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We present specific examples that demonstrate the non-convergence of the 1/N expansion for the lattice theory of 
SU (N) gauge fields. 

1/N expansions in field theories with N or N 2 field 
components are a useful device for simplification 
and/or bookkeeping purposes of Feynman diagrams 
[1 ]. In the conventional perturbation expansion of 
SU(N) gauge theories one may consider the limit 
N ~ oo keeping g2N fixed, g being the coupling con- 
stant. One then finds at each order ofg2N a finite 
polynomial in 1/iV with coefficients that are related 
in a precise manner to the topology of the correspond- 
ing diagrams as twodimensional surfaces [2]. In par- 
ticular the leading term consists of planar Feynman 
diagrams only, which suggests that in the limit N ~  oo 
one obtains hadrons that are essentially non-interact- 
ing. The 1IN expansion then corresponds to an expan- 
sion with respect to the coupling strength between 
the hadrons. Our general experience with coupling- 
constant expansions in field theories then suggests 
that the 1/N expansion will diverge at a fixed value 
for g2N, even though the series is finite and therefore 
converges at fixed order in g2N. We think that the 
probable formal divergence of the 1/iV expansion is 
not a sufficient argument to reject I[N expansions 
altogether, first because in the physically interesting 
case of SU(3) the effective coupling strength of 1/3 
may be small enough so that the spectrum obtained 
in the N ~ oo limit will still resemble the physical 
spectrum, and secondly because fundamental prob- 
lems such as the quark-confinement mechanism are 
likely to be independent of N, and understanding of 
such mechanisms in the N ~ oo limit could be of 
great significance. 

Thus we were motivated to study the 1/N expan- 
sion further, but now in the SU(N) gauge theory on a 
lattice. Here the usual expansion is made with respect 
to 1/g 2 and 1/mq where rnq are the masses of the 
quarks [3]. Alternatively, one may expand with re- 
spect to 1/g2N and I/N, keeping mq fixed and arbi- 
trary [4]. Again we look at fixed order in 1/g2N and 
this time we find that the series m 1IN does not only 
continue up to infinity as an essentially geometric 
series, but, more annoyingly, fails to produce the cor- 
rect answer at fimte N when summed. To be precise: 
we f'md for N larger than a few units pure rational 
functions of N, but when N = 1,2 or 3 is substituted 
m here we find incorrect or even infinite answers. The 
critical value of N above which the rational function 
is valid and below which it fails depends on the order 
of 1/g2N considered. We interpret this result as an 
aspect of the formal divergence of the 1IN expansion, 
but it must be kept in mind that also in this case we 
are unable to interchange the limxts g2N ~ oo and 
N--~ OO. 

To demonstrate the aforementioned properties of 
the I[N expansion is the purpose of this note. The 
action for gauge fields and quarks on an infinite Euchd- 
ean lattice is given by [3] 

S[ q, q:q, vl 

= ~ ~-q(X) (~ ~ (1 + 7#)U(x, #)$q(X +/5) + 
x,q v 
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+ 1  ~ ( 1 - T u ) U t ( x - f t , ~ ) ~ q ( X - f t ) - M q t ~ q ( X ) )  

+ ad-4. G Tr{U(x, ft) 
g2 x, ta4:v 

x w(x+f~,~)W*(x+~,fOwt(x, ~)}. (1) 

Here a is the lattice length, x labels the lattice sites, 
and Mq = amq + d; further, d is the dimensionality of 
space-time (d - 4), and/~ and ~ are unit vectors with 
length a in the direction/a and v. The quark fields ffq 
are elementary representations of SU(N) and U(x, f-O 
are N ×  N unitary matrices, which are related to the 
gauge vector fields an the continuum limit as follows: 

U(x, fi) ~ exp (½ lagAu(X)~ c~). (2) 

In computing the functional integrals with this 
Lagranglan we only keep the mass term, 

ffqMqt~q, 

m the exponentml and expand the exponential of the 
remaining part of the total action. Subsequently one 
first performs the integration over the U-variables 
(without imposing a gauge condition, as was empha- 
sized by Wilson). We then encounter group-invariant 
integrals of the type 

integrals of the type (3) one can find the general N- 
dependence of such diagrams. It Is very satisfying that, 
as in the continuum theory, we have found that the 
limit N ~ 0% g2 N fixed, exists and that only planar 
constructions survive in this limit. At fLxed order in 
1IN and 1/g2N one can easily sum the 1/Mq expansion 
and then one obtains a "meson" propagator. In fact, 
it can be seen that the procedure that lead Wilson to 
compute such propagators corresponds exactly to ne- 
glecting certain 1IN corrections. 

It was our intention to set up a systematic 1/g2N 
and 1IN expansion and formulate the corresponding 
"Feynman rules". We have encountered two types of 
difficulties: 
1) The combinatorics turn out to become extremely 
cumbersome :~, so although this expansxon is of formal 
importance, we doubt its usefulness when applied to 
actual calculations in a lattice theory. 
2) The phenomenon mentioned before: non-summa- 
bility of the expansion. It is this second point that we 
wish to demonstrate by considering more closely sev- 
eral example diagrams. 

Let us start by discussing the diagrams (a)- (d)  of 
fig. 1. They consist of certain simple quark-line con- 
figurations, which may be contained in a more general 
diagram, up to the first non-trivial order in 1/g2N. To 
calculate these diagrams for general values of N one 
can make use of explicit expressions for the group-in- 
variant integrals (3). For instance, to calculate dia- 
gram (d) we use, at each side of the square, 

(3) 

which are only nonzero if both the underlined indices 
and the non-underlined indices can be grouped into 
invarlant tensors. In particular, 

f ® u(x, u ( x ,  = o (4) 

(unless N = 1). It is this latter identity that prevents 
quark lines to occur separately and therefore assures 
confinement. 

The total amplitudes can be spht into "diagrams" 
that consist of assemblies of "gauge squares" (coming 
from the last term of eq. (1)) and "quark line units" 
(coming from the first term of eq. (I))  which have to 
fit together because of eq. (4). By working out the 

tl /2 i3 kl k2 k3 

1 

N(N 2 - 1) (N 2 - 4) 

× {(iV 2 - 2 )  ~ 6!16l.:6!a6~ 1 6 I: 6ik3 3 
6 pw°Tln I1 12 13 K1 KI 

- N  ~ 6ll gl2xl3 h Jl 6J3 
18 perm tl ut2v138k16k2 k3 

+ 2 ~ 61.1"~l.261.36 "i3 6 ]1 612 ] 
12perm IlVt2 13 kl k2 k3j " 

(5) 

* A "prehminary" preprmt by us on this subject contains 
some errors on this point. 
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(a) (b) (c) (d) 

(e) 

I I l i m b  I I  

i t  I F , I  i~ 

(f) 

LL---Z 2L I, L L- 2 Z ~-1 

(g) (h) 

Fig. 1. Diagrams considered in the text The dashed lines rep- 
resent the oriented gauge squares. The solid hnes denote cer- 
tain quark-line configurations, which may be part of a larger 
configuration. For instance, the hnes could be dislunct at the 
corners with external quark-antiquark hnes attached to it, as 
long as we keep the sum over the color index at that vertex. 
Therefore we ignore possible minus signs for closed fermxon 
loops. 

As was mentioned before such integrals are indeed 
decompositions into the various invariant tensors. We 
now wish to point out two related aspects of decom- 
positions such as (5). First we have implicitly assumed 
here that the number of U's and Ut 's  in the integrand 
is smaller than N, since we have not taken into account 

the fully antisymmetric, invariant tensor e~l i2 .'iN' 

which carries N indices. In addition the various invar- 
iant tensors, expressed by products of Kronecker 
deltas, are no longer independent as soon as the num- 
ber of U's and/or Ut 's  exceeds N. To illustrate this 
we consider the integral (5) w i t hN  = 2. A direct cal- 
culation at N --- 2 leads to a similar decomposition as 
for general N, but now with coefficients 1/6, - 1 / 2 4 ,  
0, i.e. the last invariant tensor no longer occurs, simply 
because it is linearly dependent on the first two. 

This leads directly to the second more disturbing 
aspect, namely that the result f o rN  = 2 cannot be ob- 
tained by substituting N = 2 into the general result (5). 
Indeed the coefficients in these decompositions are 
generally rational functions of N which may become 
infinite at certain integer values of N. This property is, 
apparently, less disturbing if one realizes that to calcu- 
late a diagram one must make a full contraction over 
all color indices. This will lead to new N-dependent 
terms in the numerator, which may cancel the pole 
terms. 

And indeed, after evaluating the diagrams (a ) - (d)  
(see table 1), these poles disappear. The N dependence 
is regular, and precisely given by the topology of the 
corresponding diagrams. Only the coefficients change 
for small values of N, because, as we have indicated 
above, the order of the diagram becomes comparable 
to N. 

It turns out that this is more or less the general rule 
for simple diagrams, namely that the contractions over 
the color indices precisely cancel the disturbmg poles 
in the decompositions like (5). However, by systemati- 
cally analysing the N-dependence of general diagrams 
we have been able to construct examples where this is 

Table 1 
Numerical resuRs for the diagrams of fig. 1, calculated for N --- 1, 2 and general N. n gives the order of the diagram in 1/g 2, 1.e. the 
number of gauge squares, x represents the Euler characteristic of the diagram, a measure of its topological structure. For large N the 
diagrams should behave like NX(g 2 N) -n, which agrees with the entries in the fourth column. (The contributions of the 3,-matrices 
in the Fermion lines are of course N-independent and have not been included here.) 

Diagram N = 1 N = 2 General N 

a 1/4 1/2 1/2 2 2 
b 1/4 0 0 2 1 
c 1/36 5/36 1/6 3 3 
d 1/18 -1/18 0 3 1 
e 1/8 1/6 {(N 2 - 1) -t 4 2 
f 1/8 -1]12 -1N-1 (N 2 - 1) -1 4 1 

1/216 17/864 ~(N2-2)N-I(N 2 - 1)-1 (N 2 - 4 )  -1 6 3 g 
h 1/108 -7/432 4N-1 (N2 - 1)- - i  (N2 _4)-4 6 1 
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clearly no longer the case. Examples of such diagrams 
are given in fig. 1 (e)-(h).  As one can see in table 1, 
the corresponding results for general N still lead to 
infinite answers for N = 1, and/or 2, whereas direct 
computations at these values yield finite answers as 
it should. And it is only asymptotically, for large 
N, that the diagrams behave according to their topo- 
logical structure. 

These results indicate very clearly that the 1IN 
expansion will not converge to the right answer. For 
larger diagrams we expect to find similar singularities 
at increasing integer values of N, so that the 1/N ex- 
pansion for the full theory is probably not summable 
for any value of N. Two remarks are of order. First, 
this problem must be added to the occurrence of 
"baryons", which, at finite N,  are composed of N 
quarks. Baryonic states are not see in the I /N  expan- 
sion but clearly give finite contributions at finite N. 

The anomalies we found above cannot be explained 
in terms of these baryonic contributions. Secondly, 
we can easily get rid of the baryonic effects if we 
wish, by turning SU(N) into U(N), using the same 
Lagrangian as before. The irregularity of the 1/N ex- 
pansion that we observed remains unchanged. 
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