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ABSTRACT

It 1is shown that the scattering amplitudes for
elementary particles against a black hole can be deduced to
some extent from the mere assumption that such amplitudes
should exist and be in agreement with low energy field theory
and general relativity. It automatically follows that the
underlying field theory has a stringlike structure, albeit an
unconventional one. :

The fact that the black hole’s entropy is finite implies
that 1t has a discrete spectrum and this in turn suggests a
discrete structure of Hilbert space, not only for the black
hole but also for the field theory as a whole. Such a
fundamental discreteness of Hilbert space allows a new
interpretation of quantum mechanics that we call
‘evolutionary determinism": the local laws of physics could
be deterministic while superposition of states and wave
functions is still allowed and indeed necessary for deriving
the low energy 1limit of these laws to obtain something
resembling the standard model.

1. The Black Hole Spectrum

The standard Kerr-Newman solution! describing a black hole depends
on three parameters, the mass M , charge Q@ and angular momentum L .
All three are in principle continuous, but a particle physicist could
convincingly argue that Q and L must be quantized. More
speculatively one could suspect that also M is not continuous. Now, as
is well-known?, a black hole is expected to emit radiation. Therefore,
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once it is in a state (M, Q, L), it will not stay there very long. It is
not difficult to estimate that because of Hawking radiation the masses
M will be complex:

M2 = M2 - iB (1)

where B 1s of the order of the Planck mass squared for all black
holes.

But how dense is the spectrum of values (1)? The level density
p(M,Q,L) can be estimated the following way®, where for simplicity we
ignore the dependence on Q and L . Consider the reversible process
where a black hole of mass M absorbs a particle with energy &M ,
becoming a black hole with mass M + 8M . The absorption cross section
o0 1s approximately

o = mR® , (2)
where R 1is the black hole radius, R = 2M . Conversely, a black hole

with mass M + M can emit the same particle as Hawking radiation. The
emission probability W is approximately

W ~ mR2 P1(3H) E_BHSM , (3)

where By 1s the inverse Hawking temperature, By = 8nM (putting the
gravitational constant «k and Boltzmann’s constant kg equal to one).

p,(S8M) is the density of states for the objects radiated out with
energy oM .

If there were a quantum mechanical theory for the black hole, the

same quantities could be expressed in terms of transition amplitudes,
using the "golden rule":

o = |(M+3M|T|M, 8M)|%p(M+3M) ; (4)
where J 1is the transition matrix, and
W= | (M, 8M|T|M+sM) |°p(M)p,(8M) . (5)

By virtue of PCT 1invariance, the matrix elements in (4) and (5)
should be each other’s conjugates, and therefore we find

p(M+éM)/p(M) = p(8M) o/W = eB*ﬁH; (6)

this should hold for a range of values for &M as long as &M « M
and with By = 8nM we find

ATtM?
e

p(M) = C : (7)

where the universal constant C is the only unknown. Note that the
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exponent is one quarter of the area of the horizon; this is what one
also finds in more general cases.

C could be finite*, in which case we indeed have a finite spectrum
density, or C is infinite, but in this case equations (4) and (5)
could be considered at the lower end of the continuum. Let |M+8M) be in
the continuum but |M) one of the discrete states directly underneath.
Either |M+3M) would be an absolutely stable thing ( W=0 ), in which case
virtual pair creation of these things would give infinite contributions
to graviton self-energy diagrams, or the cross section o for
collisions against |M) would tend to infinity. Neither of these latter
options sound physically very attractive, which is why we suspect C to
be finite. We must realize however that very large numbers are

indigenous in quantum gravity. It could be that C is of the order of
1020 ior ¥ 1074,

2. The Gravitational Back Reaction

Although Hawking radiation of black holes naturally leads to a
picture of a discrete black hole spectrum, one does not find a discrete
spectrum when one attempts to derive it more explicitly from Field
Theory in the black hole background, in contrast with for instance the
spectrum of magnetic monopoles that one could derive this way. The
reason why one finds a continuous spectrum for black holes is
technically that in any state of Hilbert space there seems to be no
relation (in the form of some boundary condition at the horizon) between
waves of incoming particles and waves of outgoing particles.

This cannot be right. If black holes can be seen as any form of
matter there should be an S -matrix relating out states to in states.
Now however we make the fundamental observation that it is possible to
assume that an S -matrix does exist. To treat the black hole as a
static background and subsequently rely on background field theory
1gnoring gravitational interactions between in- and outgoing particles
may well be fundamentally incorrect, or at least imprecise. For any
given in state |in) , Hawking's derivation gives a probabilistic
distribution of out states:

i) e ilout ) WEL)- - (8)

where W,,, 1s the probability to find the state |out) . Hawking’s
original interpretation of this result was that pure states may make
transitions into mixed states, but it is more 1likely that the
probabilities must be interpreted as "the probability that the
calculation was right"; the calculation did not yield one single
Hamiltonian for the black hole, but a probabilistic distribution of
Hamiltonians. The true Hamiltonian is just one of these.

Can we devise a formalism that gives one single S-matrix, or one
single Hamiltonian, in stead of a probabilistic distribution? We claim
that it exists® First, one must understand how infalling matter
interacts gravitationally with outgoing Hawking radiation.

o) (1 I unlikely that C is exactly constant. There may well be
subdominant corrections either in the exponent, or in the form of powers
in front of the exponent.
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Consider a representation of the Schwartzschild solution in terms
of its Kruskal coordinatesS:

xy = -(r/2M - 1)er/2H ; (9)

x/y = olt-to)/2M

, (10)
where 1,5 1is some arbitrary reference time. In these coordinates space-
time is regular at the future and past horizons, which are given by
y =0 and x =0 , respectively. A boost in time t corresponds to a
Lorentz transformation in x and y around the origin (x=y=0)
Suppose a particle falls in around the time to , and a Hawking particle
leaves the hole around time t » t, . We see that at the horizon these
two particles cross each other with a tremendous center-of-mass energy,
given by the Lorentz boost factor exp((t-ty)/M) . Because of this large
relative energy the exchange of gravitational interactions may not be
1gnored.

This interaction is easy to compute in the limit where we neglect
the particles’ rest masses. An infalling particle causes a shift in the
metric: two ordinary Schwartzschild metrics are glued together along the
surface x = 0 with a relative shift &8y in the y coordinate®, which
depends on the angles Q = (9, ¢) . This is not unlike a "sonic boom" or
Cerenkov radiation. The functional dependence of Sy on Q is
determined by the equation

(1-4,) 8y(Q) = 4nkp;, 8%(Q,9,) (11)

where AQ 1s the angular Laplacian and Q, is the set of angles at

which the particle dropped in, with momentum P;in With respect to the
Kruskal coordinates.
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Fig. 1. The horizon displacement.
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The solution of Eq. (11) can be written as
3y(Q) = £f(Q,9) p;n (12)

where f(Q,Q,) 1is a Green function. It is uniquely determined by Eq.

(11) because 1—AQ has a unique inverse.

This solution of Einstein’s equations is found by writing the
space-time metric obtained from gluing the two Schwarzschild solutions
together as an Ansatz and then imposing Einstein’'s equations. The Green
function f can be given in an integral form but this is not very
illuminating. One finds that fi(;3)~> 40,4 Foraall Q. Qi .esands of
diverges logarithmically when Q - Q, .

A consequence of these observations is that if we drop a particle
into the black hole, the position of the horizon at times <t before the
particle fell in, changes, as drawn in Fig. 1. This change 1is barely
perceptible at times t=<t; , but at times (t,»f; the change 1is large.
An observer there sees Hawking radiation that now originated in a
different region of space-time than it would have if the first particle
had not been thrown in.

Is this consequence of any importance? What does it matter if the
Hawking radiation originated somewhere else? It will certainly look the
same as before.

We will argue in the next section that only in a quantum theory
that is detailed enough to give us a scattering matrix instead of a
density matrix, shifting horizons will be relevant. Indeed, important
constraints on the scattering matrix will be found. As was argued 1in
ref’ the no-hair theorem is not true for the quantum black hole. In ref’
it was found that finite, discrete quantum numbers may exist for black
holes; we will go one step further: we expect one ’'quantum hair
follicle’ (one Boolian degree of freedom) per Planckian unit of surface
on the horizon; this would give the right spectral density.

3. Constructing the S—matrix

Suppose a scattering matrix exists. This means that 1i1f we have

completely specified the state {P3l Pt res ) of all particles that
ever went into the black hole, the outgoing matter should be 1in one
well-specified state |Y) ¢ - A basis for |yY),,¢ 1s the set of states

where all outgoing particles have well-specified momenta at a certain
time t=t, . Now at t=t>t, we drop a light particle into the hole,
with momentum p;, (in Kruskal coordinates) at solid angle ; . The
change this induces for the outgoing waves is now determined primarily
by the horizon shift (if other, non-gravitational interactions may be
ignored). Thus, the new state will now be

1 [Poye (2)8y(2)d%

|w>ﬂUt - llﬂ)ﬂ“t y (13)
where Pt S2) is the operator that generates a shift 1n the
configurations at the solid angle Q . It is, of course, also the total

momentum emerging at solid angle Q. In here, we can now substitute
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Eq.. (12) "for! &y .

Now this means that if we know |[y),, at one stage, then [y), 4
can, 1in principle, be determined after allowing any number of particles
to fall in. If we may ignore non-gravitational interactions, we see that
all states |[yY),,¢ ever to be produced by the black hole are generated
by the operator Pout (Q) from one single state. Therefore, Y ) out
must be generated by the algebra of these operators. Similarly, the
ingoing particles are only distinguished by the total momentum p,(Q,)
at each solid angle Q, .

We find the following important result®® For the incoming wave
functions one may diagonalize the operators P;., (@) = p;,(Q,) , and for
the outgoing states we diagonalize P, ,(Q2) . Eq. (13) then tells us how
a change in p;, affects the outgoing state. Up to a proportionality
factor, the complete transformation rule for 1ingoing states into

outgoing states should be generated by this equation. This rule is not
difficult to find:

e—ijdzn A0 p, o (E(Q, Q%) pr(Q!)

({Pout (A} [{p;n(Q°)}) = N : (14)

where N 1is a normalization factorf.

Eq. (14) is the S-matrix we wanted. If an S-matrix exists, and if
we may ignore other than the longitudinal gravitational forces, it must
be this one. It can be rewritten as (neglecting the 1 and the 4mk in Eq.

(11)),
(out|ind = Im**(n)m-(meifdzm'an" N R Sy S (15)

It is here that we see a strikingly close resemblance to string
theory®. As in string theory, Eq. (15) should be universal. The
amplitude is nearly the same as the one used as a starting point in
string theory; only the string coupling constant comes out being
imaginary®®. If we replace the usual string amplitudes (for which after
all no direct physical motivation can be found) by Eq. (15) or possible
refinements® of Eq. (15), then the spectrum of massless states at the
zero-slope limit will remain the same. Thus we imagine that the
qualitative successes of string phenomenology can also be attributed to
this amplitude.

However, our amplitudes were directly motivated by consistency
requirements for black holes, and in our implementation of these
requirements a number of approximations were made. And it is not hard to
argue that Eq. (15) cannot be exactly correct.

4. Horizon operator algebra

The problem with it is the algebra that generated the basis in
which it is defined. We have the following commutation rules

T1f other properties of the in- and outgoing particles are taken into
account besides their momenta, (e.g. electric charge) then N becomes a

unitary matrix. In the case of electric charge this matrix represents
the contribution of a fifth, compactified, dimension8.
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[:ps() opin (RN = d05 G E u [ Pi (), X:,(R7)] = =18%(Q,9)" ;
[0 ut 68) 5P (950 6=01 s [ e (R0 5 oue (R7)E = =1 856R,105)) ik
and we have the relation
Voo () =" A, FOF Q) P () . (C17)
This implies
(3 () Vo o (R ) - = 1 S E R Q7 ), (18)
so that we have also
X () =" = AT Q1) pLa s ()T (19)

The operators x;, and Yy, could be interpreted as coordinates
of "particles", but then there should be exactly one particle at every
value of Q . This is where this Hilbert space differs from ordinary
Fock space, where we may have any number of particles (mostly this will
be zero)  at "every mode. This "Is also why 1t will" be difficult" to
interpret our S-matrix directly as a matrix describing scattering of
familiar particles.

But in spite of the unusual way in which the dynamical variables
are represented we do believe that this description of the Hilbert space
surrounding the black hole can be defended. Imagine a lattice-like cut-
off on the horizon, where the lattice length is of the order of the
Planck length. At every lattice site Q there is exactly one particle.
This leaves us more than enough particles to reconstruct ordinary
Hilbert space. Ordinary particle physics is at the low-energy 1limit,
where we never need to know what happens when two or more particles sit
at exactly the same site Q .

Thus, on the one hand we have ordinary particles, but alternat-
ively, x.. and Yy, can be seen as the position operators for the
past and the future horizon. We then recognise an important consequence
of our description of Hilbert space: past and future horizons cannot
both be localized accurately; these obey an uncertainty relation.
Indeed, they are each other’s dual conjungates, much in the same way as
coordinates are dual to momenta.

We claim that this also does away with a question considered often
in the literature: does the time-reversed black hole (called "white
hole") exist? Does the "eternal black hole" (one with a past white hole
that was already there before the universe began) exist? Our discovery
is that these questions are not appropriate if our S-matrix exists:
white hole coordinates are 1ill-specified once a black hole was
localised.

The difficult but perhaps exciting picture that emerges is that the
exact shape of either the past or the future horizon may completely
determine the particle content of the black hole’s vicinity.

It should be possible to refine this picture by incorporating
gravitational forces in the transverse direction, and non-gravitational
forces. It is not hard to take the electromagnetic force into account.
Here, the electric charge density operator p(Q2) and the gauge phase
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operator ¢(Q2) are each other’s duals. Electromagnetic shock waves
(Cerenkov radiation) surrounding charged massless particles are very
similar to gravitational shock waves?®.

As is discussed further in Ref.®, we expect a cut-off in Q space.
Probably the transverse forces are responsible for that. Surely, if
coordinates in the transverse direction would be specified witch
accuracies better than the Planck length (implying &Q =< Mp,/M , where
M is the black hole mass), then momenta in the transverse direction
exceed the Planck energy so that also shifts in the transverse direction
will arise that are bigger than &80 . The simplest cut-off would be a
lattice in Q space, but reality will be more complicated. What we
expect actually to happen is that the Hilbert space algebra itself will
produce a cut-off. The operator algebra is worked out further in Ref. 8.

We should not expect to get discrete representations of this
algebra directly, because our Hilbert space still includes particles at
infinite distances from the black hole, which certainly form a
Cﬁntinuum&. But if we erect a laboratory wall at several black hole
radii then the bulk of all entropy resides near the hole, and the total
number of states then is determined by the hole’s surface: one flip-flop
degree of freedom par Planckian unit of surface area. The necessity of a
laboratory wall presumably implies that we should impose further
boundary restrictions at infinity. This may explain why we actually do
find a discrete representation, which however is not unitary®.

Let us summarise what was found in Ref.® The algebra is replaced
by a Lorentz covariant algebra, assuming that this way also
gravitational shifts in the transverse direction will be incorporated.
One then discovers representations of this algebra as follows. On the
black hole’s horizon surface area we imagine a lattice built from
surface elements X; , i=1, ... , N. Any such lattice corresponds to a
representation. At each surface element 2; a J3-vector operator
L% , a=1,2,3 , 1is defined, satisfying the commutation rules of
angular momenta:

[Lﬂ(i] : Lb(J]] — iaijeﬂbCLC{iJ 5 (20]
Further,
|
Ly 2. or <10 (21)

to guarantee that they represent minimal surface elements. Angular
momenta corresponding to larger agglomerations of surface segments are
obtained by adding the corresponding L operators in the usual way. A
representation would then be given by the set of numbers

|[{m¢y}) (22)
which of course is discrete.

Unfortunately, because the operators L2 ! from their
definition, are not Hermitean, the states (22) are not orthonormal.

JjI thank S. Coleman for a discussion on this point.
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5. Discrete Quantum Mechanics

It is very interesting to study the quantum mechanics of systems
that are entirely discrete such as the sets of numbers (22). Although
(22) is a Heisenberg state, not evolving in time, we could imagine a
similar configuration obeying a Schrdédinger equation,

d|y)/dt = -iH|y) . (23)

At first sight one might think that this is fundamentally different from
a "classical" discrete system, evolving in a Jjumpy way,

{ﬂ?(”} = {mzi}} = {m:i)} L AT (24)
ty to L3

but the transition "classical" = "quantum mechanical” for discrete
systems is very different from the continuous case.

The evolution (24) is a special case of the more general quantum
mechanical law of evolution (23). There is no need for a 1limiting
procedure hH > 0O .

Even if a discrete system is classical, one can formally introduce
a Hilbert space of states, |{m¢;y}) , defined to be orthonormal. In
terms of these states the law of evolution (24) is

‘{m[i]}>t1 = |{mEi}})t2 = U(t2!t1)|{m[i}}> ) (25)
where U(t,,t,) 1is a matrix containing ones and zeros, corresponding to
the permutation nni,=¢zﬁi) . If we are dealing with a true permutation
U 1is unitary and an operator H can be found so that

U(tz,tl) = e_lH( tz_tl) : (28)

Not all operators H satisfy an equation of the form (26) such
that U 1is a permutation operator. These Hamiltonians form a subclass
of all Hamiltonians.

If a basis {|n)} and a discrete set of time variables 1; exisls
such that U(t;-t;) 1In this basis are genuine permutatlion operators we

define this system to have "evolutionary determinism”.

In practice we will also require that the definition of this special
basis (called "primordial basis" in Ref.!?) is in some sense local, so
that projection operators selecting out certain basis elements are
physically observable.

Our evolutionary determinism is to be distinguished from other
forms of determinism in the sense that we do not object against
transformations to some other basis in Hilbert space in terms of which
U can no longer be seen to be an obvious permutator. The initial state
may well be chosen to be some linear superposition. Actually we believe
that linear superpositions are absolutely necessary if we want to deduce
macroscopic, low energy laws of physics from the microscopic ones.
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6. Examples

Consider an atom with a large angular momentum £ . Its Hilbert
space 1s finite dimensional, and usually we chose as a basis the states

)2 e e = L SRR (27)

Let’s have a magnetic field B in the z-direction so that the
Hamiltonian is given by

Hlm) = uB m|m) ; (28)
where for simplicity we will take uB = 1 . Of course the evolution
operator U is

UCe) | m) s iom 1B 1y, (29)

Now choose the new basis {|g)} , with

_ 2mimg
lg) = 2 z e 2531 lmpy s, SEgh= 0 SO0 (30)
\/22"'11 m
Writing 2€+1 = N we see
-2m1i N —imt
U(t)|g) = 37N- ) e MBI Tilb (31)
m
and if we limit ourselves to time intervals t = 2nk/N , k integer,
then we see
UCt)|g) = |g+ k (mod N)) , (32)

and this is exactly a (cyclic) permutation. We observe that the spinning
atom in a homogeneous magnetic field has evolutionary determinism.

Evolutionary determinism does not forbid us to introduce non
commuting operators such as L, and L, . Indeed, they may be called
"observables" in the usual sense. In fact, the Hamiltonian H itself is
non diagonal 1in {|g)} , and we accept it as a truly observable
variable. Treating the spinning atom as a model of the Universe, our
philosophy will be that at the beginning of the Universe a single state
|g) was selected, so that the evolution is completely deterministic. But
we may decide to select eigenstates of L., L,, or H 1if that comes out
handy to formulate the (apparently quantum mechanical) "macroscopic”
laws of physics.

A slightly less trivial example is a one space - one time
dimensional model. Imagine an infinite series of cells x =0 A Rt 0 < v
each of which may or may not contain one particle going to the right

and/or one particle going to the left. These states can be characterized
as

0771 SRR |51 [§ ARt L, Fer=l0lor iy = 0 oRs ) (33)

X ==— o0
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There 1is a clock ticking in definite time intervals. The law of
evolution is simple: at each tick of the clock the left movers make one
step to the left and the right movers make one step to the right.

To write the evolution operator in a quantum mechanical way we
introduce annihilation operators:

(%) [ AYe=AEraT oyt o

o

¢

o (x)|1, &) = |0, &) ; o (x)]|0, &) =0 .

Tex) | ry, L0Y =00

(34)

These operators do not satisfy nice (anti-)commutation rules. Therefore
we introduce the Jordan Wigner transformation

du
¢Q(x1):= (=1). X5 Xq S k() s

L
(35)
B omolr, ¢ (0
Y (xq) = (-1)* S TIREOT, 2B (5 o9
r o
These satisfy
(X)) ()Y, =0, 3 ) = BB s s (36)
They have been constructed carefully in order to have
WE(X:” = we(x+t,0) dYx,t) = (x=t,0) . (37)
r r
Let us now introduce their Fourier transforms,
et T &5 .
vi(x) = (21072 [ dk e % §.(k) . (38)
o |
One finds
Bilk,t) =e" 0% Ji0) ' i, o, = 1Y, (39)
r r

Using the commutation rules we find that this evolution is generated by
the evolution operator

- T
utt) = e 1% ; B =-f k ¢t (-K)o(k) dk . (40)

114

Notice that in the continuum limit this Hamiltonian tends to

Ho» Jdx yT(x) dog 5 wix) (41)

which is Dirac’s Hamiltonian for a one-dimensional massless fermion gas.
This gas clearly also has evolutionary determinism. The model is
less trivial than the previous example because we can also consider its
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more usual description. Filling up the Dirac sea we can describe the
lowest energy levels as left or right moving "neutrinos". The field
Y(x) however creates a superposition of a neutrino and an antineutrino,
so the "macroscopic" law shows quantum mechanical interference effects.
On the other hand, there is no "Zitterbewegung" because the neutrinos
naturally move with the speed of light; most of the usual quantum
paradoxes are still absent in this model.

To construct less trivial models, in particular models that can
show how the fundamental paradoxes of quantum mechanics such as the EPR
paradox can emerge, seems to be difficult. Formally, every deterministic
discrete model corresponds to a quantum system. We imagine that
extremely non-trivial cellular automatal!! are equivalent with equally
non-trivial quantum field theories, but we have not been able to show
this 1In a detailed construction. A difficulty is that the quantum
mechanical Hamiltonian H does not follow uniquely from the evolution
operator U if we only know it at discrete time intervals &t . All
Eigenvalues of H are only determined modulo 2n/8t . This has two
difficult consequences:

i One discrete classical model may correspond to many apparently
different quantum field theories, and

ii) The vacuum state, defined to be the state with lowest energy,
depends on how many times we choose to add 2n/dt to the various
elgenvalues.

7. Discussion

We believe that black holes shed a new light upon the question what
to think about the quantum mechanical nature of our laws of physics.
They suggest namely that at the Planck level everything is discrete. The
set of discrete quantum mechanical models has a subset featuring
evolutionary determinism. This is a form of determinism fundamentally
different from the "hidden variables" theory, because none of the
variables in our states are hidden from direct observation. There is
determinism at the microscopic level which however needs not lead to
determinism at a macroscopic level. The reason why one can say this is
that the state we call "vacuum state" needs not be one of the
‘primordial” basis elements but may well be a superposition of these. If
this is the case then quantum mechanical superposition will be a natural
phenomenon in macroscopic physics, since all experiments we do are
surrounded by vacuum.

The way to visualize what is actually happening is that our world
could be something like a cellular automaton, such that the state we
call "vacuum" is a "chaotic" solution. It should be called a miracle
that such a system should show any regular effective laws of physics at
all at macroscopic scales. At best one would expect certain forms of
statistical regularities. This may be what we call quantum mechanics
today.

Physicists have learned to work with these quantum mechanical rules
1n order to be able to make predictions concerning the future behaviour
of a system. The truth is (could be) that these predictions cannot be
better than statistical in nature because of the ubiquitous chaos in all
but a few of our physical variables.
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The macroscopic "effective” laws of quantum mechanics can only be
formulated 1in terms of observables that are non diagonal 1in the
primordial basis. This 1includes the laws according to which our
accelerator devices and measuring apparatus, including our own eyes and
our own brains, work. We can only say "there is an electron here, with
spin up”" when we assume these laws to describe absolute truths. In
reality we may be talking about some minute statistical fluctuations
around the chaotic oscillations of the vacuum. If we say "it is sent
towards the moon", we really mean that we know from experience that the
chaotic vacuum oscillations bombarding us from all directions in outer
space wWill propagate this fluctuation towards the moon. The best way for
us to describe these oscillations is the remarkable discovery that they
are nearly perfectly described by the zero energy eigenstate of the
Hamiltonian, which is a superposition of all basis elements.

We do not claim that all or even some of the usual paradoxes and
other difficulties with the quantum mechanical nature of our world are
resolved this way. One problem, among many others, is the question why
our Universe should be so close to the vacuum state. Our main
contribution to the discussion is this one proposal, namely that the
microscopic laws of physics show some form of evolutionary determinism.
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