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Abstract

Most attempts at obtaining theories that unify quantum mechanics with general
relativity require violation of locality and/or causality to some degree. Here, we
suggest that these problems actually are very deep and fundamental; hence they
may require reconsideration of both quantum mechanics and general relativity
at a very fundamental level. An approach called “deterministic quantization” is
sketched.
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Introduction.

The theory of Quantum mechanics and Einstein’s theory of general relativity have
been equally successful. Both are based on principles that are assumed to be exactly valid:
quantum mechanics requires a hermitian hamiltonian to describe the evolution of vectors
in a Hilbert space. Hermiticity is mandatory in order to ensure the conservation of proba-
bilities, and giving up the probabilistic interpretation of the wave function would imply a
big departure from the (highly successful) first principles of quantum mechanics. General
relativity is based on invariance under general coordinate transformations. Any violation
of the principle of coordinate invariance would imply the existence of some preferable set
of coordinates of a kind never observed in Nature.

Thus, what these two theories have in common is that small deviations from their
principal starting points cannot be tolerated since these would invalidate the underlying
logic; the starting points must be exactly valid. The theories also have in common that
they allow large varieties of secondary ‘laws of Nature’ : in quantum mechanics, we could
call the Schrödinger equation the primary law; the secondary laws of Nature here are the
ones that determine the interaction potentials and coupling strengths. In general relativity,
Einstein’s equation for the gravitational field is the primary equation, but the details of
the matter field equations are secondary; they are not prescribed by the theory.

Because of this, one naturally suspects that sufficiently judicious choices for the sec-
ondary laws might enable one to join the two theories into one: a ‘quantized theory of
general relativity’∗ . It is here that one encounters obstacles that at first sight seem to
be of a purely technical nature (Section 2), but after closer inspection — and decades
of intensive research as well as myriads of ingenious approaches — they turn out to be
uncannily stubborn. In Sect. 3, various of the ingenious proposals are briefly discussed,
and in Sect. 4 some of the really persistent difficulties. A theoretical study of black holes
leads to the so-called holographic principle (Scts. 5 and 6). Superstring theory (Sect. 7)
claims some successes in reproducing the requirement of holography to its heaviest (black
hole) states, at the cost of a very indirect physical interpretation of its foundations. This
author tends to be more and more inclined towards the suspicion that the problems of
quantum gravity are much more than purely technical ones; they touch upon very essen-
tial philosophical issues. The last sections are devoted to a new approach, in which a
‘realist’ attitude towards quantum mechanics is the central theme.

Canonical gravity.

In early approaches, quantum gravity is treated just as if it were a local gauge theory.
Indeed, the first approaches towards quantizing local gauge theories were motivated by
the desire to understand how to quantize gravity 1 . One starts with the Einstein-Hilbert
action,

S =
∫

d4xL(x) , L(x) =
√

g
(
gµνRµν + Lmatter

)
, (2.1)

∗ In this paper we omit as much as possible capitalization, in order to avoid dramatization of

the notions we wish to describe.
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where gµν is the metric tensor (a physical degree of freedom), and Lmatter(x) represents
additional matter fields (the ‘secondary’ component).

The action is invariant under local coordinate transformations,

xµ → x′µ(x) = xµ + uµ(x) ,

or, when uµ(x) are infinitesimal,

gµν(x) → g′µν(x) = xµ
,α xν

,β gαβ(x′) =

gµν(x) + uα∂αgµν − uµ
,α gαν − uν

,β gµβ = gµν(x)−Dµuν(x)−Dνuµ(x) ,
(2.2)

where xµ
,α stands for ∂αxµ/∂x′α , and uµ

,α = ∂αuµ = ∂αuµ/∂xα .

This invariance does not seem to be very different from the invariance of a (non-
Abelian) gauge theory under local gauge transformations:

Aµ(x) → A′µ(x) = Aµ(x) + DµΛ(x) = Aµ + ∂µΛ + ig[Aµ, Λ] . (2.3)

Therefore it was assumed that these theories can be handled in a similar fashion. Techni-
cally, the procedure seems to be straightforward and impeccable. In order to understand
what the correct formalism is, one first imposes the temporal gauge, which is

A0 = 0 ; g0ν = gν0 = 0 (2.4)

for the two theories, and this unambiguously fixes the time derivative of Λ(x) and uµ ,
respectively. Both theories then take the form of conventional (but infinite dimensional)
anharmonic oscillators, so that unitarity and positivity of the energy are evident.

A minor but important complication in the temporal gauge is that invariance under
gauge/coordinate transformations that are local in space, but independent of time implies
the existence of a local conserved charge. We must impose the additional constraint that
this extra charge (everywhere and at all times) vanishes. This amounts to Gauss’ law and
Einstein’s equations.

Next, one wishes to assure invariance of the quantized theories under local coordinate
transformations (otherwise, the gauge conditions (2.4) would violate Lorentz invariance).
It was discovered that gauge invariance can be imposed by adding a ghost field to the
system. The details of this procedure are not of much relevance for the present discussion;
suffices to state the following facts:
— The ghost Lagrangians can be derived using the functional integral formulation of these
quantum field theories 2 ;
— In the temporal gauges (2.4) the contributions of the ghosts vanish, so that the good
properties of these systems of anharmonic oscillators are unaffected;
— The temporal gauge can be replaced by a renormalizable gauge (for the gauge theory),
or a less divergent gauge (for gravity), and one can prove formally that the S -matrix
amplitudes for transitions among physical particles are unaffected by the gauge change. It
is in these new gauges that the ghost fields play important roles.
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For non-Abelian gauge theories, this procedure assures renormalizability, and even
asymptotic freedom, so there it can serve for the construction of models of elementary par-
ticle systems that can be compared with experiments, with the well-celebrated successes.
In the case of gravity, one encounters a glitch: renormalizability is not achieved. The diffi-
culty can be traced back to the fact that, in units where h̄ = c = 1, the coupling constant
g in gauge theories is dimensionless, whereas the coupling parameter GN of gravity —
Newton’s constant — has the dimensionality of (mass)−2 , or the square of a length, the
Planck length. At energies large compared to this mass, or at length scales short compared
to the Planck length, the effects of the gravitational coupling explode.

This, however, may not prevent one from setting up a perturbative approximation
scheme for quantum gravity. Non-renormalizability merely implies that, when one ex-
pands amplitudes in powers of GN , more and more divergent integrations have to be
performed. We have learned how to deal with such a situation in field theory. Assuming
that the theory is not yet well understood at the tiniest distance scales, one may perform
subtractions. One then obtains finite expressions, at the expense of having to introduce
new, freely adjustable, constants of Nature for the higher-order expressions. The higher
the powers of GN one wants to include, the larger the number of freely adjustable, hence
uncomputable subtraction constants will be needed. We wish to point out that, if one
computes amplitudes up to some given order in GN , very accurate approximations are
obtained whereas only a few uncomputable numbers had to be introduced. Perturbative
gravity seems to work ‘reasonably well’. 2

Next steps.

The situation described above is not at all new in particle physics. We have seen
it all before. Fermi’s theory of the weak interaction is an example at hand. Fermi’s
interaction constant, GF , has the same dimensionality as Newton’s constant GN . His
weak interaction theory, which was phenomenologically quite successful up to the ’60s,
requires the introduction of similar subtraction constants at higher orders. Here, it was
seen how the situation could be improved. Fermi’s theory is a low-energy/large distance
approximation for an improved theory, the standard model, which is fully renormalizable
and hence does not require any further unknown subtraction parameters.

Naturally, one tries to pull the same trick with gravity: find an improved short-distance
theory, and the subtractions will take care of themselves. Various approaches have been
tried:

1) Rearranging diagrams. At one time, it was thought that the theory could be
improved by resumming the expansion in a carefully chosen order. If we first assemble
all diagrams that contribute to the renormalized propagator, perhaps a more convergent
effective propagator will be found (the ”super propagator”, Fig. 1) 3 . This is an example
of a purely technical, mathematical refinement that is not based on any further physical
insight in what happens at the tiniest distance scales. It was doomed to fail, and that is
what it did.

2) Improving the symmetry structure of the theory. Remarkably, it was found that
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Fig. 1. The super propagator.

supersymmetry 4 could lead to significant further suppression of the infinities. Supersym-
metry relates space-time translations to transformations between fermions and bosons.
The infinity suppression is due to the fact that the infinities requiring subtraction all must
possess the same symmetry, which restricts them a lot. The infinities are not totally sup-
pressed, however, since potentially infinite terms with the same supersymmetry as the
original action can be found. Eventually, one must conclude that supersymmetry is not a
genuine cure against the infinities that are blocking the way towards a sound definition of
our model.

3) Rearrange the dynamical degrees of freedom of gravity. This is a delicate and smart
attempt. After fixing the gauge, the remaining degrees of freedom of gravity form a smaller
space than the original space of functions gµν(x, 0) and its first time derivative. One might
as well concentrate just on the algebra of the canonical commutation rules 5 . Rovelli and
Smolin 6 found that this algebra may be realized in a space containing only knots and
links in three-space. The hamiltonian should be an operator acting on these knots and
links. Distances, surfaces and volumes are then to be defined in terms of the complexity of
the knots and links. This program did apparently run into difficulties, however. Different
kinds of infinities were encountered when the need was felt to introduce points that connect
different knots and links. Thus, not only the intertwinings but also the connections between
curves are relevant. The difficulties with these ‘braid theories’ of space and time have not
yet been overcome.

4) String theory 7 . Initially, string theory was introduced as an attempt to address the
strong interactions. When fairly realistic analytic expressions for the amplitudes for meson-
meson scattering had been proposed, it was discovered that these amplitudes naturally
arise in the mathematics of ‘ideal relativistic strings’, breaking and joining at their end
points. Later also closed strings were introduced, which interact by rearrangement when
different stretches of strings meet at one point. The action of a string system can be seen
to be nothing but the Lorentz-invariant surface of the ‘world sheet’, spanned by a string
when it propagates in space-time. Quantizing such a system leads to elegant mathematics,
which at first appeared to be quite useful for an alternative treatment for the strong
forces felt by the hadrons. Ideally, one would like to regard string theory as an elegant
mathematical procedure to partially sum the strong interaction gauge theory amplitudes.
Although some quite interesting ideas were launched recently, not much real progress in
this approach was made. One of the various difficulties is that string theory in four space-
time dimensions appears to be inconsistent unless many internal degrees of freedom are
added, and the theory appears to possess negative (mass)2 states. Not only does the more
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accurate theory of QCD not allow for such tachyonic solutions, it also appears to lead to
Regge trajectories (functions relating angular momentum J to the mass M2 ) that are
non-linear. This seems to be impossible to reproduce in string theories living in a flat
space-time.

String theory was found to possess solutions that in many respects behave as gravi-
tons. This is seen most clearly in the ‘zero-slope limit’. Curiously, the symmetry that
starts out as a reparametrization invariance on the string world sheet, then serves as a
reparametrization symmetry that generates space-time coordinate changes of the form
(2.2). It was concluded that, if string theory is used not to describe the strong force in the
1 TeV domain, but instead to refer to physics at the Planck scale, then the gravitational
force will be a natural consequence of these theories. A daunting thought was that string
theory appears to be essentially unique. Even the difference between open and closed
string theories, and the difference between theories with different boundary conditions,
were attributed to differences only in the choice of the vacuum state, that is, the choice of
the starting point for some perturbative approximation scheme.

In many respects, string theory therefore appeared to be the ideal candidate for a
fully quantized theory that includes the gravitational force. The ‘infinities’ of the canon-
ical gravity theory are completely removed, many forms of matter are added in the form
of higher excited string states, and there are no ambiguities left in the order-by-order
calculations.

Yet there are problems with this theory as well. Basically it is — again — a pertur-
bative expansion. This time, the expansion is a direct chain of Feynman-like diagrams. As
before, we have to address the question of convergence of this expansion. At large distance
scales, convergence will be reasonably rapid, but at scales beyond the Planck length there
is no reason to expect any convergence at all. As the previous theories, this theory does
not tell us exactly what is going on at energies large compared to those that correspond
to the Planck mass. Secondly — and this is related to the first problem — the absence
of ambiguities is formally true, but not in practice. In practice, one does not know which
vacuum state to start off from; this is a question that can only be answered if one knows
how to sum perturbation expansion, but, we do not. Ample experience in particle theory
has taught us that the existence of a perturbation expansion is no guarantee whatsoever
that a ‘non-perturbative’ version of the theory exists, or, if it exists, that it should be
unique.†

5) In spite of the evidence for the contrary, the existence of a unique non-perturbative
theory is being speculated upon. The theory, prematurely dubbed ‘M -theory’, is supposed
to yield the various kinds of string theory, as well as supergravity, when it is expanded
around different candidate states for the vacuum. Evidence in favor of this suspicion
is a body of mathematical coincidences of symmetry structures and algebras. I am not

† Examples are the chiral effective renormalizable models of mesons. They all may be seen

as perturbative approximations to QCD, but the details of QCD certainly do not follow from

these models. Other examples are QED and other non-asymptotically free particle models, which

cannot be extended beyond their Landau ghosts.
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dismissing this favorable evidence lightly. Certainly explanations are needed for these
numerous observations. It must be stressed, however, that a sound theory ought to be
based on coherent constructions showing a definite causal order dictating unambiguously in
which order sequences of equations must be solved so as to make irrefutable predictions. We
have nothing of the sort at present. Neither string theories nor ‘M -theory’ are sufficiently
coherent to allow us to make any prediction whatsoever concerning, say, features exhibited
clearly by the standard model of the presently observed elementary particles.

Real Problems: (i) completeness.

The important question to ask here is whether any of the above mentioned attacks
stand a real chance to be successful or whether there are deeper-lying problems that are
not properly being assessed, so that, as a consequence, obstacles will continue to rise. It
is also a dangerous question to ask, since it may sound like an invitation simply to dismiss
previous successes, which is far from our intentions. Rather, the purpose of the question
is a further widening of our view.

It is illustrative to study a toy model: N point particles gravitating in a 2 space-,
1 time-dimensional closed universe 8 . For simplicity one sets its cosmological constant
equal to zero. Classically, this model is of a charming and exemplary simplicity. Since
the gravitational field in 2+1 dimensions carries no local physical degrees of freedom, all
its canonical degrees of freedom are the particle coordinates and momenta. Furthermore,
there are constraints. Where space-time closes, no residual singularities should remain,
which means that not only the total energy must match:

Etotal =
∫ √

gH(x)d2x =
∫ √

g R(x)d2x = 4π (4.1)

(where R is the contracted Ricci curvature), but also the total momentum and angular
momentum. If 2-space has an S(2) topology, careful counting shows that, at any instant in
time, the entire phase space of the system is 4N−11 dimensional. A space-time with genus
g has a 4N + 12g − 11 dimensional phase space. The fact that each particle contributes
with 4 units is easy to see: two coordinates and two momenta. The −11 may appear to
be more mysterious. The number arises in the following way:

choice of origin of 2-space: 2

choice of rotation angle: 1

choice of velocity of reference frame: 2

matching elements of Pioncaré group: 6

total: 11

(4.2)

How can one quantize a system with an odd-dimensional classical phase space?

The answer to this is that matching the Poincaré group implies a constraint, Eq.
(4.1), on the total energy. Its conjugated variable, overall time, is therefore unphysical.
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Of course, the overall time coordinate is not a physical variable since we cannot allow for
a clock, which would have to be living outside this universe. Removing the time variable
replaces −11 by −12. We could allow for an external clock if the universe were not closed,
but this would imply a constraint,

Etotal < 2π , (4.3)

for the total energy. In that case, external observers could also fix the coordinate frame
externally (that is, at a spot far from the interaction region), and no Poincaré matching
would be necessary, so an open universe has a 4N -dimensional phase space.

The limitation (4.3) causes severe difficulties for a consistent quantum formulation.
The canonically associated variable, time, now appears not to be continuous but rather a
discrete variable 9 . Indeed, if the Hamiltonian is an angle, then time is an integral multiple
of a fundamental quantum of time‡ . Consequently, not the hamiltonian but the evolution
operator for one time-step, U(∆t) = e−i∆t H , is the most fundamental object describing
the evolution. The difficulty that we then have to face is that there is no way to define a
ground state, or vacuum. Without a ground state we are unable to do thermodynamics,
and we are deprived from our stability arguments: the distinction between stable, low
mass particles and unstable massive ones can no longer be made, and it is impossible to
define low-energy and high-energy domains of the theory. At first sight this may sound
as an insignificant complication, but it is fundamental. We are not able to formulate
the requirement that our theory should approach a conventional field theory at the large-
distance scale.

An other difficulty is the question of formulating a complete set of states in Hilbert
space. In the classical theory, the question does not arise. Here we can start with any
state, and ask how it evolves. The evolution often turns out to be chaotic, either towards
the future, or towards the past, or both. To even begin asking questions concerning a
quantum model, we first must realize that there is no external time variable, so that we
must employ a Heisenberg picture, where a state is considered to represent a universe at
all times. In view of the chaotic nature of the evolution, it is prohibitively difficult to see
whether two states are distinct or not, i.e., to give a complete characterization of the set of
all distinct states. But this is what we need in order to set up a Hilbert space description
of the quantum theory. Limitations either of the form (4.1) or (4.3) on the hamiltonian
give rise to severe complications.§

It may seem to be strange that, before even beginning to characterize the mathematical
form of Hilbert space, we need to know the entire evolution of universes throughout time.
Why did this not seem to be needed in the canonical formalism of Sect. 2? There, we made
use of Cauchy surfaces. A Cauchy surface is an equal-time subspace of space-time, defined

‡ Time quantization is characteristic for 2+1 dimensional gravity, but probably not for 3+1

dimensions, where the hamiltonian is not bound by an upper limit 10 .

§ But perhaps not yet all options for further analysis have been scrutinized; we might return

to these questions in later publications.
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after we imposed the gauge condition to identify the time coordinate. Constructing good
Cauchy surfaces indeed had been the starting point of our construction of the classical 2+1
dimensional gravity theory. When particles with low masses move slowly, the definition of
a Cauchy surface in their immediate neighborhood appears not to lead to any problems.
The Cauchy surface is a locally flat two dimensional surface, but it has conical singularities
where the particles are. Therefore, one is forced to use either curved coordinate frames, or
flat coordinates with reparametrization ambiguities. In both cases it is hard to characterize
a minimal parameter space, and its bounds, whenever the entire universe is considered. If
we would limit ourselves to a ‘small section’ of the universe, then also we would have to
limit the energy available there to be much smaller than 2π , so the constraint of Eqs. (4.1)
or (4.3) is replaced by a tighter one, with its own unwelcome consequences.

Alternatively, one may consider the route offered by Wheeler and DeWitt 11 . They
propose to replace the evolution equations, such as Schrödinger’s equation, by a single
functional integral, representing the “sum of histories”. This considerably exacerbates the
difficulty of interpreting the expressions obtained. Deprived of a Hilbert space of states, we
can no longer determine probabilities for the future events, given a present configuration.
Perhaps the equation can be called upon in calculating the ‘cosmological S -matrix’: the
matrix that gives the ‘final state of the universe’, given its ‘initial state’. But we do still
need to know that the total probabilities are conserved, which means that this S -matrix
needs to be unitary, and then we still need to know how to completely enumerate the states
in Hilbert space, at the beginning and the end of the universe.

In our 2+1 dimensional model understanding completeness is a real problem. We have
not even started trying to phrase the problem in 3+1 dimensions.

Real Problems: (ii) black holes.

Our 2+1 dimensional model is simpler than 3+1 dimensions in one fundamental re-
spect: in the absence of a cosmological constant, there are no black holes.

In standard, unquantized general relativity in 3+1 dimensions, the existence of black
holes 12 is undeniable‖ . The equations show no obvious lower limit for the size of a black
hole, although making very tiny black holes requires conditions that are not easy to realize
in ordinary physical circumstances. In principle, black holes of any size can be made simply
by colliding sufficiently energetic particles head-on. The center-of mass energy needs to
be huge, but there appears to be no fundamental reason why such high energies should
be forbidden. Hence, we see no reason why the existence of tiny black holes should be
forbidden.

When quantum mechanics is switched on, one does encounter a natural lower limit
for black holes: the Planck size and the Planck mass. Smaller ‘black holes’ would have
to have a horizon with an even tinier radius, smaller than the Compton wavelength, and

‖ even though some still try to dispute the existence of astronomical-sized black holes. Perhaps

they are unaware of the fact that no exotic conditions in matter are needed for the formation of

a large black hole.

9



conflicts with the uncertainty relation would presumably invalidate the notion of a horizon
altogether. The legitimate question to ask is: how does the ‘spectrum’ of black hole ‘states’
terminate near the Planck length, do the black holes ‘merge’ with ordinary particles there,
or in any case: how do we formulate the laws of physics for these and similar objects whose
masses are comparable to the Planck mass?

In an attempt to answer such questions, we return to black holes large compared to
the Planck size, but still such that quantum effects might be relevant. At first sight it
seems that the laws of general relativity make a lot of sense here, and they predict the
properties of these black holes rather precisely. Assuming that at scales large compared to
the Planck size some (effective) quantum field theory applies, one can calculate what will
happen.

The outcome of the calculation, at first sight, appears to imply interesting and ‘rea-
sonable’ physical properties of black holes. It is found that they emit particles with a
thermal distribution. A black hole is found to have a temperature TH that is uniquely
determined by its mass, charge and angular momentum. For a chargeless, non-rotating
black hole:

TH =
h̄ c3

8πkBGNM
, (5.1)

where kB is Boltzmann’s constant and M is the Black hole mass. In the general case, in
units where kB = c = h̄ = GN = 1:

TH =
r+ − r−

4π (r2
+ + a2)

,
where J = M a ,
and r± = M ±

√
M2 − a2 −Q2 .

(5.2)

Here, J is the angular momentum and Q is the electric charge.

This equation for the temperature turns black holes into physically quite plausible,
thermodynamical objects¶ . Taking the electric potential at the horizon, φ , and the an-
gular velocity of the horizon, Ω, to be

φ =
Qr+

r2
+ + a2

; Ω =
a

r2
+ + a2

, (5.3)

we can write the equation for the entropy S as

TH dS = dM − ΩdJ − φ dQ , (5.4)

which integrates into
S = π

(
r2
+ + a2

)
+ Cnst . (5.5)

Apart from the constant, this is exactly one quarter of the horizon area.

¶ The thermodynamical equations do imply a negative specific heat hor the non-rotating black

hole, so that there cannot be true equilibrium. Departures from equilibrium due to this, however,

would occur only on very large time scales; in practice this phenomenon is not expected to lead

to any significant problem.
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The constant does not follow from thermodynamical arguments unless one knows what
happens when a black hole decays completely. However, it is easy to argue that, during
the final stages of its evaporation, the black hole mass will approach the Planck mass, and
its size the Planck size. Without a decent theory for Planck length physics we may never
be able to estimate the constant.

According to standard arguments in statistical physics, the exponent of the entropy
(5.5) — with constant — should correspond to the density of quantum levels of the black
hole. Thus, for large black holes, the density of states is expected to grow like

% → C · e π(r2
+ + a2) , (5.6)

which is exactly C ·exp
(

1/4 ·Area
)
. It is as if the degrees of freedom are equally distributed

over some kind of lattice defined on the area of the horizon. One is tempted to infer from
this that a dynamical theory of physical degrees of freedom at the horizon might describe
the properties of a black hole.

Sometimes, S is written as

S
?= Sgrav + Smatter , (5.7)

where Smatter represents the particles close to the horizon, which are emitted as Hawking
particles. The problem with this is however that any estimate of Smatter gives expressions
which diverge badly at the horizon: Smatter = ∞ ! A brute force cut-off appears to be
needed to define a finite Smatter . Setting Sgrav = 0 requires a cut-off at a distance of the
order of the Planck length from the horizon (as measured by local observers).

At first sight this seems to be a welcome result: no physical degrees of freedom should
be admitted at scales shorter than the Planck scale. But then attempts to identify the
surviving degrees of freedom leads to conceptual difficulties. The absense of degrees of
freedom too close to the horizon leads to constraints that relate outgoing particles to the
ingoing ones. Such constraints appear to be necessary if we wish to impose some sort
of action-reaction principle for the black holes, as required when one expects a unitary
evolution equation such as a Schrödinger equation for a black hole . But the existence of
such constraints also appears to be at odds with the very essence of general relativity: the
horizon cannot be more than a coordinate artifact, and ingoing particles should not be
‘reflected’ by a horizon at all!

Any decent theory of quantum gravity should allow us to anticipate what might hap-
pen in the strongest possible gravitational fields — those of black holes. The conundrum
posed by the black hole statistics clearly should be dealt with. It can be summarised as
follows: does the outgoing radiation come in quantum states that can be represented by a
unitary (hence time reversible) transformation of the ingoing states? How can this unitary
operation be derived from, or even reconciled with, the principle of general coordinate
invariance?

11



Holography.

At face value, the general relativity principle might appear to imply that outgoing
radiation cannot depend on ingoing matter, so that there is no unitary evolution at all 13 .
This was indeed what was thought at first: black holes are a “corridor to another universe”,
and their evolution would only be unitary in a Hilbert space that also incorporates all
possible states in that other universe. This would turn a black hole into a drain of ‘quantum
information’; pure states in Hilbert space would spontaneaously evolve into mixtures of
states. In ordinary physics, this can happen only if detectors are made insensitive to some
essential fragment of the data.

This behavior is quite strange and unprecedented in physics, certainly if, as one might
suspect, black holes blend into the spectrum of ordinary particles at the Planck scale. It
would be the kind of mixture of pure into mixed states that one might expect in theories
where many of the physical parameters are not sharply defined, but known only as stochas-
tic distributions. Thus, these tiny black holes would be controlled by physical parameters
whose exact values are not dictated by theory, but, at least partly, by chance.

This is where our topic touches upon a philosophical question. Would it be acceptable
if our theories would be fundamentally unable to yield sharp predictions for the physical
characteristics of the entities that play a role at the Planck scale; must we be content with
‘fuzzy’ predictions? Up till now, the fuzziness produced by the quantum mechanical nature
of atomic and sub-atomic physics could be limited to be precisely defined probabilistic
distributions that never were worse than what one would have to expect anyhow since
the initial states in an experiment can never be completely under control: in scattering
experiments the impact parameter depends on haphazard distributions of particles within
a particle beam, so that it must always be assumed to have some (fairly flat) probabilistic
distribution. Therefore, the outcomes of experiments can never be sharply predicted,
regardless whether one had a quantummechanical or a deterministic underlying theory.
Up till now, however, all physical characteristics of (elementary or composite) objects
were sharply defined or predicted by our theories.

A point made repeatedly by this author is that it is quite likely, at least philosophically
more acceptable, that the quantum properties of black holes are indeed sharply defined
by some theory. It would be premature to assert that this would be at odds with gen-
eral relativity. That would involve assumptions concerning behavior of matter near the
Planck scale, and such assumptions nay be suspected to be wrong. Ingoing particles that
encounter outgoing ones at a Planckian distance away from the horizon do indeed influence
them, while passing through. If not the ordinary standard model interactions perturb the
outgoing particles, then certainly the gravitational force, due to graviton exchange, will do
the job. But the job done by gravitons is difficult to compute: it diverges.

It was attempted to make the next step: compute such effects. To some extent we
succeeded in obtaining a unitary scattering matrix for black holes, but its Hilbert space
still contained more states than allowed by the value (5.6) as dictated by the entropy.
The only way to obtain the correct density of states appears to be by assuming that
there really are no more states to be discussed than just that number. By itself, this
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appears to be an interesting and physically meaningful piece of information: the number
of mutually orthonormal states to be employed in the description of the horizon of a black
hole is limited by Eq. (5.6). But its consequences are far-reaching: these states seem to be
distributed at the horizon, which is a two-dimensional plane. Yet the states one started off
with, using general coordinate transformations to describe the properties of a black hole
once the properties of the vacuum world experienced by a local observer near the horizon
are understood, appear to be distributed in a three-dimensional space!

This led us to formulate 14 the so-called ‘holographic principle’:

The complete set of degrees of freedom for all particles populating a certain region
in space and time, can be represented as if they were all situated on the boundary
of this space-time. Roughly, there is one Boolean degree of freedom for every
4 ln 2 Planck lengths squared.

This complete rearrangement of the physical degrees of freedom in the theory of quantized
particles in the Planck regime, has far reaching implications for this theory. It invalidates
the unsual distinction between intensive and extensive variables. Usually, extensive vari-
ables such as total mass, charge and energy may be seen as integrals of the corresponding
densities over three-space. This will no longer be true; most integrations will be over some
surface instead. When we arrived at the holographic principle, we took this surface to be
the horizon of a black hole, but for a local observer this surface would be indistinguishable
from any other surface. Thus, one must conclude that the physical degrees of freedom may
be projected onto any (infinite) surface at any time in three-space.

Superstring theory.

New developments led to a picture of what a non perturbative version of superstring
theory might be like. New components in the non-perturbative versions of string theory
are membranes and their multidimensional counterparts, D -branes.

A particularly important issue of investigation is now the spectrum of the degrees of
freedom of the new theories. M -theory is said to be far from understood, but one can
consider the number of modes that D -branes can unfold in if we consider a black hole
background metric. Unfortunately, this black hole has to be in, or at least not far away
from, the BPS limit, the extremal limit, in which the horizon does not have the same
structure as in the Schwarzschild black hole. In this limit, however, counting does suggest
the area law (5.6) for these degrees of freedom. And it is here that a somewhat modified
version of the holographic principle appears to apply. The theory defined on the lower-
dimensional surface is however not a lattice theory but rather some conformally invariant
field theory. These results are considered to be very promising successes for string theory.
At least for this author, they came unexpected: these theories could not be disqualified on
the basis of impossible spectral structures in the vicinity of black hole horizons.

The highly structured topological features of string- and M -theory, the fact that they
appear to include gravitational forces, and their successes in generating some of the desired
spectra of states for black holes, are often considered to be striking evidence that they
should, some way or other, be at the very basis of an all-comprising theory, a completely
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finite and consistent description of all particles and forces in Nature. If this were true, this
all-comprising theory would be

i fundamentally quantum mechanical. This means that our questions concerning quan-
tum cosmology remain unanswered: is there a Schrödinger equation for the entire
universe and how do we interpret ‘probabilities’ for its evolution, if there is funda-
mentally no place for ‘external’ observers?

ii There would not be a fundamental space-time metric. The notions of space and time
themselves would be ambiguous, as we see most clearly in the matrix theory, where
the coordinates do not commute. This appears to imply that there is no such thing
as locality. Even the notion of causality appears to be difficult to maintain in such a
theory∗ . These features are often presented as necessary and unavoidable complica-
tions for any quantum gravity theory, but on the long run they may well backfire: in
absence of strict locality or causality, the complete systematic rules for implementing
the “laws of physics” for such theories may remain obscure, and application of these
theories may end up requiring artistic rather than scientific skills.

iii Degrees of freedom for this theory would not be localized in 3-space but in some
arbitrariliy chosen 2-space. The possibility to transform from one 2-space to any
other 2-space should imply a tremendously large symmetry group for this theory.

These features are so far removed from daily life experiences that it is hard to imagine
how these theories can be linked to the real world. A further difficulty that will have to
be addressed by the proponents of this theory is the construction of the ‘correct’ ground
state, or vacuum. At present, this is not known, and many ‘vacua’ are equally possible.
Will there be a way to select the ‘true’ vacuum from first principles, or do we need to
determine it experimentally? In the latter case it would be misleading to say that string
theory has no free parameters; it has at least as many free parameters as is necessary for
fixing the vacuum state.

We should hasten to add that numerous other problems in our present view of the
universe and its fundamental laws have also not yet been addressed by string- and related
theories. Most notably, there are the hierarchy problem and the cosmological constant
problem. The hierarchy problem is the simple fact that there are various enormous dif-
ferences in scales, such as the wide separations between the neutrino masses, the lepton
and quark masses, the weak scale and the Planck scale. These wide separations in scales
should have a natural explanation, and this may become a considerable problem in theories
such as string theory, which purportedly do not possess any dimensionless free parame-
ters. The cosmological constant in the real world seems to be extremely accurately tuned
to zero, whereas the only known mechanism that might be related, supersymmetry, is

∗ The issue of causality can be disputed. It is stressed that causality still holds in all those

corners of the M -theory where it coincides with one of the perturbatively understood theories.

Naturally, one expects a causal unified theory. On the other hand we note that the local and

causal structures of each of the limiting theories appears to be so different that one may fear a

non-local and non-causal construction whenever one tries to combine them.
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strongly violated. How can a crippled symmetry produce a cancellation over 120 orders of
magnitude?

A plea for deterministic quantization 15 .

Being dissatisfied with the state of affairs sketched above, the author has searched for
an approach where the mysteries of quantum mechanics itself are dealt with together with
our problems in understanding quantum gravity. Noting that familiar notions of space,
time, probability, causality and locality are likely to be severely affected by whatever theory
there will be that is powerful enough to clear the obstacles against quantum gravity, we
suspect that it will also shed new light on the older difficulties. The usual no-go theorems
telling us that hidden variables are irreconcilable with locality, appear to start with fairly
conventional pictures of particle systems, detectors, space and time. Usually, it is taken
for granted that events at one place in the universe can be described independently from
what happens elsewhere. Perhaps one has to search for descriptions where the situation is
more complex. Maybe, it needs not be half as complex as superstring theory itself.

The conventional Copenhagen interpretation of quantum mechanics suffices to answer
all practical questions concerning conventional experiments with quantum mechanics, and
the outcome of experiments such as that of Aspect et al can be precisely predicted by
conventional quantum mechanics. This is used by some to state that no additional inter-
pretation prescriptions for quantum mechanics are necessary. Yet we insist that the axioms
for any ‘complete’ quantum theory for the entire cosmos would present us with as yet un-
resolved paradoxes. The point we wish to make, however, is that there is no inevitable
contradiction between quantum mechanics on the one hand and a “deterministic” world
view on the other. If quantum mechanics can indeed be reconciled with determinism at the
Planck scale, this could possibly solve many of our present problems. Since we are talking
of many degrees of freedom that are operative at the Planck scale, the phrase “hidden
variables” is appropriate, although the variables are not truly hidden; they are nothing
but the highest energy excitations of otherwise conventional degrees of freedom, and just
difficult to detect by conventional means.

Let us first take a big step backwards. The basic philosophy behind our version of
hidden variables — and without doubt it must also be at the basis of many other related
approaches — is that there are assumed to be deterministic fundamental laws of physics,
relevant only for the very tiniest scales of distance and time, and that the pervading
solution of these equations is not a ‘stationary’ vacuum, but rather a highly chaotic one.
Our universe is filled with what at first sight looks like white noise, but where this state
is called ‘vacuum’ by us, there are actually all sorts of subtle short and long distance
correlations. The one-, two- or many particle states are also noisy solutions, but they
are characterized by slightly different correlation patterns. The laws determining these
fluctuations may be entirely deterministic, but the only regularities that we can pick up at
our macroscopic, or atomic, distance scales, are statistical at best. It is these regularities,
essentially just minor correlations in the chaos, that we physicists have learned to model
as precisely as we can. We are unable to predict anything with certainty, as too many of
the fluctuating parameters could not be brought under control. Our predictions therefore
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more often than not contain statistical elements. This effective description is what we
presently call quantum mechanics.

As stated earlier, the ‘hidden variables’ are nothing but the numerous fluctuating
degrees of freedom at the tiniest distance scales. These variables just represent the heaviest
elementary fields in the system; they are not truly hidden, but merely very difficult to
observe if one’s accelerator cannot reach the required energy (read: the Planck energy).
One might suspect that the laws leading to these chaotic solutions could well be local; this
would surely suffice to enable the emergence of chaotic solutions, as can easily be verified
in simple computer animations of cellular automata.

However, plausible as this scenario may seem at first sight, it is often criticized pre-
cisely because it does not seem to explain how such a quantum mechanics can violate Bell’s
inequalities. Will we need fundamental ‘action at a distance’ after all? There is not the
slightest doubt that

(i) Quantum mechanics violates Bell’s inequalities, and that

(ii) Experimental observations confirm the quantummechanical predictions.

In several cases, the violation of Bell’s inequalities was verified experimentally. Any hidden
variable theory that cannot accommodate these facts must be discarded. The remainder
of this paper will describe the present author’s approach in more detail. Although it is not
clear how violations of Bell’s inequalities can come about in this theory, it is also difficult to
prove that they cannot be violated. This is because the Copenhagen interpretation of the
wave function is kept totally intact. We have both quantum mechanics and determinism.
This means that we have deterministic microscopic laws, but we use the entire machinery
of Hilbert space techniques to represent the probabilities that may occur.

It is duly stressed that we have been unable to come forward with any satisfactory
model that shows in detail how the mechanism that we have in mind should work. Rather
than attributing this failure to the Bell inequalities so as to dismiss the entire approach, we
make the following important remarks: It may very well be that we are overlooking some
essential complications. It could be that some kind of non-locality will be needed in the end.
Perhaps there is an exotic boundary condition that has to be implemented. But it could
also be that the missing ingredient is actually nothing more than some powerful symmetry
that relates ‘beables’ to ‘changeables’ (notions that we shall define shortly, Sect. 9). If this
is the case for many of the ordinary symmetries of Nature, such as rotation and translation
invariance, then that could be the beginning of an explanation why our world appears to
us to be quantum mechanical. A model where this happens could be constructed: all
harmonic oscillators can be described this way, but as yet we were not able to introduce
interactions, in the form of anharmionic terms, unless they are nonlocal.

Thus, if the price to be paid for quantummechanical behavior in a deterministic theory
is just some delicate mathematical symmetry or else perhaps a mild form of non-locality,
then it is worth-while to pursue this option further. For this reason, we choose as our
strategy to ignore the Bell inequalities and to focus on other aspects of the problem.
Later, we shall encounter another price that we would be willing to pay: information loss.
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Ontological states.

The central assumption in deterministic quantization is the existence of ontological
states† . We assume that the universe evolves from ontological states to ontological states,
according to a fixed law of evolution without quantummechanical mixing. Thus, if we are
certain which state we have at one time, the laws will give with complete certainty only
one state at all later times. To specify a state, we may either use discrete or continuous
variables, or both. There are now two different possibilities to consider: the evolution
could either be time reversible or irreversible in time. In the latter case, several different
ontological states at time t1 could evolve in one and the same ontological state at time t2 .

Let us first consider the time reversible case. It is then perfectly legal to define a
Hilbert space by identifying the ontological states with the elements of a basis for this
Hilbert space, the primordial or ontological basis. The evolution over some time interval
∆t is then described by a unitary operator U(∆t), which, in the ontological basis, takes
the form of a pure permutation matrix, or kernel, having only zeros and either ones or
Dirac delta functions as entries. We can now use the same operator U(∆t) to describe the
evolution of arbitrary vectors in this Hilbert space, where we can interpret the absolute
squares of the coefficients as probabilities. Conservation of probabilities is automatically
guaranteed by the unitarity of U(∆t). Quantum interference does not occur, and hence,
if the coefficients are complex, the phase angles have no direct interpretation at all. If,
however, we use any other basis for this Hilbert space then the phase angles will be relevant.
The fact that we do observe quantum interference in the world of atoms and molecules
implies that the basis used is not an ontological basis. The ontological basis of our universe
would require all Planckian degrees of freedom for its description, and is therefore not
known.

In the ontological basis, we can define the ontological observables, also called beables.
They are defined to be observables that refer directly to properties of the ontological
states, so that in the ontological basis they are diagonal. This implies that all beables, at
all times, commute with one another. In ordinary quantum field theory, no such operators
are known, though in some very special simple models they can be constructed. 15

All operators that are not diagonal in the ontological basis will be referred to as
changeables. They replace an ontological state by another state. The evolution of change-
ables is described by the same unitary operators U(∆t) as the evolution of the beables.
We shall assume that present day physicists are unable to distinguish beables from change-
ables. Indeed, as stated earlier, there might exist symmetry relations between beables and
changeables.

Since U(∆t) is unitary, it can be diagonalised. One then obtains a new basis where it
is easy to identify the hamiltonian. All states obey the Schrödinger equation. We deduce
that the Schrödinger equation holds for time-reversible deterministic systems just as much
as for conventional purely quantummechanical systems.

† In previous work, the phrase “primordial states” was used for what we now decided to call

‘ontological states’.

17



There appears to be, however, one very important distinction between conventional
quantum systems and this apparently ‘quantum’ description of deterministic systems. The
hamiltonians derived for deterministic systems nearly never appear to have a ground state.
If time is discrete, the hamiltonian is periodic; its eigenvalues are defined modulo an integral
multiple of 2π/δt , where δt is the smallest allowed time interval. In that case, there seems
to be no way in which we can identify any of its eigenstates as representing the state
with lowest energy. If time is continuous, one usually starts with a deterministic evolution
equation of the form

dqi(t)
dt

= f i
(
~q(t)

)
. (9.1)

Defining the Hilbert space operators pi(t) = −ih̄∂/∂qi(t), we find that the hamiltonian
must be

H =
∑

i

pi f i
(
~q(t)

)
, (9.2)

which clearly has no lower bound.

Attempts to remedy this situation mostly amount to finding constraints such that
only the non negative values of the hamiltonian eigenvalues are physically allowed. In
principle, there is nothing against imposing such constraints, and so it seems that we
obtain interesting ontological theories that generate ‘quantummechanical behavior’. The
difficulty comes when we try to reconcile such constraints with locality.

Is this conflict with locality due to the fact that we are trying to build a theory that
violates Bell’s inequalities? Could it be that the violation of locality only takes place at
Planckian distance scales and can therefore be made acceptable — after all, string theories
also tend to generate nonlocality? Or should we attempt to construct more sophisticated
models? There is one important avenue not yet discussed.

Information loss 15 .

In deterministic models it may well happen that different ontological states, after a
certain number of time steps, evolve into the same ontological state. In that case, the
construction described above of an evolution operator is unsatisfactory, since the result
would not be a unitary operator. In that case, the ontological states cannot be identified
with the basis elements of our Hilbert space. The absolute values squared of the coefficients
of a wave function would then not correctly describe the probabilities.

Instead, we can still use a Hilbert space procedure, provided that each element of
the basis be identified with an equivalence class. Two ontological states are in the same
equivalence class if, some time in the future, they evolve into one and the same state.
This definition is not without danger; in principle, all states could one day turn out to
be equivalent, so that there is only one equivalence class. This could be the case in a
shrinking universe. In an expanding universe, like ours, this danger is probably not there.
We assume that the definition converges reasonably well so that the equivalence classes are
sufficiently well distinguishable in practice. In any case, with this definition, the evolution
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is again unitary by construction. We can proceed as in the previous section. What have
we won?

First, we should emphasize that the resulting quantum theory is again unitary, and
its hamiltonian is hermitean. We do not anticipate that there would be transitions from
quantummechanically pure states into mixed quantum states. At first sight, therefore, our
‘quantum theory’ will look as before, and also we expect to encounter the same difficulty
concerning the positivity of the hamiltonian and the absence of a good candidate of the
vacuum.

At various levels of sophistication, however, information loss may make a lot of dif-
ference. At a rather naive level, we note that information loss will make some ontological
states much more abundant, or probable, than others. Some states will have much more
possible precursors than others. This is a welcome feature if we wish to explain vacuum
correlations. In a theory with exact time reversibility, one would expect all states to be
equally probable, so that no nontrivial correlations are to be expected, whereas in the real
world nontrivial vacuum correlations play an essential role.

Secondly, information loss is difficult to avoid in the description of classical (unquan-
tized) black holes. Attempts at writing a strictly time-reversible generally relativistic
model usually fail when the possibility of gravitational collapse is taken into account. The
formation of trapped regions can often not be made undone. Allowing for information loss
simply implies that we decide not to worry about this. The laws are sufficiently chaotic so
that even if information disappears into black holes, enough chaotic behavior is generated
to compensate for this.

Thirdly, information loss may give a natural explanation for the holographic principle.
Up till now, it had been virtually impossible to think of natural laws of evolution that would
appear to be local in three-dimensional space, yet require a basis of states that can be
mapped onto a two-dimensional surface. But with information loss, it is quite conceivable
that the data in a three-dimensional volume dissipate away, so that only the information
left on the boundary, a two-surface, suffice to describe the equivalence class. Although this
is by no means obvious, we do suspect that this might be the case in a reasonable class of
interesting models. Note that the holographic principle implies equivalence classes to be
very large, and that the non-equivalent ontological states generate a much smaller Hilbert
space than in models without information loss. Thus, even if information loss might be
achieved by very tiny corrections in the deterministic equations of motion, its effects will
be huge.

Fourth, information loss may imply that many of the candidate ontological states will
be illegal, since they will have no precursor at all. In an effective quantum description, this
will lead to constraints. At first attempts, these constraint do not resemble the ones that
we require if we want the hamiltonian to have a lower bound, but in more sophisticated
approaches, they do!

Fifth, information loss implies that many periodic solutions become unstable. They
tend towards discrete subsets, the stable attractors, separated by forbidden regions where
the orbits repel. Thus one naturally obtains ‘quantization’ of orbits, much like what we find
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in quantized harmonic oscillators. The quantum nature of many phenomena in physics,
usually explained by conventional quantum mechanics, is here seen in a different light.

Sixth, there are the Bell inequalities. Our definition of quantum states hinges on
the definition of equivalence classes. These, in turn, can only be defined if we know how
a given system evolves in the future. Thus, an accurate description of a given setup
in terms of quantum states requires some knowledge of the future. It is exactly this
kind of predeterminism that seems to be needed for the interpretation of an Einstein-
Rosen-Podolsky experiment in terms of an ontological theory. We know very well that the
experiment itself never allows the experimenter to glance into the future, but if we try to
interpret what happens, some anticipation of the future experiment seems to be needed.
We suspect that this observation might provide for the kind of loophole needed to avoid
the conclusion that hidden variable theories of this sort require non-locality.

Dissipation at the Planck scale. Conclusions.

Difficulties with the conventional approach to quantum gravity only become apparent
at the Planck scale, 10−33 cm, as is most clearly seen when we try to reconcile the laws of
quantum mechanics with gravitational collapse. This does not mean that the Planck scale
has to be the ultimate distance scale in physics; it could be that the ultimate distance scale
is much closer to the conventional distance scales of physics, say a fraction of a TeV−1 ,
but at present this is not considered to be very likely. As a working hypothesis, we take
the Planck scale to be the ultimate scale. It is here that we expect a detailed description
of the ontological states and the occurrence of information loss.

A nice feature of theories with information loss, or dissipation of information, is that
one could keep a strict continuum of space, time and fields in space-time, yet have only
a discrete set of equivalence classes (we could have added this as a seventh feature in
the previous section). Imagine a Navier-Stokes fluid with viscosity. The dimensionality
of viscosity, in a fluid with a given density, is cm2/sec. In a relativistic theory, where
centimeters and seconds are linked by the speed of light, the dimensionality of viscosity
will be just that of a length. Let us take this to be the Planck length. Then, at distance
scales shorter than the Planck length, viscosity, hence dissipation of information, will
dominate. No ontological data will survive at that scale, so that we can understand why
quantum phenomena never require scales shorter than that.

At distance scales large compared to the Planck scale, dissipation of information is
negligible, and turbulence sets in. Of course, the details of the microscopic laws are
expected to be very different from conventional Navier-Stokes fluids; in particular there is
no form of energy that continually decreases, so that it would bring all initial configurations
at rest eventually. Our system at the Planck scale is expected to stay in a chaotic mode,
but it is attracted towards limited sets of possible stable attractors. Simple computer
models of cellular automata can be used to illustrate this expected behavior.

If indeed our system remains deterministic and continuous up to and beyond the
Planck scale, then this is evidently a way to reassure locality, hence local Lorentz invariance
and causality. It would be a conceptually quite attractive way to resolve the apparent
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paradoxes met in attempting to reconcile what is presently understood to be quantum
mechanics with general relativity.

References

1. R.P. Feynman, Acta Phys. Polonica 24 (1963) 697; B.S. DeWitt, Phys. Rev. Lett. 12
(1964) 742; Phys. Rev. 160 (1967) 1113; ibid. 162 (1967) 1195, 1239.

2. L.D. Faddeev and V.N. Popov, Phys. Lett. 25B (1967) 29; Kiev Report No. ITP
67-36; L.D. Faddeev, The Feynman Integral for Singular Lagrangians, in “Teoretich-
eskaya i Matamaticheskaya Fizika, 1 (1969) 3 [English Translation: Theoretical and
Mathematical Physics, 1 (1970) 1.]
G. ’t Hooft and M. Veltman, Ann. Inst. Henri Poincaré, 20 (1974) 69.
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