
ORIGINAL RESEARCH

Glioblastoma is the most common form of primary brain 
tumor in adults (1,2). Radiologic tumor evaluation is 

typically performed using CT or MRI with two-dimension-
al measures (3), but with advances in imaging and the need 
for more detailed tumor quantification, three-dimensional 
volumetric segmentation in MRI is recommended and is be-
coming more commonplace (4,5). Preoperative glioma seg-
mentation at MRI can aid localized treatment planning and 
assessment of quality of care (6,7). Several MRI sequences 

are acquired to assess tumor location, composition, and 
extent (8); however, manual tumor segmentation is a time-
consuming process and subject to interrater variability (9).

Automated tumor segmentation is an active field of re-
search. The 2017 Multimodal Brain Tumor Segmentation 
(BraTS) (10) challenge showed promising results with Dice 
scores of approximately 0.85 for the preoperative tumor 
core mostly using deep learning–based approaches (11). 
The NiftyNet (12) project offers standardized tools for deep 
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Purpose: To improve the robustness of deep learning–based glioblastoma segmentation in a clinical setting with sparsified datasets.

Materials and Methods: In this retrospective study, preoperative T1-weighted, T2-weighted, T2-weighted fluid-attenuated inversion re-
covery, and postcontrast T1-weighted MRI from 117 patients (median age, 64 years; interquartile range [IQR], 55–73 years; 76 men) 
included within the Multimodal Brain Tumor Image Segmentation (BraTS) dataset plus a clinical dataset (2012–2013) with similar 
imaging modalities of 634 patients (median age, 59 years; IQR, 49–69 years; 382 men) with glioblastoma from six hospitals were used. 
Expert tumor delineations on the postcontrast images were available, but for various clinical datasets, one or more sequences were miss-
ing. The convolutional neural network, DeepMedic, was trained on combinations of complete and incomplete data with and without 
site-specific data. Sparsified training was introduced, which randomly simulated missing sequences during training. The effects of spar-
sified training and center-specific training were tested using Wilcoxon signed rank tests for paired measurements.

Results: A model trained exclusively on BraTS data reached a median Dice score of 0.81 for segmentation on BraTS test data but only 
0.49 on the clinical data. Sparsified training improved performance (adjusted P , .05), even when excluding test data with missing 
sequences, to median Dice score of 0.67. Inclusion of site-specific data during sparsified training led to higher model performance Dice 
scores greater than 0.8, on par with a model based on all complete and incomplete data. For the model using BraTS and clinical train-
ing data, inclusion of site-specific data or sparsified training was of no consequence.

Conclusion: Accurate and automatic segmentation of glioblastoma on clinical scans is feasible using a model based on large, heteroge-
neous, and partially incomplete datasets. Sparsified training may boost the performance of a smaller model based on public and site-
specific data.

Supplemental material is available for this article.
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lected, resulting in a dataset of 117 patients (median age, 64 
years; interquartile range [IQR], 55–73 years; 41 women, 76 

men) with four MRI types present: pre- and postcontrast T1-
weighted, T2-weighted, and T2-weighted fluid-attenuated in-
version recovery (FLAIR). Most scans were obtained at a field 
strength of 1.5 T (n = 59); the remaining used a 3-T scanner (n 
= 35). The segmented tumor core, defined as the union of en-
hancing and nonenhancing tumor, and necrotic regions were 
used for analysis. For BraTS, the tumors were manually seg-
mented; for TCIA, they were semiautomatically segmented us-
ing GLISTRBoost (https://www.med.upenn.edu/sbia/glistrboost.
html) and manually corrected.

Clinical Patient Dataset
Preoperative MR images of 634 adult patients (median age, 59 
years; IQR, 49–69 years; 382 men, 244 women, eight unknown) 
with a histopathologic diagnosis of glioblastoma were collected 
(Table 1). These patients received consecutive surgical treatment 
between 2012 and 2013 at one of six multinational tertiary refer-
ral hospitals (referred to as hospitals 1–6). Patients either under-
went a resection or a biopsy. All patients with at least a preopera-
tive postcontrast T1-weighted scan were included, and no patients 
were excluded. These data were collected as part of the PICTURE 
project (https://www.pictureproject.nl) (7,9,21–23). The histopath-
ologic diagnosis was determined according to the World Health 
Organization 2007 criteria (24). Scans were obtained using 21 
different MRI scanner models, and most scans were obtained at 
a field strength of 1.5 T (n = 316) or 3 T (n = 292), with smaller 
numbers at 1 T (n = 22) or 0.4 T (n = 1). Scan resolutions varied, 
ranging between 0.5- and 6-mm slice thickness. Images had vary-
ing MRI parameters because of hospital-specific settings (eg, field 
of view) and scanner specifications (see Tables E1 and E2 [supple-
ment] for more details). In 54% (345 of 634) of patients, one or 
more of the secondary sequences were missing (see Table 2).

Tumor segmentation following the Visually AccesSAble 
Rembrandt Images criteria (25) was performed by a single man-
ual rater with 3 years of experience in neurosurgical residency 
(D.M.J.M.) under supervision of a neurosurgeon (P.C.D.W.H.) 
and neuroradiologist (F.B.) using the semiautomatic SmartBrush 
tool (BrainLab, Feldkirchen, Germany). Performance on preop-
erative glioblastoma segmentation of this rater was comparable 
with expert level (9). Tumor volume was defined as the union 
of the enhancing tumor and enclosed necrosis, which is com-
parable with tumor core segmentations from BraTS and TCIA 
glioblastoma with the exclusion of nonenhancing tumor.

Secondary sequences (T1-weighted, T2-weighted, and 
FLAIR) were rigidly registered to the postcontrast T1-weighted 
sequences and then rigidly registered to the MNI09a template 
(http://nist.mni.mcgill.ca/?p=904) and thus resampled to 1-mm 
isotropic voxels. Registrations were performed with the Ad-
vanced Normalization Tools (26). Bias field corrections were 
performed with N4 bias correction (27), and skull stripping was 
performed with a routine that relied on the Atropos (28) tool.

Automatic Tumor Segmentation
Automatic segmentations were performed using the convo-
lutional neural network DeepMedic (19,20) as implemented 

learning–based automatic segmentation. However, methods de-
veloped using high-quality homogeneous and complete research 
data may suffer from overfitting (13) and fail to achieve high seg-
mentation quality in clinical scans with variable image quality and 
varying completeness of image sequences. Implementation of au-
tomatic segmentation in clinical practice is therefore still lacking.

Heterogeneity of the BraTS data has increased since 2017 
by addition of glioblastoma data from eight institutions in The 
Cancer Imaging Archive (TCIA) (13) and manual ground truth 
segmentations (14). Previously proposed methods to address the 
issue of missing sequences generally focused on data imputation 
(15–17) or network adjustments (16–18), but such approaches 
have limited generalizability.

In this study, we determined the performance of the automatic 
glioblastoma segmentation tool DeepMedic (19,20) when using 
partially incomplete multi-institution clinical imaging data with a 
wide variability in imaging parameters. We investigated the effects 
on segmentation performance of center-specific training, missing 
sequences, and expanding the training data with a heterogeneous 
dataset. Furthermore, we propose a sparsified training protocol 
randomly nullifying secondary image sequences and show how 
this improves robustness in the case of missing data.

Materials and Methods
Approval of this retrospective study protocol was obtained 
from institutional review boards, and informed consent from 
patients was obtained according to local regulations. The data 
were obtained and anonymized in accordance with the General 
Data Protection Regulation and Health Insurance Portability 
and Accountability Act.

Public BraTS Patient Dataset
From the BraTS dataset updated in 2013 (7) and selected scans 
from the TCIA (11,12), preoperative baseline scans were se-

Abbreviations
BraTS = Multimodal Brain Tumor Image Segmentation, FLAIR 
= fluid-attenuated inversion recovery, IQR = interquartile range, 
TCIA = The Cancer Imaging Archive

Summary
Robust deep learning–based segmentation of glioblastoma on routine 
clinical data can be achieved using a large heterogeneous training 
dataset or using sparsified training on a combination of public and 
site-specific data.

Key Points
 n Institutional variations in MRI acquisition protocols, hardware, 

and software result in heterogeneous clinical image datasets that 
may lack specific sequences; the variability of input data may affect 
the training and performance of deep learning algorithms.

 n Sparsified training in a dataset consisting of glioblastoma MRI 
scans improved the performance of a model based on public data 
to the level of performance of inclusion of center-specific training 
data, as well as reduced the influence of missing sequences.

 n Models trained on large heterogeneous datasets with missing se-
quences did not require sparsified training or site-specific training 
data.

http://radiology-ai.rsna.org
https://www.med.upenn.edu/sbia/glistrboost.html
https://www.med.upenn.edu/sbia/glistrboost.html
https://www.pictureproject.nl
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Tumor Segmentation Evaluation
Tumor segmentations were evaluated using Dice score, Hausdorff 
distance, and sensitivity metrics (32). Dice score is defined as:
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where Sm is the manually segmented tumor voxels, Sa is the au-
tomatically segmented tumor voxels, TP is the number of true-
positive voxels, FP is the false-positive voxels, and FN is the false-
negative voxels. Sensitivity follows as:

TPSENS
TP+FN

= .

The Hausdorff distance measures the maximum distance be-
tween borders and is therefore sensitive to evaluation direction 
and outliers. We therefore used the undirected 95th percentile 
Hausdorff distance:

Є Є ЄЄ
,

where Pm is the set of vertices describing the border of the man-
ual segmentation, Pa is the set of vertices describing the border 
of the automatic segmentation, and d (pa, pm) is the distance 
between two vertices.

in the NiftyNet (12) framework. DeepMedic consists of two 
pathways that are 11 layers deep and accepts three-dimen-
sional patches as inputs. The patch size was set to 57 3 57 
3 57 voxels with a downsample factor of three, resulting in 
an output of 9 3 9 3 9 voxels. Training minimized a Dice 
loss function (29) for 30 000 iterations by using the Adam 
(30) optimizer. The learning rate started at 0.001 and was 
divided by 2 every 5000 iterations up to iteration 15 000 and 
every 1500 iterations thereafter. The last iteration was used 
for inference on the test datasets. All models were trained and 
evaluated on a computer equipped with a single Tesla P100 
GPU (3584 CUDA cores, 12 GB).

Sparsified Training
Where scans were missing, empty (zero-filled) scans with 
the same resolution and orientation as the other scans were 
inserted. Sparsified training was implemented as an augmen-
tation layer by randomly setting secondary sequences to zero 
with independent probabilities of 20%. This percentage ap-
proximated the frequency of missing sequences in the clinical 
dataset. The NiftyNet pipeline includes histogram normaliza-
tion and whitening (12,31). These layers were adjusted to en-
sure that zero-filled volumes representing missing sequences 
were unaffected. Consequently, missing sequences in the origi-
nal data and from the sparsified training augmentation layer 
were fed to the network as all zero matrices, which, as a result 
of the whitening layer, corresponds to the mean intensity of 
the available data.

Table 2: Missing Scans in Clinical Dataset

Hospital Complete T1w T2w FLAIR T1w, T2w T1w, FLAIR T2w, FLAIR T1w, T2w, FLAIR Total

1 89 1 2 1 0 0 1 3 97
2 6 0 67 0 3 0 0 0 76
3 59 6 0 0 0 3 1 16 85
4 51 1 1 0 1 0 1 18 73
5 61 65 2 0 0 2 1 1 132
6 16 1 13 2 0 0 130 9 171
 Total 282 74 85 3 4 5 134 47 634

Note.—FLAIR = T2-weighted fluid-attenuated inversion recovery, T1w = precontrast T1-weighted, T2w = T2-
weighted.

Table 1: Clinical Patient and Public BraTS Characteristics

Characteristic Clinical Patients (n = 634) Public BraTS (n = 97)*

Age (y) 64 (55–72) 59 (49–69)
Sex (male/female/unknown) 382/244/8 76/41/0
Preoperative KPS 8 (7–9) …
Overall survival (mo) 9.8 (3.9–19.5) …
Enhancing tumor volume (mL) 31 (14–53) 40 (21–66)

Note.—Unless otherwise indicated, characteristics are shown as median, with interquartile range in 
parentheses. BraTS = Multimodal Brain Tumor Image Segmentation, KPS = Karnofsky perfor-
mance status.
* There were a total of 117 patients within the public BraTS dataset. BraTS characteristics could 
only be determined for 97 patients who were also included in the The Cancer Imaging Archive 
dataset. Enhancing tumor volume was calculated for all included BraTS patients. 

http://radiology-ai.rsna.org
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sequences in the test dataset of 20 patients. Sparsified training 
was explored as a strategy to mitigate the impact of missing se-
quences. The impact of image heterogeneity between institutes 
was estimated by evaluating networks trained with and without 
hospital 1 data on the set of 20 patients, thus assessing the need 
for hospital-specific data in the training set.

Statistical Analyses
Dice scores comparing automatic to manual segmentations of 
all model pairs with and without sparsified training, as well as 
all model pairs with and without hospital 1–specific training 
data, were compared using Wilcoxon signed rank tests for 
paired measurements (using R, version 3.6.1, https://www.r-
project.org/) (33) for complete imaging and all combinations 
of simulated missing scans in the set of 20 patients from 
hospital 1. A conservative multiple testing correction was ap-
plied, calculating adjusted P values using a single Bonferroni 
correction on all (n = 72) calculated P values. Adjusted P val-
ues less than .05 were considered significant.

Results

Segmentation Performance on the Clinical Patient Dataset
The BraTS trained model achieved a median Dice score of 0.81 
on BraTS test data, which was comparable with scores cited 

Experimental Design
The BraTS dataset was randomly split into training (80%, n = 
93), validation (5%, n = 6), and testing (15%, n = 18) sets. The 
clinical test set included 20 manually selected patients from 
hospital 1 with complete imaging for whom the interrater 
agreement of manual segmentations had been previously stud-
ied (https://doi.org/10.17026/dans-zg9-nhrj) (9). For hospitals 2 
to 6, patients were randomly subdivided into training (70%, 
ntotal = 350), validation (5%, ntotal = 39), and testing (25%, ntotal 
= 148) where ntotal is the total number of patients for hospitals 
2 to 6. Combinations of training data from different datasets 
were used to train various models. Validation data were used 
to confirm convergence, and hyperparameters were then kept 
constant for all models. Test data were used to evaluate the 
performance of the different models.

A total of 11 networks were trained by varying the in-
cluded hospitals, the inclusion of patients with incomplete 
imaging, and the use of sparsified training. BraTS patients 
were included in all models. Figure 1 explains the naming 
convention for the different models.

The performance on clinical data of a network based on 
publicly available BraTS data was evaluated. These results show 
the combined effects of imaging heterogeneity, missing scans, 
and other issues related to overfitting and domain adaptation. 
The effects of missing MRI sequences were further investigated 
by simulating all possible combinations of missing secondary 

Figure 1: The clinical and public data were divided into three main groups: Multimodal Brain Tumor Image Segmentation (BraTS), hospital 1, and 
hospitals 2 to 6. The dashed arrows show the (fraction of) patients assigned to the validation and test data. The remaining scans were used to train 
a total of 11 distinct networks by varying all of the included training data, use of all available data, or only patients with complete imaging, and use 
of sparsified training. Each model is described by the abbreviation of the included data, preceded with a “c” if only patients with complete imaging 
were included, and followed by “st” if sparsified training was enabled. The 20 test patients from hospital 1 were previously studied in Visser et al (9).

http://radiology-ai.rsna.org
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hospital 6. Results for the 95th percentile Hausdorff distance 
and sensitivity can be found in Figure E1 (supplement).

Segmentation Performance with Missing MRI Sequences
In hospital 2 the T2-weighted sequences were missing, and in 

hospital 6, both the T2-weighted and FLAIR se-
quences for a large fraction of patients were miss-
ing. The subset of all test patients missing one 
or more sequences had a median Dice score of 
0.095 (IQR, 0.005–0.55), and for the patients 
with all sequences available, this was 0.65 (IQR, 
0.46–0.79). Sensitivity and du95H are shown in 
Figure E2 (supplement). Figure 3 shows ex-
amples of the segmentation result of the BraTS 
model for a BraTS test patient, a clinical patient 
with all secondary sequences available, and a 
clinical patient who had missing T2-weighted 
and FLAIR sequences.

In Figure 4, the effect of a particular missing 
sequence, or combination of missing sequences, 
is shown for the BraTS model using the 20 test 
patients from hospital 1. Although a missing pre-
contrast T1-weighted sequence did not reduce 
performance (median Dice score: 0.66), miss-
ing T2-weighted (0.30) and especially missing 
FLAIR (0.13) sequences led to lower median Dice 
scores. A number of interactions can be observed. 
For example, missing precontrast T1-weighted 
and FLAIR (0.41) outperforms missing FLAIR 

in the literature (11,20,34). Performance on test datasets of 
the clinical data (hospitals 1–6) was substantially lower, with 
an overall median Dice score of 0.49 (Fig 2). Dice scores were 
similar (medians around 0.55) between hospitals 1, 3, 4, and 5 
but highly variable in hospital 2 and very low (median: 0.01) in 

Figure 2: Dice scores of a model trained on publicly available Multimodal Brain Tumor Image 
Segmentation (BraTS) data, evaluated on a retrospective test cohort from six hospitals and BraTS. Gray 
bullets indicate individual scans. The right panel shows both the pooled results for hospitals 1 to 6 and the 
subsets of patients with complete and incomplete data.

Figure 3: Segmentations generated by the Multimodal Brain Tumor Image Segmentation (BraTS) model overlaid on the manual 
segmentations for, A, BraTS test patient (Dice score, 0.85), B, clinical patient with complete secondary imaging (Dice score, 0.43), 
and, C, patient with missing T2-weighted and T2-weighted fluid-attenuated inversion recovery images (Dice score, 0.001).

http://radiology-ai.rsna.org
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(0.13), and no secondary sequences (0.16) ap-
pears better than to use precontrast T1-weighted 
only (0.03). This same trend was observed in the 
other institutes (Figure E3 [supplement]).

Sparsified training in the BraTSst model sub-
stantially improved performance for all combina-
tions of missing sequences (Figure 4), with sig-
nificant adjusted P values for missing FLAIR and/
or precontrast T1-weighted sequences, as well 
as missing FLAIR and T2-weighted (adjusted P 
values of all model comparisons can be found in 
Tables E3 and E4 [supplement]). An especially 
large improvement was seen in the case of miss-
ing FLAIR. Also, complete test data of the BraTSst 
model (median Dice score: 0.77) had a higher 
score than that of the BraTS model (0.53), al-
though it was statistically nonsignificant (adjusted 
P = .095). Results showed to be robust to the level 
of sparsity (see Figure E4 [supplement]).

Image Heterogeneity in Training Sets Improved 
Segmentation
Evaluation results for models trained with the 
inclusion of clinical data are shown in Figure 5. 
When performing inference using all available 
scans of the 20 patients who were left out of 
hospital 1 (Fig 5, A), each model incorporating 
clinical data outperformed the BraTS model.

Omission of patients from hospital 1 during 
training did not significantly reduce the perfor-
mance relative to the corresponding models us-
ing all available patients, unlike the models only 
trained on BraTS data (adjusted P , .05 for 
complete imaging [median Dice score difference: 
−0.07], only postcontrast T1-weighted available 
[−0.57], missing FLAIR [−0.50], and missing T2-
weighted [−0.35]). Sparsified training neither sig-
nificantly improved nor reduced the performance 
of models that included data from hospitals 2 to 
6 (H2–6BraTS and H1–6BraTS). See Tables E3 and 
E4 (supplement) for tables with more detailed 
results, including median differences, 95% confi-
dence intervals, and nonadjusted P values.

For simulated missing sequences (Fig 5, B), 
Dice scores for models trained exclusively on 
complete image sets were reduced. The inclusion 
of patients with incomplete imaging during train-
ing restored the performance for the H1–6BraTS 
and H2–6BraTS models, but only partially for the 
H1BraTS model (hospital 1 had only eight pa-
tients with incomplete imaging). Sparsified train-
ing restored the performance of the H1BraTSst 
model to the same level of performance (median 
Dice scores ≥ 0.84) as the models including the 
other hospitals. Omission of institution-specific 
data from hospital 1 did not significantly reduce 

Figure 4: Dice performances of the Multimodal Brain Tumor Image Segmentation (BraTS) model 
with sparsified training (orange) and without sparsified training (blue). Missing data were simulated by 
artificially setting secondary images to zero during inference for the 20 test patients from hospital 1. 
Significant differences (adjusted P < .05) are indicated by an asterisk. FLAIR = fluid-attenuated inversion 
recovery, T1w = T1-weighted, T2w = T2-weighted. 

Figure 5: Median Dice scores of all models in Figure 1 on, A, 20 test patients from hospital 1 with 
complete imaging and, B, for all combinations of simulated missing scans. BraTS = Multimodal Brain 
Tumor Image Segmentation.

http://radiology-ai.rsna.org
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performance for the H1–6BraTSst model (adjusted P ≥ .08). Fig-
ure 6 shows the segmentation results of the BraTSst, H1BraTSst, 
and H2–6BraTSst models for the incomplete test patient of Figure 
3. Performance (Dice, sensitivity, and du95H) of the H2–6BraTSst 
model is shown in more detail for individual test datasets in Fig-
ure E1 (supplement).

Discussion
We have shown the feasibility of obtaining accurate automatic 
glioblastoma segmentations using deep learning without the 
need for hospital-specific training data, even in the case of 
missing secondary sequences. In clinical practice, missing se-
quences is a likely occurrence; for a small majority of clinical 
scans collected for this study, one or more of the secondary 
sequences were missing. A sparsified training strategy improved 
a model based on public data for use both on complete and in-
complete clinical datasets and was able to bring a model based 
on single-institute data (plus those publicly available) to the 
level of a much larger multi-institute model.

We have shown that the models trained with the largest da-
taset (eg, H2–6BraTSst) reach median Dice scores (approximately 
0.85 both on complete and incomplete data) that are compa-
rable with the top-performing algorithms from the BraTS chal-
lenge and the results in Perkuhn et al (35), yet still below the 
excellent interrater agreement of 0.94 in the BraTS data (10) 
and of 0.93 in a subset of the dataset described in this article (9).

In this study, we have used the DeepMedic implementa-
tion in NiftyNet. We have chosen to use DeepMedic because 

it was shown to be one of the top performers of the BraTS 
2016 challenge, and several studies have reported Dice scores 
of DeepMedic (eg, as reference value) trained and evaluated 
on the BraTS data (mix of various gliomas). Results ranged 
between 0.72 and 0.83 (20), and submissions were from the 
BraTS proceedings (11,34).

Incomplete imaging was shown to greatly reduce perfor-
mance in the unadjusted DeepMedic network. Even though 
introducing sparsified training and clinical data to the training 
dataset improved segmentation performance for incomplete 
data, the best performance was achieved if all sequences were 
available. Systematic use of all sequences in clinical practice is 
preferred (as advocated in Freyschlag et al [36]) and would help 
overcome this issue. Despite the efforts toward standardization, 
robustness to missing sequences remains valuable for analyzing 
real-world cohorts, flexibility to changes to standardized proto-
cols, and bringing the benefits of automated segmentation to as 
many patients as possible.

The largest performance improvement that resulted from in-
troducing sparsified training to the BraTS model was observed 
with missing FLAIR images, indicating that the information 
used by the model from the FLAIR could also be extracted from 
a combination of other sequences. Next to the variations in im-
aging protocols, variations in preprocessing (ie, the registration 
algorithm, atlas, and skull stripping algorithm) may have con-
tributed to the heterogeneity between the public patient data and 
the clinical dataset. The largest performance differences could, 
however, be attributed to missing sequences. The performance 

Figure 6: Segmentation results for the, A, BraTSst (Dice score, 0.41), B, H1BraTSst (Dice score, 0.52), and, C, H2–6BraTSst (Dice 
score, 0.82) models for the patient with missing T2-weighted and T2-weighted fluid-attenuated inversion recovery from Figure 3, C. 
BraTS = Multimodal Brain Tumor Image Segmentation.

http://radiology-ai.rsna.org
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improvement from sparsified training in the BRaTS model for 
complete test data might be attributed to a general regularizing 
effect of sparsified training, reducing overfitting.

The DeepMedic implementation in NiftyNet (12) has mi-
nor differences compared with the original implementation (20), 
which used the now-deprecated Theano backend. However, we 
expect that these differences have a relatively minor impact on per-
formance. The NiftyNet implementation does not include drop-
out in the final fully connected layers and uses a Dice-based loss 
function and Adam as an optimizer as opposed to RMSProp with 
Nesterov momentum in the original DeepMedic implementation. 
NiftyNet allows various datasets and augmentation options to be 
easily combined, and it facilitates publication of trained models 
(https://niftynet.readthedocs.io/en/dev/model_zoo.html).

Results of this study focused on the test data of hospital 1. 
A “leave one hospital out” cross-validation could provide more 
detailed results but was practically infeasible because of the com-
putational costs involved.

The high du95H (Figure E2 [supplement]) for some patients 
indicated that, for these patients, some false-positive regions 
were found relatively distant to the boundary of the tumor. 
This may limit the usability of these models for some applica-
tions. Improvements could be made by further postprocessing, 
inclusion of a distance component to the loss-function of the 
convolutional neural network, or further hyperparameter tun-
ing (eg, sparsity frequency, numbers of layers and feature maps, 
number of iterations or learning rate). Improvements using a 
fully connected conditional random field (37) or the use of 
ensembles (38) were previously explored but were left out in 
our analyses because of the added complexity and training and 
inference times.

Our results showed that introducing sparsified training and a 
large heterogeneous training dataset improved the robustness of 
automatic segmentation of glioblastoma on routine clinical MRI. 
Improved robustness of automatic segmentation will bring the ap-
plication of these algorithms a step closer to clinical practice.
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