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A certainclass of cellular automatain 1 space + 1 time dimension is shownto be closely
relatedto quantumfield theoriescontainingDirac fermions. In the masslesscasethis relation
canbe studiedanalytically, while theintroduction of Dirac massrequiresnumericalsimulations.
We showthat in the last casethe cellular automatondescribesthecorrespondingfield theory
only approximately.

1. Introduction

A cellularautomatonis a largearrayof elementsor “cells”, usuallysituatedon
a oneor moredimensionallattice; at eachcell oneor severaldynamicalvariables
(we will call them spins)cantake a finite numberof differentvalues.At eachtick

of an externalclockthe contentsof all cells areupdatedaccordingto some law of
evolution. For eachparticular cell this law may be very simple, involving only its
nearestneighborsbesidesitself. The systemas a whole canthen behavein a very
complexway, andit is ideally suitedfor computerinvestigations.

The automataconsideredin this paperare [1] deterministic,which meansthat
there is no random numbergeneratorin the local law of evolution, and time
reversible,which meansthat any configurationcan be extrapolatedbackwardsin
time as easily as forward in time. We considerin this paperonly the simplesttype
automata— the boolean ones.Such an automatoncomprisesa set of cells o~,,

= 1,. .., N, each taking two values 0 or 1. The state of the automaton,o-, is
definedby the valuesof all cells.

To apply the conceptof cellular automataevolution to the field theoretical
modelswe exploit the philosophyexplainedby oneof the authorsin earlierpapers
[2]. We start by introducing a Hilbert space such that each state o- of our
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automatoncorrespondsto a basiselement o~.So for an arbitraryvector ~/i> (a
superpositionof u)) we candefinethe probabilityof a given statea- as

P(a-) = (uI~>I2. (1.1)

At this point it will be clear that the phaseangles in thesestatevectors are
spurious;we may choosethem any way we like. However, we will discover that
there are ways to reproducethe evolution of a- by writing down a Schrodinger
equationfor ~fi:

d

ã~HIJ~=~iHH1I). (1.2)

At integer time t anybasis elemento- evolvesinto a-(t) in accordanceto the law of
the cellular automaton.But this equation now also prescribeshow the phase

factors evolve.
There are many different choicesfor H that all reproducethe samecellular

automaton,but only a small subclassof theseare extensive:

H=~Z(x), (1.3)
x

where ~~r(x) is a hamiltonian density.It is hamiltoniansof the kind (1.3) that

would correspondto genuinequantumfield theories.Oncewe chooseour hamilto-
nian to be of this form we discovertwo things: first, techniquesof quantumfield
theorycanbe usedto describephenomenaat distancescalesmuch larger than the
lattice length, and secondly,phasefactors amongstatesbecomephysically impor-
tant. Thus, quantummechanicalphasefactors are crucially linked to the decom-
posability(1.3) of the hamiltonian.

We will also seehowever that (1.3) cannotbe exactly true in mostcases.The
Hamilton density~~r(x) cannotbe completelylocal, i.e. dependonly on x andits
direct neighbors. What will happen is that Z(x) is an infinite sum, whose
successiveterms involve interactionsamong increasinglydistant neighbors.This
forces us to limit ourselvesto only a subclassof all statesI ~/j>, namely thosefor
which the summationfor Z(x) convergessufficiently rapidly. In general,the states

~), for which the matrix elements(i/i I Z(x)I ~‘) convergerapidly are those
statesfor which the total energyE is closeto the vacuumvalue: IE — E0 I -~ 2~
(in naturalunits).

From the point of view of quantumfield theory this constraintis only natural:
we shouldnot allow for too energeticparticleconfigurations;to describethoseone
hasto go backto the completedescriptionof the original cellularautomaton.

But if onewantsto checkour claims with computersimulationsthis condition is
very difficult; one never knows whether the initial state correspondsto particles
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with sufficiently low total energy; indeed, one starts to work with the basis
elementsI o, for which of coursethe constraintdoesnot hold. One then hasto
introducelargeensemblesandcomputeaverages.

In practice also anotherproblem shows up: it is very difficult to devise a
hamiltonianin such a way that it doesnot fluctuatesomewhatbetweentwo time
steps.As soonas our hamiltonian has such a periodic time dependenceone may

expectviolation of energyconservationthat givesrise to spontaneousgenerationof
“energeticshowers” of a kind not wanted in a realistic field theoretical model.
This may explainwhy our attemptsat computersimulations,to be explainedlater,
sometimesgive unexpectedresults.

The paperis organizedas follows. In sect. 2 we presenta particular automaton

evolution and build the correspondingHilbert space.We also show that in the
continuumlimit this quantumsystemreproducesexactlythe masslessFermi field
theory. Sect. 3 is devotedto an attempt to perturb the evolution rule for the
automatonin order to obtain the massiveDirac theoryin the continuumlimit. The
analyticalcalculationsfor the lastcaseare presentedin sect. 4 andthe numerical
emulationsfor this automatonarediscussedin sect.5.

2. The one-dimensionalshift automaton

The automaton to be consideredfirst is physically very trivial, but useful to
elucidateour techniques.Divide the circle into N cells. In eachcell x a spin a-5
can takethe values0 and 1. The evolution equationis takento be

u~÷1=a-~1~, a-Nt =a-~ (2.1)

or, in otherwords, the spinsshift to the right at constantspeed.
The Hubert spacehas 2N dimensions; it is spannedby the basis elements

{kri, a-2,.. .,oN)}. We canintroducethe Pauli matricesr~,a = 1,2,3, at eachsite

x. They obey

[~,T~] =2i~555E0~T~. (2.2)

We write

ff5=T~Tx. (2.3)

If N is odd, N = 2n + 1, we can perform a Jordan—Wignertransformationas
follows:

~XT~_n ®1T~~~n±1® ... ®T~...1 ®TX ® ~x+1 ® ® ~x+n’ (2.4)
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so that

~ = ~ {~~‘‘i’~}= 0, (2.5)

~ = ~Px—t,o. (2.6)

This allows us, in a standardway, to performthe discreteFourier transform:

~ w=e
2~”T, (2.7)

suchthat

{~‘~q}~pq’ {~p’~q}=°. (2.8)

The time evolution of i/ia is then

= Ut(t)~~
0U(t)= WPt (2.9)

We canthereforetake as our hamiltonian

2~-

H = —k- p=—n + const., U(t) = e_~Ht (2.10)

wherethe constantis chosensuch that thelowest energylevel is zero.In the above
caseit is ~n(n + 1)/N. This correspondsto normalorderingof the operatorsiJi~

with respectto the lowest energystate.
To takethe continuumlimit of (2.10) we proceedin two steps.First we obtain

the infinite-volume limit N —* ~ of (2.10) in x-space,which is

(— 1)~~H= ~ :~/J.~P~:,x,y=—~...+oo.
x~y x—y

Next we go to the compactmomentumspaceandobtain the expression

H=fdpp:~~:.

After rescalingthe momentap —* Ap andfield operators~s—~ i/i/ V~,the hamilto-
nian obeys in the limit A —* the condition(1.3):

H -~ EZ( x), Z(x) —~ —i : :, (2.11)
x
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while in the discretesystem~ is replacedby an infinite seriesof finite displace-
ment operators(from the Fourier transformof p in (2.10)).Forour purposesH is
sufficient local to applyquantumfield theory. Formoreon the continuumlimit see
below.

Notice also that the choice (2.10) is not unique; we could for instancehave
chosenthe boundaries—n, n different.

In quantum field theory the hamiltonian(2.11) is recognizedto be the one
describingmassless,chiral Dirac fermions. The lowest-energystateof (2.10), the
vacuumstate JO), is then definedby

~J0)=0 (p~—l) _

~ I0)=~~...~~Ia-=0). (2.12)
~i~j0)=0 (p~O)

This stateis obviouslystationaryin time. What are the correspondingP(a-)?
To computethesewe mustFourier transformback to x-space:

j0)=N~2fl ( ~~P5P~t)Ia-=O)
p<o

= N~~2 ~ WX1W2X2 . . .. . I a- = 0)
{x

1 x,,}

= N~~
2 ~ ~ (~

1)Perm ~Xpj + ... +flXp~t I a- = 0)
x~<x2< ... <x,, perm

~ det(w’
5i)Jx

1,...x~), (2.13)
x<x2<... <x~ (u)

where,up to a phasefactor ±1, the vector I x1 x~)is the statewith a- = 1 at
the sites x1,. .., x,~,and a-= 0 elsewhere.

The amplitude is the Van derMondedeterminant:

1 ... 1
taxi .. . (lix,,

A =N~~
2dt

{x

1 x,,) :

= ~ 1)/2 N~~
2fl sin—( x

1 —x1). (2.14)
N
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We seethat all allowedstateshaveexactlyn spinsoneandn + 1 spinszero.Their
probabilitiesaregiven by the squareof (2.14). We canwrite thesealso as

A2(xi,...,xn)=Cexp(2~ln d11), (2.15)
i <1

with

d~1= 2 sin~(x~—x1), (2.16)

which happensto be the distancein two-dimensionalspacebetweenthe points x,
and x1 on the unit circle. Indeed,(2.15) is the Boltzmannfactor of a two-dimen-
sional Coulomb gasconfinedto the unit circle, at a certaintemperature.

To computecorrelationfunctionswe can either use(2.15) directly or compute

the vacuumexpectationvaluesof thecorrespondingoperatorsusingtheexpression
(2.12) for our vacuumstate.

For the two-point fermion correlationfunction, onefinds in the limit N —* ~:

1 1

—~-, x—yodd

x-yeven~O (2.17)

x=y.

From (2.17) one finds that in the same limit:

1 1
2’ x—yodd

iT (x-y)
Ka-5a-~)- (a-)2= (2.18)

0, x—yeven�O
x=y.

Furthermore, if in the large-N limit one averagesover all spin configurations
occurring on the odd sites, one finds that the spins at the even sitesbecome
completelyuncorrelated(andvice-versathe samething).

At thispoint two commentson the form of the correlationfunctions(2.17) and
(2.18) are in order. The first one concernsthe origin of the oscillation between
evenandodd pointsandthe secondoneis aboutthe chiralanomaly.Onewould of
courselike to somehowidentify the cellularautomatonvariablea-5 — (a-5) with the
fermionic currentp(x) = : qi~i~: in the continuumlimit. It is howeverwell known
that this currentonly commutesup to the Schwingerterm ~‘(x — y). This means
that thereshouldbe an imaginarypart in the correlation(2.18).We will seein the
following that thesetwo questionsare related.



G. ‘t Hooftet at. / Deterministiccellularautomaton 501

The crucial point is the compactness of momentumspace(after going to the
limit N—s ~ we have also continuousmomenta).Eq. (2.17) is now in p-space:

~ 0(p). (2.19)

The abovecorrelation function has in fact two discontinuities,one at p = 0 and
one at p = iT. The long-distancebehaviorgets thereforetwo contributions. p = 0
gives 1/2iTL% and the discontinuity at p = iT gives —e’~5/2iTixbecause of the
different sign of the step and the shift by ir in momentumspace.Thesetwo
contributions together characterizethe long-distancebehaviorcompletely. The
resulting oscillation is rather harmless if we go to the continuum limit. We
introducethedimensionfulconstantA anddefinethe physicalsizeof the momen-
tum circle to be 2irA, Letting now A go to infinity definesthe continuumlimit. In
this process,we haveto specifyhowever,which statesto keep.If we agreeto keep
only low-energyexcitationsof the field ~i, the contributionof the discontinuity at
iTA is dampenedby the standardc-prescriptionfor distributionsby a factor e~t.
This vanishesif we perform the limit A —~ ~ before c —~0. This gives the correct
two-point function for chiral fermionsin the continuumlimit,

1 1
(2.20)

2iri x—y—ic

Eq. (2.18)on the otherhand is in Fourier space

(~p~q)c(pq) p1, (2.21)

which doesnot give the standardcurrent—currentcorrelationfunction p@(p) in
the continuum limit. Where does the negativep-part in (2.21) comefrom? Its
origin lies again in the compactnessof momentumspace.Considerthe contribu-
tions from the fermions accordingto Wick’s theorem,

(~p~q)= fdp’ dq’ ~ :: ~q~q:)

= fdp’ dq’ ~ ~‘~q)

=fdp’ dq’ 0(—q’)O(q’ —q)~(p’—p—q’)~(p’—q’ +q)

= ~(p +q)fdp’ 0(p —p’)O(p’). (2.22)
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Since the abovestepfunctions 0 haveto beunderstoodagainin a periodicsense,
we get an overlapalso for p � 0 from thefermioniccontributionsnearp’ = iT. This
contributionwill bedampenedby a factore~’t’~if we considerthe c-prescription
to isolatethe low-energycontributionsof the fermions. Thus building : ~/~s: and
the continuum limit do not commute. The cellular automatonvariable a- has
fermionic contributions from both ends of the Dirac sea, while the fermionic
current in the continuum limit has only the low-energy part. The crucial role
playedby the hamiltonianis thereforeto give a selectionprinciple on the states,
which allow a continuumlimit.

The model contains up to now only right-moving spins. Let us now attacha
label “R” to the fields and operatorscorrespondingto thesespins, and subse-
quently addleft-going particles,characterizedby spins ~ at eachsite x. We have
the evolutionlaw

(2.23)

There are the correspondingPauli matrices T~, and now we perform the
Jordan—Wignertransformation

x—1

~= fl T~ ®T~,
y =x—n

x—1 n

~= (~r~) ØTXLUT~3, (2.24)

wherewe madesurethat also ~jA’~ anticommutewith

The total hamiltonian replacing (2.10) is now

H= ~ = ~ (2.25)

where y3 is the third Pauli matrix acting on the spinor (p).
In the continuum limit this hamiltonian approaches

H—*>JZ(x), ~ (2.26)
5

the Dirac hamiltonian for massless non-chiral fermions.
The analysis of this model is no more difficult than the previous one. The left-

andright-going sectorssimply do not communicatewith eachother.
From a physical point of view this model is uninteresting.There is no interac-

tion amongleft- and right-going particles.Indeed, any patternof translationally
invariant correlation functions amongthe leftgoersor amongthe rightgoerswill



G. ‘t Hooft etat. / Deterministiccellular automaton 503

tend to be preserved in time because of the absence of interactions. In terms of
quantum field theory: there is formally a wave function for each second-quantized
particle, but the wave functions do not spread,and thereforethere is no truly
quantummechanicalbehavior,yet.

In sect. 3 howeverwe introduce a massterm.The wave functionsfor massive
particlesdo spreadin time, evenin one spacedimension,so thenwe do get truly
quantum mechanicalbehavior. Furthermore,therewill be interactionsresulting

into a non-trivial scatteringmatrix.

3. Simulation of a massiveDirac theory

In a quantumfield theory fermionsbecomemassiveif oneaddsa term

(3.1)

to the hamiltonian density (2.25). It corresponds to

~ (3.2)

which implies that a leftgoer turns into a rightgoer or vice versa. In fact, any kind
of interaction at the fundamental level that could produce a transition among left-

and rightgoers would ultimately produce such a mass term. Of course it breaks the
separate conservation of the left and right chiral currents.

Hence our philosophy is that if we allow our cellular automaton to turn every
now and then a rightgoer into a leftgoer or vice versa, this will result into a mass

term of the kind (3.2). If this interaction is rare, the resulting mass term will be
small.

So here is our new evolutionlaw:
At every tick of our clock:
(i) the Ieftgoers move one step to the left and the rightgoers move one step to the
right, as they did in sect. 2;
(ii) then the automaton checks at every site whether a leftmover is to be switched
into a rightmover, or a rightmover into a leftmover. The switch is only made if a
certain condition is met. The simplest example of such a condition is the

following. At every sitex we considera set D5 of neighboringsites(for instance3
neighborsat the left and3 neighborsat the right). The condition is then

a-5L = 1 — a-5’~, a-~= a-~ for all y E D5. (3.3)

In a rough approximationthe probability for a switch at each site at each
momentis2~,where D is thedimensionof D5, sowe canmakethe effect of this
“mass correction” as small as we wish.
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It should be clear that this latter revision of the evolution law makes a big

difference.Our automatonis now highly non-trivial, and indeedsuitedfor com-
puterexperiments.In many runswe sawthat a systemof this sort may turn into an
apparentlychaoticmode.

However, in our quantumfield theoreticaldescription,the new correctionmay

behandledperturbatively.The perturbationexpansionis with respectto the small
parameter

2—D

After each time step the system evolves according to the evolutionoperator

U=U1U0, (3.4)

where U0 is the unperturbedevolutionoperator:

2ir
U0=e”°, ~ (3.5)

In evaluating U1 we encountera little problem: the Jordan—Wignertransforma-
tion (2.24) determines the sign of ~ and ~11R to dependon the number of
rightgoers and leftgoers in all cells where a T

3 contributes; this numberis not

constant. If we describe the switch by means of the operator

K
5 = 11,tL~,R+ ~ = ~/i~~y~i5, (3.6)

then the new stateobtainsa minus sign as phase factor in 50% of the cases.
It is not difficult however to convince oneselfthat this minussign is harmless.If

the evolutionoperatorU switchesthe sign in front of the basiselementseverynow
and then, this will not affect the probabilities P(a-) that oneis ultimately inter-
estedin. Again, we havea mathematicalartifact of our calculationalprocedures
that will not affect the ultimateresults.

The eigenvaluesof K5 are ±1 and0. So thereis a basis in which

K5=diag(—1,O, 1). (3.7)

Here,the cases±1 correspondto the switch; 0 applies to the stateswherethere
areeithertwo or zeroparticlesat the site x.

To describe U1, we want an operatorthat is 1 if there are two or zero particles,

and performs the switch if there is one particle. Or:

V5=diag(—1, 1,1) = ~ +K5—K~=exp—(K~—K5). (3.8)
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Next, we want a projection operatorP5 that is 1 if therearezeroor two particles
at site x, andelsezero. This is the operator

P5=diag(O,1,0) = 11 —K~. (3.9)

The operator l/~ that decidesto switch andperforms the switch at the site x is
now

iTi

U(V)5E~ =exp -~-(K~-K5)fl (~-Kfl . (3.10)
y

The different operatorsK5 all commutewith eachother. Therefore we can
write

Ui=~Ux=exP~(~(K~_Kx)y~(1_K~))• (3.11)

Our hamiltonianH will be definedby

U=U1U0=e’, (3.12)

but it will be moreconvenientto use

U = UO’~
2UIUQ’~2= e”; (3.13)

H and H areunitarily equivalent.

4. Calculation of the massand interaction terms

For all states that we are interestedin, U~ may be consideredto be the
exponentof a “small” quantity. How can we see that the exponentin (3.11) is
small?

At this point we will decide to consideronly the vacuum of the unperturbed,

masslesstheoryandits lowest-energyexcitations.It is this classof statesfor which
all matrix elementsof the exponentin (3.11)will be small. To seethis, we haveto
normal-orderall operatorsin there. Normal ordering meansthat, by using the
commutationrules,all operatorsthat createa particle are shifted to the left and
all annihilationoperatorsto the right. The creationoperatorsare

~ (p>O) and ç~ (p~O) (4.1)

andtheir hermitianconjugatesare the annihilationoperators.
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Onewrites

AB: = —BA if A is an annihilationoperator

and B a creationoperator,

=AB otherwise.

(the minus sign occursof courseas long as we work with fermionic operators.
Similarly onecan normal-orderlargerproducts,

:ABC...:.

Normal ordering is a way to be economical.A matrix elementof a normal-
orderedproduct of N operatorsis non-vanishingonly if the bra and the ket

together contain at least N particles.
We have

4c;~&q= :i~q~q:+1~pqO(~P),

lyIi= :~ipqi~:+~pqO(p),

c~y= :~~:+f(x-y),

~/‘~‘i4=:~i5~:+g(x—y), (4.2)

with in the large-N limit (z integer):

f(2z) = 2~z0’

f(2z + 1) = i/iT(2z + 1),

g(z)=f*(z). (4.3)

Larger normalproductscanbe obtainedby applying (4.2) successively:

~‘~IY’~=:l/4~IJ~~/J~:+f(x—y)~i~—f(x—z)~/i~, (4.4)

etc.
We find in (3.11),

K~—K5=:K~—K5+~Ji.:,

Ill —K~=:~1I.—K~:. (4.5)
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To work out the product in (3.11) we have to normal-orderalso the different
factors.This becomestrivial if D5 only contains neighbors y at an evendistance
from x, becausethen f(x — y) = 0. In that casewe find

Ul=e~ V=EV5 (46)
S

with

~ç=—~:(K~—K5+~) fl (~—Kfl:2 yED~

~ ~ (4.7)

Note that it is not at all necessaryto take only the evendistancesin the set D5
thereare objectionsone can makeagainstchoosingD5 this way (see later). We
only did this to get the simpleexpression(4.7). In the othercaseswejust get some
extratermsdueto normalordering.

Now we must find H suchthat

e
1f’t~’2e” e’~°”2 = e”. (4.8)

According to the Baker—Campbell—Hausdorffformula H can be expressedas a
serieswhosetermsare H

0, V andcommutatorsof these:

H=H0+ V+ ~[HQ, [H0, V]] + ~O[HO, [H0, [H0, [H0, V]]]] +

+ 0(V
2), (4.9)

wherethe termsof order V2 start as

~[v, [H
0, V]] +.... (4.10)

(If H wasnot definedsymmetricallyas in (5.8) onewould get morecommutator

terms in (4.9).)
Now we claim that for a good understandingof the large-scalebehaviorof this

theoryall higher-ordertermsin (4.9) are relatively unimportant.
The series(4.10),quadraticin V, is of order 22~) sinceV is of order~ But

also the highercommutatorslinear in V in the series(4.9) are small corrections.
Note that

[~ptA~, ~tB~J =~
t[A, B]~p, (4.11)
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so that

[H0, ~/ity1~iI =~p~[y
3p,~I]i~,ty2p~, (4.12)

and

[H
0, [H0, ~iy’~1i~] =~Jtylp

2~j~ (4.13)

Thus, the highercommutatorscontain higherderivativesof ~i. There are two

waysto understandwhy suchtermsmaybe neglected.One is by noticing thatwe
are interestedin low-energy excitations aroundthe vacuum state.Thesecorre-
spondto particleswith small momenta p. Hence the operator(4.13) acting on
them is small. Alternatively, one may view theseoperators as what is called
marginal couplingsin lattice quantumfield theories.They arenon-renormalizable.
Their strengthsare relatively small even at the lattice scale. If we scale to a
low-energydomain their effectsbecomenegligible.

In thesamevein,the termsof order(ç1,t~fj)3andhigherin (4.7) maybe neglected
becausethey aremarginal.The dominanttermsin the hamiltoniandescribingthe
low-energydomain are

H = i~ty30
5~+ m~ty~~+ g(~ty1~)

2 (4.14)

wherewith our choicefor D
5

m = 2’
31iT, g = 2’~~1(D— l)ir. (4.15)

Indeed,this is a massiveDirac theorywith a weak interactionamongthe fermions.
The terms in (4.14) arenormalorderedwith respectto the masslessvacuum.This
meansthat in a Feynmandiagramexpansionfor the scatteringmatrix of the theory
one still hasvacuumbubble diagramsto take into account.

Note that our theory is well definedas a perturbationexpansionin the small
parameter2h1~ All termsthat we neglectso far canbe correctedfor in termsof
this expansion.

But if one leavesthe domain where this expansionis expectedto make sense
(the low-energy, large-distancedomain), then no convergenceof the series is
guaranteed.What this meansfor the cellularautomatonitself is not entirely clear.
A problemis that in theoriginal systemenergy canonly bedefinedmodulo2ir. To
perform a translationoverfractional amountsof time is really only a mathematical
artifact,void of any rigorousphysicalmeaning.Doesthis meanthat non-perturba-
tive effectscanviolate energyconservationby integermultiples of 2iT? This is not
entirely clear to us. It would mean that even if we start with a low-energy
configuration,thesystemmayrun away from it. Or: if we startwith a configuration
with the correlationfunctions typical for the quantumfield theoreticalvacuumor
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small excitationsaway from that, thesecorrelationsmay perhapsnot stay forever
but dissipateaway.

In the realworld thereis a quite different mechanismthat protectsenergyin
being exactly conserved: the coupling to gravity. To incorporate anything like
generalcoordinateinvariance(in particularwith respectto the time coordinate)is
a tricky thing to try in a cellular automaton. It could be that without the
gravitationalforce no exactlyconservedenergy is possiblein a cellular automaton.

5. Numerical simulation

This sectioncontainsa discussionof thenumericalsimulationswe performedto
treatour model andthe conclusionsto be drawnfrom them.

The problem for determiningthe correlationfunctionsof the cellular automa-
ton variablesis, of course,that onedoesnot know the vacuumstatein general.An
arbitrary state may contain arbitrarily high energy excitations. Some kind of

cooling mechanism,which drives an arbitrary state to the vacuum would be
extremelyuseful. In the realworld, the expansionof he universedoessuch a job.
Onemight thereforetry to invent an expandingversionof the automaton,in which
at eachstepsome newcells areadded.In principle this is a possibility. In practice
howeverthereturnedout to be a problem. In our modelsenergyis conservedonly
modulo 2iT. This may imply that therecan be energyproduction in units of 2ir.
Becauseof this we found that an expandingcellular automatonrapidly heatsup.
This is thusnot a very promisingapproach.

There is anotherway to cool at least a given finite region of the interacting

theory. Supposethat we switch on the interactionin a region of spacewith size L.
If thereexists a local hamiltoniandensityfor the interactingtheory,we can join it
to the free hamiltoniandensity(2.25) outside L. Outside we know howeverhow
the vacuumlooks. In this waywe cancontrol the energy-flowinto L, i.e. it is zero
if the stateoutsideis the free vacuum.We can actuallystartwith the free vacuum

as initial state.With respectto the interactingvacuuminside L this statehas a lot
of excitations,which should however dissolve gradually into the free vacuum
outside.This would effectively cool down the interactingregion. Viewed from the
outside, after an initial burst of energy, the systemshould again relax to the
vacuumstate.The assumptionof a local hamiltoniandensityis crucial here,since
it allows to considerthe inside andoutsideregionsseparately.

In this approachit is also not quite clear whether there will be energy
production in units of 2ir, but at least we havea good idea of how to cool the
systemat the sides. So this was what we decidedto study numerically in more
detail.The first thing to do is to generatethe free Dirac vacuumaccordingto the
Boltzmann weight (2.15). The total number of participating configurations is
howeverfar too big (

0(2N) with N the total numberof cells) to be treatedexactly
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by any computer.We have to approximatethe canonicalensembleby a Monte
Carlo procedure.Recall that accordingto (2.13), the vacuumstateis a superposi-
tion of our basis vectors a-1, a-2...a-N) with the correspondingweight and phase.
As explained above, we shall be interested only in the correlation functions of the
a--operatorsand therefore the relative phasesof the membersof the vacuum
superpositionwill not matteras theycancelin expressionslike (a-. . . a-). This fact
givesus the possibility of treatingthe vacuumstateas a statisticalensemble.

Next we createa separateset of cells which representsthe interactionregion
(with size L) andwhich will be calledshortly the inside region in distinctionwith
the regionwherethe free vacuumwascreated.The latter we call outsideregion.
The evoluton of the contentof the cells in the inside region is accordingto the

0.02 (a)

—0.02

o exact
• simulated
• ins Ide_at_t—800

o inside_at_t—900

Fig. 1. Resultsfrom thesimulationexperimentwith L = 96 and relaxationtime 900. (a)The two-point
correlation function inside the interaction region. (b) The left—left correlation function measured
outside the interaction region. The total size of the automatonis N = 901 cells and the numberof
Monte Carlo samplesis l0~.The initial contentof the interaction regionis taken randomly for each

MC sample.
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(b)
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Fig. 1. (continued).

interactingrule. This interactionregionis openon both sides,so at eachtime step
we must “feed” it from the left and from the right with right and left movers
correspondingly.To simulate the free vacuum outsidewe feed the interaction
regionwith the generatedDirac vacuum.For this situation it shouldactually not

matter, how the initial state looks inside the interactionregion. We then measure
the correlation functions before this evolution, inside and outside L after the
evolutionfor a certainrelaxationtime. Thisgives us informationaboutthe quality
of the simulation of the free vacuum,the correlation of the a-’s in the putative
interactingvacuumandthe relaxationoutsiderespectively.

Let us now mentionsome technicaldetails of the Monte Carlo procedure.We
usea standardMetropolis algorithm. Sincewe haveto conservethe total number
of plus spins,we proposean exchangein position of a randomplus—minuspair. If
the ratio of the Boltzmannfactors of the new over the old configurationis bigger
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than one,we acceptthe new configuration; if it is smallerthan one,we acceptit
with the probabilitygivenby this ratio. We obtainedthe bestresultswhenwe took
this outputconfigurationandperformon it a randomrotation.

The main quantity of all our computerexperimentsis the two-point connected
correlation function (a-5a-5). Since we can compare the measuredtwo-point
correlationfunction in the free regionwith the exact one,we havea direct control
over the accuracyof the simulation. It turned out that to get an accuratethird
digit, we neededaboutten million configurationsfor the sizeN of the automaton
of the order of a few hundred.The computationtime for this is of the order of a
few dayson a DEC station5000/200.This posesan upperboundon thefeasibility
of our method,which is actuallysufficientto get outsidethe boundaryeffectsonly

for the ultimate casewhen the interactionsdescribedin sect. 4 involve only the

(a)
0.02~

—0.02

o exact
• simulated
• inside_at.t—900
~Jinside_at_t—900

Fig. 2. The same as fig. 1 exceptthat initially the contentof the interactionregion had short-range
correlations.
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(b)
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Fig. 2. (continued).

closesttwo neighboirsof eachcell (thereforeD = 2). All our resultsconcernonly
this case.

Figs. la, b summarizethe resultsof a typical such simulation.Black and white
pointscorrespondto the simulatedandtheoreticaltwo-point correlationfunctions
at distances1, 2, etc. The coincidenceof thesepoints indicatesthe quality of our
Monte Carlo simulation. The black and white squaresrepresentthe measured
two-point function (inside the interactionregion in fig. la and outsidein fig. ib)
for two values of the relaxation time. Their coincidenceis indicative for a
relaxationin both regions.Actually it turns out that the relaxation occursmuch
fasteroutside.

We now discussthe resultsobtained from our simulation experiments.The
clearestsignalthat somethingwentwrong is presentedby the correlationsoutside.
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They relaxto stationaryvalues,which are howevernot the expectedfree correla-
tions. There is a peakat roughly half the value of D5. This is clearly a significant
effect. Sincethe one-pointfunction relaxesto thevacuumvalue, thereis no charge
produced.The only other physical observableis energy. That meansthat there
mustbe a constantenergyproductioninside the massiveregion, the systemdoes
heatup! This situationseemsto be rathergenericfor this type of automata.We
did somerunswith differenttypesof interactions,i.e. whenthe left—right exchange
in a given cell is performedwhen thereis an unequalleft—right contenton both
sidesof thiscell. Therethe situationseemsto be evenworse,thecorrelationsrelax
to approximatelyzero.In fact,the approximaterestorationof the free correlations

outside is due to a reflection effect (see below). The correlationfunctions inside
the massiveregionsare stronglydamped,actuallystrongerthan could be expected

(a)
0.02

—0.02

oexact
• simulated
• inside...at...t—800
~ inside_at_t—900

Ii

0

Fig. 3. The sameas fig. 1 exceptthat the initial contentof the interaction regionwas taken to be the
correspondingpieceof thefreevacuum.
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(b)
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Fig. 3. (continued).

from an exponentialdamping with a mass of the order of the estimatedvalue

0(21J) (see (4.15)). An exponentialdecay is however rather difficult to verify,
since it requiresknowledgeof the correlationfor large distances.This requires
largesamplesto get theneededaccuracy,sinceonehas to avoid the effectsof the
boundary and a too small relaxation time. Both these could introduce fake

correlations.
A look at fig. 6a gives a intuitive insight of what happensin this particularslice

of our Monte Carlo simulation (the latter comprisessuperimposedmillions of
thesepictures).Eacheven(odd) dot in fig. 6a representsan occupiedcell by a left
(right) goer.We seethat inside the interactionregionself-createdthick walls are
reflecting everything. That suggeststhat inside correlationswill “remember” the
initial setup.at the sametime the approximatesimilarity betweenthe outgoing
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0.02

.
• • • • • •

I I I I

U • • U U U U

—0.02

o bump...at_d—1
• bump_at_&-2

• bump.aLd—3

o ~ ~ 0 ~ ~

Fig. 4. Threecharacteristicvaluesof the two-point correlationfunction outside theinteraction region
taken from computerexperimentswith differentsizesof this regionand different relaxationtimes.This
is to illustrate theindependenceof thesevalueson the correspondingparameters.The rangeof L is

from 51 to 196 cells.

correlationsandthe free oneis dueto purereflection from any of the insidewalls.
This is more precisely illustrated on fig. 1—3. On these figures we show the
simulation results for different initial setups in the interaction region. Fig. la
depicts the inside correlationsobtainedwith a randominitial while fig. 2a corre-
spondsto short-distancecorrelatedinitial values.Finally fig. 3a shows the simula-
tion resultfor the free vacuuminitially in the interactionregion.We seetherefore

that the final correlations in all thesecases are different and in some sense
preservethe information set initially. At the sametime the correspondingoutside
two-point correlations,as shown on figs. lb, 2b and 3b are very similar. More
rigorously this is shown on fig. 4 where we presentthreedifferent valuesof the
two-point correlationfunction in the outsideregion (takenat distances1, 2 and3)
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U

U
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I I I I I I I I I
U

U U

~0.02.

• L—R_correlatlons...at_tlie...boundary

Fig. 5. Two-point left—right time—time correlationfunction measuredin a point close to the borderof

the interactionregion.

obtained from different Monte Carlo experimentswith different sizes of the
interactionregion. The values coincidewithin the precision,which confirms the
conclusionthat the reflectioneffectsdominate.

The reflection phenomena are investigated quantitatively by measuring
(a-~’ta-~’t~),the left—right connectedtwo-point time—timecorrelationfunction in
the samespace point at the border of the interaction region. The results are
depictedin fig. 5. where the horizontal axis representss, the time delay, and the
vertical the normalizedconnectedtwo-point correlationfunction. The high peaks

correspondto reflections (and thus self-correlations)from different walls inside
the region. The deep negativevalues are due to the anti-correlation of the
reflectedfree-vacuumat odd distances.

As stated above, we also consideredother forms of left—right interactions.
Specifically, fig. 6b shows the evolution basedon the similar rule as the above
exceptthat the left—right flip occurs if the neighboringsitesare unequal.We see
no walls inside,but the left—left correlationsoutsidethe interactionregionrelax to
zeroandthereforemake this caseevenworse. In conclusionwe must say that the
methodof relaxationin a finite regiondoesnot producethe correlationsexpected
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~

-

Fig. 6. Two-dimensionalsegmentof the time (vertical, downwards)evolution for the cellular automata
with equalitychecks(a)andunequalitychecks(b) atneighboringsites insidethe interactionregion.The
interactionregionis borderedon both sidesby clearlyvisible free regionswhich receiverandominputs.

from field theoreticconsiderations.It is not clear at this stagewhether this is a

failure of the whole cellular automatonapproachor this is an artefactof our
particular implementation.It could be that there still exists a satisfactorylocal
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hamiltonian density, but of cellular automaton type only deep inside and far
outsidethe interactionregion. This would meanthat aroundthe boundariesone
hasto takeinto accountalso thephasesof the individual configurations.In sucha
casethe useof a cellularautomatondynamicsfor finding theinteractivevacuumis
extremelylimited. Alternative methodsother than the onesdescribedhere are
lacking so far, thoughwe havecertain ideasto be describedlater.

K.I. would like to thank FOM for financialsupport.S.K. thanksthe Institutefor
TheoreticalPhysicsat the University of Utrecht for the hospitality.
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