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ABSTRACT

The equivalence principle in general relativity may have a non-standard form
when quantum effects are considered. A theory that may produce the complete
spectrum of black holes is outlined.

1. INTRODUCTION

Many attempts are being made to formulate the laws of physics at the Planck
length scale. Canonical quantization procedures when applied to Einstein's
Lagrangian, reveal fundamental and seemingly uncontrollable space-time fluc-
tuations at distance scales less than the Planck 1ength1. [t was natural that
investigators turned their attention to sophisticated models of gravitation and
matter in which the infinities in these fluctuations might cancel out such as

”SUpergravity”z, ”string"3 4

and now also "superstring"’ theories. As yet these
theories seem to give relatively little insight in the structure of space-time
itself at the Planck length scale.

Various suggestions have been made that space-time might show no structure
at all beyond the Planck 1ength5. But what does a discrete -and curved -space-
time look 1i1ke? Which constraints should we impose on such numerous models to
select out the physically viable? Which, if any, of our familiar concepts -
continuity of space-time being just one of them - can still be used?

Gravitating systems are fundamentally unstable against collapse. Classically
this 1s not a great problem: only for very large systems the gravitational
force 1s stronger than the counter forces produced by matter. But in a quantum
theory, with huge oscillations near the Planck length the possibility of
gravitational collapse cannot be ignored. What we propose is that a healthy
theory should not only take into account collapsed chunks of matter but must
more likely contain them as essential ingredients. Perhaps all particles can in
some sense be viewed upon as smaller or larger black holes.

Unavoidably our theory must exhibit a "smallest possible length scale": the
smallest possible structure is a particle whose Schwarzschild radius coincides
with its Compton wave length. We now notice a situation that reminds one of

the familiar "bootstrap" idea; all particles much lighter than the Planck mass
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are likely to be described reasonably accurately by some Lagrange field theory.
All particles much heavier than the Planck mass are black holes with fairly
large radii. Their behavior also should follow from field equations - the same
Lagrange field theory - with these larger length scales. It is this form of
"duality" that interests us: it gives us the impression that quantum gravity

should be a completely understandable, finite, problem.

But how do the quantum properties of black holes follow from Lagrange field
theory? One comfortable result was derived by Hawkingﬁ:due to vacuum fluctu-
ations near the horizon all heavy black holes must emit particles spontaneously,
with a thermal spectrum corresponding to a temperature T = 1/8uM, where M is
the mass of the black hole in natural units. Apparently like most other funda-
mental particles, black holes are unstable and decay into Tlighter objects.

This result 1s extremely powerful since it suggests that no additive conser-
vation law can be exact, with the exception of electric charge conservation,
because no chemical potential for quantities such as baryon- or lepton-number
can be accepted. But unfortunately the obtained expressions only produce
emission probabilities, not the quantum mechanical amplitudes. The quantum
states are represented by density matrices. So it seems that the information
produced by this argument is only statistical in nature. Suppose we had a
precisely defined Lagrange field theory. Could we then not do better than this?

If the black hole were an ordinary soliton the answer would have been "yes".
We would have been able to do calculations such as the ones by Rubakov and
Callan’ on magnetic monopoles. But black holes are not ordinary solitons and
some fundamental and tantalizing difficulties prevent us from applying con-
ventional laws of quantum mechanics.

Hawking had derived his result by relying heavily on the equivalence prin-
ciple of general relativity: states in Hilbert space were assumed to be well-
defined in any coordinate system and their inner products were all assumed to
be coordinate independent. The difficulty is then that "states" seem to dis-
appear into the horizon of the black hole and in spite of them being all
orthogonal to each other they become fundamentally unobservable. One line of
thought, as proposed by Hawking, is that pure quantum mechanics is no longer
valid at Planck length scales: pure states may undergo transitions towards
mixed quantummechanical states: the eigenvalues of the density matrix may no
longer be constants of motion. This is anextremely important conclusion because it
seems to be practically unavoidable whereas it also seems to imply the break-
down of quantum mechanics as we know it at the Planck sca]eB.

But how sure are we of the equivalence principle for states in Hilbert
space? Could 1t not be that a coordinate transformation has more subtle effects
on Hilbert space if the corresponding observers from a certain moment on can no
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longer communicate with each other? What if one observer falls right into the
system studied by another observer? What is the probability interpretation of a
wave function if an observer has a finite chance to become killed by a space-
like sinqularity?

Of course what we need foremost is a mathematically unique prescription for
obtaining the laws of physics for every imaginable system. This "theory" should
as much as possible reproduce all known results of ordinary quantum mechanics
on the one hand and general relativity on the other. We will be quite content
if this "theory" is first formulated in a coordinate-invariant way and then
allows us to construct a Hamiltonian suitable to describe anything seen by any
observer. But this construction might be dependent on the observer and in
particular his "horizon". It could even be that the "probabilities" experienced
by one observer are not the same as those of another. All is well if the two
"classical 1limits" are as they should be.

We will now make the assumption that the black hole quantum propertiesg

somehow follow from Lagrange quantum field theory at the same length scale. We

are very well aware of the risk that this may be wrong. Still, we like to know
how far one can get. Regrettably, the results to be reported in this paper will

he extremely modest.

We will start by making a simplification that caused some confusion for some
readers of my previous publication: we first concentrate on the steady state
black hole: every now and then something falls in and something else comes out.
Nowhere a distinction is made between "primordial' black holes and black holes
that have been formed by collapse. It has been argued that Hawking's derivation
in particular holds for collapsed black holes and not necessarily for ones
eternally in equilibrium. However if we succeed to describe infalling things
in a satisfactory way then one might expect that inclusion of the entire
collapse (and the entire evaporation in the end) can naturally be incorporated
at a later stage. Our main concern at present will be time scales of order
M TogM in Planck units, which is much shorter than the black hole's history.

As we will see, understanding in- and outgoing things at this scale will be
difficult enough, and indeed Hawking's radiation can very well be understood at
this time scale.

2. KRUSKAL COORDINATES. BLACK HOLE AT EQUILIBRIUM
In the absence of matter, the metric of a black hole is

5
i (1 E 2—:]>dt2 + (1 . %ﬂ) dn®a r Sdasi (2:.1)

The Kruskal coordinates u, v are defined by
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and then we have

3
g% s 3%? "M Gqudv + rlde? ! (2.4)

which is now entirely regular at r > o. However (2.2) and (2.3) admit two so-
lutions at every (r,t): we have two universes connected by a "wormhole". The

Schwarzschild region, I, is r > 0, u < 0. The other regions are indicated in
F1gs0 L

Figure 1

Now the classical picture of a black hole formed by collapse only shows regions
[ and III, the others being shielded by the imploding matter which accumulates
at the past horizon (the u-axis). Similarly, an evaporating black hole (some-
times called a "white hole") only has regions I and IV. In both cases it is

convenient to extend analytically the particle content in regions III or IV
towards region II, and a black hole in equilibrium is perhaps best described
by the entire system I-II-III-IV.

The equivalence theorem should now relate the Hilbert space as needed by an
observer in the wormhole ("Kruskal observer") to the one needed to describe the
"physical” world I as experienced by an outside observer ("Schwarzschild ob-
server"). Imagine a lTimited number of soft particles that can be described by
the Kruskal observer using standard physics. With "soft" we mean that the
energies of these particles are so small that gravitational effects on the
metric can be neglected. We have then a reasonable description of an important
part of the Hilbert space for the wormhole observer. The evolution of this
system i1s described by an Hamiltonian

H = J H(xX)dx > o , (2.5)
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with one ground state
HI0>k = 0 (i2.467)

where k stands for Kruskal. Due to curvature this vacuum is not exactly but
only approximately conserved. H describes the evolution in the time coordinate
T = UtV

Now the outside observer uses t as his time coordinate, and a generator of a
boost in t produces

V
oV = mﬁt, (2‘7)
U S ek 2.8
u = m ’ ()

so the generator of this boost is

1 - —
h = o J dX pH(X) ' 3 o = V=U . (2.9)
We split h = HI - HII:
e RN alg) s Lt e i H(X)dX 6(-p) (2.10)
= 2W e 7 KSR () G ) ekl 145 € :
We have
[HI’HII] =100, (2:11)

and we can write the eigenstates of HI and HII as |n,m> with
HIIn,m} = ninam> HIIIn,m> = min,m> . (2:12)

Extensive but straightforward calculations show that the "Kruskal vacuum" |o>

k
does not coincide with the "Schwarzschild vacuum" |o,0>, but instead, we have
Io:-»k =8 Z In,n}e-qnmn 3 (:2213)
n
where C is a normalization factor. Note that we do have
hlo::»k =0 , (2.14)

which is due to Lorentz-invariance of Io>k.
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I[f we consider the equivalence theorem in its usual form and consider all
those particles that are trapped into region IV as lost and therefore unobserv-
able then without any doubt the correct prescription for describing the observ-
ations of observers in I is to average over the unseen particles. Let 0 be an
operator built from a field ¢(§,t) with X in region I, then

[0,H, ] =0 ; (2:515)

Oln,m> = E 0 lk,m> (2.16)
and

<0> = k{OI(DID}P = C2 ) ti.‘“éhTM(n+n ) <n',n"10[n,n> =CZZ(—2_BWMIr1 0. i (A7)

3 110 5 n

We recognize a Boltzmann factor e "M Wwith g = &rM, corresponding to a tempera-
ture

T =1/8aM . (2.18)

This is Hawking's result in a nutshell. Black holes radiate and the temperature
of their thermal radiation is given by (2.18). The only way in which the hori-
zon entered in this calculation is where it acts as a shutter making part of
Hilbert space invisible.

As stated in the introduction this result would imply that black holes are
profoundly different from elementary particles: they turn pure quantum mechani-
cal states into mixed, thermal, states. Our only hope for a more complete

quantum mechanical picture where black holes also show pure transitions, that
in principle allow for some effective Hamiltonian is to reformulate the equi-

valence principle. Let us assume that the location of the horizon has a more
profound effect on the interpretation that one should give to a wave function.

A pair of horizons (the u- and the v-axis in Fig. 1) always separate regions
where a boost in t goes in opposite directions with respect to a regular time
coordinate such as u+v. As beforelovmzspeculate that these regions act directly
as the spaces of bra states and ket states, respectively. Any "state" as de-
scribed by a Kruskal observer actually looks like the product of a bra and a
ket state to the Schwarzschild observer. More precisely, it looks like an ele-
ment of his density matrix, p:

In,m> = |n><m| = p . (:2:551:9)

Just Tike any density matrix its evolution is given by the commutator with Hy:
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Lo = -ihin,m> = ~i(n-m)in,m> = ~i[H ,In> <ml] = =i[H ,0] . (2.20)
Now the Kruskal vacuum Io>k corresponds to the density matrix

2 -41tMn
R Cln>e <nls 1 s (221

which is a thermal state at temperature
T = 1/4nM (2.22)

twice the usual result. The usual result would require not p from eq. (2.19)
but Qp+ to be the density matrix, from which of course (2.18) follows.
As long as we consider stationary black holes with only soft particles our

mapping (2.19) is perfectly acceptable. The Hamiltonian (2.5) may ad libitum be

extended to include any kind of interactions including those of curious observ-
ers. In the two classical Timits we reproduce quantum mechanics and general
relativity as required.

The only possible way to settle the question which of the procedures 1is
correct and which of the temperatures (2.18) or (2.22) describe a black hole's
radiation spectrum, is to include the effects of "hard" particles. This is also
a necessary requirement for understanding the effects of implosion and explo-
sion of black holes. Hard particles are particles whose rest masses may be
small, but whose energies are so large that their gravitational effects may
not be ignored.

3. HARD PARTICLES

The black holes considered in the previous section were only exactly time-
translation-invariant if they were covered by a Kruskal vacuum le:k. This is
because translations in t correspond to Lorentz-transformations at the origin

of the Kruskal coordinate frame and only a vacuum can be Lorentz-invariant.
Naturally, ID}k corresponds to a Schwarzschild density matrix p which is dia-
gonal in the energy-representation.

Any other state will undergo boosts in t as if the Kruskal observer con-
tinuously applies Lorentz-transformations to his state, and eventually any
"Soft" particle will turn into a hard particle. This is why hard particles,
particles with enormously large Lorentz y factors are unavoidable if we want to
understand how a system evolves over time scales only slightly larger than
O(M TogM). Hard particles alter their surrounding space-time metric. Some basic

features of their effects on space-time are now well-known. 1
A hard particle in Minkowsky space produces a gravitational shock wave ™,
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sometimes called "impulsive wave", not unlike Cerenkov radiation. Before and
behind this shock wave space-time is flat, but the way in which these flat
regions are connected at the location of the shock wave produces delta-distri-

buted curvature. Writing

u = t-z
v = t+z (J3.1)

we find that a particle moving in the positive z direction with momentum p, at
y = 0, produces a shock wave on the v axis where the two half-spaces are con-

nected after a shift

sv = -4p zn(?e) : (3.2)

Here y is the transverse coordinate. See Fig. 2.

Figure 2

A way to picture this is to choose G, B everywhere except at u=o0, where

all geodesics make a jump &v from past to future.
For us 1t 1s interesting to consider now a hard particle on one of the black

hole's horizons. It was found that again a displacement of a form similar to
(3.2) solves Einstein's equations. In Kruskal's coordinates u,v a hard particle

with momentum p again produces a shift v, with
sv() = pf(d.2") , (3.:3)

where Q' is the angle where the particle goes through the horizon and p its

momentum. f 1S given by

Af - f = -2nc 6(8) (3.4)

where 6 1s the angle between © and Q'; A the angular Laplacian and k a di-
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mensionless numerical constant. The solution to (3.4),

b %'a(;ﬂ%)ﬂ’ Py eo58 ) 1%:3)

can be seen to be positive for all 8.

Because of the shift, the causal structure of space-time is slightly changed.
The Penrose diagram for a hard particle coming in along the past horizon is
given in Fig. 3.

|t
e

”
r=o

Figure 3

In Fig. 3 the geodesics are defined to go straight through the shock wave but
enter into a more or less badly curved metric.

When two hard particles meet each other from opposite directions the curva-
ture due to the resulting gravitational radiation is not easy to describe. We
do need some description of this situation and therefore we introduced a
simplification by imposing spherical symmetry. Hard particles are now replaced
by spherically symmetric hard shells of matter entering or leaving the black
hole. We guessed correctly that then Einstein's equations are also solved by
connecting shifted Schwarzschild solutions with different mass parameters. The
space-time structure of Fig. 4 results.

Pl d ,-',.-‘,.-':-‘,..-"ff‘,.r v -

o

A e

Figure 4

In Fig. 4 matter hits the future singularity at some distance from the past-
horizon. In that case M; > My, if we require that the energy content of the
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shell of matter be positive.
This solution allows us now to combine various shells of ingoing and out-

going matter. One gets the Penrose diagram of Fig. 5.

Figure 5

The algebra of the allowed amounts of energy in the shells and the resulting
mass parameters Mi is fairly complicated.

An interesting limiting case occurs if one of the internal mass parameters
tends to zero. If we require all shell-energies to be positive then such a zero
mass region must always connect the future- with the past singularity by an r=o0
line. This r=0 line 1is the origin of a polar coordinate representation of a
flat space and one easily convinces oneself that then no longer any wormhole
exists that connects us with another space. Bra- and ket-space are clearly
disconnected and indeed we will argue that such a no-bra-space may perhaps be a

way to describe a pure state for the Schwarzschild observer.

4. OFF-DIAGONAL DENSITY MATRIX AND PURE STATES - A SPECULATION
It is now reasonable to assume that for a complete description of the

Hilbert space for a Schwarzschild observer we need all configurations with
hard particles seen by the Kruskal observer. A restriction must be that the
metric cannot be distorted so much that any of the Schwarzschild mass parame-
ters become negative. This dives a restriction on the amount of matter accept-
able to the Kruskal observer. As stated in the previous sector, the algebra of
these requirements 1s complicated, but perhaps this restriction will be suf-
ficient to cut off an apparent ultraviolet divergence in the spectrum of the
Schwarzschild time translation generator h.

In general we will find that the mass-parameter for the black hole in
universe I, Ml’ differs from M2 in universe II. We speculate that this could be
a direct representation of an off-diagonal density matrix

J IMiiasro2 (4.1)

25...' s

where the sum is over the soft particle states.
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Similarly, if one of the masses tends to zero, we get the matrix
) IMl,...} <|1F=H0'y of ot )| FiE (4.2)

Now if we are indeed allowed to speculate that 1ight black holes behave more
and more like ordinary elementary particles then in the vanishing mass limit
black holes may occupy a much smaller number of quantum levels than the heavy
ones. Thus, in (4.2) only "a few" bra states contribute. Therefore, perhaps, if
one of the mass parameters tends to zero we might end up with a "pure state",
or more precisely, a one-column density matrix.

Alternatively, consider a Kruskal metric with matter such that one of the
center mass parameters tends to zero. Then, as stated, the wormhole connecting
bra- and ket-space, closes. Communication between the two worlds become neqgli-
gible and we might expect that the density matrix will tend to factorize:

) IMyseee> <Mpyenil (§|M1,...}) (Z{Mz,...l) , (4.3)

[t becomes the product of two pure states.

We see that these various considerations converge to a description of pure
state black holes: there must be exactly enough matter inside the Kruskal frame
such that the wormhole disappears and space-time only keeps one asymptotic
region (Fig. 6).

Figure 6

If all matter is mainly distributed along the two horizons this condition
corresponds to a selection rule of the form:
n out _ 2
Ptot : Ptot =4Ca M . (4.4)
Even if one does not wish to go along with our density matrix formulation of

the equivalence principle, condition (4.4) with Fig. 6 could be an interesting
description of the pure state black hole, and it would be important to be able
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to derive a radiation temperature directly from this picture. Unfortunately
our description now lacks any symmetry under time boosts and therefore there
seems to be no easy way to describe the near stationary case of a slowly evap-
orating black hole.

A premature attempt to improve this situation is to realize that any eigen-
state of the Hamiltonian with given total energy M must be purely periodic in
(Schwarzschild-)time t.Hence only Fourier transforms of states satisfying (4.4),
with frequency M, should be allowed:

’ . -iMt [.in & out. -t .
:
n OUE: . 'l

One of the problems we still have to face is the apparent divergence of this

time-integral.

5. DISCUSSION

A major objection against our density matrix theory for a black hole has
been put forward by many critics. It usually amounts to saying that the
standard calculation yielding Hawking's temperature 1/8nM is impeccable and
only requires known laws of physics.

Now this is absolutely true if the usual equivalence principle is con-
sidered to be a known law of physics. We do claim that the equivalence princi-
ple has been used - without general relativity there would be no computable
Hawking effect. Somewhere in the line of arguments it was necessary to apply
transformations across a horizon. It is here where - perhaps - a different
procedure might give different results.

If we were to adopt the density-matrix prescription (and even the author
himself is far from certain that it should be adopted) then we can imagine
where the usual derivation fails. To see the radiation one has to wait long
compared to M logM after the collapse took place. The only stabil matter-metric
configuration during such a long time is obtained if from the start the
collapsing object were in a mixed state. If the collapsing object started out
as a purestate we were forced to use the states of Fig. 6, satisfying (4.5), to

describe it. Even before collapse we would have been forced to postulate out-
going matter at the past-horizon.

We suspect that the selection rule (4.4) should be used in the description
of the evolution of our pure state beyond times of order M logM but were unable
to implement it.
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