
On peculiarities and pit falls in path integrals1

Gerard ’t Hooft*

Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CC Utrecht,
The Netherlands and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht, The Netherlands

Received 7 August 2002, accepted 15 November 2002
Published online 30 April 2003

Dedicated to Professor Jozef T. Devreese on the occasion of his 65th birthday

PACS 02.30.Cj, 03.70.+k, 11.10.–z, 11.10.Kk

Path integrals can be rigorously defined only in low dimensional systems where the small distance limit
can be taken. Particularly non-trivial models in more than four dimensions can only be handled with
considerable amount of speculation. In this lecture we try to put these various aspects in perspective.

1 Introduction Although the words ‘‘Path Integral” and ‘‘Functional Integral” are usually treated as
though they were synonyms, one might decide that path integrals only refer to one-dimensional sys-
tems, whereas functional integrals can be multi-dimensional –– after all, only one-dimensional func-
tions (functions only depending on time) can be interpreted as paths. If that distinction were to be
made, the phrase ‘‘functional integral“ would be more appropriate for this lecture, since path integrals
in a one-dimensional target space formally represent the solution of ordinary partial differential equa-
tions, and as such they hardly present any formal difficulty [1]. In physics, our ‘‘integration variables”
are often functions defined in a multi-dimensional base space, and this is where problems of a funda-
mental nature arise. We wish to integrate over entire sets of functions of several variables, not just
‘‘paths”, which are functions of time only.

Functional integrals form the back bone of Quantum Field Theory, which is a widely applied ap-
proach in theoretical physics. In condensed matter physics both quantum mechanical and classical
statistical models can be addressed using functional integrals, and in elementary particle physics the
functional integral provided essential insight not only in understanding the gauge forces in what is
now known as the Standard Model, but also in the many recent advances in Super String Theory and
its successor, M-theory. All these successes made most theoreticians believe that, if there are any
mathematical difficulties in defining and justifying the use of functional integrals, then that is some-
thing only for philosophers or mathematicians to worry about; physicists know what they are doing.

Extensive experimentation, both in condensed matter physics and in elementary particle physics
appears to vindicate this attitude, but it does not justify blindness for the various complications that
may arise. Indeed, as we shall argue, there is little experimental support for the use of functional
integrals in dimensions greater than four, and the exact definitions will be extremely complex. Conse-
quences of this situation for model building are often underestimated.
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In Section 2, we address the important question, what is a functional integral? In general, an inte-
gral is defined to be the limit of an infinite sum; in turn, a functional integral is the limit of an infinite
number of integrations. How do we know whether such a limit makes sense? More often than not, the
formal definition does not address this limiting procedure properly.

In Section 3, it is shown that, apparently, the formal definition makes a lot of sense when the
integrand is nearly Gaussian, while the non-Gaussian part is treated perturbatively. The difficulty here
is well-known: infinities arise that have to be ‘renormalized’. Often, there are severe prices to be paid
for that.

For some special cases, renormalization works. In particular, if a theory turns out to be ‘asymptoti-
cally free’. In Section 4, we show that then, under some quite plausible assumptions, the functional
integral allows for a nonperturbative definition. This, however, would limit us to theories where the
dimensionality of target space is at most four. In higher dimensions, one has to make much more
drastic –– and less reliable –– assumptions concerning the existence of equivalence classes and the
absence of a mass gap at the lattice scale, which would be necessary for considering the transition
towards the continuum limit.

Subsequently, two separate issues are briefly discussed: the duality transformation, popular nowa-
days in string theories (Section 5), and the Wick rotation (Section 6), which requires some detailed
thoughts in the case of quantum gravity. Finally, some conclusions (Section 7).

2 Defining functional integrals In principle, it may appear to be straightforward to provide a rigorous
definition of what functional integrals are supposed to mean. Consider a set of functions AiðxÞ, where i is
some discrete index that may take N distinct values, and x is an element of some multi-dimensional,
continuous space-time, such as Minkowski space. Next, consider an integrand of the form

e
Ð
iLðxÞdnx ; ð1Þ

where n is the dimensionality of space-time, and the Lagrange density LðxÞ is generally of the form2
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where gijk and lijk‘ are the coupling coefficients of the ‘theory’, and mðiÞ are possible mass terms (here
already diagonalized). In gauge theories, gijk may contain one space-derivative with respect to x.

We wish to integrate this integrand over the entire space of functions AiðxÞ, but what does this
mean? Ordinary integrals of functions FðAÞ of a single variable A can be defined very rigorously [2]:
one takes the sum of the function values over a discrete and finite set of points in A space while
multiplying the integrand with the separation distance DA ¼def A� A0 of neighboring points A and A0.
The limit

lim
DA#0

P
A
DA FðAÞ ; ð3Þ

is defined to be the Lebesgue-integral
Ð
dAFðAÞ. If A has an index i ¼ 1; . . . ; N; we simply repeat the

procedure N times, so that we obtain the N-dimensional integral,
Ð
dNA; FðAÞ. But what do we have

to do if A depends on a continuous variable x? This x takes an infinite number of values. What does it
mean to repeat the procedure @1 times?

At first sight, the remedy appears to be a straightforward one: just introduce a grid in x space as
well. Once x-space has been replaced by a grid with a finite number of points in it, our ‘‘functional”
integral has been reduced to an integral in a space with a finite number of dimensions, and the Rie-
mann–Lebesgue definition of the integral is applicable. This time, however, it is far from straightfor-
ward to justify even the speculation that the limit for infinitely dense grids in x space makes any sense
at all.
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There is one circumstance where a reasonable procedure seems to be possible. This is the case
mentioned in the introduction, where x is one-dimensional (typically a time coordinate). In this case,
we can order the lattice points, and first consider the integration over all lattice points left of some
value t in x space, while keeping AðtÞ ¼ A fixed. Assume this intermediate result to be some function
wðA; tÞ. One then finds [1] that wðA; tÞ obeys a partial differential equation, in fact the Schr�dinger
equation, where the Hamiltonian H is the one associated to the Lagrangian (2).

Note, however, that this result is not obtained unless we define the measure of the integral with
sufficient care while taking the limit where the grid in x-space is made infinitely dense [3]. The
measure required is what became known as the Wiener measure. Note also that H is expected to be
the quantum Hamiltonian, and that its relation to the classical Hamiltonian generated by L might not
be unambiguous due to ordering problems. An example in case is the path integral for a charged
quantum particle in a magnetic field. Here, only a grid in one time variable is needed, but it must be
set up in a way that is invariant under reversal of time, otherwise the resulting Hamiltonian may come
out to be non Hermitean due to unmatched commutators. Thus, even the one-dimensional path inte-
gral contains some pit falls.

In general, however, the difficulties for the one-dimensional case can be kept well under control,
and the theory of partial differential equations allows for a sufficiently rigorous treatment.

What, however, becomes of the Wiener measure when also x is multi-dimensional? Here, one enters
the subject of Quantum Field Theory. What is needed is a Wiener measure for the multi-dimensional
case. This time, we cannot use the theory of partial differential equations in finite-dimensional spaces,
but, at first sight, it appears that the generalization to a multi-dimensional Wiener measure is again
straightforward. All we need to do is study very dense grids in x space. Take a magnifying glass and
study the ‘theory’ at a very tiny distance scale. In the one-dimensional case, this tiny distance scale
was represented by the tiny time step Dt, turning into the infinitesimal quantity @t in the partial
differential equation @w=@t ¼ �iĤHw. Only if, in the multi-dimensional case, the small-distance limit
would be similarly well-behaved, would we be able to define the functional integral there. In practice,
one studies the theory on a grid with lattice length a, and studies the limit a # 0.

Let us focus on the limiting situation, confining ourselves only to a tiny region R in space-time. If
R is small enough then, inside R, our theory should be entirely featureless, or at least we should have
the entire theory completely under control, at all scales, inside the region R. It is only at scales much
larger than R, where we expect our theory to exhibit interesting physical features.

It is difficult to imagine that this could mean anything else than complete scale invariance inside
the tiny region R, which in practice also implies conformal invariance. What we are talking about is
what in the one-dimensional theory would simply be the domain where the solution to the partial
differential equation behaves linearly in the time interval Dt. We postulate the existence of small
enough regions R in spacetime where such triviality occurs. Thus, the couplings gijk and lijk‘ should
approach fixed points in the ultra-violet region. In principle, there exists also the possibility of peri-
odic behavior of these coupling strengths in their dependence of the logarithm of the scale of R. To be
precise then, we define the ‘bare’ couplings to depend on the grid size a in such a way that they
either approach constant values or values periodic in log ðaÞ. Tiny deviations from the limiting values
at small but finite a should then lead to physically interesting structure in the physical scale.

It then remains to be proven that the scaling behavior of these extremely complicated integrals is as
desired, and, as we shall see, this requirement will present us with rather fundamental problems,
except when the number of dimensions is four or less.

As we shall argue later, not only is the periodic scaling behavior a problematic option, so that we
should really demand the approach of a single fixed point, we shall even demand this fixed point
either to be at the origin: gijk and lijk‘ ! 0, or that the fixed point values be very small.

3 Perturbation expansion The case that we presently really do have under control is when all
couplings are sufficiently tiny to warrant a perturbative approach. In the absence of all couplings, the
integral (1) is exactly Gaussian, and its value is easy to compute exactly. In the case when the Lagran-
gian L does contain non-quadratic contributions, we extract a quadratic part and expand the exponent
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of the remainder as a perturbative expansion in terms of (powers of) gijk and lijk‘. The contributions of
these terms in the perturbation series to an amplitude are usually represented as Feynman diagrams.

Computation of the contribution of a given Feynman diagram requires the evaluation of integrals in
momentum space that often appear to be divergent, and these divergences appear to become more
serious as we move to higher dimensions. The most harmful of these divergences are the ultra-violet
ones, which occur at large values of the intermediate momenta km, and thus they refer to the apparent
unboundedness of the effects coming from very tiny distance scales. This really means that the small-
distance limit referred to in the previous Section is not at all as straightforward as one might think.

The situation is improved considerably by renormalization. In principle, what renormalization
means is that the limit where the grid line distance a tends to zero has to be taken in such a way that
the values of most, if not all, “physical” parameters of the theory, such as the coupling strengths gijk
and lijk‘, as well as possible mass terms mðiÞ in Eq. (2), are carefully tuned to run either to infinity or
to zero during the limiting process. Also, physical operators such as the field operators AiðxÞ, have to
be renormalized. If no further adjustments are needed for the limit to exist, the theory is called
‘renormalizable’. In the ’60s and early ’70s, elementary particle physicists worked out how renormali-
zation works in combination with the perturbation expansion, and the required limiting procedure was
identified for the complete set of models that can be called perturbatively renormalizable [4].

The conditions for a field theory to be perturbatively renormalizable can be summarized very easily.
Since we usually put c ¼ �h ¼ 1, there is only one dimensionful unit required to gauge the physical
parameters, Usually, we take this to be a length scale, say a cm or a Fermi. We now must require that
all physical parameters in terms of which we need to do a perturbation expansion, have a dimension
of length raised to some power that is either negative or zero. This can easily be understood: this
dimensionality assures that, at extremely tiny distance scales, the effects of these coefficients can be
ignored, or they stay sufficiently small (in case the dimension were zero); thus, the theory tends to a
free theory in the far ultra-violet, and the limiting process described earlier can be carried out success-
fully.

The scaling dimension for the physical parameters of a theory can be found as follows. In n space-
time dimensions, the Lagrange density function L of Eqs. (1) and (2) has the dimensionality of
½length��n, which will be indicated as ‘‘length dimension �n”, or ‘‘mass dimension n”. From the first,
kinetic term in Eq. (2), which carries no physical constants, it follows that the fields Ai have mass
dimension ðn� 2Þ=2, and subsequently that the cubic couplings gijk (if not associated with space-time
derivatives) will have mass dimension

n� 3
2 ðn� 2Þ ¼ 3� n=2 ; ð4Þ

and the quartic couplings have mass dimension

n� 4
2 ðn� 2Þ ¼ 4� n : ð5Þ

In four space-time dimensions (n ¼ 4), these are the only couplings with non-negative mass dimen-
sion. All renormalizable theories in four space-time dimensions have at most quartic polynomials in
their Lagrangians!

The only reason why it took us several decades to work out the technical details of the procedure
needed to get into grips with the small-distance structure of models for elementary particles, and to
renormalize them properly, was an apparent clash between Lorentz invariance and local gauge-invar-
iance. A simple grid in space-time would suspend Lorentz invariance, so that horrendously compli-
cated intermediate results would obscure the proofs. Consequently, a battery of different, more sym-
metric cut-off procedures were invented, each having more elegant symmetry, but most of them either
violated local gauge invariance, or unitarity, while both local gauge invariance and unitarity are neces-
sary to ensure not only that our theories are stable, but also that we can limit ourselves to interactions
with the right dimension. Thus, we had to find out how to link various different kinds of cut-off (or
‘regularization’) procedures.

One of the most universally applicable cut-off procedures turns out to be ‘dimensional renormaliza-
tion’ [5]. If we take the number of space-time dimensions slightly away from the physical value
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(which would be typically 3 or 4), the integrals all come out finite3, while singularities that develop
when the physical number of dimensions is approached can be renormalized separately. Using this
dimensional renormalization, one sees that, naturally, coupling parameters that are dimensionless in
the physical space-time dimensions, nevertheless need to be renormalized, and that the ‘bare’ con-
stants to be used at the cut-off scale tend to depend logarithmically on this scale.

4 The non-perturbative definition Although, by construction, the renormalization procedure was
always linked to the perturbation expansion, we now see that its importance transcends perturbation
theory. The point is that the ultraviolet limit of the theory should be required to be virtually non-
interacting, which means that, just because perturbation expansion can be applied there, the smooth
limit condition of the previous Section should be fulfilled. If the perturbative renormalizability condi-
tion is not met, we know for sure that the effective interaction strengths at short distances will run out
of the domain where they can be handled perturbatively.

The theory is renormalizable in the usual sense, if all physical parameters have negative or zero
length dimension, but this still leaves two distinct possibilities at the extremely tiny distance scales.
The dimensionless bare coupling parameters depend on the cut-off scale logarithmically. In the far-
ultraviolet, these so-called ‘running coupling parameters’ may either run away from the perturbative
domain, or they all run to zero.

If the parameters run away from the perturbative domain, we formally have the same situation as in
non-renormalizable theories. In practice, however, these models are still superior to non-renormaliz-
able theories, because the logarithmic scale dependence is extremely slow as long as the couplings are
weak. This allows one to perform extremely accurate calculations even if the mathematical basis is
imperfect. One cannot make the space-time grid infinitely dense, but clashes only occur at scales of
the order of exp ð�C=lÞ, where l is a typical coupling parameter, and if l is sufficiently small, this is
completely negligible. A typical example of a theory where accurate calculations can be done even if
the mathematical basis suffers from this difficulty is Quantum Electrodynamics. Most researchers
agree that the likely explanation for its successes is that QED is an ‘effective’ theory; particles and
forces that radically modify the physics at ultrashort distance scales have simply been ignored.

4.1 The asymptotically free case Theories where all couplings run to zero in the ultraviolet
(“asymptotic freedom”) are in a superior shape [6–8]. Here, we believe that the short-distance beha-
vior is completely under control. Formally, the short-distance domain is described by perturbation
theory. If m is the mass scale at tiny distances (the distance scale ‘ simply being defined as 1=m), then
the running couplings lðmÞ, or, in gauge theories, g2ðmÞ, obey equations such as

m
d
dm

lðmÞ ¼ �jb2j l2 þ b3l
3 þ dbðlÞ ; ð6Þ

where dbðlÞ stands for higher order terms in this equation. We see that solutions look as follows:

1
lðmÞ ¼ jb2j log mþ b3

jb2j
log lðmÞ þ O

ðlðmÞ

0

dl dbðlÞ
jb2jl4

0
B@

1
CAþ 1

l 0
; ð7Þ

where lðmÞ at the r.h.s. must be eliminated recursively, which is unambiguous as long as l is small
enough. l 0 is some fixed integration constant. If here, dbðlÞ is interpreted as some higher order
disturbance, then we observe that all higher order effects that vanish as l4 or faster, for small l, will
not seriously affect the limiting expressions. As soon as the coefficients b2 and b3 are known, Eq. (7)
can be used to define the running coupling parameter lðmÞ, by fixing the integration constant l 0. To
give this definition, b3 was explicitly needed, because of the divergence of log l, whereas the details
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of the quartic corrections dbðlÞ are not needed to be known explicitly; they are to be absorbed in the
definition of l 0.

It is tempting to assume that all higher order corrections to the amplitudes, beyond those of the
irreducible two-loop diagrams, can therefore be absorbed into tiny redefinitions of the coupling con-
stant l 0, but this remains to be proven. To illustrate how difficult this problem is: instanton effects are
known to be associated with a new, free constant of Nature, the instanton angle q, whereas their
amplitudes are proportional to exp ð�C nst=lÞ, which tends to zero much faster than l4; we could have
missed these effects if the above definition were trusted blindly. Attempting to use our definition of
the functional integral in terms of the “physical constant” l 0 yields expressions of which the conver-
gence could still not be proven. This is a fundamental problem for theories such as QCD, in spite of
its phenomenal success at describing the strong interactions among hadrons.

In spite of the absence of rigorous mathematical proofs, there appears to be no serious difficulty in
practice in the use of theories such as QCD. Experimentally, the agreements are impressive. We
strongly suspect therefore that the definition of what a functional integral is, in the case of an asymp-
totically free quantum field theory, is an acceptable one.

A powerful argument in favor of the suspicion that the mathematical definition of asymptotically
free theories, starting from a running coupling strength lðmÞ, is unambiguous, is the following: Ima-
gine that two different theories existed that both were described by the same scaling limit. It should be
possible to trace this difference to differences in the effective interactions at tiny distance scales.
Could we write a model describing this effective interaction DLðxÞ at small distances? Unitarity and
causality would demand that DL has the form of a strictly local (effective) Lagrangian. It should be
different from the defining Lagrangian of the theory. If the defining Lagrangian contains all possible
terms with the right symmetry and dimensionality, the only possibilities left for DL is some effective
Lagrangian of a higher dimensionality, such as one containing higher derivatives or higher powers of
the fields. Interactions of this sort are usually called marginal terms in the interaction Lagrangian.
Terms with lower dimensionality do not exist. Since marginal terms, which have higher dimensional-
ity than the canonical ones, would diverge at tiny distances, while the amplitudes there had been
postulated to have the desired scaling behavior, we can exclude the presence of such exotic effective
interactions, ergo, the theory must be a unique one.

4.2 Theories with strong interactions in the UV limit According to perturbation theory, models
that are not asymptotically free can still be described by coupling parameters that run as a function of
the scale m:

m
d
dm

lðmÞ ¼ bðlðmÞÞ ; ð8Þ

where the function bðlÞ can be computed perturbatively. If b is negative, the theory is asymptotically
free. Let us now assume bðlÞ to be positive. After having computed the first few terms of the expan-
sion bðlÞ for small l, one may find that the function appears to sport a zero at some finite value of l:

bðl 0Þ ¼ 0 : ð9Þ
This zero then is an attractive one in the UV direction. If the coupling has the value l 0, the theory is
scale-invariant (which usually implies also conformal invariance). As we desire to give a rigorous
definition of the theory, we put it on a lattice, as before, and give the ‘bare’ coupling parameter the
value l 0 (with possibly a small correction). It is tempting then to assume that, indeed, the amplitudes
will reproduce the scale invariance. But now, there are several problems.

First, just because the coupling is never very small, the artifacts due to the finite lattice size are
complicated to compute, and they will be non-negligible. They may invalidate the argument that the
theory scales, so that the limit where the lattice length a tends to zero is not well under control.

Secondly, if the coupling is strong, its actual value depends strongly on many details in its definition.
In perturbation theory, we see this as a dependence on the subtraction procedure, at every order of the
calculations; in the lattice theory we see this as a dependence on details of the definition of the lattice.
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However, theories that have a lattice with strong interactions in the far ultraviolet domain (that is, a
very dense lattice), and which do tend to become scale-invariant in the far infrared (i.e. at large
distances) do exist. We know that perturbative schemes exist where the coupling constant l 0 can be
made small but non-zero. If such a theory is put on a lattice, then we have an example of a non-
asymptotically free theory that is presumably well-defined.

Can such non-asymptotically free theories be unique? Again, we can attempt to argue that any non-
uniqueness would be described by effective interactions with anomalous dimensions. This time, how-
ever, we cannot use perturbation theory at the ultraviolet as a guide. If the theory is ‘nearly’ asympto-
tically free, that is, l 0 is small, the argument appears to be as reliable as in the asymptotically free
case, but if l 0 is large, we have no clue.

Even worse will the situation be if there is no fixed point at all, but instead a limit cycle. This may
happen in the case of multiple coupling parameters, which in the ultraviolet domain tend to a periodic
solution of Eq. (8). Here, much less is known. If such theories do exist, and if they can be demon-
strated to be unique, then we should be able to list them as universality classes, much like what is
done in statistical mechanics in three space dimensions. Again, we must assume that marginal terms
can be excluded.

An important case is quantum field theory in more than four space-time dimensions. Here, we see
that all quartic terms in the lagrangian have negative mass dimension (see Eq. (5)). We must have
quartic terms (if not higher) if we want the Hamiltonian of the theory to be bounded from below, so
that the system is stable. This implies that the function bðlÞ starts off with a term ðn� 4Þ l, which is
positive. To develop a zero in this function, we need the higher order terms and hence the coupling
can never be small. This also holds if we want a limit cycle. Thus, in more than four space-time
dimensions it is inevitable to have strong coupling at the cut-off point. One may even question
whether a zero in bðlÞ can ever occur. In any case, the UV limit cannot be treated using perturbation
theory. It can only be treated by speculation. The only alternative would be a numerical experiment
using computers, but now the problem is that, precisely in a large number of space-time dimensions,
numerical algorithms tend to become prohibitively slow.

A superior approach to the questions at hand is to start from some generic lattice theory that exhi-
bits the required symmetry properties of the continuum theory one wants to study. Then we should
ask: is there any set of values for the various coupling parameters such that there is a non-trivial far
infrared region, where the theory becomes scale-invariant yet non-trivial? If such a set is found, one
can subsequently consider a slight deviation from these values, which will break the infrared scale
invariance, thus producing effective mass terms, and with those, more non-trivial structure. Looking
upon our problem this way, it is evident that success depends on the existence of such a set of cou-
pling parameters. It definitely does not exist within the perturbative domain, if n > 4. One might
conclude for these reasons that the existence of any consistent quantum field theory at n > 4 should
be dubious. This should even include supersymmetric theories. Supersymmetry is difficult –– if not
impossible –– to reproduce on a lattice.

But we could also speculate on the existence of fine-tuned theories that do survive in some non-
trivial manner. These will be theories with strong interactions throughout, often with scale-invariance
and possibly with other special symmetries such as supersymmetry. They may form universality
classes. In the next Section, we speculate that the number of distinct universality classes could be
smaller than what is suggested by writing down Lagrangians.

5 Duality Again, first consider theories with a rigorous lattice cut-off. In such systems, different
systems may exhibit dual relationships. The simplest example of such a relationship is the 2-dimen-
sional Ising Model, where the coupling parameter b can be given any value from �1 to þ1. By
rearrangement of the primary degrees of freedom, one finds that all properties of the model wih given
b can be mapped onto the features of the same model, living on the dual of the original lattice4, at the
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coupling b*, where b* is related to b as [10]

e2b
* ¼ coth b : ð10Þ

The relation is dual in the sense that, when applied twice, it returns to the original model.
Relations of this sort are more general. In three dimensional lattice theories, one finds a similar

dual relation linking two different models: the Ising Model is dually related to the Z2 theory on the
dual lattice. In four dimensions, the Z2 theory is self-dual.

Duality on the lattice is not restricted to Z2 theories, but, for its rigorous definition, it does require
an Abelian structure. In fact, Eq. (10) is the simplest example of a Fourier transform in parameter
space. If the link variable can be written as a commuting quantity s, and the action is written asP

links ‘
bðs‘Þ ; ð11Þ

then the dual theory obtains the same action, but with b*ðs0
‘Þ, defined by

Z eb
*ðs0Þ ¼

P
s
eiss

0
ebðsÞ ; ð12Þ

where Z is a normalization factor. The duality transformation (12) can be generalized even more by
having a higher-dimensional s field.

These observations would allow us to perform dual transformations on a variety of theories, which
however all have to be Abelian. The Fourier transformation in Eq. (12) is a linear transformation, and
there seems to exist no direct generalization towards non-Abelian systems. Thus, in four space-time
dimensions, only Abelian gauge theories can be dually transformed to other Abelian gauge theories.
What we can do for non-Abelian theories is first integrate away their non-Abelian parts. This is
indeed exactly what is done in the procedure called Abelian projection in QCD [9]. The Abelian, or
Cartesian subgroup of the gauge group can be seen to correspond to an ordinary Abelian gauge theo-
ry, to which the non-Abelian sector adds not only electrically charged objects, but also magnetic
monopoles. The dual transformation then interchanges the monopoles and the electric charges.

Unfortunately, it appears to be impossible to carry out such a transformation procedure exactly. It is
therefore quite remarkable that nevertheless dual transformations among supersymmetric gauge the-
ories appear to be possible, provided that one restricts oneself to the far infrared domain. a possible
explanation for the remarkable facts that were discovered is that the dual transformations only hold
for the universality classes, not for the individual theories with any finite cut-off.

6 The Wick rotation An important calculational tool in many quantum field theories is the Wick
rotation. First, one notices that, in Feynman diagrams, rotational symmetry can be exploited more
fully by substituting

k0 ! k4 ¼ ik0 : ð13Þ
Here, this is not more than a simple contour rotation in the complex plane of the integration variable
k0. In coordinate space, the equivalent rotation is

t ! t ¼ it : ð14Þ
The functional integral expression, for instance in a gauge theory, is then replaced as follows:

Ð
DA e�i

Ð
1
4FmnFmn dn�1x dt !

Ð
DA e�

Ð
1
4FmnFmn dn�1x dt : ð15Þ

In all conventional quantum field theories, the complex integrand turns into a Gaussian integrand, and,
being the exponential of a negative quantity, the integrals converge optimally.

In the case of the gravitational field, however, things work out differently. At first sight, one is
tempted to proceed in exactly the same way. The substitution t ! t ¼ it can be performed in the
Einstein–Hilbert action. In the functional integral for what should become a quantum theory of
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gravity, one performs the switch
Ð
Dgmn e

i
Ð ffiffiffiffiffi�g
p

R dn�1x dt !
Ð
Dgmn e

Ð ffiffi
g

p
R dn�1x dt : ð16Þ

The difficulty here is that the Einstein–Hilbert action,
ffiffiffi
g

p
R, is not at all bounded from below, not

even after rotating all i’s away. Consequently, the resulting integration expression, Eq. (16), makes no
sense at all.

Elaborate proposals have been formulated to turn this meaningless expression into something one
can calculate; the problem is sometimes believed to cure itself, somehow. This, however, is not the
correct answer. The correct answer is found by returning to the roots of the procedure: rotating inte-
gration contours in the complex plane. In ordinary perturbation theory, one sees most easily what
happens. The rule here is: if you have an integral that converges because the integrand becomes
rapidly oscillating at infinity, you can obtain an equivalent expression that converges faster by rotating
the integration contour in the complex plane. The rotation must be performed in such a way that,
while rotating the contour over a variable angle j, the integrand converges at infinity. In practice, this
means that integration variables may be chosen to rotate in the complex plane, but this must always
be done in such a way that the integral becomes an exponentially convergent one.

Let us take four dimensional space-time, to be explicit. If we rotate the metric field variables,Ð
Dgmn ¼

Q
x

Ð
C1

dg00ðxÞ
Ð
C2

dg01ðxÞ . . .
Ð

C10
dg33ðxÞ

we must ensure that the resulting integrals converge. Now, because of local gauge invariance, we must
impose a gauge condition, and add the usual ghost term. Just as in Maxwell theory, after fixing the
gauge, not all surviving degrees of freedom are truly dynamical. Some of them act as Lagrange multi-
pliers. In Maxwell theory, of the four vector components of the vector potential field Am, one disap-
pears as a consequence of the gauge condition, and an other one turns into a Lagrange multiplier to
produce the Coulomb potential. Two physical photonic degrees of freedom survive. In gravity, there
are 10 components of gmn, and 4 gauge conditions (fixing the 4 coordinates). Of the 6 surviving fields,
4 act as Lagrange multipilers, so that two graviton degrees of freedom remain.

In perturbation theory, one sees most clearly that some of these Lagrange multipliers should not rotate
so that the metric would become nonnegative. Although the details depend on how the gauge was fixed,
it appears in general not to be possible to avoid contours to rotate incorrectly, unless we keep the metric
complex. This is easy to understand: this happens because the Einstein–Hilbert action is unbounded!

In many gauge choices, one finds that only the conformal factor in the metric needs to be complex.
Thus, we writeÐ

Dgmn !
Q
x

H
dW

Q
mn

dĝgmn ; ð17Þ

where

gmn � Wĝgmn ; and RðĝgmnÞ � 0 : ð18Þ

7 Conclusion The possibility to define functional integrals in more than one space-time dimensions
depends on the existence of universality classes. In less than four dimensions, these classes are rela-
tively easy to define, since the far ultraviolet (i.e. small-distance) domain of the theory is controlled
by perturbation theory, which we know how to handle. In four dimensions, this is also the case if we
have asymptotic freedom, or possibly if the coupling strength tends to a zero of the b function where
it is itself small, so that one may still rely on perturbation theory to find a useful theory.

However, in particle theory, and notably in string theory and in supergravity, one often speculates
on theories in much more than four space-time dimensions. The possibility to define what a functional
integral is, depends on features one can only speculate about.

What we know for certain about our physical world is that functional integrals successfully describe
statistical systems in three space-dimensions and elementary particles in four space-time dimensions.
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If there exist more dimensions describing physics at ultra-tiny scales, then well-defined functional
integrals in more than four dimensions would be needed there. Such theories can only stretch over a
large domain of scales if, at the largest distance scales, the effective interactions are either extremely
weak (since the only allowed effective interactions are marginal ones), or extremely fine-tuned: the
physical interaction parameters are very strong, and they are tuned in such a way that the theory
scales. Models based on continuum physics but nevertheless exhibiting interesting non-trivial inter-
actions, in more than four dimensions, are therefore physically unrealistic, and this may explain why,
as yet, no experimental evidence has been found in favor of Kaluza–Klein theories for elementary
particles.

The Wick rotation in quantum gravity is less enigmatic than what is often claimed, but the real
physical significance of quantum wave functions on complex conformal factors may have to be inves-
tigated further.
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