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A certain class of cellular automata in 1 space +1 time dimension is shown to be closely
related to quantum field theories containing Dirac fermions. In the massless case this relation
can be studied analytically, while the introduction of Dirac mass requires numerical simulations.
We show that in the last case the cellular automaton describes the corresponding field theory
only approximately.

1. Introduction

A cellular automaton is a large array of elements or “cells”, usually situated on
a one or more dimensional lattice; at each cell one or several dynamical variables
(we will call them spins) can take a finite number of different values. At each tick
of an external clock the contents of all cells are updated according to some law of
evolution. For each particular cell this law may be very simple, involving only its
nearest neighbors besides itself. The system as a whole can then behave in a very
complex way, and it is ideally suited for computer investigations.

The automata considered in this paper are [1] deterministic, which means that
there is no random number generator in the local law of evolution, and time
reversible, which means that any configuration can be extrapolated backwards in
time as easily as forward in time. We consider in this paper only the simplest type
automata — the boolean ones. Such an automaton comprises a set of cells o,
i=1,..., N, each taking two values 0 or 1. The state of the automaton, o, is
defined by the values of all cells.

To apply the concept of cellular automata evolution to the field theoretical
models we exploit the philosophy explained by one of the authors in earlier papers
[2]. We start by introducing a Hilbert space such that each state o of our
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automaton corresponds to a basis element | o). So for an arbitrary vector | ¢) (a
superposition of | o)) we can define the probability of a given state ¢ as

P(o) = {aly>|> (1.1)

At this point it will be clear that the phase angles in these state vectors are
spurious; we may choose them any way we like. However, we will discover that
there are ways to reproduce the evolution of ¢ by writing down a Schrédinger
equation for :

d
a‘¢>=—1HW/>. (1~2)

At integer time t any basis element o evolves into o(¢) in accordance to the law of
the cellular automaton. But this equation now also prescribes how the phase
factors evolve.

There are many different choices for H that all reproduce the same cellular
automaton, but only a small subclass of these are extensive:

H=Y #(x), (1.3)

where #(x) is a hamiltonian density. It is hamiltonians of the kind (1.3) that
would correspond to genuine quantum field theories. Once we choose our hamilto-
nian to be of this form we discover two things: first, techniques of quantum field
theory can be used to describe phenomena at distance scales much larger than the
lattice length, and secondly, phase factors among states become physically impor-
tant. Thus, quantum mechanical phase factors are crucially linked to the decom-
posability (1.3) of the hamiltonian.

We will also see however that (1.3) cannot be exactly true in most cases. The
Hamilton density #(x) cannot be completely local, i.e. depend only on x and its
direct neighbors. What will happen is that #(x) is an infinite sum, whose
successive terms involve interactions among increasingly distant neighbors. This
forces us to limit ourselves to only a subclass of all states | ), namely those for
which the summation for #(x) converges sufficiently rapidly. In general, the states
[, | @), for which the matrix elements (¢ | #(x)|¢) converge rapidly are those
states for which the total energy E is close to the vacuum value: |E - E,| <27
(in natural units).

From the point of view of quantum field theory this constraint is only natural:
we should not allow for too energetic particle configurations; to describe those one
has to go back to the complete description of the original cellular automaton.

But if one wants to check our claims with computer simulations this condition is
very difficult; one never knows whether the initial state corresponds to particles
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with sufficiently low total energy; indeed, one starts to work with the basis
elements | o), for which of course the constraint does not hold. One then has to
introduce large ensembles and compute averages.

In practice also another problem shows up: it is very difficult to devise a
hamiltonian in such a way that it does not fluctuate somewhat between two time
steps. As soon as our hamiltonian has such a periodic time dependence one may
expect violation of energy conservation that gives rise to spontaneous generation of
“energetic showers” of a kind not wanted in a realistic field theoretical model.
This may explain why our attempts at computer simulations, to be explained later,
sometimes give unexpected results.

The paper is organized as follows. In sect. 2 we present a particular automaton
evolution and build the corresponding Hilbert space. We also show that in the
continuum limit this quantum system reproduces exactly the massless Fermi field
theory. Sect. 3 is devoted to an attempt to perturb the evolution rule for the
automaton in order to obtain the massive Dirac theory in the continuum limit. The
analytical calculations for the last case are presented in sect. 4 and the numerical
emulations for this automaton are discussed in sect. 5.

2. The one-dimensional shift automaton

The automaton to be considered first is physically very trivial, but useful to
elucidate our techniques. Divide the circle into N cells. In each cell x a spin o,
can take the values 0 and 1. The evolution equation is taken to be

Oviv1 = 0—1> One =00, (2.1)

or, in other words, the spins shift to the right at constant speed.
The Hilbert space has 2V dimensions; it is spanned by the basis elements

{loy, 05,...,057}. We can introduce the Pauli matrices 77, a = 1, 2, 3, at each site
x. They obey
[70, 0] = 28, er¢. (2.2)
We write
o, =T T . (2.3)

If N is odd, N=2n+ 1, we can perform a Jordan-Wigner transformation as
follows:

3 3 R —
go=1_,07 9.9 _®1, 91 _ ,®...91 ., (2.4)
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so that
(Whoo)=d,. {0} =0, (2.5)
Yo =¥, 10 (2.6)
This allows us, in a standard way, to perform the discrete Fourier transform:

by =N Lo, w=ctN, @7
such that
(300 =5p0e (e -0 e
The time evolution of l/lAp is then
g, = UT(0),0U(1) =0~ "y,,. (2.9)
We can therefore take as our hamiltonian

21

H=_—
N,

IIM=

(ﬁ;tﬁp-l-const., U(t) =e i (2.10)

—n

where the constant is chosen such that the lowest energy level is zero. In the above
case it is wn(n + 1)/N. This corresponds to normal ordering of the operators ¢7p
with respect to the lowest energy state.

To take the continuum limit of (2.10) we proceed in two steps. First we obtain
the infinite-volume limit N — o« of (2.10) in x-space, which is

(x—y)
Z()

VAN X, y=—0.,  +oo,
x#y -y

Next we go to the compact momentum space and obtain the expression
ko AT A
H=f dpp:di,:.
-

After rescaling the momenta p — Ap and field operators ¢y = ¢/ VA, the hamilto-
nian obeys in the limit A — « the condition (1.3):

H- Y #(x), #(x)- —i:ploy,:, (2.11)
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while in the discrete system d, is replaced by an infinite series of finite displace-
ment operators (from the Fourier transform of p in (2.10)). For our purposes H is
sufficient local to apply quantum field theory. For more on the continuum limit see
below.

Notice also that the choice (2.10) is not unique; we could for instance have
chosen the boundaries —n, n different.

In quantum field theory the hamiltonian (2.11) is recognized to be the one
describing massless, chiral Dirac fermions. The lowest-energy state of (2.10), the
vacuum state |0), is then defined by

pl0y=0 (p<-1)

. = [0)=¢! ... ¢ |o=0). 2.12
§,100=0 (p>0) |~ e (2.12)

This state is obviously stationary in time. What are the corresponding P(¢)?
To compute these we must Fourier transform back to x-space:

10>=N‘"/21‘I( > w”*vwip)lo=o>

P<O\x,=-n

=N""? ¥ w"'wzxZ...w"X"tlfIl...(,l/:"|0'=0>

_ N2 Z Z (_1)Derm wxP]+...+nXP,,l!,II ‘”(//I"Ig'= 0>

X <x,<...<x, perm

N2 Y ((1?;(0,%) | X1 X, (2.13)
y

X <xy<...<x,

where, up to a phase factor +1, the vector | x,,..., x,) is the state with =1 at
the sites x,,..., x,, and o = 0 elsewhere.
The amplitude is the Van der Monde determinant:

1 1
wx, wxn
A, )C)=N_”/2 det .
w(n;l)xl W Dxa
s
_ —1)/2 aj—n/2 :
_2n(n )/ N n/ I—I Slnﬁ(xi_xj)' (214)

X;<X;



500 G. 't Hooft et al. / Deterministic cellular automaton

We see that all allowed states have exactly » spins one and #» + 1 spins zero. Their
probabilities are given by the square of (2.14). We can write these also as

A*(x)y...,x,)=C exp(22 In d,.j), (2.15)
i<j
with
.
d;=2 smﬁ(xi—xj), (2.16)

which happens to be the distance in two-dimensional space between the points x;
and x; on the unit circle. Indeed, (2.15) is the Boltzmann factor of a two-dimen-
sional Coulomb gas confined to the unit circle, at a certain temperature.

To compute correlation functions we can either use (2.15) directly or compute
the vacuum expectation values of the corresponding operators using the expression
(2.12) for our vacuum state.

For the two-point fermion correlation function, one finds in the limit N — oo:

1 1
— , x—yodd
. N mix—y
= = 2.1
W) = Wty 0, x—yeven+0 (2.17)
1, x=y.
From (2.17) one finds that in the same limit:
1 1
_ 7_7.2_ m , X -y odd
(o0,) — (o)’ = (2.18)

=

x—yeven#0
xX=y.

-

Furthermore, if in the large-N limit one averages over all spin configurations
occurring on the odd sites, one finds that the spins at the even sites become
completely uncorrelated (and vice-versa the same thing).

At this point two comments on the form of the correlation functions (2.17) and
(2.18) are in order. The first one concerns the origin of the oscillation between
even and odd points and the second one is about the chiral anomaly. One would of
course like to somehow identify the cellular automaton variable o, — (o, with the
fermionic current p(x) = : ¢/, : in the continuum limit. It is however well known
that this current only commutes up to the Schwinger term ~ §'(x — y). This means
that there should be an imaginary part in the correlation (2.18). We will see in the
following that these two questions are related.
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The crucial point is the compactness of momentum space (after going to the
limit N — o we have also continuous momenta). Eq. (2.17) is now in p-space:

9,0 =8(p—q) O(p). (2.19)

The above correlation function has in fact two discontinuities, one at p =0 and
one at p = . The long-distance behavior gets therefore two contributions. p =0
gives 1/2mix and the discontinuity at p =7 gives —e'™* /2rix because of the
different sign of the step and the shift by 7 in momentum space. These two
contributions together characterize the long-distance behavior completely. The
resulting oscillation is rather harmless if we go to the continuum limit. We
introduce the dimensionful constant A and define the physical size of the momen-
tum circle to be 27 A. Letting now A go to infinity defines the continuum limit. In
this process, we have to specify however, which states to keep. If we agree to keep
only low-energy excitations of the field ¢, the contribution of the discontinuity at
7A is dampened by the standard e-prescription for distributions by a factor e 7¢%,
This vanishes if we perform the limit A — « before £ — 0. This gives the correct
two-point function for chiral fermions in the continuum limit,

1 1
Wiy =W))=-—— (2.20)

2ai x—y —ie
Eq. (2.18) on the other hand is in Fourier space
(6,6,0.=d(p—q)lpl, (2.21)
which does not give the standard current—current correlation function p@(p) in
the continuum limit. Where does the negative p-part in (2.21) come from? Its

origin lies again in the compactness of momentum space. Consider the contribu-
tions from the fermions according to Wick’s theorem,

(Gd) = [ da’ Gl by =iy
= [dp’ da’ <, Cih,, by

=fdp' dg' ©(—q")0(q'—q)d(p' —p—q')d(p ' —q' +q)

=5(p+a) [dp’ O(p—p)O(p"). (2.22)
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Since the above step functions ® have to be understood again in a periodic sense,
we get an overlap also for p < 0 from the fermionic contributions near p’ = 7. This
contribution will be dampened by a factor ¢ “*7; if we consider the e-prescription
to isolate the low-energy contributions of the fermions. Thus building : "y : and
the continuum limit do not commute. The cellular automaton variable ¢ has
fermionic contributions from both ends of the Dirac sea, while the fermionic
current in the continuum limit has only the low-energy part. The crucial role
played by the hamiltonian is therefore to give a selection principle on the states,
which allow a continuum limit.

The model contains up to now only right-moving spins. Let us now attach a
label “R” to the fields and operators corresponding to these spins, and subse-
quently add left-going particles, characterized by spins o at each site x. We have
the evolution law

ol =0k, (2.23)

X, X
There are the corresponding Pauli matrices 7-¢

Jordan—Wigner transformation

o[ T o) omt-

=X—n

, and now we perform the

IT %, (2.24)

y=x-n

x—1
S|

where we made sure that also ¢ anticommute with .
The total hamiltonian replacing (2.10) is now

z p(dJRdR b3t =

Xn‘, (2.25)

29T 2

N, N,

where y? is the third Pauli matrix acting on the spinor (ﬁ).
In the continuum limit this hamiltonian approaches

H- Y. #(x), Z(x)- —iblyoy,, (2.26)

the Dirac hamiltonian for massless non-chiral fermions.

The analysis of this model is no more difficult than the previous one. The left-
and right-going sectors simply do not communicate with each other.

From a physical point of view this model is uninteresting. There is no interac-
tion among left- and right-going particles. Indeed, any pattern of translationally
invariant correlation functions among the leftgoers or among the rightgoers will
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tend to be preserved in time because of the absence of interactions. In terms of
quantum field theory: there is formally a wave function for each second-quantized
particle, but the wave functions do not spread, and therefore there is no truly
quantum mechanical behavior, yet.

In sect. 3 however we introduce a mass term. The wave functions for massive
particles do spread in time, even in one space dimension, so then we do get truly
quantum mechanical behavior. Furthermore, there will be interactions resulting
into a non-trivial scattering matrix.

3. Simulation of a massive Dirac theory

In a quantum field theory fermions become massive if one adds a term

dimy'y, (3.1)

to the hamiltonian density (2.25). It corresponds to

m(GRel +ylel), (3.2)

which implies that a leftgoer turns into a rightgoer or vice versa. In fact, any kind
of interaction at the fundamental level that could produce a transition among left-
and rightgoers would ultimately produce such a mass term. Of course it breaks the
separate conservation of the left and right chiral currents.

Hence our philosophy is that if we allow our cellular automaton to turn every
now and then a rightgoer into a leftgoer or vice versa, this will result into a mass
term of the kind (3.2). If this interaction is rare, the resulting mass term will be
small.

So here is our new evolution law:

At every tick of our clock:

(i) the leftgoers move one step to the left and the rightgoers move one step to the
right, as they did in sect. 2;

(ii) then the automaton checks at every site whether a leftmover is to be switched
into a rightmover, or a rightmover into a leftmover. The switch is only made if a
certain condition is met. The simplest example of such a condition is the
following. At every site x we consider a set D, of neighboring sites (for instance 3
neighbors at the left and 3 neighbors at the right). The condition is then

agl=1-ok, (ryL = O'yR forall yeD,. (3.3)

In a rough approximation the probability for a switch at each site at each
moment is 2P, where D is the dimension of D,, so we can make the effect of this
“mass correction” as small as we wish.
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It should be clear that this latter revision of the evolution law makes a big
difference. Our automaton is now highly non-trivial, and indeed suited for com-
puter experiments. In many runs we saw that a system of this sort may turn into an
apparently chaotic mode.

However, in our quantum field theoretical description, the new correction may
be handled perturbatively. The perturbation expansion is with respect to the small
parameter 22,

After each time step the system evolves according to the evolution operator

U=UU, (3.4)

where U, is the unperturbed evolution operator:

— n—iH —
U() =e 0 =

by mﬁ;y%ﬁp. (3.5)

27
N,

In evaluating U, we encounter a little problem: the Jordan—Wigner transforma-
tion (2.24) determines the sign of ' and ¥R to depend on the number of
rightgoers and leftgoers in all cells where a 7° contributes; this number is not

constant. If we describe the switch by means of the operator

K, =¢"o8 + iy = viv'y,, (3.6)

then the new state obtains a minus sign as phase factor in 50% of the cases.

It is not difficult however to convince oneself that this minus sign is harmless. If
the evolution operator U switches the sign in front of the basis elements every now
and then, this will not affect the probabilities P(o) that one is ultimately inter-
ested in. Again, we have a mathematical artifact of our calculational procedures
that will not affect the ultimate results.

The eigenvalues of K, are +1 and 0. So there is a basis in which

K,=diag(—1,0, 1). (3.7)
Here, the cases +1 correspond to the switch; 0 applies to the states where there
are either two or zero particles at the site x.

To describe U,, we want an operator that is 1 if there are two or zero particles,
and performs the switch if there is one particle. Or:

i
V. =diag(—1, 1, 1)=IL+KX—KX2=exp7(Kf—KX). (3.8)
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Next, we want a projection operator P, that is 1 if there are zero or two particles
at site x, and else zero. This is the operator

P, =diag(0,1,0)=1-K2. (3.9)

The operator U, that decides to switch and performs the switch at the site x is
now

LI~ i
U, =(v,) " =exp(-(1<f—1<x) IT (1 —Kyz)). (3.10)

2 ye€D

X

The different operators K, all commute with each other. Therefore we can
write

i
U1=]_[Ux=exp2(7(Kf—Kx) I'T (]1—1<3,)). (3.11)
Our hamiltonian H will be defined by
U=UU,=¢e ", (3.12)
but it will be more convenient to use

U=UMUUN? = e, (3.13)

H and H are unitarily equivalent.

4. Calculation of the mass and interaction terms

For all states that we are interested in, U, may be considered to be the
exponent of a “small” quantity. How can we see that the exponent in (3.11) is
small?

At this point we will decide to consider only the vacuum of the unperturbed,
massless theory and its lowest-energy excitations. It is this class of states for which
all matrix elements of the exponent in (3.11) will be small. To see this, we have to
normal-order all operators in there. Normal ordering means that, by using the
commutation rules, all operators that create a particle are shifted to the left and
all annihilation operators to the right. The creation operators are

z,[;; (p>0) and zﬁp (p<0) (4.1)

and their hermitian conjugates are the annihilation operators.
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One writes

:AB:

—BA if A is an annihilation operator
and B a creation operator,
=AB otherwise.

(the minus sign occurs of course as long as we work with fermionic operators.
Similarly one can normal-order larger products,

Normal ordering is a way to be economical. A matrix element of a normal-
ordered product of N operators is non-vanishing only if the bra and the ket
together contain at least N particles.

We have

A;d/q = '/;;d;q : +6pq0( —p),

wplp; = :'ppdj; 1 +8,,0(p),

Wi, = gly,  +f(x—y),

Yl = gl +g(x—y), (4.2)

with in the large-N limit (z integer):

f(2z) = 38,,,
f2z+1)=i/m(2z+ 1),
g(z) =f*(2). (4.3)

Larger normal products can be obtained by applying (4.2) successively:

wid’yw2= :d]:"[/ydfz:+f(x—y)¢z—f(x_z)¢’y’ (44)

etc.
We find in (3.11),

K2-K =:K}-K,+11;

1-K}=:31-K}. (4.5)
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To work out the product in (3.11) we have to normal-order also the different
factors. This becomes trivial if D, only contains neighbors y at an even distance
from x, because then f(x —y)=0. In that case we find

U=e, V=YV, (4.6)

=201l ylyly o+ ¥ :(w;ylwy)zz*:(w;ylwx)2:+o(:(¢T¢)3:)). (4.7)

yeD,

Note that it is not at all necessary to take only the even distances in the set D ;
there are objections one can make against choosing D, this way (see later). We
only did this to get the simple expression (4.7). In the other cases we just get some
extra terms due to normal ordering.

Now we must find H such that

~iHy/2 o =iV o~iHo/2

e e =e M, (4.8)

According to the Baker—Campbell-Hausdorff formula H can be expressed as a
series whose terms are H,, V' and commutators of these:

H=H,+V+5[Hy, [Hy, V1] + 5[ Ho» [Ho, [Ho, [Ho, V] + -
+0(V?), (4.9)
where the terms of order V2 start as
LV, [Hy, V] +.... (4.10)

(If H was not defined symmetrically as in (5.8) one would get more commutator
terms in (4.9).)

Now we claim that for a good understanding of the large-scale behavior of this
theory all higher-order terms in (4.9) are relatively unimportant.

The series (4.10), quadratic in V, is of order 27 2% since V is of order 27°. But
also the higher commutators linear in ¥ in the series (4.9) are small corrections.
Note that

[viay, v'By] =¢'[ 4, Bly, (4.11)
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so that
[Ho, 'y w] =o' [¥p, v']v = iv'y?py, (4.12)
and
[Ho» [Ho why'w]] = uly'pw. (4.13)

Thus, the higher commutators contain higher derivatives of ¢. There are two
ways to understand why such terms may be neglected. One is by noticing that we
are interested in low-energy excitations around the vacuum state. These corre-
spond to particles with small momenta p. Hence the operator (4.13) acting on
them is small. Alternatively, one may view these operators as what is called
marginal couplings in lattice quantum field theories. They are non-renormalizable.
Their strengths are relatively small even at the lattice scale. If we scale to a
low-energy domain their effects become negligible.

In the same vein, the terms of order (¢ Ty)* and higher in (4.7) may be neglected
because they are marginal. The dominant terms in the hamiltonian describing the
low-energy domain are

H =iy, +my'y'y +g(s'y'v), (4.14)
where with our choice for D,
m=2"P"1g, g=2"P"Y(D-1)m. (4.15)

Indeed, this is a massive Dirac theory with a weak interaction among the fermions.
The terms in (4.14) are normal ordered with respect to the massless vacuum. This
means that in a Feynman diagram expansion for the scattering matrix of the theory
one still has vacuum bubble diagrams to take into account.

Note that our theory is well defined as a perturbation expansion in the small
parameter 2727, All terms that we neglect so far can be corrected for in terms of
this expansion.

But if one leaves the domain where this expansion is expected to make sense
(the low-energy, large-distance domain), then no convergence of the series is
guaranteed. What this means for the cellular automaton itself is not entirely clear.
A problem is that in the original system energy can only be defined modulo 27. To
perform a translation over fractional amounts of time is really only a mathematical
artifact, void of any rigorous physical meaning. Does this mean that non-perturba-
tive effects can violate energy conservation by integer multiples of 27? This is not
entirely clear to us. It would mean that even if we start with a low-energy
configuration, the system may run away from it. Or: if we start with a configuration
with the correlation functions typical for the quantum field theoretical vacuum or
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small excitations away from that, these correlations may perhaps not stay forever
but dissipate away.

In the real world there is a quite different mechanism that protects energy in
being exactly conserved: the coupling to gravity. To incorporate anything like
general coordinate invariance (in particular with respect to the time coordinate) is
a tricky thing to try in a cellular automaton. It could be that without the
gravitational force no exactly conserved energy is possible in a cellular automaton.

5. Numerical simulation

This section contains a discussion of the numerical simulations we performed to
treat our model and the conclusions to be drawn from them.

The problem for determining the correlation functions of the cellular automa-
ton variables is, of course, that one does not know the vacuum state in general. An
arbitrary state may contain arbitrarily high energy excitations. Some kind of
cooling mechanism, which drives an arbitrary state to the vacuum would be
extremely useful. In the real world, the expansion of he universe does such a job.
One might therefore try to invent an expanding version of the automaton, in which
at each step some new cells are added. In principle this is a possibility. In practice
however there turned out to be a problem. In our models energy is conserved only
modulo 27r. This may imply that there can be energy production in units of 27r.
Because of this we found that an expanding cellular automaton rapidly heats up.
This is thus not a very promising approach.

There is another way to cool at least a given finite region of the interacting
theory. Suppose that we switch on the interaction in a region of space with size L.
If there exists a local hamiltonian density for the interacting theory, we can join it
to the free hamiltonian density (2.25) outside L. Outside we know however how
the vacuum looks. In this way we can control the energy-flow into L, i.e. it is zero
if the state outside is the free vacuum. We can actually start with the free vacuum
as initial state. With respect to the interacting vacuum inside L this state has a lot
of excitations, which should however dissolve gradually into the free vacuum
outside. This would effectively cool down the interacting region. Viewed from the
outside, after an initial burst of energy, the system should again relax to the
vacuum state. The assumption of a local hamiltonian density is crucial here, since
it allows to consider the inside and outside regions separately.

In this approach it is also not quite clear whether there will be energy
production in units of 27, but at least we have a good idea of how to cool the
system at the sides. So this was what we decided to study numerically in more
detail. The first thing to do is to generate the free Dirac vacuum according to the
Boltzmann weight (2.15). The total number of participating configurations is
however far too big (O(2"), with N the total number of cells) to be treated exactly
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by any computer. We have to approximate the canonical ensemble by a Monte
Carlo procedure. Recall that according to (2.13), the vacuum state is a superposi-
tion of our basis vectors |oy, o, ... gy ) With the corresponding weight and phase.
As explained above, we shall be interested only in the correlation functions of the
o-operators and therefore the relative phases of the members of the vacuum
superposition will not matter as they cancel in expressions like {o ... ). This fact
gives us the possibility of treating the vacuum state as a statistical ensemble.

Next we create a separate set of cells which represents the interaction region
(with size L) and which will be called shortly the inside region in distinction with
the region where the free vacuum was created. The latter we call outside region.
The evoluton of the content of the cells in the inside region is according to the

I 0.02 {(a)
I @ 5t 8
@
r—o.oz
QO exact
@ simulated
W inside_at_t=800
T [Jinside_at_t=900
8

Fig. 1. Results from the simulation experiment with L =96 and relaxation time 900. (a) The two-point

correlation function inside the interaction region. (b) The left—left correlation function measured

outside the interaction region. The total size of the automaton is N =901 cells and the number of

Monte Carlo samples is 107. The initial content of the interaction region is taken randomly for each
MC sample.
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Fig. 1. (continued).

interacting rule. This interaction region is open on both sides, so at each time step
we must “feed” it from the left and from the right with right and left movers
correspondingly. To simulate the free vacuum outside we feed the interaction
region with the generated Dirac vacuum. For this situation it should actually not
matter, how the initial state looks inside the interaction region. We then measure
the correlation functions before this evolution, inside and outside L after the
evolution for a certain relaxation time. This gives us information about the quality
of the simulation of the free vacuum, the correlation of the ¢’s in the putative
interacting vacuum and the relaxation outside respectively.

Let us now mention some technical details of the Monte Carlo procedure. We
use a standard Metropolis algorithm. Since we have to conserve the total number
of plus spins, we propose an exchange in position of a random plus-minus pair. If
the ratio of the Boltzmann factors of the new over the old configuration is bigger
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than one, we accept the new configuration; if it is smaller than one, we accept it
with the probability given by this ratio. We obtained the best results when we took
this output configuration and perform on it a random rotation.

The main quantity of all our computer experiments is the two-point connected
correlation function <axay>. Since we can compare the measured two-point
correlation function in the free region with the exact one, we have a direct control
over the accuracy of the simulation. It turned out that to get an accurate third
digit, we needed about ten million configurations for the size N of the automaton
of the order of a few hundred. The computation time for this is of the order of a
few days on a DEC station 5000 /200. This poses an upper bound on the feasibility
of our method, which is actually sufficient to get outside the boundary effects only
for the ultimate case when the interactions described in sect. 4 involve only the

(a)
~0.02
[
e % 5 s & § 85 5 & &
) . . .
@
r-0.02
QO exact
@ simulated
| M inside_at_t=800
[inside_at_t=900
8

Fig. 2. The same as fig. 1 except that initiaily the content of the interaction region had short-range
correlations.
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Fig. 2. (continued).

closest two neighboirs of each cell (therefore D = 2). All our results concern only
this case.

Figs. 1a, b summarize the results of a typical such simulation. Black and white
points correspond to the simulated and theoretical two-point correlation functions
at distances 1, 2, etc. The coincidence of these points indicates the quality of our
Monte Carlo simulation. The black and white squares represent the measured
two-point function (inside the interaction region in fig. 1a and outside in fig. 1b)
for two values of the relaxation time. Their coincidence is indicative for a
relaxation in both regions. Actually it turns out that the relaxation occurs much
faster outside.

We now discuss the results obtained from our simulation experiments. The
clearest signal that something went wrong is presented by the correlations outside.
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They relax to stationary values, which are however not the expected free correla-
tions. There is a peak at roughly half the value of D,. This is clearly a significant
effect. Since the one-point function relaxes to the vacuum value, there is no charge
produced. The only other physical observable is energy. That means that there
must be a constant energy production inside the massive region, the system does
heat up! This situation seems to be rather generic for this type of automata. We
did some runs with different types of interactions, i.e. when the left-right exchange
in a given cell is performed when there is an unequal left-right content on both
sides of this cell. There the situation seems to be even worse, the correlations relax
to approximately zero. In fact, the approximate restoration of the free correlations
outside is due to a reflection effect (see below). The correlation functions inside
the massive regions are strongly damped, actually stronger than could be expected

(a)
]

r 0.02

)
om

r-0.02

Q exact

@ simulated

| l inside_at_t=800
[Jinside_at_t=800

Fig. 3. The same as fig. 1 except that the initial content of the interaction region was taken to be the
corresponding piece of the free vacuum.
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Fig. 3. (continued).

from an exponential damping with a mass of the order of the estimated value
O(27P) (see (4.15)). An exponential decay is however rather difficult to verify,
since it requires knowledge of the correlation for large distances. This requires
large samples to get the needed accuracy, since one has to avoid the effects of the
boundary and a too small relaxation time. Both these could introduce fake
correlations.

A look at fig. 6a gives a intuitive insight of what happens in this particular slice
of our Monte Carlo simulation (the latter comprises superimposed millions of
these pictures). Each even (odd) dot in fig. 6a represents an occupied cell by a left
(right) goer. We see that inside the interaction region self-created thick walls are
reflecting everything. That suggests that inside correlations will “remember” the
initial setup. at the same time the approximate similarity between the outgoing
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Fig. 4. Three characteristic values of the two-point correlation function outside the interaction region

taken from computer experiments with different sizes of this region and different relaxation times. This

is to illustrate the independence of these values on the corresponding parameters. The range of L is
from 51 to 196 cells.

correlations and the free one is due to pure reflection from any of the inside walls.
This is more precisely illustrated on fig. 1-3. On these figures we show the
simulation results for different initial setups in the interaction region. Fig. la
depicts the inside correlations obtained with a random initial while fig. 2a corre-
sponds to short-distance correlated initial values. Finally fig. 3a shows the simula-
tion result for the free vacuum initially in the interaction region. We see therefore
that the final correlations in all these cases are different and in some sense
preserve the information set initially. At the same time the corresponding outside
two-point correlations, as shown on figs. 1b, 2b and 3b are very similar. More
rigorously this is shown on fig. 4 where we present three different values of the
two-point correlation function in the outside region (taken at distances 1, 2 and 3)
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Fig. 5. Two-point left—right time—time correlation function measured in a point close to the border of
the interaction region.

obtained from different Monte Carlo experiments with different sizes of the
interaction region. The values coincide within the precision, which confirms the
conclusion that the reflection effects dominate.

The reflection phenomena are Investigated quantitatively by measuring
{a'ad! ™), the left-right connected two-point time~time correlation function in
the same space point at the border of the interaction region. The results are
depicted in fig. 5. where the horizontal axis represents s, the time delay, and the
vertical the normalized connected two-point correlation function. The high peaks
correspond to reflections (and thus self-correlations) from different walls inside
the region. The deep negative values are due to the anti-correlation of the
reflected free-vacuum at odd distances.

As stated above, we also considered other forms of left—right interactions.
Specifically, fig. 6b shows the evolution based on the similar rule as the above
except that the left—right flip occurs if the neighboring sites are unequal. We see
no walls inside, but the left-left correlations outside the interaction region relax to
zero and therefore make this case even worse. In conclusion we must say that the
method of relaxation in a finite region does not produce the correlations expected
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Fig. 6. Two-dimensional segment of the time (vertical, downwards) evolution for the cellular automata
with equality checks (a) and unequality checks (b) at neighboring sites inside the interaction region. The
interaction region is bordered on both sides by clearly visible free regions which receive random inputs.

from field theoretic considerations. It is not clear at this stage whether this is a
failure of the whole cellular automaton approach or this is an artefact of our
particular implementation. It could be that there still exists a satisfactory local
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hamiltonian density, but of cellular automaton type only deep inside and far
outside the interaction region. This would mean that around the boundaries one
has to take into account also the phases of the individual configurations. In such a
case the use of a cellular automaton dynamics for finding the interactive vacuum is
extremely limited. Alternative methods other than the ones described here are
lacking so far, though we have certain ideas to be described later.
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Theoretical Physics at the University of Utrecht for the hospitality.
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