson et al. (1986) and Osherson
et al. (1997). Note that, since we are only interested here in Gold’s concept
of learning, learning will be used only as abbreviation for identification in the
limit from positive data.

We will discuss the origins and history of this field in the following section,
the rest of the chapter will deal with formal definitions, known results and
discussion of some advanced topics.

2.1 History

The aim of Formal Learning Theory is not necessarily providing us with learning
algorithms, but rather characterizing the a priori possibility of learning a certain
class (of languages) given a specification of the conditions under which learning
has to take place. Most of the basic concepts of learning theory were introduced
in the seminal paper Gold (1967).2

1Parts of this chapter have appeared in Costa Florêncio (2002b), and are reproduced with
permission.

2Results concerning the possibility of learning the internal structure of finite state ma-
chines, in a different but comparable formal context, were first presented in Moore (1956),
eleven years before Gold. This research was done with cryptographic applications in mind,
however, and maybe for this reason the implications for linguistics and epistemology went
largely unnoticed. In recent years this paper has been cited in work in the field of Grammat-
ical Inference, especially in the context of learning regular languages.
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In this model, the central concept is that of learning as an infinite process.
To quote Gold (1967):

A class of possible languages is specified, together with a method of
presenting information to the learner about an unknown language,
which is to be chosen from the class. The question is now asked, ‘Is
the information sufficient to determine which of the possible lan-
guages is the unknown language?’ Many definitions of learnability
are possible, but only the following is considered here. Time is
quantized and has a finite starting time. At each time the learner
receives a unit of information and is to make a guess as to the
identity of the unknown language on the basis of the information
received so far. This process continues forever. The class of lan-
guages will be considered learnable with respect to the specified
method of information presentation if there is an algorithm that
the learner can use to make his guesses, the algorithm having the
following property: Given any language of the class, there is some
finite time after which the guesses will all be the same and they will
be correct.

So, a learner (learning function) is presented with an endless stream of sen-
tences from the target language. Each time a sentence is presented, the learning
function makes a guess as to (an index for) the target language. This guess
consists of a conjectured grammar for the language, so the infinite sequence of
sentences has an associated infinite sequence of (hypothesized) grammars.

As the body of presented sentences grows, the guesses may change. Two
assumptions are made: first, we expect the sentences to be grammatical, i.e.
they are all well formed and thus really belong to the target language. Second,
we expect all possible sentences to eventually appear in the sequence. Such an
infinite sequence of sentences is called a text. The set of all finite sequences of
any length in any text is denoted SEQ, this can be thought of as the set of all
possible evidential states.

In Gold’s model, learning is successful if there exists a time after which
the learning function’s guess does not change (stability) and is identical to
the grammar for the target language (veridicality). (Note that the learning
function never knows if its guess is correct.)3 This is exactly the definition of
identification in the limit.

A class of languages is said to be learnable if a learning function exists that
can identify any target language in that class from a sequence of sentences from
that language. Learnability is therefore a property of a class of languages, not
of any one individual language: a learning function that could only learn one

3Learning functions that signal their (successful) convergence, so called self-monitoring
learning functions, have also been investigated. See Freivalds and Wiehagen (1979) and
Osherson et al. (1986).
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Learnability model4 Class of languages
Anomalous text

Recursively enumerable
Recursive

Informant
Primitive recursive
Context-sensitive
Context-free
Regular
Superfinite

Text
Finite cardinality languages

Table 2.1: Dividing Lines between Learnability and Nonlearnability of Lan-
guages (from Gold (1967)).

particular language would not really be learning at all, since it could simply
always hypothesize the (index for) the same language.

In this particular model only positive data is presented to the learner, i.e. the
learning function only receives information about which sentences are in the
target language. Gold also considered a model in which the learner is provided
with complete data, that is, both positive and negative data. In this situation,
an oracle or informant can be consulted by the learning function, telling it
whether or not a sentence belongs to the target language. In this case, where
complete data is available, learning turns out to be much easier. However,
empirical evidence suggests that natural language is not acquired in this way.
Children do not seem to respond to the correction of linguistic mistakes, and
are generally not (overtly) corrected by their parents. (See, for example, Brown
and Hanlon (1970) and Goodluck (1991).)

This restricted nature of the input (the paucity of positive evidence and
the lack of negative evidence) is often referred to as the poverty of the stimulus
and has frequently been invoked by Chomsky and others as a point in favour
of a learning mechanism in which the child’s innate knowledge of principles
of grammar plays a major role in guiding development. (See Chomsky (1959),
and e.g. Pullum and Scholz (2002) and papers in the same edition of the journal
for a critique of this notion.)

As Table 2.1 shows, none of the four language classes in the Chomsky
hierarchy is learnable from positive data. In fact, the only class that is learnable

4The classes of languages below the dividing line for a given model are learnable with
respect to this model. The ‘Informant’ model refers to three variations of models that allow
negative data in the input, they all yield the same learnability results.

The ‘Anomalous Text’ model refers to a model with primitive recursive text and the
generator-naming relation.
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from text in this table is completely trivial, since its members are all of finite
cardinality. A learning function for this class could, after each presentation
just store all the sentences presented so far and reproduce (an index for) its
storage as its hypothesis.5

Gold’s results have for a long time been taken to mean that identifying
languages from positive data is just too hard. We cite Gold (1967):

Those working in the field generally agree that most children
are rarely informed when they make grammatical errors, and those
that are informed take little heed. [. . .]

However, the results presented in the last section show that only
the most trivial class of languages considered is learnable [. . .]

If one accepts identification in the limit as a model of learn-
ability, then this conflict must lead to at least one of the following
conclusions:

1. The class of possible natural languages is much smaller than
one would expect from our present models of syntax. That
is, even if English is context-sensitive, it is not true that any
context-sensitive language can occur naturally. Equivalently,
we may say that the child starts out with more information
than that the language it will be presented is context-sensitive.
In particular, the results on learnability from text imply the
following: the class of possible natural languages, if it contains
languages of finite cardinality, cannot contain all languages of
finite cardinality.

2. The child receives negative instances by being corrected in a
way we do not recognize. If we can assume that the child re-
ceives both positive and negative instances, then it is being
presented information by an ‘informant’. The class of primi-
tive recursive languages, which includes the class of context-
sensitive languages, is identifiable in the limit from an infor-
mant. The child may receive the equivalent of negative in-
stances for the purpose of grammar acquisition when it does
not get the desired response to an utterance. It is difficult to
interpret the actual training program of a child in terms of the
naive model of a language assumed here.

3. There is an a priori restriction on the class of texts which can
occur, such as a restriction on the order of text presentation.
The child may learn that a certain string is not acceptable by

5Even though this arguably makes learning this class trivial from a learnability point of
view (this depends on the identification criterium, see Osherson et al. (1984)), it can be a
tricky algorithmic problem.
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the fact that it never occurs in a certain context. This would
constitute a negative instance.

In linguistics, it is generally assumed that the first conclusion holds, that
is, the class of humanly learnable languages (commonly denoted H) is severely
restricted.

Only around 1980 did papers by Angluin (Angluin (1980a,b, 1982)), in
which non-trivial learnable classes were presented, show that the initial pes-
simism was premature. Later Shinohara showed that placing any finite bound
on the number of rules used in context-sensitive grammars results in a learnable
class (Shinohara (1990a,b)).

Although Gold’s work was explicitly focused on (machine) acquisition of
human languages, formal learnability theory seems to have had far more impact
on e.g. epistemology than on linguistics. This may be due to the fact that most
work in the field has been highly general and abstract, and little work has been
done on linguistically relevant grammar formalisms.

Both Osherson et al. (1986) and Kanazawa (1998) work towards bridging
this gap. In the former, additional constraints on learning were studied that
are either linguistically or epistemologically motivated, in order to make the
model more psychologically plausible. The latter applies this work to learning
within a specific grammar system.

2.2 Basic Definitions

Formal learning theory offers a formal reconstruction of the following concepts:

• a set Ω (hypothesis space),

• a set S (sample space),

• a function L that maps elements of Ω to subsets of S.

Here, Ω can be any class of finitary objects, for example the set of natural
numbers.6 Members of Ω are called grammars.

S is a recursive subset of Σ∗ for some fixed finite alphabet Σ. Elements of
S are called sentences, subsets of S (which obviously are sets of sentences) are
called languages.

If G is a grammar in Ω, then L(G) is called the language generated by G. L
is also called the naming function. The question whether a sentence belongs to
a language generated by a grammar is called the universal membership prob-
lem. Usually, the naming function is assumed to be such that the universal
membership problem is decidable or at least semi-decidable (r.e.).

6See Higuera and Janodet (2001) for the inference of languages containing infinite words,
so-called ω-languages, however in their model the learner sees only finite prefixes of these
words. See Saoudi and Yokomori (1994) for learning ω-languages from presentations of
ultimately periodic words.
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A triple 〈Ω,S,L〉 satisfying the above conditions is called a grammar system.
A class of grammars is denoted G, a class of languages is denoted L.

2.3 Learning and Convergence

Let 〈Ω,S,L〉 be a grammar system. A learning function is a partial function ϕ
that maps non-empty finite sequences of sentences to grammars.

Let
〈si〉i∈N = 〈s0, s1, s2, . . .〉

be an infinite sequence of sentences from S. Given 〈si〉i∈N, a learning function
ϕ determines a grammar

Gi = ϕ(〈s0, . . . , si〉)

for each i ∈ N such that ϕ is defined on 〈s0, . . . , si〉. We say that ϕ converges
to G on 〈si〉i∈N if Gi is defined and is equal to G for all but finitely many i ∈ N.

A class G of grammars in Ω determines the corresponding class of languages,
L(G) = {L(G) |G ∈ G}.

Definition 2.1 Learning G
Let a grammar system 〈Ω,S,L〉 be given, and let G ⊆ Ω. A learning function
ϕ is said to learn G if the following condition holds:

For every language L in L(G), and for every text for L, there exists
some G in G such that L(G) = L and ϕ converges to G on 〈si〉i∈N.

Note that a learning function ϕ is not required to converge to the same
grammar on different infinite sequences for the same L, so the grammar that
ϕ converges to can be dependent on the order of enumeration of elements from
L.

Definition 2.2 Learnability of a class of grammars
A class G of grammars is called non-effectively learnable if a learning func-

tion exists that learns G, and not non-effectively learnable if there is no such
function.

A class G of grammars is called (effectively) learnable if a computable func-
tion exists that learns G, and nonlearnable if there is no such function.

Obviously learnability implies non-effective learnability.7

7In Osherson et al. (1986) a subsection is devoted to a discussion of the interest of non-
recursive learning functions. It is claimed there that consideration of such functions often
clarifies the respective roles of computational and information-theoretic factors in nonlearn-
ability phenomena.
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Definition 2.3 Existence of a limit point
A class L of languages is said to have a limit point if and only if there exists

an infinite sequence 〈Ln〉n∈N of languages in L such that 8

L0 ⊂ L1 ⊂ . . . ⊂ Ln ⊂ . . .

and there exists another language L ∈ L such that

L =
⋃

n∈N

Ln.

The language L is called a limit point of L.

Lemma 2.4 If L(G) has a limit point, then G is not (non-effectively) learnable.

Having a limit point is only a sufficient condition for a class to be not (non-
effectively) learnable. A necessary and sufficient condition for non-effective
nonlearnability is the existence of an accumulation point:9

Definition 2.5 Existence of an accumulation point (Kapur (1991))
A class L of languages is said to have an accumulation point if and only if

there exists an infinite sequence 〈Sn〉n∈N of sets such that

S0 ⊆ S1 ⊆ . . . ⊆ Sn ⊆ . . . ,

there exists a language L ∈ L such that

L =
⋃

n∈N

Sn,

and for any n ∈ N, there exists a language L′ ∈ L such that Sn ⊆ L′ and
L′ ⊂ L. The language L is called an accumulation point of L.

Definition 2.6 Locking sequence lemma (Blum and Blum (1975)) Sup-
pose that a learning function ϕ converges on every infinite sequence that enu-
merates a language L. Then there is a finite sequence 〈w0, . . . , wl〉 (called a
locking sequence for ϕ and L) with the following properties:

1. {w0, . . . , wl} ⊆ L,

2. for every finite sequence 〈v0, . . . , vm〉, if {v0, . . . , vm} ⊆ L, then
ϕ(〈w0, . . . , wl〉) = ϕ(〈w0, . . . , wl, v0, . . . , vm〉).

8The symbol ⊂ denotes proper inclusion, that is L0 ⊂ L1 implies L1 − L0 6= ∅. Inclusion
will be notated as ⊆. Likewise, we will make a distinction between subset and proper subset.

9As far as the author is aware, the first formulation of necessary conditions for non-
effective learnability was presented in Wexler and Hamburger (1973), as part of an attempt
to characterize effective learnability (text learnability in their terminology).
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Proposition 2.7 Suppose that ϕ learns G. Then, for every L ∈ L(G), there
exists a locking sequence 〈w0, . . . , wl〉 for ϕ and L such that ϕ(〈w0, . . . , wl〉) ∈ G
and L(ϕ(〈w0, . . . , wl〉)) = L.

The notion of locking sequences can be useful when proving (non)learnability,
it is relatively easy for example to come up with a short alternative proof of
Lemma 2.4 based on Proposition 2.7.

2.3.1 The Power of Identification in the Limit

The following proposition demonstrates the power of identification in the limit.
Let TxtEx be the collection of all language classes that are effectively learnable,
and let E be the class of all r.e. languages.10

Definition 2.8 Let a class of languages L ⊆ E be given. L covers E just in
case for every L ∈ E there is an L′ ∈ E such that L and L′ are finite variants.

Two languages L and L′ are finite variants just in case both L − L′ and
L′ − L are finite.

Proposition 2.9 (Wiehagen (1978)) There is a class of languages L ∈ TxtEx

such that L covers E.

In other words, nontrivial learnable classes exist that include languages
with maximal expressive power, which demonstrates the relevance of Gold’s
paradigm. Finite variants share a lot of (computational) properties, for example
if one is recursive so is the other. The same is true of degree of complexity.
Thus L covers E implies that for any set of arbitrary complexity in E there is
a set of equal complexity in L.

2.3.2 The Weakness of Identification in the Limit

The next proposition from Fulk et al. (1994) is commonly known as the ‘nonunion
theorem’. It states that TxtEx is not closed under union:11

Proposition 2.10 Let L1 = {L ∈ E | L is finite} and L2 = {N}. Then both
L1 and L2 are in TxtEx, but L1 ∪ L2 6∈ TxtEx.

This can be interpreted as a limitation on the kind of general purpose
learning-devices we can construct, and has been used as motivation for the use
of heuristics in AI. It also suggests a weaker identification criterion, where a
team of n learners is set to the same task, and succes is achieved when m of the

10Noneffective identification in the limit from positive data is written as Lang, this (mod-
ern) notation was introduced by Case and Lynes (1982). By convention it is slightly abused
and denotes both the paradigm and all classes learnable in this paradigm.

11There is also a non-union theorem for the paradigm of function learning, to be discussed
in the next subsection.
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n learners identify the same language. The fraction n
m is known as the success

ratio, the resulting paradigm is known as team learning or Teamn
mTxtEx.

What is the relation between Teamn
mTxtEx and TxtEx? It turns out that

under sufficiently strict succes ratios the two paradigms are of the same power,
the smallest such ratio is known as the aggregation ratio of the paradigm. The
following two propositions are from Fulk et al. (1994):

Proposition 2.11 Let n and m be such that n
m > 2

3 . Then Teamn
mTxtEx =

TxtEx.

Also consider the following surprising result, taken from Jain and Sharma
(1996a):

Proposition 2.12 Team2
4TxtEx−Team1

2TxtEx 6= ∅.

This implies that something is to be gained by introducing redundancy into
a team of learners! Contrast this with:

Proposition 2.13 For all j, Team
2j+1
4j+2TxtEx = Team1

2TxtEx.

2.3.3 Function Learning

It would be natural to consider the concept of learning a function rather than
a set: empirical inquiry can be construed as learning from experiments, where
Nature gives an output y in response to an experiment whose parameters are
determined by x. The text thus includes any single-valued infinite sequence
over N× N, i.e. it consists of pairs 〈x, y〉, such that for each x the y is unique,
since f(x) = y. It turns out that learning in the resulting paradigm (denoted
by Func in the non-effective case, Ex in the effective case) is in some sense
easier than in TxtEx:

Theorem 2.14 The class of all recursive functions, R, is Ex-identifiable.12

This implies that identifiability in this paradigm is a trivial matter, but
note that memory limitation already restricts the space of learnable functions.

The paradigm of function learning may seem less relevant to linguistics
than language learning, but consider the following; assume that the input to
a TxtEx-learner ϕ is a recursive text, and let this paradigm be denoted by
RecTxtEx. Then ϕ can behave like an Func-learner and learn the function
f(t) = et, i.e. the function that generates the text:

Proposition 2.15 There is a single noncomputable scientist that identifies
each r.e. language from recursive texts.

However, if we require the scientist to be computable, a different picture
emerges:

12For a proof, see Jain et al. (1999), Theorem 3.43.
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Proposition 2.16 RecTxtEx = TxtEx.

This result is a practical example of a situation in which the learner has
access to information that could help it to learn, but is unable to take advantage
of this because of computability issues.

Proposition 2.17 (Pitt (1984); Pitt and Smith (1988))

For all j > 0, Team
j
2jEx = Team1

2Ex.

In other words, in this case there is nothing to be gained by redundancy
in the team. To end this section we mention an interesting correspondence
between team and probabilistic function learning:

Proposition 2.18 (Pitt (1984); Pitt and Smith (1988)) For each n ≥ 1 and
p ∈ ( 1

n+1 , 1], ProbpEx ⊆ Team1
2Ex.

This key correspondence has many interesting implications, again the reader
is referred to Chapter 9 of Fulk et al. (1994). There are also related results for
language learning.

2.4 Finite Elasticity

Proving learnability of a class of languages using Proposition 2.7 can be quite
hard. Luckily there are some well-known sufficient conditions for learnability
that can quite often easily shown to be satisfied. These conditions are expressed
in terms of structural properties of classes to be learned, this section will discuss
some of them.

If a class of languages has a limit point, there exists an infinite ascending
chain of languages. This means that for L0, L1, . . . , Ln, . . . in that class, L0 ⊂
L1 ⊂ . . . ⊂ Ln ⊂ . . . . This implies the weaker property known as infinite
elasticity :

Definition 2.19 Infinite elasticity
A class L of languages is said to have infinite elasticity if there exists an infinite
sequence 〈sn〉n∈N of sentences and an infinite sequence 〈Ln〉n∈N of languages
in L such that for all n ∈ N,

sn 6∈ Ln,

and

{s0, . . . , sn} ⊆ Ln+1.

Definition 2.20 Finite elasticity
A class L of languages is said to have finite elasticity if it does not have infinite
elasticity.
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A related notion that is often useful is finite thickness; for any class with this
property, any sentence can be a member of only a finite number of languages
in that class. This obviously implies finite elasticity as well.

One other important property, much weaker than finite thickness, is finite
fatness:

Definition 2.21 A class of languages L is said to have finite fatness if every
L ∈ L has a strict telltale set D in L (i.e., for all L′ ∈ L, D ⊆ L′ implies
L ⊆ L′), and each L ∈ L is contained in only finitely many other languages in
L.

Finite elasticity13 is a sufficient condition for learnability14 under two con-
ditions, known as Angluin’s conditions. These are quite natural conditions for
linguistically plausible grammar formalisms, and very convenient when dealing
with learnability issues. The first condition involves restricting ourselves to
grammar systems for which universal membership is decidable (this obviously
implies that all languages in the class are recursive):

Condition 2.22 Decidability of universal membership
There is an algorithm for deciding whether s ∈ L(G), given s ∈ S and G ∈ Ω.

This restriction is generally not problematic, since universal membership
is almost always decidable for commonly used grammar systems (in fact it is
generally assumed that all natural languages are context-sensitive).

The second condition restricts the class of grammars G to be learned. It
requires that the question G ∈ G is at least semi-decidable.15 This leads to the
following condition:

Condition 2.23 Restriction to recursively enumerable classes
The question of learnability has to be restricted to r.e. classes of grammars.

In Angluin (1980b)16 learnability under these two restrictions was charac-
terized:

Theorem 2.24 (Angluin)
Let 〈Ω,S,L〉 be a grammar system for which universal membership is decidable,
and let G be an r.e. subset of Ω. Then G is learnable if and only if there is a
computable partial function ψ: Ω×N 7−→ S with the following properties:

1. For all n ∈ N, ψ(G,n) is defined if and only if G ∈ G and L(G) 6= ∅.

13The notions of both finite and infinite elasticity can be found in Wright (1989). The
original definitions were incorrect, and were later corrected in Motoki et al. (1991).

14Note that this implies that infinite elasticity is a necessary condition for nonlearnability.
15To the best of the author’s knowledge, up to now all concrete learnability results for

grammar formalisms are for recursive classes, so in practice this condition is always met.
16In fact, Angluin (1980b) only considers the case were Ω = G, but her result easily

generalizes to the present setting.
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2. For all G ∈ G, TG = {ψ(G,n) | n ∈ N} is a finite subset of L(G), called
a tell-tale subset.

3. For all G,G′ ∈ G, if TG ⊆ L(G′), then L(G′) 6⊂ L(G).

In Wright (1989) Angluin’s theorem17 was used to prove the following:

Theorem 2.25 (Wright)18 Let 〈Ω,S,L〉 and G be as defined in Theorem 2.24.
If L(G) has finite elasticity, then G is learnable.

In de Jongh and Kanazawa (1996), Angluin’s theorem is extended to deal
with r.e. languages by introducing the concepts of warning sets and unlocking
sequences.19 This way Angluin’s theorem is generalized to grammar classes
with semi-decidable universal membership.

The study of learnability issues restricted to the setting just outlined is
known as learnability of indexed families.20

Bounded number
of  j−chains

Infinite ascending
       chain

     nality

Accumulation point

Finite elasticity

Limit point
Finite cardi−

Finite thickness

Finite fatness

Infinite elasticity

Figure 2.1: A learnability hierarchy for language classes.

Proposition 2.26 (Kapur (1991))
The language L ∈ L has a tell-tale subset if and only if L is not an accumulation
point.

17In Osherson et al. (1986) a simple variant of this theorem is given that characterizes
non-effective learnability by the existence of (non-effective) tell-tale sets.

18This is a generalization of a result from Angluin (1980b) which states that in this setting
finite thickness is a sufficient condition for nonlearnability.

19This result is completely general in that every (effectively) learnable class is included in
an (effectively) learnable uniformly r.e. class, see Fulk (1990a). This property is known as
r.e.-boundedness.

20This is sometimes also referred to as the Angluin/Wright paradigm.
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The following theorem is from Kanazawa (1994b), reproduced in Kanazawa
(1998).21 Let Σ and Υ be two alphabets, a relation R ⊆ Σ∗ ×Υ∗ is said to be
finite-valued just if for every s ∈ Σ∗, there are at most finitely many u ∈ Υ∗

such that Rsu. If M is a language over Υ, define a language R−1[M ] over Σ
by R−1[M ] = {s | ∃u(Rsu ∧ u ∈M)}.

Theorem 2.27 LetM be a class of languages over Υ that has finite elasticity,
and let R ⊆ Σ∗×Υ∗ be a finite-valued relation. Then L = {R−1[M ] |M ∈M}
also has finite elasticity.

This theorem is very useful when dealing with the learnability of classes of
grammars in some linguistic formalism with a clear and precise notion of deri-
vation: for most formalisms the relation between string and possible derivation
is finite-valued, and it is in general easier to prove finite elasticity of a class of
derivation (structure) languages than of a class for string languages.

Figure 2.1 shows the relations between these important topological proper-
ties of language classes. The largest oval is the collection of all classes of (r.e.)
languages, the vertical line divides this collection into classes with finite elas-
ticity and classes with infinite elasticity. Note that there is no obvious relation
between the Chomsky hierarchy and this learnability hierarchy, which graph-
ically demonstrates the independence of properties pertaining to learnability
and expressive power.

2.5 Elementary Formal Systems

As we have seen, Angluin’s and Wright’s work defines a learning theoretic
framework that is suited for the learning of classes of formal languages. In order
to develop a framework that is even more suited for this purpose the notion of
learning a class of elementary formal systems (or EFSs), originally introduced
in Smullyan (1961), was used in Arikawa et al. (1989). This framework was
refined in, among others, Shinohara (1990a,b). EFS is basically a form of a
(linear) logic programming language on Σ+, and is a natural device for defining
(language) formalisms. We will not go into too much detail, but some of the
more striking results are presented in this section.

Definition 2.28 A definite clause is a clause of the form A ⇐ B1, . . . , Bn,
where n ≥ 0, and A,B1, . . . , Bn are atoms. We call atom A the head of a
clause, and the sequence of atoms B1, . . . , Bn the body.

Definition 2.29 A definite clause is called variable bounded if variables in
B1, . . . , Bn also appear in A.

Let the length of an atom be the total length of the terms in it. We define
length-boundedness as follows:

21This is in fact a generalization of a theorem from Wright (1989), which states that finite
elasticity is closed under union.
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Definition 2.30 A definite clause is called length-bounded if the total length
of σ[B1], . . . , σ[Bn] does not exceed the length of σ[A] for any substitution σ.

Definition 2.31 A clause C is provable from an EFS Γ, or Γ ` C, if C
is obtained from Γ by finitely many applications of substitutions and modus
ponens. More formally, the binary relation Γ ` C is defined inductively as
follows:

1. If C ∈ Γ then Γ ` C.

2. If Γ ` C then Γ ` σ[C] for any substitution σ.

3. If Γ ` A⇐ B1, . . . , Bn+1 and Γ ` Bn+1 then Γ ` A⇐ B1, . . . , Bn

2.5.1 Inductive Inference of Monotonic Formal Systems

One of the most interesting aspects of Shinohara’s work is that it establishes a
relation between learnability and monotonicity of the formalism used to repre-
sent the languages to be learned.

Definition 2.32 A concept defining framework is a triple (U,E,M) of a uni-
verse U of objects, a universe E of expressions, and a semantic mapping M .

Definition 2.33 A class of concepts C = R1, R2, . . . is said to be an indexed
family of recursive concepts if there exists a computable function

f : N× U → {0, 1} such that f(i, s) =

{
1, if s ∈ Ri,
0, otherwise.

Definition 2.34 A semantic mapping M is monotonic if Γ′ ⊆ Γ ⇒ M(Γ′) ⊆
M(Γ).

Definition 2.35 A formal system Γ is reduced with respect to a set X ⊆ U
if X ⊆M(Γ) but X 6⊆M(Γ′) for any Γ′ ⊆ Γ.

Definition 2.36 A concept defining framework (U,E,M) has bounded finite
thickness if M is monotonic, and card({M(Γ) |Γ is reduced with respect to X,
card(Γ) ≤ n}) <∞ for any finite set X ⊆ U and any n ≥ 0.

Note that finite thickness implies bounded finite thickness, but the converse
does not hold. The next theorem is the main result of Shinohara (1990b):

Theorem 2.37 Let a concept defining framework (U,E,M) have bounded fi-
nite thickness and Cn = {M(Γ) | Γ ⊆ E, |Γ| ≤ n}. Then, the class Cn is
inferable from positive data for any n ≥ 0.

Lemma 2.38 Let U = Σ+, E be the set of all length-bounded clauses, and
M(Γ) = L(Γ, p0). Then (U,E,M) is a concept-defining framework that has
bounded finite thickness.
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Corollary 2.39 For any n ≥ 0, the class of languages definable by length-
bounded EFS’s consisting of at most n clauses is inferable from positive data.

The following is a result from Matsumoto et al. (1997) (Theorem 9):

Theorem 2.40 Let C be a class. If C has finite thickness, and the membership
problem and the minimal language problem for C are computable in polynomial
time, then C is polynomial time inferable from positive data.

2.5.2 Context-Sensitive Grammars

There is a straightforwarsd relation between EFS and Context-Sensitive Gram-
mars (CSG). Since the latter is linguistically interesting, we will discuss this
relation in some detail. Let Σ be a finite alphabet and V be a set disjoint from
Γ. An element in V is called a nonterminal symbol. We assume that V contains
a special nonterminal symbol S0.

Definition 2.41 A production is an expression of the form α → β, where
α, β ∈ (Σ ∪ V )+.22 A grammar is a finite set of productions. A production
α→ β is said to be context-sensitive if |α| ≤ |β|. A context-sensitive grammar
is a grammar whose productions are all context-sensitive.

Definition 2.42 Let Σ be a grammar. We define a binary relation ⇒Γ on
(Σ∪V )+ by γαδ ⇒Γ γβδ if α→ β ∈ Γ, where α, β ∈ (Σ∪V )+, γ, δ ∈ (Σ∪V )∗.
By ⇒Γ

∗ we denote the reflexive transitive closure of ⇒Γ. The language L(Γ)
of a grammar Γ is defined by L(Γ) = {w ∈ Σ+ | S0⇒Γ

∗ w}, where S0 is the
start symbol of Γ.

Given these definitions, it should be clear that the following is a direct
consequence of Corollary 2.39:

Corollary 2.43 For any n ≥ 0, the class of languages definable by context-
sensitive grammars consisting of at most n productions is inferable from positive
data.

2.5.3 Linear Prolog Programs

As a final demonstration of the usefulness of EFS in learning theory we briefly
discuss Shinohara’s results for Linear Prolog Programs, which have applications
in the field of Inductive Logic Programming.

Definition 2.44 A term is a variable, a constant symbol, or an expression
of the form f(t1, . . . , tn), where f is a function symbol with arity n ≥ 1 and
t1, . . . , tn are terms. A ground term is a term that does not contain any vari-
able.

22Note that this implies that the righthand-side of a CSG is always non-empty, and thus
that the emty string is not a context-sensitive language.
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Definition 2.45 The length of a term t, denoted by |t|, is defined inductively
as follows:

1. If t is a variable or a constant symbol, then |t| = 1.

2. If t = f(t1, . . . , tn), then |t| = |t1|+ . . .+ |tn|+ 1.

Definition 2.46 A definite clause A→ B1, . . . , Bn is linear if |σ[A]| ≥ |σ[Bi]|
for any substitution σ and any i = 1, . . . , n. A program Γ is linear if all clauses
in Γ are linear.

Given these definitions, it should be clear that the following is a direct
consequence of Corollary 2.39 as well:

Corollary 2.47 For any n ≥ 1, the class of minimal models of linear programs
consisting of at most n clauses is inferable from positive data.

2.6 Constraints on Learning Functions

In the definition of learnability nothing is said about the behaviour of learning
functions apart from convergence to a correct grammar, it grants learners to-
tal freedom in their behavior prior to convergence. Further constraints can be
imposed, i.e. one can choose a certain learning strategy. Intuitively, a strategy
refers to a policy, or preference, for choosing hypotheses (note that a strategy
is not an algorithm!). Formally, a strategy can be analyzed as merely picking
a subset (not necessarily proper) of possible learning functions, and thus com-
putability and complexity measures can be regarded as constraints as well. A
strategy is said to be restrictive if it constrains the class of learnable languages.

The strategies found in the literature can be roughly classified as constraints
on the use of resources (computability, time complexity, memory limitation),
constraints on potential conjectures (consistency), and constraints on the rela-
tion between conjectures (conservatism etc). Many different constraints have
been proposed, we will only discuss some of the more relevant ones in this
section.

The proof of Theorem 2.24 implies that in a grammar system where uni-
versal membership is decidable, a recursively enumerable class of grammars is
learnable if and only if there is a computable learning function that learns it
order-independently, prudently, and is responsive and consistent on this class.

Definition 2.48 Order-independent learning
A learning function ϕ learns G order-independently if for all L ∈ L(G), there

exists a G ∈ G such that L(G) = L and for all infinite sequences 〈si〉i∈N that
enumerate L, ϕ converges on 〈si〉i∈N to G.

Intuitively this seems a reasonable strategy, there does not seem to be any
a priori reason why the order of presentation should influence the final choice
of hypothesis. In fact, it turns out this constraint (by itself) is not restrictive.
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Definition 2.49 Exact learning
A learning function ϕ learns G exactly if for all G ′ such that ϕ learns G′,
L(G′) ⊆ L(G).

In other words, the learning function will respond succesfully to all lan-
guages in a given class and respond unsuccesfully to all other languages. Note
that this is a constraint on the relation between a class of languages and a
learning function.

The rationale for this constraint is the idea that natural languages form
the largest collection of child-learnable languages. Thus, for every nonnatural
language there must be some text on which children fail to converge to a correct
index.

If we want to model human language learning, we want learning functions to
learn a chosen class exactly. There seems to be empirical support for this idea.
Some of it comes from studies of children raised in pidgin dialects (Sankoff and
Brown (1976)), some from studies of sensory deprived children (Feldman et al.
(1978)). It seems that children are not capable of learning very inexpressive
languages.

Definition 2.50 Prudent learning
A learning function ϕ learns G prudently if ϕ learns G and range(ϕ) ⊆ G.

Note that this implies exact learning.

A prudent learning function only conjectures grammars for languages it is
prepared to learn. This condition is not restrictive, also note that if ϕ learns
G prudently, ϕ learns G exactly.

Definition 2.51 Responsive learning
A learning function ϕ is responsive on G if for any L ∈ L(G) and for any

finite sequence 〈s0, . . . , si〉 of elements of L ({s0, . . . , si} ⊆ L), ϕ(〈s0, . . . , si〉)
is defined.

This constraint can be regarded as the complement of prudent learning: if
all sentences found in the input are in a language in the class of languages
learned, the learning function should always produce a hypothesis.

Definition 2.52 Consistent learning23

A learning function ϕ is consistent on G if for any L ∈ L(G) and for any
finite sequence 〈s0, . . . , si〉 of elements of L, either ϕ(〈s0, . . . , si〉) is undefined
or {s0, . . . , si} ⊆ L(ϕ(〈s0, . . . , si〉)).

The idea behind this constraint is that all the data given should be explained
by the chosen hypothesis. It should be self-evident that this is a desirable
property. Indeed, one would almost expect it to be part of the definition of

23Note that consistency is only nonrestrictive for non-effective learning and for effective
learning under Angluin’s conditions.
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learning. However, learning functions that are not consistent are not necessarily
trivial. If, for example, the input is noisy, it would not be unreasonable for a
learning function to ignore certain data because it deems it unreliable. It may
also be reasonable to be give up consistency for efficiency, as will be discussed
in Section 2.9.

Also, it is a well known fact that children do not learn languages consistently.

Definition 2.53 Set-driven learning
A learning function ϕ learns G set-driven if ϕ(〈s0, . . . , si〉) is determined by
{s0, . . . , si}, or, more precisely, if the following holds: Whenever {s0, . . . , si} =
{u0, . . . , uj}, ϕ(〈s0, . . . , si〉) is defined if and only if ϕ(〈u0, . . . , ui〉) is defined,
and if they are defined, they are equal. (It is easy to see that set-drivenness
implies order-independence.)

The collection of classes that are learnable under this constraint is written
as [TxtEx]set-driven.

Set-driven learning could be very loosely described as order-independent
learning with the added bonus of ignoring ‘doubles’ in the input. It is obvious
that this is a nice property for a learning function to have: one would not
expect the choice of hypothesis to be influenced by repeated presentation of
the same data.

The assumption here is that the order of presentation and the number of
repetitions are essentially arbitrary, i.e. they carry no information that is of
any use to the learning function. One can devise situations where this is not
the case.

Note that in Osherson et al. (1986) it is shown that learnable families of
infinite languages are always learnable by a set-driven learner.

Definition 2.54 Conservative learning
A learning function ϕ is conservative if for any finite sequence 〈s0, . . . , si〉

of sentences and for any sentence si+1, whenever ϕ(〈s0, . . . , si〉) is defined and
si+1 ∈ L(ϕ(〈s0, . . . , si〉)), ϕ(〈s0, . . . , si, si+1〉) is also defined and ϕ(〈s0, . . . , si〉) =
ϕ(〈s0, . . . , si, si+1〉).

The collection of classes that are learnable under this constraint is written
as [TxtEx]cons.

At first glance conservatism may seem a desirable property. Why change
your hypothesis if there is no direct need for it? One could imagine cases,
however, where it would not be unreasonable for a learning function to change
its mind, even though the new data fits in the current hypothesis. Such a
function could for example make reasonable but ‘wild’ guesses which it could
later retract. The function could ‘note’ after a while that the inputs cover
only a proper subset of its conjectured language. While such behaviour will
sometimes result in temporarily ‘overshooting’, such a function could still be
guaranteed to converge to the correct hypothesis in the limit.
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Evidence that children are not conservative learners can be found in Mazurkewich
and White (1984).

It is a common assumption in cognitive science that human cognitive pro-
cesses can be simulated by computer. This would lead one to believe that
children’s learning functions are computable. The corresponding strategy is
the set of all partial and total recursive functions.

Since this is only a subset of all possible functions, the computability strat-
egy is a nontrivial hypothesis, but not necessarily a restrictive one. (For details,
see Fulk (1988).)

The computability constraint interacts with consistency:

Proposition 2.55 (See Fulk (1988)) There is a collection of languages that is
identifiable by a computable learning function but by no consistent, computable
learning function.

The computability constraint also interacts with conservative learning:

Proposition 2.56 (Angluin, 1980) There is a collection of languages that is
identifiable by a computable learning function but by no conservative, com-
putable learning function.

Definition 2.57 Monotonicity
The learning function ϕ is monotone increasing if for all finite sequences
〈s0, . . . , sn〉 and 〈s0, . . . , sn+m〉, whenever ϕ(〈s0, . . . , sn〉) and ϕ(〈s0, . . . , sn+m〉)
are defined, L(ϕ(〈s0, . . . , sn〉)) ⊆ L(ϕ(〈s0, . . . , sn+m〉)).

This property is also known as strong monotonic ([TxtEx]s-mon).

Variants of strong monotonicity have been considered, among which:

• monotonicity ([TxtEx]mon) on L, which requires that L(ϕ(σ)) ∩ L,⊆
L(ϕ(σ′)), where L ∈ L,

• weak monotonicity ([TxtEx]w-mon), which requires that range(σ′) ⊆
L(ϕ(σ))⇒ L(ϕ(σ)) ⊆ L(ϕ(σ′)),

• duals of these constraints: [TxtEx]d-s-mon is dual strong monotonicity,
[TxtEx]d-w-mon dual weak monotonicity, etc, the definition of these duals
are obtained by replacing all occurences of ⊂ and ⊆ in the definitions with
⊃, ⊇, respectively.

These monotonic strategies are all generalization strategies, their duals are
specialization strategies. Note that [TxtEx]d-w-mon is not restrictive, i.e. every
identifiable collection of languages can be identified by a dual-weak-monotonic
scientist, see Kinber and Stephan (1995b).

When a learning function that is monotone increasing changes its hypoth-
esis, the language associated with the previous hypothesis will be (properly)
included in the language associated with the new hypothesis. There seems to
be little or no empirical support for such a constraint.
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Definition 2.58 Incrementality
Kanazawa The learning function ϕ is incremental if there exists a computable
function ψ such that ϕ(〈s0, . . . , sn+1〉) ' ψ(ϕ(〈s0, . . . , sn〉), sn+1).

An incremental learning function does not need to store previous data. All
it needs is current input, sn, and its previous hypothesis. A generalized form of
this constraint, called memory limitation, limits access for a learning function
to only n previous elements of the input sequence. This seems reasonable from
an empirical point of view; it seems improbable that children (unconsciously)
store all utterances they encounter.

Note that, on an infinite sequence enumerating language L in L(G), a conser-
vative learning function ϕ learning G never outputs any grammar that generates
a proper superset of L.

Let ϕ be a conservative and computable learning function that is responsive
and consistent on G, and learns G prudently. Then, whenever {s0, . . . , sn}
⊆ L for some L ∈ L(G), L(ϕ(〈s0, . . . , sn〉)) must be a minimal element of
{L ∈ L(G) | {s0, . . . , sn} ⊆ L}. This implies the following:

Condition 2.59 There is a computable partial function ψ that takes any finite
set D of sentences and maps it to a grammar ψ(D) ∈ G such that L(ψ(D)) is
a minimal element (with respect to inclusion) of {L ∈ L(G) |D ⊆ L}, whenever
the latter set is non-empty.

Definition 2.60 Let ψ be a computable function satisfying Condition 2.59.
Define a learning function ϕ as follows:

ϕ(〈s0〉) ' ψ({s0}),
ϕ(〈s0, . . . , si+1〉)

'

{
ϕ(〈s0, . . . , si〉) if si+1 ∈ L(ϕ(〈s0, . . . , si〉)),
ψ({s0, . . . , si+1}) otherwise.

Under certain conditions the function defined in 2.60 is guaranteed to learn
G, one such case is where L(G) has finite elasticity.

Proposition 2.61 Let G be a class of grammars such that L(G) has finite
elasticity, and a computable function ψ satisfying Condition 2.59 exists. Then
the learning function ϕ defined in Definition 2.60 learns G.

The following constraints on learning functions are not really used in the
rest of this paper, they are presented to get a ‘feel’ for the relations between
various properties of learning functions.

Definition 2.62 Efficiency (Gold, 1967)
The learning function ϕ0 identifies L strictly faster than ϕ1 if and only if

1. both ϕ0 and ϕ1 identify L;
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2. for every text t for every L ∈ L, the convergence point for ϕ0 on t is no
greater than that for ϕ1 on t;

3. for some text t for some L ∈ L, the convergence point for ϕ0 on t is
smaller than that for ϕ1 on t.

The function ϕ0 identifies L efficiently if and only if ϕ0 identifies L, and no
learning function ϕ1 identifies L strictly faster than ϕ0.

Text-efficiency is not restrictive, i.e. any learnable class is text-efficiently
learnable. Note that any prudent, consistent and conservative learner is text-
efficient (Proposition 8.22A in Osherson et al. (1986)), but the reverse does not
hold. Also note that this property has nothing to do with the computational
complexity of the learning functions, ‘fast’ is defined strictly in terms of length
of text. It is also known as text-efficiency, we will postpone the discussion of
efficiency to Section 2.9.

Definition 2.63 Totality
The most natural constraint on a conjecture is that it exists. The corresponding
strategy is the set of total learning functions.

Definition 2.64 Nontriviality
The learning function ϕ is called nontrivial if and only if for all σ ∈ SEQ,
L(ϕ(σ)) is infinite.

Linguists rightly emphasize the infinite quality of natural languages; appar-
ently, no natural language includes a longest sentence. If this universal feature
of natural language corresponds to an innate constraint on children’s linguis-
tic hypotheses, then children would be barred from conjecturing a grammar
for a finite language. Such a constraint on potential conjectures amounts to a
strategy24.

It is easy to see that it is possible for a class L′ =
⋃
{L ∈ L|L is infinite} to

be learnable, even though L is not learnable. This is the case, for example, if
L is not learnable only because it contains both an infinite ascending chain of
finite languages and an infinite language L that is the union of all the languages
in this chain.

Note that there are collections of infinite languages that are identifiable by
recursive learning function but by no nontrivial, recursive learning function.

Definition 2.65 Let σ ∈ SEQ. The result of removing the last member of σ
is denoted by σ−; if |σ| = 0, then σ− = σ.

24There also exists epistemological motivation for disallowing finite languages as conjec-
tures. The constraint called accountability (Osherson et al. (1986)) demands that all hy-
potheses of a learning function are always subject to further confirmation. It is easy to see
that finite languages cannot be identified by accountable learners.

An analogous constraint, called Popperian learning, is defined in Case and Ngo-Manuelle
(1979). For a discussion on the relation between these constraints, see Osherson et al. (1986).
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For n ∈ N, the result of removing all but the last n members of σ is denoted
σ−n; if |σ| < n, then σ−n = σ.

Definition 2.66 Memory limitation (see Wexler and Culicover (1980))
For all n ∈ N, ϕ is n-memory limited if and only if for all σ, τ ∈ SEQ, if
σ−n = τ−n and ϕ(σ−) = ϕ(τ−), then ϕ(σ) = ϕ(τ). If ϕ is n-memory limited
for some n ∈ N, then ϕ is said to be memory limited.

The collection of classes that are learnable under this constraint is written
as [TxtEx]n-lim (some n ∈ N).

Thus ϕ is n-memory limited just in case its conjecture depends only on its
last conjecture and the n latest members of σ.

Obviously, n memory limitation with n = 1 is equivalent to the definition
of incrementality. It is called ‘1-memory limited’ in Osherson et al. (1986).

In Kinber and Stephan (1995b) (or Kinber and Stephan (1995a)) it was
shown that every class that is learnable by a set-driven function is learnable
by means of a conservative function that uses an amount of memory that is
linear in the amount of presented data.25 The inclusion is strict, i.e. there are
conservatively learnable classes that cannot be learned by a set-driven function.
It was also shown that families learnable by a memory limited function are
exactly those learnable by a set-driven function. Figure 2.2 gives an overview of
known results,26 where f and g are incomparable functions with c ≤ f, g ≤ id:
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Figure 2.2: An overview of results from Kinber and Stephan (1995a).

Here [TxtEx]f-lim denotes the language classes learnable with long term
memory limited by f,∀x[f(x) ≥ id(x)], where id denotes the amount of memory
needed to store range(σ) of any text σ.

Let A and B be two learning criteria. Then every A learnable (with k
mindchanges) L is also B learnable (with k mindchanges) if and only if there
is a transitive chain of arrows from A to B in the diagram.

25This kind of constraints on the use of computational resources, like memory-limited
learning, are formally no different from constraints on the behaviour of a learning function:
they specify a subset of all possible learners.

26Some of these results are taken from other sources or are generalizations of earlier results,
see references cited in Kinber and Stephan (1995a).
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If there is no such chain, then there is a class of sets which is Ac-lim
k learnable

but not B learnable; there is a class of sets which is Ac-lim
k and Bid-lim learnable

but not Bf-lim learnable for any f ≤ id− 2-lim. It is always possible to take
k = 3 mindchanges and c = 2 bits of long-term memory.

Also note that all classes learnable with constant long-term memory are
also learnable with constantly many mindchanges (Theorem 5.2 in Kinber and
Stephan (1995a)).

2.6.1 Constraints on Environments

It is possible to impose constraints on the learning environment as well as on
learning functions. These constraints can be restrictive, but they can also help
learning, i.e. expand the class of learnable languages:

Definition 2.67 Fat text
A text t is fat if and only if for all x ∈ content(t), {n | t(n) = x} is infinite.

The function ϕ identifies L on fat text if and only if for every fat text t for any
L ∈ L, ϕ identifies L. In this case, L is identifiable on fat text.

Proposition 2.68 Suppose that a collection L of languages is identifiable.
Then some memory limited learning function identifies L on fat text.

Thus, constraining the environment to fat text makes memory-limitedness
a non-restrictive constraint.

Another constraint on environments is the introduction of errors in the
text. Errors of two sorts can occur in text; on the one hand, ungrammatical
strings may appear in the text, on the other hand, certain grammatical strings
may never appear. This leads to the following definitions of noisy text and
incomplete text :

Definition 2.69 Let language L and text t be given.

1. t is a noisy text for L just in case there is finite D ⊂ N such that t is a
text for L

⋃
D.

2. t is an incomplete text for L just in case there is finite D ⊂ N such that
t is a text for L−D.

3. Learning function ϕ identifies L on noisy text just in case for every noisy
text T for L, ϕ converges on t to an index for L. ϕ identifies collection L
of languages on noisy text just in case ϕ identifies every L ∈ L on noisy
text.

4. Learning function ϕ identifies L on incomplete text just in case for every
incomplete text T for L, ϕ converges on t to an index for L. ϕ identifies
collection L of languages on incomplete text just in case ϕ identifies every
L ∈ L on incomplete text.
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Proposition 2.70 There is a collection L of languages with the following
properties:

1. Every L ∈ L is infinite.

2. Every distinct pair of languages in L is disjoint.

3. Some computable learning function identifies L (on ordinary text).

4. No computable learning function identifies L on noisy text.

A parallel fact holds for incompletion. It is shown in Fulk et al. (1994)
(Theorem 1) that incompletion is substantially more disruptive for identifica-
tion than is noise.

2.7 Variations on Identification in the Limit

Identification proposes quite strict criteria of hypothesis stability and accuracy,
so many liberalizations have been examined. For example, weaker criteria
of stability might allow successful learners to switch indefinitely often among
indices for the same language, or alternatively, to cycle among some finite set
of them. (See Osherson et al. (1986), Jain et al. (1989).) Weaker criteria of
accuracy might allow a finite number of errors into the final conjecture, or allow
the final conjecture to ‘approximate’ the target in a variety of senses.

These and other liberalizations have been studied extensively, both sepa-
rately and in combination. In this thesis we will stick to the standard concept
of identifiability in the limit, without restrictions on the learning environment.

2.8 Algorithms for Learning

Since the paradigm TxtEx is restricted to computable learning functions it is
natural to ask whether general learning algorithms exist.

Consider the strategy of identification by enumeration: the function has
access to a fixed (well-ordered)27 list of possible hypotheses, where this order
respects inclusion28, and at any time the current conjecture is the first on the
list that is consistent with the current data. In Gold (1967) it was shown that
each r.e. indexable class of computable functions can be identified this way, and
Gold even conjectured that enumeration is a universal strategy for function

27A set S is said to be well-ordered by a relation R if R is a total order and every nonempty
subset of S has a least element.

For example, N = {0, 1, . . . , } is well-ordered, whereas Z = {. . . ,−1, 0, 1, . . .} is not.
28An order > respects inclusion just if X > Y implies Y 6⊂ X.
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learning.29 This conjecture can be refuted by example: Wiehagen’s class of
self-describing functions is identifiable, but not by an enumerator. A more
sophisticated version of this conjecture was formulated by Bārzdiņš and was
later refuted in Fulk (1990b). Interestingly, this refutation yields an algorithm
that is strictly more general than enumeration. In Kapur (1991) it was shown
that there is no general algorithm for identification from positive data of all
learnable classes.

However, when the classes under consideration are restricted to indexed
families of recursive languages, and some additional conditions are satisfied, a
general (consistent and conservative) algorithm exists. It is based on choos-
ing a grammar generating a minimal language from a collection of grammars
consistent with the input, see Kapur (1991) for details.

2.8.1 Uniform Learning: Synthesizing Learners

Some work has been done on the problem of universal or uniform learners,
that is functions that can generate a learner for a class G given a description
of G. In the approach of uniform learning one tries to solve a collection of such
learning problems, i.e. the instance of the new problem is a set of descriptions
for several problems of the classical type. The goal is to find a single "master"
strategy simulating all the strategies for the classical problems referred to in
the description set. For extensive discussion and recent results see e.g. Zilles
(2001a, 2002, 2001b).

Though this subject may seem abstract and remote from the ‘everyday
concerns’ of, for example, an acquisitionist, consider this: in Yang (1999) the
nativist model of language learning is sketched as a function that takes data and
some explicit description of the learning problem. This implies that, given an-
other description, this function would be able to learn something else, perhaps
not remotely resembling the class of natural languages. Therefore, under this
interpretation, a nativist would claim that (very) general learning algorithms
exist, which obviously goes against the general spirit of nativism.

The subject also holds interest from a practical point of view. Consider the
context of parser-design, an algorithm designed for parsing just one particu-
lar language is in general not deemed to be very useful, instead one is more
interested in parser generators that generate a parser from a description of a
language (i.e. a grammar) which is necessarily restricted to some (given) class.

29One frequently encounters the misconception that enumeration is a universal strategy
for language learning (cf Pinker (1979); Atkinson (1992)). It is easy to refute this claim:
even the class COFIN = {{n, n+ 1, n+ 2, . . .} | n ∈ N} is not identifiable from positive data
by enumeration, since this class constitutes an infinite descending chain, and thus has no
minimal language. Therefore no well-order over these languages can be given that respects
the inclusion relation. The class is obviously learnable: if we take n ∈ N to be an index
for the language {n, n + 1, n + 2, . . .}, the function that yields the smallest number from a
sequence of numbers learns COFIN. See Gold (1967) for conditions under which enumeration
is an appropriate strategy.

Note that Gold credits Solomonoff (1964) for introducing identification by enumeration.
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It has been shown that there is no algorithm for translating any class L
consisting of just a pair of grammars into a learning algorithm which TxtEx-
identifies L, even though any finite class can be TxtEx-identified, see Osherson
et al. (1988); Kapur (1991) for details.

There has been some research into synthesizing learners for noisy data, see
Case and Jain (1998); Case et al. (1997a). For learning from noisy data also
see Case et al. (1997b).

2.9 Time Complexity of Learning Functions

In formal learnability theory there are no a priori constraints on the compu-
tational resources required by the learning function. In Jain et al. (1999) a
whole chapter has been devoted to complexity issues in identification, where it
is noted that there is a close relationship between the complexity of learning
and computational complexity of functionals and operators. Defining the lat-
ter is a complex problem and still an active area of research. It is therefore no
surprise that only partial attempts have been made at modeling the complex-
ity of the identification process. Some examples are given that are based on
bounding the number of mind changes of a learner (The existence of an ordinal
mind change bound gives a measure for the tractability of learning a class),
or bounding the number of examples required before the onset of convergence.
These definitions do not seem to be directly related to any ‘computational’
notion of complexity. Ideally, such a constraint would satisfy some obvious
intuitions about what constitutes tractability: for example, in the worst case a
learning function should converge to a correct solution in polynomial time with
respect to the size of the input. Such definitions are not directly applicable,
since the input is not guaranteed to be helpful, for example it can start with
an unbounded number of presentations of the same sentence. In full generality
there can never be a bound on the number of time-steps before convergence,
so such a constraint poses no bounds on computation time whatsoever.

It turns out that giving a usable definition of the complexity of learning
functions is not at all easy. In this subsection some proposals and their problems
will be discussed, and the choice for one particular definition will be motivated.

In Daley and Smith (1986) a measure of learning complexity is developed
that is based on an integral defining the amount of work a learning function
needs to do to converge on a function. This approach is based on Blum mea-
sures, and may thus admit pathological cases.

In Gold (1967) a definition of efficiency for learning functions known as
text-efficiency is given: a function ϕ identifies L (text-)efficiently just if there
exists no other function that, for every language in L, given the same text,
converges at the same point as ϕ or at an earlier point.

Formally this can be simply regarded as a constraint. Note that this prop-
erty has nothing to do with the computational complexity of learning functions,
‘faster’ is defined strictly in terms of length of text.
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Although the text-efficiency constraint seems to correspond to a rational
learning strategy, by itself it is hardly restrictive. Every learnable class is text-
efficiently learnable. Also, it is a qualitative rather than a quantative measure,
and there is no direct connection between text-efficiency and time complexity.
Text-efficiency seems to be of limited interest to the present discussion.30

Let the complexity of the update-time of some (computable) learning func-
tion ϕ be defined as the number of computing steps it takes to learn a language,
with respect to |σ|, the size of the input sequence. In Pitt (1989) it was first
noted that requiring the function to run in a time polynomial with respect to
|σ| does not constitute a significant constraint, since one can always define a
learning function ϕ′ that combines ϕ with a clock so that its amount of com-
puting time is bounded by a polynomial over |σ|. Obviously, ϕ′ learns the same
class as ϕ, and it does so in polynomial update-time.31

The problem here is that without additional constraints on ϕ the ‘burden
of computation’ can be shifted from the number of computations the function
needs to perform to the amount of input data considered by the function.32

Requiring the function to be consistent already constitutes a significant con-
straint when used in combination with a complexity restriction (see Bārzdiņš
(1974)). In fact, this a common theme in the work of Wiehagen, who calls it
the consistency effect.

Some monotone strategies seem to have the same effect. See Stein (1998)
for a discussion of consistent polynomial-time identification.

Applying the notion of reduction from recursion theory to learning has
recently received some attention. This approach, known as intrinsic complexity,
was introduced in Freivalds et al. (1995) for function learning. The reductions
are based on the idea that a class L is reducible to a class L′ just if there is
an enumeration operator that transforms any text t for L ∈ L to a text t′ for
L′ ∈ L′ and an enumeration operator that transforms admissible sequences for
t′ to admissible sequences for t. There is a close connection between structural
properties and this notion of complexity: all classes that can be identified
by a learner that can confirm its success can be reduced to the collection of
singleton languages, all classes that can be identified with no more than n
mind changes are reducible to FINn+1 (the collection of all languages with
cardinality less than or equal to n+ 1). It was also shown that a class L with
k pairwise independent j-chains33 cannot be (weakly) reduced to a class L′

that contains only finite languages and has less than k pairwise independent
j-chains. Intrinsic complexity has been proposed as a complexity measure

30In fact a whole section devoted to this subject in Osherson et al. (1986) has been com-
pletely omitted from the second edition Jain et al. (1999).

31To be more precise: in Daley and Smith (1986) it was shown that any unbounded mo-
notone increasing update boundary is not by itself restrictive.

32Similar issues seem to be important in the field of computational learning theory (see
Kearns and Vazirani (1994) for an introduction). The notion sample complexity from this
field seems closely related to the notions of text- and data-efficiency. There also exists a
parallel with our notion of (polynomial) update-time.

33See Figure 2.1 for the relation between this and other structural properties.
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precisely because it abstracts away from computational aspects. This can be
an advantage, depending on what the researcher is interested in. In the present
case it is obviously a drawback.

In Angluin (1979), consistent and conservative learning with polynomial
time of updating conjectures was proposed as a reasonable criterion for effi-
cient learning. The consistency and conservatism requirements ensure that the
update procedure really takes all input into account. It is interesting to note
that a conservative (and prudent) learner that is consistent on its class is text-
efficient.34 This definition was applied in Arimura et al. (1992) to analyze the
complexity of learning a subclass of context-free transformations. The follow-
ing theorem gives a sufficient condition for efficient learnability. It has been
taken from Matsumoto et al. (1997) where it was used to analyze the complex-
ity of learning regular term tree languages (Theorem 9 which is attributed to
Angluin (1980a) and Shinohara (1986)):

Theorem 2.71 Let L be a class of languages. If L has finite thickness, and the
membership problem and the minimal language problem for L are computable
in polynomial time, then L is polynomial time inferable from positive data.35

A closely related notion is due to Pitt (1989):

Definition 2.72 A class of acceptors M is polynomial-time learnable in the
limit from positive data if

1. M is learnable in the limit from positive data,

2. the learning algorithm for M satisfies the property that there exist poly-
nomials p, q such that for any M of size n, n ∈ N

+, and for any positive
presentation of L(M), the time used by the algorithm between receiving
the i-th example wi and outputting the i-th conjectured acceptor Mi is at
most p(n, l1 + . . . + li), and the number of implicit errors of prediction
made by the algorithm is at most q(n), where lj = |(wj), j ∈ N

+.

To the best of our knowledge, no non-trivial class of acceptors or languages
has been shown to be efficiently learnable according to this definition, even
the class of all DFAs recognizing just finite languages does not meet the re-
quirements (Angluin (1990)). The following was demonstrated in Yokomori
(1995):

34It is interesting to note that a conservative (and prudent) learner that is consistent on
its class is text-efficient (Proposition 8.2.2 A in Osherson et al. (1986)). Therefore, the
conservative learning functions ϕk-valued, ϕleast-valued and ϕleast-card defined in Kanazawa
(1998) that are consistent on their class are all text-efficient.

35Polynomial time inference is defined in Matsumoto et al. (1997) as ‘there exists a consis-
tently, responsively and conservatively working learning function that has polynomial update
time’. This corresponds to the Angluin-style definition of efficient learning.
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Theorem 2.73 Let M be any class of acceptors that generate an infinite de-
scending chain, i.e. there exists an infinite chain of acceptors M0,M1, . . . such
that L(M0) ⊃ L(M1) ⊃ . . .. Then M cannot be learned efficiently in the sense
of Definition 2.72.

Note that Yokomori (1995) suggests alternative definitions which seem to
be more usable, due to space limitations we will not discuss them here.

There does not seem to be any generally accepted definition of what consti-
tutes a tractable learning function. A serious problem with Angluin’s approach
is that it is not generally applicable to learning functions for any given class,
since both consistency and (especially) conservatism are restrictive. I will there-
fore apply only the restrictions of consistency and polynomial update-time,
since this seems to be the weakest combination of constraints that is restrictive
and has an intuitive relation with standard notions of computational complex-
ity.

This definition has at least one drawback: not all learnable classes can be
learned by a learning function that is consistent on its class, so even this com-
plexity measure cannot be generally applied.36 There is also no guarantee that
for a class that is learnable by a function consistent on that class characteristic
samples (i.e. samples that justify convergence to the right grammar) can be
given that are uniformly of a size polynomial in the size of their associated
grammar.

See Wiehagen and Zeugmann (1994, 1995); Stein (1998) for discussions
of the relation between the consistency constraint and complexity of learning
functions.

For more applied work in a Grammatical Inference context, see Oncina
and Garcia (1992); de la Higuera (1997); Oncina and de la Higuera (2002);
Cascuberta and de la Higuera (2000); de la Higuera et al. (1996).

36As noted before, this is a recurrent theme in the work of Wiehagen. Our results in
Chapter 5 give concrete evidence that the common approach in the field of machine learning,
where only consistent algorithms are taken into account, may lead one to overlook feasible
solutions to language learning problems.
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Chapter 3

Classical Categorial

Grammar

In this chapter the basic concepts of classical categorial grammar are intro-
duced. Also, definitions of standardized forms of classical categorial grammar
are presented. These have been mostly taken from Kanazawa (1998).

3.1 Basic Definitions

In classical categorial grammar each symbol in the alphabet Σ gets assigned
a finite number of types. Types are constructed from primitive type by the
operators \ and /. We let Pr denote the set of primitive types.

Definition 3.1 The set of types Tp is the smallest set satisfying the following
conditions:

1. Pr ⊆ Tp,

2. if A ∈ Tp and B ∈ Tp, then A\B ∈ Tp.

3. if A ∈ Tp and B ∈ Tp, then B/A ∈ Tp.

Definition 3.2 Type A is a subtype of B if and only if

1. A = B, or

2. B = B1\B2 and A is a subtype of B1 or B2, or

3. B = B2/B1 and A is a subtype of B1 or B2.

Definition 3.3 Pr = {t}
⋃
Var.
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One member of Pr, the constant t, is said to be the distinguished type. The
other members of Pr are called variables, this set is denoted by Var.1

Definition 3.4 Grammars are finite relations on Σ× Tp.

For a symbol s ∈ Σ and a type T ∈ Tp, if a grammar G assigns T to s we
write G : s 7→ T .

Definition 3.5 Domain and range
The domain and range of a categorial type are defined as

dom(A/B) = dom(B\A) = B;
ran(A/B) = ran(B\A) = A.

Definition 3.6 Domain subtypes and range subtypes
A domain subtype is a subtype that is in domain position, i.e. for the type
((A/B)/C) the domain subtypes are B and C.
For the type (C\(B\A)) the domain subtypes are C and B.

A range subtype is a subtype that is in range position, i.e. for the type
((A/B)/C) the range subtypes are (A/B) and A.
For the type (C\(B\A)) the range subtypes are (B\A) and A.

Domain and range are sometimes called argument and head respectively.

Convention 3.7 We write ·\· and ·/· for types that have left application and
right application, respectively, as main functor and some unspecified domain
subtype and range subtype.

Definition 3.8 Note that any type A with head p can be written uniquely in
the following form:

(. . . ((p|A1)|A2)| . . .)|An

where A|B stands for either A/B or B\A, and p ∈ Pr.

This notation can be useful in situations where direction of application is
not relevant.

Definition 3.9 2 The degree of a type is defined as

degree(A) = 0, if A ∈ Pr,
degree(A/B) = 1 + degree(A) + degree(B),
degree(B\A) = 1 + degree(A) + degree(B),
degree(B •A) = 1 + degree(A) + degree(B).

1This notation is somewhat unusual. In the literature on categorial grammar t is com-
monly written as s. The other members of Pr are normally notated as constants. Here we
will use Kanazawa’s notation, which is useful in situations where substitutions over types are
considered.

2Note that the •-operator is not commonly used in CCG, however we include it here and
in the definition of order since it is used in the Lambek calculus, to be defined in Chapter 8.
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In other words, the degree of a type can be determined by counting the
number of operators it contains.

Another useful notion is that of order:

Definition 3.10 The order of a type is defined as

order(A) = 0, if A ∈ Pr,
order(A/B) = max(order(A), order(B) + 1),
order(B\A) = max(order(A), order(B) + 1),
order(A •B) = max(order(A), order(B)).

Derivations in classical categorial grammar are composed of just forward
application

B/A,A⇒ B

and backward application:
A,A\B ⇒ B.

Definition 3.11 The relation⇒⊆ Tp+×Tp is the smallest relation satisfying
the following conditions:

• For all A ∈ Tp, A⇒ A.

• For all Γ,∆ ∈ Tp+ and for all A,B ∈ Tp,

– if Γ⇒ A and ∆⇒ A\B, then Γ,∆⇒ B, and

– if Γ⇒ B/A and ∆⇒ A, then Γ,∆⇒ B.

In other words, a sequence of types A1, . . . , Ai is said to derive B, notated
as

A1, . . . , Ai ⇒ B,

if (and only if) there exists a sequence of forward and backward applications
such that, if it is applied to this sequence, the type B is obtained.

Definition 3.12 A derivation D of B from A1, . . . , Ai is a labeled binary
branching tree that encodes a proof of A1, . . . , Ai ⇒ B. Each node is labe-
led by a type, and every internal node is also labeled with either FA or BA,
denoting forward or backward application, respectively.

The root node is labeled by B, the leaf nodes are labeled by A1, . . . , Ai in
that order.

Example 3.13 A derivation of t from X, (X\t)/Y, Y :

t

BA
X X\t

FA
(X\t)/Y Y
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Definition 3.14 The node in a derivation D labeled by A\B or B/A is said to
be the functor, the node labeled by A is called the argument of that application
step.

The ultimate functor of a derivation is the leaf node arrived at by tracing
the functor daughters starting at the root node.

Definition 3.15 A functor-argument structure over Σ is a binary branching
tree that has all its internal nodes labeled by BA or FA and has all its leaves
labeled by symbols in Σ.

A functor-argument structure corresponding to a derivation D in G is ob-
tained by stripping a derivation D of its type-labels and replacing every type
labeling of a leaf by an element of Σ that is assigned that type by G.

A set of functor-argument structures is called a structure language. The
structure language generated by grammar G is denoted FL(G), it contains all
and only the functor-argument structures corresponding to derivations in G.

The yield of a functor-argument structure T is denoted yield(T ).
The relation between string language and structure language is defined by

L(G) = {yield(T ) | T ∈ FL(G)}.

The functions L and FL are called naming functions. Note that from a
recursion-theoretic point of view, grammars are just indices for languages.

Definition 3.16 A string is a sentence in L(G) if it is the yield of some
functor-argument structure for which a corresponding derivation in G exists
that derives t.

3.2 Decidable and Undecidable Questions about

Classical Categorial Grammars

Theorem 3.17 (Gaifman) For any context-free language L ⊆ Σ∗, a catego-
rial grammar G such that L(G) = L exists if and only if L is an ε-free language.

Proposition 3.18 The universal membership problem, ‘s ∈ L(G)?’, is decida-
ble for classical categorial grammars.

By using one of the numerous parsing algorithms for context-free grammars,
this question can be answered in polynomial time.

The following follows directly from a well-known result for context-free lan-
guages:

Proposition 3.19 The questions ‘L(G1) = L(G2)?’ and ‘L(G1) ⊆ L(G2)?’
are, in general, undecidable.

Proposition 3.20 Since FL(G1) ⊆ FL(G2) if and only if FL(G1)
⋃
FL(G2) =

FL(G2), and from G1 and G2 one can effectively construct G3 such that FL(G3) =
FL(G1)

⋃
FL(G2), the question ‘FL(G1) ⊆ FL(G2)?’ is decidable.
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In Buszkowski (1987b) an algorithm for deciding ‘FL(G1) = FL(G2)?’,
based on finding a mapping between two algebras is sketched which runs in
at most exponential time. Since the classes of structure languages under dis-
cussion are collections of regular tree languages, this problem is closely related
to the inclusion problem for regular tree languages. In Seidl (1989, 1990) it was
shown that this problem is DEXPTIME-complete with respect to logspace re-
ductions, and still even PSPACE-complete with respect to logspace reductions
if the grammars in question only accept finite (structure) languages (also see
Asveld and Nijholt (2000) for subclasses of the context-free languages for which
inclusion of the corresponding structure languages is decidable, and Greibach
and Freidman (1980) for subclasses of context-free tree languages for which
inclusion is decidable).

The fact that ‘L(G1) ⊆ L(G2)?’ is undecidable, in contrast to ‘FL(G1) ⊆
FL(G2)?’, is another reason to focus on learning from structures rather than
strings.

3.3 Substitutions and Standardizations

3.3.1 Substitutions

Types as defined in Definition 3.1 can be treated as terms where \ and / are
function symbols. The standard notion of substitution of a term for a variable
applies to types.

Definition 3.21 Let σ be a substitution defined as

σ(t) = t,
σ(A\B) = σ(A)\σ(B),
σ(B/A) = σ(B)/σ(A),

for all A,B ∈ Tp.

Substitution over types can be extended to substitution over grammars in
a natural way:

Definition 3.22 Let σ be a substitution. Then σ[G] denotes the grammar
obtained by applying σ to the type assignments of G:

σ[G] = {〈c, σ(A)〉 | 〈c, A〉 ∈ G}.

σ[G] is called a substitution instance of G.

A substitution is called a (variable) renaming if and only if it is a one-to-
one function from Var to Var. If σ is a variable renaming, then the terms T
and σ[T ] are called alphabetic variants. We can of course apply this notion to
grammars.
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It should be clear that grammars that are alphabetic variants have the same
structure and generate the same structure languages, hence to all intents and
purposes they are equivalent. The following convention is therefore straight-
forward:

Convention 3.23 Grammars that are alphabetic variants are treated as iden-
tical.

Definition 3.24 Let < be a partial order over categorial types such that T1 <
T2 if there exists a substitution σ such that σ[T1] = T2, σ[T2] 6= T1, and σ is
not a renaming.

This definition implies that T1 is more general than T2. Note that for all
variables A, A < t.

Definition 3.25 G1 ⊆ G2 is defined to mean that G2 contains all of the type
assignments of G1, and possibly more. Obviously, G1 ⊆ G2 implies FL(G1) ⊆
FL(G2).

Proposition 3.26 If σ[G1] ⊆ G2, then FL(G1) ⊆ FL(G2).

Corollary 3.27 If σ[G1] ⊆ G2, then L(G1) ⊆ L(G2).

3.3.2 Grammars in Reduced Form and Grammars With-

out Useless Types

Definition 3.28 A substitution σ is said to be faithful to a grammar G if the
following holds:
For all c ∈ dom(G), if G1: c 7→ A,G1: c 7→ B, and A 6= B, then σ(A) 6= σ(B).

In other words, a substitution faithful to G does not unify types that are
distinct.

Definition 3.29 Let v be a binary relation on grammars such that G1 v G2
if and only if there exists a substitution σ with the following properties:

• σ is faithful to G1.

• σ[G1] ⊆ G2.

The relation v is a partial order on grammars.
Let G1 < G2 denote G1 v G2 and G1 6= G2.

Definition 3.30 A grammar G is said to be in reduced form if there is no G′

such that G′ < G and FL(G′) = FL(G). This is a decidable property.

Definition 3.31 A type A ∈ Tp(G) is useless if no derivation in G that derives
t contains a node labeled with type A.
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Proposition 3.32 If a grammar G is in reduced form, then G has no useless
type.

Definition 3.33 A grammar G is called redundant if there is a G′ such that
G′ ⊂ G and FL(G′) = FL(G).

No grammar in reduced form is redundant. However, a grammar can be
redundant without having a useless type.
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Chapter 4

Learning Classes of

Categorial Grammars

In this chapter various classes of classical categorial grammars are presented,
and the results from Kanazawa (1998) concerning learnability of these classes
will be discussed. Also, an open question from this book is answered: the set-
driven learning functions ϕ[

VGk
and ϕ[

LVG are shown not to be conservative in
Section 4.3.

In Chapter 3 the class of classical categorial grammars was associated with
the grammar systems 〈CatG,Σ+,L〉 and 〈CatG,ΣF,FL〉. These systems cor-
respond to two different models for learning categorial grammars. Using the
former grammar system, the learning function receives as input sequences of
(non-empty) strings over Σ. Using the latter system, the learning function
receives as input sequences of functor-argument structures over Σ.

A class G of grammars is called learnable from strings if it is learnable with
respect to the former grammar system. If it is learnable with respect to the
latter grammar system it is called learnable from structures.

Since a functor-argument structure provides more information than its yield,
learnability from structures may seem trivial. This is not the case, however:
Gold’s theorem implies that the class CatG of all categorial grammars (over
a given Σ) is learnable neither from strings nor from structures. The notions
of learnability from strings and learnability from structures are, in principle,
logically independent. When learning from structures, the criteria for successful
learning are more strict than when learning from strings: the learning function
is required to converge to a grammar G that generates exactly the structures
that appear in the input sequence. This is more strict than the requirement
that the string language of G contain exactly the yields of the structures in
the input sequence. Therefore, learnability from strings does not a priori imply
learnability from structures. Learning from strings will be discussed in Section
4.8.
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4.1 Learning Rigid Grammars: the Algorithm

RG

Definition 4.1 A rigid grammar is a partial function from Σ to Tp. It assigns
either zero or one type to each symbol in the alphabet.

Definition 4.2 We write Grigid to denote the class of rigid grammars over Σ.
The class {FL(G) |G ∈ Grigid} is denoted FLrigid.

Buszkowski’s algorithm for learning rigid grammars (see Buszkowski (1987a),
Buszkowski and Penn (1990)), which Kanazawa calls RG, takes a finite set of
functor-argument structures (D) as input and yields either a rigid grammar
or the empty set, in case D is no sublanguage of any language generated by a
rigid grammar. This algorithm relies on unification of types.1

Algorithm RG

• input: a finite set D of functor-argument structures.

• output: a rigid grammar G such that D ⊆ FL(G), if it exists.

The first step of this algorithm is called GF. It maps a structure to a finite
set of type assignments. For this, the following rules are applied2:

Algorithm GF

• input: a finite set D of functor-argument structures.

• output: a grammar G such that D = FL(G).

c 7→ X ;
{

c 7→ X
}

ba(c1, c2) 7→ X ;

{
c1 7→ Y
c2 7→ Y \X

}

fa(c2, c1) 7→ X ;

{
c1 7→ Y
c2 7→ X/Y

}

1For a comprehensive overview of unification theory the reader is referred to Baader and
Siekmann (1993). Generalizations of unification of types have been considered in the context
of learning categorial grammars, see Buszkowski (1995); Marciniec (1994, 1997, 1996) for
e.g. unification with negative constraints and unification of infinite sets of types.

As noted in Chapter 3, the structure languages under discussion are regular tree languages.
These are generalizations of regular languages, and they are commonly represented by tree
automata, which are generalizations of finite state automata. It should not come as a surprise
then that unification in this context is a generalization of a technique for inducing finite state
automata known as state merging. It is known to be an efficient technique, see e.g. Angluin
(1982); Oncina and Garcia (1992); Lang (1992); Lang et al. (1998).

2Here the symbol ; is taken to mean ‘yields, after application of the function GF. . . ’.
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The type assignments obtained in this way are collected into a grammar.
This grammar is the general form determined by D. Note that this grammar
can be redundant. To obtain a rigid grammar, the types assigned to the same
symbol must be unified.

Let A = {{A | GF(D): c 7→ A} | c ∈ dom(GF(D))}, and compute σ =
mgu(A). If unification fails, the algorithm also fails. The substitution is then
applied to the general form, so RG(D) = σ[GF(D)].

In Buszkowski and Penn (1990) some of the more important properties of
RG have been investigated:

Lemma 4.3 FL(GF(D)) = D.

Proposition 4.4 RG(D), if it exists, is in reduced form.

Kanazawa’s results concerning the learnability properties of RG are the
following:

Theorem 4.5 The class FLrigid has finite elasticity.

In fact, Kanazawa’s proof of this Theorem shows that the length of any
‘elasticity chain’ in this class is bounded. One of the key arguments in his
proof is stated by the following lemma:

Lemma 4.6 Let G0, . . . , Gn be rigid grammars over Σ without useless types
such that G0,< . . . < Gn. Then n ≤ |Σ|.

Definition 4.7 Let ϕRG be the learning function for the grammar system
〈CatG,ΣF,FL〉 defined as follows 3:

ϕRG(〈T0, . . . , Tn〉) ' RG({T0, . . . , Tn}).

Theorem 4.8 ϕRG learns Grigid from structures.

Proposition 4.9 ϕRG has the following desirable properties:

• ϕRG learns Grigid prudently.

• ϕRG is responsive and consistent on Grigid.

• ϕRG is set-driven.

• ϕRG is conservative.

• ϕRG is monotone increasing.

• ϕRG is incremental.

• ϕRG runs in linear time.4

3X ' Y means ‘X and Y are both defined and equal, or both are undefined’.
4Note that Kanazawa does not claim this for a function, but for a particular algorithm.

Since RG can be implemented by an algorithm that unifies at most n types (where n is the
number of symbol occurences in the input) it runs in time linear in |D|, the size of the input.
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4.2 Learning k-Valued Grammars

Restricting a learning function to the class of rigid grammars seems rather
unfortunate: if the input enumerates a structure language of a grammar that
assigns more than one type to a symbol, ϕRG either fails or overgeneralizes.

RG can easily be modified to deal with these cases. This modified RG can
be used in an algorithm that learns the class Gk-valued of k-valued grammars.

Definition 4.10 A k-valued grammar is a partial function from Σ to the pow-
erset of Tp. It assigns at most k types to each symbol in the alphabet.

Definition 4.11 We write Gk-valued to denote the class of k-valued grammars
over Σ. The class {FL(G) |G ∈ Gk-valued} is denoted FLk-valued.

Theorem 4.12 (Hierarchy Theorem)
For each k ∈ N,Lk-valued ⊂ Lk+1-valued.

Corollary 4.13 For each k ∈ N,FLk-valued ⊂ FLk+1-valued.

The algorithm is based on a generalization of unification that is called k-
partial unification.

Definition 4.14 let A be a family of sets of types. A substitution σ is called
a k-partial unifier of A if and only if for each A ∈ A, |{σ(A) |A ∈ A}| ≤ k.

Definition 4.15 Let A = {A1, . . . ,An} be a family of sets of types.

• If Bi = {Bi,1, . . . ,Bi,li} is a partition of Ai for 1 ≤ i ≤ n, then the family

B =
⋃

{Bi | 1 ≤ i ≤ n}

is called a partition of A; B is called a k-partition of A if li ≤ k for each
i.

• Let σ be a substitution. The equivalence relation

σ(A) = σ(B)

on types determines a partition Bi of Ai for each i. then

B =
⋃

{Bi | 1 ≤ i ≤ n}

is called the partition of A induced by σ.

Definition 4.16 If A is a finite family of finite sets of types, let

PUk(A) = {mgu(B) | B is a k-partition of A}.
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The function PUk is computable in exponential time.

Proposition 4.17 Let A be a finite family of finite sets of types. Then, for
every k-partial unifier σ of A, there is some k-partial unifier σ0 in PUk(A)
such that σ0 is more general than σ.

Algorithm VGk.

• Input: A finite set D of functor-argument structures.

• Output: A finite set G of k-valued grammars such that for each G ∈ G,
D ⊆ FL(G).

Step 1. Algorithm RG: construct GF(D).

Step 2. Let A = {{A | GF(D): c 7→ A} | c ∈ dom(GF(D))} and compute
PUk(A).

Step 3. Let VGk(D) = {σ[GF(D)] | σ ∈ PUk(A)}. This is the output of
the algorithm.

Proposition 4.18 Let G be a k-valued grammar. Then the following are equiv-
alent:

1. D ⊆ FL(G).

2. There exists a grammar G′ ∈ VGk(D) such that G′ v G.

Proposition 4.19 For k ≥ 2, {G ∈ Gk-valued |G is in reduced form} ⊂
⋃
range(VGk).

In other words, VGk is ‘messy’: it may produce grammars that are not in
reduced form. When it does, it will also produce the reduced version of such
a grammar, since a grammar is of the same size, or larger than, its reduced
version.

Proposition 4.20 (Stated without proof in Kanazawa (1998)) If G ∈ VGk(D)
and T ∈ FL(G), then G ∈ VGk(D ∪ {T}).

We could call this ‘conservativity of grammar class’.
Since it is possible that |VGk(D)| > 1, we need a way to select a grammar

from such a set. In fact, Grigid is unique in that |RG(D)| = 1 if defined. A
learning function based on any of the other classes we will examine needs a
selection function.

Proposition 4.21 Let D be a finite set of functor-argument structures. Then
the set of minimal elements of {L ∈ FLk-valued |D ⊆ L} is included in {FL(G) |
G ∈ VGk(D)}.
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This, and the decidability of the question ‘FL(G1) ⊆ FL(G2)’?, makes it
possible to find a grammar for a minimal element of {L ∈ FLk-valued |D ∈ L}
given any D as input.

4.2.1 Learning Functions Based on VGk

Definition 4.22 Let µFL be a (computable) function that maps a non-empty
finite set G of grammars to a grammar G ∈ G such that FL(G) is a minimal
element of {FL(G) |G ∈ G}.

Proposition 4.23 For any finite set D ⊂ ΣF, if µFL(VGk(D)) is defined, then
FL(µFL(VGk(D))) is a minimal element of {L ∈ FLk-valued |D ⊆ L}.

Definition 4.24 Let ϕVGk
be the learning function for 〈CatG,ΣF,FL〉 defined

as follows:

ϕVGk
(〈T0〉) = µFL(VGk({T0})),

ϕVGk
(〈T0, . . . , Ti+1〉)

=

{
ϕVGk

(〈T0, . . . , Ti〉) if Ti+1 ∈ FL(ϕVGk
(〈T0, . . . , Ti〉)),

µFL(VGk({T0, . . . , Ti+1})) otherwise.

This is a construction that is guaranteed to be conservative: it ignores input
that fits into the current hypothesis5. Only if input is not compatible with the
current hypothesis (i.e., is not in the structure language of the former output
grammar), a new hypothesis is considered. The learning function based on µFL
and some class of grammars may not be inherently conservative.

Proposition 4.25

1. ϕVGk
is responsive and consistent on Gk-valued.

2. ϕVGk
is conservative.

3. ϕVGk
learns Gk-valued prudently.

Theorem 4.26 ϕVGk
learns Gk-valued from structures.

The function ϕVGk
is not designed to be set-driven or even to learn order-

independently. Kanazawa defines a set-driven learning function ϕ[
VGk

:

Definition 4.27

ϕ[
VGk

(〈T0, . . . , Ti〉) = µFL(VGk({T0, . . . , Ti})),

where µFL is defined as follows:

5Note that it is only ignored ‘locally’. Once input does not fit, the input that was formerly
ignored is taken into account when constructing a new hypothesis.
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Definition 4.28 Let µFL be a computable total function that maps a finite set
G of grammars to the first element of
{G ∈ G | FL(G) is a minimal element of FL(G)} under the ordering ≺.

Here, ≺ is defined by:6

Definition 4.29 Let ≺ be a computable well-order on CatG such that G1 ≺ G2
whenever one of the following conditions holds:

1. size(G1) < size(G2).

2. size(G1) = size(G2) and |Var(G1)| > |Var(G2)|.

3. size(G1) = size(G2) and |Var(G1)| = |Var(G2)|, then G1 ≺ G2 by some
arbitrary lexicographic ordering of grammars.

The size of a grammar is defined as:

Definition 4.30 For any grammar G, define the size of G, size(G), as follows:

size(G) =
∑

c∈Σ

∑

G: c7→A

|A|

where for each type A, |A| is the number of symbol occurrences in A.

Lemma 4.31 If G1 v G2, then size(G1) ≤ size(G2).

Lemma 4.32 G1 < G2 implies G1 ≺ G2.

Unfortunately the reverse does not hold. If it would, < and ≺ would ob-
viously be equivalent, greatly simplifying matters. We can, however, use ≺
instead of <. Kanazawa leaves this implicit since it is quite easy to see, but
we have decided to show this because it is an important point. The following
is an easy consequence of lemma 4.32:

Corollary 4.33 G1 ≺ G2 implies ¬(G2 < G1)

Proof: By lemma 4.32, ¬(G2 ≺ G1) implies ¬(G2 < G1). Since ≺ is a
well-order, G1 ≺ G2 implies ¬(G2 ≺ G1). ¤

6Even though it is not clear why Kanazawa chose this particular ordering, this definition
suggests this adapted version of µFL is intended to pick the ‘simplest’ (in an informal sense)
grammar from a set.

There exists a learning strategy called simplicity (see Osherson et al. (1986)) that constrains
learning functions so as not to conjecture grammars that are arbitrarily more complex than
simpler alternatives for the same language. For any size measure and any bound on the
size difference between conjecture and simpler alternative, this strategy severely restricts the
class of learnable languages, in the recursive case.
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Proposition 4.34 Let 〈Ti〉i∈N be an infinite sequence enumerating some L ∈
FLk-valued. Then ϕ[

VGk
converges on 〈Ti〉i∈N to the first element of

GL = {G ∈ Gk-valued | FL(G) = L}

under the ordering ≺.

4.3 ϕ[VGk
is not conservative

While ϕ[
VGk

is set-driven, Kanazawa left it an open question whether it is
conservative.

I have constructed a proof of non-conservativity of ϕ[
VGk

that was inspired
by a footnote on page 102 of Kanazawa (1998):

Although I have not had time to prove that ϕ[
VGk

is indeed
nonconservative, it is conceivable that the following sort of situation
can obtain: G0 = µFL(VGk(D)). G1 ≺ G0, G1 ∈ VGk(D), there is
no G′1 ∈ VGk(D) such that G′1 < G1, but FL(G1) is not minimal
in FL(VGk(D)). G0, G1 ∈ VGk(D ∪ {T}), and FL(G1) is minimal
in FL(VGk(D ∪ {T})).

To summarize, the following conditions are sufficient conditions for ϕ[
VGk

to be
non-conservative:

1. G0, G1 ∈ VGk(D), FL(G0) is minimal, but FL(G1) is not minimal in
FL(VGk(D)), G1 ≺ G0 , ϕ[

VGk
(D) = G0.

2. G0, G1 ∈ VGk(D ∪ {T}), FL(G1) is minimal in FL(VGk(D ∪ {T})),
ϕ[
VGk

(D ∪ {T}) = G1.

It turns out that such a situation can occur, and implies the following:
There is a finite (possibly empty) set of grammars FG ⊂ VGk(D) such that

all G ∈ FG, FL(G) 6⊆ FL(G0) and FL(G0) 6⊆ FL(G), and G0 ≺ G. For all
G ∈ VGk(D)− FG, FL(G0) ⊆ FL(G).

Since G1 ≺ G0 and µFL(VGk(D)) = G0, G1 is not minimal in VGk(D), so
there is a grammar G2VGk(D) such that FL(G2) ⊂ FL(G1) and G0 ≺ G2.

Moreover, G2 cannot be in VGk(D∪{T}). If it would, µFL would choose G2
over G1, so condition 2 would be impossible. So we have ¬(FL(G2) ⊂ FL(G0)),
and G0 ≺ G2, so G1 ≺ G0 ≺ G2.

By Proposition 4.20, since G2 ∈ VGk(D) and G2 6∈ VGk(D ∪ {T}), T 6∈
FL(G2).

Since for any G ∈ VGk(D), D ⊆ FL(G), {T} ⊂ FL(G0), {T} ⊆ FL(G1).
We are now equipped to prove the following:7

7An earlier version of this proof first appeared in Costa Florêncio (2001c). Makoto Kana-
zawa has pointed out (personal communication) that this proof could be simplified, making
it easier to be verify by hand, and making it possible to be verified by the Prolog implemen-
tation as given in the appendix of Kanazawa (1998). The proof presented here is thus an
alternative version and is due to Kanazawa.
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Proposition 4.35 The set-driven learning function ϕ[
VGk

is non-conservative.

Proof: By example: The initial sample to be considered is the set con-
sisting of the following functor-argument structures:

ba(fa(a,fa(b,fa(x,x))),g) g

ba(fa(fa(y,y),fa(fa(y,y),fa(x,x))),g) ba(a,e)

ba(b,e) e

ba(ba(fa(z,z),a),j) j

ba(ba(fa(z,z),fa(w,w)),j) ba(fa(y,y),c)

ba(fa(w,w),c) ba(d,e)

ba(ba(fa(z,z),d),j) ba(fa(a,fa(f,fa(x,x))),g)

ba(f,e)

It’s useful to note that with a 2-valued grammar, a structure of the form
fa(x,x) (or ba(x,x), for that matter) must be assigned the same type wherever
it occurs. The Prolog implementation outputs the following three grammars.
Note that they differ only in the types assigned to a, b, d, e, and f.

G1 :

a 7→ B/B,D\E
b 7→ B/B
c 7→ (B/B)\t, (D\E)\t
d 7→ B/B,D\E
e 7→ (B/B)\t, t
f 7→ B/B
g 7→ B\t, t
j 7→ E\t, t
w 7→ (D\E)/W,W
x 7→ B/X,X
y 7→ (B/B)/Y, Y
z 7→ D/Z,Z

G2 :

a 7→ B/C,D\E
b 7→ B/C,C/B
c 7→ (B/B)\t, (D\E)\t
d 7→ B/C,D\E
e 7→ (B/C)\t, t
f 7→ B/C,C/B
g 7→ B\t, t
j 7→ E\t, t
w 7→ (D\E)/W,W
x 7→ B/X,X
y 7→ (B/B)/Y, Y
z 7→ D/Z,Z

G3 :

a 7→ B/C,D\E
b 7→ C/B,D\E
c 7→ (B/B)\t, (D\E)\t
d 7→ D\E
e 7→ (D\E)\t, t
f 7→ C/B,D\E
g 7→ B\t, t
j 7→ E\t, t
w 7→ (D\E)/W,W
x 7→ B/X,X
y 7→ (B/B)/Y, Y
z 7→ D/Z,Z
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Note that G1 is the result of unifying C with B in G2, and FL(G1) prop-
erly includes FL(G2). FL(G2) and FL(G3) are incomparable and size(G2) >
size(G3), so the set-driven learning function based on ≺ picks G3 for this sam-
ple.

Now consider adding
ba(b,c)

to the above sample and see what grammars are output:

G′1 :

a 7→ B/B,D\E
b 7→ B/B
c 7→ (B/B)\t, (D\E)\t
d 7→ B/B,D\E
e 7→ (B/B)\t, t
f 7→ B/B
g 7→ B\t, t
j 7→ E\t, t
w 7→ (D\E)/W,W
x 7→ B/X,X
y 7→ (B/B)/Y, Y
z 7→ D/Z,Z

G′2 :

a 7→ B/B,D\E
b 7→ B/B,D\E
c 7→ (B/B)\t, (D\E)\t
d 7→ D\E
e 7→ (D\E)\t, t
f 7→ B/B,D\E
g 7→ B\t, t
j 7→ E\t, t
w 7→ (D\E)/W,W
x 7→ B/X,X
y 7→ (B/B)/Y, Y
z 7→ D/Z,Z

G′3 :

a 7→ B/B,D\E
b 7→ B/B,D\E
c 7→ (B/B)\t, (D\E)\t
d 7→ B/B,D\E
e 7→ (B/B)\t, t
f 7→ B/B
g 7→ B\t, t
j 7→ E\t, t
w 7→ (D\E)/W,W
x 7→ B/X,X
y 7→ (B/B)/Y, Y
z 7→ D/Z,Z

G′4 :

a 7→ B/C,D\E
b 7→ C/B,D\E
c 7→ (B/B)\t, (D\E)\t
d 7→ D\E
e 7→ (D\E)\t, t
f 7→ C/B,D\E
g 7→ B\t, t
j 7→ E\t, t
w 7→ (D\E)/W,W
x 7→ B/X,X
y 7→ (B/B)/Y, Y
z 7→ D/Z,Z

Note that G′1 is the same as G1, and G′4 is the same as G3. G′2 is the result
of unifying C with B in G′4, and G′3 is G′1 plus one additional type assignment:
b 7→ D\E. So FL(G′2) properly includes FL(G′4) and FL(G′3) properly includes
FL(G′1). FL(G

′
1) and FL(G′4) are incomparable. But size(G′1) < size(G′4), so

G′1, not G′4 (= G3), is the grammar picked by the set-driven learning function
for this expanded sample. ¤



4.4. LEAST-VALUED GRAMMARS 55

4.4 Least-Valued Grammars

The class of k-valued grammars suffers from a major problem; VGk(D) is not
defined for all D. There is a simple way to solve this problem: define a class
based on VGk where k is always the minimal k for which VGk(D) is defined.
Let us call this the class of least-valued grammars.

Definition 4.36 (Definition 6.49 from Kanazawa (1998)) Let L ⊆ ΣF. A
grammar G ∈ Gk+1-valued − Gk-valued is called least-valued with respect to L if
L ⊆ FL(G) and there is no G′ ∈ Gk-valued such that L ⊆ FL(G′).

Definition 4.37 If G ∈ LVG(D), then G is least-valued with respect to D.

Definition 4.38 A grammar G is called a least-valued grammar if it is least-
valued with respect to FL(G).

Definition 4.39 We write Gleast-valued to denote the class of least-valued gram-
mars over Σ. The class {FL(G) |G ∈ Gleast-valued} is denoted FLleast-valued.

Definition 4.40 Algorithm for LVG

• input: A finite set D of functor-argument structures.

• output: A finite set of k-valued grammars G such that D ⊆ FL(G) for
the least k such that D is a subset of some L ∈ FLk-valued.

Set k := 0.
Input D.
While VGk(D) = ∅ do

Set k := k + 1.
Let LVG(D) = VGk(D).

Thus, LVG finds the least k such that VGk(D) 6= ∅ and outputs VGk(D).
This makes VGk(D) 6= ∅ for any D.

Proposition 4.41 {G ∈ Gleast-valued |G is in reduced form} ⊂ range(LVG).

Let ϕLVG be defined as ϕVGk
in Definition 4.24, with VGk replaced by LVG.

Proposition 4.42 The learning function ϕLVG learns Gleast-valued from struc-
tures.

• ϕLVG is responsive and consistent on Gleast-valued.

• ϕLVG is conservative.
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It is possible to define an alternative learning function ϕ[
LVG analogous to

Definition 4.27 that is set-driven. It converges in a way entirely analogous to
ϕ[
VGk

as stated in Proposition 4.34.

Proposition 4.43 The set-driven learning function ϕ[
LVG is non-conservative.

Proof: In the proof of 4.35, a grammar G is presented that is the general
form of sample D. In this grammar, both a type of the form ·/· and a type
of the form ·\· are assigned to the symbol l. Clearly, these two types are not
unifiable, so the least value for k for which VGk(D) is defined is at least 2. In
the proof, for all the grammars that have to be considered by µ (G′1, G

′
2 and

G′3), k = 2. Thus, the proof works for ϕ[
LVG as well. ¤

4.5 Optimal Grammars

Another extension of RG proposed by Buszkowski and Penn is the class of
optimal grammars. The algorithm for generating this class, OG, is based on a
generalization of unification called optimal unification.

Definition 4.44 We write Goptimal to denote the class of optimal grammars
over Σ. The class {FL(G) |G ∈ Goptimal} is denoted FLoptimal.

Definition 4.45 Let A = {A1, . . . ,An} be a family of sets of types. A substi-
tution σ is called an optimal unifier of A if the following holds:

1. σ is a most general unifier of the partition of A induced by σ.

2. For all Ai ∈ A and for all A,B ∈ Ai, if σ(A) 6= σ(B), then {σ(A), σ(B)}
has no unifier.

An optimal unifier of A unifies is a substitution that unifies A ‘as much as
possible’. Note that this means that no grammar G, G ∈ Goptimal is redundant.

Definition 4.46 Let B and C be partitions of A. B is said to be coarser than C
if C is a partition of B. We say that B is strictly coarser than C if B is coarser
than C but not vice versa.

Definition 4.47 Let A be a family of sets of types. A partition B of A is said
to be optimal if the following conditions hold:

1. B has a unifier

2. No partition C of A strictly coarser than B has a unifier.

Proposition 4.48 Let A be a family of sets of types. A substitution σ is an
optimal unifier of A if and only if σ is a most general unifier of some optimal
partition of A.



4.6. LEAST CARDINALITY GRAMMARS 57

Definition 4.49 If A is a finite family of finite sets of types, define

OU(A) = {mgu(B) | B is an optimal partition of A}.

Obviously, if A has an unifier, OU(A) = {mgu(A)}. The algorithm for
computing a set of optimal grammars is as follows:
Algorithm OG

• input: a finite set D of functor-argument structures.

• output: a finite set of optimal grammars G such that D ⊆ FL(G).

First the algorithm RG is invoked to compute the general form.
Let A = {{A |GF(D): c 7→ A} | c ∈ dom(GF(D))}, and compute OU(A).

Let OG(D) = {σ[GF(D)] | σ ∈ OU(A)}.

Proposition 4.50 {G ∈ Goptimal |G is in reduced form} ⊂
⋃
range(OG).

Proposition 4.51 FLOG ⊂ FLoptimal.

Theorem 4.52 FLoptimal has a limit point.

Corollary 4.53 FLOG has a limit point.

Corollary 4.54 Neither Goptimal nor
⋃
range(OG) is learnable from struc-

tures.

Even though the class of optimal grammars is not learnable, it is still inter-
esting, since it can be used as basis for defining other classes.

4.6 Least Cardinality Grammars

The class of least cardinality grammars is a variation of optimal grammars.
Constraining the cardinality of hypothesized grammars leads to the definition
of a learnable subclass of optimal grammars.

Definition 4.55 Let L ⊆ ΣF. A grammar G is said to be of least cardinality
with respect to L if L ⊆ FL(G) and there is no grammar G′ such that |G′| < |G|
and L ⊆ FL(G′).

Definition 4.56 We write Gleast-card to denote the class of least cardinality
grammars over Σ. The class {FL(G) |G ∈ Gleast-card} is denoted FLleast-card.

Definition 4.57 If D is a finite set of functor-argument structures, let

LCG(D) = {G ∈ OG(D) | ∀G′ ∈ OG(D)(|G| ≤ |G′|)}.
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Lemma 4.58 if G ∈ LCG(D), then G is of least cardinality with respect to D.

Definition 4.59 A grammar G is called a least cardinality grammar if G is
of least cardinality with respect to FL(G).

Proposition 4.60
⋃
range(LCG) = (

⋃
range(OG)) ∪ Gleast-card.

Proposition 4.61 {G ∈ Gleast-card |G is in reduced form} ⊆
⋃
range(LCG).

Corollary 4.62 FLleast-card = {FL(G) |G ∈
⋃
range(LCG)}.

Proposition 4.63 FLleast-card ⊂ FLOG.

Let ϕLCG be defined as in Definition 4.24, with VGk replaced by LCG.

Theorem 4.64 ϕLCG learns Gleast-card from structures.

• ϕLCG is responsive and consistent on Gleast-card.

• ϕLCG is conservative.

ϕLCG can be shown to learn Gleast-card order-independently. A set-driven
learning function ϕ[

LCG can be defined, analogous to Definition 4.27. Whether
this function is also conservative is an open question; the proof of Proposition
4.35 does not work for (subclasses of) optimal grammars.

4.7 Minimal Grammars

Like least cardinality grammars, the class of minimal grammars is a subclass
of optimal grammars. Hypothesized grammars are required to be minimal
according to a certain partial ordering, in addition to being optimal.

Definition 4.65 Let l = |Σ|, and let c1, . . . , cl be the elements of Σ arranged
in a fixed order. For each grammar G over Σ, let v(G) be the vector defined as
follows:

v(G) = 〈n1, . . . , nl〉,

where for 1 ≤ j ≤ l, nj = |{A |G: cj 7→ A}|.

The partial order ≤ is defined on vectors in N
l in the natural way: 〈n1, . . . , nl〉 ≤

〈m1, . . . ,ml〉 if nj ≤ mj for all j(1 ≤ j ≤ l). Also, if v1, v2 ∈ N
l, v1 < v2 if

and only if v1 ≤ v2 and v1 6= v2.

Definition 4.66 If D is a finite subset of ΣF, let

MG(D) = {G ∈ OG(D) | ¬∃G′ ∈ OG(D)(v(G′) < v(G))}.
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Thus, MG(D) consists of those elements of OG(D) of which the associated
vector is minimal. Clearly, MG(D) 6= ∅ for all D.

In Buszkowski and Penn (1990) the elements of MG(D) were characterized
in terms of minimality with respect to D.

Definition 4.67 Let L ⊆ ΣF. A grammar G is said to be minimal with respect
to L if L ⊆ FL(G) and there is no grammar G′ such that v(G′) < v(G) and
L ⊆ FL(G).

Definition 4.68 A grammar G is said to be minimal if G is minimal with
respect to FL(G).

Definition 4.69 We write Gminimal to denote the class of minimal grammars
over Σ. The class {FL(G) |G ∈ Gminimal} is denoted FLminimal.

Corollary 4.70 G1 v G2 implies v(G1) ≤ v(G2).

Proposition 4.71 If a grammar G is of least cardinality with respect to L,
then G is minimal with respect to L.

Proposition 4.72 The class {FL(G)|v(G) 6> 〈n1, . . . , nl〉} does not have finite
elasticity.

Whether or not Gminimal is learnable from structures is, as far as we know,
still an open question. Kanazawa conjectures it is learnable.

4.8 Learning k-valued Grammars from Strings

As we have seen, an algorithm for learning Gk-valued from strings was presented
in Kanazawa (1998), and it was shown that, since Lk-valued has finite elasticity,
this class is learnable from strings. Note that Grigid is just a special case of
Gk-valued, so this class is learnable as well.

Proposition 4.73 The class Lk-valued has finite elasticity.

In the proof of this proposition a theorem from citetkanazawa94note was
used that is a generalization of a theorem by Wright (Wright (1989)) (Wright’s
theorem states that if two language classes L andM have finite elasticity, then
the class {L ∪M | L ∈ L ∧M ∈M} also has finite elasticity).

Theorem 4.74 LetM be a class of languages over Υ that has finite elasticity,
and let R ⊆ Σ∗×Υ∗ be a finite-valued relation. Then L = {R−1[M ] |M ∈M}
also has finite elasticity.
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From Definition 3.15, we have L(G) = {yield(T ) | T ∈ FL(G)}. If L ⊆ ΣF,
we write yield[L] for {yield(T ) | T ∈ L}. Then Lk-valued = {yield[L] | L ∈
FLk-valued}. The relation R ⊆ Σ+ × ΣF defined by RsT ⇔ s = yield(T )
is finite valued. Since FLk-valued has finite elasticity, applying Theorem 4.74
shows that Lk-valued also has finite elasticity.

Using Proposition 4.73, the following can be shown:

Theorem 4.75 For each k ∈ N, Lk-valued ⊂ Lk+1-valued.

4.8.1 Algorithms for Learning k-Valued Grammars from

Strings

Kanazawa’s algorithm is based on two computable functions, Ψk-valued and µL.
The function Ψk-valued maps a finite set of strings to a finite set of k-valued
grammars. The function µL takes two arguments, a finite set of grammars and
a positive integer, and returns a member of the first argument.

Definition 4.76

Ψk-valued({s0, . . . , si}) =
⋃

{VGk({T0, . . . , Ti}) | sj = yield(Tj)}

where 0 ≤ j ≤ i.

This function applies VGk to all possible functor-argument structures of the
strings in the input8. The value of Ψk-valued is always a finite set of k-valued
grammars.

Lemma 4.77 If G ∈ Ψk-valued({s0, . . . , si}), then {s0, . . . , si} ⊆ L(G).

Given Proposition 4.18, the following lemma is straightforward:

Lemma 4.78 If G ∈ Gk-valued({s0, . . . , si} ⊆ L(G), then there exists some
G′ ∈ Ψk-valued({s0, . . . , si}) such that G′ v G.

This implies the following:

Proposition 4.79 Ψk-valued({s0, . . . , si}) includes all minimal elements of {L ∈
Lk-valued | {s0, . . . , si} ⊆ L}.

We could use this function together with a function µL,k to define a lear-
ning function as in Definition 2.60. The function µL,k would always have to
choose a grammar of which the (string) language is a minimal element of

8Note that the number of possible functor-argument structures associated with a sentence
is exponential in the length of that sentence. Also note that, given sufficient strings of
sufficient length, samples of the form found in the proof of Proposition 5.2 will be generated.
Since it follows from this proposition that an exponential number of k-valued grammars can
be generated, both size and time complexity of this algorithm are exponential.
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{L ∈ Lk-valued | {s0, . . . , si} ⊆ L}. By Proposition 2.61, we would be able
to define a conservative learning function that learns Gk-valued from strings
prudently and is responsive and consistent on this class.

It is not clear whether such a computable function µL,k exists.9 If conser-
vatism is not required, however, it is possible to define a computable learning
function for Gk-valued using Ψk-valued. Recall the ordering ≺ from Definition
4.29:

Definition 4.80 Let µL be a computable function that maps a non-empty finite
set G of grammars and a positive integer n to the first element of the following
set, under the ordering ≺, i.e.,

{G ∈ G | ¬∃G′ ∈ G(L(G′) ∩ (Σ ∪ {ε})n ⊂ L(G) ∩ (Σ ∪ {ε})n)}.

Lemma 4.81 Let G be a finite set of grammars. Then there is an m ∈ N such
that for all n ≥ m, µL(G, n) is the first element of the following set,

G′ = {G ∈ G | ¬∃G′ ∈ G(L(G′) ⊂ L(G))},

under the ordering ≺.

Definition 4.82 Define a learning function ψk-valued for the grammar system
〈CatG,Σ+,L〉 as follows:

ψk-valued(〈s0, . . . , si〉) = µL(Ψk-valued({s0, . . . , si}), i+ 1),

where i+ 1 is the length of 〈s0, . . . , si〉.

Proposition 4.83 The learning function ψk-valued is responsive and consistent
on Gk-valued.

Theorem 4.84 The learning function ψk-valued learns Gk-valued from strings
order-independently and prudently.

The function ψk-valued is not set-driven, since it refers to the length of its
argument. However, a simple variation on the definition of ψk-valued makes it
set-driven:

Definition 4.85 Define a learning function ψ[
k-valued for the grammar system

〈CatG,Σ+,L〉 as follows:

ψ[
k-valued(〈s0, . . . , si〉)

=







the first element of
{G ∈ Ψk-valued({s0, . . . , si}) | L(G) = {s0, . . . , si}} if it exists,
µL(Ψk-valued({s0, . . . , si}), |{s0, . . . , si}|) otherwise.

Note that reference to the length of 〈s0, . . . , si〉 is replaced by reference to
the cardinality of {s0, . . . , si}.

9For a discussion of this question, and of the relation between finite elasticity and unde-
cidability of the inclusion problem, see Kanazawa (1998), page 138.
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Proposition 4.86 The learning function ψ[
k-valued is responsive and consistent

on Gk-valued and is set-driven.

Proposition 4.87 The learning function ψ[
k-valued learns Gk-valued from strings

order-independently and prudently.

4.9 Classes that are not Learnable from Strings

Definition 4.88 Let Lleast-valued, Loptimal, Lleast-card, and Lminimal denote the
classes {L(G) |G ∈ Gleast-valued}, {L(G) |G ∈ Goptimal}, {L(G) |G ∈ Gleast-card},
and {L(G) |G ∈ Gminimal}, respectively.

Proposition 4.89 Each of the classes Lleast-valued, Loptimal, Lleast-card, and
Lminimal has a limit point.

Corollary 4.90 None of the classes

Gleast-valued,Goptimal,Gleast-card,Gminimal

is learnable from strings.

In Kanazawa (1998), an alternative characterization of these classes, that
are defined in reference to the naming function L instead of FL, is investigated:

Definition 4.91 The classes GLleast-valued, G
L
least-card and GLminimal are defined

just like Gleast-valued, Gleast-card and Gminimal except that reference to FL is re-
placed by reference to L. Let LLleast-valued = {L(G)|G ∈ G

L
least-valued}, L

L
least-card =

{L(G) |G ∈ GLleast-card} and LLminimal = {L(G) |G ∈ G
L
minimal}.

Corollary 4.92 The following inclusions hold:
GLleast-valued ⊆ Gleast-valued, G

L
least-card ⊆ Gleast-card, and GLminimal ⊆ Gminimal.

Corollary 4.93 GLleast-card ⊆ G
L
minimal.

Proposition 4.94 For G = GLleast-valued ⊆ Gleast-valued, GLleast-card ⊆ Gleast-card,
GLminimal ⊆ Gminimal, the class {G ∈ G | for no G′ < G,L(G′) = L(G)} is r.e.

It turns out that GLleast-valued and GLleast-card are learnable from strings. This
is not as interesting a result as it may seem at first sight, however. Since
Σ+ ∈ L2-valued, GLleast-valued is included in G2-valued. Similarly, GLleast-card is
included in some Gk-valued.

Proposition 4.95 LLminimal contains an infinite ascending chain.
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Class Learnable Finite Elasticity
Grigid yes yes
Gk-valued yes yes
Goptimal no no
Gleast-valued yes no
Gleast-card yes no
Gminimal ? no

Table 4.1: Summary of Kanazawa’s results for learning from structures.

It is not clear whether GLminimal is learnable from strings.
As a final remark, note that Seginer (2002a) shows that any subclass of

GLrigid that has an alphabet restricted to just two letters is efficiently learnable.
An algorithm is presented that exploits properties of the string languages in
this class (restrictions on the ratio of the number of occurences of a’s and b’s in
a sentence, among others things) to build a certain type of graph that is very
similar to the Stern-Brocot tree (see Graham et al. (1994)).10

4.10 Summary

Tables 4.1 and 4.2 sum up Kanazawa’s results concerning learnability from
structures and strings, respectively, of the classes of grammars referred to in
this chapter.

• ‘Learnable’ here means prudently learnable from structures, by a conser-
vative learning function that is responsive and consistent on the class.

• ‘Finite elasticity’ refers to the finite elasticity of the structure language
associated with the class.

• The existence of efficient algorithms for learning these classes will be
discussed in Chapter 5.

10The presentation of the algorithm in Seginer (2002a) is somewhat incomplete, a full
description and detailed proofs of correctness can be found in Seginer (2002b).
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Class Learnable Finite Elasticity
Grigid yes yes
Gk-valued yes yes
Gleast-valued no no
Goptimal no no
Gleast-card no no
Gminimal no no
GLleast-valued yes yes
GLleast-card yes yes
GLminimal ? no

Table 4.2: Summary of Kanazawa’s results for learning from strings.



Chapter 5

Complexity Issues

In this chapter1 the complexity of learning the classes defined in Chapter 4 will
be analyzed. As has been discussed at length in Section 2.9, at the present time
there is no really satisfactory criterion to distinguish classes that are tractably
(in a computational sense) learnable. However, it is possible to analyze the
complexity of generating a hypothesis that is in the class specified and is con-
sistent with the input. We will show that this problem is NP-hard for all the
classes discussed so far, except for the rigid grammars.

First a closer look will be taken at the discovery procedures underlying these
classes. More specifically, the next section will answer the question ‘how many
distinct hypotheses do they generate given a sample of a certain size?’.

5.1 An Avalanche of Hypotheses

The learning functions presented in Kanazawa (1998) are defined in terms of
functions that produce finite sets of grammars given a sample of structures, the
learning functions select one of the grammars that generate a minimal structure
language (with respect to inclusion) from this set. Note that this is just a way
of defining a function, an algorithm implementing such a function may use a
completely different method to arrive at the intended result. However, these
definitions suggest one particular implementation; in algorithmic terms they
employ a ‘generate-and-test’ strategy, i.e., the space of possible solutions is
traversed exhaustively, and after this a set of candidate solutions is evaluated.
As we shall see, some of these sets of grammars grow exponentially in the size
of the sample. This shows that it is impossible for any algorithm based on
such a strategy to run in polynomial time, but obviously this does not prove
anything about the existence of tractable algorithms that learn these classes.

1All results in this chapter were previously published, see Costa Florêncio (2001a, 2000b,
2001d, 2002a, To appear), all reproduced with permission.



66 CHAPTER 5. COMPLEXITY ISSUES

We will prove this for the optimal grammar class, and the example samples
will turn out to yield the same, or larger, sets of grammars when some of the
other functions previously defined are applied to them.

Example 5.1 Let G10 be the following general form in which A, (B\t) and
(t/C) are types assigned to the same word.

G10 :
a 7→ A,B\t, t/C
b 7→ B,C
c 7→ A\t

Then A has to be unified with either (B\t) or (t/C) to produce a grammar
that is optimal:

G10optimal :
a 7→ B\t, t/B
b 7→ B
c 7→ (B\t)\t

or

G′10optimal :
a 7→ B\t, t/B
b 7→ B
c 7→ (t/B)\t

Let G11 be a general form in which there are multiple copies of the A-type.

G11 :
a 7→ A[1] . . . A[n], B\t, t/C
b 7→ B,C
c 7→ A[1]\t, . . . , A[n]\t

Now we have A[1] . . . A[n], (B\t) and (t/C) assigned to the same word.
What was true for A holds for A[1] to A[n] as well. These types can be di-
stributed to unify with either (B\t) or (t/C) in 2n ways. If we assume we
can get all these combinations in distinct grammars that are in reduced form,
the cardinality of OG(D11)

2 should be 2n. In this case however most of these
grammars turn out to be identical, in fact there are only three distinct ones:

G11optimal1 :
a 7→ B\t, t/B
b 7→ B
c 7→ (B\t)\t

2By convention, we will write Dk for FL(G
k
), see Lemma 4.3.
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or

G11optimal2 :
a 7→ B\t, t/B
b 7→ B
c 7→ (t/B)\t

or

G11optimal3 :
a 7→ B\t, t/B
b 7→ B
c 7→ (t/B)\t, (B\t)\t

Note that even though these grammars are distinct, they generate the same
structure language. Since the function µFL picks a grammar with a minimal
structure language, this means that an algorithm may possibly exist that does
not need to generate all of these grammars. As we will see, this is also true for
the following grammars in this section.

We will need A[1] . . . A[n] to be under obligation to unify only in the assign-
ment to a to make all these grammars distinct. We can do this by assigning
types A[1]\t . . . A[n]\t to n pairwise distinct symbols. Let G12 = GF(D12):3

G12 :

a 7→ A[1], . . . A[n], B\t, t/C
b 7→ B,C

c[1] 7→ A[1]\t
c[2] 7→ A[2]\t
. . .

c[n] 7→ A[n]\t

This general form generates 2n distinct optimal grammars:

G12optimal1 :

a 7→ B\t, t/B
b 7→ B

c[1] 7→ (B\t)\t
c[2] 7→ (t/B)\t
. . .

c[n] 7→ (t/B)\t

3We do not present D12 explicitly, but it can easily be derived from G12.
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G12optimal2 :

a 7→ B\t, t/B
b 7→ B

c[1] 7→ (t/B)\t
c[2] 7→ (B\t)\t
. . .

c[n] 7→ (t/B)\t

G12optimal3 :

a 7→ B\t, t/B
b 7→ B

c[1] 7→ (B\t)\t
c[2] 7→ (B\t)\t
. . .

c[n] 7→ (t/B)\t
. . .

G12optimal2
n :

a 7→ B\t, t/B
b 7→ B

c[1] 7→ (B\t)\t
c[2] 7→ (B\t)\t
. . .

c[n] 7→ (B\t)\t

Note that, like the grammars derived from G11, they all generate the same
structure language. Simply adding to G12 the assignments b 7→ D and d 7→ D\t
yields optimal grammars that have distinct structure languages.

The size of the sample needed to create such a general form is 2 ∗ n + 4.
So n can be expressed in terms of the sample size as n = (size − 4)\2, thus
a non-sharp worst-case upper bound for the cardinality of the set output by
OG(D) is O(2(size)). Obviously, this bound is exponential.

The complexity is actually even worse than this. As the reader may already
have noticed, we can generalize G12 so that the number of non-unifiable types
assigned to a becomes variable, see Costa Florêncio (2001a).

Our example proves the following proposition:

Proposition 5.2 OG has exponential output complexity.

Proposition 5.3 LCG has exponential output complexity.

Proof: As the reader may verify, all the optimal grammars in OG(D12)
are of least cardinality. By definition (Definition 4.57), LCG(D) ⊆ OG(D).
Thus, LCG(D13) = OG(D13). ¤

Proposition 5.4 MG has exponential output complexity.
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Proof: By Proposition 4.71, if a grammar G ∈ LCG(D), then G ∈
MG(D). This implies that MG(D12) has at least the same cardinality as
LCG(D12). From this fact and Proposition 5.3 it follows that MG has ex-
ponential output complexity. ¤

Proposition 5.5 LVG has exponential output complexity.

Proof: We can use G12 to find an upper bound for the output complexity
of VGleast-valued. Since B\t and t/C are not unifiable, k (the maximum number
of non-unifiable types assigned to one word) becomes at least 2.

Thus OG(D12) ⊆ VG2-valued(D12). From this and Proposition 5.2 it follows
that LVG has exponential output complexity. ¤

Proposition 5.6 VGk has exponential output complexity.

Proof: In the case of k = 1, VGk is equivalent to RG, so it will yield at
most one grammar, it will be undefined in the case of G12. For k > 1, there
are at most k distinct types assigned to any word for all grammars in VGk(D),
so k ≥ 2, and it will contain OG(D12). ¤

5.2 The Tractability of Producing Consistent Hy-

potheses

As discussed in Section 2.9, the complexity of producing hypotheses from a
given class that are consistent with a given sample can be nontrivial and gives
some indication of the ‘difficulty of’ learning a class. In this section one partic-
ular well-known NP-complete problem will be discussed, and in later sections it
will be demonstrated that this problem can be reduced to consistency problems
for the classes discussed in Chapter 4.

The following proposition (from Buszkowski and Penn (1990), page 442,
Lemma 3) and corollary will be convenient for the NP-hardness proofs:

Proposition 5.7 For every structure s, if s ∈ FL(G), then there exists a
substitution τ such that τ [GF({s})] ⊆ G.

Corollary 5.8 For every consistent learning function ϕ learning a subclass of
CatG and every sequence σ for a language from that subclass there exists a
substitution τ such that τ [GF(σ)] ⊆ ϕ(σ), if ϕ(σ) is defined.

Thus, ifGF(σ) assigns x different types to the same symbol that are pairwise
not unifiable, the consistent learning function ϕ(σ) assigns at least x different
types to that same symbol.
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5.2.1 The Node-Cover Problem

In order to prove NP-hardness of an algorithmic problem L, it suffices to show
that there exists a polynomial-time reduction from an NP-complete problem L′

to L.4 We will present such a reduction using the node-cover (or vertex-cover)
problem, a well-known NP-hard problem from the field of operations research
that was first discussed in Karp (1972).

Definition 5.9 Let G = (V,E) be an undirected graph, where V is a set of
nodes and E is a set of edges, represented as tuples of nodes. A node cover of
G is a subset V ′ ⊆ V such that if (u, v) ∈ E, then u ∈ V ′ or v ∈ V ′ (or both).
That is, each node ‘covers’ its incident edges, and a node cover for G is a set
of nodes that covers all the edges in E. The size of a node cover is the number
of nodes in it.

The node-cover problem is the problem of finding a node cover of minimum
size (called an optimal node cover) in a given graph.

The node cover problem can be restated as a decision problem: does a node
cover of given size k exist for some given graph?

Proposition 5.10 The decision problem related to the node-cover problem is
NP-complete.

Proposition 5.11 The node-cover problem is NP-hard, the decision problem
related to the node-cover problem is NP-complete, and the production problem
is NP-hard.

This decision problem has been called one of the ‘six basic NP-complete
problems’ by Garey and Johnson (Garey and Johnson (1979), Chapter 3), and
is known to be approximable within 2 − log log |V |

2log|V | (Monien and Speckenmeyer

(1985); Bar-Yehuda and Even (1985)) and 2 − 2 ln ln |V |
ln |V | (Halperin (2000)). It

is not approximable within 1.1666, see Håstad (1997). Also see Cormen et al.
(1990) for a discussion of node-covers.

5.3 The Complexity of Learning Gk-valued

Since the formal proof of Proposition 5.12 below will be somewhat complex
an informal sketch of its structure will first be given. Let graph Graph be
given. Construct an alphabet A and a sample D, that is, a set of structures
D = {S0, . . . , Sn}, using A, following some recipe so that this sample represents
Graph. A consistent learning function ϕ presented with D can only conjecture
grammars whose associated languages contain D. Using Corollary 5.8 it will
be shown that, in order for these grammars to be in ϕ’s class, they have to

4This methodology of reductions was introduced in Karp (1972), and is also known as
many-to-one reduction.



5.3. THE COMPLEXITY OF LEARNING GK-VALUED 71

correspond to node covers for Graph of at most some given size. Therefore,
computing the conjecture after the last element of D is input solves the decision
problem related to the node-cover problem, which is NP-complete.5 Note that
the procedure that converts Graph to a sample constructs an alphabet with a
size linear in the size of Graph. This limits the result to the case where there
is no bound on the size of the alphabet.

Proposition 5.12 Let ϕ be a learning function6 that, given k ∈ N
+, can learn

any of the classes Gk-valued from structures, and that, for each k, is responsive
and consistent on this class and learns this class prudently. Deciding whether
ϕ is defined for an arbitrary D is an NP-hard problem (given that there is no
bound on the size of the alphabet).

Proof: The decision version of the node-cover problem can be transformed
in polynomial time to the problem of learning a k-valued grammar from struc-
tures by means of a learning function consistent on that class. That is, given a
bound on the size of the node cover, the function will yield a solution, or will
be undefined if no node cover of that size exists.7

The transformation of the initial graph to an input sample will now be de-
tailed. Edges are numbered 1, . . . , e and nodes are numbered 1, . . . , v. First, for
every edge i in E, we introduce in the input sample D the structure ba(e,ei).

Let Σ1,Σ2, . . . be shorthand for ba(x,v1), ba(x,ba(x,v2)), . . ., respec-
tively. Let the type X i

0\Γi be the type assigned to vi in GF({Σi}). Note that
for any i, j, Γi and Γj are not unifiable when i 6= j.8

Add to the sample ba(x,Σi) for all nodes 1 ≤ i ≤ v. For the two nodes
j, k ∈ V incident on edge i, add ba(ba(x,vj),ei), ba(ba(x,vk),ei).9

Let the value of max, which is the size of the desired node cover, be assigned
to k, the maximum number of types we want to assign to any single symbol
in the final conjectured grammar. If max = 1, let k be 2. We add to D
structures of the same kind as Σ1, . . . such that some symbols in GF(D) get
assigned a number of types that cannot be unified with any other type assigned
to the same symbol. This can be done by using a variant on the procedure for
creating Σ-types which uses only forward application instead of only backward

5In Kanazawa (1998), for each of the classes GVGk
, GLVG and GLCG two learning functions

are defined, one that is conservative and one that is set-driven. Both are responsive, prudent,
and consistent on their class for all these classes, so the proof of Proposition 5.12 and its
corollaries is directly applicable.

6To be more precise, ϕ is a learner synhesizer (recall Subsection 2.8.1): given a description
of the class in the form of k it will behave like a learner for that class.

7Note that this does not mean that the function is not responsive, since it will only be
undefined if the input is not from a language from this class.

8It is easy to see that, using this procedure for generating n such types, this will increase
the size of D by a factor only polynomial in n.

9We can also allow a single node in this set, this would correspond with reflexive connec-
tions in the graph. We ignore this possibility for the sake of clarity, since it does not affect
the proof in any way.
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application. 10 To avoid cluttering the proof these types will be denoted by
the (possibly empty) list Filler. Add to D structures such that that in GF(D),
max−2 (if max = 1, let this number be 0) Filler-types are assigned to symbols
e1, . . . , ee, max−1 (if max = 1, let this number be 0) Filler-types are assigned
to symbols v1, . . . , vv, and 1 Filler-type is assigned to e just if max = 1.

To represent graphs in a generic way, some types have indices characteristic
for the graph, and some constants characteristic for the graph are also required.
Node j is connected to kj edges, which are all edges which are numbered with
some e such that vf 1(e) = ef j(x) or vf 2(e) = ef j(x), where 1 ≤ x ≤ kj .

Edge e is incident on the two nodes i, j for which vf 1(e) = ef i(y), for some
1 ≤ y ≤ ki , and vf 2(e) = ef j(z), for some 1 ≤ z ≤ kj .

Let G = GF(D):

G :

e1 7→ E1\t, Avf 1(1)
\t, Avf 2(1)

\t, F iller
. . .
ee 7→ Ee\t, Avf 1(e)

\t, Avf 2(e)
\t, F iller

e 7→ E1, . . . , Ee, F iller

v1 7→ X1
0\Γ1, X

1
1\Aef 1(1)

, . . . ,
X1

k1
\Aef 1(k1), F iller

v2 7→ X2
0\Γ2, X

2
1\Aef 2(1)

, . . . ,
X2

k2
\Aef 2(k2), F iller

. . .
vv 7→ Xv

0 \Γv, X
v
1 \Aef v(1)

, . . . ,
Xv

kv
\Aef v(kv), F iller

x 7→ X1
0 , . . . , X

1
k1
,

X2
0 , . . . , X

2
k2
,

. . . , . . . ,
Xv
0 , . . . , X

v
kv

Suppose this sample D is input for ϕVGk
, k = max.11 Then, by Corol-

lary 5.8, for each i, 1 ≤ i ≤ v, the type X i
0\Γi assigned to vi has to unify

with the only types it can unify with, which are X i
1\Aef i(1)

. . . Xi
ki
\Aef i(ki).

For every such series of unification steps a substitution of the form {Γi ←
Aef i(1)

, . . . ,Γi ← Aef i(ki)} is obtained.
At this point an index function for the Γ-subtypes in the assignments to e1,

. . . , ee is needed, since these unification steps are dependent on the original

10A proof based on types containing only operator \, or only operator / is desirable since
it is more general than a proof based on types containing both operators; such a result would
then also hold for unidirectional subclasses of these classes. Using the same procedure for
creating the Σ- and Filler types creates complications that I have not yet been able to solve.

11We show only GF(D) instead of D since D’s properties that are relevant to this discussion
are much more accessible in this form.
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graph. For this purpose, let the functions gf 1(i) and gf 2(i) denote the two
nodes connected to edge i.

These substitutions yield grammar G′ (the X-variables are renumbered for
readability):

G′ :

e1 7→ E1\t,Γgf 1(1)
\t,Γgf 2(1)

\t, F iller
. . .
ee 7→ Ee\t,Γgf 1(e)

\t,Γgf 2(e)
\t, F iller

e 7→ E1, . . . , Ee, F iller

v1 7→ X1\Γ1, F iller
. . .
vv 7→ Xv\Γv, F iller

x 7→ X1, . . . , Xv

Now, in order to obtain a grammar that is k-valued (k = max), we need
to unify two of the types assigned to ei, for all i. Since the Γ-types are not
unifiable, this means that either Ei\t and Γgf 1(i)

\t, or Ei\t and Γgf 2(i)
\t have

to be unified. This will result either in the substitution {Γgf 1(i)
← Ei} or

in the substitution {Γgf 2(i)
← Ei}. Since e 7→ E1, . . . , Ee, this results in the

assignment of either Γgf 1(i)
or Γgf 2(i)

to e.
This unification step is intended to correspond to including node gf 1(i) or

gf 2(i) in the node-cover.
At this point another index function is needed, this time for the Γ-types

assigned to e. For this purpose, let the functions gef(1), . . . , gef(max) denote
the nodes in the node cover.

The final output of ϕVGk
, if it is defined, is G′′:

G′′ :

e1 7→ Γgf 1(1)
\t,Γgf 2(1)

\t, F iller
. . .
ee 7→ Γgf 1(e)

\t,Γgf 2(e)
\t, F iller

e 7→ Γgef(1), . . . ,Γgef(max), F iller

v1 7→ X1\Γ1, F iller
. . .
vv 7→ Xv\Γv, F iller

x 7→ X1, . . . , Xv

Whether or not all types assigned to x are unified has no consequence for
the structure language.

The resulting grammar can be read as a solution by taking the set S of all
the Γ-types assigned to e, and adding node v to the solution for each vi that
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has type Xi\Γi, Γi ∈ S, assigned to it.
Any grammar output by a consistent learner that only has k-valued gram-

mars as domain, where, k = max, will look like G′′. Since such a grammar
will correspond to a node cover any function that can learn any of these classes
prudently and is responsive and consistent on that class will be able to solve
the decision problem related to the node-cover problem after a polynomial-time
reduction. ¤

Corollary 5.13 (Of the proof)
Let ϕ be a learning function that learns Gleast-valued from structures, and that is
responsive and consistent on this class and learns this class prudently. Deciding
whether ϕ is defined for an arbitrary D is an NP-hard problem (given that there
is no bound on the size of the alphabet).

Obviously, exactly the same proof works for learning Gleast-valued, since,
because of the introduction of the Filler-types, no grammar can be obtained
from D with k < max, so the least value for k is max.

Corollary 5.14 (Of the proof)
Let ϕ be a learning function that learns Gleast-card from structures, and that is
responsive and consistent on this class and learns this class prudently. Deciding
whether ϕ is defined for an arbitrary D is an NP-hard problem (given that there
is no bound on the size of the alphabet).

The proof works for learning Gleast-card, since the k-valued grammar ob-
tained by learning Gk-valued is optimal (all symbols have k non-unifiable types
assigned, recall the remark concerning symbol x), and it can easily be verified
that all optimal grammars obtainable from D have the same cardinality.

The proof of Proposition 5.12 cannot be used for Gminimal. However, the
relation between Gminimal and Gleast-card provides a different route for proving
NP-hardness.

Let ϕ be a computable function for a class L that learns L consistently.
Then the learning function ϕ′ for a class L′,L ⊆ L′ that learns L′ consistently
has a time complexity that is the same as, or worse than, the time complexity of
ϕ. From this and Proposition 4.71 the following proposition is straightforward:

Proposition 5.15 Assume that there is a learning function ϕ that can learn
Gminimal from structures, and that is responsive and consistent on this class and
learns this class prudently.12 Deciding whether ϕ is defined for an arbitrary D
is an NP-hard problem (given that there is no bound on the size of the alphabet).

12Recall that it is an open question whether or not this class is learnable.
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5.4 The Complexity of Learning Gk-valued Revisited

As pointed out before, the proof of Theorem 5.12 requires an alphabet of un-
bounded size. We will now provide an alternative proof that works in the case
|Σ| = 3:

Theorem 5.16 Let ϕ be a learning function13 that can learn any of the classes
Gk-valued from structures, and that, for each k, is responsive and consistent on
this class and learns this class prudently. Deciding whether ϕ is defined for an
arbitrary D is an NP-hard problem.

Proof: The decision version of the node-cover problem can be transformed
in polynomial time to the problem of learning a k-valued grammar from struc-
tures by means of a learning function consistent on that class. That is, given a
bound on the size of the node cover, the function will yield a solution, or will
be undefined if no node cover of that size exists.

The transformation of the initial graph to an input sample will now be
detailed. The initial graph consists of edges, which are numbered 1, . . . , e, and
nodes, which are numbered 1, . . . , v. First, for every edge i in E, we produce a
structure fa(a, ba(w, . . . , ba(w,

︸ ︷︷ ︸

i times

fa(g,w)) . . . )). Construct a sample D from

all these structures for 1 ≤ i ≤ e.
Inclusion of these structures results in the assignment of types

Πi = (Wx\ . . . (Wx+i−1\(Ai/Wx+i)) . . .), for all 1 ≤ i ≤ e, to symbol g in
GF(D) (obviously no pair Πi,Πj can be unified unless i = j). Symbol a gets
assigned just the types t/Ai for all 1 ≤ i ≤ e. Symbol w gets assigned just some
number w of primitive types W1...w in GF(D).

For each node j, 1 ≤ j ≤ v, create the structure Ωj = ba(w, . . . ba(w,
︸ ︷︷ ︸

j times

g) . . . ).

For each edge i, add the structures ba(w, ba(w, . . . ,
︸ ︷︷ ︸

i times

fa(Ωfe(i,a), w) . . . )) and

ba(w, ba(w, . . . ,
︸ ︷︷ ︸

i times

fa(Ωfe(i,b), w) . . . )) to D. Here fe(i, a) and fe(i, b) give (in-

dices for) the two nodes incident on edge i.14 This results in the assignment of
types Γ(i,a) =Wy\(Wy+1\ . . . (Λfe(i,a)/Wy+i) . . .) and Γ(i,b) =
Wq\(Wq+1\ . . . (Λfe(i,b)/Wq+i) . . .) to symbol g in GF(D), where Λfe(i,a) =
(Wz\ . . . (Wz+fe(i,a)−1\t) . . .) and Λfe(i,b) = (Wr\ . . . (Wr+fe(i,b)−1\t) . . .).

Let max be the size of the desired node cover, and let d = 2e−max. Obvi-
ously d ≥ 0. The last step in constructing D consists of adding ‘filler’ types, to

13Again, ϕ is actually a learner synthesizer.
14The fa-label is used here as a separator between the ‘outer’ and ‘inner’ ba-labels in the

structure. Obviously the corresponding Γ types can only be unified if they have the same
number of ‘outer’ and ‘inner’ \ operators. This idea can be generalized so that it can be used
to encode sequences of arbitrary length of natural numbers in categorial types.
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pad the number of types assigned to a. These will look like (Wy\t)/ . . . /Wy+l−1

for a given l. Let Filler denote a (possibly empty) set containing d types.
Let G = GF(D):

G :

g 7→ Γ(1,a),Γ(1,b),Π1,
. . .
Γ(e,a),Γ(e,b),Πe,

a 7→ t/A1, . . . , t/Ae, F iller
w 7→ W1,W2, . . .

Suppose this sample D15 is input for ϕVGk
, k = 2e. Then, by Corollary 5.8,

for each i, 1 ≤ i ≤ e, the type Πi assigned to g has to unify with one of the two
types it can unify with, i.e. either Γ(i,a) or Γ(i,b). For every such unification
step a substitution, either {Λfe(i,a) ← Ai} or {Λfe(i,b) ← Ai}, is obtained. This
unification step is intended to correspond to including node fe(i, a) or fe(i, b),
1 ≤ i ≤ e, in the node-cover.

Applying these substitutions to G produces grammar G′:

G′ :

g 7→ Γ(1,a),Γ(1,b),
. . .
Γ(e,a),Γ(e,b),

a 7→ t/Λfe(1,fc(1)) . . . , t/Λfe(e,fc(e)), F iller
w 7→ W1,W2, . . .

Here fc(i) is the choice function from i, 1 ≤ i ≤ e to the node (either a or
b) chosen to cover edge i in the final node cover.

In order to obtain a grammar that is k-valued (k = 2e), there cannot be
more than 2e types assigned to a. Since there are d = 2e −max ‘filler’ types
assigned to a, the rest of the types can only be at most max types of the form
t/Λx (these obviously cannot unify with any type in Filler). Since the Λ-types
are pairwise not unifiable, this means that only max different types of the form
t/Λx are assigned to a.

Note that whether or not all types assigned to w are unified has no conse-
quence for the structure language associated with G′, and that there remain
exactly 2e Γ types assigned to g.

The grammar G′ is the final output, if ϕVGk
(D), k = 2e is defined. This

output can be read as a solution by adding node j to the node cover for each
of the types of the form t/Λj assigned to a. Since the function is responsive
and prudent, its being undefined for D implies there is no G,D ∈ FL(G), G ∈
Gk-valued, which means that a node cover of size max does not exist for Graph.

Any grammar output by a consistent function that has only k-valued gram-
mars in its domain, where k = 2e, will look like G′. Since such a grammar
will correspond to a node cover any function that can learn any of these classes
prudently and is responsive and consistent on that class will be able to solve

15Again for readability only GF(D) is shown.



5.5. THE COMPLEXITY OF LEARNING G2-VALUED 77

the decision problem related to the node-cover problem after a polynomial-time
reduction. ¤

Corollary 5.17 (Of the proof)
Let ϕ be a learning function that learns Gleast-valued from structures, and that is
responsive and consistent on this class and learns this class prudently. Deciding
whether ϕ is defined for an arbitrary D is an NP-hard problem

Obviously, exactly the same proof works for learning Gleast-valued, since,
because of the introduction of the ‘filler’-types, there cannot be any grammars
obtained from D with k < v, so the least value for k is v.

Corollary 5.18 (Of the proof)
Let ϕ be a learning function that learns Gleast-card from structures, and that is
responsive and consistent on this class and learns this class prudently. Deciding
whether ϕ is defined for an arbitrary D is an NP-hard problem.

The proof works for learning Gleast-card, since the k-valued grammar ob-
tained by learning Gk-valued is optimal (all symbols have k non-unifiable types
assigned, recall the remark concerning symbol x), and all optimal grammars
obtainable from D have the same cardinality.

The proof of Theorem 5.16 cannot be used for Gminimal. However, the
relation between Gminimal and Gleast-card provides a different route for proving
NP-hardness.

Let ϕ be a computable function for a class L that learns L consistently.
Then the learning function ϕ′ for a class L′,L ⊆ L′ that learns L′ consistently
has a time complexity that is the same as, or worse than, the time complexity of
ϕ. From this and Proposition 4.71 the following proposition is straightforward:

Proposition 5.19 Assume that there is a learning function ϕ that can learn
Gminimal from structures, and that is responsive and consistent on this class and
learns this class prudently. Deciding whether ϕ is defined for an arbitrary D is
an NP-hard problem.

5.5 The Complexity of Learning G2-valued

It follows from Lemma 5.8 that if GF(σ) assigns x different types to the same
symbol that are pairwise not unifiable, the consistent learning function ϕ(σ)
hypothesizes a grammar that assigns at least x different types to that same
symbol.
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Definition 5.20 Let or(p1, p2) be the function that, given the two propositions
p1 and p2, yields the following sample Dor for a language in L2-valued:

Dor =







fa(fa(fa(d,fa(a,a)),fa(b,b)),c)

fa(fa(fa(d,fa(c,c)),c),fa(c,c))

fa(fa(fa(d,c),fa(c,c)),fa(r,r))

c

fa(c,c)

fa(fa(r,r),r)

a

b

c

r







Lemma 5.21 Let p and q be two propositions. Then p ∨ q if and only if the
following holds:

For any learning function ϕ that is responsive and consistent on G2-valued

and learns that class prudently (from structures) there exists a substitution Θ
such that Θ[GF(or(p, q))] ⊆ ϕ(or(p, q)).

Proof: The general form for Dor from Definition 5.20 is :

GF(Dor) :

a 7→ A/A2, A2, t
b 7→ B/B2, B2, t
c 7→ C,

D/D2, D2,
E,
F/F2, F2,
G,
H/H2, H2,
t,
t/J, J

d 7→ ((t/A)/B)/C,
((t/D)/E)/F,
((t/G)/H)/I

r 7→ t,
I/I2,
I2,
(t/K)/L,
K,
L

The symbol r has t and some complex types assigned to it. Since a constant
and a complex term cannot be unified, the complex terms have to be unified.
Since I2, K and L occur in these complex types they have to unify with t. The
same reasoning can be applied to the types assigned to symbols a, b and c,
thus G′ is obtained:
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G′ :

a 7→ A/t, t
b 7→ B/t, t
c 7→ C,E,G,

t, t/t
d 7→ ((t/A)/B)/C,

((t/t)/E)/t,
((t/G)/t)/(t/t)

r 7→ t,
(t/t)/t

Depending on p1 being true or false, let a 7→ t/t or a 7→ (t/t)/t, respectively.
Depending on p2 being true or false, let b 7→ t/t or b 7→ (t/t)/t, respectively.
If both p1 and p2 are false, A and B have to be substituted by (t/t), resulting
in G′′:

G′′ :

a 7→ (t/t)/t, t
b 7→ (t/t)/t, t
c 7→ C,E,G,

t, t/t
d 7→ ((t/(t/t))/(t/t))/C,

((t/t)/E)/t,
((t/G)/t)/(t/t)

r 7→ t,
(t/t)/t

One glance at the three types assigned to d will show that none of them can
be unified with any of the others, so there is no Θ such that Θ[G′′] ∈ G2-valued.
Thus ¬(p1 ∨ p2) implies that there is no Θ such that Θ[GF(or(p1, p2))] ⊆
ϕ(or(p, q)), for any learning function ϕ that is responsive and consistent on
G2-valued and learns that class prudently (from structures).

In the other cases – i.e., either p1 or p2 or both are true – the required
substitution exists, this can easily be checked by the reader. ¤

Note that the proof of both Lemma 5.21 and the following theorem use the
right slash / exclusively. The subclass of G2-valued with this property will be
denoted G2-valued ¹ {/}.16

Theorem 5.22 Let ϕ be a learning function that learns G2-valued ¹ {/} from
structures, and that is responsive and consistent on this class and learns this
class prudently. Deciding whether ϕ is defined for an arbitrary D is an NP-hard
problem (given that there is no bound on the size of the alphabet).

Proof: It will be shown that the production version of the node-cover
problem can be reduced in polynomial time to a learning problem for the class

16Unidirectional rigid grammars that only use / generate a subclass of the class of simple
languages, which is a subclass of the deterministic context-free languages, see Harrison (1978).
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G2-valued ¹ {/}, thus showing NP-hardness. We proceed by demonstrating a
procedure for rewriting a graph as a sample for this class and interpreting the
output of a learning function as a node-cover.

Let e = |E|, v = |V |. The coding defined in Definition 5.20 can be used
to enforce the constraint that, for every edge in the graph, at least one of the
nodes incident on that edge is included in the cover. Doing this for every edge
in the graph requires e versions of the sample in Definition 5.20, each with its
own unique symbols (for convenience, these will be written as indexed versions
of the original symbols). Since detailing this sample will unnecessarily clutter
the proof it will simply be assumed that e2or -a function from E to sample Dor

based on the function or - has the required properties.

What remains to be shown is how a bound on the size of the cover can be
translated to the problem of learning a 2-valued grammar. Let b be this bound,
and size = v − b.

Let Dv be the following sample:







x1
fa(fa(s1,fa(g,f)),fa(e,f))

fa(s1,fa(e,f))

fa(x1,fa(s1,fa(v1,f)))

For every vi ∈ V, v > 1 :
xi
fa(xi(fa(fa(si,fa(g,f)),fa(e,f)))

fa(xi−1,fa(si,fa(e,f)))

fa(xi,fa(si,fa(vi,f)))

e

fa(e,f)

fa(xv,fa(t,f))

fa(fa( . . . fa(fa(t,fa(e,f)),fa(e,f)), . . .
︸ ︷︷ ︸

size times

),f)

t

fa(fa(g,fa(e,f)),fa(e,f))







Note that this sample does not have symbols in common with Dor, which
allows us to consider their general forms in isolation from one another. Even-
tually a relation between the two has to be established, so for this purpose
certain symbols occurring in the two samples will be identified later.

Let G = GF(Dv):
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G :

s1 7→ (t/E0)/A1, t 7→ T/G,
t/E1, ((t/ . . .)/t

︸ ︷︷ ︸

size times

)/I,

X1,3/V1 t
s2 7→ (X2,1/E2)/A2, e 7→ t,

X2,2/E3, t/F,
X2,3/V2 J1/L1,

. . . J2/L2,
sv 7→ (Xv,1/Ev)/Av, E0/H0,

Xv,2/Ev+1, E1/H1,
Xv,3/Vv E2/H2,

. . .
x1 7→ t, v1 7→ V1/N1

t/X1,3, v2 7→ V2/N2
t/X2,1, . . .
t/X2,2 vv 7→ Vv/Nv

x2 7→ t, f 7→ F,G, I, L1, L2,
t/X2,3 H0, H1, H2, . . . ,

. . . M1,M2, . . . ,
xv−1 7→ t, N1, N2, . . .

t/Xv−1,3, g 7→ (t/J1)/J2,
t/Xv,1, A1/M1,
t/Xv,2 A2/M2,

xv 7→ t, . . .
t/Xv,3,
t/T

Unifying all complex types assigned to xi, for any 1 ≤ i ≤ v yields grammar
G′:
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G′ :

s1 7→ (t/E0)/A1, t 7→ T/G,
t/E1, ((t/ . . .)/t

︸ ︷︷ ︸

size times

)/I,

X1/V1 t
s2 7→ (X1/t)/A2, e 7→ t,

X1/E2, t/F,
X2/V2 J1/L1,

. . . J2/L2,
sv 7→ (Xv−1/t)/Av, E0/H0,

Xv−1/Ev, . . .
Xv/Vv v1 7→ V1/N1

. . .

x1 7→ t, vv 7→ Vv/Nv

t/X1 f 7→ F,G, I, L1, L2,
. . . H0, H1, . . . ,

xv−1 7→ t, M1,M2, . . . ,
t/Xv−1 N1, N2, . . .

xv 7→ t, g 7→ (t/J1)/J2,
t/Xv A1/M1,
t/T A2/M2,

. . .

Unifying all complex types assigned to e, g and t respectively yields G′′:

G′′ :

s1 7→ (t/t)/(t/t), t 7→ ((t/ . . .)/t
︸ ︷︷ ︸

size times

)/G,

t/t, t
X1/V1 e 7→ t,

s2 7→ (X1/t)/(t/t), t/F
X1/t, v1 7→ V1/N1
X2/V2 . . .

. . . vv 7→ Vv/Nv

sv 7→ (Xv−1/t)/(t/t), f 7→ F,G, t,
Xv−1/t, N1, N2, . . .
Xv/Vv g 7→ (t/t)/t

x1 7→ t,
t/X1

. . .
xv 7→ t,

t/Xv,
t/ (t/ . . .)/t
︸ ︷︷ ︸

size times
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Since Dv is a sample for a language in L2-valued, for all 1 ≤ i ≤ v, the type
Xi/Vi assigned to si has to be unified with one of the two other types assigned
to si. Thus for any G′′′ = ϕ(Dv), G′′′ = Θ[G′′], where Θ unifies the type
Xi assigned to symbol xi with either Xi−1/t or Xi−1 (in the case i = 1, with
either t/t or t). Thus Θ[Xv] will have a minimum degree of 0 and a maximum
degree of v, and this degree is exactly the number of types Xi unified with
types Xi−1/t.

The assignments to xv necessitate the unification of t/Xv with t/ (t/ . . .)/t
︸ ︷︷ ︸

size times

.

This implies that Xv must have degree size, so exactly size Xi types must have
been unified with Xi−1/t types in the assignments to si. This implies that Θ
has to unify a total number of size Vi-types with t/t, and v − size Vi-types
with t. So Θ[GF (Dv)] will be defined if and only if the node-cover is of size b.

What remains to be shown is howDor andDv can be related to one another.
As mentioned earlier certain symbols will be identified for this purpose.

Let fe(i, a) and fe(i, b) give indices for the two nodes incident on edge i.
Recall that G = ϕ(Dor) contains for every ei ∈ E the following assignments:

ai 7→ Ai/t, t
bi 7→ Bi/t, t

Here Ai and Bi indicate (non)inclusion in the node-cover of nodes vfe(i,a)
and vfe(i,b), respectively. Simply identifying the symbols ai and bi with the
right symbols vfe(i,a) and vfe(i,b) will ensure that every variable Vj , 1 ≤ j ≤ v
is identified with all the A- and B-variables in GF(Dor) that it should be
identified with, given the graph. Since, given the constraints on the learning
function and class, Dor only allows for assignments of t (‘true’, or ‘assigned to
cover’) or t/t (‘false’, or ‘not assigned to cover’) to variables Ai and Bi, by this
identification, the same is true for the V -variables.

Since the sample Dor ensures that all edges in E are covered, and Dv en-
sures that the cover contains only a given number of nodes, a learning function
for the class G2-valued that is responsive and consistent on this class and learns
this class prudently can solve any (production version of the) node-cover prob-
lem, which is NP-hard. The computation time needed for the reduction from
graph to sample is linear in e and v, as is the size of the alphabet, and the
solution can be read from the assignments in G′′′ to symbols v1 . . . vv in linear
time. Thus, updating the hypothesis for such a learning function is NP-hard
in the size of the alphabet. ¤

Since the direction of the slash is immaterial for the proof of Theorem 5.22,
the following is a corollary of this proof:

Corollary 5.23 Let ϕ be a learning function that learns G2-valued ¹ {\} from
structures, and that is responsive and consistent on this class and learns this
class prudently. Deciding whether ϕ is defined for an arbitrary D is an NP-hard
problem (given that there is no bound on the size of the alphabet).



84 CHAPTER 5. COMPLEXITY ISSUES

The proof of Theorem 5.22 can easily be adapted to the class Gk-valued,
for any given k > 2, by extending the sample with structures that result
in the assignment to all symbol ∈ Σ of extra types that are pairwise not
unifiable. This can be done using one slash exclusively, by including the fol-
lowing structure in the sample for all symbols symbol, and for as many dif-
ferent x’s as needed: fa( . . . fa(fa(symbol,fa(e,f)),fa(e,f)), . . .

︸ ︷︷ ︸

x times

). This

will result in the assignment symbol 7→ ((t/ . . .)/t
︸ ︷︷ ︸

x times

) being included in any

G = ϕ(GF(D)), G ∈ G2-valued. Thus:

Corollary 5.24 Let ϕ be a learning function that learns Gk-valued ¹ {/}, k ≥ 2
from structures, and that is responsive and consistent on this class and learns
this class prudently. Deciding whether ϕ is defined for an arbitrary D is an
NP-hard problem (given that there is no bound on the size of the alphabet).

And since the direction of the slash is immaterial with respect to complexity,
we of course also get:

Corollary 5.25 Let ϕ be a learning function that learns Gk-valued ¹ {\}, k ≥ 2
from structures, and that is responsive and consistent on this class and learns
this class prudently. Deciding whether ϕ is defined for an arbitrary D is an
NP-hard problem (given that there is no bound on the size of the alphabet).

In general, proving NP-hardness of learning class L under a set of constraints
C does not imply that the result holds for learning a class L′,L ⊂ L′ under C,
since a learning function for L′ would not in general be prudent with respect
to L. The function could therefore be able to ‘postpone’ certain conjectures by
hypothesizing languages in L′ − L, thus invalidating our type of proof. Given
Lemma 5.8 however it should be clear that allowing slashes in both directions
does not affect our proof at all, thus it follows that

Theorem 5.26 Let ϕ be a learning function that learns Gk-valued, k ≥ 2 from
structures, and that is responsive and consistent on this class and learns this
class prudently. Deciding whether ϕ is defined for an arbitrary D is an NP-hard
problem (given that there is no bound on the size of the alphabet).

Considering these results it is natural to ask whether these problems are
also NP-complete. In order to prove this it has to be shown that the problem
is in NP, for example by showing that verification of solutions is in P. In
this case the complexity of the verification problem would be related with the
complexity of problems like deciding consistency of the conjecture with the
input and membership of the conjecture in the class. However, the question
whether the conjecture is justified given the input is problematic, since this
notion is based on the concept of identification in the limit. It is not clear how
this constraint can be expressed in terms of computational complexity. (Cf
Section 2.9.)
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5.6 Consistent Identification in the Limit of Rigid

Grammars from Strings is NP-hard

Even though Lemma 5.8 is restricted to structure languages, it can also be
used for dealing with string languages in special cases. Consider the following
lemma that details a sample such that there is only one derivation consistent
with each string, and the resulting type assignments only contain a constant
as primitive type.

Lemma 5.27 Let D = {t, te, jt, en, xee, kj, tjy, uyt, up, jhyt, jhp, kgu, gut,
jijht, tjijhy, nb, ekz, cnn, tcn, zq, rz, onq, ron, ttf, nl, kmb, tmdb, stt}. Then,
for any responsive and prudent ϕ that learns rigid grammars consistently,
G = ϕ(D):

G :

i 7→ ((t/t)\(t/t))/((t/t)/((t/t)\(t\t))) t 7→ t
e 7→ t\t b 7→ A\t
j 7→ t/t z 7→ B\A
n 7→ A c 7→ (t\t)/A
x 7→ (t/(t\t))/(t\t) q 7→ (B\A)\t
k 7→ B r 7→ t/(B\A)
y 7→ (t/t)\(t\t) o 7→ B\(A/A)
u 7→ (t/t)/((t/t)\(t\t)) f 7→ t\(t\t)
p 7→ ((t/t)/((t/t)\(t\t)))\t l 7→ A\t
h 7→ (t/t)\((t/t)/((t/t)\(t\t))) m 7→ B\A
g 7→ (t/t)/((t/t)/((t/t)\(t\t))) d 7→ (B\A)\(t\A)
s 7→ (t/t)/t

Here B = t/(t/t) and A = (t\t)\t.

The proof involves checking the possible derivations for these strings and is
very tedious, the curious are referred to Section 5.8.

Lemma 5.28 Let p and q be two propositions, and f be the function that maps
true to type t/t, and false to type (t/t)/((t/t)\(t\t)). Then p ∨ q if and only if

(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), f(p), (t/t)\((t/t)/((t/t)\(t\t))),

((t/t)\(t/t))/((t/t)/((t/t)\(t\t))), f(q), (t/t)\((t/t)/((t/t)\(t\t))), t⇒ t.

Proof: Obviously p∨ q is false if and only if both p and q are false, and is
true otherwise, and the resulting sequents should reflect this. Simply checking
these sequents shows that this holds, see Section 5.8 for a detailed proof. ¤

The type assignments obtained from D will be used in the other lemmas in
this chapter.

The following lemma details a sample that will result in the possibility of
choice for ϕ between two possible type assignments for a given symbol.
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Lemma 5.29 Let D be as in Lemma 5.27. For a given constant v, let sample

D′ = D ∪
v⋃

i=1

{viab,tcvia}. Let G = ϕ(D′). Then, for every 1 ≤ i ≤ v, symbol

vi is assigned either t/(t/t) or ((t\t)\t)/((t/(t/t))\((t\t)\t)) in G.

Proof: For every string viab there are three possible corresponding sequents:

1 B, B\A, A\t ⇒ t
2 A/(B\A), B\A, A\t ⇒ t
3 (t/(A\t))/(B\A), B\A, A\t ⇒ t

For every string tcvia there are two possible corresponding sequents. The
third option is out by the following table:

1 t, (t\t)/A, B, B\A ⇒ t
2 t, (t\t)/A, A/(B\A), B\A ⇒ t
3 t, (t\t)/A, (t/(A\t)/(B\A), B\A ⇒ t

Thus, for every 1 ≤ i ≤ v, symbol vi is assigned either t/(t/t) or
((t\t)\t)/((t/(t/t))\((t\t)\t)) in ϕ(D′). ¤

The following lemma shows how one can construct a sample that places a
bound on the number of types that are assigned a particular type.

Lemma 5.30 Let D′ be as in Lemma 5.29, and let D′′ =

D′ ∪ {z . . . z
︸ ︷︷ ︸

c times

w, ov1z . . . ovtz
︸ ︷︷ ︸

t times

w}

for some given constants c and t, c ≥ t.
Let C = {i|1 ≤ i ≤ t,vi 7→ A ∈ ϕ(D′′)} and

N = {i|1 ≤ i ≤ t,vi 7→ A/(B\A) ∈ ϕ(D′′)}. Then |C| = c− t and |V | = 2t− c.

Proof: The string z . . . z
︸ ︷︷ ︸

c times

w implies w7→ (t/(t/t))\((t\t)\t)\(. . .
︸ ︷︷ ︸

c times

\t) . . .).

Finally, consider string ov1z . . . ovtz
︸ ︷︷ ︸

t times

. Each substring ovxz implies the

antecedent (B\A)/A, A
A/(B\A) , B\A, which reduces to (B\A)/A, (B\A)/A or

(B\A)/A, depending on the second type being A or A/(B\A), respectively.
Since the type assigned to w selects for c types of the form A/(B\A) to the left,
the number of distinct symbols vx that are assigned A plus twice the number
of distinct symbols vx that are assigned A/(B\A) has to be c. Since there are
t distinct symbols vx and t > c, the former number of symbols is c− t and the
latter 2t− c. ¤

The following lemma presents a method for creating a specific relation be-
tween the types assigned to two distinct symbols.
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Lemma 5.31 Let B = t/(t/t) and A = (t\t)\t. Let D′′ be as in Lemma 5.30,
and D′′′ =

D′′∪{r1jtf, . . . , rvjtf, rf(1)w1y, . . . , rf(v)wvy, teer1ov1zdf, . . . , teervovvzdf}

where f is a function with domain [1 . . . v] and range [1 . . . w] for some v, w ∈ N.
Then wi is assigned t/t iff vi is assigned A, and wi is assigned (t/t)/((t/t)\(t\t))
iff vi is assigned A/(B\A).

Proof: Let D′′ be as in Lemma 5.30. Every string rijtf corresponding
to sequent Ri, t/t, t, t\(t\t) ⇒ t implies the assignment of either t, t/(t/t),
(t/(t\t))/(t/t), or ((t/(t\(t\t))/t)/(t/t) to ri.

Let pi be the proposition stating that node i is in the cover. Then the
string rf(i)wiy corresponding to sequent Rf(i), f(pi), (t/t)\(t\t) ⇒ t implies
that rf(i) gets assigned t or t/(t/t), depending on whether wi is assigned t/t or
(t/t)/((t/t)\(t\t)), respectively. Other type assignments are excluded by the
string rijtf.

The string teeriovizdf corresponding to the sequent

t, t\t, t\t,
t

B
, (B\A)/A,

A

A/(B\A)
, B\A, (B\A)\(t\A), t\(t\t)⇒ t

which reduces to

t, t\t, t\t,
t

B
,

B\A

B\A,B\A
, (B\A)\(t\A), t\(t\t)⇒ t

then implies that ri is assigned t iff vi is assigned A, and ri is assigned t/(t/t)
iff vi is assigned A/(B\A). Thus wi is assigned t/t iff vi is assigned A, and wi
is assigned (t/t)/((t/t)\(t\t)) iff vi is assigned A/(B\A). ¤

With the preliminaries taken care of we can now turn to the complexity
result itself.

Theorem 5.32 Let ϕ be a learning function that learns G1−valued from strings,
and that is responsive and consistent on this class and learns this class pru-
dently. Deciding whether ϕ is defined for an arbitrary D is an NP-hard problem
(given that there is no bound on the size of the alphabet).

Proof: Let G = (V,E) be a graph as in Definition 5.9, let v = |V |, let
e = |E|, and let size be the desired size of the node-cover. LetD be as defined in
Lemma 5.27 (which provides a sample containing the type assignments needed
in the other lemmas).

A graph is coded in the following way: let D′ be the sample consisting of
all strings {viab, tcvia}, 1 ≤ i ≤ v as in Lemma 5.29. Each vi is intended to
represent the node i ∈ V . This sample provides the learning function with a
choice for in- or exclusion in the cover.
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Lemma 5.30 provides means for stating the desired size for the cover, just
let t = v and c = v + size.

Lemma 5.31 ties Lemmas 5.30 and 5.29 together, with the symbols r1, . . . , rv
acting as ‘intermediaries’ between the symbols v1, . . . , vv and symbols w1, . . . , w2e.
The function f should reflect the structure of G, i.e. for every edge i = (x, y) ∈
E, f(2i − 1) = x and f(2i) = y. Thus every vi represents a node in V and
every wj a connection of a node to an edge.

The coding defined in Lemma 5.28 can be used to enforce the constraint
that at least one of the nodes incident on an edge is included in the cover. Let
D′′ =

⋃e
i=1{stgw2i−1hiw2iht} for every edge i ∈ E.

Let V ′ =
⋃
{i|vi 7→ (t\t)\t ∈ RG, 1 ≤ i ≤ v}, where RG is any rigid gram-

mar consistent with D′′′ = D ∪ D′ ∪ D′′. By Lemma 5.30 there can only be
size such type assignments in RG. By Lemma 5.28 at least one of the two
symbols representing a node incident on a given edge is assigned t/t in RG,
and thus, by Lemma 5.31, the symbol representing the corresponding node is
assigned (t\t)\t. By Lemma 5.29 the learning function is free to assign any
symbol vi this type. Since we are assuming prudence ϕ(D′′′) has to be a rigid
grammar, and since we are assuming responsiveness ϕ(D′′′) has to be defined
if it exists. Therefore V ′ is a node cover for graph G of size size, if it exists.
Since D′′′ can be constructed in polynomial time (relative to v and e) and V ′

can be constructed in polynomial time given RG17, learning the class G1−valued
from strings by means of a function ϕ that is responsive and consistent on this
class and learns this class prudently, is NP-hard in the size of the alphabet.18 ¤

Note that this theorem does not imply that superclasses of this class are
not learnable by a consistent function with polynomial update time. This may
seem surprising since it can perform the same task as a learning function for
rigid grammars, but it corresponds to dropping the prudency constraint: such
a function could, before convergence, conjecture languages outside the class of
rigid grammars and would thus not be forced to exhibit the behaviour needed
for this proof.

However, it is possible to extend this proof for some superclasses. The proof
of Lemma 5.27 demonstrates that it is quite easy to produce strings that yield
type-assignments that are not pairwise unifiable. Doing this k − 1 times for
each symbol in a given alphabet, combined with the other strings mentioned
in the lemmas, yields a proof of NP-hardness for deciding whether a consistent
learning function for Gk-valued is defined given an arbitrary sample.

Our complexity result leaves open the question of an upper bound. This can
be obtained using the Catalan numbers Cn =

1
n+1

(
2n
n

)
, which yields the number

of binary trees with n + 1 leaves (see Stanley (1998)). Since these trees have

17Since RG can contain an arbitrary number of type assignments if Σ is not given this is
not totally accurate, but in the case that the construction of V ′ is not bounded by some poly-
nomial because |RG| is not, the construction of RG from D′′′ obviously cannot be performed
in polynomial time either, and in that case ϕ is not even in NP.

18The procedure requires v distinct symbols v and 2e distinct symbols w in Σ.
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n internal nodes and every one of these can be labeled as forward or backward
application, 2l−1Cl−1 gives the number of possible categorial derivations for
a string of length l. Thus an algorithm that simply checks all combinations
of these derivations for a sample D containing d sentences has to consider (at
least)

∏d
i=1 2

|si|−1 · C|si|−1 grammars.

5.7 Conclusions and Further Research

It has been shown that learning any of the classes Gleast-valued, Gleast-card, and
Gminimal from structures by means of a learning function that is consistent on
its class is NP-hard in the size of the sample. The result for the classes Gk-valued

is weaker: one function that can learn these classes for each k and is consistent
on its class is NP-hard in the size of the sample. This leaves open the question
whether there exist polynomial-time learning functions for Gk-valued for each k
separately. Showing intractability for k = 2 would imply intractability for all
k > 1, since Gk-valued ⊆ Gk+1-valued.

It has been shown that learning any class in Gk-valued, k ≥ 2 from structures
by means of a learning function that is consistent on its class is NP-hard in the
size of the alphabet. Note that these results hold just under the assumption that
there is no bound on the size of the alphabet. It is an open question whether
there exists a proof with an alphabet of some constant size. Complexity with
respect to the size of the sample is still open, but in the light of our result
this question seems of academic interest only. The problem does not scale well
with the size of the alphabet (lexicon), which makes the problem intractable
in practice.

It is a well-known fact that learning functions for any learnable class with-
out consistency- and monotonicity constraints can be transformed to trivial
learning functions that have polynomial update-time (see Subsection 2.9). It
is an open question whether there exist ‘intelligent’ inconsistent learning func-
tions that have polynomial update-time for the classes under discussion. In
Lange and Wiehagen (1991) an example of such a function can be found that
learns the class of all pattern languages (Angluin (1979)) and is computation-
ally well-behaved given certain assumption about the distribution of the input.

Since the relation between structure language and string language is so
clear-cut, it is in general easy to transfer results from one to the other. In
Kanazawa (1998) some results concerning learnability of classes of structure
languages were used to obtain learnability results for the corresponding classes
of string languages. It might be possible to do the same with complexity
results, i.e. obtain an NP-hardness result for learning Gleast-valued from strings,
for example.

Note that the proof of Proposition 5.15 nicely demonstrates that complexity
results can be obtained even for classes for which learnability is still an open
question.
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The proof of Proposition 5.12, Proposition 5.16 and Theorem 5.32 rely on
subclasses of languages that can all be identified with sequences that have a
length polynomial in the size of their associated grammars. This is not nec-
essarily true for any arbitrary language in the whole class, so data-complexity
issues may make the complexity of learning these classes even worse than these
results suggest.

Instead of investigating the complexity of learning for each distinct class on
an individual basis, it would be nice to have insights into the direct relation
between complexity and some structural properties of learnable classes of CCGs
or related formalisms. This would be an interesting topic for future research.

Analyzing these classes in terms of intrinsic complexity (see Section 2.9)
would yield insights into the relation between these and other classes, and into
the structure of the complexity hierarchy of learnable classes in general.

It has been shown that learning any of the classes Gk−valued, k ≥ 1, from
strings by means of a function ϕ that is responsive and consistent on its class
and learns its class prudently, is NP-hard in the size of the alphabet. Note that
this is a weaker result than NP-hardness in the size of the sample would be,
it is an open question whether there exists a proof with an alphabet of some
constant size.

A similar result for learning the class of pattern languages PAT consistently
from informant19 can be found in Wiehagen and Zeugmann (1994). It differs
from ours in that it crucially depends on the membership test for PAT being
NP-complete, whereas membership for (subclasses of) AB languages is known
to be polynomial time.

The results in this chapter are of a technical nature and may seem to be
of limited interest since thay apply just to the subclasses of CG defined by
Kanazawa. However, they are also proof that there exist immediate practical
consequences of the so-called consistency phenomenon as discussed in Section
2.9. Thus, the common approach of taking only consistent learning algorithms
into account is dangerous in the sense that it may lead one to overlook efficient
solutions to language learning problems.

5.8 Detailed Proofs

Proof of Lemma 5.27:
Let σ be the sequence < t, te, jt, en, xee, kj, tjy >. It is obvious that ϕ’s
conjecture G has to include {t 7→ t, e 7→ t\t, j 7→ t/t}. The assignments to n,
x, k and y follow directly from these and the given strings.

Let σ′ be the sequence < uyt, up >. The first string from this sequence
corresponds to the sequent U, (t/t)\(t\t), t⇒ t, so u7→ (t/t)/((t/t)\(t\t)). Now
consider the second string. It corresponds to the sequent (t/t)/((t/t)\(t\t)), P ⇒
t, so p7→ ((t/t)/((t/t)\(t\t)))\t.

19The result was conjectured to remain valid for learning from strings.
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Let σ′′ be the sequence < jhyt, jhp >. The first string from this sequence
corresponds to the sequent t/t,H, (t/t)\(t\t), t⇒ t, so the type H can be:

1. (t/t)\((t/t)/((t/t)\(t\t)))

2. ((t/t)\(t/t))/((t/t)\(t\t))

3. (((t\t)\t)/t)/((t/t)\(t\t))

4. (t/t)/((t/t)\(t\t)).

Now consider the second string. Given the possible assignments to the symbols
it contains, it has to correspond to the sequent t/t,H, ((t/t)/((t/t)\(t\t)))\t⇒
t. Trying the four possible assignments to h will show that only the first,
(t/t)\((t/t)/((t/t)\(t\t))) is possible.

Let σ′′′ be the sequence < kgu, gut >. The first string from this sequence
corresponds to the sequent t/(t/t), G, (t/t)/((t/t)\(t\t))⇒ t, so the type G can
be:

1. (t/t)/((t/t)/((t/t)\(t\t)))

2. ((t/(t/t))\t)/((t/t)/((t/t)\(t\t)))

3. (t/(t/t))\(t/((t/t)/((t/t)\(t\t)))

Now consider the second string. Given the possible assignments to the symbols
it contains, it has to correspond to the sequent G, (t/t)/((t/t)\(t\t)), t ⇒ t.
Only the first type, (t/t)/((t/t)/((t/t)\(t\t))), is possible.

Let σ′′′′ be the sequence 〈jiut, tjiuy〉. The first string from this sequence
corresponds to the sequent t/t, I, (t/t)/((t/t)\(t\t)), t ⇒ t, so the type I can
be:

1. ((t/t)\(t/t))/((t/t)/((t/t)\(t\t)))

2. (((t/t)\t)/t)/((t/t)/((t/t)\(t\t)))

3. (t/t)/((t/t)/((t/t)\(t\t)))

Now consider the second string. Given the possible assignments to the symbols
it contains, it has to correspond to the sequent

t, t/t, I, (t/t)/((t/t)\(t\t)), (t/t)\(t\t)⇒ t.
Only the first type, ((t/t)\(t/t))/((t/t)/((t/t)\(t\t))), is possible.
From nb it follows immediately that b7→ ((t\t)\t)\t. The string ekz corre-

sponds to sequent t\t, t/(t/t), Z ⇒ t, from which follows immediately that z7→
(t/(t/t))\((t\t)\t). The string cnn corresponds to the sequent C, (t\t)\t, (t\t)\t
⇒ t. There are two possible types for C, namely (t/((t\t)\t))/((t\t)\t) and
(t\t)/((t\t)\t). The string tcn corresponds to the sequent t, C, (t\t)\t ⇒ t.
Only the first type applies here, so c7→ (t\t)/((t\t)\t).

The string zq immediately implies q7→ ((t/(t/t))\((t\t)\t))\t. The string
rz immediately implies r7→ t/((t/(t/t))\((t\t)\t)). The string onq corresponds
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to the sequent t/(t/t), O, (t\t)\t, ((t\t)\t)\t⇒ t. This implies that O is either
(t/(t/t))\((t\t)\t)/((t\t)\t) or (t/((t/(t/t))\((t\t)\t)\t))/((t\t)\t). The string
ron corresponds to the sequent t/(t/(t/t))\((t\t)\t), O, (t\t)\t ⇒ t. Only the
first possibility for O works here, so o7→ (t/(t/t))\((t\t)\t)/((t\t)\t).

By Theorem 5.8, Θ[GF(σ)] ⊆ ϕ(σ), if ϕ(σ) is defined. Since GF(D) only
contains ground types for this sample, Θ must be the empty substitution, so
any consistent hypothesis should contain GF(D). This also shows that the
order of presentation of D is irrelevant.

Since ϕ is restricted to the class of rigid grammars no other types can be
assigned to the symbols occurring in G. ¤

Proof of Lemma 5.28:
The truth table for ∨ shows that p ∨ q is false if and only if both p and q are
false, and is true otherwise. Simply checking the four possible combinations for
the categorial derivation yields:

1. Both p and q true implies p ∨ q true, so t should be derived:

(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), t/t, (t/t)\((t/t)/((t/t)\(t\t))),

((t/t)\(t/t))/((t/t)/((t/t)\(t\t))), t/t, (t/t)\((t/t)/((t/t)\(t\t))), t⇒ t

(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)),
((t/t)\(t/t))/((t/t)/((t/t)\(t\t))), t/t, (t/t)\((t/t)/((t/t)\(t\t))), t⇒ t
(t/t)/t, t, t/t, ((t/t)\(t/t))/((t/t)/((t/t)\(t\t))), t/t,
(t/t)\((t/t)/((t/t)\(t\t))), t⇒ t
(t/t)/t, t, t/t, ((t/t)\(t/t))/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)), t⇒ t
(t/t)/t, t, t/t, (t/t)\(t/t), t⇒ t
(t/t)/t, t, t/t, t⇒ t
(t/t)/t, t, t⇒ t
t/t, t⇒ t.

2. Proposition p true, q false implies p ∨ q true, so t should be derived:

(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), t/t, (t/t)\((t/t)/((t/t)\(t\t))),

((t/t)\(t\t))/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)),

(t/t)\((t/t)/((t/t)\(t\t))), t⇒ t
(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)),
((t/t)\(t\t))/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)),
(t/t)\((t/t)/((t/t)\(t\t))), t⇒ t
(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)), ((t/t)\(t\t)),
(t/t)\((t/t)/((t/t)\(t\t))), t⇒ t
(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), t/t, (t/t)\((t/t)/((t/t)\(t\t))), t⇒ t
(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)), t⇒ t
(t/t)/t, t, t/t, t⇒ t
(t/t)/t, t, t⇒ t
t/t, t⇒ t.
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3. Proposition p false, q true implies p ∨ q true, so t should be derived:

(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)),

(t/t)\((t/t)/((t/t)\(t\t))), ((t/t)\(t\t))/((t/t)/((t/t)\(t\t))), t/t,

(t/t)\((t/t)/((t/t)\(t\t))), t⇒ t
(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)),
(t/t)\((t/t)/((t/t)\(t\t))), ((t/t)\(t\t))/((t/t)/((t/t)\(t\t))),
(t/t)/((t/t)\(t\t)), t⇒ t
(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)),
(t/t)\((t/t)/((t/t)\(t\t))), (t/t)\(t\t), t⇒ t
(t/t)/t, t, t/t, (t/t)\((t/t)/((t/t)\(t\t))), (t/t)\(t\t), t⇒ t
(t/t)/t, t, (t/t)/((t/t)\(t\t)), (t/t)\(t\t), t⇒ t
(t/t)/t, t, t/t, t⇒ t
(t/t)/t, t, t⇒ t
t/t, t⇒ t.

4. Both propositions false implies p ∨ q false, so t should not be derivable:

(t/t)/t, t, (t/t)/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)),

(t/t)\((t/t)/((t/t)\(t\t))), ((t/t)\(t\t))/((t/t)/((t/t)\(t\t))),
(t/t)/((t/t)\(t\t)), (t/t)\((t/t)/((t/t)\(t\t))), t 6⇒ t

Consider the second to last type in the sequent. Since it selects for
(t/t)\(t\t) to the right and there is only t to the right of it, a type to the
left of it must haveX/((t/t)\((t/t)/((t/t)\(t\t)))) orX/(t/t)/((t/t)\(t\t))
as its range (here X is an arbitrary type). There is no candidate for the
former, there are two for the latter: the third and the sixth type in the
sequent. We proceed by case analysis:

(a) For the third type, (t/t)/((t/t)/((t/t)\(t\t))), to combine with
(t/t)/((t/t)\(t\t))), the sequent between the third and eighth type
must derive t/t. Thus it needs to be shown that

(t/t)/((t/t)\(t\t)), (t/t)\((t/t)/((t/t)\(t\t))),
((t/t)\(t\t))/((t/t)/((t/t)\(t\t))), (t/t)/((t/t)\(t\t)) 6⇒ t/t

There is only one possible application step, which yields:
(t/t)/((t/t)\(t\t)), (t/t)\((t/t)/((t/t)\(t\t))), (t/t)\(t\t) 6⇒ t/t
This sequent cannot be further reduced, so t/t indeed cannot be
derived.

(b) For the sixth type, ((t/t)\(t\t))/((t/t)/((t/t)\(t\t))) to combine with
(t/t)\((t/t)/((t/t)\(t\t))), the sequent between them must derive
t/t. Since this sequent consists just of the type (t/t)/((t/t)\(t\t)),
t/t cannot be derived.

¤
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Chapter 6

Miscellaneous

Most of the proofs from Kanazawa (1998) involving CCGs are independent
of the actual formalism used. Some of these results have been adapted in a
straightforward way to other domains, most notably to General Combinatory
Grammars (GCGs). Similar techniques have been used in Tiede (1999b) to
obtain learnability results for classes of Generalized Quantifiers. We will discuss
both in this chapter,1 and we will conclude with some negative results on
learning classes of TAG.

6.1 General Combinatory Grammars

The formalism GCG employs additional combinatory rules in addition to the
application rules of CCG.2 Our main motivation for studying GCG is that this
formalism is a (linguistically motivated) extension of the (weakly) context-free
formalism CCG. Its expressive power is strictly greater than that of CCG; it
was shown in Vijay-Shanker and Weir (1990, 1994) to be weakly equivalent
to the mildly context-sensitive formalism known as linear indexed grammar
(LIG), and in Weir and Joshi (1988) it was shown that Combinatory Categorial
Grammars with directional categories, forward and backward application, and
a generalized form of forward and backward function composition are weakly
equivalent to TAGs. Indexed grammar was introduced in Aho (1968), see Gaz-
dar (1988); Michaelis and Wartena (1997, 1998) for a discussion of variations
on the IG-formalism and its relevance for the study of natural language.

We mention some of the numerous combinatory rules that have been pro-
posed:

1Some of the results in this chapter have been previously published in Costa Florêncio
(2001b, 2002c), reproduced with permission.

2For linguistic applications of this system see for example Steedman (1987), Szabolcsi
(1987) and most recently Steedman (2000); Baldridge (2002)
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Forward Composition: C/B,B/A ⇒ C/A
Backward Composition: A\B,B\C ⇒ A\C
Forward Crossing Composition: C/B,A\B ⇒ A\C
Backward Crossing Composition: B/A,B\C ⇒ C/A
(Forward) Lifting: A ⇒ B/(A\B)
(Backward) Lifting: A ⇒ (B/A)\B
Forward Substitution: (C/B)/A,B/A ⇒ C/A
Backward Substitution: A\B,A\(B\C) ⇒ A\C
Forward Crossing Substitution: C\(A/B), C\B ⇒ C\A
Backward Crossing Substitution: B/C, (B\A)/C ⇒ A/C

By extending the labeling scheme for functor-argument structures with the
names of these rules, the notion of structure language can be extended. For
example, we can use FS for ‘Forward Substitution’ etc.

6.1.1 Previous Results

This subsection reviews results from Kanazawa (1998) concerning GCGs.

Proposition 6.1 The class of rigid grammars remains learnable from struc-
tures in the system of combinatory grammars.

Proof: Let S be any finite set of function symbols. The set TpS of S-types
is the set of terms constructed from Pr = {t}∪Var using function symbols from
S. For instance, if f and g are n-ary and m-ary function symbols in S,

f(g(x1, . . . , xm), y2, . . . , yn) ∈ TpS .

The notions of substitution and unification apply directly to S-types. Let Σ
be any alphabet, then an S-grammar over Σ is any finite relation between Σ
and TpS .

An S-rule is any expression of the form

A1, . . . , An ⇒ An+1,

where A1, . . . , An, An+1 ∈ TpS . Let R be any finite set of S-rules. Then an
R-structure over Σ is a tree where each leaf node is labeled by some symbol
in Σ and each internal node having n daughters is labeled by some rule R =
A1, . . . , An ⇒ An+1 ∈ R. Formally, the set ΣR or R-structures over Σ is
defined as follows:

1. Σ ⊆ ΣR.

2. If T1, . . . , Tn ∈ ΣR, and R = A1, . . . , An ⇒ An+1 is an S-rule in R, then

R(T1, . . . , Tn) ∈ Σ
R
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Here R(T1, . . . , Tn) is a term representation of the tree that is the result of
attaching T1, . . . , Tn to a node labeled by r. The notion of R-structure is a
generalization of the notion of functor- argument structure.

An R-derivation is a generalized notion of derivation. Formally, a tree D is
an R-derivation if and only if the following conditions hold:

1. Each node of D is labeled by an S-type.

2. Each internal node of D is in addition labeled by an S-rule in R.

3. If an internal node vn+1 has n daughters v1, . . . , vn, then v1, . . . , vn, vn+1
are labeled by some S-types B1, . . . , Bn, Bn+1 and vn+1 is (in addition)
labeled by an S-rule R = A1, . . . , An ⇒ An+1 ∈ R such that for some σ,
σ(A1) = B1, . . . , v(An+1) = Bn+1.

If D is a derivation whose root node is labeled by B and whose leaf nodes are
labeled by A1, . . . , An, D is called an R-derivation of B from A1, . . . , An.

If G is an S-grammar, anR-parse tree of G is obtained from anR-derivation
D of t from A1, . . . , An by decorating the leaf nodes of D with symbols c1, . . . , cn
in Σ such that G: ci 7→ Ai for 1 ≤ i ≤ n. GR-generates an R-structure T if
T is the result of stripping an R-parse tree of G of its type labels. The set of
R-structures R-generated by G is called the R-structure language of G and is
denoted FLR(G).

If Σ, R, and R are a finite alphabet, a finite set of function symbols, and
a finite set of S-rules, respectively, then the triple 〈CatGS ,ΣR,FLR〉 consti-
tutes a grammar system. Such a grammar system is called a system of gen-
eral combinatory grammars. Note that if S = {\, /} and R = {BA,FA},
where BA = x, x\y ⇒ y and FA = y/x, x ⇒ y, then the grammar system
〈CatGS ,Σ

R,FLS〉 is the familiar grammar system of classical categorial gram-
mar.

Theorem 6.2 In any system 〈CatGS ,Σ
R,FLR〉 of general combinatory gram-

mars, the class of rigid S-grammars is learnable.

Lemma 6.3 Let σ: Var → TpS be a substitution. Then σ[G1] ⊆ G2 implies
FL(G1) ⊆ FL(G2).

Definition 6.4 Let D be a finite set of R-structures. we construct S-grammar
GFS(D), the general form determined by D, by the following algorithm:

1. Assign one of two types to each node of the structures in D as follows:

(a) Assign t to each root node.

(b) For each internal node vn+1 with daughters v1, . . . , vn that is labeled
by an S-rule R = A1, . . . , An ⇒ An+1 ∈ R, do the following:
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i. If x1, . . . , xm are the variables that occur in R, let

τ = {x1 7→ z1, . . . , xm 7→ zm},

where z1, . . . , zm are distinct fresh variables.
ii. Assign τ(A1), . . . , τ(An), τ(An+1) to v1, . . . , vn, vn+1, respectively.

In this step, each leaf node in D is assigned one type, and each internal
node in D is assigned two types.

2. Collect the types assigned to the leaf nodes in D into a grammar:

G = {〈c, A〉 |A is assigned to a leaf node labeled by c}.

3. For each internal node v in D, let Av,1, Av,2 be the two types assigned to
v. Let

A = {{Av,1, Av,2} | v is an internal node in D}.

and compute σ = mgu(A).

4. Let GFS(D) = σ[G], this is the output of the algorithm.

Lemma 6.5 Let D be any finite set of R-structures. Then for any G ∈ CatGS ,
the following are equivalent:

1. D ⊆ FLR(G).

2. GFS(D) exists and there is a substitution σ such that σ[GFS(D)] ⊆ G.

Definition 6.6 For a finite set D of R-structures, we define RGS(D), the
rigid S- grammar determined by D, to be the output of the following algorithm:

1. Compute GFS(D).

2. Let
A = {{A |GFS(D): c 7→ A} | c ∈ dom(GFS(D))}

and compute σ = mgu(A).

3. Let RGS(D) = σ[GFS(D)].

Proposition 6.7 Let D be any finite set of R-structures. Then for any rigid
S-grammar G, the following are equivalent:

1. D ⊆ FLS(G).

2. RGS(D) exists and RGS(D) v G.

Define the learning function ϕRGS for 〈CatGS ,Σ
R,FLR〉 by

ϕRGS (〈T0, . . . , Ti〉) = RGS({T0, . . . , Ti}).
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Proposition 6.8 The function ϕRGS has the following properties:

1. ϕRGS learns the class of rigid S-grammars from R-structures prudently.

2. ϕRGS is responsive and consistent on the class of rigid S-grammars.

3. ϕRGS is set-driven.

4. ϕRGS is conservative.

5. ϕRGS is monotone increasing.

6. ϕRGS incremental.

7. ϕRGS can be implemented to run in linear time.

6.1.2 Restricting Combinatory Rules for Finite Elasticity

The learnability from structures of the class of rigid grammars is easy to prove
in any system of general combinatory grammars. Things are different when it
comes to finite elasticity, however. The fact that application is the only rule
used in the grammar system is crucial in Kanazawa’s proof of finite elasticity
for this class.

Since finite elasticity was essential in the proof of learnability of the class of
k-valued classical categorial grammars from structures and from strings, these
results do not generalize to learning rigid grammars from strings under an
arbitrary set of combinatory rules. In fact it is quite easy to come up with a
set of combinatory rules under which not even rigid grammars are learnable:

Example 6.9 The class of rigid grammars using the combinatory rules

X/X,X/X ⇒ X,Y/(X/X)⇒ Y

has a limit point and is thus not (non-effectively) learnable from strings.3

Proof: For any n ∈ N
+, Let

Gn :

c 7→ ((S/ (Y/Y ))/(X/X)
︸ ︷︷ ︸

n times
a 7→ (X/X)
b 7→ (Y/Y )

G∗ :
c 7→ S/(X/X)
a 7→ (X/X)
b 7→ (X/X)

3Note that these two rules are axioms in the system L∅ (see Chapters 8 and 9) and that
the first rule is implied by Composition. The second rule is unlikely to ever be used by any
syntactician in this unrestricted form, however. The set of rules mentioned at the beginning of
Section 6.1 is more natural and also yields non-learnability results. We will not demonstrate
this in detail but it easily follows from the fact that in this setting GCG is weakly equivalent
to TAGs and there are strong non-learnability results for ‘small’ classes of TAGs, as will be
discussed in Section 6.3.



100 CHAPTER 6. MISCELLANEOUS

It is easy to see that L(Gn) = c{a∗, b∗}i, 0 ≤ i ≤ n, so L(G0) ⊂ L(G1) ⊂ . . .,
thus the class has an infinite ascending chain. It is also obvious that L(G∗) =
c{a∗, b∗}∗ = ∪i∈Nc{a∗, b∗}i, which is a limit point for the class.4. ¤

It should be clear that elasticity of subclasses of GCGs is important and non-
trivial. This subsection provides some sufficient conditions for finite elasticity
in the form of restrictions over combinatory rules.

Recall the combinatorial rules mentioned at the beginning of this section. A
given grammar G interpreted under these rules can be compiled into a grammar
G′ interpreted under just (a generalized version of) the application rules with-
out affecting the functor language. The naming function for this interpretation
will be written as FL_.

Let the regular slashes be labeled with fa and ba (depending on their direc-
tion), and let the introduced slashes be indexed with labels for the rules they
are compiled for. Combinatory rules are assumed to take the (binary) form of
either Functor,Argument ⇒ Result or Argument,Functor ⇒ Result5,
where Argument is not a variable type, their corresponding rewrite rules are
(Argument| . . .) 7→ (n| . . .), (Functor| . . .) 7→ (Result/labeln| . . .)6 or
(Argument| . . .) 7→ (n| . . .), (Functor| . . .) 7→ (n\labelResult)| . . ., respectively.

The combinatory rules mentioned above result in the following rewrite rules
which can be (recursively) applied to the types in a rigid grammar G, yielding
copies of these types. Application terminates when none of these rules can be
applied anymore. Assigning these copies to the same symbols as their originals
were assigned to, combined with the assignments in G, yields G′, which can be
interpreted with just application:7

Forward Composition: 〈
(B/A)| . . . 7→ n| . . . ,
(C/B)| . . . 7→ ((C/A)/fcn)| . . .〉
Backward Composition: 〈
(A\B)| . . . 7→ n| . . . ,
(B\C)| . . . 7→ (n\bc(A\C))| . . .〉
Forward Substitution: 〈
(B/A)| . . . 7→ n| . . . ,
((C/B)/A)| . . . 7→ (C/A)/fsn| . . .〉
Backward Substitution: 〈
(A\B)| . . . 7→ n| . . . ,
(A\(B\C))| . . . 7→ (n\bs(A\C))| . . .〉

4This proof was inspired by a (far more) elaborate proof of non-learnability of rigid Lambek
grammars in Foret and Le Nir (2002a) which will be discussed in Chapter 9.

5As required by The Principle of Consistency, see (Steedman, 2000, page 54).
6Here A|B denotes either A/B or B\A, and . . . denotes the rest of the categorial type,

which is assumed to be identical on both sides of 7→. Let n denote some freshly introduced
(unique) primitive type.

7The operators \ and / are now shorthand for \ba and /fa , respectively.
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Let application degree be defined as in Definition 3.9, restricted to slashes
with index fa or ba and other slashes not counted.

Definition 6.10 A conservative combinatory rule (CCR) is a combinatory
rule in which the resulting type has a degree that is lower than the degree of the
functor type and does not introduce new variable types.

A conservative tuple of rewrite rules (CTRR) is a tuple of rewrite rules
corresponding to a conservative combinatory rule.

Note that our restrictions disallow composition, but it is not clear at the
present time whether the class of structure languages generated by rigid gram-
mars with just application and composition has finite elasticity.

The first rule in a CTRR rewrites the argument type, its result type is
always of lower degree than the argument type. The result type of the second
rule in a CTRR has an application degree that is lower than the application
degree of the functor type: an extra slash in the result type is never labeled
with fa or ba, thus this slash does not add to the application degree of this type.
We will slightly abuse notation and let ctrr[G] denote the grammar obtained by
applying some CTRRs to grammar G. Then the following should be obvious:

Proposition 6.11 For any finite grammar G, G′ = ctrr[G] is finite.

Proof: (sketch) Let R be the set of CTRRs corresponding to a given set
of CCRs. It is clear that all rewrite rules in R can only be applied a finite
number of times to any grammar G, since all types in G have a finite degree
and these rules reduce the degree of the types they rewrite. Thus only a finite
number of new types can be assigned in G′, the rewritten version of G inter-
preted under generalized application. ¤

The following defines the relation dcom, and, implicitly, structure language
for CCG. Note that the application labels are included in the alphabet:

Definition 6.12 Let dcom: ΥF → ΣF be the homomorphism that maps each
indexed application label to a non-indexed application label:

dcom(c) = c,
dcom(ba(label, S1, S2)) = ba(dcom(S1),dcom(S2)),
dcom(fa(label, S2, S1)) = fa(dcom(S2),dcom(S1)),

for all c ∈ Σ, and label, S1, S2 ∈ Υ
F.

The following proposition states that, under the proper interpretation, ctrr[G]
is strongly equivalent to G:

Proposition 6.13 Let G be a grammar under the set of CCRs R. Then
FLR(G) = FL_(ctrr[G]), where ctrr denotes application of the CTRRs cor-
responding to R.
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Lemma 6.14 Let G be a rigid grammar under the set of CCRs R. Then there
is a k-valued grammar G′′ such that FL(G′′) = dcom(FL_(ctrr[G])), where
ctrr denotes application of the CTRRs corresponding to R.

The value of k depends on both R and (the degree of) the types in G (which
is finite but not bounded). Clearly dcom defines a finite-valued relation.

Lemma 6.15 Kanazawa (1998) FLk-valued has finite elasticity.

Theorem 6.16 The class G of rigid CCGs interpreted under any set of CCRs
has finite elasticity.

Proof: (sketch) Let R be the set of CTRRs corresponding to a given set
of CCRs. By Lemma 6.14, these rewrite rules constitute a finite-valued relation
between FLrigid and FLk-valued, for some constant k. Using Theorem 2.27 and
Lemma 6.15, it can be shown that under any set of conservative combinatory
rules the class of rigid grammars has finite elasticity. ¤

It follows directly that FLRk-valued, LRrigid and LRk-valued, under CCRs,
also have finite elasticity.

Restricting grammar systems to CCRs seems to severely limit their expres-
sive power, it precludes Lifting, for example. However, Lifting is used in CCG
under the restriction that the resulting range type is a parametrically licensed
category for the language. This is assumed to restrict it to a finite set of cat-
egories (see Steedman (2000), page 44).8 Thus the Lifting rules are actually
shorthand for (finite) lists of rules in which A and T are replaced by types that
only contain primitive types. Adding such lists to a collection of CCRs will
probably not affect finite elasticity.

What is not allowed by our restrictions are rules of the form C/B,B/A⇒
A/C, since type A is moved from a domain to a range position, so that the
degree of the resulting type may be higher than that of the argument or functor
type. This type of rule does not seem to be linguistically plausible and would
violate polarity, so this does not really pose a problem.

The rich formalism of Combinatory Categorial Grammar has natural sub-
classes that have the pleasant property of finite elasticity. This implies that
there exist algorithms that learn these classes while conforming to consistency
and conservativity constraints on their behavior prior to convergence. It also
implies that union with other classes with finite elasticity yields classes with
the same property.

6.2 Learning Generalized Quantifiers

This section will address the issue of learning generalized quantifiers. This
topic was first taken up in van Benthem (1986a), and, although it has been

8Restrictions on Lifting were already proposed in Lambek (1958): only primitive types
could be lifted, with a lexical type as argument.
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mentioned since then (cf Keenan (1996)), it has received little attention.
Gold’s paradigm was intended as a model of acquisition of syntax, so most

of the applications of formal learning theory to linguistics have been restricted
to syntax. It seems only natural to apply the paradigm to semantics, which
certainly is a non-trivial enterprise.9 Naive associationist theories for example
have a hard time dealing with quantifiers, since it may not be clear what
quantified expressions refer to.

It is also a challenge from a formal viewpoint, since the class of all gene-
ralized quantifiers is superfinite and thus not learnable. Therefore (nontrivial)
learnable subclasses should be investigated, and fortunately formal learning
theory provides some tools for doing this. Conceptually these subclasses corre-
spond to constraints on quantifiers, so this kind of research may in the future
provide motivation for new or existing ‘natural’ constraints like, for example,
conservativity.

In Clark (1996) the problem of learning first-order generalized quantifiers
with a minimally adequate teacher was considered. In this paradigm the learner
is not only provided with positive data but also has access to an oracle that
answers membership queries and gives counterexamples in response to the
learner’s incorrect conjectures. In van Benthem (1986b) first-order generali-
zed quantifiers were interpreted as regular sets, and it was shown that the
associated formalism of finite automata yields natural interpretations for these
quantifiers. In Angluin (1987) an algorithm was given that learns regular sets
under such conditions.

The model from Clark (1996) assumes that in the real world, parents some-
how have access to the conjecture of a child, which seems to be an unrealistic
abstraction. However, evidence from Brown and Hanlon (1970) suggests that
the learner has access to some negative data in the case of semantic learning.

In Tiede (1999b) a different approach was taken, obtaining some stronger
results:

Proposition 6.17 Tiede (1999b) Define left upward monotonicity as ↑ MON :
QAB and A ⊆ A′ ⇒ QA′B. The set of left upward monotone quantifiers is in
Lang.

This confirms the conjecture from Barwise and Cooper (1981) that mono-
tonicity of quantifiers facilitates learning. Note that nothing is said about
effective learnability. We will now refine this result and see under what other
natural restrictions learnability of this class is preserved.

6.2.1 Beyond First Order Generalized Quantifiers

Let a (binary) generalized quantifier, Q, on a domain E be a (binary) relation
between subsets of E, i.e. QE ⊆ ℘(E × E). Restricting our attention to finite

9Some recent interesting learnability results concerming learning and semantic knowledge
can be found in Stephan and Ventsov (2001), this work falls outside the scope of the present
discussion.
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structures results in the representation in the tree of numbers:

(0, 0)
(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)
(3, 0) (2, 1) (1, 2) (0, 3)

...

Here each pair (a, b) is such that a = |A − B|, b = |A ∩ B|. Every quan-
tifier is thus a subset of N × N. Thus, quantifiers can be identified with
formal languages: given Q ⊆ N

2, (n,m) ∈ N
2 can be represented as {w ∈

{a, b}∗|w contains n a’s and m b’s}.
It was shown in van Benthem (1986b) that every first order definable quan-

tifier is accepted by an acyclic, permutation-invariant finite automaton. An-
other result by van Benthem states that the quantifiers that can be computed
by pushdown- automata are exactly those that can be defined in Presburger
arithmetic. In Ginsburg and Spanier (1966) it was shown that sets and re-
lations definable in Presburger arithmetic are precisely the semi-linear sets.
These results allow us to confine ourselves to the numeric representation of
quantifiers.

Theorem 6.18 Abe (1989) Every linear set A ⊆ N
2 is equivalent to a finite

union of linear sets, each of which is generated by at most 3 elements, that is

a set of the form

{

v0 +
2∑

i=1

mi × vi | mi ∈ N

}

.

Theorem 6.19 Tiede (1999b) In the above normal form we can take m1 and
m2 to be nonzero.

Proposition 6.20 Tiede (1999b) The set

B =

{{

v0 +

2∑

i=1

mi × vi | m1,m2 > 0

}

| v0, v1, v2 ∈ N
2

}

has finite thickness.

Definition 6.21 Tiede (1999b) Let

B0 =def B,
Bn+1 =def B0 ∪̃ Bn = {b ∪ b

′ | b ∈ Bn, b
′ ∈ B}.

Corollary 6.22 Tiede (1999b) For any n, Bn has finite thickness and is there-
fore learnable.

The first refinement of this result will be a complexity analysis. The notion
of intrinsic complexity is based on reductions between classes of languages,
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which define complexity hierarchies. Such a reduction is defined as a trans-
formation for input sequences for a language from class L1 to sequences for a
language from L2, and a transformation for acceptable output sequences for
L2 to acceptable output sequences for L1. Weak reductions are defined with
an initial transformation that may yield the same sequence given two different
sequences.

The following is from Jain and Sharma (1996b) (Theorem 3):

Theorem 6.23 Suppose L has finite thickness. Then FIN 6≤TxtEx
weak L.

Thus it is a simple corollary that for any n, FIN 6≤TxtEx
weak Bn.

Using techniques borrowed from Kanazawa (1998) and Shinohara (1994)
based on length-bounded elementary formal systems a hierarchy was defined
of learnable subclasses of quantifiers definable in Presburger arithmetic. Each
of these classes has finite thickness.

Definition 6.24 Tiede (1999b) Let B be the set of all formulas of the form

∃x1∃x2 (y1 = m0+(m1×x1)+(m2×x2)∧
y2 = n0+(n1×x1)+(n2×x2)∧

x1 6= 0 ∧ x2 6= 0).

Then
B0 =def B,
Bn+1 =def {ϕ ∨ ψ | ϕ ∈ Bn, ψ ∈ B}.

Lemma 6.25 Tiede (1999b) The set of quantifiers definable in Presburger

arithmetic by formulas of the form
k∨

i=1

ϕi(y1, y2) with ϕi(y1, y2) ∈ B is identi-

fiable for all k.

Obviously these classes are highly expressive. Wright’s and Shinohara’s
results apply directly, yielding the following:

Theorem 6.26 The set of quantifiers definable in Presburger arithmetic by

formulas of the form
k∨

i=1

ϕi(y1, y2) with ϕi(y1, y2) ∈ B is effectively identifiable

by means of a consistent and conservative learning function for all k.

I will leave open for now the question of polynomial update time. Note
however that a sufficient condition for the non-restrictiveness of this constraint
would be that generating an index for a minimal10 language given a finite input
(ψ from Condition 2.59) takes only polynomial time (obviously membership
testing is in P). See Shinohara (1986) for details.

Recall that learnable families of infinite languages are always learnable by
a set-driven learner (Chapter 2). This leads us to conclude the following:

10With respect to the class to be learned.
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Theorem 6.27 The set of quantifiers definable in Presburger arithmetic by

formulas of the form
k∨

i=1

ϕi(y1, y2) with ϕi(y1, y2) ∈ B minus the set of all

quantifiers associated with a finite language is effectively identifiable by means
of a set-driven learning function for all k.

It is not obvious whether leaving out these quantifiers is strictly necessary
for set-driven learning, but it seems natural to exclude them.

Recall the relation between set-driven and conservative learning functions
as mentioned in Section 2.6. We have an easy corollary of Theorem 6.27:

Corollary 6.28 The set of quantifiers definable in Presburger arithmetic by

formulas of the form
k∨

i=1

ϕi(y1, y2) with ϕi(y1, y2) ∈ B minus the set of all

quantifiers associated with a finite language is effectively identifiable by means
of a conservative learning function with linear memory for all k.

One interesting restriction that has not yet been applied is that of ordinal
mind change complexity:

Theorem 6.29 Ambainis et al. (1997) Let L′ be an indexed family of recursive
languages with finite elasticity, assume that L is learnable by a conservative
function with respect to hypothesis space L′. Then L ∈ TxtExα with respect
to L′, for some constructive ordinal α.

Corollary 6.30 The set of quantifiers definable in Presburger arithmetic by

formulas of the form
k∨

i=1

ϕi(y1, y2) with ϕi(y1, y2) ∈ B is in TxtExα, for some

constructive ordinal α.

6.3 Tree Adjoining Grammars

In this section we will discuss a few new learnability results for classes of Tree
Adjoining Grammars (TAGs). This formalism was introduced in Joshi et al.
(1975). We will not go into too much detail, see the survey Joshi and Schabes
(1996) for motivation, formal results, algorithmic aspects and the like.

Definition 6.31 A tree-adjoining grammar (TAG) is a quintuple 〈Σ, NT, I, A, S〉,
where

1. Σ is a finite set of terminal symbols;

2. NT is a finite set of non-terminal symbols: Σ ∩NT = ∅;

3. S is a distinguished non-terminal symbol: S ∈ NT ;

4. I is a finite set of finite trees, called initial trees, characterized as follows:
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γ =

S

NP0 ↓ VP

V NP1 ↓

β =
VP

V VP∗
→

S

NP0 ↓ VP

V VP

V NP1 ↓

Figure 6.1: Adjoining.

• interior nodes are labeled by non-terminal symbols;

• the nodes on the frontier of initial trees are labeled by terminals or
non-terminals; non-terminal symbols on the frontier of the trees in
I are marked for substitution; by convention, we annotate nodes to
be substituted with ↓;

5. A is a finite set of finite trees, called auxiliary trees, characterized as
follows:

• interior nodes are labeled by non-terminal symbols;

• the nodes on the frontier of auxiliary trees are labeled by terminals
or non-terminals; non-terminal symbols on the frontier of the trees
in A are marked for substitution except for one node, called the foot
node; by convention, we annotate the foot node with ∗; the label of
the foot node must be identical to the label of the root node.

In TAG two composition operations are used: adjoining (Figure 6.1) and
substitution (Figure 6.2). Constraints on adjoining can be specified, see Joshi
(1987).

It has been shown in Vijay-Shanker (1987) that the class of Tree Adjoining
Languages (TALs) is weakly equivalent to the class of languages generated
by Linear Indexed Grammars (LIGS) or IG(1)s, that is IGs whose rules limit
the inheritance and manipulation of index sequences to a single nonterminal
daughter on the right side of the rule.

Note that the tree obtained by derivation from a TAG, the derived tree does
not give enough information to determine how it was constructed. The deriva-
tion tree is an object that specifies how a derived tree was constructed. There
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γ =

S

NP0 ↓ VP

V NP1 ↓

β =
NP

D ↓ N

→

S

NP0 ↓ VP

V NP

D ↓ N

Figure 6.2: Substitution.

are (obvious) relations between the two, however: for example, the derived tree
grows monotonically with each step in the derivation tree.

There are some variants of TAG about and they are often presented in an
informal fashion. Since we want to analyze learnability in a formal way, we will
use one particular precise definition from Vijay-Shanker and Weir (1994), the
expressive power of which is known exactly. It is also a more or less restricted
version, making negative results more general. It is restricted in the sense
that it is (strongly) lexicalized,11 and it does not use substitution, since this
operation can be emulated with adjoining provided ε is allowed as leaf.12

Tree Adjoining Grammars manipulate trees containing only nodes that are
labeled either by terminal symbols or by triples of the form 〈A,OA,NA〉, where
A is a nonterminal symbol, SA is the set of tree labels (that determines which of
the trees of the grammar can be adjoined at that node), and OA is either true
(indicating that adjunction is obligatory) or false (indicating that adjunction
is optional). We call SA and OA the adjunction constraints at that node. A
node at which the value of SA = ∅ is said to have an NA constraint.

Let VN be a set of nonterminal symbols, let VT be a set of terminal symbols,
let VL be a set of tree labels, and let V ε

T = VT ∪ {ε}.
Initial Trees. For each A ∈ VN, init(VN, VT, VL, A) is the set of trees α :

Dα → V ε
T ∪ (VN × 2

VL × {true, false}), where Dα is a tree domain and the
following hold:

11In lexicalized TAG (LTAG) at least one terminal symbol (the anchor) appears at the
frontier of all initial and auxiliary trees, this restricts the weak expressive power to finitely
ambiguous TALs.

12A normal form for TAG is also presented in the same paper, which relies heavily on the
use of ε.
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• The root of α is labeled 〈A, sa, oa〉 for some sa ⊆ VL and oa ∈ {true, false}.

• All internal nodes of α are labeled 〈B, sa, oa〉 for some B ∈ VN, sa ⊆ VL,
and oa ∈ {true, false}.

• All leaf nodes of α are labeled by some u ∈ V ε
T.

Auxiliary Trees. For each A ∈ VN, aux(VN, VT, VL, A) is the set of trees
β : Dβ → V ε

T ∪ (VN× 2
VL ×{true, false}), where Dβ is a tree domain and the

following hold:

• The root of β is labeled 〈A, sa, oa〉 for some sa ⊆ VL and oa ∈ {true, false}.

• All internal nodes of β are labeled 〈B, sa, oa〉 for some B ∈ VN, sa ⊆ VL,
and oa ∈ {true, false}.

• All leaf nodes of β except one are labeled by some u ∈ V ε
T. The remaining

leaf node is called the foot node and is labeled 〈A, sa, oa〉 for some sa ⊆ VL
and oa ∈ {true, false}. The address of the foot node of β is denoted
ft(β).

Let aux(VN, VT, VL) =
⋃

A∈VN
aux(VN, VT, VL, A).

Elementary Trees. elem(VN, VT, VL, A) = init(VN, VT, VL, A)∪aux(VN, VT, VL).

Tree adjunction:

∇ : elem(VN, VT, VL, A)× aux(VN, VT, VL)×N
∗
+ → elem(VN, VT, VL, A)

for every A ∈ VN.

6.3.1 TAGs with the Empty String

Since, as noted, the empty string is commonly used when working with TAGs, it
is necessary to discuss its effect on learnability. For most formal systems (CCG,
CFG, CSG, . . . ) it is quite easy to show that even very restricted learnable
classes that exclude ε from the alphabet become non-learnable as soon as it
is included. For TAGs this is slightly less obvious, so we will demonstrate it
explicitly.

Consider the grammars Gn in Figure 6.3 and grammar G∗ in Figure 6.4.
It is clear that yield(Gn) = ai+1, 0 ≤ i ≤ n and yield(G∗) = a+. (Note that
|V ε
T| = 2 (since V ε

T = {a, ε}).) Thus for all i ∈ N, yield(Gi) ⊂ yield(Gi+1),
which constitutes an infinite ascending chain, and yield(G∗) = ∪i∈Nyield(Gi),
which constitutes a limit point for this class.

Therefore, from this point on we will let VT, not V ε
T, denote the set of

nonterminals.
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γ =

S OA

...
S OA






n times

a

β1 =
S NA

S NA ε
β2 =

S NA

S NA a

Figure 6.3: Grammar Gn.

γ =
S

a

β =
S

S a

Figure 6.4: Grammar G∗.

6.3.2 The Class of Rigid TAGs is Not Learnable

At first glance there are two obvious options for defining rigidity for TAGs;
any s ∈ VT occurs at most once as leaf in elem(G) for any given G ∈ Grigid,
or alternatively, any s ∈ VT occurs at most once as leaf in init(G) for any
given G ∈ G[rigid. Note that the latter is more permissive than the former, ie,
Lrigid ⊂ L

[
rigid. The latter definition allows the existence of a limit point, which

is easy to show; consider grammars Gn and G∗ as shown in Figure 6.5 and
Figure 6.6, respectively.

Obviously, yield(Gn) = a(baji)∗, 1 ≤ ji ≤ n, i ∈ N, thus for all i ∈
N, yield(Gi) ⊂ yield(Gi+1), constituting an infinite ascending chain. It is clear
that yield(G∗) = a(ba+)∗, which is equivalent to ∪i∈Nyield(Gi), so G∗ is the
index for a limit point for this class, even with the restriction |VT| = 2.

Note that in this particular case even the class of derived tree languages for
which these grammars are indices has a limit point.

γ =
S

a

β1≤i≤n =

S

S b A

a A

a
. . .
}

i times

a a

Figure 6.5: Grammar Gn.
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γ =
S

a

β1 =

S

S b A

a

β2 =
A

a A

Figure 6.6: Grammar G∗.

Given the stricter, notion of rigidity for TAGs, it is possible to show that
even under this definition the class of rigid TAGs allows a limit point.

Consider the set of grammars Gn defined in Figure 6.7. Any of the internal
nodes of initial tree γ allows for adjunction with just the auxiliary tree β.
Since foot and header of this tree are labeled NA, such an adjunction can only
take place once for every internal node A, and since these internal nodes are
not labeled OA, such an adjunction does not have to take place in order to
derive a sentence. Thus, for a grammar Gn, the number of adjunctions i for
any derivation is restricted by 0 ≤ i ≤ n. It is easy to see that this implies
yield(Gn) = ∪0≤i≤na

ib, thus for all i ∈ N, yield(Gi) ⊂ yield(Gi+1), therefore
this collection of grammars constitutes an infinite ascending chain.

γ =

S
...
S






n times

b

β =
S NA

a S NA

Figure 6.7: Grammar Gn.

∇(∇(γ, β, d), β, d′) =

S NA

a S NA

S NA

a S NA

S

b

Figure 6.8: Example derived tree for aab using grammar G3.
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In order to show existence of a limit point we now need to define a grammar
G∗ such that yield(G∗) = ∪i∈NGi. Such a grammar is shown in Figure 6.9, and
differs from any Gn in that its one initial tree has no internal nodes, and its
single auxiliary tree β has no NA restrictions on its nodes. It is obvious that
an unbounded number of adjunctions can take place during a derivation, and
any of these (optional) adjunctions adds a symbol a as leaf of the derived tree,
somewhere to the left of the rightmost leaf b. Thus yield(G∗) = ∪i∈Na

ib =
∪i∈Nyield(Gi) and is therefore a limit point for the class.

γ =
S

b

β =
S

a S
∇(∇(γ, β, d), β, d′) =

S

a S

a S

b

Figure 6.9: Grammar G∗ with example derived tree.

Theorem 6.32 The class of rigid Tree Adjoining Grammars with an alphabet
of two symbols neither of which is the empty string, allowing unary and binary
branchings, and allowing labeling with NA, has a limit point and is therefore
not (non-effectively) learnable.

6.4 Minimalist Grammars

The Minimalist approach to syntax was introduced in Chomsky (1992, 1995,
1998) and is seen as a continuation of the tradition of transformational gram-
mar. We will not go deeply into the motivation of this approach here,the
interested reader is referred to this literature.

Some formalisations have been proposed for Minimalist Grammar (MG),
see e.g. Stabler (1997, 1998); Retoré and Stabler (1999); Stabler (2001), see
Lecomte and Retoré (2001); Cornell (1999) for connections with multimodal
logic, and see Stabler and Keenan (2003) for a succint reformulation.

MG has been shown independently to be weakly equivalent to linear context-
free rewriting systems, and hence to MCTAGS, in Harkema (2001); Michaelis
(2001), also see Michaelis (1998).13

13Ed Stabler reports results for learning rigid Minimalist Grammars from structures (Sta-
bler (2002), also presented at the ESSLLI 2002 workshop "Learning Algorithms for Lexical-
ized Grammars", Trento, Italy). This paper is still in the manuscript stage at the time of
writing, so we will not discuss it here.
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In the Minimalist grammars formalism languages are defined as closures of
a (finite) lexicon under some structure building operations, where the lexical
elements consist of a (finite) sequence of features of the following form:

Features Examples
f categories (n, v, . . . )

=f selectors (=n, =v, . . . )
+f licensors (+case, +wh, . . . )
-f licensees (-case, -wh, . . . )
g non-syntactic (‘some’, ‘every’, . . . )

The two structure building operations are known as merge and move. The
operation merge applies to a pair of trees when the head of the first expression
is labeled with a sequence that starts with a selection feature =f and the head
of the second expression is labeled with a sequence that starts with a category
feature f. Both these features are removed.

When the first argument is a lexical expression (i.e. consists of just one
node) the second tree is attached to its right as a complement. When the first
argument is complex (i.e. is not lexical) the second argument is attached to its
left as its specifier.

The second structure building operation move applies to a single tree, the
head of which is labeled with a sequence beginning with some licensor feature
+f, and that also contains exactly one leaf that is labeled with a sequence
beginning with licensee feature -f. It moves the maximal projection (a maximal
subtree with a given head) of the -f head to the specifier position of the head
of the expression.

These two partial functions are formally defined as follows:

1. merge : (exp × exp)→ exp:

merge(t1[=c], t2c[c]) =







<

t1 t2 if t1 ∈ Lex

>

t1 t2 otherwise

where t[f ] is the result of prefixing feature f to the sequence of features
at the head of t, and for all trees t1, t2, all c are categories.

2. move : exp → exp:

move(t1[+f]) =
>

t>2 t1 {t2[-f]>/λ}
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where t> is the maximal projection of t, and t1[+f] is any tree which
contains exactly one node with first feature -f.

6.4.1 The Class of 2-Valued MGs with Empty Categories

is Not Learnable

MG grammars exist for fragments of a number of natural languages. Gener-
ally speaking such fragments rely heavily on the use of phonologically empty
categories, for example for complementizers (=t +wh c) or for case (=acc +case

t).14

As we have seen in the last paragraph, grammar systems that allow inclusion
of ε in their lexicons generally speaking have bad learnability properties. Since
phonologically empty categories seem essential for the use of MG in linguistics,
one might conjecture that classes of MGs restricted only by numerical bounds
on their complexity are not learnable. This conjecture is valid, as we shall
demonstrate by constructing a limit point for the class of 2-valued MGs that
allow phonologically empty categories only if they contain a licensor feature.

Note that

1. 2-valued is defined here somewhat arbitrarily as ‘any phonological feature
occurs at most twice in the lexicon’. As in the case of TAGs, slightly dif-
ferent definitions are possible, but it is felt that any reasonable definition
would allow this construction,

2. the lexicon contains one phonologically empty category that doesn’t con-
tain a licensor feature, but this is the special case where the category is
the start-category c. Obviously this category is present in any MG that
generates a non-empty language, and can be safely ignored,

3. our construction requires that there is no bound on the number of licensee
features assigned to any one category.

Definition 6.33 For any n ∈ N, let Gn be the following grammar:

(complementizer, phonologically empty) 7→ =b c

(complementizer, phonologically empty) 7→ =b +x b

a 7→ a n times -x ‘a’
b 7→ =a b ‘b’
b 7→ =b +x b ‘b’

It is easy to see that L(Gn) = {ab
i | 1 ≤ i ≤ n + 1, i ∈ N

+}. We will not
prove this rigourously, but it will be made clear by the following derivation.
First, by combining lexical item b with a we obtain:

14Note that this kind of category seems to always contain licensor features.
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<

b ‘b’ -x
︸︷︷︸

n times

‘a’

This tree can only be selected by a lexical item with category b, so we can
obtain:

<

+x b ‘b’ <

b ‘b’ -x
︸︷︷︸

n times

‘a’

This tree has a movement trigger on its head, so we apply movement:

>

-x
︸︷︷︸

n− 1 times

‘a’ <

b ‘b’ <

‘b’

This tree can only be selected by a lexical item with category b, so we can
obtain:

<

+x b ‘b’ >

-x
︸︷︷︸

n− 2 times

‘a’ <

‘b’ <

‘b’

This tree has a movement trigger on its head, so applying movement we
obtain the following:
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>

-x
︸︷︷︸

n− 2 times

‘a’ <

b ‘b’ >

<

‘b’ <

‘b’

And so on. Assuming that n = 2, this tree can be selected by the simple
lexical item with category c, yielding a tree that has no outstanding syntactic
features except the start-category c:

<

c >

‘a’ <

‘b’ >

<

‘b’ <

‘b’

It should be obvious that, wherever the lexical item b that selects for cat-
egory b is used, the phonologically empty category that selects for category b

can be substituted. The only difference any such substitution makes is that
the derived tree will have one less ‘b’ as leaf. Since there is always at least one
such leaf (because of the way category a is assigned in the lexicon), and since
the number of additional leaves labeled with ‘b’ in the derived tree is bounded
by n, the string language generated by Gn is {abi | 1 ≤ i ≤ n+ 1, i ∈ N

+}.

Corollary 6.34 Let Gn be as defined in Definition 6.33. Since L(Gn) =
{abi | 1 ≤ i ≤ n + 1, i ∈ N

+}, L(G0) ⊂ L(G1) ⊂ . . ., which constitutes an
infinite ascending chain.

Definition 6.35 Let G∗ be the following grammar:
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a 7→ =b ‘a’ c

b 7→ b

b 7→ =b ‘b’

It is easy to see that L(G∗) = {abi | i ∈ N
+}.

Theorem 6.36 Let Gn be as defined in Definition 6.33 and G∗ as defined in
Definition 6.35. Let G be any class of minimalist grammars that contains both
G∗ and Gn for any n ∈ N. Then G is not (non-effectively) learnable from
strings.

Proof: Since L(Gn) = {ab
i |1 ≤ i ≤ n+1, i ∈ N

+} and L(G∗) = {abi | i ∈
N
+}, L(G∗) = ∪n∈NL(Gn). Thus G∗ is a limit point for any class that contains

both G∗ and Gn for all n ∈ N. ¤

Note that imposing an additional numerical bound on the number of li-
censee features assigned to any one category does not allow the existence of
this particular limit point. It may be that under such restrictions the classes
of k-valued MGs are learnable, we will leave this an open question.

6.5 Conclusions and Future Work

This chapter presents and improves on results from Kanazawa (1998) concern-
ing learnability of classes of Combinatorial CG, an extension of Classical CG.
It is demonstrated that, given certain sets of combinators, the class of rigid
grammars is not to learnable from strings. Constraints over combinatory rules
are specified that guarantee preservation of finite elasticity of the class of struc-
ture languages generated by rigid grammars under these rules, and given such
a class it is easy to show that the corresponding class of string languages has
finite elasticity as well.

We also discuss results from Tiede (1999b) concerning the learnability of
generalized quantifiers. In Tiede (1999b) a number of subclasses of the ge-
neralized quantifiers were shown to be learnable, and using techniques from
the field of formal learning theory these results have been generalized; it has
been shown that Tiede’s classes are learnable under psychologically plausible
restrictions on the learner.

The possibility of consistency with polynomial update time has been left
open; the existence of an algorithm for producing a quantifier with a minimal
denotation that is consistent with some positive data would be a sufficient
condition.

The tree of numbers-approach to generalized quantifiers suggests that algo-
rithms for learning geometric forms (thoroughly investigated within the PAC
paradigm) might be applied straightforwardly. In Jain and Kinber (1999)
TxtEx learning of open semi-hulls is considered. This work might be rele-
vant although at present it is unclear if these geometric forms correspond to
‘natural’ quantifiers.
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In van Benthem (1986a) it was suggested that tree automata may be useful
for dealing with conditionals. Results on learnability of tree automata from Be-
sombes and Marion (2002a) (to be discussed in Chapter 7) might be applicable
to this subject.

Tree Adjoining Grammar is also discussed in this chapter. We obtained
negative results for learning from strings for three very restricted classes of
TAG, one allowing the empty string and two that are rigid (in two slightly
different senses). The more restricted one of the latter two is not even learnable
with the restrictions that the alphabet contain just two symbols (neither of
which is the empty string) and that the grammar contain just one initial and
one auxiliary tree.

The proofs for these results crucially rely on the optionality of adjunction
and on the restrictions on adjunction that can be specified for each individual
node. I conjecture that rigid TAGs are learnable under some restrictions on
optionality, for example by marking all nodes in the grammar so that adjunction
is either obligatory or prohibited at any given node. An alternative approach,
possibly of more interest, could be to consider learning TAGs from derivation
trees rather than from derived trees or strings. Derivation trees of TAGs can
be interpreted as dependency structures (see e.g. Rambow and Joshi (1997);
Dras et al. (to appear); Schuler et al. (2000)), so this setting has a natural
linguistic interpretation. Learning from dependency trees will be discussed in
more detail in the next chapter.

Minimalist Grammar (MG) is the last formalism discussed in this chap-
ter. Again, a very restricted class turns out not to be learnable from strings,
namely the class of 2-valued MGs with |Σ| = 2, allowing the assignment of
an unbounded number of licensee features to the same category, and allowing
phonologically empty categories.



Chapter 7

Learning Regular Tree

Languages

7.1 Introduction

As noted in eg Fernau (2002, 2000), tree language induction is an important
subject in the fields of (applied) Formal Learning Theory and Grammar Induc-
tion. We have already discussed the motivation from linguistics; one expects a
learner to not just act as a characteristic function for a set of strings, but also
to assign the right derivations (and thus meaning) to them.1

The work by Buszkowski and Penn and Kanazawa previously discussed has
taken this approach, but without explicitly using a tree formalism. In this
chapter the benefits of using the tree automata formalism (a generalization of
finite state automata) will be shown by discussing results from Angluin (1982),
Sakakibara (1992) and Besombes and Marion (2001, 2002a,b). The latter offers
the following results:

1. Reset-free context-free grammars are identifiable from parse tree presen-
tations. See Theorem 7.25.

2. Reversible dependency tree grammars are identifiable from positive ex-
amples. See Theorem 7.29.

3. Rigid Classical categorial grammars are identifiable from unlabeled deri-
vation trees. See Theorem 7.30 This was already established by Kana-
zawa in Kanazawa (1998), but the proof is much shorter and conceptually
simpler.

1There are other uses as well, Bernard and de la Higuera (1999) proposes it as a tool in
Inductive Logic Programming, and there is also motivation from bioinformatics.
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Related work: There are several papers on tree grammar identification,
Angluin’s and Sakakibara’s results have already been mentioned. Other papers
(Gonzalez et al. (1976); Levine (1981); Kamata (1984); Fukuda and Kamata
(1984)) are based on the idea of k-tail inference for regular word languages
from Biermann and Feldman (1972) and has been expounded in Knuutila and
Steinby (1994). More recently, Fernau (2001) has applied this approach to
XML grammars. In Carrasco et al. (1998) it was shown that regular tree
languages are identifiable with probabilistic samples. The reader interested in
context-free language inference may consult the surveys [Lee, Sakakibara1997,
Mak97].

7.2 Regular Tree Languages

7.2.1 Trees are Terms

Background on regular tree languages can be found in the survey book Comon
et al. (1997). A ranked alphabet is a tuple (F , arity) where F is a finite set
of symbols and arity is a function from F to N, which indicates the arity of a
symbol. Given a set X of variables, terms are inductively defined: a symbol of
arity 0 is a term, a variable of X is a term, and if f is a symbol of arity n and
t1, . . . , tn are terms, then f(t1, . . . , tn) is a term. The set of all terms is denoted
by T (F ,X ), the set of ground terms is dentoted by T (F). Throughout, labeled
ordered trees are represented by terms.

A context is a term C[3] containing a special variable 3 which occurs just
once in that term, it marks an empty place. Throughout, the substitution of
3 by a term u is written C[u], its states that u is an occurrence of the term
C[u].

7.2.2 Tree Automata

A (nondeterministic) finite tree automaton (NFTA) is a quadruplet
A = 〈F ,Q,QF ,−→

A
〉 such that Q is a finite set of states, QF ⊆ Q is the set of

final states, and −→
A

is the set of transitions. A state q of a deterministic tree

automaton A is useful if and only if there exists a tree t and some node x ∈ ∆t

such that δ(t/x) = q and δ(t) ∈ F . A deterministic automaton containing only
useful states is called stripped. A transition is a ground rewrite rule of the form
f(q1, . . . , qn) −→

A
q where q and q1, . . . , qn are states of Q, and f is a symbol of

arity n, in the case that n = 0 the transition is just of the form a −→
A

q.

A finite tree automaton is a deterministic finite tree automaton (DFTA) if
it contains no rules sharing the same left hand side. In this case −→

A
represents

a mapping which is not necessarily defined for all entries, so this means that
we shall consider incomplete automata. The single derivation relation −→

A
is
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defined so that t −→
A

u if and only if there is a transition f(q1, . . . , qn) −→
A

q

such that t = v[f(q1, . . . , qn)] and u = v[q]. Note that −→
A
⊆ T (F ,Q)×T (F ,Q)

where states of Q are 0-ary symbols. The derivation relation ∗
−→
A

is the reflexive

and transitive closure of −→
A

. The tree language recognized by A is LA = {t ∈

T (F) | t
∗
−→
A

qf and qf ∈ QF }.

7.2.3 Reversible Regular Tree Languages

Definition 7.1 A DFTA A is reversible if and only if

1. There are no two rules with left hand sides that differ by just one symbol.
That is, there are no transitions f(p1, . . . , pn, q, pn+1, . . . pm) −→

A
p and

f(p1, . . . , pn, q
′, pn+1, . . . , pm) −→

A
p where q 6= q′.

2. A has one final state.

A tree language is reversible if it is recognised by a reversible DFTA. Note
that a symbol of arity n and n− 1 states determine at most one transition.

7.2.4 Reversible Regular Tree Grammars

A regular tree grammar (RTG) is a quadruplet Γ = 〈F ,X ,−→
Γ
, S〉 where S ∈ X

is the start variable. Each production is of the form X −→
Γ

t where X is

a variable of X called the head, and t is a term of T (F ,X ). Throughout no
productions of the formX −→

Γ
Y , where Y is a variable of X , are allowed. Define

t −→
Γ
u if and only if there is a production X −→

Γ
v such that u = t[X ← v].

The derivation relation ∗
−→
Γ

is the reflexive and transitive closure of −→
Γ

. The

language produced by Γ is LΓ = {t ∈ T (F) | S
∗
−→
Γ
t}.

Definition 7.2 A grammar Γ is reversible if and only if

1. there are no productions X −→
Γ

C[Y ] and X −→
Γ

C[Z] starting with the

same head X such that Y 6= Z,

2. there are no productions X −→
Γ
t and Y −→

Γ
t with the same right hand-side

such that X 6= Y .

Definition 7.3 An RTG Γ is normal if each production is of the form X −→
Γ
a

or of the form X −→
Γ
f(X1, . . . , Xn).

Theorem 7.4 A language L is reversible if and only if the language L is pro-
duced by a reversible and normal RTG.
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7.2.5 Identifification of Reversible Tree Languages

A positive presentation of a language L is a sequence t1, . . . , tn, . . . which enu-
merates all elements of L. Let Ω be a given class of automata (or grammars).
An inference algorithm A takes as input a finite segment t1, . . . , tn of a posi-
tive presentation of L and guesses an automaton A(t1, . . . , tn). The inference
algorithm A converges to L if there is a stage N such that for all n ≥ N ,
the language provided by A(t1, . . . , tn) is exactly L. A class of languages L is
identifiable if and only if there is an inference algorithm A such that for each
positive presentation of a language L, A converges to L.

Theorem 7.5 The class of reversible tree languages is identifiable.

We shall demonstrate the theorem above in the next section. The main
notions are now set, the reader may skip the proofs and follow most discussions
about applications in the last section of this chapter.

7.3 Identification of Reversible Tree Languages

7.3.1 An Algebraic Characterization of Reversible Tree

Languages

An equivalence relation ≡ is closed under context if for all terms t and u in
T (F), t ≡ u if for every context C[3], C[t] ≡ C[u]. A congruence ≡ on T (F)
is an equivalence relation which is closed under context.

Given a DFTA A, the equivalence relation ≡A is defined as: t ≡A u if
t
∗
−→
A

q and u ∗
−→
A

q. It is easy to see that ≡A is closed under context, so it is a
congruence.

Lemma 7.6 Let A be a reversible DFTA. For every context C[3] and for
every term t and u such that C[t] and C[u] are in LA, t ≡A u.

Proof: By induction on the size of the context. Basis: Suppose that
C[3] = 3. By Lemma assumption, t and u are in LA. Since A is reversible,
there is only one final state qf , therefore we have t ∗

−→
A

qf and u
∗
−→
A

qf . We

conclude that t ≡A u.
Inductive step: Suppose that C[3] = C ′[f(t1, . . . , tn,3, tn+1, . . . , tm)]. By

the lemma assumption, ti
∗
−→
A

qi for some state qi. Since A is reversible

the states t1, . . . , tm determine a unique transition whose left hand side is
C ′[f(q1, . . . , qn, q, qn+1, . . . , qm)]. This implies that t ∗

−→
A

q and u
∗
−→
A

q. There-

fore t ≡A u. ¤
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Given a tree language L, the congruence ≡L is defined as: t ≡L u if for
every context C[3], C[t] ∈ L if and only if C[u] ∈ L. Following the Myhill-
Nerode Theorem, the index of ≡L is lower or equal than the index of ≡A for
any automaton A which recognises L.

As a consequence, the minimal DFTA (up to a renaming of states) AL =
〈F ,Q,QF ,−→

L
〉 which recognises L is defined as follows: let [t] be the equivalence

class of t with respect to ≡L and sub(L) be the set of subterms of L. Let
Q = {[t]|t ∈ sub(L)} and QF = {[t]|t ∈ L}. For every state [t1], . . . , [tn] and for
each n-ary symbol f ∈ F , there is a transition f([t1], . . . , [tn]) −→

L
[f(t1, . . . , tn)].

Theorem 7.7 A tree language L is reversible if and only if for every context
C[3] and for every term t and every term u, if C[t] and C[u] are in L, then
t ≡L u.

Proof: There is a reversible DFTA A which recognises L. Following the
Myhill-Nerode Theorem, ≡A refines ≡L, that is if t ≡A u then t ≡L u. There-
fore, we conclude by Lemma 7.6.

Conversely, consider the minimal DFTA AL recognising L. This DFTA has
only one final state because the lemma assumption says that each tree of L be-
longs to the same equivalence class. Next, suppose that we have two transitions
of the form f(p1, . . . , pn, q, pn+1, . . . , pm) −→

L
q′′ and f(p1, . . . , pn, q′, pn+1, . . . ,

pm) −→
L
q′′. Since AL is minimal, there are terms t1, . . . , tm such that ti

∗
−→
L
pi.

This leads us to consider a context C[3] = C ′[f(t1, . . . , tn,3, tn+1, . . . , tm)]

such that C[q] ∗−→
L
qf and C[q′]

∗
−→
L
qf where qf is the final state of AL. How-

ever, the lemma assumption implies that q = q′. We conclude that AL is
reversible, and so L is reversible. ¤

This proof has the following consequence:

Corollary 7.8 A tree language L is reversible if and only if the minimal DFTA
AL is reversible.

Example 7.9 Let L = {f(gn(a)) | n ≥ 0} ∪ {g(fn(a)) | n ≥ 0}. The tree
language L is recognised by the DFTA A whose transitions are

a −→
A

A f(A) −→
A

C

g(A) −→
A

B f(C) −→
A

S

g(B) −→
A

G f(F ) −→
A

F

g(G) −→
A

G f(G) −→
A

S

g(F ) −→
A

S

The final states are S,B and C.
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The DFTA A is minimal and is therefore isomorphic to AL. As a con-
sequence of Corollary 7.8 the language L is not a reversible tree language,
although it is the union of two reversible tree languages.

7.3.2 Characteristic Samples

Let L be a reversible language recognised by the minimal automaton AL. Each
state q has a term rt(q) of T (F) associated with it such that rt(q) ∗

−→
L
q and a

minimal context Cq[3], with respect to the size, such that Cq[q]
∗
−→
L
qf .

The set of characteristic samples CS(L) is the smallest set which contains

1. the term Cq[rt(q)] for each state q,

2. the term Cq[f(rt(q1), . . . , rt(qn))] for each transition f(q1, . . . , qn) −→
L
q.

It follows immediately that CS(L) ⊆ L. Also note that Cqf
[3] = 3 where qf

is a final state.

Theorem 7.10 Let L1 and L2 be two reversible languages over T (F), and
assume CS(L1) ⊆ L2. Then L1 ⊆ L2.

Proof: Suppose that A1 = 〈F ,Q1, {qf1
},−→

1
〉 and A2 = 〈F ,Q2, {qf2

},−→
2
〉

are the minimal DFTAs which recognize L1 and L2 respectively.
For each state q ∈ Q1, Cq[rt(q)] ∈ CS(L1) ⊆ L2. Thus rt(q) ∈ sub(L2). It

follows that there is a unique function θ : Q1 → Q2 such that rt(q) ∗
−→
2
θ(q),

because A2 is deterministic.
We now state an important observation which is a consequence of Theorem

7.7. For each term t ∈ T (F), if Cq[t] is in L2, then t ∗−→
2
∈ θ(q).

By induction on the size of the term t ∈ T (F) it can be shown that for
each state q ∈ Q1, if Cq[t] ∈ L1 then Cq[t] ∈ L2. It follows that if t ∈ L1 then
t ∈ L2, because Cqf1

[t] = t.
Basis: Suppose that t is a symbol of arity 0. There is a transition t −→

1
q

and so Cq[t] ∈ CS(L1) ⊆ L2.
Inductive step: Suppose that t = f(t1, . . . , tn). By the lemma hypothesis,

there is a state qi in Q1 such that ti
∗
−→
1
qi. Because Cqi[ti] ∈ L1, the induction

hypothesis is applied to obtain Cqi
[ti] ∈ L2. Following the observation above,

ti
∗
−→
2
θ(qi). We have

Cq[f(t1, . . . , tn)]
∗
−→
2
Cq[f(θ(q1), . . . , θ(qn))] (7.1)

On the other hand, since Cq[f(rt(q1), . . . , rt(qn))] ∈ L2, we have

Cq[f(rt(q1), . . . , rt(qn))]
∗
−→
2
Cq[f(θ(q1), . . . , θ(qn))] (7.2)



7.3. IDENTIFICATION OF REVERSIBLE TREE LANGUAGES 125

∗
−→
2
qf2

(7.3)

By combining 7.1 and 7.3,

Cq[f(t1, . . . , tn)]
∗
−→
2
qf2

(7.4)

so Cq[t] ∈ L2. ¤

Based on Angluin (1982), the characteristic samples of reversible tree lan-
guages are telltale sets. Consequently, the class of reversible tree languages is
identifiable.

7.3.3 An Efficient Learning Algorithm

The learning algorithm works as follows: The input is a finite set S of positive
examples, that is terms of a (regular) target language. Let us first define the
prefix tree automaton PTA(S) = 〈F ,Q0,QF0

,−→
0
〉 as follows. For each subterm

t of sub(S), there is a state written [t] in Q0. The set of final states QF0

contains each state [t] where t ∈ S. For each subterm f(t1, . . . , tn) of sub(S),
we have a transition f([t1], . . . , [tn]) −→

0
[f(t1, . . . , tn)]. It follows directly that

LPTA(S) = S.
Next a succession of NFTAs A0 = PTA(S),A1, . . . , An is computed by

repeatedly applying one of the reduction rules described in Figure 7.1 until we
find two identical NFTAs. That is, Ai+1 is obtained from Ai by merging two
states following one of the rules. The process terminates after n reduction steps
since each step decreases the number of states, so nf(S) = An.

Lemma 7.11 The DFTA nf(S) is a reversible DFTA.

Proof: Since no rules are applicable, nf(S) is necessarily reversible. ¤

An automaton homomorphism between the NFTA A1 = 〈F ,Q1, QF1
,−→
1
〉

and A2 = 〈F ,Q2, QF2
,−→
2
〉 is a function θ which maps Q1 to Q2 and which

has the property that if f(q1, . . . , qn) −→
1
q then f(θ(q1), . . . , θ(qn)) −→

2
θ(q),

for each transition of A1. We say that A1 v A2 if there is some automaton
homomorphism between them. Note that if A1 v A2 then LA1

⊆ LA2
.

Lemma 7.12 If S ⊆ L then PTA(S) = A0 v AL.

Proof: Define θ as θ([t]) is the equivalence class of t. ¤

Lemma 7.13 Let A be a reversible DFTA. Assume that Ai+1 is obtained by
applying either R1, R2 or R3 to Ai. If Ai v A then Ai+1 v A.
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1. R1 If f(p1, . . . , pn, q, pn+1, . . . , pm)→ p
and f(p1, . . . , pn, q′, pn+1, . . . , pm)→ p then q = q′.

2. R2 if f(q1, . . . , qn)→ q and f(q1, . . . , qn)→ q′ then q = q′.

3. R3 if qf1
and qf2

are both final states then qf1
= qf2

.

Figure 7.1: Reduction rules

Proof: Let θ be the automaton homomorphism from Ai to A. We prove
the lemma by inspecting the three rules which can be used to construct Ai+1.
Rule R1 is applied. Since A is reversible, θ(q) = θ(q′). Rule R2 is applied.
Since A is deterministic, θ(q) = θ(q′). Rule R3 is applied. Since A has only
one final state, θ(qf1

) = θ(qf2
). Thus θ is an automaton homomorphism from

Ai+1 to A. ¤

Lemma 7.14 For each reversible language L, if S ⊆ L then Lnf(S) ⊆ L.

Proof: Follows directly from Lemma 7.12 and Lemma 7.13. ¤

Example 7.15 Suppose we have the entry 〈f(a, b), f(g(a), b), f(g(g(a)), b)〉.
The algorithm first calculates the automaton PTA(S) = 〈F ,Q0,QF0

,−→
0
〉, where

• F is the set {f, g, a, b},

• Q0 is the set {[a], [b], [f(a, b)], [g(a)], [f(g(a), b)], [g(g(a))], [f(g(g(a)), b)]},

• QF0
is the set {[f(a, b)], [f(g(a), b)], [f(g(g(a)), b)]},

• −→
0

is the set {a −→
0
[a], b −→

0
[b], f([a], [b]) −→

0
[f(a, b)], g([a]) −→

0
[g(a)],

f([g(a)], [b]) −→
0
[f(g(a), b)], g([g(a)]) −→

0
[g(g(a))], f([g(g(a))], [b]) −→

0

[f(g(g(a)), b)]}.

Applying the rule R3 three times we get [f(a, b)] = [f(g(a), b)] =
[f(g(g(a)), b)] and the new set 〈a → [a], b → [b], f([a], [b]) → [f(a, b)], g([a]) →
[g(a)], f([g(a)], [b])→ [f(a, b)], g([g(a)])→ [g(g(a))], f([g(g(a))], [b])→ [f(a, b)]〉.
Now the rule R1 can be applied twice to obtain [a] = [g(a)] = [g(g(a))], so the
output is the automaton 〈F ,Q,QF ,→〉, where

• F is the set 〈f, g, a, b〉,

• Q is the set 〈[a], [b], [f(a, b)]〉,

• QF is the set 〈[(f(a, b)]〉,
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• → is the set 〈a→ [a], b→ [b], f([a], [b])→ [f(a, b)], g([a])→ [a]〉.

Theorem 7.16 (Proof of Theorem 7.5). Assume that L is a reversible tree
language. For each positive presentation t1, . . . , tn, . . . of L, there is a step
N such that for all n > N , nf(t1, . . . , tn) is the minimal reversible DFTA
which recognizes L. In other words, the class of reversible tree languages is
identifiable.

Proof: There is a step N such that for all n > N , t1, . . . , tn contains
CS(L). By Lemma 7.14, Lnf(t1,...,tn) ⊆ L. Now, Lnf(t1,...,tn) ⊆ L is a reversible
tree language. We apply Theorem 7.10, and we conclude that L ⊆ Lnf(t1,...,tn).
Therefore, we have L = Lnf(t1,...,tn). ¤

The learning algorithm is incremental and runs in quadratic time in the size
of the examples.

7.4 Learning with Structural Examples

We now discuss the identification in the limit of word languages and we give
some applications as a way of illustrating the learning method developed in the
previous sections.

7.4.1 Context-Free Word Languages

Let us recall briefly the definition of context-free grammars (CFG). A context-
free grammar G is a quadruple 〈Σ,N ,−→

G
, S〉 where Σ is the alphabet, N is the

set of non-terminal symbols, and S ∈ N is the start symbol. The production
rules are defined by −→

G
and are of the form X −→

G
w where X ∈ N and

w ∈ (Σ ∪ N )∗. The language LG defined by G is LG = 〈w | S
∗
−→
G

w〉. Define

D(G) as the set of derivation trees of G.
There is a close relationship between context-free word languages and re-

gular tree grammars. To see this, let Σ be the set of symbol of arity 0 of F .
We define the yield function yield from T (F) to Σ as follows:

yield(a) = a

yield(f(t1, . . . , tn)) = yield(t1) . . . yield(tn)

If L ⊆ T (F) is a tree language, then yield(L) = 〈yield(t) | t ∈ L〉.

Theorem 7.17 If L is a regular tree language then yield(L) is a context-free
language.

The second thing is that the set of derivation trees of context-free grammars
is a regular tree language.
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Theorem 7.18 Assume that G is a context-free grammar. Then, the set of
derivation trees D(G) is a regular tree language.

Let us look at the construction of a reversible and normal RTG Γ =
〈F ,X ,−→

Γ
, S〉 from a grammar G = 〈Σ,N ,−→

G
, S〉. Every letter in Σ is a 0-

ary symbol in F . For each rule X −→
G
w where w is a word of length n, there is

a symbol Xn of arity n in F . Every non-terminal of N is a variable of X . For
each letter a ∈ Σ, there is a variable [a]. For each production X −→

G
w1, . . . , wn

there is a production X −→
Γ

Xn(X1, . . . , Xn) where Xi = wi if wi is in N ,

otherwise Xi = [wi]. Lastly, for each letter a ∈ Σ, we have [a] −→
Γ
a.

7.4.2 Structural Examples

In the case of context-free languages it is in general hard to prove learnability
of string languages (or coming up with sufficient conditions for such classes to
be learnable). Consequently several authors have suggested to learn classes of
grammars, like context-free grammars Sakakibara (1992) or categorial gram-
mars Kanazawa (1998), where positive examples are annotated by additional
information and are called structural examples. We present two cases to illus-
trate this idea.

1. The full presentation of a CFG G is a sequence t1, t2, . . . of all parse trees
of G.

2. A delabeling sk is function defined by:

sk(a) = a

sk(f(t1, . . . , tn)) = σn(sk(t1), . . . , sk(tn))

The skeleton presentation of a grammar G is a sequence sk(t1), sk(t2), . . .
of all delabeled parse trees of G.

The available data consists of a regular tree language which is a homomor-
phic image of derivation trees of some CFG. These observations lead to the
consideration of h-presentations of a CFG G defined as follows: assume that
h is a tree homomorphism, then an h-presentation of a CFG G is a sequence
h(t1), . . . , h(tn), . . . where t1, . . . , tn, . . . is an enumeration of all parse trees of
G.

Note that h being a linear homomorphism is a sufficient condition for an
h-presentation to be a regular tree language.

7.4.3 Grammar Identification

Let h(D(G)) = {h(t)|t ∈ D(G)}. Let Ω be a given class of grammars and h be a
tree homomorphism. Given a h-presentation h(t1), . . . , h(tn), . . . the inference
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algorithm A converges to G ∈ Ω if there is a stage N such that for all n > N ,
the language provided by A(h(t1), . . . , h(tn)) is exactly h(D(G)).

A class of grammars Ω is identifiable from h-presentations if and only if there
is an inference algorithm A such that for each h-presentation of a grammar G,
A converges to G.

7.4.4 Sakakibara’s Approach

Sakakibara demonstrated that the class of reversible context-free grammars is
identifiable from skeleton presentations.

Definition 7.19 A CFG is reversible if and only if

1. (Reset-free) there are no productions X −→
G

wY v and X −→
G

wZv such

that Y and Z are non-terminals and Y 6= Z,

2. (Deterministic) there are no productions X −→
G

t and Y −→
G

t with the

same right hand-side and such that X 6= Y .

A reversible context-free language is a language produced by a reversible
CFG.

Theorem 7.20 (Sakakibara (1992)). The class of reversible context-free gram-
mars is identifiable from skeleton presentations.

Proof: The skeleton presentation of a reversible CFG is a reversible tree
language, so Theorem 7.5 implies that the class of skeleton presentations is
identifiable. ¤

7.4.5 Identification of Reversible Context-Free Word Lan-

guages

Definition 7.21 The class R of reversible context-free word languages is the
smallest class such that for every reversible tree language L1 there is a language
L in R such that L = yield(L1). We call L1 a reversible tree presentation of
L.

Again from Theorem 7.5 the following result is obtained:

Theorem 7.22 The class R is identifiable from reversible tree presentations.

In order to make this result clear and to compare it with Sakakibara’s work,
we shall illustrate it by discussing some of its consequences.
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Example 7.23 The grammar Γ defined below is reversible:

S −→
Γ
f(X,Y ) X −→

Γ
c

X −→
Γ
g(A,X,B) Y −→

Γ
d

Y −→
Γ
g(A, Y,B) B −→

Γ
b

A −→
Γ
a

By Theorem 7.5, LΓ is identifiable. Theorem 7.22 states that the context-
free language yield(LΓ) is identifiable from any enumeration of LΓ which con-
stitutes a reversible tree presentation. However, LΓ is not the set of parse trees
of a context-free language.

Example 7.24 This example shows that learning is facilitated by a full pre-
sentation of parse trees. The following CFG G is not reversible because it is
not deterministic:

S −→
G

ab

S −→
G

aXb

X −→
G

ab

The set D(G) of parse trees is a reversible tree language and is generated
by the following (reversible and minimal) tree grammar:

S −→
G

S2([a], [b])

S −→
G

S3([a], X, [b])

X −→
G

X2([a], [b])

[a] −→
G

a

[b] −→
G

b

Theorem 7.25 The class of reset-free context-free languages is identifiable
from full presentations.

7.5 Lexical Dependency Tree Languages

Following Dikovsky and Modina (2000),2 we present a class of projective de-
pendency grammars that was introduced in Hays (1961) and Gaifman (1965).

2Also see Dikovsky (2001), for details on a dependency tree grammar formalism that can
generate non-semilinear context-sensitive languages.
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A lexical dependency grammar (LDG) is a quadruplet 〈Σ, N,−→
Γ
, S〉, where Σ

is the alphabet, N is the set of non-terminal symbols, and S ∈ N is the start
symbol. Each production is of the form

? ? ? ?
X → U1, . . . , UpaV1, . . . , Vq,

where X ∈ N and all Ui and Vj are in Σ ∪ N . The right-hand side can be
interpreted either as a labeled ordered directed tree of depth 1 whose head is
a, or as the word U1, . . . , UpaV1, . . . , Vq. Thus there is a total order on the tree
nodes.

Example 7.26 The grammar Γ0 = 〈{a, b}, {S}, P, S〉 where P consists of:

?? ?
S → a S b | a b

We define partial dependency trees recursively as follows:

1. S is a partial dependency tree generated by Γ.

2. If

?
. . . X . . . b . . .

is a partial dependency tree generated by Γ, and if

? ? ? ?
X → U1 . . . UpaV1 . . . Vq

is a production of Γ, then

? ? ? ?
. . . U1 . . . UpaV1 . . . Vp . . . b . . .

6

is a partial dependency tree generated by Γ.

A dependency tree generated by an LDG Γ is a partial dependency tree of
Γ in which all nodes are terminal symbols. The language D(Γ) is the set of all
dependency trees generated by Γ.

Example 7.27 The language generated by Γ0 is

? ?? ?? ?
D(Γ0) = {ab, aabb, aaabbb, . . .}

6 66
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Without dependencies, we recognize the context-free language {anbn | n > 0}.
Without the linear order on letters, the regular tree language is

{a(b), (a(a(b), b)), a(a(a(b), b), b), . . .}.

Note that the arity of a is 1 or 2, but this is not problematic. We write
??
αaβ

for
?? ??
α1αpaβ1βq .

Definition 7.28 An LDG grammar is reversible if and only if the following
three conditions are satisfied:

1. if
??

X → UaV and if
??

Y → UaV , then X = Y .

2. If
? ??

X → αY βaγ

6

and if
? ??

X → αZβaγ

6

, then Y = Z, where Y,Z ∈ N .

3. If
?? ?

X → αaβY γ

6

and if
?? ?

X → αaβZγ

6

, then Y = Z, where Y,Z ∈ N .

The class of reversible dependency tree languages is the class of languages
generated by reversible LDG grammars.

Theorem 7.29 The class of reversible dependency trees is identifiable.

Proof: The algorithm described in Section 7.3.3 is easily adapted to take
the node ordering into account and to handle symbols with variable arities. It
is not diffcult to see that a presentation is a reversible tree language. ¤

7.6 Classical Categorial Grammar

We are now ready to present Besombes and Marion’s alternative proof of Kana-
zawa’s theorem on learning FLrigid from structures. We feel that its conciseness
demonstrates the power of the tree automata-approach to learning:
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Theorem 7.30 (Kanazawa). The class of rigid grammars is identifiable from
unlabeled derivation tree presentations.

Proof: The set of unlabeled derivation trees is a reversible regular lang-
uage. To see this, construct a normal RTG Γ such that for each subtype A of a
type assigned to a symbol there is a state [A]. For each symbol u of Σ there is
a corresponding production [Lex(u)] −→

Γ
u. For each possible subtype A of such

a type we have the following productions (known as functional productions):

[B] −→
Γ
\([A], [A\B])

[A] −→
Γ

/([A/B], [B])

Note that functional productions are reversible. Since the grammar is rigid,
Γ is reversible. Thus, by Theorem 7.5, this class is learnable. ¤



134 CHAPTER 7. LEARNING REGULAR TREE LANGUAGES



Chapter 8

The Lambek Calculus

8.1 Introduction

This chapter describes the logical approach in categorial grammar, a tradition
that originated in Ajdukiewicz (1935) and was further developed in Bar-Hillel
(1953) and Lambek (1958). This chapter will only give a brief introduction,
Casadio (1988) gives an account of the historical roots of this field, while Moort-
gat (1997) and Buszkowski (1997) offer a more comprehensive overview.

General combinatory grammar is essentially a rule based approach to lin-
guistic analysis, where a finite collection of unary type transitions and binary
type combinators are postulated as primitive rule schemata, some examples of
these rules were given in Chapter 6.

In contrast to GCG, Lambek systems do not need explicit rules defining
grammatical composition. Instead, they rely on a fixed ‘logical’ component
and a variable ‘structural’ component. The pure logic of residuation NL (‘non-
associative Lambek’) captures the fixed logical component:

Definition 8.1 The pure logic of residuation NL (Lambek (1961)).

(REFL) A→ A,
(TRANS) if A→ B and B → C, then A→ C,

(RES) A→ C/B if and only if A •B → C if and only if B → A\C.

This version of categorial grammar is known as the deductive approach.
Among the reasons in favor of this approach is systematicity of the relation
between syntax and semantics.1 Semantics in Montague’s tradition associates
each syntactic rule with a semantic one; in the deductive approach this corre-
spondence is more strict than the usual notion of compositionality (see Janssen

1Note that Lambek calculi have two kinds of semantics; the ‘meaning’ kind of semantics
discussed here, and a relational semantics that yields soundness and completeness of the
calculi with respect to Kripke-style relational models, see e.g. Dos̆en (1992).
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(1997)), it makes use of the Curry-Howard correspondence between proofs and
types.2 Also note that Tiede (1998) argues for the necessity of introduction
rules for any compositional treatment of natural language along these lines.

By relaxing sensitivity of NL in a number of (linguistically relevant) di-
mensions one can obtain other categorial type logics. By adding to the pure
logic of residuation a postulate licensing commutative resource management,
one obtains freedom in the dimension of linear precedence. The resulting logic
is called NLP. Adding a postulate licensing associative resource management
yields the logic L, which provides freedom in the dimension of immediate domi-
nance. Combining these postulates yields the logic LP, which obviously licenses
both commutative and associative resource management.

Definition 8.2 Associativity and Commutativity Postulates

(ASS) (A •B) • C ↔ A • (B • C),
(COMM) A •B → B •A

By necessity, GCG systems are only approximations of logics such as L and
LP. These logics have been shown not to be finitely axiomatizable (Zielonka
(1989, 1981)), this means no finite number of combinators together with Modus
Ponens can equal their deductive strength.

As noted in Lambek (1988a), Lifting is a closure operation as it enjoys the
following properties (we write AB for either B/(A\B) or (B/A)\B):

A→ AB ,
(AB)B → AB ,

A→ C, implies AB → CB .

Note that in general AB 6→ A, which implies that, during a derivation, once
a primitive type is lifted it cannot be lowered anymore. By convention, the
typeraising of A to X/(A\X) may be written as Al,X .

The type-raising laws can be used to lift the proper noun category (n) to the
nominal phrase category (s/(n\s)), as in Montague (1974) and van Benthem
(1983, 1984), also see Dowty (1988) for other examples in linguistic analysis.

The calculus LP was introduced in van Benthem (1986a) because of its na-
tural relation with a fragment of the lambda calculus, but there is also linguistic
motivation for introducing commutativity. Also see van Benthem (1987).

All permutation closures of context-free languages are recognizable in LP
(van Benthem (1991)). Also note that the languages expressible in NL are
precisely the context-free languages (Buszkowski (1986), also see Kandulski
(1988)), the same holds for L (Pentus (1993b)). These formalisms do not have
the necessary expressive power to capture natural languages (which require at

2The Curry-Howard correspondence originated in the influential Howard (1980) and Curry
and Feys (1958). The former, and a section from the latter, have been reprinted in the
collection de Groote and Lamarche (1995), which is highly recommended to anyone interested
in this topic. Also see Sørensen and Urzyczyn (1998).
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1 Application: A/B •B → A, B •B\A→ A
2 Co-application: A→ (A •B)/B, A→ B\(B •A)
3 Monotonicity of •: if A→ B and C → D, then A • C → B •D
4 Isotonicity of ·/C, C\·: if A→ B, then A/C → B/C

if A→ B, then C\A→ C\B
5 Antitonicity of C/·, ·\C: if A→ B, then C/B → C/A

if A→ B, then B\C → A\C
6 Lifting: A→ B/(A\B), A→ (B/A)\B
7 Geach (main functor): A/B → (A/C)/(B/C),

B\A→ (C\B)\(C\A)
8 Geach (secondary functor): B/C → (A/B)\(A/C),

C\B → (C\A)/(B\A)
9 Composition: A/B •B/C → A/C, C\B •B\A→ C\A
10 Restucturing: (A\B)/C ↔ A\(B/C)
11 (De)Currying: A/(B • C)↔ (A/C)/B,

(A •B)\C ↔ B\(A\C)
12 Permutation: if A→ B\C then B → A\C
13 Exchange: A/B ↔ B\A
14 Preposing/Postposing: A→ B/(B/A), A→ (A\B)\B
15 Mixed Composition: A/B • C\B → C\A, B/C •B\A→ A/C

Figure 8.1: Characteristic theorems and derived inference rules for NL (1-6);
L (1-11); NLP (1-6, 12-14); LP (1-15).

least mild context-sensitivity). Therefore more expressive variants have been
proposed, for example the multi-modal variant (MMCG) where applicability of
postulates is controlled through the use of modal operators in the lexicon. This
variant, without restrictions on postulates, is a Turing-complete system (Car-
penter (1999)).3 Recently some restrictions on postulates have been proposed
that restrict expressive power to (mild) context-sensitivity, see Moot (2002),
we will discuss these in Subsection 8.5.

The presentation of LP used here is due to Kurtonina and Moortgat (1997),
it takes NL3, which is the system NL (Figure 8.2) extended with unary
connectives (Figure 8.3) and modalities for the binary connectives, as the
‘base logic’4 and adds associativity and commutativity postulates (Figure 8.4).

3The proof of this fact is based on an embedding of the full system of multiplicative linear
logic in MMCG, which necessitates the introduction of copying and deletion postulates. Such
postulates have little linguistic use (see also the discussion in Section 9.6) and do not fit into
the program of exploring the substructural landscape between the base logic NL and LP. A
remark pertaining to this issue can be found in Lambek (1993).

4Note that, unless otherwise stated, the empty sequent is not allowed, i.e. ` A may not
occur in any derivation. Lambek variants which allow the empty sequent have ∅ added as
subscript, for example NL with empty sequent is written as NL∅. Allowing the empty
sequent permits clearly undesirable derivations such as

A very book
np/n, (n/n)/(n/n), n `L∅

np

however, these calculi are sometimes used in proofs for technical reasons.
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A ` A
∆ ` A Γ [A] ` C

[Cut]
Γ [∆] ` C

(Γ,B) ` A
[/I]

Γ ` A/B

Γ ` A/B ∆ ` B
[/E]

(Γ,∆) ` A

(B,Γ ) ` A
[\I]

Γ ` B\A

Γ ` B ∆ ` B\A
[\E]

(Γ,∆) ` A

Γ ` A ∆ ` B[•I]
(Γ,∆) ` A •B

∆ ` A •B Γ [(A,B)] ` C
[•E]

Γ [∆] ` C

Figure 8.2: Sequent-style presentation of the natural deduction rules for NL
(with product).

Γ [〈A〉i] ` C
[L3i]

Γ [3iA] ` C

Γ ` C [R3i]
〈Γ 〉i ` 3iC

Γ [A] ` C
[L2

↓
i ]

Γ [〈2↓iA〉
i] ` C

〈Γ 〉i ` C
[R2

↓
i ]

Γ ` 2
↓
iC

Figure 8.3: Unary connectives.

This notation facilitates some of the steps in our (syntactic) proofs of non-
learnability in Chapter 9, and makes the derivations more explicit.

Each of the systems NL, L, LP and NLP have their virtues in linguistic
analysis, but in isolation none of them provides a basis for a plausible theory
of grammar. By combining properties of these systems in a controlled way,
mixed, multimodal systems are obtained that overcome the limitations of these
simple systems. This multimodal style of reasoning was developed in Moortgat
and Morrill (1991), Moortgat and Oehrle (1993), Moortgat and Oehrle (1994)
and Hepple (1994), among others.

While the logical approach to categorial grammar is perhaps not really part
of the linguistic mainstream, it has however influenced the development of
other grammar formalisms: Johnson (1999) gave a reinterpretation of Lexical

(Γ,∆) ` A
[comm]

(∆,Γ ) ` A

((Γ,∆), Θ) ` A
[ass]

(Γ, (∆,Θ)) ` A

Figure 8.4: Postulates for LP.
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Functional Grammar as a type-logic, Partial Proof Tree Grammars (Joshi and
Kulick (1997)), and a multi-modal interpretation of Derivational Minimalism
(Stabler (1997)) in Lecomte (2001). There are also formalisms strongly related
to Lambek systems, like pregroup grammars (Lambek (1999); Casadio and
Lambek (2002)), pomset-logic (Lecomte and Retoré (1995); Schena (1997)),
linear logic and proof nets, these are all outside the scope of this thesis and
ware only mentioned for completeness.5

8.2 Models for the Lambek Calculus

Algebraic interpretations of the Lambek calculi will be used in Chapter 9, in
this section the definitions we are interested in6 are given. Two kinds of models
are defined: free groups and powerset residuated groupoids (or semi-groups), a
special case of residuated groupoids (see Buszkowski (1997) for details).

Free Group Interpretation. Let FG denote the free group with gen-
erators Pr, operation . and neutral element I. We associate with each for-
mula C an element in FG written [C] as follows: [p] = p for p atomic,
[C1\C2] = [C1]

−1.[C2], [C1/C2] = [C1].[C2]−1, [C1 •C2] = [C1].[C2]. We extend
the notation to sequents by [C1, C2, . . . , Cn] = [C1].[C2]. . . . .[Cn]. The free
group FG provides models for L: if Γ `L C then [Γ] =FG [C].

Powerset Residuated Groupoids and Semigroups. Let (M, .) be a
groupoid, and let P(M) denote the powerset of M . A powerset residuated
groupoid over (M, .) is the structure (P(M), ◦,⇒,⇐,⊆) such that for X,Y ⊆
M :

X ◦ Y = {x.y | x ∈ X, y ∈ Y }
X ⇒ Y = {y ∈M | (∀x ∈ X)x.y ∈ Y }
Y ⇐ X = {y ∈M | (∀x ∈ X)y.x ∈ Y }

If (M, .) is a semi-group (. is associative), then this structure is a powerset
residuated semi-group. If (M, .) has a unit I (i.e. ∀x ∈ M, I.x = x.I = x) this
structure is a powerset residuated groupoid with unit (with {I} as unit).

Interpretation. Given a powerset residuated groupoid (P(M), ◦,⇒,⇐,⊆
), an interpretation is a map from primitive types p to elements 〚p〛 in P(M)
that is extended to types and sequences in a natural way:

〚C1\C2〛 = 〚C1〛⇒ 〚C2〛
〚C1/C2〛 = 〚C1〛⇐ 〚C2〛

〚C1 • C2〛 = 〚C1〛 ◦ 〚C2〛
〚C1, C2, . . . , Cn〛 = 〚C1〛 ◦ 〚C2〛 ◦ . . . ◦ 〚Cn〛

5Negative learnability results for classes of pregroup grammars can be found in Bechet
and Foret (submitted).

6There are other models available, most notably the relational model based on Kripke
frames, see Kurtonina (1995). These are outside the scope of this thesis and will not be
discussed in any detail.



140 CHAPTER 8. THE LAMBEK CALCULUS

If (M, .) is a groupoid with an identity I, we add 〚Λ〛 = {I} for the empty
sequence Λ and get a model property for NL∅: if Γ `NL∅ C then 〚Γ〛 ⊆ 〚C〛. If
(M, .) is a semi-group, we have a similar model property for L: if Γ `L C then
〚Γ〛 ⊆ 〚C〛.

8.3 Substitution in the Lambek Calculus

It would be natural to use Kanazawa’s approach to learnability questions for
CCG grammars to Lambek grammars, since these frameworks seem to have so
much in common. In order to do this, precise notions of substitution (unifica-
tion) as well as a notion of structure language need to be defined. The latter
will be dealt with in the next section. This section addresses the former, by
discussing work from Foret (2001a,b).

Definition 8.3 The join-equivalence, written ∼, is defined as

t ∼ t′ if and only if ∃t1, . . . , tn such that t = t1, t
′ = tn, (ti ` ti+1 ∨ ti+1 ` ti),

for i < n. Types t1, . . . , tn are said to be conjoinable whenever there is a type t
such that ti ` t, for each i ≤ n. In this case t is said to be a join for t1, . . . , tn.

The following proposition, defining what is known as the Diamond property,
is from Lambek (1958):7.

Proposition 8.4 Let t1 and t2 be two categorial types. The following state-
ments are equivalent:

1. t1 and t2 are conjoinable.

2. there exists a type t′ such that t′ ` t1 and t′ ` t2.

Proposition 8.5 Let t1 and t2 be two categorial types. The statement t1 ∼ t2
is equivalent to 1 and 2 of Proposition 8.4.

We will use this proposition combined with the following completeness result
by Pentus which characterizes ∼ by groups:

Theorem 8.6 For any two types t, t′, t ∼ 〚t′〛↔=FG 〚t′〛.

Definition 8.7 The relation ‖= on types t1, t2 is defined by:

t1 ‖= t2 if and only if there is a substitution σ such that t1 `L σ[t2].

Note that ‖= is reflexive and transitive.

7An alternative proof of this proposition can be found in Pentus (1993a).
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8.3.1 ‖=-Unifiability

Definition 8.8 Two types t1, t2 are said to be ‖=-unifiable whenever there
exists a type t and substitution σ such that t ` σ[t1] and t ` σ[t2].

The substitution σ is said to be a ‖=-unifier of t1 and t2 and t is a ‖=-
unificand of t1 and t2.

There are strong links between ‖=-unification and E-unification, i.e. unifi-
cation under an equational theory.8 Depending on the nature of the equational
theory, E-unification of two terms can yield an infinite number of mgu’s (for ex-
ample under associativity), and even when there are only finitely many mgu’s,
finding them may be a computationally difficult task.

Therefore, a naive application of Kanazawa’s approach to classes of Lambek
grammars yields a host of problems. In fact, as we shall see in Chapter 9, even
the rigid subclasses of L, NL and LP are not learnable (from strings).9

8.4 The Structure Languages of Non-Associative

Lambek Grammars

In Tiede (1999a, 1998) a notion of structure language (i.e., strong generative
capacity or SGP) for both L and NL was proposed. This is a highly non-
trivial matter, since in the context of a logical grammar formalism derivations
are proofs, and proofs are generally (spuriously) nondeterministic.10

His approach differs from the one found in Buszkowski (1997) which defines
functor-argument structures (so-called f -structures) and phrase structures (p-
structures). In the case of Lambek grammars this definition has undesirable
consequences, most notably the structural completeness theorem: any (asso-
ciative) Lambek grammar that generates string s can assign any binary tree
that has |s| (non-ε) leaves as structural description for s.11 This fact has
caused some researchers to turn their attention to NL-grammars, since these

8E-unification plays an important role in automated theorem provers with ‘built-in’ the-
ories (see e.g., Plotkin (1972)), Stickel (1985)) and in logic programming with equality (see
e.g., Jaffar et al. (1984)). See Baader and Siekmann (1993) for a comprehensive overview.

9In this context we’d also like to mention the exploratory work in Moortgat (2001), where
an algorithm is proposed that takes the unification approach ‘as far as possible’ and, in the
case that no rigid grammar can be obtained this way, invents postulates that equate non-
unifiable types assigned to the same symbol. There are as of yet no learnability results or
independent characterization of learnable classes in relation tho this approach.

10One way of dealing with this spurious non-determinism is the use of proofnets, see
eg. Moot (2002). However, for the present purposes proofnets are not very useful: depending
on the calculus one proofnet may be applicable to several proofs that are non-equivalent, for
example when product is used.

They also do not offer a (tree) automata-theoretic perspective, since they produce graphs,
and, to the best of the author’s knowledge, there exists little work on learning graph lan-
guages.

11This is easy to see; lifting allows reversal of the direction of application, and associativity
allows any rearrangement of the derivation tree.
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are not structurally complete. However, Buszkowski (1997) also shows that
NL-grammars cannot extend the strong generative capacity of context-free
grammars, which is unfortunate given the current trend in computational ling-
uistics to ‘squeeze more strong power out of a formal system without increasing
its weak generative power’.

In Tiede (1999a, 1998) it was shown that considering (the normal forms of)
natural deduction proof trees as the structures assigned by Lambek grammars
yields a notion of SGP that goes beyond that of context-free grammars12 (and
may allow characterization of crossing dependencies), but does not suffer from
a collapse into structural completeness.13 Another pleasant property is that
this notion of SGP distinguishes between proofs if and only if the semantic
term they produce differs (cf Hendriks (1993)), just like proofnets.

A direct definition of natural deduction proof trees for L would involve either
defining proof trees to contain parenthesised structures or giving a complicated
list of side conditions for the introduction rules. The tree format will therefore
be defined indirectly by defining a translation from SND to to natural deduction
trees. Well-formed trees for NL will be defined as a subset of well-formed trees
for L.

Definition 8.9 Let t be a proof tree of the associative Lambek calculus. We
define its translation into a proof in SND, t∗, as follows:

1. if t = A, i.e. t is an instance of [ID] , then t∗ = A ` A,

2. if t =

t1 t2
A

[/E]
where t1 =

...
A/B and t2 =

...
B.

We have t∗1 =

...
Γ ` A/B and t∗2 =

...
∆ ` B, where Γ and ∆ are the uncancelled

assumptions of t1 and t2, respectively, in the order in which they occur.

We define t∗ =

t∗1 t∗2
(Γ,∆) ` A

[/E]
.

3. If t =

t1
A/B

[/I]
, where t1 =

B
...
A , then consider t∗1 =

...
(Γ, B) ` A. We define

t∗ =

t∗1
Γ ` A/B

[/I]
.

4. [\E] and [\I] are defined analogously.

12In van Benthem (1991) the possibility of extended SGP was mentioned as a motivation
for studying Lambek grammars; the weak generative capacity of CCG, L and NL is exactly
that of context-free grammars.

13But see Joshi (2002) for a critique; the crossing dependencies allowed by this definition
of SGP are ‘very degenerate’, i.e. they can only connect a lexical item with a lexically empty
element.
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Definition 8.10 A natural deduction proof tree t is a well-formed proof of NL
if its translation t∗ (according to Definition 8.9) is a well-formed proof according
to Figure 8.2.

Since there are strong non-learnability results for L, we will only be con-
cerned with NL in Chapter 9.

Definition 8.11 A natural deduction proof tree is in (β-η-)normal form (or
(β-η-)normal) if none of its subtrees are of the form of any of the following
trees:

[B]
....
A

A/B
[/I]

B

A
[/E]

B

[B]
....
A

B\A
[\I]

A
[\E]

A/B [B]

A
[/E]

A/B
[/I]

[B] B\A

A
[\E]

B\A
[\I]

Note that every proof tree can be converted into a unique normal form
proof tree. The following proposition concerns the very important subformula
property :

Proposition 8.12 Subformula property Every formula that occurs in a
normal form natural deduction proof or cut-free sequent calculus proof is ei-
ther a subformula of the uncanceled assumptions or of the conclusion.

Definition 8.13 A track of a proof tree T is a sequence of formulae A0, . . . , An

such that

1. A0 is a leaf of T ,

2. for 0 ≤ i < n,

(a) Ai+1 is immediately below Ai,

(b) Ai is not the minor premise of an [\E] or [/E] application,

3. T is maximal, i.e. not a proper part of another track.

Note that in a normal proof every formula occurence belongs to a track.
The following result has a well-known analogy in the field of linear logic:

Proposition 8.14 (Also see Prop 2.28 in Tiede (1999a)) Every track that is
part of an L or NL normal form proof tree begins14 with an E-part, i.e. A0, . . . ,
Ai−1, has a minimal formula Ai after the E-part and may have an I-part after
that, Ai+1, . . . , An.

14When read top-down.
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Proposition 8.15 The number of different tracks occuring in normal form
proofs for a given L or NL grammar is finite.

Definition 8.16 An incomplete proof tree is either

1. a track, or

2. an incomplete proof tree with a track t inserted such that t starts with
formula A and the insertion point is the minor premise of an application
of [/E] or [\E], where the major premise is B/A or A\B, respectively.

Definition 8.17 An incomplete proof tree is saturated just if for every oc-
curence of [/I] or [\I] in the tree has a corresponding leaf in the tree that it
cancels.

Definition 8.18 A saturated incomplete proof tree (or NL-track) is minimal
just if

1. it is a track that contains no introductions, or

2. a saturated incomplete proof tree T that contains introduction rules, such
that removing any subtree that is an incomplete proof tree would cause T
to not be saturated.

Proposition 8.19 The number of minimal saturated incomplete proof trees to
which a track in a normal form proof tree for an NL grammar can be extended
is finite.

Since NL-tracks behave just like tracks in classical categorial grammar,
Kanazawa’s approach can be applied in a straightforward way, as we shall see
in Chapter 9.

8.5 Multimodal Systems

As was noted in the beginning of this chapter, it is possible to control structural
relaxation with the use of modal operators. However, the resulting calculi can
be overly expressive,15 to the point of undecidability. In Moot (2002) a natural
restriction on structural rules is proposed that turns out to restrict expressive
power to more linguistically plausible levels.

The restriction requires that the left-hand side of a structural conversion
contains at least as many unary connectives as the right-hand side, the resulting
postulates are called non-expanding. First ‘length’ is defined in terms of unary
connectives:

15See Kurtonina and Moortgat (1997) for the relations between the different systems ob-
tained by the use of such operators.

Aso see Jäger (1998) for results on the strong generative capacity of multimodal systems.
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Definition 8.20 Given an antecedent Ξ, its length is defined as

length(∆1 ◦∆2) = length(∆1) + length(∆2) + 2
length(〈∆〉i) = length(∆) + 1
length(∆) = 0

This definition can be generalized over n-ary configurations:
length(∗(∆1, . . . ,∆n)) = length(∆1) + . . .+ length(∆n) + n.

Definition 8.21 the logic NL3R− is the logic NL3R where for every struc-
tural rule R ∈ R

Γ[Ξ′[∆1, . . . ,∆n]] ` C

Γ[Ξ[∆π1
, . . . ,∆πn

]] ` C
[R]

the following holds:

length(Ξ[∆π1
, . . . ,∆πn

]) ≤ length(Ξ′[∆1, . . . ,∆n])

Structural rules with this property are called non-expanding.

Note that in the case of binary modalities this restricts postulates to be
linear, and that a structural rule for -for example- strong distributivity is non-
expanding according to this definition.

An embedding for lexicalized context-sensitive grammars is offered in Moot
(2002):

Definition 8.22 From a lexicalized context-sensitive grammar G we generate
the corresponding multimodal Lambek calculus M(G) as follows: M(G) has
one unary mode for every nonterminal of G and a single binary mode.

Every lexicalization rule A 7→ β correspond to a lexical entry of the form

lex(β) = a\2↓Aa

The goal formula of M(G) is a\2↓Sa where S is the mode corresponding
to the start symbol of G. The calculus M(G) has a structural rule for every
grammar rule A1 . . . An 7→R1 B1 . . . Bm of G.

Γ[〈. . . 〈∆〉An . . .〉A1 ] ` C

Γ[〈. . . 〈∆〉Bm . . .〉B1 ] ` C
[R1]

Because m > 0 and n ≤ m, ths is a valid NL3R− rule.
Furthermore, the structural rule component of M(G) contains one of the

structural rules for associativity for the single binary mode:

Γ[∆1 ◦ (∆2 ◦∆3)] ` C

Γ[(∆1 ◦∆2) ◦∆3] ` C
[Ass2]

and the structural rule of [K1] for every mode A ∈ N :

Γ[〈∆1〉
A ◦∆2] ` C

Γ[〈∆1 ◦∆2〉
A] ` C

[K1]
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Lemma 8.23 Given a lexicalized context-sensitive grammar G, the correspond-
ing (by Definition 8.22) multimodal Lambek calculusM(G) generates the same
language as G.

Theorem 8.24 The parsing problem for NL3R− is quivalent to the parsing
problem for context-sensitive grammars.

Note that, although these are obviously interesting results, the grammars
obtained through this embedding are in some sense unnatural. They basically
abuse postulates by treating them as rules, resulting in a rather circuitous way
of using a rule-based system. We will use this embedding in the next chapter
to define a learnable class of multimodal CG, but this should be regarded as a
quite trivial result.
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Identity

A ` A
[Ax]

Γ[B] ` C ∆ ` B

Γ[∆] ` C
[Cut]

Unary Connectives

Γ[〈A〉i] ` C

Γ[3iA] ` 3iC
[L3i]

Γ ` C
〈Γ〉i ` C

[R3i]

Γ[A] ` C

Γ[〈2iA〉
i] ` C

[L2
↓
i ]
〈Γ〉i ` C

Γ ` 2iC
[R2

↓
i ]

Binary Connectives

Γ[A ◦i B] ` C

Γ[A •i B] ` C
[L•i]

Γ ` A ∆ ` B
Γ ◦i ∆ ` A •i B

[R•i]

∆ ` B Γ[A] ` C

Γ[A/iB ◦i ∆] ` C
[L/i]

Γ ◦i B ` A

Γ ` A/iB
[R/i]

∆ ` B Γ[A] ` C

Γ[∆ ◦i B\iA] ` C
[L\i]

B ◦i Γ ` A

Γ ` B\iA
[R\i]

Structural Rules

Γ[Ξ′[∆1, . . . ,∆n]] ` C

Γ[Ξ[∆π1
, . . . ,∆πn

]] ` C
[SR]

Figure 8.5: The sequent calculus NL3R.
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Chapter 9

Learning Lambek Grammars

9.1 Introduction

This chapter will discuss learnability results for a number of classes of Lambek
grammars.1 Even though Lambek systems have a superficial resemblance to
CCG grammars, and contrary to what Shinohara’s results on EFSs suggest,
they turn out to have completely different learnability properties: in Foret and
Le Nir (2002a,b) it was shown that the classes of L, L∅ and NL∅ (and some
variants) k-valued grammars are not learnable.2 Restating these strong results
in their full generality:

Proposition 9.1 The classes of (string)languages generated by k-valued L
grammars with k ≥ 1, |Σ| ≥ 3, for all types T in these grammars, order(T ) ≥ 2,
and the use of operators restricted to either (/, •) or (\, •), have a limit point
and are thus not non-effectively learnable from strings.

Proposition 9.2 The classes of (string)languages generated by k-valued L∅
grammars with k ≥ 1, |Σ| ≥ 3, and the use of operators restricted to either /
or \, have a limit point and are thus not non-effectively learnable from strings.

We will provide their complete proofs for these two propositions, and give
our own proofs for non-learnability of rigid LP and LP∅ grammars, originally
published in Costa Florêncio (2003).

This chapter is organized as follows: first, Subsection 9.2.1 defines some
learnable subclasses of GNL. We then present two main results on variants of
Lambek calculus: Section 9.3 gives a construction and a proof of the existence

1Some of the material in this chapter has previously appeared as Costa Florêncio (2003),
it is reproduced with permission.

2In Bechet and Foret (submitted) a limit point construction for rigid NL grammars is
given. However, since this proof has not yet been published it cannot be discussed here in
detail.
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of a limit point for rigid non-associative Lambek grammars allowing empty se-
quences. Section 9.4 adresses the construction for Lambek grammars without
product and without empty sequences. In Section 9.5 the nonlearnability of
rigid LP and LP∅ will be demonstrated. Section 9.6 discusses learnability in
the context of the Lambek calculus extended with structural rules like contrac-
tion, Section 9.7 does the same for a particular generalization of the Lambek
calculus, and Section 9.8 adresses learnability of classes of Lambek grammars
that contain polymorphic types. Section 9.9 concludes this chapter.

9.2 Learning NL-Grammars from Structures?

As we have seen in Section 8.4, it is possible to give a useful definition of
structure language for NL-grammars. As suggested in Tiede (1999a) it may be
used to investigate the learnability of classes of NL-grammars from structures.
For example, it is easy to adapt the notion of general form to NL:3

Definition 9.3 The general form of a structure is defined inductively as

1. GF([ID](symbol) ⇒ T ) implies symbol 7→ T , (note that GF([ID](ε) ⇒
T ) is acceptable but will not lead to any assignments),

2. GF([\E](Minor ,Major)⇒ T ) implies GF(Minor ⇒ Tminor ),
GF(Major ⇒ Tmajor ), and T = Tminor\Tmajor ,

3. GF([/E](Major ,Minor)⇒ T ) implies GF(Minor ⇒ Tminor ),
GF(Major ⇒ Tmajor ), and T = Tmajor/Tminor ,

4. GF([\I](Premise)⇒ T ) implies T = Thyp\Tnew, GF(Premise⇒ Tnew),

5. GF([/I](Premise)⇒ T ) implies T = Tnew/Thyp, GF(Premise⇒ Tnew)

Lemma 9.4 FL(GF(D)) = D.

Proof: By the definition of GF, each E-step has a unique premise and conclu-
sion. The I-steps unify the unique premise of the succeeding step with T1|T2,
where T2 is a unique type (introduced as hypothesis), and T1 is the unique
premise of that I-step. Since the construction of the types in GF(D) is deter-
mined by the premise/conclusion pairs of all the steps of the proof trees in D,
all the range and domain occurences of these types are unique. ¤

Note that the Lambek version of GF(D), unlike the classical version, may
assign types that have a complex domain subtype.

Lemma 9.5 D ⊆ FL(G) is equivalent to: there is a substitution σ such that
σ[GF(D)] ⊆ G.

3Note that this version of GF may just as well be used for non normal form proofs,
however.



9.2. LEARNING NL-GRAMMARS FROM STRUCTURES? 151

Proof:

1. D ⊆ FL(G) implies that there is a substitution σ such that σ[GF(D)] ⊆
G:

Since D ⊆ FL(G), every tree in D is accepted by G. The formula-labeling
imposed by G may differ from the (implicit) formula-labeling in D, but
only in the sense that it is a substitution instance of the latter. Thus
there must be a substitution over GF(D) that assigns the same formula-
labeling as G does.

2. The existence of a substitution σ such that σ[GF(D)] ⊆ G implies D ⊆
FL(G):

Since FL(G) ⊆ FL(σ[G]), σ[GF(D)] ⊆ G implies FL(σ[GF(D)]) ⊆ FL(G).
Since D ⊆ FL(σ[GF(D)]), D ⊆ FL(G) follows.

¤

As we have seen in Section 8.3, unification of types in L or NL is much more
complicated than the Robinson-style unification that can be applied straight-
forwardly to CCG-types. Coming up with algorithms that learn Lambek gram-
mars from structures is therefore expected to be much more challenging. Even
when a collection of such grammars is shown to be learnable, finite elasticity
may yet be another matter, which makes it much harder to extend such a re-
sult to a wider class or to learning from strings (using Theorem 2.27). We will
therefore examine a number of possible approaches in the following subsection.

A positive result for learning GrigidNL from structures is hinted at in Bonato
and Retoré (2001). Other learnability results can be obtained for a subclass of
GNL: by bringing any CFG into Chomsky normal form, the resulting grammar
can be interpreted as a CCG, an NL and even an L grammar, because all
lexical types are types with order of at most 1, so the construction is the same
for all kinds of CGs. This fact can be used to easily come up with different
kinds of learnable classes of NL-grammars, but we will not pursue this line of
inquiry further in this chapter.

9.2.1 Learnable Classes of NL-Grammars

Perhaps surprisingly, the class GrigidNL is known to have a limit point and thus
to be not (non-effectively) learnable, as mentioned before. However, given the
results discussed in previous chapters it is quite easy to come up with a learnable
subclass of GNL. First let prune be (somewhat informally) defined as the
function that, given a set of normal form derivations, yields a set comprised of
trees that correspond to these derivations, but without node labeling, without
the (unary) introduction nodes and without paths that lead to introduced types
(corresponding to ε in the yield of the derivation). Then, we define this subclass
analogous to Definition 7.21:
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Definition 9.6 Let GRNL be the smallest class of NL-grammars such that for
every reversible tree language L1 there is a language L = FL(G), G ∈ GRNL

such that L1 = prune(L).
4

And, again by Theorem 7.5, the following result is obtained:

Proposition 9.7 The class GRNL is learnable from structures.

This class is linguistically not very interesting, however. As pointed out
in Kanazawa (1998) (page 130, footnote 4), the class of CCGs whose associ-
ated context-free grammars are reversible is properly included by Grigid and
properly includes the class of unidirectional rigid CCGs, and thus does not in-
clude languages of even remotely sufficient expressive power to model natural
language.

There are other ways of ‘engineering’ learnable classes of NL-grammars, a
trivial example would be bounding the (maximum) degree of the types occur-
ing in the grammars, since this would yield a finite class. A more interesting
approach would be to bound the number of distinct states in the tree au-
tomata corresponding to the pruned(normal) tree languages of NL-grammars,
for example by the number of symbols occuring in the grammar, i.e. |Σ|. This
way one can ‘artificially’ impose structural properties on subclasses of GNL as
those that FLrigid has been demonstrated to have, namely bounded elasticity
(See Theorem 4.5 and Lemma 4.6). Let the associated classes be denoted by
FLbounded and Gbounded.

Proposition 9.8 The class FLbounded has finite elasticity.

Since the relation between string language and pruned normal tree language
is finite-valued, Theorem 2.27 can be applied,

Proposition 9.9 The class Gbounded is learnable from strings.

We mention one more approach, this time for learning classes of multi-modal
CG. The result follows trivially, and is really no more than a cheap trick: since
we have Theorem 2.43, Shinohara’s result on length-bounded context-sensitive
grammars, the embedding from Definition 8.22 easily yields a learnability re-
sult. Since this embedding is bijective (modulo alphabetic variation), it fulfills
the conditions of Theorem 2.27, therefore

Corollary 9.10 The class of rigid NL3R− grammars that assign just a\2↓Aa
to every symbol in their alphabet, have a bounded number of rules of the form

Γ[〈. . . 〈∆〉An . . .〉A1 ] ` C

Γ[〈. . . 〈∆〉Bm . . .〉B1 ] ` C
[R1]

4An alternative (equivalent) definition could be given along the lines of ‘the largest class of
NL-grammars such that for every grammar it contains, the set of all the derivations allowed
by its corresponding ε-free (Greibach normal-form) context-free grammar forms a reversible
tree language’.
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and
Γ[∆1 ◦ (∆2 ◦∆3)] ` C

Γ[(∆1 ◦∆2) ◦∆3] ` C
[Ass2]

and the structural rule of [K1] for every mode A ∈ N :

Γ[〈∆1〉A ◦∆2] ` C

Γ[〈∆1 ◦∆2〉A] ` C
[K1]

has finite elasticity and is therefore learnable from strings.

9.3 A Limit Point for Rigid NL∅ Grammars

9.3.1 Construction Overview

Definition 9.11 Let G〈1,n〉 = {a 7→ p/p, c 7→ D〈1,n〉}, where D〈1,0〉 = S and
D〈1,n〉 = D〈1,n−1〉/(p/p), and G〈1,∗〉 = {a 7→ p/p, c 7→ S/(p/p)}, where p and S
are primitive types.

Language. We get (see proof) L(G〈1,n〉) = {cak(0 ≤ k ≤ n)} and L(G〈1,∗〉)
= ca∗.

Notation. Let τ〈1,n〉 (τ〈1,∗〉) denote the type assignment by G〈1,n〉 (G〈1,∗〉,
respectively), on {a, c} extended to {a, c}∗. We write τ = τ〈1,n〉 on {a}∗ (inde-
pendent of n ≥ 0).

Key Points. Tautologies of the Lambek calculus are used that allow empty
sequences that ensure one way of type-derivability (D〈1,n〉 ` D〈1,n−1〉). Note
that in contrast to Foret and Le Nir (2002a)’s treatment for the associative
calculus L, an alternation effect is not needed: non-associativity is enough to
block derivations such as (D〈1,n−1〉 6` D〈1,n〉). We thus provide a strictly infinite
chain of types for NL∅ with respect to `.

9.3.2 Corollaries

For the Class of Rigid NL∅-grammars. This class has a limit point (c{a}∗)
which entails that this class is not learnable from strings.

The same results hold if we restrict to a bounded order. In fact order(G〈1,n〉)
in this construction is not greater than 2. This result also holds for the subclass
of unidirectional grammars.

9.3.3 Details of Proofs

The proof is based on syntactic reasoning on both derivations and on models.

Proposition 9.12 (Language description) L(G〈1,n〉) = {ca
k | 0 ≤ k ≤ n} and

L(G〈1,∗〉) = ca∗.
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For ease of proof, we introduce the following operations: for a word w =
c1c2c3 . . . ck−1ck, where ci denote symbols, l(w) is the left bracketed version of
w, i.e. l(w) = ((. . . ((c1c2)c3) . . . ck−1)ck); the same applies to sequences of types
Γ = (A1, A2, A3 . . . , Ak−1, Ak) : l(Γ) = ((. . . ((A1, A2), A3) . . . , Ak−1), Ak),
i.e. the left bracketed version of the sequence. We define r on words (r(w))
and type sequences( r(Γ)) for the right bracketed versions of these structures.

Proof: of {cak |0 ≤ k ≤ n} ⊆ L(G〈1,n〉): we show the following left brack-
eted version of this property, by induction on n: ∀k, 0 ≤ k ≤ n, l(τ〈1,n〉(cak)) `
S. For n = 0 this is an axiom: τ〈1,0〉(c) = S ` S.

Suppose n > 0 and w′ = c.w with w ∈ {a∗} and l(τ〈1,n−1〉(cw)) ` S. First
it will be shown that l(τ〈1,n〉(c.a.w)) ` S:

...
l(D〈1,n−1〉, τ(w)) ` S p/p ` p/p

l((D〈1,n−1〉/(p/p)), (p/p), τ(w))
︸ ︷︷ ︸

=l(τ〈1,n〉(c.a.w))

` S

-we easily get l(τ〈1,n〉(c.w)) ` S: first we have D〈1,n〉 ` D〈1,n−1〉 in NL∅ for
n > 0:

p ` p

∅ ` p/p D〈1,n−1〉 ` D〈1,n−1〉

D〈1,n−1〉/(p/p) ` D〈1,n−1〉

applying the Cut rule to D〈1,n−1〉: l(τ〈1,n〉(c.w))
︸ ︷︷ ︸

=l(D〈1,n〉,τ(w))

` S from l(〈1,n−1〉(c.w))
︸ ︷︷ ︸

=l(D〈1,n−1〉,τ(w))

` S

-Proof: of L(G〈1,n〉) ⊆ {cak/0 ≤ k ≤ n} (main part):
We consider a powerset residuated groupoid (P(M), ◦,⇒,⇐,⊆) over the

groupoid (M, .) where . is the concatenation operation and M is the set of
bracketed strings over the alphabet V = {a, c} with unit ε (empty word). Let us
fix n (arbitrarily), we define an interpretation as follows: 〚S〛 = {l(cak)|k ≤ n},
〚p〛 = {r(ak) | 0 ≤ k}.

Note that 〚p/p〛 = {ε, a} (since 〚p/p〛 = {z ∈ M | ∀x ∈ 〚p〛, (z.x) ∈ 〚p〛} =
{z ∈M | ∀j, (z.r(aj)) ∈ {r(ak) | 0 ≤ k}}).

By induction on i it can be shown that ∀i, 0 ≤ i ≤ n, 〚D〈1,i〉〛 = {l(c.ak)|k ≤
(n− i)}

case i = 0 ≤ n holds since 〚D〈1,0〉〛 = 〚S〛 = {l(c.ak) | 0 ≤ k ≤ n}
case(0 < i ≤ n): 〚D〈1,i−1〉/(p/p)〛 =

{z ∈ M | ∀x ∈ 〚p/p〛, (z.x) ∈ 〚D〈1,i−1〉〛} =ind. {z ∈ M | ∀x ∈ {ε, a}, (z.x) ∈

{l(c.ak) | 0 ≤ k ≤ (n− (i− 1))}} = {z ∈M | z ∈ {l(c.ak) | k ≤ (n− i+ 1)} and
(z.a) ∈ {l(c.ak) | k ≤ (n− i+ 1)}} = {l(c.ak) | k ≤ (n− i)} ¤

This shows that 〚D〈1,n〉〛 = {c}.
Remark. Note that for each w ∈ {a, c}, l(w) ∈ 〚l(τ〈1,n〉τ(w))〛. This

holds for all atomic words since l(a) = a ∈ 〚l(τ〈1,n〉τ(w))〛 = 〚l(p/p)〛 =
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〚p/p〛 = {ε, a} and l(c) = c ∈ 〚l(τ〈1,n〉(c))〛 = 〚D〈1,n〉〛 = {c}. For compound
types we have 〚l(τ〈1,n〉(c1 . . . cn))〛 = 〚l(τ〈1,n〉(c1)) . . . τ〈1,n〉(ck))〛 which includes
l(c1, c2 . . . ck) = ((c1.2) . . . ck) (where all ci are atomic).

Let us suppose Γ ` S, where Γ is a bracketed version of τ〈1,n〉(w). By
models, we have 〚Γ〛 ⊆ 〚S〛. Since 〚S〛 = {l(c.ak) | k ≤ n} has only left
bracketed words, Γ must be the left bracketed version of τ〈1,n〉(w). Therefore
〚l(τ〈1,n〉τ(w))〛 ⊆ 〚S〛, hence l(w) ∈ 〚S〛. This corresponds to w ∈ {c.ak |k ≤ n}
¤

Proof: of c{a}∗ ⊆ L(G〈1,∗〉):
We have c ∈ L(G〈1,∗〉) since in NL∅:

p ` p

∅ ` p/p S ` S

S/(p/p) ` S

Let Γ0 = (p/p),Γk = ((p/p)/(p/p),Γk−1). By induction on k we get Γk `
(p/p) in NL∅:

...
Γk−1 ` p/p p/p ` p/p

((p/p)/(p/p),Γk−1)
︸ ︷︷ ︸

=Γk

` p/p

therefore
...

Γk ` p/p S ` S

(S/(p/p),Γk) ` S

which shows c.ak is in the language of G〈1,∗〉.
Proof: of L(G〈1,∗〉) ⊆ c{a}∗:
We consider the powerset residuated groupoid (P(M), ◦,⇒,⇐,⊆) as above

but with the following (similar) interpretation: 〚S〛 = {l(c.ak) | 0 ≤ k}, 〚p〛 =
{r(ak)/0 ≤ k}.

Let us suppose Γ `NL∅ S where Γ is a bracketed version of τ〈1,∗〉(w). By
models, we have 〚Γ〛 ⊆ 〚S〛.

As before, 〚p/p〛 = {ε, a}. Thus 〚S/(p/p)〛 = {l(c.ak) | 0 ≤ k} = 〚S〛(=
{z ∈ M | ∀x ∈ 〚p/p〛, z.x ∈ 〚S〛} = {z ∈ M | z ∈ {l(c.ak) | 0 ≤ k} and
(z.a) ∈ {l(c.ak)/0 ≤ k}}).

Therefore, if 〚l(τ〈1,∗〉(w))〛 ⊆ 〚S〛 = {l(c.ak) | 0 ≤ k}, this implies that
w = cw′ with w′ ∈ {a}∗. ¤
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9.4 A Limit Point for Rigid L Grammars

9.4.1 Construction Overview

Definition 9.13 We define the following types and assignments τ〈2,n〉, where
A = p\p,B = q\q and p, q are primitive types: {a 7→ A; b 7→ B; c 7→ D〈2,n〉},
where D〈2,0〉 = S and D〈2,n〉 = (S/p) • ((p/q) • (q/p))n−1 • (p/q) • q if n > 0.
We write D′〈2,n〉 = S/p• (p/q •q/p)n •p. Let G〈2,n〉 denote the grammar defined

by τ〈2,n〉 with alphabet {a, b, c}.

Language. We get (see proof) L(G〈2,n〉) = c(b∗a∗)n.

9.4.2 Details of Proofs

The proof is based on syntax and models:

Lemma 9.14 1. if τ〈2,n〉(w) ` S is derivable in L then w has exactly one
occurrence of c,

2. if p, τ〈2,n〉(w) ` p in L then w ∈ a∗,

(a) if q, τ〈2,n〉(w) ` q in L then w ∈ b∗,

3. τ〈2,n〉(w1), S, τ〈2,n〉(w2) 6` S (where w1.w2 ∈ {a, b}+).

Proof: of 1 direct by interpretation in the free group ([τ〈2,n〉(c)] = S and
[τ〈2,n〉(a)] = [τ〈2,n〉(b)] = I).

Proof: of 2, 2a, 3 we consider the powerset residuated semi-group over
M = {p, q, t, I} equipped with the associative operator ◦:

◦ p q t I
p p t t p
q t q t q
t t t t t
I p q t I

We now define 〚p〛 = {p}, 〚q〛 = {q}, 〚S〛 = I and get 〚A〛 = {p, I} and
〚B〛 = {q, I}. Suppose τ〈2,n〉(w) ` A, then by models 〚τ〈2,n〉(w)〛 ⊆ 〚A〛; this is
impossible if w has an occurrence of b, since we would have 〚τ〈2,n〉(w)〛 3 q or
〚τ〈2,n〉(w)〛 3 t whereas 〚A〛 = {I, p}.

Sublemma 2a can be demonstrated in a similar way.
To show 3, we just have to consider w1.w2 ∈ {a, b}+ to obtain

〚τ〈2,n〉(w1), S, τ〈2,n〉(w2)〛 ⊆ {p, q, t}, whereas 〚S〛 = {I}. ¤

Lemma 9.15 1. (i) if (p/q, q/p)m, p, τ(w) ` p in L then w ∈ a∗(b∗a∗)m,

2. (ii) if (q/p, p/q)m, q, τ(w) ` q in L then w ∈ b∗(a∗b∗)m,
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3. (iii) if q/p, (p/q, q/p)m, p, τ(w) ` q in L then w ∈ (a∗b∗)m+1,

4. (iv) if p/q, (q/p, p/q)m, q, τ(w) ` p in L then w ∈ (b∗a∗)m+1.

Proof: This lemma is established by reasoning on the possible derivations
in L, using induction on m and the length of w, with the help of free group
interpretation of the sequents in the derivations.

Note that if n > 0, then τ(w1), D〈2,n〉, τ(w2) ` S ⇔
τ(w1), S/p, (p/q, q/p)

n−1, p/q, q, τ(w2) ` S, since C1, . . . , Cn ` Cn+1 ⇔ C1 •
. . . • Cn ` Cn+1.

Proposition 9.16 (Language description) L(G〈2,n〉) = c(b∗a∗)n.

Proof: of c(b∗a∗)n ⊆ L(G〈2,n〉)
For n = 0 this is an axiom: τ〈2,n〉(c) = S ` S.
For n = 1, we have the deduction

S ` S

p,A ` p q,B ` q

p/q, q, B,A ` p

S/p, p/q, q, B,A ` S

Suppose n > 1 and w′ = cw = c(b∗a∗)n−1 ∈ L(G〈2,n−1〉). First it is shown
that c.b.a.w ∈ L(G〈2,n〉):

...
⇔D〈2,n−1〉

︷ ︸︸ ︷

(S/p), ((p/q), (q/p))n−2, (p/q), q, τ(w) ` S p,A ` p

(S/p), ((p/q), (q/p))n−1, p, A, τ(w) ` S
/l

q,B ` q

(S/p), ((p/q), (q/p))n−1, (p/q), q
︸ ︷︷ ︸

=D〈2,n〉

, B,A, τ(w)
︸ ︷︷ ︸

=τ(b.a.w)

` S
/l

-we then easily get c.w ∈ L(G〈2,n〉) since D〈2,n〉 ` D〈2,n−1〉 in L for n > 0.
-we also get c.a.w ∈ L(G〈2,n〉) from D〈2,n〉, A ` D〈2,n−1〉
-we get c.b.w ∈ L(G〈2,n〉) from D〈2,n〉, B ` D〈2,n−1〉
-since τ(a), τ(a) ` τ(a) and τ(b), τ(b) ` τ(b), this can be extended to repe-

titions of each letter a or b separately, which concludes the proof.
Proof: of L(G〈2,n〉) ⊆ c(b∗a∗)n

We have to show: if τ(w1), D〈2,n〉, τ(w2) ` S in L then w1 is empty and
w2 ∈ (b∗a∗)n.

We show by joined lexicographical induction on n and s = |w2| that
(i) if τ(w1), D〈2,n〉, τ(w2) ` S in L then w1 is empty and w2 ∈ (b∗a∗)n

(ii) if τ(w1), D′〈2,n〉, τ(w2) ` S in L then w1 is empty and w2 ∈ a∗(b∗a∗)n
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9.4.3 New Types Without Product

We now transform the type-assignments to obtain product-free types by cur-
rying. Type raising properties are used to apply the previous result on τ〈2,n〉.

Definition 9.17 . We define the following type-assignments where A = p\p,
B = q\q and p, q are primitive types: τ〈3,n〉 : {a 7→ A; b 7→ B; c 7→ D〈3,n〉},

where D〈3,n〉 = Dl,S
〈2,n〉.

Let G〈3,n〉 denote the grammar defined by τ〈3,n〉 with alphabet {a, b, c} and
distinguished type S.

Let G〈3,∗〉 denote the grammar (with type-assignment τ〈3,∗〉) {a 7→ A; b 7→
A; c 7→ S/A}.

Proposition 9.18 (Language description) L(G〈3,n〉) = c(b∗a∗)n−{c} in L for
n ≥ 0 and L(G〈3,∗〉) = c{a, b}+ in L.

Proof: of c(b∗a∗)n ⊆ L(G〈3,n〉) We know from Proposition 9.16 that for
n ≥ 0, D〈2,n〉, τ(w) ` S where w ∈ (b∗a∗)n. Moreover,

S ` S

D〈2,n〉, τ(w) ` S

τ(w) ` D〈2,n〉\S
[\I] (if τ(w) 6= ε)

S/(D〈2,n〉\S), τ(w) ` S
[/E]

thus c(b∗a∗)n − {c} ⊆ L(G〈3,n〉).
Proof: of L(G〈3,n〉) ⊆ c(b∗a∗)n − {c} in L.
Using free group interpretation it can be shown that there is exactly one c

in every word of L(G〈3,n〉), τ〈3,n〉(w) ` S is then equivalent to
τ〈3,n〉(w1), D〈3,n〉, τ〈3,n〉(w2) ` S where w = w1.c.w2.

By definition, τ〈3,n〉(w1), D
l,S
〈2,n〉, τ〈3,n〉(w2) ` S thus

τ〈3,n〉(w1), D〈2,n〉, τ〈3,n〉(w2) ` S and
τ〈2,n〉(w1), D〈2,n〉, τ〈2,n〉(w2) ` S.

By Proposition 9.16, w1 is empty and w2 ∈ (b
∗a∗)n. Moreover, for n ≥

0, τ〈3,n〉(c) 6` S in L since C l,S 6` S in L for any formula C. We have L(G〈3,n〉) ⊆
c(b∗a∗)n− {c} as desired.

By currying D〈3,n〉 is equivalent to a type without product:

D〈3,n〉 ≡ S/(q\((p/q)\

n−1 times
︷ ︸︸ ︷

((q/p)\ . . . \((p/q) \((S/p)\S)) . . .)))

The previous property is then true for L without product.
We now have to prove that L(G〈3,∗〉) = c{a, b}+ to obtain a limit point.
Proof: of c{a, b}+ ⊆ L(G〈3,∗〉); We have ca, cb ∈ L(G〈3,∗〉) since S/A,A `

S Thus c{a, b}+ ⊆ L(G〈3,∗〉) since A,A ` A.
Proof: of L(G〈3,∗〉) ⊆ c{a, b}+; We consider the powerset residuated semi-

group (P(V +), ◦,⇒,⇐,⊆) with the interpretation 〚S〛 = c{a, b}∗ and 〚p〛 = a∗,
thus 〚A〛 = a∗ and 〚S/A〛 = c{a, b}∗. Therefore if 〚τ〈3,∗〉(w)〛 ⊆ 〚S〛 = c{a, b}∗,
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which implies w = cw′ with w′ ∈ {a, b}∗. Moreover S/A 6` S in L, thus
w′ ∈ {a, b}+ ¤

From these constructions we get the following propositions as corollaries:

Proposition 9.19 (nonlearnability) The class of languages of rigid (or k-
valued for an arbitrary k) Non-associative Lambek grammars with empty se-
quence contains a limit point; the class of rigid (or k-valued for an arbitrary k)
Non-associative Lambek grammars with empty sequence is not learnable from
strings.

Proposition 9.20 (nonlearnability) The class of languages of rigid (or k-
valued for an arbitrary k) Lambek grammars without product and without empty
sequence contains a limit point; the class of rigid (or k-valued for an arbitrary
k) Lambek grammars without product and without empty sequence is not learn-
able from strings.

9.5 The Classes of Rigid LP and LP∅ Grammars

are Not Learnable

The proofs from Foret and Le Nir (2002a) as discussed in the previous section
rely on the fact that in L the axioms A/A,A/A→ A/A (and in L∅ the axiom
B/(A/A)→ B) hold. These axioms cause contraction-like phenomena that al-
low the existence of limit points even in a class of (string) languages generated
by rigid grammars. They defined rigid grammars Gn, n ∈ N and G∗ such that
L(Gn) = c(b∗a∗)n and L(Gn) = c{a, b}∗. For Gn the number of alternations
between a sequence of a’s and a sequence of b’s, (both of unbounded length) is
bounded. This approach is not readily applicable to either LP or LP∅ gram-
mars, since commutativity removes the bound on the number of alterations in
L(Gn). Instead we exploit an asymmetry inherent in the Lifting operation to
show that rigid LP and LP∅ grammars are not learnable.

9.5.1 The Construction of a Limit Point for LP and LP∅

Definition 9.21 For n = 0, let Gn be defined as

G0 :
s 7→ (s/a)/c
a 7→ a
c 7→ c

and for any n ∈ N
+, let Gn be defined as

Gn :

s 7→ (s/ aa • aa . . . aa
︸ ︷︷ ︸

n times

)/(a\aa)

a 7→ a • a . . . a
︸ ︷︷ ︸

n times

c 7→ a\aa
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and let G+ be defined as

G+ :
s 7→ (s/a)/(c/c)
a 7→ a
c 7→ c/c.

A final word on notation: σ, σ′, τ . . . denote strings, and σperm is the function
that yields the set of all permutations of σ.5 Concatenation of strings will be
denoted by +, and ` will be taken to mean `LP.

Lemma 9.22 The language generated by any Gn, n ∈ N, is
⋃
{〈s, a, ci+1〉perm |

0 ≤ i ≤ n}.

It may be helpful to look at some example derivations to get a feel for the
kind of derivations our construction allows. We will then turn to the actual
proof.

The following list of derivations was obtained using Grail.6

The list exhaustively enumerates all (normal form) derivations and corre-
sponding lambda terms for the string sac given the grammar G2 and calculus
LP∅.

a ` a • a

s ` s/(a/(a\a)) • (a/(a\a))

[p2 ` a]
4 c ` a\(a/(a\a))

p2 ◦ c ` a/(a\a)
[\E]

[s1 ` a]3 [r0 ` a\a]1

s1 ◦ r0 ` a
[\E]

s1 ` a/(a\a)
[/I]1

(p2 ◦ c) ◦ s1 ` (a/(a\a)) • (a/(a\a))
[•I]

s ◦ ((p2 ◦ c) ◦ s1) ` s
[/E]

s ◦ (s1 ◦ (p2 ◦ c)) ` s
[comm]

s ◦ ((s1 ◦ p2) ◦ c) ` s
[ass]

s ◦ (a ◦ c) ` s
[•E]3,4

1. (1 〈(4 π22), λz0.(z0 π
12)〉)

a ` a • a

s ` s/(a/(a\a)) • (a/(a\a))

[s1 ` a]
3 [p1 ` a\a]

2

s1 ◦ p1 ` a
[\E]

s1 ` a/(a\a)
[/I]2

[p2 ` a]
4 c ` a\(a/(a\a))

p2 ◦ c ` a/(a\a)
[\E]

s1 ◦ (p2 ◦ c) ` (a/(a\a)) • (a/(a\a))
[•I]

s ◦ (s1 ◦ (p2 ◦ c)) ` s
[/E]

s ◦ ((s1 ◦ p2) ◦ c) ` s
[ass]

s ◦ (a ◦ c) ` s
[•E]3,4

2. (1 〈λy1.(y1 π
12), (4 π22)〉)

5We will slightly abuse this notation by letting it denote any permutation of σ, we trust
this will not lead to confusion.

6Grail is an automated theorem prover, written by Richard Moot, designed to aid in the
development and prototyping of grammar fragments for categorial logics, see Moot (2002).
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a ` a • a

s ` s/(a/(a\a)) • (a/(a\a))

[s1 ` a]3 c ` a\(a/(a\a))

s1 ◦ c ` a/(a\a)
[\E]

[p2 ` a]
4 [r0 ` a\a]1

p2 ◦ r0 ` a
[\E]

p2 ` a/(a\a)
[/I]1

(s1 ◦ c) ◦ p2 ` (a/(a\a)) • (a/(a\a))
[•I]

s ◦ ((s1 ◦ c) ◦ p2) ` s
[/E]

s ◦ (p2 ◦ (s1 ◦ c)) ` s
[comm]

s ◦ ((p2 ◦ s1) ◦ c) ` s
[ass]

s ◦ ((s1 ◦ p2) ◦ c) ` s
[comm]

s ◦ (a ◦ c) ` s
[•E]3,4

3. (1 〈(4 π12), λz0.(z0 π
22)〉)

a ` a • a

s ` s/(a/(a\a)) • (a/(a\a))

[p2 ` a]
4 [p1 ` a\a]

2

p2 ◦ p1 ` a
[\E]

p2 ` a/(a\a)
[/I]2

[s1 ` a]
3 c ` a\(a/(a\a))

s1 ◦ c ` a/(a\a)
[\E]

p2 ◦ (s1 ◦ c) ` (a/(a\a)) • (a/(a\a))
[•I]

s ◦ (p2 ◦ (s1 ◦ c)) ` s
[/E]

s ◦ ((p2 ◦ s1) ◦ c) ` s
[ass]

s ◦ ((s1 ◦ p2) ◦ c) ` s
[comm]

s ◦ (a ◦ c) ` s
[•E]3,4

4. (1 〈λy1.(y1 π22), (4 π12)〉)
Proof:

1. It is trivial to show that 〈s, a, c〉perm ⊆ L(G0).

We prove that for any n ∈ N
+,
⋃
{〈s, a, ci+1〉perm | 0 ≤ i ≤ n} ⊆ L(Gn):

Grammar Gn assigns (s/ aa • aa . . . aa
︸ ︷︷ ︸

n times

)/(a\aa) to s, and a\aa to c. With

right-elimination we get s ◦ c ` s/ aa • aa . . . aa
︸ ︷︷ ︸

n times

(and by commutation

c ◦ s ` s/ aa • aa . . . aa
︸ ︷︷ ︸

n times

).

Grammar Gn assigns a • a . . . a
︸ ︷︷ ︸

n times

to a. Now, the derivation TreeLift =

[hypo1 ` a]
1 [hypo2 ` a\a]

2

hypo1 ◦ hypo2 ` a
[\E]

hypo1 ` a/(a\a)
[/I]2

can be combined into derivation TreeLiftn through n times dot-introduction
to yield hypo1 ◦ . . . ◦ hypon ` a

a • aa . . . aa
︸ ︷︷ ︸

n times

. Using TreeLiftn as an ar-

gument for right-elimination, with (s ◦ c)perm ` s/ aa • aa . . . aa
︸ ︷︷ ︸

n times

as func-

tor, we get (s ◦ c)perm ◦ (hypo1 ◦ . . . ◦ hypon) ` s. With n times dot-
elimination, the last of which takes a ` a • a . . . a

︸ ︷︷ ︸

n times

as argument, the hy-

potheses 1 through n can be eliminated, yielding (s ◦ c)perm ◦ a ` s.
Using commutation and association we also get a ◦ (s ◦c)perm ` s, etc, so
⋃
{〈s, a, ci+1〉perm | i = 0} ⊆ L(Gn).
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Grammar Gn assigns a\aa to c, so the derivation TreeCElim =

[hypo ` a]1 c ` a\(a/(a\a))

hypo ◦ c ` a/(a\a)
[\E]

derives the same type as TreeLift does. Since i (0 ≤ i ≤ n) TreeLift

deductions can occur in a derivation for Gn, by replacing them with
TreeCElim we get i+ 1 times c in the yield of the complete deduction.

With application of associativity and commutativity rules the resulting
sequent can be rearranged so that all hypotheses occur in one minimal
subsequent (for example, s ◦ (((hypo1 ◦ c) ◦ hypo2) ◦ ((c ◦ hypo3) ◦ c)) ` s
becomes s◦((hypo1◦(hypo2◦hypo3))◦(c◦(c◦c))) ` s), which can then be
replaced through dot-elimination by a. Thus (s◦c)perm◦c(i times)◦a ` s
is obtained, and any permutation of this as well, by commutativity and
associativity. Thus

⋃
{〈s, a, ci+1〉perm | 1 ≤ i ≤ n} ⊆ L(Gn), for any

n ∈ N
+.

Together with the result for L(G0), this shows that
⋃
{〈s, a, ci+1〉perm |0 ≤

i ≤ n} ⊆ L(Gn), for any n ∈ N.

2. It is trivial to show that L(G0) ⊆ 〈s, a, c〉perm.

We prove that for any n ∈ N
+, L(Gn) ⊆

⋃
{〈s, a, ci+1〉perm | 0 ≤ i ≤ n}:

For a string σ to be included in a language generated by an LP grammar
G, G must assign a type Tn to a symbol in σ that has s as range subtype.
For any n, Gn assigns such a type only to the symbol s. Furthermore,
s occurs only once, as range subtype, in this type. Hence s must occur
(only) once in every sentence in L(Gn). All derivations for a string in
L(Gi≥1) will start with

s ` (s/TD1n)/TD
2
n

Treea

...
σ ` TD2n

ass, comm

s ◦ σ ` s/TD1n
[/E]

Treeb

σ′ ` TD1n
(s ◦ σ) ◦ σ′ ` s

[/E]

...
σ′′ ◦ s ◦ σ′′′ ` s

ass, comm, [•E]

where σ + σ′ is some permutation of σ′′ + σ′′′ (either σ′′ or σ′′′ may be
empty). Since Tn has as domain subtype TD2n = a\(aa), Treea must
yield a\(aa). This tree can begin with a sequence of applications of the
ass and comm rules (which only makes sense if σ is not a single symbol),
there are some possibilities after this:

(a) since Gn, n ≥ 1 assigns this type to c, σ = c,
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(b) use of [\I]1. This implies that the type aa is derived from the sequent
one step up. This type is a range type only of TD2n out of all types
in Gn≥1. Therefore this derivation can end in

[hypo ` a]1 c ` a\(aa)

hypo ◦ c ` aa
[\E]

,

which, as far as string language is concerned, is equivalent to 2a.7

The type aa can be interpreted as either a/(a\a) or (a/a)\a, so more
introduction rules can appear. All possibilities lead to some range
subtype unique to TD2n (with respect to the types found in Gn),
therefore c ` a\(aa) must be in Treea. All the other types found in
this tree must be introduced by hypotheses, and all the hypotheses
introduced have to be eliminated within Treea, and all these cases
are in fact equivalent to 2a.

Since Tn has only one other domain subtype TD1n = aa • aa . . . aa
︸ ︷︷ ︸

n times

, every

sentence in L(Gn) must contain at least one symbol to which Gn assigns
a type with a as range subtype, the only symbols that qualify are a and
c. Given that there are no range subtypes TD1n to be found in Gn, Treeb
must be of the form8

Tree1
τ1 ` a

a

Tree2
τ2 ` aa

Treen−1

τn−1 ` aa
Treen
τn ` aa

...

[•I]

τ2 ◦ . . . ◦ τn ` a
a • aa . . . aa(n− 1 times)

[•I]

σ′ ` aa • aa . . . aa(n times)
[•I]

where σ′ = τ1+ . . .+ τn. Symbol a is assigned a • a . . . a
︸ ︷︷ ︸

n times

, using hypothet-

ical reasoning and applying the Lifting rule n times this derives TDn,
hence it can be shown that L′ =

⋃
{〈s, a, ci〉perm | i = 1} is a subset of the

language. This case corresponds with all trees Tree1 . . .Treen being of
the form TreeLift where the hypothesis hypo is cancelled (together with
n − 1 other hypotheses) lower in the tree by n times application of [•I]
where the last application has argument a ` a • a . . . a

︸ ︷︷ ︸

n times

.

Since aa = a/(a\a) (the case aa = (a/a)\a can be dealt with in similar

7Note however that this derivation is not in normal form as defined in Tiede (1998).
8This is actually a normal form for Treeb, it could also be left-branching, for example.

All the other possible configurations are equivalent, however, since LP is associative.
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fashion), any Tree i is either of the form

. . . [r0 ` a\a]1

...
τ ′i ` a

τ ′i ◦ r0 ` a/(a\a)
[/I]1

...
τi ` a/(a\a)

ass, comm, [•E]

which given the type-assignments in Gn≥1 can only be a (non-normal
form) variant of TreeLift , or

symbol ` a/(a\a)

which, given the type-assignments in Gn≥1, is only compatible with the
derivation TreeCElim. Using hypothetical reasoning and applying the
Right Elimination rule i ≤ n times, we can obtain i times the type aa.
All remaining a’s can be lifted to obtain n aa’s.

Thus, for any n ∈ N
+,
⋃
{〈s, a, ci+1〉perm | 0 ≤ i ≤ n} ⊆ L(Gn), and with

the result for L(G0), it follows that for any n ∈ N,
⋃
{〈s, a, ci+1〉perm |0 ≤

i ≤ n} ⊆ L(Gn).

Taken together, 1 and 2 imply that for any n ∈ N, L(Gn) =
⋃
{〈s, a, ci+1〉perm|0 ≤

i ≤ n}. ¤

Lemma 9.23 The language generated by G+ is 〈s, a, c+〉perm.

Proof:

1. We show that 〈s, a, c+〉perm ⊆ L(G+): Grammar G+ assigns (s/a)/(c/c)
to s, and c/c to c. Since in LP the axiom A/A,A/A → A/A holds, it
follows immediately that c ◦ . . . c ` c/c, thus with right-elimination we
get s ◦ c+ ` s/a. Grammar G+ assigns a to a, thus (s ◦ c+) ◦ a ` s.
By associativity and commutativity any permutation of this sequent will
also derive s, thus any string in 〈s, a, c+〉perm can be derived.

2. We show that L(G+) ⊆ 〈s, a, c+〉perm: For a string σ to be included in a
language generated by an LP grammar G, G must assign a type T+ to
a symbol in σ that has s as subtype. Grammar G+ assigns such a type
only to the symbol s. Furthermore, s occurs only once, as range subtype,
in this type. Hence s must occur (only) once in every sentence in L(G+).
Since T+ has only two domain subtypes TD1+ = a and TD2+ = c/c, every
sentence in L(G+) must contain at least one symbol to which G+ assigns
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a type with a as range subtype, the only symbol that qualifies is a. Thus
all derivations for a string in this language must start with

s ` (s/a)/(c/c)

Tree+

σ′ ` c/c

s ◦ (σ′) ` s/a
[/E]

a ` a

(s ◦ (σ′)) ◦ a ` s
[/E]

...
σ′′ ◦ s ◦ σ′′′ ` s

ass, comm, [•E]

where σ′ ◦a is some permutation of σ′′+σ′′′ (σ′′ and σ′′′ may be empty).

Grammar G+ assigns TD2+ as range subtypes to c, so Tree+ can simply
be c ` c/c. Some reflection will show that other possibilities must be of
the (normal) form:

c1 ` c/c

c2 ` c/c

ci ` c/c [c]1

c ` c
[/E]

...
c2 ◦ . . . ◦ ci ` c

[/E]

c1 ◦ . . . ◦ ci ` c
[/E]

c1 ◦ . . . ◦ ci ` c/c
[/I]1

This shows that there must be one or more c’s in every sentence in L(G+).
Thus the language generated by G+ is 〈s, a, c+〉perm. ¤

Theorem 9.24 The class of rigid LP grammars has a limit point.

Proof: From Lemma 9.22 it follows that the languages L(G0) ⊂ L(G1) ⊂ . . .
form an infinite ascending chain.

By Lemma 9.23 L(G+) = 〈s, a, c+〉perm and for any n ∈ N and 0 ≤ i ≤ n,
L(Gn) = 〈s, a, c

i+1〉perm, L(G+) = ∪n∈NL(Gn), thus L(G+) is a limit point for
the class of rigid LP grammars. ¤

Corollary 9.25 The class of rigid LP grammars is not (non-effectively) learn-
able from strings.

In contrast to Foret and Le Nir’s results, it is still an open question whether
the class of unidirectional rigid LP grammars is learnable; the class under
consideration is bi-directional, but only because lifting is necessary for the
construction to work.



166 CHAPTER 9. LEARNING LAMBEK GRAMMARS

Also note that the construction depends on the presence of introduction
and elimination rules for the product, and cannot be (easily) adapted for a
product-free version of LP.

In the case of LP∅, i.e. LP allowing empty sequent, things are slightly less
complicated, since the axiom B/(A/A) → B holds. Consider the following
construction:

Definition 9.26 For any n ∈ N, let Gn be defined as

Gn :

s 7→ s/ aa • aa . . . aa
︸ ︷︷ ︸

n times

a 7→ a • a . . . a
︸ ︷︷ ︸

n times

c 7→ a\aa

and let G∗ be defined as

G∗ :
s 7→ (s/a)/(c/c)
a 7→ a
c 7→ c/c.

Lemma 9.27 The language generated by any Gn, n ∈ N, is
⋃
{〈s, a, ci〉perm |

0 ≤ i ≤ n}.

The proof is very similar to the proof of Lemma 9.22.

Lemma 9.28 The language generated by G∗ is 〈s, a, c∗〉perm.

The proof is very similar to the proof of Lemma 9.23.

Theorem 9.29 The class of rigid LP∅ grammars has a limit point.

The proof is similar to the proof of Theorem 9.24; Lemmas 9.27 and 9.28
imply the existence of a limit point.

Corollary 9.30 The class of rigid LP∅ grammars is not (non-effectively) learn-
able from strings.

9.6 Gentzen’s Structural Rules

(Re)introduction to NL of (some of) Gentzen’s structural rules has been pro-
posed in the literature, see eg van Benthem (1991). The rules for contraction
(C), expansion (E) and weakening (also known as thinning) (W ) are as follows:

X[Y ◦ Y ]⇒ A

X[Y ]⇒ A
[C]

X[Y ]⇒ A

X[Y ◦ Y ]⇒ A
[E]

X[Y ]⇒ A

X[Y ◦ Z]⇒ A
[W ]
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To the best of the author’s knowledge there has been little linguistic mo-
tivation for (pure versions of) these rules. In Buszkowski (To appear) a limi-
ted usage of contraction has been proposed to be able to derive S\(S/S) ⇒
VP\(VP/VP), where VP = NP\S, i.e., lifting from sentence conjunction to
verb phrase conjunction. See Morrill (1994) for the use of contraction for an
analysis of parasitic gapping. In Jäger (2001) rules that incorporate some as-
pects of contraction were used to deal with anaphora, and in Moortgat (1997)
the same was done to deal with certain coordination-phenomena.

Proposition 9.31 The class GrigidNL+ C has an infinite descending chain.

Proof: Let Gn, n ∈ N be defined as {s 7→ s/ (a • a) . . . (a • a)
︸ ︷︷ ︸

n times

, a 7→ a}.

1. It is easy to see that 〈s, ai〉, i ≥ n ⊆ L(Gn): to derive s, it is sufficient
to show that sequences associated with words a . . . a of a certain length
derive (a • a) . . . (a • a)

︸ ︷︷ ︸

n times

. Obviously words of length n fulfill this condition,

since the associated sequence consists of just n times a, and by repeatedly
applying the [•I]-rule the desired type can be obtained. Thus 〈s, ai〉, i =
n ⊆ L(Gn).

By applying C we obtain the (sub)derivation
(a • a) ` a

a ` A
[C]

. Applying
this rule i times at the appropriate places during a derivation we can ‘get
rid of’ i excessive a’s, so words of length n+ i fulfill the condition as well.

2. Showing that L(Gn) ⊆ 〈s, a
i〉, i ≥ n is easy but tedious, we leave this to

the reader.

Thus L(G1) ⊃ L(G2) ⊃ L(G3) . . ., and since Gn is rigid for any n ∈ N,
GrigidNL+ C has an infinite descending chain. ¤

Note that this implies that GrigidNL+ C is not learnable by enumeration,
and that it is not efficiently learnable according to Definition 2.72 (recall The-
orem 2.73). We now turn to the case of allowing expansion:

Proposition 9.32 The class GrigidNL+ E has an infinite ascending chain.

Proof: Let Gn, n ∈ N be defined as {s 7→ s/ (a • a) . . . (a • a)
︸ ︷︷ ︸

n times

, a 7→ a}.

1. It is easy to see that 〈s, ai〉, i ≤ n ⊆ L(Gn): to derive s, it is sufficient
to show that sequences associated with words a . . . a of a certain length
derive (a • a) . . . (a • a)

︸ ︷︷ ︸

n times

. Obviously words of length n fulfill this condition,

since the associated sequence consists of just n times a, and by repeatedly
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applying the [•I]-rule the desired type can be obtained. Thus 〈s, ai〉, i =
n ⊆ L(Gn).

By applying E we obtain the (sub)derivation
a ` a

(a • a) ` a
[E]

. Applying
this rule i times at the appropriate places during a derivation we can
‘introduce’ i extra a’s, so words of length n − i fulfill the condition as
well.

2. Showing that L(Gn) ⊆ 〈s, a
i〉, i ≤ n is easy but tedious, we leave this to

the reader.

Thus L(G1) ⊂ L(G2) ⊂ L(G3) . . ., and since Gn is rigid for any n ∈ N,
GrigidNL+ E has an infinite ascending chain. ¤

Since the E rule impliesW the same proof can be used to show the following:

Corollary 9.33 The class GrigidNL+W has an infinite ascending chain.

When we allow to types to be assigned to the same symbol the latter two
results can be strengthened:

Proposition 9.34 The class G2-valuedNL+ E has a limit point.

Proof: Let Gn, n ∈ N be defined as in the proof of Proposition 9.32.
Let G∗ = {s 7→ s/a, a 7→ a, a/a}. It is easy to see that L(G∗) = sa∗, thus

L(G∗) =
⋃∞

i=1 L(Gi), so G2-valuedNL+E has a limit point. ¤

Since the E rule impliesW the same proof can be used to show the following:

Corollary 9.35 The class G2-valuedNL+W has a limit point.

Note that these two results hold for the unidirectional case.

9.7 Generalizations of the Lambek Calculus

Residuated logical connectives are easily generalized to operators of arbitrary
arity, see for example Moortgat (1996) and Kandulski (2002).

A multimodal logic of pure residuation (LPR) is characterized by a family
of modes M and a function δ that assigns each mode an arity. If f ∈ M is
a mode of arity δ(f) = m, it defines an m-ary product f• and m implications
{f i→ | 1 ≤ i ≤ m}. The laws for binary and unary operators are generalized in
the following way: f•(A1, . . . , Aδ(f)) → f i→(A1, . . . , Ai−1, B,Ai+1, . . . , Aδ(f))i,
where ∀f∀i ≤ δ(f).

A similar calculus known as Generalized Lambek Calculus (GLC) was intro-
duced in Buszkowski (1989) and analysed in Kandulski (1997) and Kołowska–
Gawiejnowicz (1997).
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The class of LPR-grammars is known to be context-free, see Jäger (To
appear), where LPR extended with structural rules were also considered. It
should be obvious that the class of rigid LPR-grammars contains the class of
rigid NL, so non-learnability follows immediately. Adding the rule for associa-
tivity will also result in a nonlearnable class, even for rigid LPR-grammars,
since these will contain the class of rigid L-grammars. Analogously, adding
associativity- and commutativity rules will yield a nonlearnable class. How-
ever, it may be possible to characterize non-trivial learnable collections of
LPR-grammars in a way analogous to Gbounded (recall Section 9.2.1).

9.8 Second Order Polymorphism

Consider the so-called chameleon words like the coordinating particles "and"
and "or" (cited as examples in Lambek (1958)), negation, generalized quanti-
fiers or relative pronouns.9 Rather than assigning multiple types like (np\np)/np
and (s\s)/s it would be desirable to capture the obvious generalization by some
sort of type schemata. The use of second order polymorphism offers this kind
of flexibility, it makes possible the assignment of type ∀X.(X\X)/X to "and".
The second order polymorphic variant of L is written as L2, the second order
polymorphic variant of NL as NL2 etc. See Emms (1993a,b) for discussions of
L2, a PSPACE-complete fragment of MALL2 (a logic related to L2) that al-
lows analysis ofat least some of the discussed phenomena is presented in Perrier
(1999).

Obviously rigid L2 and rigid NL2 are not learnable, given the results for
rigid L and rigid NL. Still, it is interesting to see if there is a direct relation
between polymorphism and learnability, if only to extend learnable subclasses
of GL or GNL.

Note that in L2 (as well as in NL2) the structural rules of Expansion,
Weakening and Contraction can be (re)introduced with types ∀X.X\(X •X),
∀X∀Y.X\(X • Y ) (or ∀X∀Y.X\(Y •X)), and ∀X.(X •X)\X, respectively.10

We will use these facts to show non-learnability of a subclass of GNL2, but
their application is far from straightforward.

We will now investigate the learnability of a subclass of NL2-grammars.
Note that scope and alphabetic variation may be implicit, the intended reading
will be clear from context.

9It seems that all of these categories except the coordinating particles, can also be
monomorphicallytyped.

10These types were used in Lincoln et al. (1995) (in the guise of IMLL2 formulæ) to
show that the (undecidable) system of second-order linear logic (LJ2) can be embedded in
IMLL2 (which is (almost) equivalent to LP2). Note that it is also possible to express other
structural rules, for example Permutation with second-order type ∀X∀Y.((X • Y )/X)/Y .
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Γ, A[B/X],∆ ` C

Γ,∀X.A,∆ ` C
[∀L]

Γ ` A
Γ ` ∀X.A[X/Y ]

[∀R(∗)]

Γ ` A[B/X]

Γ ` ∃X.A
[∃R]

Γ, A,∆ ` C

Γ,∃X.A[X/Y ],∆ ` B
[∃L(∗)]

Figure 9.1: Rules of inference for L2.

Definition 9.36 For any n ∈ N
+, let Gn be defined as

Gn :

s 7→ s/∀A∀B . . . .((A\A) • (A\A)) • ((B/B) • (B/B)) • . . .
︸ ︷︷ ︸

n times

a 7→ ∀A.(A\A)\(A\A),∀A∀B∀C.(B • C)/(A\A)
b 7→ ∀B.(B/B)/(B/B),∀A∀B∀C.(B/B)\(A • C)

and let G∗ be defined as

G∗ :
s 7→ s/b
a 7→ b/c, c/c, c, c/b
b 7→ b/d, d/d, d, d/b

Proposition 9.37 Let Gn be as described in Definition 9.36. For any n ∈ N
+,

L(Gn) = sai1bj1 . . . aikbjk , where 1 ≤ k ≤ n, and for all it, jt, 1 ≤ t ≤ k, either

1. it, jt ≥ 2,

2. it = 0 and jt ≥ 2, or

3. it ≥ 2 and jt = 0.

Proof:

1. Proof: of sai1bj1 . . . aikbjk ⊆ L(Gn) (with restrictions on k and all
it, jt, 1 ≤ t ≤ k as specified):

Since the type that Gn assigns to s is
s/∀A∀B . . . .((A\A) • (A\A)) • ((B/B) • (B/B)) • . . .
︸ ︷︷ ︸

n times

, it is sufficient to

show that we can associate a sequent with ai1bj1 . . . aikbjk such that it
derives ∀A∀B . . . .((A\A) • (A\A)) • ((B/B) • (B/B)) • . . .

︸ ︷︷ ︸

n times

(a) For the case it, jt ≥ 2: assume that s is followed by k ≥ 2 a’s, all
associated with type ∀A.(A\A)\(A\A). Using [\E], the derivation
∀A.(A\A)\(A\A),∀A.(A\A)\(A\A) ` ∀A.(A\A)\(A\A) can be ob-
tained. This step can be applied k− 1 times, then, followed by [•I],
the type ∀A.(A\A)\(A\A) • ∀A.(A\A)\(A\A) is obtained.
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Assume this is followed by k ≥ 2 b’s, all associated with type
∀B.(B/B)/(B/B). Using [/E], the derivation
∀B.(B/B)/(B/B),∀B.(B/B)/(B/B) ` ∀B.(B/B)/(B/B) can be
obtained. This step can be applied k − 1 times, then, followed by
[•I], the type ∀B.(B/B)/(B/B) • ∀B.(B/B)/(B/B) is obtained.

Applying another [•I], finally the type (∀A.(A\A)\(A\A) •
∀A.(A\A)\(A\A)) • (∀B.(B/B)/(B/B) • ∀B.(B/B)/(B/B)) is ob-
tained. This type has the same structure as any one of the n domain
subtypes of
s/∀A∀B . . . .((A\A) • (A\A)) • ((B/B) • (B/B)) • . . .
︸ ︷︷ ︸

n times

.

(b) For the case it = 0 and jt ≥ 2: assume that s is followed by k ≥ 2
b’s, the first k − 1 associated with type ∀B.(B/B)/(B/B), the last
one associated with ∀A∀B∀C.(B/B)\(A • C). As we have seen,
the sequent containing the first k − 1 types can, with application
of [/E], derive type ∀B.(B/B)/(B/B). By applying [/E] to the
resulting sequent we get ∀B.(B/B)/(B/B),∀A∀B∀C.(B/B)\(A •
C) ` ∀A∀CA • C. This type has the same structure as any one of
the n domain subtypes of
s/∀A∀B . . . .((A\A) • (A\A)) • ((B/B) • (B/B)) • . . .
︸ ︷︷ ︸

n times

.

(c) For the case it ≥ 2 and jt = 0: assume that s is followed by k ≥ 2
a’s, the first one associated with ∀A∀B∀C.(B • C)/(A\A), the last
k − 1 associated with type ∀A.(A\A)\(A\A). As we have seen,
the sequent containing the last k − 1 types can, with application
of [\E], derive type ∀A.(A\A)\(A\A). By applying [\E] to the re-
sulting sequent we get ∀A∀B∀C.(B •C)/(A\A),∀A.(A\A)\(A\A) `
∀B∀C.(B • C). This type has the same structure as any one of the
n domain subtypes of
s/∀A∀B . . . .((A\A) • (A\A)) • ((B/B) • (B/B)) • . . .
︸ ︷︷ ︸

n times

.

2. Proof: of L(Gn) ⊆ sai1bj1 . . . aikbjk :

Left to the reader.

¤

Proposition 9.38 Let G∗ be as described in Definition 9.36. Then L(G∗) =
∪sai1bj1 . . . aikbjk where k ∈ N

+ and for all it, jt, 1 ≤ t ≤ k, either

1. it, jt ≥ 2,

2. it = 0 and jt ≥ 2, or
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3. it ≥ 2 and jt = 0.

Proof: None of the types assigned in G∗ contains a variable, so its interpre-
tation under NL results in the same language as under NL2. Since the degree
of none of the types assigned in G∗ is greater than 1 we need not concern our-
selves with hypothetical reasoning; the interpretation under CCG rules yields
the same result. So, the only relevant derivation subtrees for Gn are the ones
shown in Figure 9.2.

Tree(s) =
s : s/b

Tree(b)

b
s [/E]

Tree(b)1 =

a : b/c
Tree(c)

c

b
[/E]

Tree(b)2 =

b : b/d

Tree(d)

d

b
[/E]

Tree(c)1 =
a : c/c

Tree(c)
c

c [/E]

Tree(c)2 =
a : c
c

Tree(c)3 =
a : c/b

Tree(b)

b
c [/E]

Tree(d)1 =

b : d/d

Tree(d)

d

d
[/E]

Tree(d)2 =
b : d
d

Tree(d)3 =

b : d/b

Tree(b)

b

d
[/E]

Figure 9.2: Subtrees for G∗.

Note that all operators found in the types assigned in Gn are /, so all
symbols produced during derivation are attached to the right of the string to
be generated.

Since any sentence must correspond to a sequent deriving s, Tree(s) is the
only starting option, wich yields the initial string s. The next subtree needed
to complete the derivation is Tree(b)x, where 1 ≤ x ≤ 2. We will show by
induction that only strings of the form ai1bj1 . . . aikbjk can derive b (again,
k ∈ N

+ and for all it, jt, 1 ≤ t ≤ k, either it, jt ≥ 2, or it = 0 and jt ≥ 2, or
it ≥ 2 and jt = 0).

Consider Tree(b)x, where 1 ≤ x ≤ 2.

1. If we choose x = 1, the symbol a is added to the string, and the next
subtree must be Tree(c)y, 1 ≤ y ≤ 3:

(a) (base) In the case of y = 2, another a is added to the string, and
the derivation is terminated.

(b) (Induction step) In the case of y = 1, another a is added to the
string, and another Tree(c) is added to the derivation.

(c) (Induction step) In the case of y = 3, another a is added to the
string, and a Tree(b) is added to the derivation.

Thus the string ai, i ≥ 2 is added, and the derivation either terminates or
continues with Tree(b). In the former case, we obtain the string σ+aitbjt ,
it ≥ 2 and jt = 0. In the latter case either more a’s are added (x = 1),
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or a string of b’s is appended (x = 2), which corresponds to aitbjtait+1 ,
it, it+1 ≥ 2 and jt = 0, and aitbjt , it, jt ≥ 2, respectively.

2. If we choose x = 2, the symbol b is added to the string, and the next
subtree must be Tree(d)y, 1 ≤ y ≤ 3:

(a) (base) In the case of y = 2, another b is added to the string, and
the derivation is terminated.

(b) (Induction step) In the case of y = 1, another b is added to the
string, and another Tree(d) is added to the derivation.

(c) (Induction step) In the case of y = 3, another b is added to the
string, and a Tree(b) is added to the derivation.

Thus the string bj , j ≥ 2 is added, and the derivation either terminates or
continues with Tree(b). In the former case, we obtain the string σ+aitbjt ,
it = 0 and jt ≥ 2. In the latter case either more b’s are added (x = 2),
or a string of a’s is appended (x = 1), which corresponds to bjtait+1ajt+1 ,
jt, jt+1 ≥ 2 and it+1 = 0, and bjtait+1 , jt, it+1 ≥ 2, respectively.

This shows that L(G∗) = ∪sai1bj1 . . . aikbjk where k ∈ N
+ and for all it, jt,

1 ≤ t ≤ k, either

1. it, jt ≥ 2,

2. it = 0 and jt ≥ 2, or

3. it ≥ 2 and jt = 0.

¤

Theorem 9.39 The class G4-valuedNL2 has a limit point and is thus not (non-
effectively) learnable.

Proof: From Proposition 9.37 we can conclude that L(G1) ⊂ L(G2) ⊂ . . ., so
the class contains an infinite ascending chain. From Proposition 9.38 it follows
that L(G∗) =

⋃∞
i=1 L(Gi), so L(G∗) is a limit point for the class. ¤

Note that the proof only holds for the bi-directional case with product.
We conjecture that there is a version of G∗ that assigns less types to any

given symbol, so the result probably holds for Gk-valuedNL2 with k < 4.

9.9 Concluding Remarks

In this chapter we have shown that the classes of rigid LP and LP∅ grammars
have limit points and are thus not learnable from strings. These results, as well
as the negative results from Foret and Le Nir (2002a), Foret and Le Nir (2002b)
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and Bechet and Foret (submitted) are quite surprising in the light of some of
Shinohara’s general results. In Kanazawa (1998) it was suggested that placing
a numerical bound on the complexity of a grammar will typically lead to a
non-trivial learnable class. The negative results for Lambek(like) systems show
that this is not always the case. Even placing bounds on the complexity of the
types appearing in the grammar may not help: rigid L is not even learnable
when the order of types is bounded to 2.

A final thought concerns the claim in Foret and Le Nir (2002a) and Foret
and Le Nir (2002b) that these results demonstrate the paucity of ‘flat’ strings as
input for a learner. They suggest that enriched input (i.e. some kind of brack-
eting or additional semantic information) may overcome this problem, which
is certainly an interesting approach. However, one could also take another ap-
proach to constructing classes learnable from strings within some Lambek(like)
calculus by restricting the use of postulates. The multimodal approach (see for
example Moortgat and Morrill (1991)) offers a way of doing this in the lexicon.
The viability of this approach is of course dependent on the existence of learn-
able subclasses of the class GNL, though even given such a class it would be a
highly nontrivial enterprise. Thus, we feel that these results offer no evidence
either against or in favour of the claim that semantic information or any other
kind of enriched input is used during language acquisition.

Table 9.1 sums up the results discussed in this chapter. These results are
negative, but one could also interpret them positively: they show that Lambek
systems are in some sense far more ‘concise’ than CCG systems. A negative
interpretation may also be premature in the sense that there may be ‘natural’
learnable classes of Lambek grammars that bear no resemblance whatsoever
to classes defined in terms of rigidity, k-valuedness etc. In other words, lots of
open questions remain.

We conjecture GrigidNLP, GrigidNLP∅, GrigidNL + C (unidirectional, •),
GrigidNL + E (unidirectional, •) and GrigidNL +W (unidirectional, •) not to
be learnable. We also conjecture that GrigidLP,GrigidLP∅ without • are not
learnable.

Note that there are some positive results: see Proposition 9.9 for a learnable
class of NL-grammars and Corollary 9.10 for a learnable class of rigid NL3R−-
grammars, but these results are in itself not very interesting. Also note that
for subclasses of GrigidNL that are restricted so that for any type T occuring in
any grammar in such a subclass 1 < order(T ) < 5, the question of learnability
is still open.

The negative results seem to warrant the conclusion that ‘natural’ classes
of type-logical systems are too powerful to be learnable, since an important
axioms like Lifting gives rise to the existence of limit points. It is possible
that restricting the use of such axioms12 in combinatory systems permits the
existence of non-trivial learnable classes. Such restrictions on the use of axioms
may seem ad-hoc, but they have been proposed on purely linguistic grounds

12Note that Lifting is already subject to certain restrictions in GCG.
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Class11 Learnable (strings) Finite Elasticity
GrigidL (unidirectional) no no, limit point
GrigidL∅ (unidirectional) no no
GrigidLP (bidirectional, •) no no
GrigidLP∅ (bidirectional, •) no no, limit point
GrigidNL (bidirectional) no no, limit point
GrigidNL∅ (unidirectional) no no, limit point
GrigidNLP ? ?
GrigidNLP∅ ? ?
GrigidNL+ C (unidirectional, •) ? no, i.a.c.
GrigidNL+ E (unidirectional, •) ? no, i.a.c.
GrigidNL+W (unidirectional, •) ? no, i.a.c.
G2-valuedNL+ E (unidirectional, •) no no, limit point
G2-valuedNL+W (unidirectional, •) no no, limit point
G4-valuedNL2 (bidirectional, •) no no, limit point

Table 9.1: Summary of known learnability results for rigid classes of Lambek
grammars.

(Steedman (2000), for the analysis of Dutch, for example). A more elegant
way of imposing such restrictions has been proposed in Baldridge and Kruijff
(2003), where a multimodal variant of combinatory CG is defined.

12The calculi do not use product (•), unless stated otherwise.
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Chapter 10

Conclusions

The specific technical results discussed in the preceding chapters suggest some
general conclusions:

1. Formal Learning Theory is relevant to linguistics, particularly to lang-
uage acquisition research. Applying Formal Learning Theory to lingu-
istics is also a highly non-trivial enterprise. Contrary to what is often
suggested in linguistic literature, results from Gold (1967) did not show
that identification in the limit is not feasible for non-trivial classes, nor
did developments in this field stop after the publication of this paper.

Research has steadily continued since the late sixties, and blossomed after
some impressive results were obtained in the early eighties. It has lead to
deep and often surprising insights that cannot be ignored by any cognitive
scientist interested in the nature of learning.

2. Imposing a numerical bound on the complexity of a grammar can lead to
a learnable class, but this completely depends on both the formalism and
the specific notion of complexity. To quote Kanazawa (1998), page 159:

Placing a numerical bound on the complexity of a grammar
can lead to a non-trivial learnable class. [. . . ] Together with
Shinohara’s (Shinohara (1990a), Shinohara (1990b)) earlier re-
sult [a class of context-sensitive grammars having at most k
rules is learnable], this suggests that something like this may
in fact turn out to be typical in learnability theory.

The results discussed in this thesis certainly show that there are ‘natural’
counterexamples to this conjecture: rigid combinatory CG may not be
learnable, depending on the combinatory rules used. The class of rigid
TAGs isn’t learnable either, nor are subclasses of this class that fulfill
severe additional constraints. The same is true of Minimalist Grammars
and of the Lambek-systems NL, L, LP and their variants, including
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pregroup grammars. In the case of NL and LP the nonlearnability is
due to properties of Lifting, an operation that seems to be essential for
any strongly compositional system.

3. Learning is hard work. Many different definitions of complexity of lear-
ning can be found in the literature, though none of them seem to capture
an intuitive notion of ‘learnable by a feasibly computable function’. This
is due to the fact that the paradigm of identification in the limit imposes
only weak restrictions on the nature of the input, see Section 2.9 for a
discussion.

However, we have obtained some negative complexity results for Kana-
zawa’s classes of categorial grammar: in Section 5.1 a proof is given of the
existence of an exponential bound on the number of candidate grammars
generated by the algorithms presented in Chapter 4, and in Chapter 5
results are discussed concerning the complexity of producing a conjec-
ture consistent with the given data while falling within a specified class.
These results suggest that learning is hard even given some class that has
only a moderately rich structure and contains just modestly expressive
languages.

4. A good, coherent notion of strong generative capacity (derivation- or de-
pendency structure or otherwise) is important and useful when dealing
with learnability issues of a class of grammars. Kanazawa’s theorem on
infinite elasticity as first published in Kanazawa (1994b) (Theorem 2.27
in this thesis) implies that if a tree language has finite elasticity, then so
does the string language that is its yield, provided that there is only a
finite number of possible trees that have any given string as its yield.

This seems a perfectly reasonable condition in a linguistic context, but
when dealing with Lambek grammars for example things are more com-
plicated than they may appear at first sight. Explicit descriptions of
trees have no place in categorial grammar, since strings are obtained
from proofs, not derivations. There is a (spurious) non-determinism in-
herent in the standard notion of categorial proof, so any ‘naive’ notion of
strong generative capacity is structurally complete and therefore useless
for our purposes. In order to be able to apply Kanazawa’s theorem in
this context we need a normal form for such proofs, such as provided
by Tiede (1999a) for proof trees of L and NL grammars. However, the
tree languages corresponding to these normal forms have not yet been
explicitly characterized.

From a more technical perspective, thsi thesis offers good evidence for the
idea that tree automata-techniques offer a promising approach for dealing
with learnability of linguistic formalisms, and especially for designing
algorithms.
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5. Structural properties of classes of languages, like having an infinite as-
cending chain, a limit- or accumulation point, and especially having (in-)
finite elasticity, play an important role in Formal Learning Theory. Al-
most all the learnability results discussed in this thesis are based to some
degree on these structural properties. Finite elasticity is an especially
useful concept. It is a natural property and easy to preserve, and, as
already mentioned, it can be used to establish a link between structure
languages and string languages.
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Samenvatting in het

Nederlands

In deze dissertatie worden verschillende taalkundige toepassingen van Formele
Leertheorie onderzocht. Het verschijnen van Gold (1967) wordt algemeen
beschouwd als de geboorte van dit vakgebied, hoewel er meerdere voorlopers
kunnen worden aangewezen, de meesten met een sterk (wetenschaps) filoso-
fische inslag (zie referenties in onder andere Kelly et al. (1994); Kelly and
Glymour (1992)).

In dit paper werd een aantal (deels) linguïstisch gemotiveerde formele mo-
dellen van leerbaarheid –collectief aangeduid als ‘identificatie in de limiet’–
toegepast op de taalklassen uit de Chomsky-hiërarchie. De theorie rond deze
modellen werd in de daarop volgende jaren verfijnd en uitgebeid (oa Blum
and Blum (1973, 1975); Gold (1978); Wiehagen (1977, 1978)). Dit leidde
tot voortschrijdende theoretische inzichten, echter nauwelijks tot echt prak-
tisch toepasbare resultaten. Pas sinds het begin van de jaren ’80, nadat Dana
Angluin een volledige en bruikbare karakterisering gaf van (effectief) leerbare
verzamelingen van talen (Angluin (1980a,b)), was het vakgebied volwassen
genoeg om toegepast te worden in de context van de theorie van formele
talen (en dus ook binnen de wiskundige en computationele taalkunde), dit
(deel)vakgebied wordt soms aangeduid als Inductive Inference.

Dit werk van Angluin, en van onder andere Wright (Motoki et al. (1991))
toonde het belang aan van een begrip als eindige elasticiteit. Ook het proef-
schrift Kapur (1991) biedt bruikbaar gereedschap, met name de toepassing van
de uit de topologie afkomstige concepten limiet- en accumulatie punt in de
formele leertheorie blijkt erg nuttig.

In het werk van Shinohara (oa Shinohara (1986); Arikawa et al. (1989);
Shinohara (1990b)) is deze lijn van onderzoek nog verder uitgewerkt, door de
eindige elasticiteit aan te tonen van allerlei klassen van ‘optimale’ of ‘begrensde’
Elementary Formal Systems (EFS, Smullyan (1961)). Dit generieke logische
systeem biedt de mogelijkheid andere formalismen te emuleren en wordt ook wel
beschouwd als een (lineair) logische programmeertaal. Een voor de linguïstiek
interessant gevolg van zijn resultaten is dat alle context-gevoelige grammatica’s
met een begrensd aantal regels kunnen worden geëmuleerd binnen een leerbare



klasse van EFS en zelf dus ook een leerbare klasse vormen.

In Kanazawa (1998) worden een aantal klassen van (klassieke) Categori-
ale Grammatica’s onderzocht op leerbaarheid. Deze klassen zijn gebaseerd op
criteria voor ‘optimale’ of ‘begrensde’ grammatica’s en men zou op grond van
Shinohara’s resultaten dus verwachten dat deze klassen leerbaar zijn, dit bleek
inderdaad het geval.

Voor deze leerbare klassen zijn leeralgoritmen ontwikkeld, deze algoritmen
zijn naïef. Dit wil zeggen dat het ‘directe’ implementaties van een theorie
zijn, en niet per se optimaal wat efficiëntie betreft. Een van de doelen van
deze dissertatie is het onderzoeken van de complexiteit van de leerproblemen
die door deze algoritmen worden opgelost. Er wordt onder andere aangetoond
dat, voor elk van de onderzochte klassen, het vormen van een hypothese die
consistent is met alle gegeven data en binnen de klasse valt een NP-moeilijk
probleem is. Dit onderbouwt het advies van Rolf Wiehagen dat men zich bij
het ontwerpen van leeralgoritmen niet blind moet staren op consistentie, omdat
men op die manier efficiënte maar niet consistente algoritmen over het hoofd
zou kunnen zien.

Een andere benadering van Categoriale Grammatica gebruikt een compleet
logisch systeem om grammaticale theorieën in uit te drukken, de zogenaamde
Lambek Calculus. In de praktijk is gebleken dat de analyse van de formele
eigenschappen van deze en aanverwante systemen zeer moeilijk is. Zelfs voor de
hand liggende en belangrijke vragen omtrent expressieve kracht en complexiteit
zijn pas zeer recent, en dan nog maar deels, beantwoord (Pentus (1993b, 1997);
de Groote (1999); Pentus (2003)). Ook leerbaarheidsvraagstukken bleken in
deze context moeilijk te beantwoorden. Het eerste resultaat op dit gebied is
zeer recent; de klasse van rigide (dat wil zeggen: elk woord heeft maar één
syntactische categorie) associatieve Lambek grammatica’s bleek niet leerbaar
aan de hand van strings (Foret and Le Nir (2002a)). Resultaten voor andere
Lambek varianten volgden binnen korte tijd (Foret and Le Nir (2002b); Bechet
and Foret (submitted); Costa Florêncio (2003)). Deze (negatieve) resultaten
zijn een direkt gevolg van de geldigheid in deze calculi van een axioma zoals
Lifting. Aangezien deze essentieel lijkt voor elke sterk compositionele benader-
ing van (natuurlijke) taal is het te verwachten dat de ‘Shinohara benadering’
onbruikbaar is voor al deze soort systemen.

De zogenaamde Tree Adjoining Grammars (TAGs) spelen een belangrijke
rol in de (computationele) linguïstiek; ze maken efficiënt parseren mogelijk,
lijken ongeveer de juiste (zwakke) expressieve kracht te hebben voor het uit-
drukken van natuurlijke taal, en zijn min of meer uniek in de manier waarop
ze bomen (derivaties) kunnen manipuleren. Helaas blijken TAGs wat leer-
baarheid betreft minder aantrekkelijk: zelfs hele beperkte (rigide) klassen bli-
jken niet leerbaar, en dus blijkt de ‘Shinohara benadering’ weer niet zonder
meer toepasbaar. De bewijzen van deze negatieve resultaten maken gebruik
van de optionaliteit van de adjunctie-operatie en van het mechanisme dat TAGs
bieden om controle uit te oefenen over deze optionaliteit.



Minimalist Grammar (MG), een formalisering van de meest recente vorm
van transformationele syntax, is een in bepaalde opzichten aan TAG verwant
systeem. Het is daarom misschien niet verrassend dat de ‘Shinohara benader-
ing’ ook hier niet zomaar toepasbaar is, in ieder geval niet als het is toegestaan
een onbeperkt aantal zogenaamde licensee features aan dezelfde syntactische
categorie toe te kennen.

Er is geen enkele reden om de toepassing van formele leertheorie in de
linguïstiek te beperken tot syntax. Een voorbeeld van toepassing binnen de
semantiek is het leren van Gegeneraliseerde Kwantoren zoals onderzocht in
(Tiede (1999b)). Deze benadering wordt besproken, en Tiede’s resultaten wor-
den hier ook enigszins verfijnd. Tevens wordt gekeken naar de leerbaarheid
van subklassen van combinatoriële categoriale grammatica’s, een expressievere
variant van klassieke CG.

In Kanazawa (1998) wordt er op gewezen dat zijn resultaten betreffende een
aantal CG klassen volgen uit Shinohara’s resultaat voor context-gevoelige gram-
matica’s. Het vermoeden werd geuit dat soortgelijke resultaten ook gelden voor
andere formalismen. Een belangrijke conclusie die uit de besproken formele
resultaten getrokken kan worden is dat de situatie in werkelijkheid een stuk
gecompliceerder blijkt; voor allerlei aan de Lambek calculus verwante syste-
men bijvoorbeeld zijn de klassen van rigide en k-waardige grammatica’s niet
leerbaar, zelfs niet non-effectief, en zelfs niet met allerlei bijkomende beperkin-
gen op de grootte van het gebruikte alfabet, de orde van de gebruikte lexicale
typen et cetera.

Een ander beeld wat naar voren komt is het belang van derivaties, en dus
in de context van formele talen van boom-talen, boom-automaten en context-
vrije boom-grammatica’s als hulpmiddelen bij het redeneren over leerbaarheids-
vraagstukken. Hiervoor bestaat linguïstische motivatie – Chomsky (1965b)
pleit al voor een dergelijke benadering – maar zeker ook technische; een voor
leerbaarheid belangrijke probleem als ‘is taal L1 een deelverzameling van L2’
en het verwante ‘welke grammatica in een gegeven verzameling is genereert
een minimale taal?’ zijn niet beslisbaar voor bijvoorbeeld context-vrije (string)
talen maar wel voor reguliere boom-talen, die de derivaties vormen van context-
vrije talen. Een ander voordeel is dat er redelijk algemene voldoende voorwaar-
den te geven zijn voor de leerbaarheid van boom-talen, zoals omkeerbaarheid.
Dit maakt het bewijzen van leerbaarheid aanzienlijk simpeler, zoals in Hoofd-
stuk 7 wordt gedemonstreerd aan de hand van het werk van Besombes en
Marion. Zij geven een alternatief en elegant bewijs voor Kanazawa’s stelling
dat rigide (klassieke) categoriale grammatica’s een leerbare klasse vormen.
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