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ABSTRACT

In this compilation of lectures field theories are considered
which consist of N component fields q; interacting with N xN com-
ponent matrix fields A{j with 1nternal (local or global) symmetry
oroup SU(N) or SO(N). The double expansion in 1/N and $2 = Ng© can
be formulated in terms of Feynman diagrams with a planarity
structure. If the mass is sufficiently large and g“ sufficiently
small then the(extremely non-trivial) expansion 1n %2 at lowest
order in 1/N is Borel summable. Exact limits on the behavior of

the Borel integrand for the'g2 expansion are derived.

| . INTRODUCT ION

In spite of considerable efforts it 1s still not known how to
compute physical quantities reliably and accurately in any four-
dimensional field theory with strong interactions. It seems quite
likely that if any strong interaction field theory exists in which
accurate calculations can be done, then that must be an asymp-
totically free non-Abelian gauge theory. In such theories the
small-distance structure is completely described by solutions of
the renormalization group equationsl; and there are reasons to
believe that the continuum theory can be uniquely defined as a
limit of a lattice gauge theoryz, when the size of the meshes of
the lattice tends to zero, together with the coupling constant, 1n
a way prescribed by this renormalization group3. Indeed, one can
prove using this formalism' that this limit exists up to any

finite order in the perturbation expansion for small coupling.

However, this result has not been extended beyond pertur-

2.7
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bation expansion. It is important to realize that this might 1mply
that theories such as "quantum chromodynamics" (QCD) are not based
on solid mathematics, and indeed, it could be that physical
numbers such as the ratio between the proton mass and the string
constant do not follow unambiguously from QCD alone. In view of
the qualitative successes of the recent Monte-Carlo computation
techniques> the idea that hadronic properties could be shaped by
forces other than QCD alone seems to be far-fetched, but it would
be extremely important if this happened to be the case. More
likely, we may simply have to improve our mathematics to show that
QCD 1s indeed an unambiguous theory. Either way, 1t will be
important to extend our understanding of the summability aspects
of higher order perturbation theory as well as we can. The
following constitutes just such an attempt.

There are two categories of divergences when one attempts to
SUm Or resum perturbation expansion for a field theory in four
space-time dimensions. One 1is simply the divergence due to the
increasingly large numbers of Feynman diagrams to consider at
higher orders. They grow roughly as n! at order gzn. This 1s a
kind of divergence that already occurs if the functional integral

1s replaced by some ordinary finite-dimensional integral of
similar type:

I(g?) = | df o)
S(@) = 41@.M) + g 7 Nl by
2

I(g?) » ) K(n) c" gzn ;
Il

K(n) - a q (1.2)

3

where a is determined by one of the stationary points of the
action S, called "instantons".

However in four-dimensional field theories the diagrams
themselves are not geometrically bounded. In some theories 1t has
been shown® that diagrams of the nth order that required k ultra-

violet subtractions (with essentially k < n) can be bounded at
best by o



PLANAR DIAGRAM FIELD THEORIES 273

8l

b lglgzn :

(1.3)

But since the total number of such diagrams grow at most as n!/k!
we still get bounds of the form (1.2) for the total amplitude,
however with a replaced by a different coefficient. This 1s a
different kind of divergence sometimes referred to as ultraviolet
"yenormalons'""?”.

If a field theory is asymptotically free the corresponding
coefficient b is negative and one might hope that the ultraviolet
renormalons are relatively harmless. But in massless theoriles a
similar kind of divergence will then be difficult to cope with:
the infrared renormalons, which, as the word suggests, are due to
a build-up of infrared divergences at very high orders: individual
diagrams may still be convergent but their sum diverges againwith n.
The theories we will study more closely are governed by planar
diagrams only. Their numbers grow only geometrically8 so that
divergences due to instantons are absent. These diagrams are akin
to but more complicated than Bethe-Salpeter ladder diagrams and by
trying to sum them we intend to learn much about the renormalon
divergences.

Infinite color quantum chromodynamics 1s of course the most
interesting example of a planar field theory but unfortunately our
analysis cannot yet be carried out completely there. We do get
bounds on the behavior of its Borel functions however (sect. 17).

Examples of large N field theories that we can handle our way
are given in sect. 3 and appendix A.

2. FEYNMAN RULES FOR ARBITRARY N

In order to show that the set of planar Feynman diagrams
becomes dominant at large N values we first formulate a generic
theory at arbitrary N, with a coupling constant g as expansion
parameter in the usual sense.

Let us express the fields as a finite number K of N-component
vectors w?(x) (afl,...,K; i=1,...,N), and a small number D of
N xN matrices AbiJ(X), where b=1,...,D and i,j=1,...,N. Usually we
will take Y to be complex and A;J] to be Hermitean, in which case
thesymmetry group will be U(N) or SU(N). The case that y4 are real
and A;J real and symmetric can easily be included after a few
changes, in which case the symmetry group would be O(N) or SO(N),
but the complex case seems to be more interesting from a physical
point of view. In quantum chromodynamics K would be proportional
to the number of flavors and D is the number of space-time di-
mensions plus two for the (non-Hermitean) ghost field.

In general then the Lagrangian has the form
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L) = = [ (5P v gi®ea 4 ) N T
a?
| |
- Tr(%RSleaAb + = gR; DCAPAPAC 4 - g2R5C9A%AR, d) , (2.1)
with
1\ kK
A% J - (Aa.l) W2 2)
i y

Here the usual matrix multiplication rule with respect to the
indices 1,j,... is implied, and Tr stands for trace wlth respect
to these indices. The objects M and R carry no indices i,j but
only "flavor" indices a,b,... . Furthermore Mp,1 and Rp,; may
contain the derivatives of Y(x) or A(x). So the case that ¢ are
fermions is included: then a,b,... may include spinor indices. The

coupling constant g has been put 1n (2.1) in such a way that it 1is
a handy expansion parameter.

incoming arrow and a lower jindex by an outgoing arrow. The propa-
gator 1s then denoted by a double line. In fig. l, the A propa-
gator stands for an A{J propagator to the right if 1 > j; an A1

propagator to the left if i < j and a real propagator 1f 1 = J?

It 1s crucial now that the coefficients M and P in the
Lagrangian respect the U(N) (or O0(N)) symmetry: they carry no
indices i,j,... . Hence the vertices in the Feynman graphs only
depend on these indices v7a Kronecker deltas. We indicate such a
Kronecker delta in a vertex by connecting the corresponding index
lines. Since we have a unitary invariance group these Kronecker
deltas only connect upper 1ndices with lower indices, therefore
the index lines carry an orientation which is preserved at the
vertices. This is where the unitary case differs from the real
orthogonal groups: the restriction to real fields with O(N)

Symmetry corresponds to dropping the arrows in Fig. 1: the index
lines then carry no orientation.

As for the rest the Feynman rules for computing a diagram are

a4s usual. For instance, fermionic and ghost loops are associated
with extra minus signs.

In some theories (such as SU(N) gauge theories) we have an
extra constraint:

Tr A = B 3 ( 2.3
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Feynman Rules at arbitrary N. The accolades {
symmetrization with respect to the indices a,b,...

2715

(N x N matrix propagator)

(N-vector propagator)

} stand for
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In that case an extra projection operator 1s required in the
propagator:

ke J _ 1 3. k
Gi 62 N Gi 6£ . (2:4)

The second term in (2.4) corresponds to an extra plece in the

propagator, as given in Fig. 2. We will see later that such terms
are relatively unimportant as N - oo,

For defining amplitudes it is often useful to consider source
terms that preserve the (global) symmetry :

prEvER Jjb(xm*a(wa(x) +43%° () Tr A% ()P (x) (2.5)

The corresponding notation in Feynman graphs is shown in Fig. 3.

3. THE N - o LIMIT AND PLANARITY

As usual, amplitudes and Green's functions are obtained by
adding all possible (planar and non-planar) diagrams with their
appropriate combinatorial factors. Note that, apart from the
optional correction term in (2.4), the number N does not occur in
Fig. 1. But, of course, the number N will enter i1nto expressions

for the amplitudes, and that is when an index-line closes. Such an
index-loop gives rise to a factor

ch.i=N. (313

We are now in a position that we can classify the diagrams
(with only gauge invariant sources as given by eq. (2.5))
according to their order in g and in N. Let there be given a
connected diagram. First we consider the two-dimensional structure
obtained by considering all closed index loops as the edges of
little (simply connected) surface elements., A1l N xN matrix-propa-
gators connect these surface elements into a bigger surface,
whereas the N-vector-propagators form a natural boundary to the
total surface. In the complex case the total surface 1s an
oriented one; in the real case there 1s no orientation. In both
cases the total surface may be multiply connected, containing
"worm holes'". For convenience we limit ourselves to the complex

(oriented) case, and we close the surface by attaching extra
surface elements to all N-vector-loops.

Let that surface have F faces (surface elements), P lines
(propagators) and V vertices. We have F = L + T + P+, where L is the

number of N—vector-loops*) and I the number of index-loops; and we
write (footnote: see next page)
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Fig. 2: Extra term in the propagator if Tr A is to be projected

out.
b
ab
le X (N-vector source)
a
a :::ZZ::ffz:::i::?b (matrix source)

Fig. 3: Invariant source 1insertions.
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V=ZVH,
Tl

where V_ 1s the number of n-point vertices. (Vo 1s the number of
source 1nsertions). The diagram is now associated with a factor

V_+2V E=P
r = g ¥ gy (3.2)

Here Py 1s the number of times the second term of (2.4) has been
inserted to obtain traceless propagators. By drawing a dot at each
end of each propagator we find that the total number of dots is

2P = ZIIV 5 [ 32)
Coon

and eq. (3.2) can be written as

2P=2V F*L—2Pt
r = g N ; (3.4)

Now we apply a well-known theorem of Euler:

F-P+V = 2-2H , (3.5)

where H counts the number of "wormholes" in the surface and 1s

therefore always positive (a sphere has H = o, a torus H = |
etc.). And so,

b

r = (g2N) N " . 1367
Suppose we take the limit
N >0 , g0 , gZN ='§2 (fixed) . (3.7)

If there are N-vector-sources then there must be at least one N-
vector-loop:

L = 1

The leading diagrams in this limit have H = o, Pr = o and L = 1,
They have one overall multiplicative factor N, and they are all
planar: an open plane with the N-vector line at its edge (Fig. 4a).

— e —

1

*) "N-vector here stands for N-component vector in U(N) space, SO

the N-vector-loops are the quark loops 1n quantum-chromo-
dynamics.
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Fig. 4: Elements of the class of leading diagrams in the N -
limit. a) If vector sources are present. b) In the absence
of vector sources (e.g. pure gauge theory).
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If there are only matrix sources then L => o. The leading diagrams
all have the topology of a sphere and carry an overall factor N?
(see Fig. 4b). We read off from eq. (3.6) that next to leading
graphs are down by a factor 1/N for each additional N-vector-1loop
(= quark loop 1n quantum chromodynamics) and a factor l/N2 for
each "wormhole". Also the difference between U(N) and SU(N) theo-
ries disappears as 1/N° It will be clear that this result depends
only on the field variables being N-vectors and N xN matrices and
the Lagrangian containing only single inner products or traces
(not the products of inner products and/or traces). Diagrams with
L =1and H = o are the easiest to visualize. In the sequel we
discuss convergence aspects of the summation of those diagrams in
all orders of F. Our main examples are

1) U(N) (or SU(N)) gauge theories with fermions in the N represen-
tation;

2) purely Lorentz scalar fields, both in N and in N x N represen-
tations of U(N). That theory will be called Trl¢“, or -Trl¢“,
1f A is given the unusual sign. Both SU(N) gauge theory and
-Tri¢"* are asymptotically free”. The latter has the advantage
that one may add a mass term, so that it is also infrared con-
vergent. However the fact that )X has the wrong sign implies
that that theory only exists in the N = o limit, not for finite
N. A model that combines all "good" features of the previous
model 1is:

3) an SU(N) Higgs theory with N Higgs fields in the elementary
representation, N fermions in the elementary representation and
a fermion in the adjoint representation. A global SU(N)
symmetry then survives. All vector, spinor and scalar particles

are massive, and it is asymptotically free if h2/82 = 1.

%2 - %(\/12'9—5) , (3.8)

where h 1s a Yukawa coupling constant and )\ the Higgs self
coupling. The reason for mentioning this model is that it is
asymptotically free in the ultraviolet, and it 1is convergent 1n
the infrared, so that our methods will enable us to construct
1t rigorously in the N - o limit (provided that masses are
chosen sufficiently large and the coupling constant sufficient-
ly small), and positivity of the Hamiltonian is guaranteed also
for finite N so that there is every reason for hope that the
theory makes sense also at finite N, contrary to the —ATr¢”
theory. This model is described in appendix A.

4. THE SKELETON EXPANSION

From now on we consider diagrams of the type pictured in
figure 4a (H=o0, L = 1), They all have the same N dependence, so
once we restricted ourselves to these planar diagrams only we may
drop the indices i,j,... and replace the double-line progagators
by single lines. Often we will forget the tilde (~) on g because
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the factor N is always understood. Only the (few) indices a,b,...
of eq. (2.1), as far as they do not refer to the SU(N) group(s),
are kept. The details of this surviving index structure are not
important for what follows, as long as the Feynman rules (Fig. 1)
are of the general renormalizable type.

Our first concern will be the isolation of the ultraviolet
divergent parts of the diagrams. For this we use an ancient
devicel0 called "skeleton-expansion" *) . It can be applied to any
eraph, planar or not, but for the planar case it is particularly
useful.

Consider a graph with at least five external lines. A one-
particle irreducible subgraph is a subset of more than one
vertices with the internal lines that connect these vertices, that
is such that if one of the internal lines 1s cut through then the
subgraph still remains connected. We now draw boxes around all
one-particle irreducible subgraphs that have four of fewer ex-
ternal lines. In general one may get boxes that are partially
overlapping. A box is maximal if it is not entirely contained
inside a larger box.

Theorem: All maximal boxes are not-overlapping. This means that
two different maximal boxes have no vertex 1n common.

Proof: 1f two maximal boxes A and B would overlap then at least
one vertex xj would be both in A and B. There must be a vertex X
in A but not in B, otherwise A would not be maximal. Similarly
there is an x3 in B but not in A. Now A was irreducible, so that
at least two lines connect xj] with x». These are external lines of
B but not of A U B. Now B may not have more than 4 external lines.
So not more than two external lines of A U B are also external
lines of B. The others may be external lines of A. But there can
also be not more than two of those. So A U B has not more than
four external lines and is also irreducible since A and B are, and
they have a vertex in common. So we should draw a box around A U B.
But then neither A nor B would be maximal, contrary to our
assumption. No planarity was needed in this proof.

The skeleton graph of the diagram is now defined by replacing
all maximal boxes by single "dressed" vertices. Any diagram can
now be decomposed into its ''skeleton" and the "meat", which 1s the
collection of all vertex and self-energy insertions at every two-—,
three- and four-leg irreducible subgraph. In particular the self-

-— ————

*) The method described here differs from Bjorken and Drell'’ in
that we do not distinguish fermions from bosons, so that also
subgraphs with four external lines are contracted.
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energy insertions build up the so-called dressed propagator. We
call the dressed three- and four-vertices and propagators the
"basic Green functions" of the theory. They contain all ultra-
violet divergences of the theory. The rest of the diagram, the
"skeleton" built out of these basic Green functions is entirely
void of ultraviolet divergencies because there are no further
(sub)graphs with four of fewer external lines, which could be di-
vergent.

The skeleton expansion is an important tool that will enable
us to construct 1in a rigorous way the planar field theory. For,
under fairly mild assumptions concerning the behavior of the
basic Green functions we are able to prove that, given these
basic Green functions, the sum of all skeleton graphs contributing
to a certain amplitude in Euclidean space is absolutely convergent
(not only Borel summable). This proof is produced in the next 6
sections. Clearly, this leaves us to construct the basic Creen
functions themselves. A recursive procedure for doing just that
will be given in sects. 12-15. Indeed we will see that our
original assumptions concerning these Green functions can be
verified provided the masses are big and the coupling constants
small, with one exception: in the scalar ~ATré" theory the
skeleton expansion always converges even 1f the bare (minimally
subtracted) mass vanishes! (sect. 18)

5. TYPE IV PLANAR FEYNMAN RULES

We wish to prove the theorem mentioned in the previous
section: given certain bounds for the basic Green functions, then
the sum of all skeleton graphs containing these basic Green
functions inside their "boxes" converges in the absolute. In fact
we want a little more than that. In sects. 13-15 we will also
require bounds on the total sum. Those in turn will give us the
basic Green functions. We have to anticipate what bounds those
will satisfy. In general one will find that the basic Green
functions will behave much like the bare propagators and vertices,
with deviations that are not worse than small powers of ratios of
the various momenta. Note that all our amplitudes are Euclidean.

First we must know how the dressed propagators behave at high
and low momenta. The following bounds are required:

Z(k)

2 199
k +m

if k2 >0 . (5.1)

\Pab(k)\ >

Here P . (k) is the propagator. From now on we use the absolute

ab /APy :
value symbol for momenta to mean: [p| = VpZ+mZ2. Then the field
renormalization factor Z(k) is approximately:
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10
Z (k) Eé[log<l-+lkl) 4 (52)

m

where o is a coefficient that can be computed from perturbation
expansion. The mass term in (5.1) is not crucial for our procedure
but m in (5.2) can of course not be removed easily.

To write down the bounds on the three- and four-point Green
functions in Euclidean space we introduce a convenient notation to
indicate which external momenta are large and which are small.

For any planar Green function we label not the external mo-
menta but the spaces in between two external lines by 1indices

1,2,3,... which have a cyclic ordering. An external line has mo-
mentum
Pi i+1 def Pi Pi+l (3.3)
We have automatically momentum conservation,
Z Pi 4y ~ ¥ (5.4)
1
and the p, are defined up to an overall translation,
P: »> P, *q , all.1 . (5:5)

A channel (any in which possibly a resonance can occur) is given
by a pair of indices, and the momentum through the channel 1S

given by

P i = Pu “Pa (5.6
1,] 1 J
So we can look at the p; as dots in Euclidean momentum space, and
the distance between any pair of dots 1is the momentum through some

channel. If we write

(CQr2s,. By 4y s (5.7)

or simply (((12); 3)5 4)3, then this means:

[Pyl = & :
|lp1—-p3l = Ao >> Aq ,
lpy—pu| = Az >> Ay . (5.8

So the brackets are around momenta that form close clusters.

Our bounds for the three- and four-point functions are now
defined in table 1.
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R ———— T = R ——— —_— 2 - 5 Se——— T —— - -__—-——_—_——__'—__'I
Table 1
Bounds for the 3- and 4-point dressed Green functions. Zij stands
for Z(pj-p;). All other exceptional momentum configurations can
be obtaineé by cyclic rotations and reflections of these. K; are
coefficients close to one.
| . . _ , NSO
L "
((12); 3), K1(Z12223231) * Ap(Ay/A1)" g(Ay)
2 ~% Q B 2
((C12)1 3)5 4)3 | K3(Z21029323,Z41) (A2/A1) " (A3/A5)" g2(Asq)

((12)7 (34)5),
(C(13)y 2), 4),

((13)7 (24)5)4 KE(Z12223234,241)

1f Al < Ay
((123), 4), KE (212232 34Z,1)
((12), 34), K%(21222323u241)

— T —

-5

— “—

Here o and B are small positive coefficients.

varying running coupling constant.
1s some g with

. g(x) < g for all x

max K
1 L

where we also assume that
1s included in the K coefficients.
satisfy the bounds with o = B = o.
us to have any of the typical logar
the radiative corrections in these
we will see later (sect. 13) that t
SUrpass our power-laws.

possible

|

Table 1 has been carefully des
obtained in constructing the basic
iln sects. 12-14, First we notice th
factors Z(l::.i—pj)"i cancel against c
bounds for the propagator (5.1). Th
conveniently expressed in terms of
These are given in Fig. 5. We call
after a fourth dttempt to reformula

g(x) is a slowly
For the time being all we need

; (5.9)
summation over indices a,b,...
Clearly the bare vertices would
Having positive a and B allows
1thmic expressions coming from
dressed Green functions. Indeed
hose logarithms will never

igned such that it can be re-
Green functions as we will see
at the field renormalization
orresponding factors in our

e power-laws of Table 1 can be
a revised set of Feynman rules.
them type IV Feynman rules

te our bounds (types I, II and
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. ]
PSS ———— - A e (dressed elementary
(k%+m?) propagator)
K3
l
1+ 3¢
] ] glmax(lkql,lkol, kyl)] (dressed 3-
ky ko vertex)
2 1 :
 — 0 > (composite propagator)
P
2
20+
1 ] glmax(lky |, [kyl, [kgl)]%**B \
2
a+2R—1 L (generalized
1 2 g[max(lkll,\kz\,lk3l)] vertices)
2
3-2
gimax(lky |, ko, lkzl)]F
2 2
] = ;
.k———- | k | (external line)

2
Fig. 5: Type IV Feynman Rules. |k| stands for \/£2+m
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IIT occur in refs. 11, 12 and are not needed here). The trick 1is

; . 2
to 1ntroduce a new kind of propagator, e e , that represents
an exchange of two or more of the original particles in the dia-
gram we started off with.

The procedure adapted in these lectures deviates from earlier
workll in particular by the introduction of the last two vertices
in Fig. 5. Notice that they decrease whenever two of the three ex-
ternal momenta become large.

It 1is now a simple exercise to check that indeed any diagram
built from basic Green functions that satisfy the bounds of Table
] can also be bounded by corresponding diagram(s) built from type
IV Feynman rules. The four-vertex i1s simply considered as a sum of
two contributions both made by connecting two three-point vertices
with a composite propagator, and the factors |k|™ from the propa-
gators in Fig. 5 are considered parts of the vertex functions (the
mass term of the propagator may be left out; 1t 1s needed at a
later stage).

Elementary power counting now tells us that the superficial
degree of convergence, Z, of any (sub)graph with E; external
single lines and E, external composite lines 1s given by

Z = (1-a)E; + (2-B)E, - 4 . (5.10)

Since we consider only skeleton graphs, all our graphs and sub-
graphs have

L*]

:31.[.2:22;.5_ (5.11)
Thus, Z 1s guaranteed to be positive 1f we restrict our coef-
ficients by

o <o < 1/5 ;2
6 < B < 2/5 . (5.12)

(Infrared convergence would merely require a < 1; B < 2, and 1is
therefore guaranteed also.) So we know that with (5.12) all graphs
and subgraphs are ultraviolet and infrared convergent. The theorem
we now wish to prove 1s: the sum of all convergent type IV dia-
grams contributing to any given amplitude with 5 (or more) ex-
ternal lines converges i1n Euclidean space. It i1s bounded by the
sum of all type IV tree graphs (graphs without closed loops)
multiplied with a fixed finite coefficient.

A further restriction on the coefficients oo and B will be
necessary (eq. (8.15)).
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6. NUMBER OF TYPE IV DIAGRAMS

The total number G(E,L) of connected or irreducible planar
diagrams with E external lines and L closed loops in any finite
set of Feynman rules, 1s bounded by a power law (in contrast with
the non—-planar diagrams that contribute for instance to the Lth
order term in the expansion such as (1.1) for a simple functional
integral) :

E L
,L) < C;Cy, , (6.1)

L]

G(:
for some C; and C».

In some cases C; and Cyp can be computed exactly and even
closed expressions for G(E,L) exist®. These mathematical exercises
are beautiful but rather complicated and give us much more than we
really need. In order to make these lectures reasonably self-
sustained we will here derive a crude but simple derivation of
ineq. (6.1) yielding C coefficients that can be much improved on,
with a little more effort.

Let us i1ignore the distinction between the two types of propa-
gators and just count the total number G(E,L) of connected planar

$° diagrams with a given configuration of E external lines and L
closed loops. We have (see Fig. 6)

G(E+1,L) = G(E+2,L-1) + ) G(n+1,L})G(E+I-n,L-Ly) .  (6.2)
H,Ll
G(E,L) = 0 if E<€<2 woraif L <o
G(2,0) = ] (6.3)
> T)
E-1
le - v )
J n=1

-

Pig. 62 Eq. (6.2)

We wish to solve, or at least find bounds for, G(E,L) from (6.2)
with boundary condition (6.3). A good guess 1s to try
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CoC)C;
G(E,L) < 5 = s B2 5 Lo, (6.4)
(E-1) (L+1)

which 1s compatible with (6.3) if

CoCs =1 . (6.5)
Using the inequality

k

) 5 '1 5 &t ; (6.6)
2
n=1 n (k-n) k

we find that the r.h.s. of (6.2) will be bounded by

E — F+
c o2kl g02cEt2 L
o1 ©o o1 o
3 .2 ¥ y) 5 ? (6.7)
(E+1)° L (E-1)"(L+1)

which 1s smaller than

2 2 (6.8)
E (L+1)
1f
4C1/C2 T 64COCI <) S (6.9)

This 1s not incompatible with (6.5) although the best "'solution"
to these two inequalities is an uncomfortably large set of values
for Cp, C; and C,. But we proved that they are finite.

The exact solution to eq. (6.2) is

L
_ 2 (2E-2)!(2E+3L-4)!
C(E,L) = I @1y T (8-2) T (2B+20-7) T ° S AL
which we will not derive here. Using
A+B) ! A+B-1
(A:B? < 2 (6.171)

we find that in (6.1),

CIQ]EJ ;C2H<u16 . (6.]2)




PLANAR DIAGRAM FIELD THEORIES 289

For fixed E, in the limit of large L,
Cz—’27/2 . (6.13)

Similar expressions can be found for the set of irreducible dia-
ocrams. Since they are a subset of the connected diagrams we expect
C coefficients equal to or smaller than the ones of eqs. (6.12)
and (6.13). Limiting oneself to only convergent skeleton graphs
will reduce these coefficients even further.

We have for the number of vertices V

+ 2L - 2 (6.14)

(=

V =
and the number of propagators P:
P=V+L-1. (6.15)

So, if different kinds of vertices and propagators are counted
separately then the number of diagrams is multiplied with

(6..16)

C.C

V_P
v P ~#

which does not alter our result qualitatively. Also 1f there are
elementary 4-vertices then these can be considered as pairs of 3-
vertices connected by a new kind of propagators, as we 1in fact

did. So also in that case the numbers of diagrams are bounded by

expressions in the form of eq. (6.1).

/. THE SMALLEST FACETS

We now wish to show that every planar type IV diagram with L
loops is bounded by a coefficient cL times a (set of) type IV
tree graph(s), with the same momentum values at the E external
lines. This will be done by complete induction. We will choose a
closed loop somewhere in the diagram and bound it by a tree
insertion. Now even in a planar diagram some closed loops can
become quite large (i.e. have many vertices) and it will not be
easy to write down general bounds for those. Can we always find a

"small'" loop somewhere?

We call the elementary loops of a planar diagram facets. Now
Euler's theorem for planar graphs 1is:

V= P s 1, (7:1)

Take an irriducible diagram. Write
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L=)F , (7: )
I

where F, are the number of facets with exactly n vertices (or
"corners'"). Let

; (743)

where Pj 1s the number of internal propagators and P, is the
number of propagators at the edges of the diagram. Then, by

putting a dot at every edge of each facet and counting the number
of dots we get

Z n F = 2P. + P . (7.%)
B n 1 e

For the numbers Vn of n-point vertices we have similarly

Z nV = 2P + E , (7.5)
n
n

but in ourcase we only consider 3-point vertices (compare eqs.
(6.14) and (6.15)):

3V = 2P + E . (7.6)
Combining eqs. (7.1) = (7.6) we find

) (n-6)F =2E-P -6 . (7.7)
- Il =

This equation tells us that if a diagram has

I, > 2E - 8 (7.8)

then either it is a "seagull graph" (P < 1) which we usually are

o . . = .
not 1interested 1n, or there must be at least one subloop with 6 or
fewer external lines:

Fn =0 for some £ 6 . (. 7.8)

So diagrams with given E and large enough L must always contain
facets that are either hexagons or even smaller.

In fact we can go further:

theorem: if a planar graph (with only 3-vertices) and all its irre-—
ducible subgraphs have 2E - P, 2 6 then the entire graph obeys

L <

= %.}. | (7.IO)

5~
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This simple theorem together with eq. (7.7) tells us that any dia-
cram with a number of loops L exceeding the bound of (7.10) must
have at least one elementary facet with 5 of fewer lines attached
to it. Although we could do without it, it is a convenient theorem
and now we devote the rest of this section to its proof (it could
be skipped at first reading).

First we remark that if we have the theorem proven for all
irreducible graphs up to a certain order, then it must also hold
for reducible graphs up to the same order. This is because 1f we
connect two graphs with one line we get a graph 3 with

Pe3= Pe1+Pez+2 3 (7.11)

If Ly, E; and Ly, E, satisfy (7.10) then so do L3 and Ej (remember

that E and L are integers and the smallest graph with L > o hask =

6; propagators that formtwo edges of adiagram are counted twice 1n Pe) ;

Forthe irreducible graphs we prove (7.10) by a rather unusual
induction procedure for planar graphs. We consider the outer rim
of an irreducible graph and all the (in general not irreducible)
craphs inside it (see Fig. 7). Let the entire graph have E ex-
ternal lines and P, propagators at 1ts sides. The subgraphs 1
inside the rim have e; external lines and P, propagators at their

sides. We count:

=

P —

+ Z e. , (Z:12)
e : 1

and the number of loops L of the entire diagram 1s

L=1+) (L, +e -1). (318
L

Now each facet between the subgraphs and the rim must have at
least 6 propagators as supposed, therefore

Pe + E Pei + 2 Z e, = 6 g (ei—l) + 6 , (7.14)

but if some of the subgraphs are single propagators we need to be
more precilse

> o] N, | 7.15
P+ )P . +2 ) e, =6 g (e,=1) + 6 + 2N, ( )
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Fig. 7: Proving the theorem of sect. 7. The number E counts the
external lines of the entire graph. P, the number of

sides and e; and P_; do the same for the subgraphs 1 and 2.
N 1s the number of single propagators.

where N, 1s the number of single propagators, each of which

contributes with e = 2 in eq. (7.13), and have P . = 0. Now we use
el
(7.12), and

P . < 2e, — 6 , (7.16)
el 1

as required, whereas I(2e-6) + 2N, = o for the single propagators,
to arrive at

E ;:Z e, + 6 . (7al7)
1.

From the assumption that all subraphs already satisfy (7.10) we

get, writing L} = Z L, and E; = I e.:
| s a
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EYEy
Ll“*Tif_ —§-+-l ; (7.18)
apd from (7.13)
L<L; + Ej . (7:19)

With (7.17) which reads E 2 E; + 6 we now see that (7.10) again
holds for the entire diagram. The quadratic expression in (7.10)
is the sharpest that can be derived from (7.17)-(7.19), and 1indeed
large diagrams that saturate the inequality can be found, by
joining hexagons into cilrcular patterns.

Our conclusion is that if we wish to use an induction pro-
cedure to express a bound for diagrams with type IV Feynman rules
and L loops in terms of one with a smaller number L' loops we can
try to do that by replacing successively triangles, qudrangles
and/or pentagons by type IV tree insertions, until the bound
(7.10) is reached. In particular 1f E = 5 this leads us to a tree
diagram. The next three sections show how this procedure works 1n
detail.

8. TRIANGLES

Consider a (large) diagram with type IV Feynman rules. We had
already decreed that it and all its subgraphs are ultraviolet and
infrared convergent (divergent subgraphs had been absorbed 1nto
the vertices and propagators before). With egs. (5.10)-(5.12) this
means that each subgraph has

Ey + 2E, = 5 (8.1)

so, in particular, there are no self-energy blobs. First we use

the inequality of Fig. 8 to reolace composite propagators by
ordinary dressed propagators one by one until ineq. (8.1) forbids

any further such replacements. The inequality is readily proven:
we write for the propagators with its vertices::

7 S

Fig. 8. A composite propagator 1s smaller than an elementary one.



294 G. 't HOOFT

l+aq+an+y l+a g+a,+y |k2|—]-Y

| p1 | |l po | . (8.2)

where k is the momentum through the propagator, Ip;| > |kl.

Ipol = |kl, and o = a for a dressed propagator, and a; = B-1 for
a composite propagator. At the left hand side vy B—=1, and at the
right hand side y = a. Clearly we have

R—-1 o)

lp. I Ip,| Ip. I Ip |
( M - ) 4( 1 2 ) (8.3)
> > *
e K

o and B being both close to zero due to (5.12).

Now consider all elementary triangle loops in our diagram.
Under what conditions can we replace them by type IV 3-vertices
(F1g. 9)? Due to (8.1) there can be at most one elementary
(dressed external line, the others are composite: E, = 2 or 3;

i, %

Fig. 9: Removal of elementary triangle facets.

Eij=1or o. We write
)y = o Oor g -1 (8.4)

to cover both cases. Now let us replace the vertex functions by
bounds that depend only on the momenta of the internal lines:

Y
(max(lkl,|k+pl,|pl)) < R(Y)(|k|Y'+\k+p|Y) . (8.5)

with vy = 143a ; R(y) = 23C

b
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Or v = B+2a 3 R(y) =1 . (8.6)

The integral over the loop momentum is then bounded by 8 terms all
of the form

R [ d*k (k2)'61(k+p)'252 (k-q)_263 : (8.7)

where for a moment we ignored the mass term. It can be added
easily later. We have convergence for all integrals:

Z=2)G8-4=1=-28-a; >o0 . (8.8)

and
§1 = 1 +a =4 (20+B) - 3(1+2a+ay) = 3(1-20-a1-B) ; (8.9)

The integral (8.7) can be done using Feynman multiplicators:

§1=1  8,=1 _ 83-1

]
- S(Zx-1) X X, X 5

Rm°T (26-2) dxjdx,dx - -
[(§1)T(8,)T(83) J 172773 75,2

O

)
(92X2X3+q2X3X1+(P+q)2X1X2)

(8. 10)

Now if Ipl = Iql = |p+ql (the other cases can be obtained by
permutation) then |ql| = 3lpl, so our integrals are bounded by

—%Z
& maX(Ip\,qu,|p+ql)} (8.11)

where C 1s the sum of integrals of the type

] §1=1  8,-1 _ 84-1

H%T(ZS_zl dx 1dx2dx 6§FX—]) o = |
LE61LITL022T103) . 1 ’ (X1X2+%X1X3)%Z

? (8.12)

which can be further bounded (replacing x;X, by 3X1Xp) by

16-2 5

2 [ (£8-2)T(2-6,)T(2-8,-83)

1—'((51) 1_'((52+ES3) . (813)

C <)

if all integrals converge, of course. All entries 1in the T
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functions must be positive. In particular, we must have

2 = 8, - 83 =87 - 3Z >0 . (8.14)
Now with (8.8) and (8.9) this corresponds to the condition:

B > 24 , (8. 15)
this 1s the extra restriction on the coefficients o and B to be

combined with (5.12), and which we already alluded to in the end
of sect. 5. A good choice may be

a = 0.1 , B=0.3. (8.16)

We conclude that we proved the bound of Fig. 9, if o and B have
values such as (8.16), and the number C in Fig. 9 is bounded by
the sum of eight finite numbers in the form of eq. (8.13).

9. QUADRANGL:

L%

S

We continue removing triangular facets from our diagram,
replacing then by single 3-vertices, following the prescriptions
of the previous sections. We get fewer and fewer loops, at the
cost of at most a factor C for each loop. Either we end up with a
tree diagram, in which case our argument is completed, or we may
end up with a diagram that can still be arbitrarily large but only
contains larger facets. According to sect. 7 there must be
quadrangles and/or pentagons among these.

Before concentrating on the quadrangles we must realize that
there still may be larger subgraphs with only three external lines.
In that case we consider those first: a minimal triangular sub-
graph 1s a triangular subgraph that contains no further triangular
subgraphs. If our diagram contains triangular subgraphs then we
first consider a minimal triangular subgraph and attack

quadrangles (later pentagons) in these. Otherwise we consider the
quadrangles inside the entire diagram.

Let us again replace as many composite propagators (t-2 ° )
by single dressed propagators ( e : ¢) as allowed by ineq. (8.1)
for each subgraph. Then one can argue that as a result we must get
at least one quadrangle somewhere whose own propagators are all of
the elementary type (e 11r-), not composite (o - ). This 1is
because facets with composite propagators now must be adjacent to
4-leg subgraphs (elementary facets or more complicated), and then
these 1n turn must have facet(s) with elementary propagators. Also
(although we will not really need this) one may argue that there
will be quadrangles with not more than one external composite
propagator, the others elementary (the one exception is the case
when one of the adjacent quadranglular subgraphs has itself only
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D C

Fig. 10. Inequality for quadrangles. a, b and ¢ may each be 1 or 2.

pentagons, but that case will be treated in the next section). As
a result of these arguments, of all inequalities of the type given
in Fig. 10 we only need to check the case that only one external

propagator 1s composite, a = b =c¢ = 1,

But in fact they hold quite generally, also 1n the other
cases. This is essentially because of the careful construction of

the effective Feynman rules of type IV 1in Fig. 5.

Rather than presenting the complete proof of the inequalities
of Fig. 10 (5 different configurations) we will just present a
simple algorithm that the reader can use to prove and understand
these inequalities himself. In general we have integrals of the

form

o . 1
d 'k i 26i ; (9.1)
k—pi
We could write this as a diagram in Fig. 11, where the §; at the

propagators now indicate their respective powers. The vertices are
here ordinary point-vertices, not the type IV rules. Now write

| A(w,,w,) A(wz,wl)
< +

: W W W W W W

<=p1 1“2 k=-py1°2  Ipy—pal 2lk-pyI°1  Ipy=pal llk-ppl 2
. 92
with ( )

Wy \W] Wy \W2\ -

= . )
Alwy,w2) max[l’((w1+w2) ' (W1+w2> ) h Wl

Inserted in a diagram, this is the inequality pictured in Fig. I1.
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d
0 1
O = —e
(k2 )0
D
- il e T
/ 6 \ / 6 \ / 6 —lw '\
;l : \\ A(w]le) ‘,/ 1 \\ A(wanl_)_ ___(f ! 2 1 _
___‘\ f—-_ \ -|D rp l(.Uz —__:"\ ; f—""-—_—'* lp D ‘UJT \ ¥ )
/ — - = \
....\}---63_5____ i __\193_3%__ Lz ____15_92_.41____
P?
Fig. 11. a) Definition of a dotted propagator. Its vertices are

195t 1
bj !

Extraction of a power of an external momentum.

We use 1t for instance when p;-p, is the largest momentum of all
channels, and 1f

w] S 267 ;5 wy < 28, W, < Z , (9.4)

where Z 1s the degree of convergence of the diagram: Z

= 2L8: - 4
l L
We continue making such insertions, everytime reducing the dia-

grams to a convenlent momentum dependent factor times a less
convergent diagram. Finally we may have

%o 9By , T B . (9.5)

for two of 1ts propagators. Then we use the inequality pictured in
Fig, 12

' ~e0; -2
| d"k ] (k—pi) < Clpy-ps| :
“ 1

(9:6)

Notice that in (9.5) we have a strictly unequal sign, contrary to
ineq. (9.4). This C can be computed using Feynman multiplicators,
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hY ’
| n /
N /

| b \ /
| \ ""I'_Z 7
- — l——-q- C -_— - —F"-—--——————-—Q——-
/7 .

//N\

“
b
Y

1

I | e
|
i

Fig. 12. Inequality holding 1f &; , are strictly larger than 3;Z
(ineqs. (9.4), (9.5)).

much like in the previous section. We get

2T (42) r{(s§.-32)
¢ & :

<tomw ", TR (9.7)

We see that inegs. (9.2) and (9.6) have essentially the same ef-
fect: if two propagators have a power larger than a certain coef-
ficient they allow us to obtain as a factor a corresponding
"sropagator' for the momentum in that particular channel. This 1s
how proving the ineqs. of Fig. 10 can be reduced to purely alge-
braic manipulations. We discovered that ineq. (8.15) 1is again
crucial. We notice that if the internal propagators of the
quadrangle were elementary ones then the superficial degree of
convergence of any of the other subgraphs of our diagram may

change slightly, since in eq. (5.10) B > 2a, but the left hand
side of eq. (5.11) remains unchanged, because

AEI o —2&32 ) (9.8)

so our condition that all subgraphs be convergent remains
fulfilled after the substitution of the inequalities of Fig. I10.

However, if one of the internal lines of the quadrangle had
; 2
been a composite one (e - ), then a subgraph would become more
divergent, because we are unable to continue our scheme with
something like a three-particle composite propagator ( e M-
crucial point of our argument is that we will never really need

such a thing, if we attack the quadrangle subgraphs in the right
order.

10. PENTAGONS. CONVERGENCE OF TH.

L]

SKELETON EXPANSION

As stated before, the order in which we reduce our diagram
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into a tree diagram 1is:

) remove triangular facets;

2) remove triangular subgraphs if any. By complete induction we
prove this to be possible. Take a minimal triangular subgraph
and go to 3;

3) remove quadrangular facets as far as possible. If any cannot be
removed because of a crucial composite propagator in them, then

4) remove qudrangular subgraphs. After that we only have to

5) remove the pentagons.

6) If we happened to be dealing with a subgraph by branching at
point 2 or 3, then by now that will have become a tree graph,
because of the theorem in sect. 7. Go back to 1.

We still must verify point 5. If indeed our whole diagram
contains pentagons then we can replace all propagators by
elementary ones. But if we had branched at steps 2 or 3 then the
subgraphs we are dealing with may still have composite external
propagator(s). In that case it is easy to verify that there will
be enough pentagons buried inside our subgraphs that do not need
composite external lines. In that case we apply directly the
inequality of Fig. 13. The procedure for proving Fig. 13 is

Fig. 13. Inequality for pentagons.

exactly as described for the quadrangles in the previous section.
Again the degree of divergence of any of the adjacent subgraphs
has not changed significantly. This now completes our proof by
induction that any planar skeleton diagram with 5 external lines
is equal to CL times a diagram with type IV Feynman rules, where C
1s limited to fixed bounds. Since also the number of diagrams 1is
an exponential function of L we see that for this set of graphs
perturbation expansion in g has a finite radius of convergence.
The proof given here is slightly more elegant than in Ref. 11, and

also leads to tree graph expressions that are more useful for our
manipulations.
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If the diagram has 6 or more external lines then still a
qumber of facets may be left, limited by ineq. (7.10), all having
6 or more propagators. If we wish we can still continue our pro-
cedure for these but that would be rather pointless: having a
limited number of loops the diagram is finite anyhow. The diffi-
culty would not so much be that no inequalities for hexagons etc.
could be written down; they certainly exist, but our problem would
he that the corresponding number C would not obviously be bounded
by one universal constant. This is why our procedure would not
work for nonplanar theories where ineq. (7.10) does not hold. In
the non-planar case however similar theorems as ours have been

derived®.

11. BASIC GREEN FUNCTIONS

The conclusion of the previous section is that if we know the
"Lasic Green functions', with which we mean the two- three- and
four-point functions, and if these fall within the bounds given 1in
Table 1, then all other Green functions are uniquely determined by
a convergent sum. Clearly we take the value for the bound g2 for
the coupling constant (ineq. (5.9)) as determined by the inverse
product of the coefficient Cj found in sect. 6 and the maximum of
‘he coefficients in the inegqs. pictured 1in Figs. 9, 10 and 13,

+rimes a combinatorial factor.

Now we wish not only to verify whether these bounds are
indeed satisfied, but also we would like to have a convergent
calculational scheme to obtaln these basic Green functions. One
way of doing this would be to use the Dyson-Schwinger equations.
After all, the reason why those equations are usually unsoluble 1s
that they contain all higher Green functions for which some rather
unsatisfactory cut—-off would be needed. Now here we are able to

re-express these higher Green functions in terms of the basic ones
and thus obtain a closed set of equations.

These Dyson-Schwinger equations however contain the bare
coupling constants and therefore require subtractions. It is then
hard to derive bounds for the results which depend on the differ-
ence between two (or more) divergent quantities. We decided to do
these subtractions in a different way, such that only the finite,
renormalized basic Green functions enter 1in our equations, not the
bare coupling constants, 1n a way not unlike the old "bootstrap"
models. Our equations, to be called "difference equations' will be
solved iteratively and we will show that our iteration procedure
converges. So we start with some Ansatz for the basic Green
functions and derive from that an improved set of values using the
difference equations. Actually this will be done in various steps.
We start with assuming some function g(x) for the floating
coupling constant, where x 1s the momentum in the maximal channel

(see Table 1):
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X = max \pi—pjl ; L1 .1
Lis]

and a set of functions g(i)(x) with

g(x) = max lg( )(X)\ ; C11.:2)
def a1

Here g(l)(x) 1s the set of 1ndependent numbers that determined the
basic Green function at their "symmetry point"

Ipi—pj\ = x for all 1,7 - (11.,.3)
The index 1 1n g(i) then 51mply counts all configurations in
(11.3). With "independent'" we mean that in some gauge theories we

assume that the various Ward-Slavnov-Taylor!3 identities among the
basic Green functions are fulfilled. This is not a very crucial
point of our argument so we will skip any further discussion of
these Ward or Slavnov-Taylor identities.

If the values of the basic n-point Green functions (n = 3 or
4) at their symmetry poilnts are A (x), then the relation between
A. and g 1.85:2

1
] ,=3/2
'A3i(x) <3 FELI (%) gij(x) —
o e 2
Aki(x) = (x) gqi(X) ;
J

where k. are coefficients of order one, and Z(x) 1s defined in
(‘5. 1) LU and (5.2). (We 1ignore for a moment the case of super-
renormalizable COUpllngs ) Our first Ansatz for g (x) 1s a set of
functions that is bounded by (11.2), with g(x) decre381ng asymp-
totically to zero for large x as dictated by the lowest order
term(s) of the renormalization group equations. We will find
better equations for g.(x) as we go along. In any case we will
require

xd
ldx 1

g. (x)| <B g3(x) (11.5)

~J

for some finite coefficient RB.

Our first Ansatz for the basic Green functions away from the
symmetry points will be even more crude. All we know now 1is that
they must satisfy the bounds of Table 1. In general one may start
with choosing (11.4) to hold evenaway from the symmetry points,
and

X = max Ip. 7P, | & (11.6)
15] ]
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After a few iterations we will get values still obeying the bounds
of Table 1, and with uncertainties also given by Table I but Kj
replaced by coefficients §K;. Thus we start with

(0) _
5K, = Ky (11.7)

We will spiral towards improved Ansdtze for the basic Green

functions 1n two movements:

i) the "small spiral" 1is the use of difference equations to
obtain improved values at exceptional momenta, given the
values g;(x) at the symmeiry points. These difference

equations will be given in the next section.
{1) The '"second spiral” 1s the use of a variant of the Gell-Mann-

Low equation to obtain improved functions g: (x) from previous

Ansatze for gi(x), making use of the convergent ''small spiral”
at every step. What is also needed at every step here 1s a set
of integration constants determining the boundary condition of
this Gell-Mann-Low equation. Lt must be ensured that these are

always such that g(x) 1n ineq. (11.2) remains bounded:

g(x) < g0 »

ol L S e e o e s

fficients Kj and the wvarious

where gy is limited by the coe
8, 9 and 10, as in 1ineq. (5:9)

coefficients C from sects. 6,

L=

EQUATIONS FOR BASIC GREEN FUNCTIONS

12. DIFFERENC!

The Feynman rules of our set of theories must follow from a

Lagrangian, as usual.
For brevity we ignore the
details are not of much concern to UusS.

be

lLorentz indices and such, because those
Let the dressed propagator

P(p) = -G3' (p) (12.1)

and let the corresponding zeroth order expressions be indicated by

adding a superscript o. In massive theorles:

PO(p) = (pZ+m?)™" = -G9~ 1 (p) (12,2
Define
Gy (p+k) = Go(p) = Gy (plKIk (12.3)
so that
(12.4)

P(p+k) - P(k) = P(p+k)Gyy (pIK)K P(p)

This gives us the ''Feynman rule" for the difference of two dressed
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ptk p

ptk p
VA — - ~Ph— = Ky

\

Fig. 14. Feynman rule for the difference of two dressed propa-
gators. The 3-vertex at the right is the function

GZU(p\k).
k +q k q K
M H Y L
— = {y
ptk+q p Ptk p pékip P o

Fig. 15. Difference equation (12.6) for qu.
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Fig. 16. Some arbitrarily chosen terms in the skeleton expansion

for quvk'

propagators, depicted in Fig. 14, (Note that, in this section only,

__p and k denote external line momenta, not external loop momenta, )

We have also this Feynman rule for bare propagators. There

Gg]J follows directly from the Lagrangian:

G0 =-2p -k . 12.5
- P, ' ( )

Continuing this way we define

GZH(plk+q) - qu(plk) = GZUv(plk|q)qv . (12.6)

with
0 = =& _ 12.7
quv " ( )

In Feynman graphs this is sketched in Fig. 15. Differentiating
once more we get

G2 v(p|k|q+r) - quv(plqu) = quvk(p|k|q|r)rk : (12.8)

U
0f course Gpyy) can be computed formally 1in perturbation ex-—
pansion. The rules for computing the new Green functions G, G
Guvl are easy to establish. Let Py be one of the external TOOP mo-—
menta as defined in eq. (5.3). For a Green function G(p;) we have

G(p1) = J o J dqi fl(P1+Q1)f2(P1+Q2) .o ft(P1+qt)-F .
(1'Z2.9)

where fi(qi) are bare vertex and/or propagator functions adjacent
to the external facet labeled by I. The remainder F 1s independent

of P1- We write
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; t t
FdQ(W f(pi+qy+k) —TI f(p1+qi)>

G(p1+k) -G(pl) =J.. .
1 I

- L S— ] B

: o GG Zl T f(p1+qi+k) (f(p1+qs+k)-f(p1+qs)) ﬂ] f(P1+QiL
4 v - s+

(12.10)

which 1s just the rule for taking the difference of two products.
We find the difference of two dressed Green functions G in terms
of the difference of bare functions f. Therefore the "Feynman
rules’ for the diagrams at the right hand sides of Figs. 145 15
and the 1l.h.s. of Fig. 16 consist of the usual combinatorial rules
with new bare vertices given by the eqs. (12.5) and (12.7). These
bare vertices occur only at the edge of the diagram.

We see that the power counting rules for divergences in Gopua
are just as in 5-point functions in gauge theories. Since the
global degree of divergence is negative we can expand in skeleton
graphs. See Fig. 16, in which the blobs represent ordinary dressed
propagators and dressed vertices or dressed functions G]J and G

Notice that one might also need G3y(p1,p2lk) defined by
G3(p1,p2tk) = G3(p1,p2) = G3,(p1,p2/k).k, . (12.11)

In short, the skeleton expansion expresses Goyyy but also Gapv
etc. 1n terms of the few basic functions G2ys Go2yys G3y and the
basic Green functions G2.3,4.Also the function Gy, , defined simi-

larly, can thus be expressed. The corresponding Feynman rules
should be clear and straightforward.

We conclude that the basic Green functions can in turn be
expressed in terms of skeleton expansions, and, up to overall
constants, these equations, if convergent, determine the Green
functions completely. Notice that we never refer to the bare
Lagrangian of the theory, so, perhaps surprisingly, these sets of
equations are the same for all field theories. The difference

between different field theories only comes about by choosing the
integration constants differently.

Planarity however was crucial for this chapter, because only

planar diagrams have well defined "edges'": the new vertices only
occur at the edge of a diagram.

3. FINDING THE BASIC GREEN FUNCTIONS AT EXCEPTIONAL MOMENTA (THE
"SMALL SPIRAL")

In this section we regard the basic Green functions at their
symmetry polnts as given, and use the difference equations of



PLANAR DIAGRAM FIELD THEORIES 307

Sect. 12 to express the values at exceptional momenta 1n terms of
these. If Pi~P; is the momentum flowing through the planar channel
ij, then in our difference equations we decide to keep

U = max \pi-le (13.1)
1,]

fixed. So the left hand side of our difference equations will show
two Green functions with the same value for p, one of which may be

exceptional and the other at 1ts symmetry point, and therefore
known. (We use the concept of "exceptional momenta" as in ref. 14.)

Now the right hand side of these difference equations show a
skeleton expansion of diagrams which of course again contain basic
Green functions, also at exceptional momenta. But these only come
in combinations of higher order, and the effect of exceptional mo-
menta is relatively small, so at this point one might already
suspect that when these equations are used recursively to de-
termine the exceptional basic Green functions then this recursion
might converge. This will indeed be the case under certain con-

ditions as we will show 1n sect. 15.

Our iterative procedure must be such that after every step
the bounds of Table 1 again be satisfied. This will be our guide
to define the procedure. First we take the 4-point functions, and
consider all cases of Table | separately.

The right hand side of our difference equations (Fig. 16)
contains a skeleton expansion to which we apply the theorem
mentioned in the end of sect. 5 and proven in sects. 5-10: the
skeleton expansion for any 5-point Green function converges and 1s
bound by tree diagrams constructed with type IV Feynman rules.
Since the 5-point functions in Fig. 16 are irreducible, the
internal lines in the resulting tree graph will always be
composite propagators, as in the r.h.s. of Fig. 13. So we simply
apply the type IV Feynman rules for 5 tree eraphs to obtain bounds
on the 5-point function in various exceptional regions of momentum

space. Table 2 lists the results.

The power of g%(A3) in the table applies where we consider
the function Gy,. The other functions G3),, and Gz, have one and
zero powers of g(A3), respectively. In front of all this comes a
power series of the form

n= 1

which converges provided that
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s S NP S -
Table 2
Bounds for the irreducible 5-point function at some exceptional
momentum values.
[yt A
(((12)7 53)9 4);4 I zii+1 2 Ala A o= Ag gz(A3)
1
-% —-a -a  20-1 2
((12)7 5 (34)3)4 ? Z: s ‘Al Ay A3 g7(Ajg)
-%  =1=2 2
(C(513)1 2), 4)3 B 3441 a1 P b Af gfaay)
-5 -1-2B 2B 2 ,
((135)7 (24)5) 3 g 2. ‘A : A3B g (A3) 1f Ay > Ay
-%  =1- 2
((1235); 4), 12, A P a0 o (As)
-
80 = max lg(n)| < C ° . (13.3)

We now write an equation such as (12.8) as follows:
Gu{ (C(12) 3)5 4)3} = 6, {((523), 4)5} +

+ (P17Ps) | Guy1(((12); 53)p 4)3} , (13.4)

where r = p;-ps. In this and following expressions the tilde (~)
indicates which quantities are being replaced by new ones in the
lteration procedure.

1f the Ansatz holds for Gq{((523)2 4)3} then the new ex-
ceptional function will obey

~ _L /A3\B
|Gl+{(((12)]_ 3)2 4)3' < K.E(Zq525222323|+) - (-) gz(Aa) +

)
y 0 5 2 3
+ (Zy5Z12293Z3y) > 8°(A3) () () - (13.5)
1-Cg 1 g

2
. Ce

ChOOSng '2— = Y (.13.6)
l"cgo

and considering that to a good approximation (since Ip1-ps| <<
lpy-psl):

Zys = Zyy (13.7)
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we find

- _L A& 7A3\B
5 2
1GL{(((12)1 3)p &) 3}l < (Z12223Z234Z41) ° &8 (Aa)(gf) (g;) :

Z1oN\E /AN,
(- EE ).

What is now needed is a bound for the last term in (13.8). Let

X192 = |p12|/m21 (]3-9)

(remember that |p| stands for V§2+m2),

and

f(xy9) = (log(]+x12)0/2 : X?z 4 (13:10)
where 0 is defined in (5.2).
When

X710 > exp (-0/2a) = Xq (13.11)

this f is an increasing function, so that 1if

xom < Ay < Ay (13.12)
then
f(x,,)
12
— —_ <1 . 13.13
F(xe,) ( )

The range | < x < X is compact, so there exists a finite number L

such that
l pha AP (13.14)
£(xs52) '
as SO00mn 4as
X12 < X52 . (13.15)

So we find that after one iteration given by (13.4), the new Kp
coefficient satisfies

Kg < vy + K%L . (13.16)

Similarly we derive
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K

A

L v+l , C 1312

when the difference equation 1is used to eXpress'E{((]2)1 34)2} 1n
terms of G{(5234)2}. Also we use

Gyl ((12)1 (34)2) 3} =Gy {(52(34)) 3} +
+ (p17Ps) | Gy {((12)1 5(34)2)5) (13.18)
to find that after one step
K &% #F K%L Sy ¥ yL # 12 : (13..19)
and for the three-point function
K; <K5+L<y+ 2L . (13.20)
The remaining coefficients K,_g must be computed in a slightly

different way. Consider K. We replace p; by ps now in such a way
that

lps—p3l = 2Ip;-p3l ; Ay - 2A, (13.21)
and work with induction. Write
EA{(((]3)1 2) 9 4)3} N EL{(((53)1 2)- 4)3}

+ (p17ps), Gupf(((513); 2), 4)3} . (13.22)

Inspecting Tables | and 2 we find now

K

2 2 p
;= max<k6 ; ]_2—28) ' (13.23)

Applying the same technique we compute the fifth exceptional
configuration of Table 1. We separate p; from p3 until A; - A,.
Then we separate alternatively p, from p, and p; from p; keeping
Al = Ap. This makes the rate of convergence slightly slower:

2y
™

oMo

(13.24)

Finally Kg is found by widening the separation between pj, p, and
P3 1n successive steps of factors of 2:

lEH{((]z?’)l'{*)Z}: EL{((563)1 4)2} (13.25)

+ (Ps=p1)y Gup{((1235)) 4)5} + (pg—pa)y Gy {((2356)) 4),}
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where
| ps—pegl = lp3—pgl = lps—p3l = 2|p;-p>| (13.26)
We find
A_\B
el =] i M
|Gu{((]23)1 4)2|} < YZ(Aq) Z(As) (KI)
Zlog (Apr /A7) =B Z(Al)
(2 2 = ) + ‘Gq{(1234)2}‘ . (13..20.)
n=1 Z(2 Ajp)
The sum can certainly be bounded:
F il B, (13.28)
Therefore
- . (13.29)

Ke < max(]1,yL")

Thus all coefficients K; have bounds that will be obeyed everywhere
in the '"'small spiral" induction procedure. Note that these coef-
ficients would b%ow up 1f a,B = o. In particular in (13.11) we need
oo > o. Only if gy » o we can let a,B = o. It will be clear from the
above arguments that our bounds are only very crude. Our present
aim was to establish their existence and not to find optimal bounds.

In sect. 15 we show that the '"small spiral' of iterations for
the exceptional Green functions, given the non-exceptional ones 1n
(13.27), actually converges geometrically.

14, NON-EXCEPTIONAL MOMENTA (THE '"SECOND SPIRAL'")

In order to formulate the complete recursion procedure for
determining the basic Green functions we need relations that link

these Green functions at different symmetry points. Again the
difference equations are used:

Gy (p1...Py) = G4 (2p1,p2P3Pu) — P3Gy, (P152P1,P2P3PY)
4 . .
(1) (1)
= - — G4(2p1,...,2p1})—_§] pi}\GH)&(pl s+++sP5 e
ail (14.1)

Liére pas and pgl) are external loop momenta. They are non-
exceptional. “We use a shorthand notation for (l4.1). Writing

2 i N2 B
p; = (p; pj) !
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4 ;
G - Gy 2w = u § 6P uw . (14.2)
1=1
Similarly we have
G2,3(U) = G2,3(2U) = = L Z Géigx(2u,u) . (14.3)
1 b

These are just discrete versions of the renormalization group
equations. The right hand side of (14.2), [not (14.3)!] is to be
expanded 1n a skeleton expansion which contains all basic Green
functions at all u, also away from their symmetry points. There we
insert the values obtained after a previous iteration. It is our

aim to derive from eq. (14.2) a Gell-Mann-Low equation! of the form

k
M (2)
== o () = = B s . g, (W...g. (u)
o 8 Q,Zz 1J1-+-J90 g.‘ll gJR
N
+lgGol e () (14.4)
where E(R) are the first k coefficients of the B function, and they

must coilncide with the perturbatively computed B coefficients.
Often (depending on the dimension of the coupling constant) only

odd powers occur so that k = N-2 is odd. The rest function p must
satisfy

Ioi(u)l QEQN (14.5)

for some constant QN < o. This inequality must hold in the sense

that g(u)IN 0(pu) must be a convergent expansion in the functions
g(pu'), with

1

u

IV

m (14.6)

(so that p' may be smaller than u), in such a way that the absolute

value of each diagram contributes to Qy and their total sum remains
finite.

Now clearly eq. (14.2) is a difference equation, not a differ-
ential equation such as (14.4). Up till now differential equations
were avolded because of infrared divergences. Just for ease of
notation we have put (14.4) in differential form because the

mathematical convergence questions that we are to consider now are
1nsensitive to this simplification.

Consider the skeleton expansion of Gii) in (14.2). At each of
the four external particle lines a factor g(uj) occurs with pg 2 i
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so it may seem easy to prove (14.4) from (14.2) with N = 3 or 4,
However, we find 1t more convenient* to have an equation of the
form (14.4) with N £ 7, and our problem is that the internal
vertices of the G&i might have momenta which are less than p.
We will return to this question later in this section.

In proving the difference equation variant of (14.4) from
(14.2) we have to make the transition from Gy toO g2 and G3 to g,
and this involves the coefficients Z(u), associated to the
functions G,, by equations of the form

Gy (u) = - u2z2=1 () ;

uZ'a/z(u)gg(u) - (14.7)

Gg(U)
Gy (1) = 272 (g (W)

where g3, gy are just various components of the coupling constant
g:. In the following expressions we Suppress these indices 1 when
we are primarily interested in the dependence on u (= |pl at the
symmetry point). Now from (14.2) and (14.3) we find not first order
but third order differential equations for Gp, basically of the

form

33
—5 G2 = Gy T 0 (gZ(wz= /v o, (14.8)
U

where G )))\ 1s Just a shorthand notation for the combination of
expandable functions G2 apv obtained after taking differences three

times. Write

Uo(p) = - '"E'GZ(“) = = Goyy (W) (14.9)
o U
then
W o _
e Up(u) = = HG, 3y (W) (14.10)
and
3
u2z=1 () = | (u-up)Up(uy)duy + Ap + B (14.11)
m

¥ Closer analysis shows that actually N = 3 or 4 1s sufficient to
prove unlque solubility. Only if we wish an exact, non-perturbative
definition of the free parameters Wwe need the higher N values. Note
that not only Qy but also gp may deteriorate as N 1ncreases.
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Here A and B are free integration constants; A is usually
determined by Lorentz invariance and B by the mass, fixed to be
equal to m. In lowest order:

A = mUz(m) ’ B = - %szz(m) . (]4.]2)

This strange—looking form of the integration constants is an arti-
fact coming from our substitution of difference equations by
differential equations. Using difference equations we can impose
Lorentz invariance by symmetrization in momentum space, so that
only one (for each particle) integration constant is left: the mass
term. We choose at all stages 3U-(m) = Z(m) = 1.

A convenlent way to implement eq. (14.12) is to formally
define Ur(p) = 2 1f o < W < m, and replace the lower bound of the

o—
e

integral in (l4.11) by zero. Then after symmetrization: A = B = o.

Equation (14.11) has a linearly convergent integral, whereas
(14.10) 1is logarithmic. Together they determine the next iterative
approximation to G . In fact we have

G,y (W) = 27LDE(e]) (14.13)

and in f({g}), Z occurs only indirectly. So the iteration converges
fastest 1f we replace (14.10) by

MO < Z (1)
=— I (i) = i G (u) , (14.14)
o 7 (1) 2 sAXA

where the tilde denotes the new function Us ().
One can however also use (14.9) with U, replaced by ﬁ}.

We find

Bl o B
o 7 J dt (1 T)uGZ’AAA(Tu) : (14.15)

m/

m ;
As stated before, the @(-—) terms have been removed by symmetri-
zation. P

This equation allows us to remove the Z factors from the
functions G3 4 and arrive at first order renormalization group
1ntegrod1fferentlal equations for g (u).

For the 3-point functions we must write

8G3

o

U3(U) = G3,A(U) =
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M9 B
o Uz (1) ”63,Ax(“) ; (14.16)
H
Gy(u) = uUs(p)dpy + C3 , (4. 17)
o
UBGa(U) ) { i o (rud (14.18)
ou 3,AA

m/

A potential difficulty in writing down the renormalization
eroup equation even for N = 4 is the convolutions in (14.15) and
(14.18) which contain Green functions at lower p values, and so
they depend on g(u') with p' < p. So a further trick 1s needed to
derive (14.4). This is accomplished by realizing that the integrals
in (14.15) and (14.18) converge linearly 1in u. Suppose we require

at every iteration step (see eq. 11.5)¢
U0 = 3
5ﬁ-g(u)L;§BIg(u)l and gl £ go (14.19)

for some B < o, - < o, Then it is easy to show that 1f p; < U,
then -

3
lg(uy) !l < lgu)l + C(ﬁ%) g3, (14.20)
1 8

g > 5§g% + B/C . (14.21)

So with C large enough and gp small enough we can make & as small
as we like. Inequality (14.20) is proven by differentiating with p.

This enables us to replace g(tu) by g(u) 1in (14.15) and (14.18)
while the factor 1~ ¢ does no harm to our integrals. So we find

Uuo ~— a ~ :
o - and-%ﬂ G3 in terms of a power serles of g(u). We
must terminate the serlies as soon as the factors ¢

oive t~!. This implies that N must be kept finite, otherwise
g0 — O.

bounds for

accumulate to

The same inequality (14.16) is used to go from N = 4 to N = 7
in these equations. If in a skeleton diagram a vertex 1s not
associated with any external line, then 1t may be proportional to a
factor g(u') with p' < p. But using (14.16) we see that 1t may be
replaced by g(u) at the cost of a factor (u/ul)e. At most three of
these extra factors are needed. If the three corresponding vertices
are chosen not to be too far away from one of the external vertices
of the diagram (which we can always arrange), then this just
corresponds to inserting an extra factor '
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EXEN E
(pp{) at an external vertex. We now note that such factors still
leave our 1ntegrals convergent. In the ultraviolet of course the
diagrams converge even better than they already did, and in the
infrared our degree of convergence was at least l-a (or 2-B) as
can easily be read off from eq. (5.10): adding the external propa-
gators to any diagram one demands

Z + (2+20§.):31 + 2BE? < 4(:31+E2"]) ; (]4.22)
Thus 1nfrared convergence requires

l —a=-Tg& > 0 (14.23)

where T < 5 1s the number of times our inequality (14.20) was
applied.

From the above considerations we conclude that an equation of
the form (14.4) can be written down for any finite N, such that QN
1n inequality (14.5) remains finite. We do expect of course that
QN might increase rapidly with N, but then we only want the
equation for N < 7. We are now in a position to formulate com-

pletely our recursive definition of the Green functions Go, G3, Gy
of the theory:

) We start with a given set of trial functions Gp(n), G3(n),
Gy (1) for the basic Green functions at their symmetry points. They
determine our 1nitial choice for the floating coupling constants
gi(u) and the functions Z.(u). We require their asymptotic
behaviour to satisfy (5.2), (5.9) and (11.5) (= eq. (14.19)).

2) We also start with an Ansatz for the exceptional Green
functions that must obey the bounds of Table 1.

3) Use the difference equations of sect. 13 to improve the
exceptional Green functions (the new values are indicated by a
tilde (~)). These will again obey Table 1 as was shown in sect. 13.
Repeat the procedure. It will converge towards fixed values for the

exceptional Green functions (as we will argue in sect. 15). This we
call the '"small spiral'.

4) With these values for the exceptional Green functions we
are now able to compute the right hand side of the renormalization
group equation for G,, or rather Z~!, from (14.15), using (14.20):

HO - _ =1 l )
oo 2y (W) o= 270 () (Yijkgj(u)gk(u) + gt ), (14.24)
where Z(u) 1s again bounded. Here Yijk are the one-loopy coef-
ficients!™ This gives us improved propagators. See sect. (15.b).
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5) Now we can compute the right hand side of eq. (14.4).
Before integrating eq. (14.4) it is advisable to apply Ward
identities (if we were dealing with a gauge theory) in order to
reduce the number of independent degrees of freedom at each u. As
is well known, in gauge theories one can determine all subtraction
constants this way except those corresponding to the usual free
coupling constants and gauge fixing parametersls. So the number of
unknown functions g;(u) need not exceed the number of "independent"

coupling constants of the theory*.

6) Eq. (14.4) is now integrated, giving lmproved expressions
for g;(u). Now go back to 2. This is the "second spiral', which
will be seen to converge towards fixed values of gi(u).

The question of convergence of these two spirals is now discussed
in the following section.

5. CONVERGENCE OF THE PROCEDURE
a) Exceptional Momenta
In sect. 13 a procedure is outlined to obtain the Green

functions at exceptional momenta, 1f the Green functions at the
symmetry point are given. That procedure is recursive because egs.
(13.4), (13.18), (13.22) and (13.25) determine the Green functions
G2, 3,4 in terms of the symmetry ones, and Gy, G3puvs G2pva: But the
latter still contain the previous ansatz for Gp 3 4. Fortunately 1t
is easy to show that any error 8Gp 3 y will reduce in size, so that
here the recursive procedure converges:

let us indicate the bounds discussed in sects. 5 and 13 as

|Gn(p1,--.,pn)| < Bn(pl,...,pn) : (15.1)
(1)

and assume that a first trial Gn

(1),

Il

has an error

(15.2)

\ﬁGﬁl)I < €

>

; 1
with some € ) < Za

Now Gyys G3pvs Gopva also satisfy inequalities of the form
(15.1). Furthermore they were one order higher 1in gz. So we have

*¥ We put "independent" between quotation marks because our Te-
quirement of asymptotic freedom usually gives further relations
among various running coupling constants, see appendix A
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166, | <e "’ B ) ncC “g , (5.3)
n=4

when the function Gy, itself converges like
) c’g
and By, 1s the bound for Gy, 1tself, as given by Table 2.

The procedure of sect. 13 can be applied unaltered to the
error 6G, in the Green functions. But there is a factor in front,

cO

8(1) Z (n+2) Cngn - 5(2) ; (15.4)
n=>2>

This gives for the newly obtained exceptional Green functions an
error

I5@£2)l < ¢(2)p (15.5)

2 L3 i
and 8( ) < 8( ) 1f we reduce the maximally allowed value for g, as
given by (5.9), somewhat more:

o -» 0.6527 ¢ ; (15.6)

max max

We stress that the above argument is only valid as long as the

Green functions at their symmetry points were kept fixed and are
determined by g(u), bounded by (15.6).

b) The 7 Factors

Knowing that at any stage g(u) satisfies ineq. (14.9), we find
that the solution of (14.24) 1is

1

log E;(u) = d log ul(yijkgj(ul)gk(ul) + g“(ul)zi(u1)) -
i (15.7)
?;(u) - (log-%) T (1+0(g?)) (15.8)

where the 0(g?) terms are again bounded by a coefficient times
g?(u). These equations must be solved iteratively, because the
right hand side of (15.7) contains skeleton expansions that again
contain Z(u), hidden in the function Z(Ul)' It 1s not_ hHard to
convince oneself that such iterations converge. A change
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1
521 < ¢4 g2 (15.9)

yields a change in the function Z (L) bounded by

1
18) 1 < e { )gg ) (15.10)
so that
57 1 2
N(u) - e )8%g2(u) < e ¢ )gz(u) (15, 11)
Z(u)
with 8(2) < 5(1) if gp is small enough.

c) The coupling constants

We now consider the integro-differential equation (14.4). The
solution 1s constructed iteratively by solving

k
— E(U) " X (2 g

~ N

: Bijl...jﬂ gjl(u)...gjﬂ(u) g1 e, ()

(15.12)
where the tilde denotes the next "improved'function g;(u). Our
first Ansatz will be a seolution of (15:12) with pi{g(u),u} replaced
by zero. This certainly exists because the B coefficients are
determined by perturbation expansion and therefore finite. The
integration constants must be chosen such that for all p > m we

have

<
\g (U)l - gmax (15-13)

where gpnax 1s the previously determined maximally allowed value of
g(pu) and k 1s again a constant smaller than |1 to be determined

later. In practice this requirement implies asymptotic freedom?3:

lim g(u) = o . (15.14)

pree
(It is constructive to consider also complex solutions.)

If we now substitute this g(p) in the right hand side of eq.
(15.12) we may find a correction:

g(u) » g(u) = g(u) + Sg(u) , (15.15)

for which we may require

1§g(u) | < for all u . (15.16)

E
gmax
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We must start with:

E+k < | (15.17)

Will a recursive application of eq. (15.12) converge to a so-
lution? Let the first Ansatz produce a change (15.16). The next
correction 1s then, up to higher orders in §g, given by

55—6%&(u> v Mij(u)égg(u) = 8f, (n) (15.18)

(where Mj 1s determined by differentiation of (15.12) with
respect to gi(u).

To estimate 8f(u) we must find a 1limit for the change 1in p.
Our argument that [p| < Qy came from adding the absolute values of
all diagrams contributing to p, possibly after application of
(14.20) several times. Replacing (14.20) then by

&
[ Sg(uq) | < Sg(n) + BC(HUT) g (u)dg(n) (15.19)

which i1ndeed 1is true if g satisfies (15.18), or

— 5f -&’,_B%ngﬁg ' (15.20)

as can be derived from (14.20) and (14.21), we find that we can
write

| 6p]l < &G (15.21)

with C' slightly larger than C, and

\éf(u)l’i e(N+1)C' 8(M)N . (15.22)

Now asymptotically,

, 0 /1
Mij(u)+ Mij/ og U , (15.23)
where ng 1s determined by one-loop perturbation theory. If there
1s only One coupling constant it is the number 3/2. In the more
general case we now assume it to be diagonalized:

MY, = M(i)S.. |, (15.24)
1.7 1.7

with one eigenvalue equal to 3/2. (Ouroarguments can easily be ex-
tended to the special situation when M;: cannot be diagonalized,

. # L l
1n which case the standard triangle for% must be used.) The asymp-
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totic form of the solution to C15.186) 18

U
g, (W) = (logw) ) [ d logu(log W) &£, (u) ,  (15.25)
u(1)
where u(i) are integration constants. If M(1) <%—— | then we
choose u(i) = . If M(i):w%-- ] we set u(i) = m. Then 1n both
cases we get
EERLIC e Tatad® (15.26)

|6g. (u) | <

. -%-—M(i)-—]
where C" is related to C' and the first £ coefficient. In a
compact set of u values where the deviation from (15.25) 1s

appreciable we of course also have an inequality of the form
(15.16) .

If M(i) = N/2 -1 then we simply pick another N value (which
raising or lowering 1t by one unit.

needs not be integer here),
N < 4. Comparing (15.26) with

We see that we only need to consider

(15.16), noting that C" is independent of A, we see that 1f
(N+1)C" N-3 "
S B < 1 (15 . 21)

-5-M(i)-l

Since C" stays constant or decreases

then our procedure converges.
will satisfy

with decreasing g..x», we find that a Einite Soos
(1527 )-

Also we should chechlwhether‘g(u) satisfies the Ansatz
(14.19), with unchanged B. This however is obvious from the
construction of g through eq. (15.18).

Notice that the masses are adjusted 1n every step of the iteration
for the Z functions, by choosing A and B in section l4. They are
necessary now because we wish to confine the integrals (15.25) at

b >m, limiting the solutions g(u) to satisfy l[g(w)l < g.

16. BOREL SUMMABILITY!®

The fact that we obtained eq. (14.4) holding for m < p << 18

For simplicity of the following discussions we

terms of the coefficients B. Let us
= 3. We find that

our central result.

ignore the next-to-leading
rake the case that the leading ones have £

b<
g; (W) = Tozmzag * 08" (M) (16.1)
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(the next-to-leading Rcoefficients give an unimportant correction
in the denominator of the form log logu?). The coefficients b; are
fixed by the leading renormalization group B coefficients. We must
choose C such that

2 < 2 + ~>
g2l <g?  if w>m . (16.2)

This 1s guaranteed 1f either

max(bi)
Re C > > - log mé = R - log m (16.3a)
gmax
or
max(bi)
‘IHIC|2; : = R . (16.3b)
gmax

Now the requirement of asymptotic freedom is usually so stringent
that the constant C 1s the only free parameter besides the masses
and possible dimension 1 coupling constants (a situation corre-
sponding to the necessity of choosing all pu(i) = o in eq. (15.25)).
But still we can do ordinary perturbation expansion, writing

gi(m) = big + 0(g?) ; (16.4)

C = - logmi2 . (16.5)

s
2
g

where g 1s now a regular expansion parameter. The @(g3) terms are
fixed by the asymptotic freedom requirement and can be computed
perturbatively. We now claim that perturbation expansion in g 1is
indeed Borel-summable:

.
G(g?) = | F(z)e 2/ 8 dz (16.6a)
0
F(z) = 5 | G(s2)e™™/B 4(g2) , (16.6b)

C

where the path C must be choosen to lie entirely in the region
limited by eqs. (16.3) and (16.5) (see Fig. 17). Since in that
region the Green functions G(g%) are approximately given by theilr
perturbative values the integral (16.6b) will converge rapidly
along this path, if

Re z> o , (16.7)
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Im(1/g%)

Re (1/g%)
Fig. 17. Thé integration path C 1n eq. (16.7) s
and F(z) will be bounded by
F(z)| < A exp(lzl/gz ) (16.8)
max

phere ... ‘< the allowed limit for g as derived in the previous
sections.

However, eqs. (16.7) and (16.8) are not quite sufficient to
prove Borel summability because we also want tO have analyticity
of F(z) for an open region around the origin. That this require-
nent is met can be seen as follows. Let us solve a variant of
equation (14.4) of the following form:

Mo (2)
— g, = |- i : ; s ) o el s
ol gl(u,f\) | % Bljl..._']ﬂ, ng(U A) JR(U )
gl 1Y e Guylgd) ol (16.9)

where 6(x) is the step function. The coefficients B(R) and the
Functional p are the same as before (constructed the same way via
difference equations of sects. 12 and 13). Clearly we have, 1f
u > A: g(p,A) = e(A,N). And eq. (16.1) now reads

b2

- L L ; =
g; (W) = 157 7+c ¢ O(g*(n)) 5 ms M

(16.10)

N
-—
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Our point 1s that this solution exists not only in the region
(16.3); but also 1if

max(b.)
1

Re C < - g - log A? = -R-log A2 . (16.11)

max

We can now close the contour C (see Fig. 18).

Im(g_z)

Re(g'z)

Fig. 18. The contour C of eq. (16.13); the forbidden regions of
G(g,Ai) are shaded.

Ag A2
roll) ol

m . m

Now compare two different A values: Ay and A,, and compare the

Green functions computed with these two A values, both as a
function of g, taking

g, (m,A) = b.g + 0(g°) . (16.12)
We take these Green functions at (possibly exceptional) momentum
values p, but always such that A >> |p|. If they are computed
directly following our algorithm then a slight A-dependence
st1ll exist, coming from two sources: one 1s the fact that
g; (u,A) depends on A because p(u,{g}) as a functional of g, may
depend on g(u') with p' > A, But clearly, since all integrals

involved in the construction of p converge we expect this
dependence to go like

nay

1661 < a¢(8)~] (6.13a)

or probably
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g)-2
186Gl < 2 (16.13b)

(because linearly convergent equations can often be made
quadratically convergent by symmetrization); here €(g) ¥+ o if g -o.
The second source of A-dependence comes from the application of
difference equations to compute Green functions away from the
symmetry point (sects. 12,13). Again, this error must behave like
(16.13), because of convergence of the integrals 1involved.

The change in the Borel function F(z) can be read off from
eq. (16.6b)

. ,
F(z,My)=F(z,A)| < 211i b 7538 "2e2/87 4(p-2) (16.14)

C
1 f AZ > Al‘
Under what conditions does this vanish in the limit A} - «® ? In our

2
A
integral g=2 ranges from —R—log(—ﬁ) to R. So 1f Re z << o then
m-,
2 f\z —-Rez
eZ/g < (—%~eR) : (16.15)

It lg"2|-+tm then €(g) + o. This we may use on the far left of the
curve C. Therefore ineq. (16.14) can be written as

\ AZ -2 "'2
|F(z,A) - F(z,A))] < EP(K%) Ay - : (16.16)
¥

By comparing a series of A values of the form An = 20 one easily
sees that (16.16) guarantees convergence as sOON as

Re z > =1 (16.17)

which is a quite large region of analyticity of F(z). Note that

z = =1 1s the location of the first renormalon singularity”’7. Eiq.

(16.17) together with (16.8) implies complete Borel summability
of this theory.

|7. THE MASSLESS THEORY

In the sections 14-16 the mass m? had to be non-—-zero. This
was the only way we could obtain the necessary ineq. (16.3a),
allowing us to draw the contour C. What hapgens 1f we take the
limit m“ + o, considering not g(mz) but g(u“) at some fixed u as
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expansion parameter? Our method to construct the entire theory
then fails, but for some z values F(z) will $till exist. The
argument is analogous to the one of the previous section where we
dealt with an ultraviolet problem. Now our difficulty is im the
infrared. Comparing two different small values for m, we have

b

1561 < (m2)1 e (17.1)

_ 2
[F(z,mp) -F(z,m)| < 1 % (m§)2 c(g) 2/¢ d(g=®) , (17.2)

211
C
if mpy < my.
Now 1f Re z > o then
9 o Rez
eZ/g i (—nlz- eR) . (]7.3)
u
Thus
R m2 2—2Rez
|IF(z,mp) -F(z,m)| < e‘(—%)mz = (17.4)
e ]
2

Now we have convergence as m? + o as long as

Re z < 1 , (17.5)

and, indeed, z = 1 is a polnt where an infrared renormalon singu-
larity is to be expected. Thus, the Borel transform F(z) of the

massless theory is analytic in the reglon
-1 < Rez <1 . (17:6)

This result guarantees that perturbation expansion 1n o? di-
verges not worse than

2n

g .

but is clearly not enough for Borel summability.

18. THE - A Tr ¢ ' MODEL

A special case is the pure scalar planar field theory, with
just one coupling constant A and a mass m. If m is sufficiently
large and A sufficiently small then our analysis applies, and we
find that all planar Green functions are uniquely determined.
However, in this special case there 1s more: the Green functions
can be uniquely determined as long as the masses in all channels
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are non-negative, and A is negative. This was discovered by
comparing with the much simpler "spherical model" (appendix B)

which shows the same property.

The argument is fairly simple. Let us first take the theory

at m? values which are so large that everything is well-defined.

Now decrease the '"bare mass" m% continuously.

The change in the dressed propagator
P(k,m?) =-G,!(k,m?) (18.1)

1s determined by

d 7L . B
57 Gy (k,m*) = G'(k,m*) (18:2)

which we take to start out at sufficiently large n<.

Now the Feynman rules for

o
dm2

G'(k,m?) |, (18.3)

G" (k,m?)

can easily be written down, just like those for

0

—> By (g 5005 skig0°) E G (18.4)

Since G, and G, are superficially convergent we can agaln express
them 1n terms, of a skeleton expansion contailning only the
functions G, and -G, and the propagators P. They are all posttive
(remember that G, starts out as -\, with X < o), and all @ntegrals
and summations converge. Only Gi has one surviving minus sign from
differentiating one propagator with m . Thus:

Gh > o ; (184.5)
Bl & O . (18.6)

If we let m? decrease then clearly G, will stay positive and Gy
negative. Their absolute values grow however, until a point 1s
reached where either the sum of all diagrams will no longer
converge, or the two-point function G, becomes zero. As soon as
this happens the theory will be ill-defined. A tachyonic pole
tends to develop, followed by catastrophes in all channels.

The point we wish to make in this section however is that as

long as this does not happen, indeed all summations and integrals
converge, so that our iterative procedure to produce the Green

functions will also converge. For all those values of A and m?
this theory will be Borel summable.

This result only holds for the special case considered here,
namely —-A Tr % theory, because all skeleton diagrams that con-
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tribute to some Green function, carry the same sign. They can
never interfere destructively.

Notice that what also was needed here was convergence of the dia-
gram expansion. Now we know that at finite N the non-planar graphs
give a divergent contribution. Thus the "tachyons" will develop
already at infinite m?: the theory is fundamentally unstable. Of
course we knew this already: )\ after all has the wrong sign. The
instantons that bring about the decay of our "false vacuum” carry
on action S proportional to -N/X which is finite for finite N.

19. OUTLOOK

Apart from the model of sect. 18, the models we are able to
construct explicitly now lack any appreciable structure, so they
are physically not very interesting. Two (extremely difficult)
things should clearly be tried to be done: one 1s the massless
planar theories such as SU(e) QCD. Clearly that theory should show
an enormously intricate structure, including several possible
phase-transitions. We still believe that more and better
understanding of the infrared renormalons that limited analyticity
of our borel functions in sect. 17 could help us to go beyond
those singular points and may possibly ''solve" that model (1.e.
yield a demonstrably convergent calculational scheme).

Secondly one would try to use the same or similar skeleton
techniques at finite N (non-planar diagrams). Of course now the
skeleton expansion does not converge, but, in Borel-summing the
skeleton expansion there should be no renormalons, and all di-
vergences may be due entirely to instantonlike structures. More
understanding of resummation techniques for these diagrams by
saddle point methods could help us out. If such a program could
work then that would enable us to write down SU(3) QCD in a finite
(but small) box. QCD in the real world could then perhaps be
obtained by gluing boxes together, as in lattice gauge theories.

Another thing yet to be done 1s to repeat our procedure now
in Minkowsky space instead of Euclidean space. Singling out the
obvious singularities in Minkowsky space may well be not so
difficult, so perhaps this is a more reasonable challenge that we
can leave for the interested student.

APPENDIX A. ASYMPTOTICALLY FREE INFRARED CONVERGENT PLANAR HIGGS
MODEL

In discussing examples of planar field theories for which
our analysis is applicable we found that pure SU(e~) gauge theory
(with possibly a limited number of fermions) is asymptotically
free as required, but unbounded in the infrared - so that even

the ultraviolet limit cannot be treated exactly (see sects. 14 and
15).
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-\ Tr @t is asymptotically free and can be given a mass term
so that infrared convergence is also guaranteed. At N - o this 1s
a fine planar theory, but at finite N the vacuum 1s unstable. The
only theory that suffers from none of these defects is an SU()
cauge theory in which all bosons get a mass due to the Higgs
mechanism. But then a new scalar self-coupling occurs that tends
to be not asymptotically free. Asymptotic freedom is only secured
if, curiously enough, several kinds of fermionic degrees of
freedom are added. The following model is an example (similar
examples can also be constructed at finite N, such as SU(2)).

In general a renormalizable model can be written as

w o TES ae ] 2 - e il
L = 4cuvcuv 2(Du¢i) V(¢i) Y (yD+W () )Y , (A.1)

where G is the covariant curl, ¢; 1s a set of scalar fields and VY
a set of spinors. V is a quartic and W a linear polynomial in ¢.

We write

Ga _ 5 Aa _ 5 Aa i gabCAbAc
SRY H V vV U SR
a a
D ¢. =93 ¢. + T _ A
65 =3¢ 158,03
a a
D =3 ¢v. + U ..A
le uwl 5%
W =05+ 1Pyg ; W=S5 - 1Py
— -+ > — -
U US Ust s U US UPYS
C?b _ gapngpq : Cgb =-JPrTﬁTb
ab a.b .a.b a.b ..a b)
= - + = —=2T + . A.2
C3 Tr<ULUL URUR; r(USUS UpUp/ ( )

The most compact way to write the complete set of one—loop B

functions is to express them in terms of the one-loop counter-

Lagrangian, [8n2 (4-n) ]-1AL, where AL has been found to bel’, after

performing the necessary field renormalizations,

a bl11 _ab l  _.8b 1 _ab
AL=C 12 "% TEN
1 2 3 7 3 3. 'b 93
oSN 5 -_— =
¢ - \ij #.5 Vi(T ¢)i + 4(¢T T )

ﬁ

WW W+ WWW

3 a0 2 e
+ 5 U (UW +WUS)y + ¢i(vj-+wij)Tr(SiSj-+Pin)

- Tr(s2+pP2) + Tr[S,P]% . (A.3)
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Here V. stands for 3V/3yp;, etc.

The scaling behavior of the coupling constants i1s then determined
by

]_13£ _ AL
o anZ (A.4)
We now choose a model with U(N)local X SU(N)global symmetry.
Besides the gauge field we have a scalar ¢§ in the Nyocal X
Nglobal representation, and two kinds of fermions:
j . 1
l‘b(l)i o Nlocal " Nlocal and lP(z)a s Nlocal " Nglobal'EQEChoose
A s t t.s
= — ¢¥ 9. 0¥ ¢ A.5
JORE RS S A (A.5)
and
- |- a «] 1
VWY h_w(z) i¢a u)(l)j + h.c.] ; (A.6)
Writing
B =g a3 4P, g - (A.7)
we find:
2
_Bwed BORT _ em Dy
8T e ® Ag 5 & (A.8)

U

and with A = NA; he = th, by substituting (A.5) and (A.6) 1in the
expression (A.3) after some algebra, and in the limit N - oo:

Ah? = -3h% + % h%g? (A.9)
AN = =2X + 3g2) - %E’” — 4h2X + 4h% . (A.10)

These equations (A.8)-(A.10) are ordinary differential equations
whose solutions we can study., The signs in all terms are typical
for any such models with three coupling constants g, A and h.
Only the relative magnitudes of the various terms differ from one
model to another. For asymptotic freedom we need that the second
and last terms of (A.10) and the last of (A.9) are sufficiently
large. Usually this implies that the fermions must be in a
sufficiently large representation of the gauge group, which ex-
plains our choice for the fermionic representations. Our model has
an asymptotically free solution if all coupling constants stay in
a fixed ratio with respect to each other:

—~J N i~

P~ A
;\:}ng - h:hg, (A-]])

and then, from (A.8)-(A.10) we see:
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-

h

=-% (/129-5) . (A.12)

~)

oo indeed we have a solution with positive A.

It now must be shown that 1in this model all particles can be
made massive via the Higgs nechanism. We consider spontaneous

breakdown of SUN)j,ca1 X SU(N)global into the diagonal SU(N)oiobal
subgroup. Take as a mass term

_ xS S
U ¢i ¢i - (A.13)
We can write V as
2
V =-% ¢§S ¢E-—F268t + const. (A.14)

Clearly this is minimal 1f

»S = FS (A.15)

1 y

or a gauge rotation thereof.
A1l vector bosons get an equal mass:

-D*¢ D = - ngzAﬁ : (A.16)

Mﬁ = 2p2F? (A.17)
Mﬁ = \F? . (A.18)

J3/2 = 0.6303 6778... . (A.19)

This is a fixed number of this theory, but it will be affected by
higher order corrections. The fermions can each be given a mass

term:

- mb ¥y T ™Y@ i
and the Yukawa force will give a mixing of a definite strength.

The model described in this Appendix is probably the simplest
completely convergent planar field theory with absolutely stable
vacuum. It is unlikely however that it would have a direct

physical significance.
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APPENDIX B. THE N-VECTOR MODEL IN THE N - o LIMIT (SPHERICAL
MODEL). SPONTANEOUS MASS GENERATION

When only N-vector fields are present (rather than NxN
tensors) then the N - c limit is easily obtained analytically. This

1s the quite illustrative spherical model. Let the bare Lagrangian
be

A
L=-40$H2 - m2? - 2 @22 . (B.1)

The only diagrams that dominate in the N - o limit are the chains
of bubbles (Fig. 19).

a b

Fig. 19. a) Dominating diagrams for the 4-point function.
b) Mass renormalization.

Let us remove some factors Tm? by defining

~J

= Nx_/16m2 . B.2
A B/ (B.2)
The diagrams of Fig. 19 are easily summed. Mass and coupling
constant need to be renormalized. Dimensional renormalization is
appropriate here. In terms of the finite constants A (W) and
mp (1), chosen at some subtraction point py, and the infinitesimal

€ = 4-n, where n is the number of space-time dimensions, one
finds:
X = -8(1 § i )ug : (B.3)
’ ()
RU
and

m, = ”mR(“)v//;J_E : (B.4)
AR(U)

The sum of all diagrams of type

19a gives an effective propagator
of the form

- e ——
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32m2 /N
F(q) = / : - - . (B.5)
2 mm q
Y == ) + log —11'72—4' f(HZ) 1€

O

and m is the physical mass in the propagators of Fig. 19a; that 1s
because these should include the renormalizations of the form of

Fig. 19b.

Fig. 20 shows how m follows from mR:

2
rm2u2 = A.m? lo LY —1-——2—-=o (B.7)
“TR" R B\ T Y ~ | ‘
A

R

From (B.3) we see that the renormalization-group invariant

combination 1S

: (B.8)

< o at large u. Indeed, in this model the

so that inevitably '?R
is made finite. In the

vacuum would become unstable as soon as N
limit N = o however everything 1s still fine.

Now in Fig. 21 we plot both mﬁ and the composite mass M?,

determined by the pole of F(q%, as a function of the physical mass
n2. We see that at negative mg there are two solutions for m2, but

one should be rejected because M* would be negative, an indication

for an unstable choice of vacuum.
The observation we wish to make 1in this appendix is that 1in the

allowed region for mé we get an entirely pos%tive 4-point function

in Euclidean space iﬁ(q) > o0). Lf we chose mp tO be fixed and vary

'TR (or rather vary AB) then at m§2=o 417 % values are allowed, at

negative m% only sufficiently small values. At mp = O we see a
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M complex;

:r > ReM? > 4m?2
; |
' & >
/ | M < 21T1 |
S ' =
I

tachpons |, :
? |
| !

.' | 2

SR

Fig. 21. Mass ratios at given value for Tﬁ(u).

”Spontaneousﬂugeneration of a finite value for m . Perturbation
expansion 1in AR would show the "infrared renormalon” difficulty.

Apparently here the difficulty solves itself via this spontaneous
mass generation.
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