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SUMMARY
Oncogene-induced senescence is a phenomenon in which aberrant oncogene expression causes non-trans-
formed cells to enter a non-proliferative state. Cells undergoing oncogenic induction display phenotypic het-
erogeneity, with some cells senescing and others remaining proliferative. The causes of heterogeneity remain
unclear. We studied the sources of heterogeneity in the responses of human epithelial cells to oncogenic
BRAFV600E expression. We found that a narrow expression range of BRAFV600E generated a wide range of ac-
tivities of its downstream effector ERK. In population-level and single-cell assays, ERK activity displayed a
non-monotonic relationship to proliferation, with intermediate ERK activities leading tomaximal proliferation.
We profiled gene expression across a range of ERK activities over time and characterized four distinct ERK
response classes, which we propose act in concert to generate the ERK-proliferation response. Altogether,
our studies map the input-output relationships between ERK activity and proliferation, elucidating how het-
erogeneity can be generated during oncogene induction.
INTRODUCTION

Activation or aberrant regulation of oncogenes promotes cellular

transformation and tumorigenesis, enabling cancer cells to grow

and avoid programmed cell death.1 Activating RAS or RAF

oncogenic mutations in cancers promotes growth by inducing

constitutive MAPK signaling.2,3 However, ectopic expression of

oncogenes in non-transformed cells can cause them to undergo

stable cell-cycle arrest, a phenomenon known as oncogene-

induced senescence (OIS).4,5 OIS, initially reported in primary

fibroblasts with HRasG12V expression,5 was later found to be

caused by various oncogenes and reported both in vitro and

in vivo.4,6 In culturedmelanocytes, BRAFV600E expression initially

stimulated moderate proliferation (over 3–7 days), which was

followed by a progressive decrease in growth rate and eventual

cell-cycle arrest.7 Cell-cycle arrest typically involves the p53/

p21WAF1 and p16INK4A/RB tumor suppressor genes and their

interacting networks, although the roles of these proteins appear

to be cell-type and context dependent.8,9 OIS is considered a
This is an open access article under the CC BY-N
bona fide tumor-suppressor mechanism, acting alongside cell

death programs.

Cell-to-cell heterogeneity is often observed during oncogene

induction, with some cells in a culture arresting and others

continuing to proliferate. In vivo, malignant and benign tumors

harboring the same driver oncogene mutation can co-exist.10,11

However, senescence-associated markers are found only in

benign or premalignant lesions and are progressively lost as

the lesions becomemalignant. At a population level, the time be-

tween oncogene expression and senescence varies from a few

days to several weeks and proceeds asynchronously.5,7 It re-

mains unclear why a subset of cells in a population is better

able to tolerate the negative effects of oncogene activation.

Contributing factors likely include the type, strength, and dura-

tion of the senescence-inducing signal; non-cell-autonomous in-

fluences from oncogene expression; and the cell’s susceptibility

to (epi)genetic reprogramming.8,12

In this study, we focused on cell-cycle changes induced by

BRAFV600E, an oncogenic variant of a MAPK serine/threonine
Cell Reports 42, 112252, March 28, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. BRAFV600E-ERK pathway activation results in a non-monotonic proliferation response

(A) Schematic of pathways activated by oncogenic BRAF (BRAF*). DDR, DNA-damage response; ROS, reactive oxygen species.

(B and C)Western blot analysis of levels of BRAF, active pERK, the proliferationmarker pRB, total RB, andMCM6 (B) following BRAFV600E induction by increasing

doses of doxycycline (DOX; 0–250 ng/mL, 2-fold dilution from the right) for 72 h or (C) at the indicated time points following BRAFV600E induction with 250 ng/mL

DOX. Actin is shown as a loading control.

(D) Representative images of cells assayed for senescence-associated g-galactosidase (SA-b-gal) activity 7 days after DOX induction of BRAFV600E-HA (BRAF*)

at 250 ng/mL or after 10 Gy g-irradiation. Bottom right: quantification of images. Data represent mean ± SD of three to five replicate wells; n > 560 cells/well for

control; n > 180 cells/well for BRAFV600E; n > 50 cells/well for g-irradiation.

(E) RPE/tet-BRAFV600E cells were treatedwith DOX as in (B) and immunostained for BRAFV600E-HA and pERK. Data from all DOX doseswere pooled together, and

single-cell pERK levels were extracted for equally spaced bins of BRAFV600E expression; n > 400 cells/bin. Each dot represents a single cell.

(F) RPE/tet-BRAFV600E cells were treated with serial doses of DOX as in (B) for 24, 48, or 72 h before immunostaining. The immunofluorescence data from all DOX

doses were pooled, and the percentage of cells in S phase was calculated for equally spaced bins of ERK activity (mean ± 95% bootstrap confidence interval;

n > 700 cells per bin).

(G) RPE/tet-BRAFV600E cells were treated with DOX (250 ng/mL) and the indicated doses of ERKi for 72 h and then stained for the proliferation marker Ki67. The

percentage of Ki67+ cells at each dose of ERKi is shown (mean ± SD of three replicate wells; n > 5,900 cells/well).
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kinase that is commonly found in cutaneousmelanomas and is the

primary target of current treatments.3,13 Activation of the MAPK

cascade is critical, but not sufficient, for initiating melanocytic

neoplasia, most likely due to the induction of senescence

(Figure 1A). Indeed, BRAFV600E occurs in both benign and malig-

nant skin lesions13,14 and can induce senescence in cell

lines.7,15,16 We investigated the relationship between BRAFV600E
2 Cell Reports 42, 112252, March 28, 2023
levels, the activity of its downstream effector kinase ERK,17 and

cell proliferation in non-transformed human hTERT-immortalized

retinal pigment epithelial (RPE) cells. We showed that a narrow

expression range of BRAFV600E protein generated a wide range

of ERK activities. We found a non-monotonic relationship be-

tween ERK activity level and the proliferation response, which

we examined through global transcriptional profiling. This analysis
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revealed four dynamic categories of cellular responses across

different ranges of ERK activities. Our study highlights the various

networks of genes that are induced in response to different

strengths of ERK signaling and provides important clues as to

how individual or combinatorial classes of genes can generate a

non-monotonic proliferation response.

RESULTS

The relationship between ERK activity and proliferation
is non-monotonic
To establish a model of OIS, we expressed the oncogenic

BRAFV600E variant carrying a C-terminal hemagglutinin (HA) tag

in RPE cells under a doxycycline (DOX)-inducible promoter (Fig-

ure 1B). Activation of the MAPK cascade by BRAFV600E was as-

sessed by measuring phospho-ERK (pERK) levels using western

blotting. At a saturating dose of DOX (250 ng/mL), BRAFV600E

levels increased for the first 24 h and then plateaued, while

pERK levels plateaued around 2 h. MCM6, a marker of S phase,

was largely diminished by 48 h (Figure 1C). In addition, both pRB

and total RB also decreased at DOX doses above 15 ng/mL; this

reductionwas achieved by 48 h at 250 ng/mLDOX. These results

align with reports that total RB levels dropped greatly during

cell-cycle arrest, likely due to oncogene-mediated protein

degradation.18 To determine if BRAFV600E expression induced

senescence, cells were stained for b-galactosidase. Cells

exposed to g-irradiation, a well-established inducer of senes-

cence, were used as a positive control. BRAFV600E induction

for 7 days resulted in�55% of cells being positive for b-galacto-

sidase expression, comparable to the level in irradiated cells

(Figure 1D). These results suggest that in non-transformed

RPE cells, BRAFV600E expression causes cell-cycle exit and pro-

motes senescence. Deactivation of BRAFV600E by washing out

DOX (at day 8 post DOX treatment) allowed cells to resume pro-

liferation (Figure S1A), implying that, at least for some cells, exit

from the cell cycle requires continuous BRAFV600E expression.

We next investigated the relationships between BRAFV600E

expression, ERK activity, and proliferation outcomes. To induce

variable BRAFV600E-HA expression levels, RPE/tet-BRAFV600E

cells were treated with various doses of DOX for 72 h and then

stained for HA, pERK, and incorporation of 5-ethynyl-20-deoxy-
uridine (EdU) (a marker for DNA synthesis) (Figures S1B–S1D).

Consistent with Figure 1B, proliferation was inhibited by

BRAFV600E expression in a DOX-dose-dependent manner, with

maximum proliferation occurring in the uninduced condition

(Figure S1D). The data were pooled for subsequent analysis of

ERK activity, in which we binned BRAFV600E expression levels

measured in single cells (irrespective of the DOXdose) and quan-

tified the ERK activity in each bin. This analysis revealed that

pERK levels increasedwith BRAFV600E expression at lower levels

but plateaued at higher levels, suggesting that ERK activity satu-

rated at intermediate levels of BRAFV600E expression (Figure 1E).

pERK levels varied at any given level of BRAFV600E, demon-

strating substantial cell-to-cell variability in the activation of the

MAPK cascade (Figure 1E). To determine the relationship be-

tween pERK levels and cell-cycle progression, DOX was added

to the RPE/tet-BRAFV600E cells at various doses for 24, 48, or 72

h, and the fraction of S-phase cells was quantified by EdU incor-
poration (Figure 1F). Binning the data on pERK levels (regardless

of DOX dose) revealed that the fraction of cycling cells was high-

est at intermediate pERK levels and decreased at higher and

lower pERK levels. This result suggested that a moderate induc-

tion of pERK enhanced proliferation; however, beyond a certain

level, proliferation was inhibited (Figure 1F). In the absence of

BRAFV600E expression, ERK activity levels fell in the lower range

(6–9 log2 intensity), and the percentage of proliferating cells

associated with these levels ranged from 15% to 25%

(Figures S1C and S1E). After BRAFV600E induction, ERK activity

levels fell into a higher range (8.5–11.5 log2 intensity), and the

associated proliferation frequencies ranged from 25% at the

lower end of ERK activity to 1% at the higher end (Figure S1E).

Because proliferation was highly sensitive to ERK activity in the

range experienced by cells expressing BRAFV600E, it is likely

that the heterogeneity in ERK activity during oncogene induction

(Figure S1C) led to heterogeneity in proliferation and cell-cycle

arrest. To further confirm the non-monotonic relationship be-

tween ERK activity and cell proliferation, we overexpressed

BRAFV600E at a level sufficient to arrest most cells and treated

them with a dose series of ERK inhibitor (ERKi) (SCH772984) to

titrate down ERK activity. Consistent with Figure 1F, the fraction

of cycling cells (indicated by the Ki67+ fraction) was highest at an

intermediate ERKi dose (Figure 1G). By contrast, the fraction of

proliferating cells was reduced when cells were treated with

higher or lower ERKi doses, suggesting a non-monotonic rela-

tionship between proliferation and ERK activity.

Establishment of a cell-cycle reporter that
differentiates G1, S, and G2 phases
Our data suggested that cells can make proliferation or arrest

decisions in response to ERK activity. The data presented in Fig-

ure 1 show the average response of a population of cells. We hy-

pothesized that at the single-cell level, internal cellular states,

such as cell-cycle phase or the level or dynamics of oncogenic

signaling, may influence the proliferation status. We monitored

ERK activity and its relationship to cell-cycle progression using

live single-cell imaging. Commonly used live-cell cell-cycle re-

porters, such as Geminin (1–110), monitor the G1-S transition,19

but growing evidence suggests that G2 plays a pivotal role in

proliferation-quiescence decisions.20–22

To distinguishG1, S, andG2cell-cycle phases,wedeveloped a

biosensor based on the PCNA-interacting-protein (PIP)-box

motif, which is recognized by Cul4Cdt2 E3 ubiquitin ligase and

degraded specifically at S phase (Figure 2A).23 Because ectopic

expression of human PIP-box-containing proteins could interfere

with normal cell-cycle progression, we developed a sensor based

on the PIP-box motif of Drosophila E2F (dE2F).24 The sensor in-

cludes the N terminus of dE2F (amino acids 1–187) fused to the

red fluorescent protein (FP) mCherry. The resulting mCherry-

PIP protein contains PIP boxes functional in humans as well as

a naturally occurring nuclear localization signal. RPE cells stably

expressing mCherry-PIP, a turquoise FP-tagged nuclear histone

marker (H2B-Turq), and a Venus FP-tagged Geminin (1–110)

reporter were established. TheGeminin (1–110) reporter accumu-

lates in S phase and is degraded in G1 phase,19 while mCherry-

PIP exhibited differential degradation/accumulation patterns in

the nucleus throughout imaging (Figure 2B and Video S1).
Cell Reports 42, 112252, March 28, 2023 3
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Figure 2. Development and characteriza-

tion of a live-cell sensor that identifies G1,

S, and G2 cell-cycle phases

(A) (Top) Schematic of S-phase-specific degrada-

tion of Drosophila E2F1 PIP-motif-based biosensor.

(Bottom) Cell-cycle progression with nuclear

mCherry-dE2F PIP fluorescence changes.

(B) Images of a cycling RPE cell expressing Venus-

Geminin (1–110), mCherry-dE2F PIP, and H2B-Turq

over 24 h. Image strips of these three markers are

shown as three panels corresponding to G1-S (top),

S-G2 (middle), and M-G1 (bottom) transitions.

(C) Quantification of mCherry-dE2F PIP (red) and

Venus-Geminin (1–110) (green) from (B).

(D) Density scatterplots of mCherry-dE2F PIP in-

tensity versus EdU fluorescence intensity. Each dot

represents a single cell; n = 2,466 cells.
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Comparing both cell-cycle reporter levels within the same cell,

mCherry-PIP rapidly dropped in expression when Venus-

Geminin (1–110) began to accumulate at the G1-S transition

(Figures 2B and 2C). mCherry-PIP fluorescence rose subse-

quently, while Venus-Geminin continued to accumulate. Thus,

the patterns of Venus-Geminin (1–110) and mCherry-PIP protein

accumulation and degradation were consistent with the antici-

pated properties of the reporter proteins.19,23 By labeling

S-phase cells with EdU, we validated that mCherry-PIP levels

were lowest in S phase and were detectable only when cells

were not in S phase (Figure 2D). In both normally cycling cells

(Figure S2A) and cells arrested in G1 or G2 (Figures S2B–S2E),

the reporter signal in G1 or G2 scaled with the duration of the

phase. Thus, in live-cell experiments, G2 can be identified by

the presence of both Venus-Geminin (1–110) and mCherry-PIP

(Figure 2C). Cell-cycle phases can also be computationally

derived from live-cell data by quantifying only the levels of the

mCherry-PIP reporter as follows: G1 corresponds to the period

between nuclear division and a rapid drop in mCherry-PIP fluo-

rescence to basal level; S corresponds to the period between

this rapid drop and right before resynthesis of mCherry-PIP oc-

curs; andG2 corresponds to the period ofmCherry-PIP accumu-

lation prior to the next cell division (Figure 2C; STAR Methods).

Live-imaging traces revealed a bell-shaped relationship
between ERK activity and cell-cycle entry in single cells
Given the cell-to-cell heterogeneity in ERK levels and OIS induc-

tion, we next established the relationship between ERK activity,

cell-cycle phase transitions, and cell fate at a single-cell level.
4 Cell Reports 42, 112252, March 28, 2023
We generated an RPE cell line stably

expressing DOX-inducible BRAFV600E,

mCherry-PIP, and EKAREN5, a reporter

for ERK activity. This line (termed

BRAFV600E Dual Reporter cells) allowed

us to induce oncogenic BRAFV600E and

simultaneously measure ERK activity

and cell-cycle progression in the same

cells through long-term live imaging.

EKAREN525 represents the widely used

EKAREV fluorescence resonance energy
transfer (FRET)-based ERK activity reporter25,26 engineered to

be insensitive to CDK1/cyclin B activity at G2 and M phases.

Control experiments confirmed that the EKAREN5 sensor

reflected ERK activity in our RPE line and that activation during

G2/M phase was strongly reduced relative to EKAREV

(Figure S3A).

We imaged asynchronous cultures of BRAFV600E Dual Re-

porter cells for 24 h to obtain cell-cycle phase information under

unperturbed conditions, then added DOX to induce BRAFV600E

expression, and imaged live cells for 3 days to monitor ERK ac-

tivity and cell-cycle progression. We used a semiautomated

tracking method to identify individual division events and

computationally derived the cell-cycle phases and ERK activ-

ities (Figure 3A; see STAR Methods). Note that the PIP signal

increased sharply around division (±30 min) due to sudden nu-

clear shape changes, followed by a brief drop due to partition-

ing of the reporter proteins to two daughter cells. When

BRAFV600E Dual Reporter cells were treated with DOX, ERK

activity rapidly increased within 1–4 h (Figure 3B, consistent

with data in Figure 1C), while control cells showed basal ERK

activity with occasional pulses throughout the imaging

period.27 Most DOX-treated cells underwent one or two divi-

sions prior to entering prolonged G1 arrest, whereas cells not

treated with DOX continued to proliferate, serving as a control

for the effects of long-duration imaging (Figure 3C). A detailed

cell-cycle duration analysis revealed that, prior to the pro-

longed G1 arrest, the G1- and S-phase lengths of the preceding

cell cycle remained unaltered, while G2 length (orange blocks in

Figure 3B) increased (Figure S3B). The increase in G2 length
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(A) Sample single-cell trace of Venus-dE2F PIP in RPE cells proceeding through the cell cycle. Crosses mark the start of each phase. Relative length of each cell-

cycle phase is at the top.

(B) Heatmaps of ERK activity (EKAREN5) and cell-cycle distribution in BRAFV600E Dual Reporter cells treated with or without DOX at 24 h after the start of imaging

(white vertical line). Each horizontal line represents a single cell.

(C) Frequency of G1 arrest in BRAFV600E Dual Reporter cells treated with or without DOX as in (B) together with DMSO or ERKi. The percentage of G1-arresting

cells was calculated following time-lapse imaging (mean ± 95% confidence interval; n > 200 cells per condition).

(D) Fraction of S-phase entry in response to increasing ERK activity. The BRAFV600E Dual Reporter cells in (B) were treated with or without DOX and 0, 62.5, or

500 nMERKi 24 h after the start of live imaging. Cells were then imaged for another 72 h. Data from all treatments were pooled and themean ERK activity between

8 and 12 h post-treatment was calculated. The probability of entering into S phase was quantified within 24 h after the time frame of ERKmonitoring (mean ± 95%

confidence interval; n > 100 for each ERK activity bin).

(E) Percentage of Ki67-positive RPE/tet-BRAFV600E cells after siRNA-mediated depletion of the indicated CDK inhibitors 2 days after treatment with or without

DOX (mean ± SD; n = 4 replicates).
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was ERK dependent, as addition of ERKi shortened the G2

duration (Figure S3C).

To map the relationship between ERK activity and cell-cycle

progression, cells were treated with ERKi at different doses

simultaneous with BRAFV600E induction. While 77% of cells

treated with DOX in the absence of ERKi underwent G1 cell-cy-

cle arrest, the addition of 62.5 nM ERKi rescued the arrest

(Figures 3C and S3D). However, at 500 nM ERKi, the fraction

of cells undergoing G1 arrest increased, consistent with a non-

monotonic relationship between ERK levels and proliferation
(Figures 3C and S3D). To quantify this relationship in single cells,

we pooled single-cell trajectories based on mean ERK activity

and then computed the fraction of cells that entered S phase

within the following 24 h window. Mean ERK activity was deter-

mined between 8 and 12 h post BRAFV600E induction, when ERK

activity levels stabilized in cells (Figures 1C and S4A). When the

probability of S-phase entry was plotted against mean ERK ac-

tivity, we again observed a non-monotonic, bell-shaped

response (Figure 3D). Cells that entered S phase in Figure 3D

completed the cell cycle and divided (Figure S3E). The slight
Cell Reports 42, 112252, March 28, 2023 5
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drop in division rate at higher ERK levels was likely due to cells

having prolonged G2, such that the division event was not

captured during the live-imaging experiment. The non-mono-

tonic relationship between ERK activity and proliferation was

also evident at time intervals between 12–16 and 16–24 h after

DOX addition (Figure S3F). The high sensitivity of cell-cycle ar-

rest to increases in ERK activity above the optimum value likely

explains cell-to-cell heterogeneity in response to BRAFV600E

overexpression.

Previous OIS studies have suggested that activation of

p16INK4A and p53 provides the two major mechanisms leading

to cell-cycle arrest.8,9 To investigate this possibility in RPE/tet-

BRAFV600E cells, we used RNAi to acutely knock down p16,

p21 (a downstream target of p53), or p27, alone or in various

combinations. The CDK inhibitor p27 was included due to its

well-documented role in integrating diverse signals that regulate

cell-cycle exit.28 The CDK inhibitor knockdowns were verified at

themRNA and protein levels (Figures S3G and S3H) and showed

comparable efficiency both individually and in combination.

Control and knockdown cells were treated with DOX, and the

fraction of cycling cells was measured (Figure 3E). Knockdown

of CDK inhibitors individually and in combination had a modest

but reproducible effect on BRAFV600E-mediated arrest, but in

no case was proliferation fully restored to control levels, consis-

tent with prior observations.29,30 These results imply that addi-

tional proteins, beyond those suggested by previous studies,

are involved in OIS, prompting us to apply a more systematic

approach.

Deep RNA sequencing identifies genes that respond to
ERK activity levels
We hypothesized that factors mediating ERK activity-dependent

cell-fate decisions must themselves undergo changes in expres-

sion or activity in response to varying levels of ERK activity. To

systematically identify genes whose expression changes with

ERK activity, we performed deep RNA sequencing of RPE/tet-

BRAFV600E cells treated with a combination of DOX and ERKi

at different concentrations for varying times (including 0—an

untreated control—and 1, 2, 4, 8, 16, and 24 h) (Figure 4A). The

ERKi concentrations were chosen to sample the full range of pro-

liferation responses (Figure 1G). The time points were selected

based on the observation that RPE cells showed a bell-shaped

relationship between ERK activity and proliferation (Figure 1F)

as early as 24 h after BRAFV600E induction. The early time points

allow identification of genes that are more directly responsive to

ERK activity changes, while the later time points reveal long-term

effects. Of note, the live-imaging experiments using BRAFV600E

Dual Reporter cells showed that ERK activity peaked 1–2 h

following DOX and ERKi treatment and then slowly decayed,

while remaining at distinct levels for different ERKi doses during

the subsequent 24 h period of our experiments (Figure S4A).

These results suggested fast and stable ERK responses. To

evaluate the effects of ERK inhibition on normal cycling cells,

cells were treated with different doses of ERKi for 24 h without

BRAFV600E induction. The resulting gene expression dataset

involved 43 conditions assayed in duplicate. We detected

�13,000–14,000 coding transcripts in each condition (available

in GEO: GSE180210) with an average Pearson correlation
6 Cell Reports 42, 112252, March 28, 2023
coefficient of 0.99 for replicates, demonstrating high reliability

across the data (Figures 4B and S4B).

As a first step in validating the approach, we quantified the

levels of two genes, EGR1 and DUSP4, whose expression is

known to be responsive to ERK activation (Figure 4C).31 EGR1,

an immediate-early response gene, exhibited a rapid and dra-

matic (�50-fold) induction within 2 h of DOX treatment and

then decreased rapidly, remaining �8-fold above its preinduc-

tion levels for the duration of the experiment (Figure 4C, left).

This time course was consistent with its role as an immediate-

early response gene. In contrast, DUSP4 rose steadily by

�6-fold over 24 h, consistent with its role as an early-response

gene mediating negative feedback in the MAPK cascade (Fig-

ure 4C, left). Both the sequencing analysis (Figure 4C, right)

and the targeted qPCR (Figure S4C) showed that induction of

EGR1 and DUSP4 decreased in an ERKi dose-dependent

manner. These results confirmed that our transcript profiling

studies had a large dynamic range and could readily detect

different ERK activity-dependent gene expression programs.

While it is common to analyze RNA-sequencing (RNA-seq)

data to identify changes in expression associated with a single

experimental variable (e.g., time or drug dose as in Figure 4C),

given the dynamics of ERK activity, we identified genes differen-

tially expressed as a function of both time and ERKi dose.

Comprehensive cross-correlations between different treatment

conditions showed that samples collected at different times

and/or different ERKi doses could have similar transcriptional

programs (high correlation), whereas samples collected at

similar times and/or ERKi doses could have low correlation in

their transcriptional programs, exemplifying the complexity of

our datasets (Figure S4B). Thus, inferring differential expression

using traditional approaches posed a substantial challenge,

since both dose-response and temporal dynamics need to be

accounted for. To address the challenge, we normalized each

gene’s expression to the untreated control and used regression

with quadratic terms to identify the best-fitting time-dose

response for every gene using QR factorization of the Vander-

monde regressor matrix32 (Figure 4D). Computing the quadratic

surface approximation minimized noise across the landscape of

treatments and emphasized time- and dose-dependent trends in

the data.

To identify differentially expressed genes, we compared the

goodness of fit between the quadratic response surface for

each gene and a flat surface. The p values were computed using

the standard likelihood ratio test and subjected to multiple-

testing correction using Bonferroni-Holm.33 Data for CDKN2B

(the p15INK4B CDK inhibitor) are shown in Figure 4D to illustrate

the approach: CDNK2B expression was induced steadily over

24 h and exhibited a U-shaped response to ERKi concentration,

with a minimum expression at 62.5 nM (Figure 4D, top).

Quadratic regression on the data yielded a smoothed surface

(Figure 4D, bottom) significantly different from a flat surface

(p = 1.1e�114, likelihood ratio test). Using this approach, we

identified 1,958 genes that exhibited significant (p < 1e�20, like-

lihood ratio test) differential expression over time and ERKi dose

(Figure 4E). Gene ontology (GO) analysis showed that these

genes fell into different functional categories, including extracel-

lular matrix signaling, cancer pathways, DNA replication, and
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Figure 4. Deep RNA sequencing identifies genes with altered expression in response to different ERK activities

(A) RNA-seq experimental design. RPE/tet-BRAFV600E cells were treated with DOX and the indicated concentrations of ERKi for 1–24 h (43 conditions) in two

independent replicates (n = 12 for no-treatment control).

(B) Boxplot showing correlation coefficients for RNA-seq replicates. Each dot represents a pair of replicates.

(C) RNA-seq measurements of EGR1 and DUSP4 transcripts as a function of treatment time (left) or ERKi dose (right) (mean ± SD; n = 2 independent replicates;

baseline represents no-treatment control).

(D) (Top) Log2 fold change of CDKN2B transcripts as a function of treatment time and ERKi dose. Values were normalized to untreated control. (Bottom)

Smoothed quadratic surface fit for CDKN2B expression. The p value (likelihood ratio test) shows the goodness of fit between the quadratic surface and a flat

surface.

(E) Histogram of p values of quadratic surface fits of all genes, as in (D). Genes with p < 1e�20 were considered differentially expressed.

(F) qPCR measurements of differential p15 and p21 mRNA expression in response to the indicated ERKi doses together with 250 ng/mL DOX for 24 h. Data

represent mean ±SD (n = 4 replicates). Values were normalized to hypoxanthine phosphoribosyltransferase 1 (HPRT) and reported relative to untreated control at

time 0 h in the absence of DOX and ERKi (see also Figure S4F).

(G) RPE/tet-BRAFV600E cells were transfected with the indicated siRNA for 24 h, treated with DOX (250 ng/mL) together with different doses of ERKi for another 48

h, and then stained for the proliferationmarker Ki67. The percentage of Ki67+ cells at each ERK dose is shown (mean ±SD of three replicates; n > 3,800 cells/well).
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cell-cycle control (Figure S4D). We investigated the presence of

known BRAFV600E, ERK, and senescence signatures in the 1,958

differentially induced genes using gene set enrichment analysis

(GSEA) (Figure S4E), which revealed significant enrichment of

the senescence and MAPK signatures examined, validating the

effectiveness of our analysis method.

To identify genes likely to have a role in shaping the non-mono-

tonic proliferation response, we searched for cell-cycle regula-

tors whose expression was non-monotonic with respect to

ERK activity. This analysis identified p15 and p21 as candidates,

both of which showed a U-shaped expression profile with

respect to ERK activity. We confirmed their expression profiles

by qPCR (Figure 4F) and showed that their mRNA levels

increased over time following BRAFV600E induction (Figure S4F).

Simultaneous knockdown of p15 and p21 strongly diminished

proliferation arrest at high ERK activity (low ERKi doses), without

affecting the proliferation at low ERK activity (Figure 4G and vali-

dation of the knockdown on Figure S4G). These results show a

role for p15 and p21 in mediating high-ERK induced cell-cycle

arrest. The lack of proliferation rescue at the lower ERK range

suggests that additional players are involved under these

conditions.

Characterization and clustering of gene expression in
relation to ERK signaling dosage
To identify overall trends in the data, we performed principal-

component analysis (PCA) with the transcriptional data from all

43 conditions for the 1,958 differentially expressed genes. The

first two principal components (PC1 and PC2) explained 81%

of overall variance in the data, with PC1 and PC2 capturing

54.7% and 26.5% of the variance, respectively (Figure 5A).

When the weights of PC1 and PC2 were plotted separately for

every time point post treatment (Figure 5A), the variance of

weights increased in a time-dependent manner, starting at 4 h

(top right) and progressively forming a bell shape that reached

its full extent at the 24 h time point (bottom right). The bell-

shaped curve at 24 h closely resembled the correlation between

ERK activity and proliferation response (Figures 1F, 1G, and 3D),

suggesting that PC1 corresponded to differences in ERK activity

and PC2 to differences in proliferative index.

To test this hypothesis, we measured the mean ERK activity

and degree of proliferation at each condition assayed by RNA-

seq. BRAFV600E Dual Reporter cells were treated with DOX and

different doses of ERKi simultaneously (mirroring the experimental

conditions in RNA-seq) and subjected to live-cell imaging to

monitor mean ERK activity and the fraction of cells in S phase

over time. PC1 values (Figure 5A, bottom right) were highly corre-

lated (R = 0.87) with mean ERK activity measured under the same

conditions using the EKAREN5 reporter (Figure 5B, left). The frac-

tion of cells in S phase (measured using mCherry-PIP) was highly

correlated with the value of PC2 (R = 0.8; Figure 5B, right). Thus,

we conclude that the first principal component is a proxy for

ERK activity, whereas the second principal component is a proxy

for proliferation index. Moreover, we found that the value of PC2

was similar for conditions with similar average ERK activity,

regardless of how that activity level was achieved. For example,

a PC2 value of approximately �30 was achieved in cells not ex-

pressing BRAFV600E and treated with low-dose (250 nM) ERKi,
8 Cell Reports 42, 112252, March 28, 2023
as well as in cells with BRAFV600E induced and treated with

high-dose ERKi (1,000 nM) (Figure 5A, 24 h plot, yellow and or-

ange circles). These data also strongly suggest that the two pri-

mary drivers of gene expression, over a wide range of conditions,

are the ERK activity level and the extent of proliferation.

To investigate the possibility of non-specific ERKi targets

among the 1,958 differentially expressed genes, we determined

whether the effects of the inhibitor on these genes could be

rescued by increasing ERK expression. Of the 1,958 genes,

many were differentially expressed in the presence of 250 nM

ERKi (compared with untreated cells). However, gene expres-

sion was restored to resemble that in the control when cells

were treated with 250 nM ERKi plus DOX to induce BRAFV600E

and ERK activity (Figure S5A). Furthermore, comparing two con-

ditions with similar ERK activities (ERKi 250 nM � DOX versus

ERKi 1,000 nM + DOX; Figure S5B, left) revealed a high correla-

tion in gene expression (R2 = 0.97; Figure S5B, right), suggesting

that the differentially expressed genes were primarily responding

to ERK activity. These results together suggested that ERKi ef-

fects could be rescued by overexpressing BRAFV600E and that

the potential off-target effects of ERKi were likely very minimal.

We expected the expression levels of genes to have a differen-

tial pattern of responses to varying levels of ERK signaling (PC1)

and proliferation rates (PC2). To further subdivide gene expres-

sion programs, we used unsupervised k-medoids clustering

based on PC1 and PC2 values at 24 h (Figure 5C). k-medoids

is a variant of k-means clustering that is robust to outliers and

also allows the use of arbitrary distance metrics. We computed

pairwise Euclidean distances for the log2 fold changes (relative

to an untreated control) in the set of 1,958 genes and then per-

formed k-medoids clustering. With k = 8 clusters, differences

in relationship between changes in expression and PC1 or PC2

values were evident (Figure 5C). For instance, in the ‘‘full ERK-

positive’’ cluster, gene expression increased with increasing

PC1 value, suggesting a strong positive correlation. However,

in the same set of genes, a single PC2 value could have two

different levels of gene expression (from treatments that have

either high or low PC1 values), indicating a weak correlation be-

tween gene expression and PC2 value. Similar clustering results

were obtained with data from all the time points.

The results of k-medoids clustering yielded clusters that could

be grouped by visual inspection into four qualitatively different

classes of responses to ERK activity, each having two clusters

with opposite trends (Figure 6). Class I included genes whose

expression was correlated either positively (n = 283, 14.5%) or

negatively (n = 296, 15.1%) with ERK activity across its full range,

resulting in a linear relationship (‘‘full-range ERK responder’’; Fig-

ure 6A, red lines). Canonical negative feedback regulators of the

MAPK pathway, such as DUSP4/6 and SPRY2, belonged in this

group.31 Class II genes were those in which differential gene

expression fell with ERK activity in a non-linear, ‘‘convex’’

manner (blue lines). At low ERK activity levels, 248 (12.7%)

were significantly upregulated and 404 (20.6%) were downregu-

lated. Class II included genes involved in DNA replication, DNA

damage repair, and the G1/S cell-cycle transition (e.g., G1 cy-

clins) (Figure S6A). Class III was similar to class II with the

response window shifted to higher ERK activity ranges (green

lines). This class included 281 upregulated genes (14.4%) and



A C

B

Figure 5. Gene classification by clustering of gene expression reveals different response types to changing levels of ERK activity and

proliferation

(A) Principal-component analysis (PCA) of log2 fold change in gene expression versus untreated control for each treatment (mean of two replicates) from RNA-

seq.

(B) BRAFV600E Dual Reporter cells were treated with ERKi (0, 3.9, 15.6, 62.5, 250, 1,000 nM) with or without DOX and imaged for 43.5 h. PC1 values obtained at

24 h in (A) were plotted against the ERK activity measured at 24 h with corresponding treatments from live-imaging experiments. Similarly, PC2 values at 24 h

post-treatment were plotted against the percentage of cells in S phasemeasured at 43.5 h from live-imaging experiments.We chose 43.5 h to account for the time

delay between gene expression and cell-cycle entry.

(C) k-medoids clustering of the 1,958 differentially expressed genes identified fromRNA-seq experiments. Log2 fold-change expression data of each differentially

expressed gene at 24 h were clustered by k-medoids clustering (k = 8). Mean expression levels of each cluster are shown as multi-colored lines (blue-yellow

represents low-high PC1 values).
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231 (11.8%) downregulated genes. Class III included genes

involved in differentiation, migration/motility, cytokine response,

and growth factor activity. Class IV (orange lines) comprised

genes with a bell-shaped (n = 71, 3.6%) or U-shaped (n = 144,

7.4%) response curve, having the greatest differential gene

expression at the lowest and highest ERK levels. This class
included the CDK inhibitor CDKN2B (p15INK4B). Expression of

class IV genes was highly dependent on PC2, as seen by a

monophasic response where similar expression levels were

obtained for a given PC2, regardless of PC1 value (Figure 5C,

bottom). The expression profiles of the 20 most differentially ex-

pressed genes in each category are shown in Figure S6B. The
Cell Reports 42, 112252, March 28, 2023 9
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Figure 6. Patterns of ERK-dependent gene

expression clustered by ERK activity and

time of induction

(A) Four distinct classes of gene expression pat-

terns as a function of ERK activity. Full-range ERK

responders include genes with expression pro-

portional to ERK activity across the entire range of

activity levels. Low- and high-range ERK re-

sponders show differential gene expression only at

the low and high ranges of ERK activity, respec-

tively, while showing minimal response at the

opposite end of the range. Full-range bell-shape

ERK responders include genes that have a bell- or

a U-shaped response, with greatest differential

expression at low and high ERK activities. Shaded

areas indicate the ERK range in which the class is

most responsive. Dashed line marks the ERK ac-

tivity for untreated cells used for normalization. For

illustration purposes, we substituted ERK activity

for PC1, since the two are highly correlated.

(B) Temporal dynamics of each class of genes

shown in (A) in response to DOX and ERKi treat-

ment. Genes in each class were grouped accord-

ing to the earliest time point at which they achieved

50% of the maximal change observed over the

course of the experiment (see STARMethods). The

time point of mid-induction is shown on the x axis,

and the number of genes falling into each category

is shown on the y axis.

(C) Mean induction time of ERK responder classes.

The violin plot shows bootstrapped estimates of

the means for each cluster. Significant differences

in the induction time between ERK-response

clusters are highlighted with black bars. The p

values are derived from ANOVA followed by

Tukey’s honest significant difference test.
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classifications of gene expression in Figure 6A exemplify

different strategies cells utilize in response to varying levels of

ERK activity.

We next investigated the timing of gene expression changes.

To obtain a simple measure of the timing of gene induction or

repression, we considered the time at which each gene first

reached half of its maximal differential gene expression value

in a weighted average that aggregated data across different

ERKi doses (see STAR Methods). Genes were grouped accord-

ing to the time of this absolute half-maximum change in expres-

sion (the ‘‘mid-induction time’’). This analysis revealed genes

responding on rapid (1–2 h), intermediate (4–8 h), and slow

(16–24 h) time scales (Figure S6C). For instance, the previously

mentioned EGR1 and DUSP4 exhibited rapid and intermediate

time scales of induction, respectively.31 In general, genes in

any ERK response category from Figure 6were found in any tem-

poral response category. However, we found that genes in the

full-range ERK responder group (class I; red lines in Figure 6A)

tended to respond at earlier times in BRAFV600E induction than

genes in other groups. Genes in the low-ERK responder group

(class II) responded most slowly to BRAFV600E induction (Fig-

ure 6C). These results suggest onlymodest correlations between

time- and ERK activity-dependent gene regulation.

We envision that combinations of different temporal and ERK

dose-response classes contribute to the overall bell-shaped pro-

liferation response. For instance, low G1 cyclin expression (low
10 Cell Reports 42, 112252, March 28, 2023
ERK downregulated group) combined with high CDK inhibitor

expression (U-shaped group) at low ERK activity could trigger

cell-cycle arrest. This likely explains the lack of proliferation rescue

at lowERK rangewith co-knockdownof p15 andp21, asG1cyclin

expression was low (Figure 4G). Similarly, upregulation of CDK in-

hibitors at high ERK activity (U-shaped group) could also trigger

cell-cycle arrest (Figure 4G). Even though the proliferation

response was stable over time (Figure 1F), the underlying mecha-

nisms could vary over time, as we detected a large variation in the

kinetics of ERK-responsive genes. Thus, a combination of ERK

activity-responsive genes could function collaboratively to

achieve heterogeneous proliferation responses within a popula-

tion of cells, across time or ERK activity levels.

DISCUSSION

While OIS is an efficient way to halt tumor development, it is not

uncommon to see genetically homogeneous cells respond to on-

cogenes in an asynchronous and heterogeneous manner. In this

paper, we showed that cell-to-cell variability in oncogene induc-

tion can be traced to differences in ERK activity at a single-cell

level. A narrow range of ectopic BRAFV600E expression gener-

ated cells with a wide range of ERK activities. Such ‘‘noise’’ is

common in intracellular signaling networks,34 commonly arising

from transcriptional bursting or unequal partitioning of cyto-

plasm at cell division,35,36 and generates a log-normal
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distribution of protein concentrations in a population of cells that

can cause dramatic differences in their downstream protein ac-

tivity and cell fate.37 Using a recently developed single-cell PIP

reporter and live-cell imaging, we found that initiation of cell-cy-

cle arrest is preceded by a prolonged G2 phase, but not by a

burst of proliferation as previously described.38,39 Single-cell im-

aging revealed a non-monotonic, bell-shaped relationship be-

tween ERK activity and cell proliferation. Our data showed that

proliferation is highly sensitive across the entire range of ERK ac-

tivity. Thus, a population of cells expressing BRAFV600E will

continuously exhibit differences in ERK activity and heteroge-

neous outcomes, with some cells continuing to proliferate and

others undergoing OIS. We speculate that cells that can prolifer-

ate in the presence of elevated BRAFV600E are likely to give rise to

tumors. It is also possible that cells that arrest in the presence of

high ERK activity could once again become proliferative in the

presence of the BRAF and MEK inhibitors used therapeutically

(also see Figure S1A).

Our data support a Goldilocks principle (‘‘just the right

amount’’) for ERK activity, such that an intermediate amount pro-

motes proliferation, whereasmuch higher or lower levels prevent

it. Accordingly, hyperactivating mutations in ERK are much less

common than those in its upstream regulators RAS and

RAF,40,41 as ERK mutations are likely to lead to OIS. Oncogenic

RAS and RAFmutations may promote complex gene expression

programs that either limit ERK activity or bypass the arrest

caused by high ERK levels. In line with the Goldilocks principle,

hyperactivation of MAPK signaling is deleterious to BRAFV600E

melanoma cells.42 Moreover, melanomas with acquired resis-

tance to RAF and MEK inhibitors become drug dependent for

their continued proliferation due to elevation of their MAPK

signaling.43 In contrast, in normal cells, reducing ERK activity

rescued cells from senescence and facilitated cell transforma-

tion by oncogenic RAS.18 These results all pointed to a tumor-

suppressive role of ERK signaling and support our bell-shaped

ERK-proliferation model.

Our study suggests that the intensity of ERK signaling plays a

pivotal role in determining the final proliferation outcome. Yet,

how the strength of ERK signaling connects to the outputs of

this pathway is largely unclear. Induction of BRAFV600E for

different amounts of time with different doses of ERKi made it

possible to generate cells with a wide range of ERK activities.

RNA-seq revealed four distinct classes of ERK-regulated genes,

which differed with respect to their relationships between ERK

activity and the level of gene expression. These categories re-

sponded over the full range (class I) or portions of ranges (clas-

ses II–IV) of ERK activity sampled in this study. Previous studies

that focused on gene expression at only high or low ERK levels

would not have resolved these four classes of ERK dependency.

For example, genes that increase with ERK activity in all four

classes would have been categorized in a single group when as-

sayed at high ERK activity. The methods used here enable

further refinement of specific ERK-dependent signatures by

identifying whether the genes are full-range linear ERK re-

sponders, low- or high-range ERK responders, or U-shape

ERK responders. This analysis suggests that suppression of pro-

liferation at low and high ERK levels likely proceeds via distinct

transcriptional programs. Our ERK activity- and time-dependent
classifications pave the way for dissecting the relevant pathways

at different levels of ERK activity.

Our classification of genes also suggests that a single class of

genes or a combination of multiple classes of genes could

achieve the bell-shaped proliferation response. For instance,

positive cell-cycle regulators in a bell-shaped class, or negative

cell-cycle regulators in a U-shaped class could, on their own or in

combination, generate a bell-shaped proliferation response. In

support of a combinatorial mechanism suppressing proliferation

at low ERK activity, we found that G1 cyclins were downregu-

lated and CDK inhibitors were upregulated. It is thus likely that

cells take a network approach rather than a single-gene strategy

to regulate proliferation across a range of ERK activity levels. It is

also important to note that our gene classes are not exhaustive

and that additional types of regulation (e.g., protein levels or

post-translational modifications) must co-exist for a robust

bell-shaped proliferation response. For instance, high ERK activ-

ity can prevent cell-cycle progression by inducing degradation of

key regulators,18 by modulating senescence-associated secre-

tomes,44 or by engaging homeostasis at tissue levels.12We envi-

sion a broader set of genes, and diverse regulatory mechanisms

are needed for cells to engage a robust and coherent bell-

shaped proliferation response.

In summary, our studies provide a detailed and comprehen-

sive map of the input-output relationship between ERK activity,

proliferation response, and gene expression programs in

non-transformed cells. The data provide an explanation for

cell-to-cell heterogeneity in OIS induction in a nominally uniform

population of proliferating cells. Our data help to explain the

bell-shaped relationship between MAPK signaling and prolifera-

tion while also revealing substantial complexity in time- and

activity-dependent changes in gene expression. Such insights

should improve our ability to study OIS in vivo and ultimately

develop treatment regimens and therapeutics that exploit OIS

to block cancer growth.

Limitations of the study
Our studies began to uncover the sources of heterogeneity in

oncogene-induced cell-cycle arrest and suggested that com-

plex interactions of regulatory pathways likely govern the

response. However, several unanswered questions remain.

This work used a single widely studied human RPE cell line to un-

derstand the input-output relationship between ERK activity and

proliferation. The cell line was chosen for its sensitive response

to BRAFV600E induction and suitability for long-term live-cell im-

aging. Further studies will be needed to test the generality of our

findings in other non-transformed cell types that can recapitulate

the early stages of oncogene expression in otherwise healthy

cells. Although we found a non-monotonic relationship between

proliferation and ERK activity, the duration of G2 phase seemed

to scale with ERK activity (Figure S3C). These results could indi-

cate that the duration of G2 phase is not directly proportional to

the number of cells that arrest at any given ERK activity level and

that the mechanisms regulating arrest duration are separate

from those that influence whether a cell arrests in the first place.

Our RNA-seq experiments revealed four categories of genes that

respond differentially to ERK activity. These results are limited in

distinguishing which genes are directly regulated by ERK
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signaling and which are regulated by the proliferation state of the

cell. However, the early time points of sample collection (from 1

to 24 h) increase the likelihood of identifying genes that are direct

ERK targets. Our study did not identify a minimal gene expres-

sion network responsible for the proliferation response and did

not explore mechanisms beyond gene expression changes

(e.g., post-translational modifications) that may contribute to

this phenomenon. Future work in these areas will be important

in understanding responses to oncogene induction and the re-

sulting heterogeneity in cellular outcomes.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Phospho-p44/42 MAPK (Erk1/2)

(Thr202/Tyr204) (D13.14.4E) antibody

Cell Signaling Technology Cat# 4370, RRID: AB_2315112

Phospho-Rb (Ser807/811)

(D20B12) antibody

Cell Signaling Technology Cat# 8516, RRID: AB_11178658

Rb (4H1) antibody Cell Signaling Technology Cat# 9309, RRID: AB_ 823629

p16 (H-156) antibody Santa Cruz Biotechnology Cat# sc-759, RRID: AB_632105

p21 antibody BD Biosciences Cat# 556430, RRID: AB_396414

Ki-67 (8D5) antibody Cell Signaling Technology Cat# 9449, RRID: AB_2797703

p27 Kip1 (D69C12) XP Rabbit

monoclonal antibody

Cell Signaling Technology Cat# 3686, RRID: AB_2077850

Anti-MCM6 antibody [EPR17686] Abcam Cat# ab201683, RRID: AB_2924827

Anti-b-Actin monoclonal antibody Sigma-Aldrich Cat# 5316, RRID: AB_476743

Anti-Raf-B antibody (F-7) Santa Cruz Biotechnology Cat# sc-5284, RRID: AB_626760

Anti-HA High Affinity; Rat monoclonal

antibody (clone 3F10)

Roche Cat# 11867423001, RRID: AB_390918

Anti-mouse IgG, HRP-linked antibody Cell Signaling Technology Cat# 7076, RRID: AB_330924

Anti-rabbit IgG, HRP-linked Antibody Cell Signaling Technology Cat# 7074, RRID: AB_2099233

Goat anti-Rabbit IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 488

Thermo Fisher Scientific Cat# A-11034, RRID: AB_2576217

Goat anti-Rat IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 568

Thermo Fisher Scientific Cat# A-11077, RRID: AB_2534121

Goat anti-Mouse IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

Thermo Fisher Scientific Cat# A-21235, RRID: AB_2535804

Bacterial and virus strains

CSII-EF1-H2B-mTurquoise (lentiviral) Spencer et al.21 N/A

CSII-EF1-mVenus-hGeminin (1–110) (lentiviral) Sakaue-Sawano et al.19 N/A

CSII-EF1-mCherry-dE2F PIP (lentiviral) This work N/A

CSII-EF1-mVenus-dE2F PIP (lentiviral) This work N/A

LV-EKAREN5-NLS (lentiviral) Addgene Plasmid#167818

LIX402-BRAFV600E-HA-Puro (lentiviral) This work N/A

Chemicals, peptides, and recombinant proteins

Hoeschst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific Cat# H3570

SCH772984, ERK inhibitor MedChem Express Cat# HY-50846

Doxycycline hyclate Sigma-Aldrich Cat# D9891-5G

SMARTpool: siGENOME Non-targeting

siRNA control pools

Horizon Discovery Cat# D-001206-14-05

SMARTpool: siGENOME Human CDKN1A siRNA Horizon Discovery Cat# M-003471-00-0005

SMARTpool: siGENOME Human CDKN2A siRNA Horizon Discovery Cat# M-011007-03-0005

SMARTpool: ON-TARGETplus CDKN2B siRNA Horizon Discovery Cat# L-003245-00-0005

SMARTpool: siGENOME Human CDKN1B siRNA Horizon Discovery Cat# M-003472-00-0005

Critical commercial assays

Lipofectamine 2000 Transfection Reagent Thermo Fisher Scientific Cat# 11668027

Senescence Associated b-Galactosidase staining kit Cell Signaling Technology Cat# 9860

Click-iTTM Cell Reaction Buffer Kit Thermo Fisher Scientific Cat# C10269

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Click-iTTM EdU (5-ethynyl-2’-deoxyuridine) Thermo Fisher Scientific Cat# A10044

Click-iTTM Alexa Fluor� 647 Azide,

Triethylammonium Salt

Thermo Fisher Scientific Cat# A10277

Deposited data

Raw and processed RNA-seq data GEO (Gene Expression Omnibus) GEO: GSE180210

Results of RNA-seq analysis

used to generate main

and supplemental figures

in the manuscript

Synapse database https://www.synapse.org/#!Synapse:

syn21411369/files/

Experimental models: Cell lines

Human: RPE hTERT S.J. Elledge Lab

(Harvard Medical School)

N/A

Human: RPE + tet-BRAFV600E-HA This work N/A

Human: RPE + H2B-mTurquoise +

Venus-dE2F PIP

This work N/A

Human: RPE + tet-BRAFV600E-HA +

EKAREN5 + mCherry-dE2F PIP

This work N/A

Human: RPE + EKAREV-NLS This work N/A

Oligonucleotides

CDKN2B PrimeTime qPCR primers Integrated DNA Technologies Hs.PT.58.25069372.g

CDKN1B PrimeTime qPCR primers Integrated DNA Technologies Hs.PT.58.45564663

CDKN2A PrimeTime qPCR primers Integrated DNA Technologies Hs.PT.58.40743463.g

EGR1 PrimeTime qPCR primers Integrated DNA Technologies Hs.PT.58.40805543.g

DUSP4 PrimeTime qPCR primers Integrated DNA Technologies Hs.PT.58.18820216

p21 forward qPCR primer:

TGTCACTGTCTTGTACCCTTG

Purvis et al.45 N/A

p21 reverse qPCR primer:

GGCGTTTGGAGTGGTAGAA

Purvis et al.45 N/A

HPRT forward qPCR primer:

GTATTCATTATAGTCAAGGGCATATC

This paper N/A

HPRT reverse qPCR primer:

AGATGGTCAAGGTCGCAAG

This paper N/A

Recombinant DNA

pPB-CAG-EKAREV-NLS (piggyBac) Komatsu et al.26 N/A

pCMV-hyPBase Komatsu et al.26 N/A

Software and algorithms

Scripts for analysis of RNA sequencing data This work https://github.com/clemenshug/

erk_senescence

Software for automatic segmentation and

quantification of immunofluorescence images

Salmeen et al.46 N/A

Software for automatic segmentation,

and quantification of fluorescent reporter

cells following live imaging

Cappell et al.47 https://github.com/scappell/Cell_tracking

p53 Cinema Single Cell Tracking Reyes et al.48 https://github.com/balvahal/

p53CinemaManual

EllipTrack Tian et al.49 https://github.com/tianchengzhe/elliptrack
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Galit Lahav

(galit@hms.harvard.edu).
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Materials availability
Plasmids will be available upon request from the lead contact.

Data and code availability
d RNA seq data have been deposited at GEO and are publicly available as of the date of publication. Accession number is listed in

the key resources table. Results of RNA seq analysis used to generatemain and supplemental figures in this paper are available

at Synapse database (https://www.synapse.org/#!Synapse:syn21411369/files/).

d The original code for analysis of RNA seq data is publicly available at GitHub (https://github.com/clemenshug/

erk_senescence).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Human retinal pigment epithelial (RPE) cells immortalized with human telomerase expression (RPE-hTERT, a kind gift from S.J. El-

ledge, Harvard Medical School) were grown in DMEM/F12 supplemented with 10% fetal bovine serum (FBS), 2 mM L-Glutamine,

Antibiotic-Antimycotic (100 U/ml penicillin, 100 mg/ ml streptomycin and 250 ng/ ml Amphotericin B), and 50 mg/ml hygromycin B.

RPE cells were treated with 250 ng/ ml DOX to induce BRAFV600E unless otherwise noted.

Cell line construction
To establish RPE/tet-BRAFV600E-HA cell line, C-terminal HA-tagged BRAFV600E construct was made by cloning the full-length

BRAFV600E expression cassette (Addgene plasmid # 15269) into a lentiviral HA-containing backbone with tet-inducible promoter

(Addgene plasmid # 41394, pLIX402). RPE cells were then infected with lentivirus carrying pLIX402-BRAFV600E-HA and selected

with puromycin (2 mg/ ml) to obtain mixed cell clones. Single cell clones were expanded through limited dilution and subsequently

screened for HA expression in the presence of doxycycline. To establish dE2F PIP reporter lines, an expression cassette harboring

Drosophila E2F1 PIP fragment (comprised of a.a. 1-187) fused to the C-terminus of Venus or mCherry fluorescent protein was

cloned into the CSII-EF1 lentiviral vector. RPE cells transduced with lentiviruses carrying H2B-mTurquoise, mCherry-dE2F PIP

and Venus-Geminin (1-110) or lentiviruses carrying H2B-mTurquoise and Venus-dE2F PIP were sorted on a BD FACSAria II

high speed cell sorter to obtain pure populations expressing the desired fluorescent proteins. To establish RPE/EKAREV-NLS re-

porter line, RPE cells were co-transfected with pPB-CAG-EKAREV-NLS26 and pCMV-hyPBase transposase vector (A. Bradley,

Sanger Institute) and FACS sorted to obtain pure populations. To establish RPE/tet-BRAFV600E-HA + EKAREN5 + mCherry-

dE2F PIP dual reporter line, verified RPE/tet-BRAFV600E-HA single cell clone was transduced with EKAREN5 (ERK FRET

reporter)25 and mCherry-dE2F PIP lentiviruses and single cell clones harboring both reporters were obtained through single-

cell sorting and subsequent expansion.

METHOD DETAILS

Time-lapse microscopy
Cells were plated in poly-D-lysine-coated glass-bottom plates (MatTek Corporation) and switched to phenol-red free culturemedium

supplemented with 10% FBS prior to live imaging. Cells were imaged using a Nikon Eclipse TE2000 microscope equipped with a

chamber for controlled temperature (37%) andCO2 (5%) environment. All live-cell imagingwas performedwith a 10x Plan Apo objec-

tive (Nikon) and a Hamamatsu Orca ER camera using CFP, YFP, mCherry filter sets (Chroma). For EKAREV and EKAREN5 reporter

imaging, the FRET signal was collected using customized ECFP/EYFP FRET filter sets with ET436/20x, ET535/30m, and T455lp

mounting into the Nikon TE2000/Ti cube.

Cell count assay
RPE cells stably expressing tet-BRAFV600E and EKAREV (served as nuclear marker) were plated in 96-well plates and treated with

DOX for 8 days. Cells were then washed 5 times with fresh media to remove DOX (or mock washed) followed by live imaging

(45min/frame, 4x objective using GFP filter set) in an IncuCyte Zoom live imager for 8 days. Total cell number per well was derived

using IncuCyte analysis software.

siRNA knockdown
Synthetic siRNAs used for this study were from Dharmacon siGenome SMART pool and were used at 13.3 nM with Lipofectamine

2000 reagents (Invitrogen) according to manufacturer’s protocol. The following siRNAs were used: control siRNA (non-targeting #2),

siGenome pooled set of four siRNAs for p15, p16, p21 and p27. Cells were treatedwith DOX and ERKi after 24h of siRNA transfection.

The knockdown effects were then measured 2 days post treatments (72h post siRNA transfection). Specific antibodies were used to

verify the target knockdown.
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Western blot and senescence associated b-galactosidase assay
Cells were harvested in NuPAGETM LDS Sample Buffer (Invitrogen) for 10 min at 70�C and sonicated to shear genomic DNA. Protein

samples were separated by electrophoresis using 4-12% Bis-Tris mini protein gels (Invitrogen) and transferred to Immun-Blot PVDF

membranes (Bio-Rad #1620177). Blots were incubated with primary antibodies at 4oC and then with HRP conjugated secondary an-

tibodies for 1 hour at room temperature. HRP was detected using ECL substrates (Thermo Scientific #34076) and Licor Odyssey Fc

Imager.

Immunofluorescence
Immunostaining was performed in 96-well plates and all washes were done with the EL406TM Microplate Washer (BioTek). In brief,

cells were fixed with 4% paraformaldehyde for 20 min, permeabilized with 0.2% Triton X-100 for 15 min and blocked with Odyssey�
blocking buffer (LI-COR) for 1h before applying different antibodies. Primary antibodies were incubated overnight at 4�C. Appropriate
Alexa Fluor� conjugated secondary antibodies were then used. For EdU staining, cells were pulsed with 10 mMEdU for 30 min (or as

indicated) prior to fixation and processed according to manufacturer’s instructions (Invitrogen #C10340). Cells were imaged with a

10x objective using an Operetta High Content Imaging System (Perkin Elmer, CT) or ImageXpress Micro Confocal High-Content Im-

aging System (Molecular Devices, CA). 9 sites were imaged in each well for 96-well plates.

Image analysis
Images for the immunostaining experiments were analyzed using MATLAB image analysis programs.46 Briefly, nuclear centroids

were identified in images of Hoechst staining after applying a low-pass Gaussian filter and local background subtraction. A nucleus

maskwas generated for each cell by expansion from the centroid to reach 30%ofmaximum intensity. The nuclear pERK, BRAFV600E-

HA, EdU and pRBmean intensity were measured after local background subtraction. The threshold level used to determine pRB and

EdU positive cells was set using a k-means clustering algorithm on a day-to-day experiment basis.

Single-cell tracking and quantification following live-imaging
For population analysis of individual time frames, images were quantified and analyzed usingMATLAB scripts.47 To track single-cells

following long-term live imaging, cells were tracked semi-automatically using a combined method of EllipTrack49 and p53Cinema

Single Cell Tracking Software.48 In brief, EllipTrack segments cells by fitting nuclear contours with ellipses and tracks cells using

a machine learning algorithm. The cell tracks were thenmanually curated using p53Cinema Single Cell Tracking Software that allows

for real-time user correction of tracking and annotation of division events. Finally, verified tracks were kept for downstream analysis

and signals from each color channel were extracted in the cell nuclei.

Automatic identification of G1/S and S/G2 transitions
Single-cell traces of Venus (or mCherry)-PIP construct intensities were smoothed, normalized to 0–1 range, and partitioned by

mitosis (annotated by EllipTrack and p53Cinema). Each trace fragment was then processed in four steps to detect the G1/S and

S/G2 transitions. First, seed regions for S phase, defined as time periods whose trace values were smaller than 0.1, were proposed.

Only regions longer than 20 frames were kept (10 min/ frame). If no region was proposed but the trace fragment was bounded by two

mitoses at least 50 frames apart (indicating that a real cell cycle likely took place), the threshold for the trace values would be relaxed.

On the contrary, if multiple regions were proposed (caused by mitosis skipping or human annotation error), each region would be

analyzed independently. Second, the S/G2 transition was detected for each seed region. The slopes of the trace values were calcu-

lated from the center of the seed region to the end of the trace fragment, and the S/G2 transition was defined as the first time point

whose slope was greater than 0.004/ frame (10min/ frame). To reduce the impact of noise, a second requirement that 3 of 5 of its next

five time points should also have slopes greater than 0.004/ frame was imposed. The threshold for the slopes would be gradually

relaxed if no such time point was detected. Third, the G1/S transition was detected for each seed region. A reference time point

was first proposed following the procedure in the second step, except that 1) the slopes were calculated and examined from the cen-

ter of the seed region to the beginning of the trace fragment, and 2) the threshold for the slopes was 0.01/ frame. The G1/S transition

was then defined as the last time point before the reference whose trace value was a local maximum. Finally, the detection results

were manually examined and adjusted to ensure correctness. After cell cycle phases and their transitions were identified, G1 or G2

arrested cells were defined as cells remaining longer than 30 h in G1 or G2 phase at the end of imaging, respectively.

ERK FRET reporter quantification
To quantify ERK activity, CFP, YFP and FRET images were acquired in RPE/ tet-BRAFV600E-HA + EKAREN5 + mCherry-dE2F PIP

dual reporter cells. FRET images were taken by CFP excitation and YFP emission. Images were then subjected to flat field correction

(to eliminate uneven illumination) and local background subtraction. The FRET signal was calculated on a pixel-by-pixel basis as fol-

lows. First, a FRET image was corrected for bleed-through from CFP and YFP channels.

[FRET]Corr = ([FRET]Raw- a [CFP] – b[YFP]
a: bleed-through of CFP into FRET channel upon CFP excitation

b: bleed-through of YFP into FRET channel upon CFP excitation of YFP
18 Cell Reports 42, 112252, March 28, 2023
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The twomicroscope-specific bleed-through parameters, a (0.53) and b (0.23), were determined using cells transfected with CFP or

YFP alone. Then, the corrected FRET image ([FRET]corr) was normalized by the CFP image to obtain the FRET signal ([FRET]corr/

[CFP]). ERK activity was calculated from the median value from the nuclear compartment of the FRET signal of each cell.

Total RNA sample preparation and quality control
RPE/tet-BRAFV600E-HA cells were plated in 6-well plates (75,000 per well) and allowed to grow for 72 h till 50% confluency. Cells

were then treated with the indicated concentrations of ERK inhibitor (SCH772984) alone for 24 h or in combination with DOX

(250 ng/ ml) for variable length of time as indicated by the experimental design. Each condition was performed twice on two

different days for a total of two biological replicates. For RNA sequencing experiments, cells were lysed with 600 ml Trizol per

well and total RNA was prepared using Direct-zol-96 RNA Kits according to the manufacturer’s protocol. For quantitative PCR

experiments, cells were lysed and total RNA extracted using Qiagen RNAeasy Plus mini kits according to manufacturer’s protocol.

Sample concentrations were determined by Nanodrop and RNA quality was assessed on a subset of samples by Bioanalyzer

(Agilent); all samples scored RINs of > 9.0.

Quantitative PCR (qPCR)
2 mg of total RNA was used to generate complementary DNA (cDNA) using the high-capacity cDNA reverse transcription protocol

(Applied Biosystems). q-PCRswere then performed using 1/200 of the total of cDNA (per reaction in a 384-well plate), 300 nMprimer,

and SYBR Green reagent following the manufacturer’s protocol (Applied Biosystems). Reactions were normalized to HPRT as a

loading control. qPCR primers used are listed in key resources table.45

RNA sequencing library preparation
RNA sequencing library preparation was performed with the High Throughput TruSeq Stranded mRNA Library Prep Kit (Illumina)

following the manufacturer’s protocol at half reaction volume. Input for each sample consisted of 300–500 ng of RNA and 5 ml of

1:500 diluted ERCC spike-in mix 1 (Ambion). Libraries were amplified for 12 cycles during the final amplification step. Libraries

were quantified using the Qubit dsDNA HS assay (Thermo Fisher Scientific). Library size and quality were spot checked for a sub-

set of samples by Bioanalyzer (Agilent). The average size of cDNA fragments in the libraries was 370 base pairs. Libraries were

pooled at equimolar concentrations then the pool was quantitated using the KAPA library quantification kit (KAPA Biosystems).

Libraries were sequenced single end 114 base pairs using NovaSeq_SP full flow cell (Illumina) at the Bauer Core Facility (Harvard

University).

RNA-seq data processing
Reads were processed to counts using the bcbio-Nextgen toolkit (https://github.com/chapmanb/bcbio-nextgen) as follows: (1)

Reads were trimmed and clipped for quality control in cutadapt v2.3; (2) Read quality was checked for each sample using

FastQC v0.11.8; (3) High-quality reads were then aligned to the human assembly and gene annotation GRCh38.97 using Hisat2

v2.1.050; (4) Gene-level transcript-counts were calculated using HTseq-count v0.9.1. Only data from genes annotated as protein-

coding according to annotation from GRCh38.97 were kept for further analysis. Gene expression data (RNA seq) were deposited

in the GEO (Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/, accession number: GEO: GSE180210).

Differential expression analysis
Differential expression of genes was analyzed using DESeq251 by fitting a linear mixed effect that expressed the number of reads for

each gene K using a negative binomial distribution of the form K = NBðm;s2Þwith mean m and dispersion s. The mean for each gene

was modeled by a linear equation taking into account the sample treatments Tx and batch with the untreated sample at time zero as

intercept.

m = intercept +T1 +T2 + :::+Tx +batch

Log-fold changes were adjusted using procedures implemented in apeglm,52 which estimates posterior distributions of the coef-

ficients in the linear models that were fitted by DESeq2.

Selecting differentially expressed genes
In this setting, inferring differential expression poses a great challenge, since both dose-response and temporal dynamics need to be

accounted for. To account for dependency on both time and dose, we used multiple regression with quadratic terms to describe the

time-dose response surface (Log-fold changes) for every gene. As the same time points and doses were measured for all genes, we

only computed a single QR-decomposition of the Vandermonde regressor matrix32 and then computed regression using matrix-ma-

trix multiplication. This type of factorization is an effective way to compute least-squares fits for a large number of genes, as compu-

tationally expensive factorization only needs to be performed once for a specific set of dose-time combinations. Gene-specific

regression then only required computationally cheap matrix-matrix multiplication. To identify differential expression, we compared

the goodness of fit between quadratic regression and constant approximation via themean. p-values were computed using standard

likelihood-ratio test and multiple-testing corrected using Bonferroni-Holm.33
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Clustering ERK-dependent differences in gene expression
Principal component analysis was performed on the matrix of moderated log2-fold changes of all samples (mean of two replicates)

compared to the baseline condition (untreated control). The first principal component was strongly correlated with ERK activity

across all samples. In order to find genes that have similar relationships between gene expression and ERK dose, we applied k-me-

doids clustering53 — a variation of the k-means clustering method that is robust to outliers — on the log2-fold changes at 2 4h. We

found that choosing k = 8 resulted in easily interpretable clusters with different dynamics of ERK signaling responses. The clusters

we identified can be grouped into four different response types, each with two variants representing responses with opposite signs.

Time series analysis
In order to group genes into clusters depending on their time of induction or repression, we first normalized the time series log2-fold

changes of each gene. First, we computed the range R of log2-fold changes f for each gene g and each ERKi concentration c across

all time points t by subtracting the minimum log2-fold change from the maximum.

Rðg; cÞ = max
t

fðg; c; tÞ � min
t
fðg; c; tÞ

Next, we aggregated the time series data across all ERKi doses by computing 33%and 67%quantiles of log2-fold changes at each

time point, weighted by the time series range Rðg;cÞ, using the algorithm Q described in the cited reference.54

Eðg; tÞ = Qðqmax; fðg; c; tÞ;Rðg; cÞÞ
with qmax = arg max

q˛ ð0:33;0:67Þ
jQðq; fðg;c; tÞ;Rðg;cÞÞj

At each timepoint, the quantile with the highest absolute value was selected as the aggregate log2-fold change E, analogous to the

procedure used for aggregating expression data across cell lines in the cited reference 55. Finally, genes were grouped into clusters

based on when in the time series the absolute aggregated log2-fold change exceeded half of the maximum value across the entire

time series. The significance of differences in the induction time between ERK-response clusters were tested using ANOVA followed

by Tukey’s honest significant difference test. The distribution of the mean induction time for each ERK-response cluster was esti-

mated using bootstrapping. The induction times of genes from each cluster were resampled 1000 times with replacement and

the mean of each sample was computed.

Gene set enrichment analysis
Two variants of gene set enrichment analysis were performed. First, the enrichment of GO-terms in the ERK-response cluster gene

sets was assessed using the R Bioconductor package topGO (https://bioconductor.org/packages/release/bioc/html/topGO.html).

We considered all GO-terms in the Biological Process (‘‘BP’’) and Molecular Function (‘‘MF’’) categories. Enrichment was computed

using the ‘‘weight01’’ algorithm and Fisher’s exact test. Second, gene set enrichment analysis was performed using gene sets from

MSigDB.56 Specifically, gene sets from the Hallmark (H), curated pathways (C2:CP), and ontology (C5) categories, excluding Human

Phenotype Ontology (HPO), were considered. We tested for significant enrichment using Fisher’s exact test on the overlap between

the 1958 differentially expressed genes and the gene set of interest and p-values were adjusted for multiple testing using the

Benjamini-Hochberg procedure (https://mathscinet.ams.org/mathscinet-getitem?mr=1325392). Additionally, we computed the

enrichment of a collection of manually curated gene sets related to ERK signaling, containing all gene sets containing ‘‘ERK’’,

‘‘MAPK’’, ‘‘senescence’’, or ‘‘melanoma’’ from MSigDB, as well as the set of differentially expressed genes from a BRAFV600E over-

expression experiment57 from GEO (GSE46801).

Replicate similarity
In order to assess the quality of replicates, we computed the Pearson correlation coefficients between the normalized counts of

our two replicates, considering the 1000 most differentially expressed genes across all conditions. The genes were ranked by the

results of a likelihood-ratio test using DESeq2, comparing the full model described above against a reduced model of the form

m = intercept +batch. The correlation matrix was plotted using the R package ComplexHeatmap.58

QUANTIFICATION AND STATISTICAL ANALYSIS

Error bars represent the standard deviation, standard error of the mean, or 95% bootstrap confidence interval as indicated in the

legends. Statistical comparisons (p values) were obtained from two-sided t-tests or otherwise as noted. The Pearson’s correlation

coefficients (r) were calculated as indicated. Comparison betweenmodel fits for the ERK response surfaceswas done using standard

likelihood-ratio test and multiple-testing corrected using Bonferroni-Holm. Overlap between gene sets and differentially expressed

genes was tested using Fisher’s exact test and p-values were adjusted for multiple testing using the Benjamini-Hochberg procedure.

Differences in the induction time between ERK-response clusters were tested using ANOVA followed by Tukey’s honest significant

difference test.
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