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Chapter 1

Introduction

1.1 Overview

This thesis covers the predictive value of computed tomography- and histopathology-

based predictors for checkpoint inhibitor treatment outcomes in patients with ad-

vanced melanoma. Accurate predictors in this setting are lacking but would be

very valuable in clinical practice, since checkpoint inhibitor treatment is associ-

ated with high costs and serious toxicity. These concerns will become even more

relevant in the coming decades due to an aging population. Predictors that are

covered in this thesis include the location and size of metastases, body composition

metrics, and machine and deep learning models based on pretreatment computed

tomography (CT) scans and histopathology images. Special emphasis is placed

on the added value over known predictors, as this determines the eventual clinical

value.

This introduction will first outline what checkpoint inhibitor treatment is, and

the place it has in the treatment of advanced melanoma. Second, it will discuss the

drawbacks of this treatment, which form the motivation for accurate predictions.

Third, it will provide the requirements for a clinically useful predictor and cate-

gorize previous efforts to this end. Lastly, it will outline the structure of the rest

of this thesis, the research questions that will be addressed and the corresponding

hypotheses.
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1.2. An introduction to checkpoint inhibitor treatment

1.2 An introduction to checkpoint inhibitor treat-

ment

Checkpoint inhibitor treatment has revolutionized the treatment of advanced can-

cer, in particular advanced melanoma. Melanoma is an aggressive form of cancer,

arising from the pigmented cells called melanocytes, mostly those from the skin.

When a melanoma metastasizes to such a degree that it can no longer be cura-

tively treated through surgery, it is defined as advanced melanoma [1]. Prior to

the introduction of checkpoint inhibitors, the prognosis of patients diagnosed with

advanced melanoma was very poor, with most patients succumbing within one

year of diagnosis [2]. With current treatment, overall survival rates at 6.5 years

of 49% are being reached for patients treated in clinical trials [3]. Even more

strikingly, survival curves level off after several years, which suggests that this

treatment may even be curative in these cases. Checkpoint inhibitor treatment

therefore represents one of the most significant advances in oncological care of the

past decades.

Checkpoint inhibitor treatment works by mobilizing the body’s immune sys-

tem against the tumor. In addition to fighting infections, the immune system is

tasked with identifying and neutralizing cells that have accumulated (epi-)genetic

changes that may eventually lead to the development of cancer. This concept is

called ‘immune surveillance’ [4]. In cases where cancer develops, the tumor has

developed mechanisms to resist the efforts of the immune system [5]. A mech-

anism for doing so is through the expression of certain proteins, called immune

checkpoints, that block the immune response. These immune checkpoints are used

in a healthy situation to maintain the careful balance between too much immune

activity (resulting in auto-inflammatory diseases) or too little (potentially result-

ing in infections or cancer formation). Checkpoint inhibitor treatment blocks the

immune checkpoint pathway and thereby reactivates the body’s immune response

to the tumor [6].

There are currently two mostly used types of checkpoint inhibitor treatment

for advanced melanoma. The first is anti-CTLA4 treatment, which targets the

CTLA-4 protein, a crucial regulator of T-cell activation. Anti-CTLA4 drugs, such

as ipilimumab, work by inhibiting the CTLA-4 protein, thereby enhancing the im-

mune system’s ability to recognize and attack tumor cells. This type of treatment,

2



Chapter 1. Introduction

introduced in 2011 [7], was among the first to show significant success in treating

advanced melanoma. The second type, which became available in 2014 [8], is anti-

PD1 treatment. These inhibitors, including pembrolizumab and nivolumab, target

the PD-1 surface protein on T-cells. By blocking this protein, anti-PD1 treatment

prevents the tumor from evading immune surveillance. Currently, checkpoint in-

hibitor therapy for melanoma in The Netherlands is given mainly as anti-PD1

monotherapy, or as a combination therapy of anti-PD1 and anti-CTLA4 [9].

1.3 Drawbacks of checkpoint inhibitor treatment

Although for advanced melanoma checkpoint inhibition is a clear improvement

over historical treatments such as chemotherapy, a significant fraction of patients

does not respond. This difference in derived benefit often becomes apparent early

during treatment. Real-world data on the status of patients treated with anti-PD1

in The Netherlands at three months showed a complete response in 1%, partial

response in 33%, stable disease in 29%, progressive disease or death in 38% of

patients. Of the patients with partial response or stable disease, 80% and 57%,

respectively, were alive two years from the three-month landmark. In contrast, of

patients with progressive disease at three months, only 15% was alive after two

years [10].

Furthermore, checkpoint inhibitor treatment is associated with potentially se-

vere toxicity. These side effects, often termed ’immune-related adverse events’

(irAEs), can range from mild to life-threatening [11] and are a consequence of

the immune system’s heightened activity. Common irAEs include dermatologi-

cal conditions like rash and pruritus, gastrointestinal issues such as colitis and

diarrhea, and endocrine disorders including thyroiditis, hypophysitis and adrenal

insufficiency. Other toxicities involve the lungs, presenting as pneumonitis, or the

liver, manifesting as hepatitis [12]. Immune-related adverse events more commonly

occur in patients treated with combination therapy [3], can be chronic and may in

some cases have fatal outcomes [13].

In addition to the risk of toxicity, checkpoint inhibitor treatment is a very costly

therapy. In fact, anti-PD1 drugs were by far the most expensive medication given

in hospitals in The Netherlands in 2021, representing a total cost of 327 million

EUR [14]. Advanced melanoma is second largest indication for this treatment,

3



1.4. Predicting individual treatment outcomes

after non-small cell lung carcinoma [15,16]. Estimates of additional costs per

gained quality-adjusted life year range from 25,000 to 81,000 USD [17,18].

The issue of medication costs will become even more relevant in the coming

decades for several reasons. First, an aging population means that the health care

system will require more resources to maintain the current standard level of care

[19]. Oncological diagnoses in particular are expected to increase, which is one

of the primary drivers of medication costs. Second, expensive medications have

recently been developed at a much faster rate than the expiration of patents. If

this trend continues, this will further increase the share of health care spending

on expensive medication [20].

1.4 Predicting individual treatment outcomes

Accurate predictors of individual treatment would be extremely valuable. Such

a predictor, by identifying patients unlikely to respond, could prevent both un-

necessary toxicity, thus benefiting patients, and unnecessary costs, thus benefiting

society. It would thereby directly address the rising problem of medication costs.

Furthermore, accurate predictors could be used to guide individual initial treat-

ment choices, so that no time is lost with ineffective treatments. For example, pa-

tients with BRAF-mutant disease may be directed towards upfront BRAF/MEK-

inhibition therapy. In addition, patients may be selected earlier in their disease

process for clinical trials, accelerating the development of new treatment options

for these patients. For these reasons, research into potential predictors has at-

tracted much attention in the past decade [21,22].

A successful predictor especially needs to identify patients who will not re-

spond with high reliability. This is because the potential benefit of treatment for

most patients with advanced melanoma is enormous: a durable remission of dis-

ease, versus near-certain death within a year from diagnosis. Furthermore, proven

alternatives are limited in patients without targetable mutations (e.g. BRAF-

V600) [1]. A predictor that wrongfully advises against treatment would therefore

cause significant harm. Clearly, a high negative predictive value is of paramount

importance to ensure that a predictor benefits both society and the individual.

Furthermore, a successful predictor must ideally be available before the start of

treatment. The reason for this is that most irAEs occur in the first three months of

4



Chapter 1. Introduction

treatment, which is typically the first moment of follow-up [23,24]. Furthermore,

especially when combination treatment with anti-PD1+anti-CTLA4 is given, most

costs are also incurred in this period. This makes pretreatment predictors much

more impactful than those that become available at a later moment.

Research aimed to identify potential predictors falls into one of three categories.

The first is that of patient characteristics: features that are readily available to the

treating physician through history, physical examination, or routine diagnostics.

The main driver of this research is the practical clinical experience of physician-

researchers. The second category is research into biology-inspired predictors. The

hypotheses for this research come from a mechanistic model of checkpoint in-

hibitors mode of action. The third category comprises data-driven research, which

is driven by developments in modelling techniques for high-dimensional data, such

as images and genomics.

Several clinical characteristics have been shown to be associated with treatment

outcomes. These include stage of disease, serum markers (e.g. lactate dehydro-

genase) and clinical condition (e.g. ECOG/WHO performance status) [25]. An-

other example of predictor of worse outcomes is the presence of symptomatic brain

metastases [10]. Together, these predictors reflect a patient’s physical reserves and

the aggressiveness of disease. It should be noted that these factors were also iden-

tified as prognostic in melanoma before the introduction of checkpoint inhibitor

treatment [26,27]. Although these factors may also reflect a patient’s ability to

mount an effective immune response following therapy, their prognostic value is

therefore, at least to some extent, not specific to checkpoint inhibitor treatment.

They may nonetheless be valuable for guiding treatment decisions by providing

insight into the absolute survival that may be attained.

Biology-driven research has identified several potential predictors. A prime ex-

ample is the level of PD-L1 protein expression on tumor cells. The PD-L1 protein

blocks the immune response by binding to and thereby activating the PD-1 recep-

tor on T-cells. Anti-PD(L)1 treatment stops this mechanism by blocking the PD-1

receptor on T-cells. According to this understanding, tumors with higher PD-L1

expression should respond more to anti-PD1 therapy. Indeed, a positive corre-

lation was observed between PD-L1 expression and response rates. Nevertheless,

response was still observed in 38% of patients in whom PD-L1 was absent [28]. An-

other example is the number of mutations present across the tumor genome, also
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1.5. Research question and thesis outline

known as tumor mutational burden. As tumors with a higher mutational burden

evoke a stronger immune response since the mutated genes express neoantigens,

it has been shown that this measure also correlates with response to checkpoint

inhibitor treatment [29].

Examples of data-driven predictors are pathomics, genomics and radiomics.

These predictors are based on a type of high-dimensional data, such as histopathol-

ogy imaging [30,31], gene expression data [32] or radiological imaging [33]. Devel-

opments in computing hardware and in the field of machine and deep learning have

provided the tools necessary to analyze these complex types of data. Instead of

investigating a specific hypothesis, machine learning aims to capture the variation

in the dataset by extracting an extensive number of features. A wide range of tech-

niques have been developed to subsequently analyze these extracted features by

means of dimensionality reduction (e.g. principal component analysis [34]), regres-

sion (e.g. lasso regression [35]) and classification (e.g. random forest [36], support

vector classifier [37]). Deep learning differs from machine learning by building a

model directly on the input data, thereby skipping the step of extracting hand-

crafted features. It leverages neural networks, a very powerful type of model due

to its flexibility in the relationships that it can learn. The most important types

of neural networks are the convolutional neural network [38] (for image data) and

transformer [39] (for data including sequences of variable length). Despite previ-

ous efforts, current predictors have insufficient negative predictive value. Clinical

predictors can stratify patients into categories with markedly different outcomes.

However, patients in the category with the worst predicted outcome still have

a significant probability of achieving a durable remission [25]. These predictors

therefore do not reach the high negative predictive value that is required to change

decisions in the majority of patients that are motivated for treatment.

1.5 Research question and thesis outline

The research described in this thesis is the result of the PREMIUM project [40].

This project was a combined effort of 11 melanoma treatment centers in The

Netherlands, coordinated by the UMC Utrecht and TU Eindhoven. The goal

of the project was to predict first-line checkpoint inhibitor treatment outcomes

in patients with irresectable stage III or stage IV melanoma. For this purpose,
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eligible patients were identified through the high-quality registry data of the Dutch

Melanoma Treatment Registry [41]. This has resulted in a unique cohort of almost

2000 patients, with available clinical characteristics, follow-up data, pre-treatment

computed tomography (CT) scans and diagnostic histopathology images.

This thesis focuses on predictors that are based on pretreatment computed

tomography (CT) scans and histopathology images. This choice of scope was

made for a practical reason: since this data is already routinely collected, models

based on these modalities do not require a modification of the standard-of-care.

This maximizes the potential impact of the developed predictors.

The main research questions are as follows: what is the predictive value of CT-

and histopathology-based features for checkpoint inhibitor outcomes in advanced

melanoma and what is their added value over known clinical predictors? Specific

emphasis is placed on the added value of potential predictors, for obvious reasons:

a predictive model will not contribute if it only adds information that overlaps

with known predictors. Previous works, however, typically do not evaluate this,

as will be shown in chapter 2. This thesis aims to address this shortcoming by

comparing the proposed predictors to a baseline model of clinical characteristics.

Chapter 2 provides a systematic review of previous literature on radiological

imaging derived predictors. This category consists of patient characteristics that

are directly visible on scans, such as the number and location of metastases. This

chapter thereby aims to answer the question: what is the current state of research

on radiological image-derived predictors for checkpoint inhibitor outcomes? Re-

search on all cancers, not just melanoma, is covered in this chapter, since results in

one malignancy may as well transfer to another. The categories of predictors that

are covered in this chapter are tumor burden, location, tracer avidity, radiomics

and body composition metrics.

Chapter 3 assesses the predictive value of radiomics for predicting checkpoint

inhibitor treatment outcomes in advanced melanoma. Radiomics are a large num-

ber of image analysis-based features that are calculated based on a segmented

metastasis on CT, which are subsequently analyzed using machine learning tech-

niques. These features together aim to encompass the variation in presentation of

metastases on CT. The main hypothesis here is that the phenotype of the tumor

visible on CT images reflects its biology, which in turn determines the tumor’s

response to treatment. The added value over known predictors is assessed by

7
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comparing predictive models with- and without a radiomics-based predictor.

Chapter 4 investigates the predictive value of deep learning on CT scans. Here,

a model is fitted to directly predict outcomes on the raw CT volume of metas-

tases. Features do not have to be manually defined, as they are learned during

the training phase. The resulting advantage is that the model is not limited by

the choice of these extracted features. The hypothesis of this chapter is therefore

that deep learning, providing more flexibility, can improve over a radiomics-based

method.

Chapter 5 covers CT derived body composition metrics, such as the amount

of skeletal muscle and adipose tissue. The hypothesis of this chapter is that these

body composition metrics provide additional prognostic value over known predic-

tors. They are evaluated alongside body mass index (BMI), a traditional measure

of body composition that is not dependent on extraction of metrics from CT imag-

ing.

Chapter 6 discusses deep learning based on hematoxylin & eosin-stained whole

slide histopathology images. These histopathology images include primary and

metastatic samples. The hypothesis investigated in this chapter is that these sam-

ples contain information that is correlated with checkpoint inhibitor response, and

that deep learning models can extract this information. Examples of features that

could be informative are the aspect and growth pattern of tumor cells, abundance

and location of tumor cells and immune cells and presence of fibrosis.

Chapter 7 provides the general discussion and conclusion of this thesis. The

findings of previous chapters will be summarized and placed into perspective.

Next, the limitations of the presented research will be outlined. Lastly, recom-

mendations for clinical practice and future research will be presented.
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2.1. Abstract

2.1 Abstract

2.1.1 Introduction

Checkpoint inhibition has radically improved the perspective for metastatic can-

cer patients, but predicting who will not respond with high certainty remains

difficult. Imaging derived biomarkers may be able to provide additional insights

into the heterogeneity in tumor response between patients. In this systematic

review, we aimed to summarize and qualitatively assess the current evidence on

imaging biomarkers that predict response and survival in patients treated with

checkpoint inhibitors in all cancer types.

2.1.2 Methods

PubMed and Embase were searched from database inception to November 29th,

2021. Articles eligible for inclusion described baseline imaging predictive factors,

radiomics and/or imaging machine learning models for predicting response and

survival in patients with any kind of malignancy treated with checkpoint inhibitors.

Risk of bias was assessed using the QUIPS and PROBAST tools and data was

extracted.

2.1.3 Results

In total, 119 studies including 15580 patients were selected. Of these studies, 73

investigated simple imaging factors. 45 studies investigated radiomic features or

deep learning models. Predictors of worse survival were (i) higher tumor burden,

(ii) presence of liver metastases, (iii) less subcutaneous adipose tissue, (iv) less

dense muscle and (v) presence of symptomatic brain metastases. Hazard rate ratios

did not exceed 2.00 for any predictor in the larger and higher quality studies. The

added value of baseline FDG-PET parameters in predicting response to treatment

was limited. Pilot studies of radioactive drug tracer imaging showed promising

results. Reports on radiomics were almost unanimously positive, but numerous

methodological concerns exist.
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2.1.4 Conclusions

There is well-supported evidence for several imaging biomarkers that can be used

in clinical decision making. Further research, however, is needed into biomarkers

that can more accurately identify which patients who will not benefit from check-

point inhibition. Radiomics and radioactive drug labeling appear to be promising

approaches for this purpose.

2.2 Introduction

The introduction of immune checkpoint inhibitors has greatly improved survival

for patients in advanced stages of several cancer types. Since the approval of

checkpoint inhibitors for metastatic melanoma and non-small cell lung carcinoma

(NSCLC) in 2011 and 2015[1,2], respectively, 5-year survival rates have increased

from less than 10% to more than 50% and 30%, respectively.[3–6] Checkpoint

inhibitors have subsequently been approved for a range of malignancies with similar

improvements in survival.[7]

However, the effect of checkpoint inhibitors varies significantly from patient to

patient. Patients who reach complete or partial remission under therapy have a fair

chance of long-term survival or even cure from metastatic disease. In melanoma

patients who responded to a combination of checkpoint inhibitors, median overall

survival was 6 years.[5] Non-responding patients, however, experience little-to-no

benefit from treatment and have limited survival. For example, only 4% of NSCLC

patients who were alive but showed progression at 6 months were still alive after

4.5 years.[7,8]

Prediction of response to treatment is a relevant topic. If non-responding pa-

tients can be identified before treatment is started, this can prevent severe and

even life-threatening adverse events.[9] These severe events are especially com-

mon in patients treated with both anti-PD1 and CTLA-4 inhibitors, occurring in

over 30% and 5% of NSCLC and melanoma patients, respectively.[9,10] Further-

more, accurate patient selection can reduce the high costs associated with check

inhibitor therapy, which typically approach 100,000 USD per quality-adjusted life

year gained .[11] Lastly prediction of non-response is relevant as these patients

can, without delay, be treated with other treatments such as targeted therapy[12],
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or be enrolled in clinical trials investigating novel therapeutic approaches.

To guide treatment decisions, a biomarker must be able to identify non-responding

patients with high specificity. If high specificity is not ensured, use of this biomarker

alone would mean that potentially benefitting patients will not receive treatment.

A potential biomarker should therefore demonstrate the ability to stratify patients

into groups with a marked difference in survival and/or response.

Accurate prediction of response has proven to be a challenge, however, as we do

not fully understand why this variation in response exists. Checkpoint inhibition

work by blocking proteins (e.g. PD-1, PD-L1 or CTLA-4) that inhibit the body’s

immune response to tumors.[13] Several crucial factors in anti-tumor response have

been explored as predictive markers, such as PD-L1 expression, presence of tumor

infiltrating lymphocytes and tumor mutational burden.[14,15] Clinical biomarkers,

for example stage of disease, WHO performance status, neutrophil-to-lymphocyte

ratio and level of lactate dehydrogenase have been examined as well. None have,

however, proven to be accurate enough to select patients who should not be treated

with checkpoint inhibition.[16] NSCLC patients may, for instance, respond to anti-

PD1 treatment even though PD-L1 expression is absent.[17]

Imaging may be able to provide additional insights into the heterogeneity in

tumor response between patients. The underlying rationale for this hypothesis is

that different tumor genotypes will be expressed as different imaging phenotypes.

Readily available baseline imaging may therefore provide potentially valuable infor-

mation about tumor size, tumor/metastasis location and, if acquired, FDG-PET

parameters. Furthermore, measurements of lesion shape, intensity and texture on

imaging can potentially capture information about the tumor phenotype. These

measurements, collectively known as radiomics, may then subsequently be corre-

lated to clinical outcomes.[18] Lastly, radioactive labeling of checkpoint inhibitor

molecules can provide insight into the drug uptake throughout the body including

in the tumor.[19]

To our knowledge, no comprehensive review has been published on the entire

spectrum of prognosis research in imaging biomarkers and outcome to checkpoint

inhibitors across malignancies. Earlier publications were dedicated to either a

single modality (e.g. PET-imaging or radiomics) or a single malignancy.[20–23]

This limits a complete overview, as advancements in one disease may very well

be applicable in another. Furthermore, the predictive value of more sophisticated
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modalities (e.g. radiomics) should be compared to that of simple markers (e.g.

tumor burden) to see if they add value. With this comprehensive review, we aim

to fill this gap and facilitate future research.

In this work, we aimed to systematically review the ability of different imaging

modalities to predict response to checkpoint inhibitors. The population of inter-

est consists of patients treated with any checkpoint inhibitor for any malignancy.

Investigated predictors are any individual biomarkers derived from imaging modal-

ities and models including these. Outcomes of interest are response (according to

RECIST[24] or iRECIST[25] criteria), overall and progression-free survival. Both

prognostic and predictive factors are examined. A prognostic factor provides infor-

mation about a future outcome irrespective of therapy (e.g. tumor stage for overall

survival). In contrast, a predictive factor forecasts the effect of a specific treat-

ment (e.g. estrogen receptor status for tamoxifen in breast cancer patients).[26]

Despite this difference, prognostic factors are still important in guiding treatment

decisions: preventing unnecessary side-effects and costs in a patient due to a very

poor prognosis is no less valuable than doing so based on a pure predictive factor.

For this reason, both types of factors were investigated.

2.3 Methods

2.3.1 Adherence to quality standards

This systematic review was conducted using the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) statement.[27] Details of the

protocol for this study were registered on PROSPERO and can be accessed at

www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42020186199.

2.3.2 Selection of studies

On 29 November 2021, the PubMed and Embase databases were searched for

relevant studies. Other data sources were publications found from references of

selected articles. Also, to ensure sensitivity of the search strategy and to identify

additional relevant studies, Scopus was used. No date restrictions were applied

on the systematic searches and included articles published through 29 November

2021.

15

www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42020186199


2.3. Methods

Inclusion criteria for eligible articles were original full-text research articles

describing baseline imaging prognostic factors and radiomics and/or imaging pre-

diction models (e.g. using machine learning) for response and survival in patients

treated with anti-PD1 checkpoint inhibition with any kind of malignancy above

18 years of age.

The literature search used the following terms (with synonyms, MeSH terms,

and closely related words): “immunotherapy” or “immune checkpoint inhibitor”

combined with “radiological”, “baseline factors” and “predictive”, or combined

with “radiomics” or “machine learning”. We specifically adopted a broad search

to include all articles related to imaging and predictive factors and to radiomics

and machine learning studies. Duplicates were removed using EndNote. The

complete search strategy is listed in Supplementary file 1.

All articles were screened for relevance. Studies only reported as conference

abstracts without published full-text reports were not included owing to the in-

ability to completely assess validity and methodologies. Other exclusion criteria

were case reports, reviews and meta-analyses. The search was restricted to stud-

ies in human participants and papers written in English. Furthermore, studies

only reporting predictive factors, radiomics or machine learning models based on

on-treatment imaging (instead of pre-treatment imaging) were excluded.

2.3.3 Screening process

Titles and abstracts were screened for relevance by two reviewers (ID and RM)

using the Rayyan QCRI web application.[28] Articles were excluded if they did

not meet the inclusion criteria. Next, the selected full-text articles were assessed

for eligibility by the same reviewers. Subsequently, the final selection of studies

was made (Figure 1).

2.3.4 Critical appraisal

Two tools were used to evaluate risk of bias: the QUIPS tool[29] was used to assess

studies reporting on individual prognostic or predictive factors; the PROBAST

tool[30] was used to assess studies constructing models that make predictions for

individual patients.

The QUIPS tool is specifically designed to assess risk of bias in prognostic
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factor studies and does so by judging the quality of a prognostic factor study on

six key domains: ‘study participation’, ‘study attrition’, ‘prognostic factor mea-

surement’, ‘outcome measurement’, ‘study confounding’ and ‘statistical analysis

and reporting’. The domain ‘study attrition’ was not evaluated, as almost all

studies were retrospective cohort studies that did not report on loss to follow-up

during the data collection period. This domain could therefore not be accurately

assessed and was consequently not used. Adaptation of the QUIPS tool for specific

purposes is encouraged by the developers in the accompanying article.[29]

The PROBAST tool is designed to judge risk of bias in studies on models that

make predictions for individual patients. As the PROBAST tool was developed for

the appraisal of regression-type models, the authors recommend the use of addi-

tional signaling questions when evaluating studies on machine learning models.[30]

The statistical analysis domain of the PROBAST tool was therefore augmented

with the following three questions: (i) “Is all data from a single patient reserved

to only a single data partition (e.g. training, testing or tuning)?”, (ii) “Is the

optimal model selected and are hyperparameters tuned?” and (iii) “Is only the

best model evaluated on the independent validation set?” (see Supplementary file

2). The remaining domains (‘Participants’, ‘Predictors’ and ‘Outcome’) were not

altered.

In addition to the risk of bias assessment, the Radiomics Quality Score was

used to evaluate study quality in all studies reporting on quantitative imaging

derived features (radiomics). All quality assessments of the included studies were

done by two independent reviewers (ID and RM). Any disagreement was resolved

through discussion.

2.3.5 Data extraction

The following details were extracted from the studies: total number of patients

investigated, cancer type, study treatment and design, imaging modality (CT, MRI

or PET/CT), results and corresponding significance, and outcome. Both response

to therapy (odds ratio or comparison between groups resulting in a p-value) and

survival parameters (hazard ratio for progression free survival and overall survival)

were obtained for the individual predictor studies. In the prediction model studies,

an Area Under the Curve (AUC) or sensitivity and specificity of the model was

stated, this information was also collected. For radiomics and machine learning
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studies, the size of the training- and validation cohorts were extracted as well.

2.3.6 Synthesis

The investigated prognostic factors and prediction models were grouped into six

categories: tumor burden, body composition, location, FDG-PET features, other

radioactive tracer imaging and radiomics. Extracted characteristics and results

from all studies were grouped according to category, marker and disease. A quan-

titative meta-analysis was not considered feasible due to heterogeneity in popu-

lation, predictor definitions and reported outcomes. The available evidence was

therefore summarized based on (in order of importance) study quality, consistency

of the results across studies and sample size.

2.4 Results

2.4.1 General characteristics

The search yielded 6873 records from databases and 9 through reference screening.

A total of 119 studies remained after title/abstract screening (Figure 2.1). These

studies are listed in Supplementary table S1. The studies included a total of 15580

patients, with a median sample size of 74 (range 8-1461). The most studied malig-

nancy was NSCLC (42 studies), followed by melanoma (33 studies) and urothelial

carcinoma (seven studies). All but one study investigated patients with metastatic

disease.

The predictive value of tumor burden was investigated by 19 papers; body

composition by 24 papers; metastasis location by 18; FDG-PET features by 21;

other traces by 8; radiomics by 45 papers; models other than radiomics by two

(Supplementary table S1). All studies reporting on factors in the first five cate-

gories and nine radiomics studies investigated individual predictive factors. These

studies were therefore assessed for risk of bias using the QUIPS tool (Supplemen-

tary table S2). The remaining studies reported performance of predictive models

and were assessed for risk of bias using the PROBAST tool (Supplementary table

S3). One study reported both on individual predictive factors and on a model

and was assessed using both tools. The results of the RQS screening are shown

in Supplementary table S4. Data extraction results are given per category in
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Figure 2.1: PRISMA flow chart of article screening and selection

Supplementary table S5-S11. A summary table of all results is provided in Ta-

ble 2.1 (available through https://www.sciencedirect.com/science/article/

pii/S0959804922004798#sec3). A discussion of the two papers describing pre-

dictive models without the use of radiomics is provided in Supplementary file 3.

For the other categories, an overview of the results is provided below.

2.4.2 Tumor burden

Measures of tumor burden (defined as the total amount of cancer in the body)

were grouped into two categories: measures of total tumor volume (e.g. sum of

largest diameters, sum of volumes) and tumor count (either number of metastases

or number of affected organs). Although volume and tumor count are expected to

be correlated in patients, these measures may diverge in patients with many small

metastases. As this specific pattern of metastases may indicate a different tumor

biology, count and volume were considered separately.

Measures of tumor volume were investigated in 15 studies.[31–44] Nine studies

indicated that higher tumor volume was associated with worse survival across

tumor types.[32,34–37,41–43,45] These included the three studies with the largest
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sample size (n=1461, n=583 and n=303) and a low risk of bias.[32,42,45] Hopkins

et al. (n=1461) reported a hazard rate ratio (HR) of 1.64 for overall survival per

decimeter increase of the sum of diameters of target lesions in NSCLC patients.[45]

Similarly, Joseph et al. (n=583) reported a HR of 1.64 for overall survival in

melanoma patients with a sum of diameters above the median.[42]

Six studies reported on the number of metastases as a prognostic factor.[32,41,

46–49] In univariate analysis, this factor was a significant prognostic factor for

survival in three studies[32,46,48] with a trend towards significance in a fourth.[49]

In multivariate analysis, this effect remained significant only in one paper.[46]

2.4.3 Body composition

Metrics of body composition were divided into four categories, namely visceral

adipose tissue, subcutaneous adipose tissue, skeletal muscle quantity and skeletal

muscle density.

The eight papers reporting on metrics of visceral adipose tissue showed con-

flicting findings: three papers demonstrated improved survival[50–52], whereas

one paper reported worse survival in melanoma patients with more visceral adi-

pose tissue.[53] The remaining papers reported no significant association with sur-

vival.[54–57] Furthermore, there were considerable methodological concerns: one

paper[50] was at low, one[57] at moderate, five[52,52,53,55,56] at high and one[54]

at an unclear risk of bias.

Seven papers investigated the predictive value of subcutaneous adipose tissue.

The results indicated either better (4 papers)[50–52,58] or equal (3 papers)[55–57]

survival in patients with higher amounts of subcutaneous fat, with hazard rate

ratios for OS ranging from 0.2 to 1 at varying thresholds. Five papers[51,52,55,56,

58] were at high risk of bias, primarily due to the use of data driven optimized

thresholds without validation. The risk of bias of the remaining two papers was

low[50] and moderate[57].

Seventeen papers reported on various measures of skeletal muscle quantity.

Eight demonstrated that higher skeletal muscle quantity was associated with bet-

ter survival[59–66]; the remaining nine papers reported no significant correla-

tion[39,53–55, 67–71]. Reported hazard rate ratios for overall survival ranged

from 0.75 to 2.99. Risk of bias was low in 3[61,64,67], high in 10[39,53,55,59,63,65,
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66,68,70,71] and unclear in 4 papers[54,60,62,69], data driven thresholds again

being the most common concern.

The influence of skeletal muscle density was investigated by 11 papers. Five pa-

pers indicated that higher skeletal muscle density was associated with better sur-

vival[52,53,57,70,72]; six papers reported non-significant findings[51,54,58,66,67,

71]. One paper[67] was at low, one[57] at moderate, eight[51–53,58,66,70–72] were

at high and one paper[54] at unclear risk of bias.

2.4.4 Metastasis location

In 14 papers, the presence of liver metastases was investigated.[32,33,41,42,47,48,

73–80] These papers indicated that liver lesions were associated with worse survival

across all tumor types, with hazard rate ratios between 1.6 and 1.9 for progression

free survival in the three highest quality studies[47,48,74]. Additionally, radiolog-

ical response to treatment appeared to be lower in melanoma patients with liver

metastases (odds ratios between 0.3 and 0.6).[33,42,73,74] Results describing the

correlation with response in other tumor types were not provided or showed no

significant findings. Overall study quality varied: five studies[42,47,48,73,74] were

at low risk, one[77] at high risk and eight[32,33,41,75,76, 78–80] at unclear risk of

bias.

Thirteen of the included studies investigated the presence of brain metastases.

[32,33,41,47,48,74–76,78–82] The presence of brain metastases was not found to be

a significant predictor of inferior outcomes in most studies. A notable exception

was the largest and only real-world study on this topic by Van Zeyl et al. (n=583)

in advanced melanoma, which showed that brain metastases in the presence of

symptoms were associated with worse overall survival (HR 1.91).[47] The quality

of included studies was reasonable: three studies[47,48,74] were at low risk, one[82]

at high risk and nine[32,33,41,75,76,78–81] at unclear risk of bias.

Other investigated tumor locations were bone[32,33,41,48,76,78,79], lung[32,33,42,

44,48,74,76,78,79], pleural effusion[48,75,76], lymph node[32,33,48,78], soft tissue[32,33],

gastrointestinal[33], adrenal[33,76] and spleen[33]. None of these locations ap-

peared to be a consistent and independent predictor of response or survival.
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2.4.5 FDG-PET features

Several FDG-PET features were investigated as potential predictors. The most re-

ported features were standardized uptake value (SUV) (15 studies), (total) metabolic

tumor volume (16 studies) and total lesion glycolysis (10 studies).

Sixteen studies examined SUVmax and SUVmean of the primary lesion and

metastases as prognostic factors.[31,38,40,44,49,77,81,83–91] The findings of the

included studies indicated that neither SUVmax nor SUVmean were robust pre-

dictors of survival: reported significant findings were sparse and conflicting. Fur-

thermore, risk of bias was substantial: one study[38] was at low, nine stud-

ies[31,40,49,77,83,85–87,89] were at high and six studies[44,81,84,88,90,91] at un-

clear risk of bias.

Sixteen studies investigated total metabolic tumor volume.[38,40,46,49,50,77,77,

81,83,85–90,92] Of these, eight studies demonstrated significantly worse survival

in patients with higher metabolic tumor volume[38,46,49,50,77,85,92,93]. This

included the largest study by Awada et al. (n=112), which was at a low risk

of bias and reported a HR for OS of 1.004 per mL.[46] Considerable method-

ological concerns existed in the remaining studies: risk of bias was low in three

studies[38,46,50], high in ten studies[40,49,77,83,85–87,89,90,92,93] and unclear in

three[81,88,90]. Furthermore, two of the studies had at least a partial overlap in

study population.[85,93]

Total lesion glycolysis, which is the product of SUV and metabolic tumor vol-

ume, was investigated by 11 studies.[31,38,40,77,81,83,85–87,90,93] It combines

volumetric and metabolic information, and therefore presumably contains more

information on the tumor than SUV and MTV. Four articles reported a signifi-

cant association of total lesion glycolysis with survival[38,85,86,93], three of which

studied melanoma patients.[85,86,93] Findings were not significant in the other

studies. Overall risk of bias was similar to the previous markers: one study[38]

was at a low risk of bias, 8 studies[31,40,77,83,85–87,93] were at high risk and two

studies[81,90] at unclear risk of bias.

2.4.6 Other PET radioactive tracers

Other investigated tracers included sodium fluoride, F-fluorothymidine, and Zirco-

nium labeled to different anti-PD1 antibodies, namely atezolizumab, pembrolizumab
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and durvalumab.

Lim et al. investigated total lesion fluoride in genitourinary tumors and found

this feature to be a significant prognostic factor for overall survival (HR 2.64).[94]

Scarpelli et al. investigated the relation between tumor SUVmean and SUVtotal

in F-fluorothymidine PET-CT. Neither feature was significant in the multivariate

Cox-regression.[95] Furthermore, both studies were judged to be at a high risk of

bias due to inadequate correction for known predictors.

Bensch et al. prospectively investigated the predictive value of Zirconium-

labeled atezolizumab in various tumor types.[96] They found that increased uptake

of labeled atezolizumab corresponded to better response to atezolizumab at first

assessment and better overall and progression free survival (HR 6.3 and HR 11.7,

respectively).

Zirconium was also used to label pembrolizumab[97,98] and durvalumab[99].

Similar results were found in these studies: increased uptake to labeled anti-PD1

corresponded with higher response and survival.

An interesting approach was performed by Van de Donk et al. Interleukin-2 was

labeled to fluorine-18, in order to visualize T-cell activity by tumor infiltrating T-

cells who express the high-affinity interleukin-2 receptor.[100] The tracer was safe,

however no correlation with response to therapy could be found possibly due to

including only 13 patients.

Another way to visualize mechanisms of PD1 inhibitors on a cellular level

was carried out by Nienhuis et al.[101] They performed PET imaging in eight

metastatic melanoma patients with a tracer that visualizes PD-L1 expression on

the tumor. This pilot study indicated that baseline tracer uptake was associated

with change in lesion size at follow up when normalized for tracer availability in

the blood pool (Pearson’s r = -0.43).

2.4.7 Radiomics

Studies investigating radiomics were grouped according to their methodology: nine

studies investigated the value of individual radiomic features; 30 studies con-

structed a (machine learning) model based on extracted radiomic features, and

six studies trained a deep learning model.

The quality of the nine studies[34,102–109] investigating individual radiomic

features was judged to be poor, as reflected in both the QUIPS rating and RQS
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score. Primary concerns were use of optimal thresholds, lack of independent val-

idation and absence of correction for known predictors. Furthermore, all studies

reported a significant finding, although none of the radiomic features were so far

reproduced or validated in an independent study. Thus, no solid evidence exists

for the predictive value of any single radiomics marker.

Similarly, all but two[110,111] of the 30 studies[110–139] that constructed a

radiomics model reported a positive finding. The median reported area under

the curve (AUC) for predicting response was 0.787 (range 0.52-0.963). However,

numerous methodological concerns exist for these studies as well. First, a signifi-

cant fraction of studies was at high (n=15) or unclear (n=6) overall risk of bias.

The most common flaws were lack of correction for overfitting (ten studies) and

a lack of transparency regarding model selection and tuning (11 studies). These

weaknesses were affirmed by the low overall RQS, with a median score of ten out

of a maximum of 36. Second, most studies had a limited sample size (median

n=68). Third, the three studies with the highest RQS (RQS=24, 18 and 14) and

largest sample size (n=289, 210 and 332) appeared to have a significant overlap in

patient population.[116,117,123] These studies can therefore not be considered in-

dependent. Lastly, the predictions of the only radiomics model[138] that has been

validated in subsequent studies[135,139] correspond closely with the presence of

liver metastasis, which is a known predictor of worse outcome. As the authors did

not correct for this predictor, the added value of this model is unclear and needs

to be further investigated.

Six studies investigated deep learning radiomics models. Three studies were

judged to be at a high risk of bias and had only small validation cohorts (41, 12 and

29 patients).[140–142] In the three remaining studies, risk of bias was judged to be

low, size of the validation set was adequate (n=123, 187 and 94) and the RQS was

at or above the median (13, 15 and 10).[143–145] Two of these studies appeared to

have an overlap in study population.[143,144] Notably, all three studies reported

on a deep learning model that was trained to predict an intermediate variable

(PD-L1 expression, tumor mutational burden or EGFR mutation); patients could

subsequently be stratified into risk groups with a HR for PFS of respectively 1.78

and 2.57, and OR for response of 2.03.
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2.5 Discussion

2.5.1 Overview

The objective of this review was to identify imaging biomarkers in prognosis re-

search in all cancer patients treated with checkpoint inhibitors. Based on the

findings of the included studies, several groups of predictors were identified with

varying strength and quality of evidence.

Higher tumor burden is very likely to be predictive of worse survival. This

finding is consistently supported across tumor types by the highest quality studies

on this topic. It also corresponds to our knowledge in other oncological populations

undergoing other types of treatment.[146–148] Furthermore, there is a reasonable

biological basis. First, higher tumor burden leads to sicker patients, and they are

therefore more likely to succumb before they experience benefit from treatment.

Second, hypoxia plays a bigger role in larger necrotic masses. Hypoxia is associated

with immune escape and therefore worse response.[149–151] However, despite the

correlation between tumor burden and survival, the reported effect sizes indicate

that this marker is not strong enough to guide treatment decisions by itself and

there is also insufficient evidence that tumor count adds predictive value to tumor

volume.

Higher amounts of subcutaneous adipose tissue may be associated with bet-

ter survival. Although the findings on visceral adipose tissue are conflicting, the

results on subcutaneous adipose tissue are consistently in accordance with the so-

called ‘obesity paradox’, in which a high body mass index (BMI) appears to be

a protective factor in cancer patients.[152–155] It must be noted, however, that

the reported results may be an overestimation of the true effect, as reflected in

the risk of bias assessment. Furthermore, it is unknown whether the value of this

predictor is independent from simple clinical metrics, such as BMI. It is therefore

deemed unlikely that this marker will further impact clinical decision making in

the near future.

More and denser muscle may be predictive of better survival. The findings of

the included studies on this topic are supported by similar observations in other

oncological populations.[156–158] Again, however, there is a risk that the observed

effect is an overestimate due to biased analysis. Furthermore, the reported effect

sizes appear to be smaller in the larger studies, indicating that publication bias
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may play a role. In conclusion, the association of muscle density and quantity

with survival is plausible as they indicate fitter patients with more reserve, but

currently investigated parameters may be only of limited predictive value.

Presence of liver metastases is shown to be a marker of worse survival across

cancer types. This marker, too, is an indicator of more advanced disease with

spread to the visceral organs. Interestingly, several large, high-quality studies

in melanoma patients show that presence of liver metastases also predicts worse

response compared to metastasis in other organs. Whether this is due to liver

metastases being less responsive, or to patients with liver metastases being innately

different, is the topic of an emerging field of research. In pre-clinical models,

several hepatic cell types have shown to modulate T-cells in the liver and create

a systemic immune desert.[159] Furthermore, systemic T-cell loss and diminished

immunotherapy efficacy has been observed in patients with liver metastases.[159]

Symptomatic brain metastases may be associated with worse survival in melanoma.

No significant impact of the presence of asymptomatic brain metastases was ob-

served in most of the included studies. However, almost all included studies on

this topic investigated trial populations, in which patients with brain metastases

were excluded. The study conducted by Van Zeyl at el., however, examined real-

world data and demonstrated that symptomatic brain metastases were associated

with worse survival in melanoma patients.[47] As previous studies have shown

that checkpoint inhibitors are effective against brain metastases, this difference in

survival is likely to be caused by more frequent neurological complications.[160]

The added value of baseline FDG-PET features in predicting response to treat-

ment seems to be limited. Of the investigated PET-features, only higher total

MTV was consistently shown to be associated with worse survival. However, since

metabolic and morphological tumor volume (MTV) are at least partly associated

and none of the included studies corrected for morphological tumor burden, it

is unclear if MTV is of added predictive value. Significant findings about other

FDG-PET derived metrics (SUVmax, SUVmean and TLG) are scarcer and were

often at a high risk of bias.

Radioactive drug labeling appears promising, although current evidence is very

preliminary. The hypothesis that uptake corresponds to response has a very strong

biological basis. Furthermore, the reported results from small pilot cohorts are

promising. However, it remains to be investigated if the positive results will gen-
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eralize to larger sample sizes and if they will be independent of known predictors.

The value of radiomics remains unknown due to the lack of high-quality evi-

dence. Although the results of the included papers on radiomics are almost ex-

clusively positive, the reported findings are likely to be over-optimistic for several

reasons. First, methodological flaws may have led to an overestimation of the

predictive value of the described models. Second, the aggregated results are likely

to be additionally affected by publication bias. Arguably, studies into radiomics

are at an even higher risk of publication bias: while negative findings about tra-

ditional markers may be informative, a negative finding about a radiomics model

can be viewed as ‘a complex machine that does not work’. This, in combina-

tion with limited sample sizes in included papers and repeated publications on

very similar datasets, may have considerably skewed the aggregate results. Third,

many radiomics features are sensitive to variation in scanner type and protocol

between centers.[161] This variation may therefore reduce the predictive value of

the proposed models to only a fraction of what is shown. In conclusion, the pos-

itive findings of the few high-quality papers are promising, especially those that

use an intermediate endpoint for training. These findings, however, remain to be

confirmed through external and prospective validation.

2.5.2 Future research

The predictive value of imaging biomarkers may improve through future devel-

opments. Specifically, we believe that subsequent research should focus on three

key areas. First, imaging biomarkers should be integrated with predictors from

other modalities. As no single biomarker has yet been proven to be sufficient

for effectively guiding treatment decisions, we must investigate combinations of

multiple - uncorrelated - predictors. Concretely, this can be envisioned as a multi-

variate prediction model combining imaging biomarkers with clinical, histological,

biochemical and genetic predictors, among others. Second, the added value of ra-

dioactive drug labeling should be explored in larger studies. These studies should

also particularly report on the added value of this biomarker over known predictors.

In addition, negative results about these markers would also be very beneficial in

advancing the field of research, due to the efforts and costs needed to produce

these tracers. Third, new studies should more closely adhere to methodological

guidelines and should confirm previous findings through rigorous validation. This
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is especially the case for radiomics studies, of which the impact is currently limited

by methodological shortcomings. If, however, radiomics are proven to be indepen-

dent predictors, they would be able to provide us with valuable information at no

additional cost or harm to the patient.

2.5.3 Limitations

The first main limitation of this review is the lack of a universally agreed upon

tool to assess risk of bias in machine learning studies. We used a combination of

the PROBAST tool and RQS to assess the quality of the radiomics studies. Both

tools, however, have limitations for this purpose. The PROBAST tool addresses

most domains that put a machine learning model at a risk of bias, but not all. The

PROBAST-AI tool is currently under development to meet this need.[162] Fur-

thermore, the RQS provides excellent guidance in the design of a good radiomics

study, but is not intended for scrutinizing papers to detect a possible risk of bias.

The second main limitation is the lack of a quantitative meta-analysis, due

to the differences in definition of predictor or outcome in the included studies.

Significant variation regarding predictors exists, often caused by dichotomizing

continuous values at various thresholds. This, in combination with the fragmen-

tation of evidence across different diseases and treatments, makes a quantitative

analysis essentially impossible. We were therefore unable to quantify the predic-

tive power of the investigated markers. We do, however, think that there is enough

ground for the conclusion that no individual imaging-based biomarker is proven

to be sufficient.

2.5.4 Conclusion

In conclusion, there is well-supported evidence for several imaging biomarkers of re-

sponse to checkpoint inhibitors. Especially higher tumor burden and the presence

of liver metastases are demonstrated to be predictors of worse outcomes across ma-

lignancies and drugs. However, none of these single predictors seem strong enough

to reliably identify patients that will not derive benefit from treatment. A high

degree of accuracy is required for this purpose, as falsely designating a patient as

a non-responder would deny a patient access to long-term ICI. Radiomics and ra-

dioactive drug labeling appear to be very promising, although reported findings on
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these approaches should be regarded as preliminary at this moment. In addition

to further validation of these methods, future research should focus on integrat-

ing imaging biomarkers with predictors from other modalities in high-quality and

sufficiently large independent cohorts.

2.6 Supplementary Materials

Supplementary File 1:

https://ars.els-cdn.com/content/image/1-s2.0-S0959804922004798-mmc1.

docx

Supplementary File 2:

https://ars.els-cdn.com/content/image/1-s2.0-S0959804922004798-mmc2.

xlsx
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3.1. Abstract

3.1 Abstract

3.1.1 Introduction

Predicting checkpoint inhibitors treatment outcomes in melanoma is a relevant

task, due to the unpredictable and potentially fatal toxicity and high costs for

society. However, accurate biomarkers for treatment outcomes are lacking. Ra-

diomics are a technique to quantitatively capture tumor characteristics on readily

available computed tomography (CT) imaging. The purpose of this study was

to investigate the added value of radiomics for predicting clinical benefit from

checkpoint inhibitors in melanoma in a large, multicenter cohort.

3.1.2 Methods

Patients who received first-line anti-PD1 ± anti-CTLA4 treatment for advanced

cutaneous melanoma were retrospectively identified from nine participating hos-

pitals. For every patient, up to five representative lesions were segmented on

baseline CT and radiomics features were extracted. A machine learning pipeline

was trained on the radiomics features to predict clinical benefit, defined as stable

disease for more than six months or response per RECIST 1.1 criteria. This ap-

proach was evaluated using a leave-one-center-out cross validation and compared

to a model based on previously discovered clinical predictors. Lastly, a combina-

tion model was built on the radiomics and clinical model.

3.1.3 Results

A total of 620 patients were included, of which 59.2% experienced clinical benefit.

The radiomics model achieved an area under the receiver operator characteris-

tic curve (AUROC) of 0.607 [95%CI 0.562-0.652], lower than that of the clinical

model (AUROC=0.646 [95%CI 0.600-0.692]). The combination model yielded no

improvement over the clinical model in terms of discrimination (AUROC=0.636

[95%CI 0.592-0.680]) or calibration. The output of the radiomics model was sig-

nificantly correlated with three out of five input variables of the clinical model

(p<0.001).
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3.1.4 Discussion

The radiomics model achieved a moderate predictive value of clinical benefit, which

was statistically significant. However, a radiomics approach was unable to add

value to a simpler clinical model, most likely due to the overlap in predictive

information learned by both models. Future research should focus on the applica-

tion of deep learning, spectral CT derived radiomics and a multimodal approach

for accurately predicting benefit to checkpoint inhibitor treatment in advanced

melanoma.

3.2 Introduction

Survival of patients with advanced melanoma has improved dramatically after the

introduction of immunotherapy. The survival of patients with unresectable stage

III and stage IV melanoma has historically been very poor with a 1-year overall

survival of 25% in phase II trials up to 2007 [1]. This changed with the introduction

of anti-CTLA4 therapy in 2011 [2] and anti-PD1 therapy in 2014 [3,4]. In patients

treated with anti-PD1 antibodies, real-world 1-year overall survival is now 67%,

with 40% of patients achieving remissions of several years [5]. For patients treated

with anti-PD1 plus anti-CTLA4 therapy, 5-year overall survival is reported to be

as high as 52% [6].

However, not all patients benefit from checkpoint inhibitors. At 6 months

after start of anti-PD1 treatment, 43% of patients experience progression or death.

Furthermore, overall survival of patients with progression at 6 months was shown

to be only 16% at 30 months. This is in contrast to a 30-month overall survival of

60%, 79% and 96% for patients with stable disease, partial response and complete

response at 6 months of follow-up, respectively, in real-world data [5]. Similar

results were reported in patients treated with anti-PD1 plus anti-CTLA4 therapy

[7].

Accurate prediction of treatment benefit is an important topic for several rea-

sons. First, treatment with checkpoint inhibitors is associated with severe and

potentially fatal or irreversible toxicity. Severe toxicity occurs in 10-15% of pa-

tients treated with anti-PD1 monotherapy [5,8–10], and in as much as 60% of pa-

tients treated with anti-PD1 plus anti-CTLA4 combination therapy [11]. Second,
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checkpoint inhibition therapy is very costly. Depending on country and setting, es-

timates of additional costs per gained quality adjusted life year range from 25,000

to 81,000 United States Dollars [12,13]. Lastly, if patients who will not benefit are

identified before start of treatment, alternative or experimental therapies can be

started without delay.

Previously identified predictors for treatment outcomes are not yet sufficient

to guide clinical decisions. Known clinical predictors of poor outcome include

high tumor load, presence of liver metastases and symptomatic brain metastases,

increased lactate dehydrogenase (LDH) and worse Eastern Cooperative Oncology

Group (ECOG) performance status [14]. In addition, other biomarkers have been

explored, such as PD-L1 expression, tumor mutational burden and histopathology

features. Thus far, however, these predictors are not strong enough to predict

treatment outcomes with high certainty [15], or the results remain to be validated

in future studies [16].

Radiomics are by now an established modality for diagnosis, prognosis and

prediction. Radiomics capture information about shape, intensity and texture of

lesions in imaging and thereby form a reflection of tumor characteristics, such as

necrosis or vascularization. These extracted features can subsequently be corre-

lated to a clinical outcome [17]. This makes radiomics a cheap and non-invasive

modality to, for example, discern benign from malignant lung nodules [18], es-

timate prognosis in non-small cell lung cancer (NSCLC) patients [19] and as-

sess mutation status in glioblastoma [20]. Regarding prediction of checkpoint in-

hibitor treatment outcomes, promising findings have been published, particularly

in NSCLC patients [21].

The added value of CT radiomics for predicting clinical benefit to checkpoint

inhibitors in melanoma remains to be determined in large multicenter studies.

Three previous smaller studies have investigated radiomics for this purpose, with

conflicting findings. The studies by Trebeschi et al. [22] and Peisen et al. [23]

report a significant discriminative value of radiomics for treatment outcomes (AU-

ROC=0.78 on a dataset of 80 patients, and AUROC=0.64 on a dataset of 262 pa-

tients, respectively). In contrast, Brendlin et al. [24] reported a non-discriminative

performance, despite using a very similar methodology (AUROC=0.50 in 140 pa-

tients). These differences in results highlight the importance of a large dataset to

determine the value of radiomics. Furthermore, only the study by Peisen et al.
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investigated the added value over a simpler clinical model, with varying results

across different outcomes. Lastly, none of the previous studies evaluated their

model on data from other centers, although variability in scanner protocol may

add significant noise [25]. In this study, we aimed to address these limitations

and determine the added value of radiomics for predicting checkpoint inhibitor

outcomes in a multicenter study in advanced melanoma.

3.3 Methods

3.3.1 Patient selection

Eligible patients were retrospectively identified from high-quality registry data

[26] from nine participating centers in The Netherlands (Amphia Ziekenhuis, Isala

Zwolle, Leids Universitair Medisch Centrum, Máxima MC, Medisch Spectrum

Twente, Radboudumc, UMC Utrecht, Amsterdam UMC, Zuyderland MC). Pa-

tients over the age of 18 were included if they received first-line treatment with

anti-PD1 ± anti-CTLA4 checkpoint inhibition for irresectable stage IIIC or stage

IV cutaneous melanoma after 01-01-2016. Exclusion criteria were (i) unavailabil-

ity of baseline contrast enhanced CT imaging (CE-CT), (ii) lack of eligible target

lesions, and (iii) less than six months of follow-up. Clinical characteristics were

collected for the included patients and compared to those of the excluded patients.

CT acquisition characteristics were extracted for included patients.

3.3.2 Lesion selection and segmentation

For every patient, one to five lesions were selected on baseline CT imaging and

segmented. We aimed to make this selection of lesions as informative and repre-

sentative as possible by using the following protocol: first, the five largest lesions

were selected with a maximum of two per organ. If more lesions remained after

segmenting a maximum of two per organ, the largest remaining lesions were seg-

mented up to a total of five. Lesion selections were made without knowledge of

the outcome. Lesions were excluded if they were not well-demarcated, affected by

imaging artifacts or if the maximum diameter was less than 5mm. Segmentations

were performed in 3D Slicer [27] on the series with the lowest slice thickness by
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authors LSM and IAJD, under supervision of board-certified radiologists with 17

and 18 years of experience (PJ and TL, respectively).

3.3.3 Feature extraction

Features were extracted from the segmented volumes using PyRadiomics [28]. For

every volume, 1874 features were extracted at five different levels of detail, result-

ing in a total of 9370 features. An overview of the extracted features is given in

the Supplementary Methods. Interobserver agreement of segmentations and fea-

tures was calculated using Dice scores and intraclass correlation coefficient (ICC),

respectively, based on 16 scans segmented by both observers (LSM, IAJD).

3.3.4 Outcome definition

The primary outcome was clinical benefit, defined as a best overall response of

partial or complete response, or stable disease for a minimum of six months after

start of treatment; response was determined by the treating physician in line with

RECIST 1.1 criteria [29]. The secondary outcome was objective response, defined

as a best overall response of partial or complete response. clinical benefit was used

as the primary outcome, as the intended use of the model was to identify patients

who would quickly progress despite treatment and therefore not derive any benefit

from treatment. Individual lesion response was assessed using maximum diameter

recordings at baseline and at three, six and nine months, or until treatment was

changed. Given the possibility of pseudo-progression, the last available follow-up

was used to determine lesion outcomes. If the maximum diameter at the last

follow-up was less than 120% of the baseline diameter, the lesion was labeled as

‘does benefit’, and ‘does not benefit’ otherwise. In parallel, the lesion was labeled

as ‘responsive’ if the maximum diameter was less than 70% of the baseline diameter

at the last follow-up, and ‘non-responsive’ otherwise. These lesion-level cut-offs

were chosen in correspondence with the patient-level cut-offs used in RECIST 1.1

[29].

3.3.5 Evaluated models

Three predictive models were compared: a model based on radiomics, a model

based on baseline clinical characteristics and an ensemble model that combined
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the predictions of these models. The radiomics model consisted of a machine learn-

ing pipeline that automatically selected optimal components and hyperparameters

for feature selection, dimensionality reduction and classification (Figure 1). This

pipeline was trained to predict outcomes per lesion; these outputs per lesion were

then aggregated to a patient level prediction. The clinical model used the same

machine learning pipeline, which was fitted on five clinical variables that were

consistently shown to be predictive of checkpoint inhibitor treatment outcomes

in previous literature [5,14,30,31]. These predictors were (i) ECOG performances

status, (ii) LDH level, presence of (iii) brain and (iv) liver metastases, and (v) num-

ber of affected organs. All variables were one-hot encoded; missing values were

encoded as a separate label. The ensemble model consisted of a logistic regression

fitted on the output of the radiomics and clinical model. All three models were

evaluated using a nested cross validation. The inner loop was used for optimal

model selection and hyperparameter tuning; the outer loop was used to evaluate

predictive performance on unseen data and was conducted in a leave-one-center-

out manner. Further details are supplied in the Supplementary Methods.

3.3.6 Statistical analysis

The discriminative performance of the models was evaluated using the area un-

der the receiver operator characteristic curve (AUROC) and corresponding 95%

confidence interval. The cross validated AUROC and confidence interval were cal-

culated using the cvAUC R package [32]. Methods for comparing cross validated

AUROCs between models are detailed in the Supplementary Methods. Subgroup

analyses were conducted for patients treated with anti-PD1 therapy and anti-PD1

plus anti-CTLA4 therapy by evaluating the fitted model only on patients from

the respective groups. The output of the radiomics model for predicting clinical

benefit was correlated to the input variables of the clinical model to determine if

the radiomics model learned features that were already represented in the baseline

clinical model.

3.3.7 Adherence to quality standards

The TRIPOD checklist [33] was completed and is available in Supplementary Table

1. The study design was reviewed by the Medical Ethics Committee and not
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considered subject to the Medical Research Involving Human Subjects Act in

compliance with Dutch regulations; informed consent was waived.

3.4 Results

3.4.1 Patient characteristics

Out of 1191 eligible patients, 620 patients with a total of 2352 lesions were included.

A flowchart of the selection process is shown in Figure 3.1. The rate of clinical

benefit was 59.2% (367 patients); the objective response rate was 51.3% (318

patients); Lesion level outcomes were available for 75.2% of lesions. Lesion level

outcomes could not be recorded for patients from the Radboudumc (327 lesions,

13.9%) due to local regulations. In addition, follow-up imaging was unavailable

due to patient death or clinical progression before the first follow-up moment

for 185 lesions (7.9%), due to the lesion falling outside the field of view in 27

lesions (1.1%) and due to technical issues in 44 lesions (1.9%). Rate of benefit

was 79.4% among lesions with available labels, whereas response rate was 54.8%

(Supplementary Table 5). Of all eligible patients, 490 patients were excluded

because of the unavailability of contrast-enhanced pre-treatment CT. In most of

these cases, an 18-fluorodeoxyglucose positron emission tomography (FDG-PET)

with low-dose CT was made. Characteristics for the included patients are shown

in Table 3.1 and compared to those of excluded patients in Supplementary Table 2.

The subgroups of patient treated with anti-PD1 and combination therapy consisted

of 370 and 250 patients, respectively. Supplementary Tables 3 and 4 show patient

characteristics per center, and for the subgroups treated with monotherapy and

combination therapy, respectively. CT acquisition characteristics per center are

displayed in Supplementary Table 6.

3.4.2 Interobserver variability

52 lesions in 16 scans were segmented by two observers. Segmentations corre-

sponded with a median Dice score of 0.88 (IQI 0.82-0.92). For the extracted

features, the median intraclass correlation coefficient was 0.97 (IQI 0.92-0.99).
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Figure 3.1: Flowchart of patient selection

3.4.3 Treatment outcome prediction

For predicting clinical benefit, the radiomics model achieved an AUROC of 0.607

[95% CI 0.562-0.652], the clinical model an AUROC of 0.646 [95% CI 0.600-0.692],

and the ensemble model an AUROC of 0.636 [95% CI 0.592-0.680]. The difference

in AUROC between the ensemble and clinical model was not statistically signif-

icant (Supplementary Figure 1). Calibration curves showed adequate calibration

of the three models with no evidence of poor fit (Hosmer-Lemeshow p>0.07). The

range of predicted probabilities was comparable between models (IQI 0.56-0.65,

0.53-0.67 and 0.52-0.69 for the radiomics, clinical and ensemble model, respec-

tively). Results were similar for predicting objective response (Supplementary
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Figure 2-3). Predictive performance for both outcomes was comparable in sub-

groups of patients treated with monotherapy and combination therapy, with a

trend of better discrimination in the subgroup of patients treated with combi-

nation therapy (Supplementary Figures 4-7). Details of the selected models and

hyperparameters per fold are shown in Supplementary Table 7.

3.4.4 Comparison of radiomics and clinical model

The predicted probability of clinical benefit by the radiomics model was signif-

icantly lower in patients in whom liver metastases were absent (Mann-Whitney

U, p<0.001, Figure 3.3A), in patients with higher LDH (Kruskal-Wallis p<0.001,

Figure 4D) and who had more affected organs (Mann-Whitney U p<0.001, Fig-

ure 4E). The output of radiomics model was not significantly different in patients

with and without brain metastases), and for different categories of ECOG perfor-

mance status (Figure 4B-C). The output of radiomics and clinical models were

significantly and positively correlated (Spearman’s correlation coefficient = 0.369,

p<0.001, Figure 4F).

3.5 Discussion

The present work shows that radiomics are moderately predictive of checkpoint

inhibitor treatment outcomes in patients with advanced melanoma. The results

were consistent for both clinical benefit and objective response rate, and are most

in line with the findings of the earlier study by Peisen et al. A recent work by

Dercle et al. allows for comparison to a model that also incorporates radiomics

from on-treatment CT scans [34]. This model reached an AUROC of 0.92 for

predicting overall survival at six months, indicating that on-treatment radiomics

are strongly predictive. However, most toxicity occurs in the first three months

and long-term outcomes can already be accurately predicted using on-treatment

information without the use of radiomics [6,35]. Predicting response using the

3-month on-treatment scan therefore appears to be of limited clinical relevance.

Addition of radiomics to known clinical predictors, however, did not yield im-

provement in predictive value. The combination model was not superior to the

clinical model in either discrimination or calibration. This lack of improvement
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Figure 3.2: (A-C) Receiver operator characteristic (ROC) curves for predicting durable
clinical benefit in patients with melanoma treated with anti-PD1 ± anti-CTLA4 check-
point inhibition for the radiomics model (A), clinical model (B) and combination model
(C). Gray curves correspond to results per fold; blue curves are the weighted average of
the results per fold. The area under the curve (AUC) with corresponding 95% confidence
intervals are displayed. (D-F) LOESS fitted calibration curves for predicting durable clin-
ical benefit in the radiomics model (D), clinical model (E) and combination model (F);
the shaded area corresponds to ±1 standard deviation. Histograms of the predictions for
positive (blue) and negative (orange) samples are provided below the curves, the x-axis
displays the predicted values for these histograms. P-values of the Hosmer-Lemeshow
goodness-of-fit test are shown in the plot titles.
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Missing Overall

n 620

Age, median [Q1, Q3] 0 67.5 [58.0,75.0]

Sex, n (%)
Female 0 239 (38.5)
Male 381 (61.5)

Stage, n (%)

IIIC 4 25 (4.1)
M1a 49 (8.0)
M1b 94 (15.3)
M1c 296 (48.1)
M1d 152 (24.7)

ECOG performance status, n (%)
0 26 287 (48.3)
1 247 (41.6)
2-4 60 (10.1)

Primary tumor location, n (%)

Acral 10 15 (2.5)
Extremity 167 (27.4)
Head, neck 66 (10.8)
Trunk 247 (40.5)
Unknown 115 (18.9)

Brain metastases, n (%)
Absent 45 423 (73.6)
Asymptomatic 76 (13.2)
Symptomatic 76 (13.2)

Liver metastases, n (%)
Absent 30 398 (67.5)
Present 192 (32.5)

No. of affected organs, n (%)
<3 0 338 (54.5)
>2 282 (45.5)

LDH, n (%)
Normal 9 381 (62.4)
1-2x upper limit of normal 177 (29.0)
>2x upper limit of normal 53 (8.7)

Clinical benefit, n (%)
No benefit 0 253 (40.8)
Benefit 367 (59.2)

Objective response, n (%)
No response 0 302 (48.7)
Response 318 (51.3)

Therapy, n (%)
Anti-PD1 0 370 (59.7)
Ipilimumab & Nivolumab 250 (40.3)

Table 3.1: Characteristics of included patients
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Figure 3.3: Graphical overview of correspondence between the output of the radiomics
and clinical models. (A-E) Boxenplots of the output of the radiomics model, compared
across different values for clinical predictors. (A) The output of the radiomics model
is significantly lower in patients with liver metastases than in patients without (Mann-
Whitney U p<0.001). (B) No statistical difference was found in the output of the ra-
diomics model between patients without or with asymptomatic or symptomatic brain
metastases (Kruskal-Wallis p = 0.074) and ECOG performance status (Kruskal-Wallis p
= 0.201). D) The output of the radiomics model is significantly lower in patients with
higher levels of LDH (Kruskal-Wallis p<0.001) and with more affected organs (Mann-
Whitney U p<0.001). (F) The outputs of the clinical and radiomics models (predicted
probability of response) are positively correlated (Spearman’s rank correlation coefficient
= 0.369, p<0.001).
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can be explained due to an overlap in the information learned by the radiomics

model, and the information that is already represented in clinical variables. As

demonstrated, the radiomics model indirectly learns to detect the presence of liver

metastases and the amount of tumor burden, as reflected in LDH and number of

affected organs. The fact that this information is indeed learned as expected is

a strong argument for the validity of the present work. Furthermore, this indi-

cates that such overlap is likely to be present in any radiomics model which is

investigated for clinical purposes.

Studies on radiomics should assess the added value over simpler predictors.

Many smaller exploratory studies have been conducted into the predictive value

of radiomics for checkpoint inhibitor outcomes across different malignancies [21].

Their findings are almost exclusively positive, but the added value over clinical

predictors was seldomly assessed. The present work demonstrates that clinical

predictors can be captured by radiomics, and that the added value of radiomics

should therefore always be investigated, even in exploratory studies.

Future works should aim to improve on radiomics through deep learning or

spectral CT derived radiomics. Deep learning has a significant advantage over

handcrafted radiomics, as this method is not limited by predefined features in what

information can be captured. Instead, a deep learning approach is given the raw

data as input and learns informative features on the fly [36]. Furthermore, spectral

CT derived radiomics were shown to be superior over single energy radiomics

for predicting response to checkpoint inhibition in patients with melanoma by

Brendlin et al. [24]. As spectral CT scanners become increasingly available, this

approach may be tested more thoroughly in future research.

Lastly, the multimodal approach should be extended with other data sources.

Accurately predicting checkpoint inhibitor treatment outcomes in melanoma re-

mains challenging. It is possible that individual biomarkers are insufficient to

guide clinical decisions. An approach that combines different data sources may

therefore prove to be superior. A possible modalities that may be explored for this

purpose is histopathology imaging [16], which will be investigated in this cohort

in a future work.

The strengths of this work are the large sample size, the multicenter design

and extensive hyperparameter optimization. This is the largest work published

on radiomics for prediction of checkpoint inhibitor treatment outcomes in any
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malignancy [21]. This large size adds to the weight of the presented conclusion.

Furthermore, the dataset in this work includes patients from nine different cen-

ters. As stability of radiomics features across scanner types and protocols is far

from certain, external validation is essential for determining the practical value

of a radiomics approach. Lastly, the proposed pipeline systematically explores

design choices, from the extraction of radiomics to the final prediction. This ap-

proach should maximize potential performance by avoiding arbitrary and therefore

possibly suboptimal design choices.

A potential limitation is the exclusion of a large fraction of patients due to

unavailability of CE-CT imaging. Comparison of patient characteristics between

the included and excluded groups showed minor differences overall, with a trend

towards more progressed disease in the included patients. Our hypothesis for this

is that patients with more progressed disease are more likely to directly present

to medical oncology, instead of being referred after having undergone imaging

by a different specialty where FDG-PET is the preferred modality. Although

this selection may theoretically have influenced the presented results, this risk is

arguably limited as the characteristics of in- and excluded patients are overall very

comparable.

Furthermore, patients with stable disease for a minimum of six months were

labeled as having clinical benefit. This group could therefore theoretically include

patients with indolent tumor progression (less than 120% of original diameters in

six months), without effect from checkpoint inhibition therapy. However, given

the consistent results across outcomes and small proportion of patients for which

this may be the case, the impact on eventual results is likely limited.

In conclusion, radiomics are predictive of checkpoint inhibition treatment out-

comes in patients with advanced melanoma, but did not improve predictive value

over a simpler clinical model. A radiomics model can predict both clinical bene-

fit and response from checkpoint inhibitor therapy with moderate discriminative

performance. However, the predictive value of this radiomics model overlaps with

that of a clinical model, which is evident from the lack of improvement of a com-

bined model. The added value of a radiomics approach therefore appears to be

limited. Future research should focus on related techniques, such as deep learning

or radiomics on dual energy CT images. In addition, an approach that combines

radiomics and clinical data with other modalities may provide a next step towards
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accurate prediction of checkpoint inhibitor treatment outcomes in melanoma.

3.6 Supplementary Materials

Supplementary materials are available through:

https://ars.els-cdn.com/content/image/1-s2.0-S0959804923001090-mmc1.

docx
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4.2. Abstract

4.1 Abstract

4.1.1 Introduction

Immune checkpoint inhibitor (ICI) treatment has proven successful for advanced

melanoma, but is associated with potentially severe toxicity and high costs. Accu-

rate biomarkers for response are lacking. The present work is the first to investigate

the value of deep learning on CT imaging of metastatic lesions for predicting ICI

treatment outcomes in advanced melanoma.

4.1.2 Methods

Adult patients that were treated with ICI for advanced melanoma were retrospec-

tively identified from ten participating centers. A deep learning model (DLM) was

trained on volumes of lesions on baseline CT to predict clinical benefit. The DLM

was compared to and combined with a model of known clinical predictors (presence

of liver and brain metastasis, level of lactate dehydrogenase, performance status

and number of affected organs).

4.1.3 Results

A total of 730 eligible patients with 2722 lesions were included. The DLM reached

an area under the receiver operating characteristic (AUROC) of 0.607 [9%CI

0.565–0.648]. In comparison, a model of clinical predictors reached an AUROC of

0.635 [95%CI 0.59 –0.678]. The combination model reached an AUROC of 0.635

[95 CI 0.595–0.676]. Differences in AUROC were not statistically significant. The

output of the DLM was significantly correlated with four of the five input variables

of the clinical model.

4.1.4 Discussion

The DLM reached a statistically significant discriminative value, but was unable

to improve over known clinical predictors. The present work shows that the as-

sessment over known clinical predictors is an essential step for imaging-based pre-

diction and brings important nuance to the almost exclusively positive findings in

this field.
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4.2 Introduction

Checkpoint inhibitors have revolutionized the treatment of advanced melanoma.

The real-world 1-year overall survival of patients treated with anti-PD1 therapy

is 67% [1], which is in stark contrast to the 1-year overall survival of 25% in phase

II trials up to 2007 [2].

However, still a significant fraction of patients does not respond to this treat-

ment, that is also associated with potentially severe toxicity and high costs. Ap-

proximately 40-50% of patients experience disease progression despite treatment,

and subsequently derive little benefit in terms of survival [1,3]. Furthermore, check-

point inhibition treatment is expensive, with estimates of additional costs of up

to 81,000 US dollars per quality adjusted life year [4,5]. Lastly, severe and partly

irreversible toxicity occurs in as much as 60% of patients treated with anti-PD1 +

anti-CTLA4 combination therapy [6].

Therefore, accurate prediction at baseline of treatment outcomes is necessary.

If non-responders can be identified with high certainty before start of treatment,

alternative therapies can be started without delay in these patients. Furthermore,

needless costs and toxic effects can be prevented.

However, current biomarkers are not accurate enough to guide treatment deci-

sions. Previous research has identified several significant predictors of treatment

outcomes, such as levels of lactate dehydrogenase, presence of liver and brain

metastases, performance status and level of tumoral PD-L1 expression [7,8]. These

biomarkers, however, have not reached the degree of accuracy that is necessary

to adequately guide treatment decisions. Patients without PD-L1 expression, for

instance, may still respond to therapy, even though this protein is the very target

of anti-PD1 therapy [8]. This underlines the need for further research into accurate

predictive biomarkers.

CT imaging of tumor lesions may be used as a biomarker in two ways: through

handcrafted radiomics and through deep learning. In a handcrafted radiomics

approach, predefined features that reflect shape and texture are calculated on a

volume of interest. These features are subsequently used to train a model that

can classify the lesion as, for instance, having a certain mutation or responding to

a treatment [9]. In contrast, a deep learning approach skips the step of extracting

manually predefined features and trains a model directly on the raw image as an
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input [10]. This approach has the advantage that it is not limited by the chosen

features in what it can learn; instead, relevant features are learned during training

in such a way that the predictive performance of the model is optimized. A poten-

tial downside is that, usually, a larger dataset is needed for adequate performance

compared with a handcrafted radiomics approach. For both methods, the under-

lying hypothesis is that features visible on imaging reflect the tumor’s phenotype

and may therefore also correlate to clinically relevant characteristics and biological

behavior of the tumor.

Thus far, deep learning on CT imaging of lesions has not been investigated for

predicting checkpoint inhibitor treatment outcomes in melanoma patients. Pre-

vious studies have investigated the use of deep learning on CT imaging for this

purpose in other malignancies, namely non-small cell lung carcinoma (NSCLC)

[11–14] and urothelial carcinoma [15,16], with positive findings. For melanoma,

only handcrafted radiomics have been investigated thus far [17–20]. Initial find-

ings by other smaller, single-center studies were promising, but our recent study

of 620 patients from nine different centers showed different results: although the

radiomics model had some value in predicting ICI treatment outcomes, it did not

outperform a model based on clinical characteristics [20]. Deep learning may im-

prove the performance over handcrafted radiomics as it is not limited by the choice

of predefined features. This hypothesis remains to be experimentally verified, as

studies comparing handcrafted radiomics to deep learning for other tasks show

conflicting results [21–24].

The aim of this work was to determine the added value of deep learning on baseline

CT imaging of lesions over clinical predictors for predicting first-line checkpoint

inhibitor treatment outcomes in patients with advanced cutaneous melanoma. We

have collected and curated a multi-center dataset of baseline CT imaging of these

patients specifically for this purpose. With a sample size of 716 patients and 2722

lesions, this dataset is currently the largest of its kind in melanoma, and among

the largest in all cancer types for imaging-based prediction of checkpoint inhibitor

treatment outcomes [25].
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4.3 Methods

4.3.1 Patient selection

Eligible patients were retrospectively identified from 10 participating centers (Am-

phia Ziekenhuis, Isala Zwolle, LUMC, Máxima MC, Medisch Spectrum Twente,

Radboudumc, UMC Groningen, UMC Utrecht, Amsterdam UMC, Zuyderland

MC) using prospectively collected high-quality registry data. With the exception

of the UMC Groningen, this is the same population as in a previous work, which

investigated handcrafted radiomics for the same purpose [20]. Patients were eligi-

ble if they were (i) treated for unresectable stage IIIC or IV cutaneous melanoma

(ii) using first-line anti-PD1 ± anti-CTLA4 checkpoint inhibition (iii) on or after

1-1-2016 and (iv) were over 18 years of age at the start of treatment. Exclusion

criteria were (i) unavailability of baseline contrast-enhanced CT imaging and (ii)

absence of eligible lesions on CT.

4.3.2 ROI selection and preprocessing

Up to five lesions per patient were selected and manually segmented by authors

LSM and IAJD under supervision of board-certified radiologists with 17 and 18

years of experience (PJ and TL, respectively). First, the five largest lesions were

segmented with a maximum of two lesions per organ. Then, if fewer than five

lesions had been segmented but more lesions remained, the largest remaining le-

sions were segmented up to a maximum of five. For example: in a patient with five

large lung lesions and one small liver lesion, the two largest lung lesions and single

liver lesion are segmented first. Then, the two largest remaining lung lesions are

segmented, resulting in a total of five segmented lesions. Regions of interest (ROI)

were extracted as isotropic cubes centered on the centroid of the segmentation;

different methods were used to determine the size of the cube (Supplementary

Materials, page 1). Pixel intensities were clipped to the range of -1024 to 3000

Hounsfield Units. During training and validation steps, the data was augmented

through random rotation around all spatial axes and addition of Gaussian noise.
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4.3.3 Outcome definition

Outcomes, as determined by the treating physician in line with RECIST 1.1 criteria

[26], were extracted from prospectively collected high-quality registry data. The

primary outcome was clinical benefit, defined as a best overall response of ‘stable

disease’ for a minimum of six months, or ‘partial response’ or ‘complete response’.

The secondary outcome was objective response, defined as a best overall response

of ‘partial response’ or ‘complete response’. In addition, lesion outcomes were

determined based on maximum diameter measurements at baseline, 3, 6 and 9

months. If the maximum diameter at the last available measurement exceeded

120% of the original maximum diameter, the lesion was labeled as ‘no benefit’,

and otherwise as ‘benefit’. Similarly, lesions were labeled as ‘response’ or ‘no

response’ using a 70% cut-off. Both cut-offs were chosen in line with the RECIST

1.1 criteria for determining patient response.

4.3.4 Model selection and hyperparameter selection

To arrive at a well-optimized model, a range of options for certain design choices

(so-called ‘hyperparameters’) were systematically explored. These hyperparame-

ters included, among others, model architecture, learning rate and parameters to

control for overfitting, namely model size, weight decay and dropout. For model

architectures, considered options were ResNet [27], Squeeze-Excitation ResNet

[28], EfficientNet [29], ResNeXt [30] and Vision Transformer [31]. A full list of all

hyperparameters along with possible values is supplied in Supplementary Table

1. To efficiently explore the vast space of possible hyperparameter combinations,

an iterative process was used. In every iteration, a small number of hyperparam-

eters were investigated using a random search strategy and a randomly chosen

fixed train-validation split. The values with the highest validation area under the

receiver operating characteristic (AUROC) for predicting patient level outcomes

were subsequently fixed. This process was repeated until optimal values were se-

lected for all hyperparameters. An iteration was continued for a maximum of 100

epochs, with early stopping after 10 epochs of no improvement of the patient level

area under the curve (AUC) on the validation set.
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4.3.5 Cross validation, model training and evaluation

The selected configuration of model and hyperparameters was evaluated using a

nested cross validation. The inner loop was conducted in a 5-fold cross validation.

In every fold, 80% of the patients made up the training data; the remaining 20%

was used as a validation set for monitoring training and early stopping. Repeating

this process in all five folds resulted in five trained models, which were used in

an ensemble: a combined model that averages the predictions of the five models

per lesion. The outer loop was conducted in a leave-one-center-out manner and

was used to evaluate the performance of the ensemble on an independent test

set. During training, the model was optimized to predict the lesion level outcome

based on the ROI of the corresponding lesion. During inference, these lesion level

predictions were aggregated to a patient level by taking the minimum, mean or

maximum of all predictions for a single patient. The choice for minimum, mean

or maximum was also considered a hyperparameter. For predicting patient clini-

cal benefit, lesion benefit was used as the lesion level label; for predicting patient

objective response, lesion response was used as the lesion level label. Lesions with

unavailable lesion level outcomes could not be used during training; these lesions

were used during inference, however, as only patient level outcomes were neces-

sary at this stage. The model was compared to a previously published clinical

model [20] and a combination model of both the deep learning model and clinical

model. The clinical model was a logistic regression based on four variables which

were previously shown to be significant predictors of checkpoint inhibitor treat-

ment outcomes in patients with advanced melanoma [1,7,33]. These predictors

were presence of (i) liver and (ii) (a)symptomatic brain metastases, (iii) Eastern

Cooperative Oncology Group (ECOG) performance status and (iv) levels of lac-

tate dehydrogenase (LDH). Further details of the clinical and combination model

are available in the Supplementary Methods.

4.3.6 Statistical analysis

Model calibration was assessed using calibration curves and Hosmer-Lemeshow

test. Model discrimination was assessed using the receiver-operator characteristics

(ROC) curve and corresponding AUC; 95% confidence intervals were calculated

using the cvAUC R package [34]. Methods for comparing cross validated AUCs are
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Figure 4.1: From left to right: for every eligible patient, up to five representative le-
sions are selected. A 3D volume of interest on the pretreatment CT scan is used as input
for the deep learning model. During training (above the dotted line), the deep learning
model is optimized to predict the probability of benefit from checkpoint inhibition for
every individual lesion. During inference (below the dotted line), the fitted deep learning
model is used to make lesion level predictions. These lesion level predictions are subse-
quently aggregated to a patient level prediction. Several options were explored for how
to aggregate lesion level predictions, namely by taking the maximum, mean or minimum
of predictions. After hyperparameter tuning, the ‘minimum’ function was selected.

described in the Supplementary Methods. The learned representation of the deep

learning model was visualized using a two-dimensional t-distributed stochastic

neighbor embedding (t-SNE).

4.3.7 Adherence to quality standards

After review by the Medical Ethics Committee (NedMec), this study was deemed

not subject to the Medical Research Involving Human Subjects Act in accordance

with Dutch regulations. Informed consent was waived.
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4.4 Results

4.4.1 Patient characteristics

Out of 1347 eligible patients, 617 patients were excluded, resulting in 730 included

patients with 2722 lesions; most exclusions were due to the availability of only a

low-dose CT from a combined FDG-PET scan, instead of a diagnostic CT scan.

A flowchart of the inclusion process is shown in Figure 4.2. 59.6% of 730 patients

had clinical benefit (435 patients); the objective response rate was 51.1% (373

patients). Outcomes for individual lesions were available in 2128 lesions (78.2%);

21.8% of lesion outcomes were unavailable due to local regulations in one hospital

(12.0%, 327 lesions), due to death or clinical progression before the first follow-

up moment (7.4%, 202 lesions), due to the lesion falling outside the field-of-view

of the scan (0.8%, 21 lesions) or due to technical problems (1.6%, 44 lesions);

availability of lesion outcomes at 3, 6 and 9 months is shown in Supplementary

Table 2. Among lesions with available outcomes, the rate of benefit was 79.7%; the

lesion response rate was 55.2%. Characteristics of included and excluded patients

are displayed in Table 4.1 and Supplementary Table 3. Included patients had on

average more advanced disease than excluded patients. Scanner characteristics,

acquisition parameters and patient characteristics per center and subgroup are

shown in Supplementary Tables 4-6.

4.4.2 Hyperparameter selection

Ten iterations of preliminary experiments were performed; the results are avail-

able online through Supplementary Table 7. Based on these experiments, the

model architecture was set to the Squeeze-Excitation ResNet50 [28] model with

3-dimensional input and random initial parameters; the function for aggregating

predictions of all lesions belonging to one patient was selected to be ‘minimum’.

The Adam optimizer was used with a cosine annealing learning rate scheduler.

Other hyperparameters are listed in Supplementary Table 1.

4.4.3 Treatment outcome prediction

The deep learning model achieved a leave-one-center-out cross-validated AUROC

of 0.607 [95% CI 0.565-0.648] for predicting clinical benefit. In comparison, the
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n 730

Age, median [Q1,Q3] 68.0 [58.0,75.0]

Sex, n (%)
Female 285 (39.0)
Male 445 (61.0)

Therapy, n (%)
Anti-PD1 458 (62.7)
Ipilimumab & Nivolumab 272 (37.3)

Stage, n (%)

IIIC 28 (3.8)
IV M1a 56 (7.7)
IV M1b 114 (15.6)
IV M1c 344 (47.1)
IV M1d 182 (24.9)
Missing 6 (0.8)

ECOG performance status, n (%)

0 356 (48.8)
1 271 (37.1)
2-4 73 (10.0)
Missing 30 (4.1)

Brain metastases, n (%)

absent 497 (68.1)
asymptomatic 94 (12.9)
symptomatic 88 (12.1)
missing 51 (7.0)

Liver metastases, n (%)
absent 471 (64.5)
present 224 (30.7)
missing 35 (4.8)

LDH, n (%)

normal 459 (62.9)
1-2x ULN 199 (27.3)
>2x ULN 62 (8.5)
missing 10 (1.4)

Number of affected organs, n (%)
<3 432 (59.2)
≥ 3 298 (40.8)

Clinical benefit, n (%)
benefit 435 (59.6)
no benefit 295 (40.4)

Objective response, n (%)
response 373 (51.1)
no response 357 (48.9)

Table 4.1: Characteristics of included patients

clinical model achieved an AUROC of 0.635 [95% CI 0.592-0.678], and the combi-

nation model an AUROC of 0.635 [95% CI 0.595-0.676]. Differences in AUROC

between the clinical and combination model were not statistically significant (Sup-

plementary Figures 3). There was no evidence of poor fit in the three models

(Hosmer-Lemeshow p >0.113). The 95% interval of predicted probabilities was

0.51-0.63 for the deep learning model, 0.28-0.77 for the clinical model and 0.49-

0.72 for the combination model. Results were similar for prediction of objective
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response (Supplementary Figure 4 and 5), and in treatment subgroups (Supple-

mentary Figure 6-9).

4.4.4 Interpretability analysis

Figure 5 shows the t-SNE embedding of the final layer of one of the fitted models

(outer fold ‘Amsterdam UMC’, inner fold 3). The t-SNE analysis shows that the

deep learning model learns to detect a lesion’s organ location (Figure 4.5A). Espe-

cially for liver and lung lesions, the predicted probability of lesion benefit is lower

and higher, respectively (Figure 4.5D). However, there is a large overlap between

benefitting and non-benefitting lesions (Figure 4.5B). Supplementary Figures 10

and 11 show the same analysis for different outer and inner folds. In line with these

findings, Figure 4.6 shows that the patient level predictions of the deep learning

model are significantly correlated with four out of five of the clinical predictors

(Kruskal-Wallis p<0.020). Furthermore, lesion level predictions are weakly but

significantly correlated with lesion volume (r = -0.28, p<0.0001).

4.5 Discussion

A deep learning model on CT imaging of lesions had a significant but clinically

limited predictive value for predicting response to checkpoint inhibitors in patients

with advanced melanoma. Despite the substantial dataset size and extensive hy-

perparameter tuning, the achieved level of discrimination was limited. This re-

sult, combined with earlier findings on handcrafted radiomics, indicates that CT

imaging of melanoma lesions at baseline holds limited information about treat-

ment outcomes. Other studies have demonstrated that using on-treatment scans

yields substantially better predictive performance, but on-treatment prediction

is clinically far less relevant: most toxicity occurs in the first three months [35],

and conventional follow-up measurements can already accurately predict long-term

outcomes [36].

Addition of this deep learning model to clinical predictors did not improve pre-

dictive value. The difference in discrimination between both models was marginal.

This was despite the large sample size and the cross-validation setup, which lever-

ages every patient for independent validation. Furthermore, the range of predicted

67



4.5. Discussion

probabilities was wider for the clinical model.

This overlap in predictive value is likely to stem from the fact that the deep

learning model learns information which is already encoded in the clinical model.

The most plausible explanation is that the model encodes a lesion’s size and organ

location, which may subsequently be correlated with stage and tumor load and

therefore LDH, ECOG performance status and number of affected organs. This is

in line with our earlier findings using a handcrafted radiomics approach [20].

The present work has important implications for future research. First, the

overlap in predictive information between the clinical and deep learning model

shows that it is essential to assess the added value of an imaging-based model

over known predictors. In practice, however, this is rarely done [25]. Second,

the present work suggests that previous results on imaging-based prediction of

checkpoint inhibitor outcomes may be overoptimistic. Published results are almost

exclusively positive, but numerous concerns exist regarding study size and quality

[25]. The fact that these positive results are not confirmed in a large, multicenter

dataset curated specifically for this purpose nuances this optimism.

The strengths of the present work are the large sample size and multicenter

design. The training of deep learning models requires a substantial dataset size

due to the large number of trainable parameters. To our knowledge, we have

collected the largest dataset to date. Furthermore, the multicenter design allows

for the evaluation of the generalizability of the model to new centers, which was a

limitation of most previous studies. This, in combination with the cross-validation

setup, adds significantly to the strength of the presented analysis.

This study has two potential limitations. First, a large group of patients was

excluded due to unavailability of a contrast-enhanced baseline CT scan. Our hy-

pothesis for the small difference in disease stage between in- and excluded patients

is that patients with more advanced disease are more likely to present to medical

oncology directly, instead of being referred after an FDG-PET CT scan has been

performed. The risk of selection bias is limited however, as absolute differences in

characteristics between in- and excluded patients are small. Second, performance

of the deep learning model could in theory improve with the inclusion of more

than five lesions per patient. However, we believe this is unlikely to change the

conclusion, as a sensitivity analysis in a subset of the data did not show a differ-

ence in performance when more lesions were included. Furthermore, more than
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half of patients have at most five lesions.

In conclusion, a deep learning model based on baseline CT imaging of melanoma

lesions had limited value for predicting checkpoint inhibitor treatment outcomes.

Furthermore, this approach was unable to add information over a clinical model.

The predictive value of the deep learning model was very comparable to a ra-

diomics model, indicating that the predefined features of a handcrafted radiomics

approach are not the limiting factor. Instead, the limited predictive power sug-

gests a lack of predictive information regarding checkpoint inhibitor response in

the single-energy CT images of melanoma lesions. Future research may investi-

gate spectral CT imaging, or body composition metrics extracted from baseline

CT imaging. Furthermore, research in other modalities remains necessary to move

towards accurate baseline predictions of treatment response.

4.6 Supplementary materials

Supplementary materials are available through

https://www.medrxiv.org/content/medrxiv/early/2023/07/27/2023.07.25.

23293133/DC1/embed/media-1.docx?download=true
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Figure 4.2: Flowchart of the inclusion process
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Figure 4.3: Receiver operator characteristic (ROC) curves for (A) the deep learning
model, (B) the baseline clinical model and (C) the combination model for predicting
clinical benefit on a patient level. Curves of the individual folds/validation centers are
shown in gray; the average ROC curve is shown in blue. Corresponding areas under
the curve (AUC) are supplied in the legend. The orange line corresponds to the line of
random performance.

Figure 4.4: Locally estimated scatterplot smoothing (LOESS) fitted calibration curves
with corresponding 95% confidence interval for (A) the deep learning model, (B) the
clinical model and (C) the combination model for predicting clinical benefit on a patient
level. The dashed line indicates the line of perfect calibration. Histograms of individual
predictions, split for patients with (blue) and without (orange) benefit, are shown below
the curves. The p-value for the Hosmer-Lemeshow test for goodness of fit is shown in
the plot title.
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Figure 4.5: Based on the training data, the deep learning model learns to map every
lesion to a point in space where, intuitively, similar lesions are closer together. This
mapping is visualized in this figure in 2D using t-SNE. Every point corresponds to a
single lesion. Relative distance indicates how similar lesions are according to the model;
absolute location is not informative in this figure. Lesions are colored in the four different
plots to show how the information learned by the model corresponds with information
about the lesion. (A) Lesions located in different organs are clustered together, indicating
that the deep learning model detects the lesion’s location. (B) There is no clear sepa-
ration of lesions with and without benefit, indicating that the model cannot accurately
discriminate between lesion treatment outcomes. (C) Although some clusters of large
and small lesions can be seen, lesion size appears to be less determining for the model’s
output than location. (D) Overall, predicted probability of benefit is lower in lesions
marked as liver lesions in Figure 4A, and higher in lung lesions.
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Figure 4.6: (A-E) Boxenplots of known clinical predictors with the output of the
deep learning model for predicting clinical benefit per patient. P-values of the Kruskal-
Wallis test for difference in distribution are given in the plot titles. (A) The output of
the deep learning model is not significantly different for patients with or without brain
metastases. (B-E) The output of the deep learning model is significantly different for
patients with and without liver metastases (B), with varying levels of LDH (C), different
ECOG performance status (D) and with less than 3 and 3 or more affected organs (E).
(F) Kernel-density estimate plot of log-transformed lesion volume versus the lesion-level
prediction of the deep learning model. The output of the deep learning model per lesion
is significantly lower in larger lesions.
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5.1. Abstract

5.1 Abstract

5.1.1 Introduction

The association of body composition with checkpoint inhibitor outcomes in melanoma

is a matter of ongoing debate. In this study, we aim to add to previous evidence

by investigating body mass index (BMI) alongside CT derived body composition

metrics in the largest cohort to date.

5.1.2 Methods

Patients treated with first-line anti-PD1 ± anti-CTLA4 for advanced melanoma

were retrospectively identified from 11 melanoma reference centers in The Nether-

lands. Age, sex, Eastern Cooperative Oncology Group performance status, serum

lactate dehydrogenase, presence of brain and liver metastases, number of affected

organs and BMI at baseline were extracted from electronic patient files. From

baseline CT scans, five body composition metrics were automatically extracted:

skeletal muscle index, skeletal muscle density, skeletal muscle gauge, subcutaneous

adipose tissue index and visceral adipose tissue index. All predictors were corre-

lated in uni- and multivariable analysis to progression-free, overall and melanoma-

specific survival (PFS, OS and MSS) using Cox proportional hazards models.

5.1.3 Results

A total of 1471 eligible patients were included. Median PFS and OS were 8.8 and

34.8 months, respectively. A significantly worse PFS was observed in underweight

patients (multivariable HR=1.87, 95% CI 1.14–3.07). Furthermore, better OS was

observed in patients with higher skeletal muscle density (multivariable HR=0.91,

95% CI 0.83-0.99) and gauge (multivariable HR=0.88, 95% CI 0.84-0.996), and a

worse OS with higher visceral adipose tissue index (multivariable HR=1.13, 95%

CI 1.04-1.22). No association with survival outcomes was found for overweightness

or obesity and survival outcomes, or for subcutaneous adipose tissue.
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5.1.4 Discussion

Our findings suggest that underweight BMI is associated with worse PFS, whereas

higher skeletal muscle density and lower visceral adipose tissue index were associ-

ated with better OS. These associations were independent of previously identified

predictors, including sex, age, performance status and extent of disease. No sig-

nificant association between higher BMI and survival outcomes was observed.

5.2 Introduction

The introduction of checkpoint inhibitors has revolutionized advanced melanoma

care. The prognosis for advanced melanoma was historically very poor, with a

1-year overall survival of less than 25% [1]. In contrast, patients treated in the

CheckMate 067 trial with anti-programmed cell death 1 (anti-PD1) had a 6.5-

year overall survival rate of 43%. Patients treated with both anti-PD1 and anti-

cytotoxic T-lymphocyte associated protein-4 (anti-CTLA4) antibodies even had a

6.5-year overall survival rate of 57% [2].

However, many open questions remain about how checkpoint inhibitors interact

with tumor and host. Both anti-CTLA4 and anti-PD1 antibodies block proteins

that inhibit immune response, which leads to increased immune activity against the

tumor [3]. Although some mechanisms of primary resistance have been identified

[4], it is not fully understood why some patients progress during treatment while

others do not.

One such open question is the association between obesity and checkpoint in-

hibitor treatment outcomes. On the one hand, several pan-cancer meta-analyses

published in 2020 and 2021 reported better survival outcomes in patients with

obesity compared to patients with normal body mass index (BMI) [5–7]. This

association, dubbed the “obesity paradox”, was also found to be significant in

the subgroup of studies on patients with melanoma [6,7]. On the other hand, an

updated meta-analysis by Roccuzzo et al. (2023) in melanoma concluded that

the prognostic value of BMI could not be confirmed due to the limited available

evidence [8]. This indicates that the topic of obesity and checkpoint inhibitor treat-

ment outcomes is an area of ongoing research where more high-quality evidence is

needed.
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In addition to BMI, previous works investigated computed tomography (CT)

derived body composition metrics. These metrics include the amount and density

of skeletal muscle and the amount of subcutaneous and adipose tissue [9]. Due to

advances in deep learning for automatic image analysis, this category of predictors

has become increasingly prominent in research in recent years [10,11]. The advan-

tage of these metrics is that they can more accurately capture a patient’s body

composition, whereas BMI may misrepresent patients with high muscle mass and

cannot distinguish between patients with high visceral or subcutaneous adipose

tissue. Previous studies on these metrics, however, reported differing results and

have some methodological limitations, most notably a limited sample size [12].

Several causal mechanisms have been proposed for explaining associations be-

tween body composition and checkpoint inhibitor outcomes. First, a more ag-

gressive disease may affect both body composition (e.g., through weight loss) and

outcomes. Second, patients with a worse physical condition, as reflected in body

composition metrics, may succumb more quickly to their disease. Third, body

composition may modulate the efficacy of checkpoint inhibitor therapy. For ex-

ample, an increased efficacy of anti-PD(L)1 therapy was observed in obese mice

compared to mice with normal weight [13]. Furthermore, increased PD-1 expres-

sion was noted in obese patients with melanoma [13].

Research into these causal mechanisms, however, is hindered by the controversy

surrounding the association between body composition and checkpoint inhibitor

treatment outcomes. This work therefore aimed to contribute to the existing

evidence on this topic by presenting the largest cohort to our knowledge to date.

Additionally, we aimed to provide a more fine-grained picture of body composition

by evaluating CT derived metrics alongside BMI.

5.3 Methods

5.3.1 Patient selection

Patients were eligible if they were (i) over 18 years of age, (ii) treated for unre-

sectable stage IIIC or stage IV cutaneous melanoma with (iii) first-line anti-PD1

with or without CTLA4 inhibition (iv) between January 1st, 2016, and February

1st, 2023. Patients were excluded if (i) no baseline CT scan was available, (ii) no
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transverse slice of the third lumbar vertebrae was in the field of view of the scan,

(iii) metal artefacts were present at the L3 level or (iv) patient height or weight at

baseline were unavailable. Eligible patients from eleven melanoma treatment cen-

ters in the Netherlands (Amphia Breda, Amsterdam UMC, Isala Zwolle, Leiden

University Medical Center, Maxima MC, Medisch Spectrum Twente, Netherlands

Cancer Institute, Radboudumc, University Medical Center Groningen, University

Medical Center Utrecht, Zuyderland) were identified using high-quality registry

data. This study was deemed not subject to Medical Research Involving Human

Subjects Act according to Dutch regulations by the Medical Ethics Committee;

informed consent was waived.

5.3.2 BMI and clinical predictors

Height and weight at baseline were extracted from electronic patient files and were

used to calculate BMI. In addition, several previously identified clinical predictors

of checkpoint inhibitor treatment outcomes in advanced melanoma were extracted.

These were (i) Eastern Cooperative Oncology Group (ECOG) performance status,

(ii) level of lactate dehydrogenase (LDH), presence of (iii) brain and (iv) liver

metastases and (v) number of affected organs [14–17] (categories are shown in

Figure 5.1).

5.3.3 CT body composition metrics extraction

Metrics were obtained using Quantib Body Composition version 0.2.1, a dedicated

deep learning segmentation algorithm that has proven to achieve high correspon-

dence to manual segmentations in previous studies [18–20]. First, all baseline

CT scans were resampled to a slice thickness of 5mm. Subsequently, the slice in

the middle of the third lumbar vertebra [21] was automatically selected using a

convolutional neural network. On the five consecutive slices centered around this

selected slice, the following compartments were automatically segmented using a

second convolutional neural network: psoas, abdominal and long spine muscles (to-

gether making up the skeletal muscles), subcutaneous adipose tissue and visceral

adipose tissue. All segmentations were manually reviewed and corrected where

necessary. Based on these segmentations, five commonly used metrics [9,22–24]

were calculated using the definitions in Table 1: skeletal muscle index (SMI),
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skeletal muscle density (SMD), skeletal muscle gauge (SMG), subcutaneous adi-

pose tissue index (SATI) and visceral adipose tissue index (VATI). All metrics

were normalized to zero mean and unit standard deviation (SD) to facilitate inter-

pretation. Since skeletal muscle density and gauge differed significantly between

patients who underwent a contrast-enhanced CT scan versus those who under-

went a non-contrast CT scan, SMD and SMG were normalized separately for both

groups.

Figure 5.1: Definition of included predictors and evaluated models

5.3.4 Outcome definition

The primary endpoints were progression-free survival (PFS) and overall survival

(OS). PFS was defined as the time from the start of treatment to progression or

death; OS was defined as time from the start of treatment to death due to any

cause. The secondary outcome was melanoma-specific survival (MSS), defined

as the time from the start of treatment to death from melanoma. Patients not

reaching the endpoint were right-censored at the date of the last contact, or when

a different treatment was initiated.
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5.3.5 Statistical analysis

Correlation among body composition variables was assessed using Pearson’s cor-

relation coefficient. The association between body composition metrics and out-

comes were assessed using uni- and multivariable Cox proportional hazards models.

In multivariable analyses, a separate model was constructed for every body com-

position metric, combined with previously identified clinical factors (ECOG per-

formance status, level of LDH, presence of brain and liver metastases and number

of affected organs). BMI was assessed as a categorical variable, using the estab-

lished cut-offs for underweight (<18.5), normal (between 18.5 and 25), overweight

(between 25 and 30) and obese (>30). In addition, all variables were modelled

using restricted cubic splines with three knots to account for non-linear effects.

Multiple imputation was performed using the MICE R package with 21 imputa-

tions. Subgroup analyses were conducted for patients treated with monotherapy

(anti-PD1) and combination therapy (anti-PD1 + anti-CTLA4), and for patients

who underwent a contrast-enhanced and non-contrast CT scan. Unless stated

otherwise, 95% confidence intervals are displayed.

5.4 Results

5.4.1 Patient characteristics

Out of 1944 eligible patients, 1471 patients (76%) were included (Supplementary

Figure 1). Characteristics of the included patients are shown in Table 5.1; these

characteristics were similar to those of excluded patients (Supplementary Table 1).

Median PFS and OS were 9.1 and 38.1 months, respectively. Median MSS was not

reached. The subgroups of patients treated with anti-PD1 monotherapy and anti-

PD1 plus anti-CTLA-4 combination therapy consisted of 942 (64%) and 529 (36%)

patients, respectively. Subgroups of patients who underwent non-contrast CT

(in combination with 18-fluorodeoxyglucose positron emission tomography) versus

contrast-enhanced consisted of 611 and 860 patients, respectively. Characteristics

of patients in subgroups are shown in Supplementary Tables 2 and 3.
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n 1471

Age, mean (SD) 65.1 (13.0)

Sex, n (%)
Female 579 (39.4)
Male 892 (60.6)

Therapy, n (%)
Anti-PD1 942 (64.0)
Ipilimumab & Nivolumab 529 (36.0)

Scan type, n (%)
Contrast-enhanced 860 (58.5)
No contrast 611 (41.5)

Stage, n (%)

IIIC 131 (8.9)
IV M1a 130 (8.8)
IV M1b 217 (14.8)
IV M1c 639 (43.4)
IV M1d 344 (23.4)
missing 10 (0.7)

ECOG performance status, n (%)

0 798 (54.2)
1 489 (33.2)
2-4 110 (7.5)
missing 74 (5.0)

Brain metastases, n (%)

absent 952 (64.7)
asymptomatic 212 (14.4)
symptomatic 132 (9.0)
missing 175 (11.9)

Liver metastases, n (%)
absent 939 (63.8)
present 379 (25.8)
missing 153 (10.4)

LDH, n (%)

normal 1013 (68.9)
1-2x ULN 330 (22.4)
>2x ULN 110 (7.5)
missing 18 (1.2)

Number of affected organs, n (%)
<3 886 (60.2)
>2 585 (39.8)

Body Mass Index, n (%)

underweight 21 (1.4)
normal 604 (41.1)
overweight 586 (39.8)
obese 260 (17.7)

Skeletal Muscle Index, median [Q1,Q3] 91.0 [78.8,102.4]

Skeletal Muscle Density, median [Q1,Q3] 19.5 [8.2,28.6]

Skeletal Muscle Gauge, median [Q1,Q3] 1685.4 [720.7,2629.5]

Subcutaneous Adipose Tissue Index, median [Q1,Q3] 91.2 [66.1,125.5]

Visceral Adipose Tissue Index, median [Q1,Q3] 83.1 [46.0,129.2]

Median overall survival (months) 38.1

Median progression-free survival (months) 9.1

Table 5.1: Characteristics of included patients

5.4.2 Body mass index

Out of 1471 patients, 21 (1.4%) were underweight, 604 (41.1%) had normal BMI,

586 (39.8%) were overweight and 260 (17.7%) were obese. Underweight patients

had significantly worse PFS than patients with normal weight in both uni- and

multivariable analysis (multivariable HR=1.87 95% CI 1.14-3.07, Table 5.2, Figure

5.2). A similar, but statistically nonsignificant association was observed for OS
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(multivariable HR=1.57, 95% CI 0.89-2.77, Table 5.3, Figure 5.2). Underweight

patients had more advanced disease, worse ECOG performance status, higher

levels of LDH at baseline and were less likely to receive combination therapy (Sup-

plementary Table 4). OS and PFS were not significantly different in overweight

or obese patients when compared to normal BMI. No significant associations with

OS and PFS were observed when BMI was analyzed using restricted cubic splines

(Supplementary Figures 2-3). Results were comparable in the performed subgroup

analyses (Supplementary Tables 6-13).

Figure 5.2: Kaplan-Meier curves for progression free and overall survival according to
BMI subgroup

5.4.3 CT derived body composition metrics

All body composition metrics were significantly correlated with each other (Sup-

plementary Table 5). Of note is the negative correlation between skeletal muscle

index and density (r = -0.14). Significant associations with outcomes were ob-

served for three of the five CT derived body composition metrics. First, higher

skeletal muscle density was associated with better OS (multivariable HR=0.91 per

SD increase, 95% CI 0.83-0.99, Table 5.3) and MSS (multivariable HR=0.90 per
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SD increase, 95% CI 0.81-0.999, Table 5.4). Second, higher skeletal muscle gauge

was associated with better OS (multivariable HR=0.91 per SD increase, 95% CI

0.86-0.996, Table 3). Third, higher visceral adipose tissue index was associated

with worse OS (multivariable HR=1.13 per SD increase, 95% CI 1.04-1.22, Table

5.3), with similar but statistically non-significant trends for PFS (multivariable

HR=1.07 per SD increase, 95% CI 1.00-1.15, Table 5.2) and MSS (multivariable

HR=1.10 per SD increase, 95% CI 0.997-1.21, Table 5.4). No significant asso-

ciations were observed between skeletal muscle index or subcutaneous adipose

tissue index and survival outcomes. Results were similar in subgroups of patients

who underwent contrast-enhanced and non-contrast CT scans, in subgroups of

patients treated with anti-PD1 and combination therapy (Supplementary Tables

6-13). When analyzing CT derived body composition metrics using restricted

cubic splines, similar directions of effect were observed (Supplementary Figures

2-3).

5.5 Discussion

The contributions of this work are threefold. First, we demonstrate significantly

worse PFS in patients who are underweight. Second, we find no evidence for an

association between obesity and better outcomes. Third, we show that higher

skeletal muscle density and gauge, and lower visceral adipose tissue index are

associated with improved survival.

PFS was significantly worse in underweight patients. Surprisingly, this asso-

ciation was significant in multivariable analysis despite the association between

underweight BMI and other poor baseline characteristics. Although this result

must be interpreted with care due to the small numbers (N=21) in the under-

weight group, it may indicate that the prognosis of this group of patients is even

worse than is to be expected based on their stage of disease, performance status

and level of LDH. Potential explanations for this association are a confounding ef-

fect of tumor aggressiveness, and an increased vulnerability to complications due

to reduced physical reserves.

We found no association between obesity and better treatment outcomes, when

measured as BMI, or as visceral or subcutaneous adipose tissue index. In contrast,

we observed worse survival in patients with more visceral adipose tissue, the type of
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Univariable Multivariable*

HR** 95% CI p-value HR** 95% CI p-value

Body Mass Index

underweight 1.826 1.123 - 2.969 0.015 1.868 1.136 - 3.069 0.014
normal 1.000 1.000
overweight 0.987 0.858 - 1.135 0.853 1.004 0.872 - 1.156 0.953
obese 1.035 0.867 - 1.236 0.702 1.113 0.930 - 1.331 0.243

Skeletal Muscle Index 1.028 0.966 - 1.094 0.386 1.069 0.988 - 1.156 0.098

Skeletal Muscle Density 0.970 0.911 - 1.033 0.340 0.983 0.914 - 1.058 0.655

Skeletal Muscle Gauge 0.986 0.926 - 1.049 0.650 1.007 0.933 - 1.086 0.868

Subcutaneous Adipose Tissue Index 0.960 0.902 - 1.022 0.201 0.985 0.923 - 1.052 0.661

Visceral Adipose Tissue Index 1.065 1.001 - 1.132 0.045 1.070 1.000 - 1.146 0.051

Table 5.2: Univariable and multivariable Cox proportional hazards models for pro-
gression free survival. Abbreviations: HR=Hazard Rate Ratio, CI=Confidence Interval.
*Corrected for age, sex, serum lactate dehydrogenase, presence of brain metastases (ab-
sent vs. asymptomatic vs. symptomatic) and liver metastases, Eastern Cooperative
Oncology group performance status and number of affected organs. **Hazard rate ra-
tios for skeletal muscle index, density and gauge, and subcutaneous and visceral adipose
tissue index are provided per standard deviation increase.

Univariable Multivariable*

HR** 95% CI p-value HR** 95% CI p-value

Body Mass Index

underweight 1.487 0.853 - 2.594 0.162 1.569 0.889 - 2.768 0.121
normal 1.000 1.000
overweight 0.947 0.801 - 1.120 0.523 0.995 0.840 - 1.179 0.958
obese 0.997 0.808 - 1.229 0.977 1.174 0.948 - 1.453 0.141

Skeletal Muscle Index 1.018 0.946 - 1.096 0.628 1.064 0.968 - 1.170 0.198

Skeletal Muscle Density 0.861 0.801 - 0.925 0.000 0.906 0.830 - 0.988 0.026

Skeletal Muscle Gauge 0.870 0.810 - 0.935 0.000 0.912 0.835 - 0.996 0.040

Subcutaneous Adipose Tissue Index 0.937 0.868 - 1.011 0.095 1.017 0.940 - 1.100 0.678

Visceral Adipose Tissue Index 1.138 1.060 - 1.222 0.000 1.126 1.038 - 1.221 0.004

Table 5.3: Univariable and multivariable Cox proportional hazards models for over-
all survival. Abbreviations: HR=Hazard Rate Ratio, CI=Confidence Interval. *Cor-
rected for age, sex, serum lactate dehydrogenase, presence of brain metastases (absent
vs. asymptomatic vs. symptomatic) and liver metastases, Eastern Cooperative Oncol-
ogy group performance status and number of affected organs. **Hazard rate ratios for
skeletal muscle index, density and gauge, and subcutaneous and visceral adipose tissue
index are provided per standard deviation increase.

fat most associated with inflammation [25]. The other metrics that reflect obesity,

namely subcutaneous adipose tissue index and higher BMI, were not associated

with any of the investigated outcomes. These findings are in line with the meta-

analysis by Roccuzzo et al. [8], which found no significant association between

higher BMI and survival outcomes in melanoma. This meta-analysis thereby differs

in its conclusion from earlier meta-analyses, a fact which can be explained by the

inclusion of studies which were not yet published during these earlier analyses.

Better survival was observed in patients with higher skeletal muscle density
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Univariable Multivariable*

HR** 95% CI p-value HR** 95% CI p-value

Body Mass Index

underweight 1.352 0.694 - 2.634 0.376 1.372 0.696 - 2.707 0.362
normal 1.000 1.000
overweight 0.925 0.761 - 1.125 0.436 0.977 0.802 - 1.190 0.815
obese 0.907 0.706 - 1.166 0.448 1.092 0.846 - 1.409 0.500

Skeletal Muscle Index 1.031 0.946 - 1.123 0.490 1.112 0.996 - 1.240 0.059

Skeletal Muscle Density 0.913 0.837 - 0.995 0.039 0.902 0.814 - 0.999 0.049

Skeletal Muscle Gauge 0.925 0.849 - 1.008 0.075 0.921 0.829 - 1.023 0.124

Subcutaneous Adipose Tissue Index 0.937 0.856 - 1.025 0.153 1.017 0.928 - 1.115 0.722

Visceral Adipose Tissue Index 1.078 0.990 - 1.174 0.085 1.098 0.997 - 1.210 0.059

Table 5.4: Univariable and multivariable Cox proportional hazards models for
melanoma specific survival. Abbreviations: HR=Hazard Rate Ratio, CI=Confidence
Interval. *Corrected for age, sex, serum lactate dehydrogenase, presence of brain metas-
tases (absent vs. asymptomatic vs. symptomatic) and liver metastases, Eastern Coop-
erative Oncology group performance status and number of affected organs. **Hazard
rate ratios for skeletal muscle index, density and gauge, and subcutaneous and visceral
adipose tissue index are provided per standard deviation increase.

and gauge, and lower adipose tissue index. There are multiple explanations for

the results. On the one hand, it could be that these metrics are general prognostic

indicators irrespective of treatment. This interpretation is supported by the fact

that the associations were stronger for overall survival than for PFS and MSS.

On the other hand, it could be that body composition influences the effect of

checkpoint inhibitor treatment. A proposed mechanism is that visceral adipose

tissue dysregulates the body’s immune response, leading to worse treatment effects

[26,27]. Future research, however, is needed to confirm this association and to

determine the underlying causal mechanisms.

This study contributes to previous evidence in two important ways. First,

it adds the largest cohort collected on this topic to date and thereby strength-

ens the conclusion of the meta-analysis by Roccuzzo et al. [8] regarding obesity.

Second, it provides a more fine-grained view of body composition through the

use of CT derived body composition metrics. This is particularly relevant in the

case of visceral adipose tissue, where our findings suggest a negative association

with survival, rather than a positive one as was suggested by earlier findings on

BMI. A limitation is the exclusion of otherwise eligible patients due to unavail-

able data. Approximately 25% of eligible patients were excluded due to lack of

required data. We argue, however, that the risk of selection bias is limited, as

differences in patient characteristics between included and excluded patients were

small. Furthermore, the correction of skeletal muscle density for the presence of
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contrast is likely to be imperfect. This correction assumes that the mean and

standard deviation of the true skeletal muscle density is the same for patients who

underwent contrast-enhanced and no-contrast baseline scans. This may not be the

case, given the difference in patient characteristics between the two groups. Given

the consistent results in the subgroup analyses, we think it is unlikely that this

imperfect correction would have significantly influenced the results.

In conclusion, underweight BMI, more visceral adipose tissue and lower skele-

tal muscle density are associated with worse outcomes in ICI treated advanced

melanoma patients, independent of known predictors. The significance of the asso-

ciations in multivariable analysis indicates that the information provided by body

composition metrics is not fully captured by previously identified predictors, such

as ECOG performance status. Outcomes were not significantly different in over-

weight and obese patients, as compared with those with normal BMI. This finding

is in accordance with a recent meta-analysis on this topic. Our work contributes

to previous research by presenting the largest cohort to date and by providing

detailed data on body composition through CT derived metrics.

5.6 Supplementary Materials

Supplementary materials are available through

https://www.medrxiv.org/content/medrxiv/early/2024/03/02/2024.03.01.

24303607/DC1/embed/media-1.pdf?download=true
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composition at L3 vertebra level with convolutional neural networks. ECR 2020 EPOS 2020. https://epos.myesr.

org/poster/esr/ecr2020/C-09334(accessedJune8,2023).

[19 ] de Jong DJ, Veldhuis WB, Wessels FJ, de Vos B, Moeskops P, Kok M. Towards Personalised Contrast Injection:

Artificial-Intelligence-Derived Body Composition and Liver Enhancement in Computed Tomography. J Pers

Med 2021;11:159. https://doi.org/10.3390/jpm11030159.

[20 ] Van Erck D, Moeskops P, Schoufour JD, Weijs PJM, Scholte Op Reimer WJM, Van Mourik MS, et al. Eval-

uation of a Fully Automatic Deep Learning-Based Method for the Measurement of Psoas Muscle Area. Front

Nutr 2022;9.

[21 ] Elhakim T, Trinh K, Mansur A, Bridge C, Daye D. Role of Machine Learning-Based CT Body Composition

in Risk Prediction and Prognostication: Current State and Future Directions. Diagnostics 2023;13:968. https:

//doi.org/10.3390/diagnostics13050968.

[22 ] Shachar SS, Deal AM, Weinberg M, Nyrop KA, Williams GR, Nishijima TF, et al. Skeletal Muscle Measures

as Predictors of Toxicity, Hospitalization, and Survival in Patients with Metastatic Breast Cancer Receiving

Taxane-Based Chemotherapy. Clin Cancer Res 2017;23:658–65. https://doi.org/10.1158/1078-0432.CCR-16-0940.

90

https://doi.org/10.1007/s00262-020-02680-y
https://doi.org/10.1097/CJI.0000000000000389
https://doi.org/10.1016/j.semcancer.2023.02.010
https://doi.org/10.1136/jitc-2020-000821
https://doi.org/10.1136/jitc-2020-000821
https://doi.org/10.1148/radiol.2018181432
https://doi.org/10.1016/j.ejrad.2021.109943
https://doi.org/10.1016/j.ejca.2022.07.034
https://doi.org/10.1016/j.ejca.2022.07.034
https://doi.org/10.1038/s41591-018-0221-5
https://doi.org/10.1038/s41591-018-0221-5
https://doi.org/10.1097/CJI.0000000000000334
https://doi.org/10.1200/JCO.21.01701
https://doi.org/10.1016/j.ejca.2020.11.028
https://doi.org/10.1016/j.ejca.2022.02.026
https://epos.myesr.org/poster/esr/ecr2020/C-09334 (accessed June 8, 2023)
https://epos.myesr.org/poster/esr/ecr2020/C-09334 (accessed June 8, 2023)
https://doi.org/10.3390/jpm11030159
https://doi.org/10.3390/diagnostics13050968
https://doi.org/10.3390/diagnostics13050968
https://doi.org/10.1158/1078-0432.CCR-16-0940


Chapter 5. Body composition and checkpoint inhibitor treatment
outcomes in advanced melanoma: a multicenter cohort study

[23 ] Ebadi M, Martin L, Ghosh S, Field CJ, Lehner R, Baracos VE, et al. Subcutaneous adiposity is an independent

predictor of mortality in cancer patients. Br J Cancer 2017;117:148–55. https://doi.org/10.1038/bjc.2017.149.

[24 ] Martin L, Birdsell L, MacDonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer Cachexia in the

Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index.

J Clin Oncol 2013;31:1539–47. https://doi.org/10.1200/JCO.2012.45.2722.

[25 ] Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral Fat Adipokine Secretion Is Associated With

Systemic Inflammation in Obese Humans. Diabetes 2007;56:1010–3. https://doi.org/10.2337/db06-1656.

[26 ] Ringel AE, Drijvers JM, Baker GJ, Catozzi A, Garćıa-Cañaveras JC, Gassaway BM, et al. Obesity Shapes
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6.1. Abstract

6.1 Abstract

6.1.1 Introduction

Checkpoint inhibitors have significantly improved the prognosis for advanced melanoma

patients, but these treatments are costly and associated with severe toxicity. Ac-

curate pre-treatment predictors of response are still lacking, and histopathology

material may hold potential for improving prediction accuracy.

6.1.2 Methods

This study utilized deep learning models to analyse H&E histopathology images

of both primary tumors and metastases from patients with advanced melanoma

undergoing checkpoint inhibitor treatment. The study included adult patients

diagnosed with unresectable stage IIIC or IV cutaneous melanoma, treated with

first-line anti-PD1 ± anti-CTLA4 therapy. The deep learning model involved

splitting of histopathology images into patches, feature extraction using a pre-

trained neural network, and classification using a Transformer model. In addition

to predicting clinical benefit, performance was evaluated for classifying lympho-

cytic infiltration, a known predictor of response visible on histopathology images.

Model evaluation was performed through 5-fold cross-validation and performance

assessment using AUROC.

6.1.3 Results

A total of 716 patients from five centers were included, with 471 primary and 516

metastatic samples. For predicting clinical benefit, the model achieved an AUROC

of 0.50 [0.43 – 0.55] on primary tissue samples and 0.54 [0.44 - 0.61] on metastatic

tissue samples. For classifying lymphocytic infiltration, the model achieved an

AUC 0.68 [0.62 - 0.74] in primary, and 0.66 [0.62 - 0.71] in metastatic samples.

6.1.4 Discussion

The results of this preliminary study indicate that checkpoint inhibitor treatment

outcome prediction based on melanoma H&E images using deep learning is a

challenging task. Further research should investigate the model’s performance for
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classifying lymphocytic infiltration, which is lower than may be expected based on

the reported interobserver variability for this metric. Furthermore, future efforts

should expand the dataset, evaluate multitarget learning and experiment with

specifically defining a region of interest on a sample.

6.2 Introduction

Checkpoint inhibitor treatment has revolutionized the treatment of advanced melanoma.

Before the introduction of checkpoint inhibitor drugs, the prognosis of this group

of patients was poor due to the limited efficacy of available treatment options [1].

In contrast, 6.5-year overall survival rates are as high as 49% for ipilimumab +

nivolumab in trial settings [2]. The introduction of checkpoint inhibitors there-

fore represents one of the most significant advances in oncological care of the past

decade.

This treatment works by mobilizing the immune system against tumor cells.

Checkpoint inhibitor drugs in melanoma work by blocking either the cytotoxic

T-lymphocyte associated protein 4 (CTLA4), or the Programmed cell Death-1

(PD1) proteins. In a healthy setting, these proteins serve to downregulate immune

activity. Some tumors are able to hijack this mechanism and thereby evade immune

response. Blocking the CTLA4 and PD1 pathways can thereby reactivate an

immune response against the tumor [3].

While very successful, checkpoint inhibitor treatment is also associated with

high costs and severe toxicity. Anti-PD1 medication was the most expensive intra-

mural medication given in The Netherlands, with a total cost of 327 million EUR

[4]. Advanced melanoma and non-small cell lung cancer make up the majority

of indications of this treatment [5,6]. n addition, severe immune-related adverse

events occur in 60% of patients treated with anti-PD1 + anti-CTLA4 treatment

[2]. These adverse events both negatively impact quality of life in treated patients

[7] and put an additional burden on the health care system [8].

Despite intensive research, accurate pretreatment predictors of response are

still lacking. Finding such a predictor is a significant challenge, as is exemplified

by the expression of PD1 in tumors: even when this very target of anti-PD1 therapy

is absent, tumors may still respond [9]. Other efforts, investigating for example

tumor mutational burden [10], radiomics [11] and gut microbiome [12] have not
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yet resulted in predictors that can accurately guide clinical decisions. Predictors

that are used in daily practice are clinical characteristics, such as which organs

are affected, neurological symptoms of brain metastases and ECOG performance

status [13]. Although these factors can stratify patients into groups with significant

differences in outcomes, further research is necessary to reach the goal of precision

medicine in this setting.

Routinely collected histopathology material could be valuable for predicting

checkpoint inhibitor outcomes. Histopathology material provides a detailed view

of, among others, which cells are present in and around a tumor, their visual ap-

pearance, and the spatial relationship between different cell types. It may thereby

provide information on several characteristics that could influence checkpoint in-

hibitor efficacy. Potential examples are peritumoral stroma that prevents immune

response or the number of tumor-infiltrating lymphocytes in the metastases, which

were recently shown to be correlated with checkpoint inhibitor treatment out-

comes [14]. In addition to showing potential as a source of valuable information,

histopathology material of the primary tumor would be ideal as a predictor since

it is obtained in every patient to make the initial diagnosis. Predictors based on

histopathology would therefore require little change to clinical care.

Methods that use histopathology material as a predictor roughly fall into two

categories. The first category consists of manually defined features, such as the

local abundance of a certain cell type. An example of this is the degree of presence

of tumor infiltrating lymphocytes. These manually defined features can either be

assessed manually, as is done with the Clark score in the case of tumor infiltrating

lymphocytes [15], or automatically, using recent techniques in image analysis to

give a quantitative estimate of cell abundance and localization [16]. The second

category of predictors consists of end-to-end deep learning models. In contrast to

the first category, these models are not based on manually predefined features. In-

stead, informative features are learned based on the provided data. The advantage

of these models is therefore that they are much more flexible in what information

can be extracted. This flexibility, however, also poses a major challenge. This

is because histopathology images contain an enormous amount of information. A

successful model must therefore be able to find the useful signal without over-

fitting to the abundant noise. A dataset of sufficient size could mitigate this

problem, but collecting such a dataset is often not feasible. Deep learning mod-
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els for histopathology material therefore rely heavily on dimensionality reduction

through feature extraction [17]: a collection of techniques to summarize data while

retaining as much useful information as possible.

Limited evidence exists on the value of deep learning on histopathology material

for predicting checkpoint inhibitor outcomes in advanced melanoma. Johannet et

al. [18] report on a deep learning model trained on 121 patients treated with anti-

CTLA4, anti-PD1, or both. Their model was able to stratify patients into a high-

or low-risk group, with significantly better progression-free survival (PFS) in the

low-risk group when evaluated in an independent cohort of 30 patients. Hu et al.

[19] obtained an area under the receiver operator characteristic curve (AUROC) of

0.778 for predicting anti-PD1 response in an independent test set of 54 melanoma

patients. These findings are promising, but the small sample size of these studies

precludes strong conclusions. Furthermore, the methods used in these works have

been superseded by recent developments in deep learning in histopathology [20,21].

The present study aims to provide high-quality evidence on the predictive

value of an end-to-end deep learning approach on histopathology. For this pur-

pose, we have collected the largest dataset to date of histopathology material of

patients treated with checkpoint inhibitors for advanced melanoma. Furthermore,

our method incorporates state-of-the-art techniques in histopathology image clas-

sification [21].

6.3 Methods

6.3.1 Patient selection

Eligible patients were selected based on the following inclusion criteria: (i) over

18 years of age, (ii) diagnosed with unresectable stage IIIC or stage IV cutaneous

melanoma, (iii) treated with first-line anti-PD1 with or without anti-CTLA4 ther-

apy and (iv) a start date of therapy after January 1st, 2016. Patients were excluded

in the case of unavailability of both a primary and metastatic melanoma tissue

sample. Eligible patients were retrospectively selected through high-quality reg-

istry data from eight participating centers (Amphia Breda, Isala Zwolle, Leiden

University Medical Center, Maxima Medical Center, Medisch Spectrum Twente,

Radboudumc, University Medical Center Groningen, Amsterdam University Med-
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ical Center). The Medical Ethics Committee deemed this study not subject to the

Medical Research Involving Human Subjects Act according to Dutch regulations;

informed consent was waived.

6.3.2 Data collection

Hematoxylin and eosin-stained slides of primary and metastatic tumors were ob-

tained for all included patients through the Dutch National Tissue Archive Portal,

and subsequently scanned with a Nanozoomer XR C12000-21/-22 (Hamamatsu

Photonics, Hamamatsu, Shizuoka, Japan) at 40× magnification and a resolution

of 0.22 micrometers per pixel. A single representative primary and metastatic sam-

ple was selected for every patient. For the primary slides, we selected the most

likely primary tumor based on Breslow thickness and location relative to posi-

tive lymph nodes. For the metastases, the most recent sample before treatment

initiation was selected.

6.3.3 Outcome definition

The primary outcome was clinical benefit, which was defined as stable disease (per

RECIST 1.1 [22]) for a minimum of six months, or partial or complete response

at any point during follow-up. The secondary outcome was objective response,

defined as a partial or complete response at any point during follow-up. Several

other prediction targets were explored to evaluate the performance of the deep

learning methodology. These included (i) distinguishing primary from metastatic

samples, (ii) classifying BRAF mutation status (wild-type versus any BRAF mu-

tation) and (iii) classifying infiltration with TILs (absent vs. non-brisk/brisk as

per the Clark score [15]). The performance of the model for BRAF mutation

status was contrasted with that of known clinicopathological characteristics corre-

lated with BRAF mutation status that are discernable on H&E material, namely

location, subtype, ulceration and solar elastosis [23–25].

6.3.4 Deep learning model

As stated above, one of the most important challenges of deep learning-based clas-

sification of histopathology material is the abundance of information from which
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the useful signal must be filtered. In addition, there are the technical challenges

of the large size of the images (with uncompressed sizes of more than 40 giga-

bytes per whole-slide image), which is also highly variable between images. Our

method addresses these challenges in three steps (Figure 6.1). In the first step,

the foreground of the image is segmented and divided into square, non-overlapping

patches. The foreground of the image is defined as the part of the image that con-

tains tissue; a segmentation of this foreground is obtained through traditional

image processing techniques (Supplementary Methods). Through this step, the

image is divided into N patches; the number N will vary between slides. Second,

a pretrained neural network is used to extract features for every patch. The aim

of this step is to summarize large images as a much smaller feature vector that

retains the information present in the patches. For every slide, this step yields an

output of N feature vectors. Third, a deep learning classifier is trained to predict

the probability of clinical benefit based on the pre-extracted feature vectors be-

longing to a single slide. Training was terminated after 100 epochs, or when no

improvement was observed in 10 successive epochs.

Figure 6.1: Graphical overview of methodology. Treatment outcome predictions for
every histopathology whole slide image are generated in three steps. In step 1, the
whole-slide image is split into non-overlapping square patches. In step 2, every patch is
summarized as a feature vector by a pretrained feature extractor. In step 3, the features
of all patches of a single slide are combined to make a single prediction, in this case the
probability of clinical benefit from treatment.
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6.3.5 Hyperparameter exploration

Hyperparameters are arbitrary design choices that may influence model perfor-

mance. Relevant hyperparameters were systematically explored with a fixed train-

test split to arrive at an optimal model. These included the choice of feature

extractor, level of magnification during feature extraction and classifier. For the

feature extractor, four models were considered: (i) a ResNet-50 model pretrained

on the ImageNet dataset; (ii) PLIP, a Vision Transformer pretrained using con-

trastive learning on pathology images collected through crowd platforms such as

medical Twitter [26]; (iii) patch-level and (iv) region-level HIPT [21], the smaller

and larger scale models, respectively, of a hierarchical Vision Transformer model

pretrained using the self-supervised DINO methodology [27] on a large dataset of

publicly available histopathology images [28]. Three levels of magnification were

explored, namely 20x, 5x and 1.5x; for the HIPT feature extractors, only the 20x

level was used as the model was pretrained at this level. For the classifier, two

models were investigated: (i) an attention pooling classifier [29] and (ii) a Trans-

former model [30]. Binary cross entropy loss was used in combination with the

Adam optimizer with a fixed learning rate of 2e-4; weight decay and dropout were

set to 1e-5 and 0.25 respectively. Training was terminated after 100 epochs, or

when no improvement was observed in 10 successive epochs.

6.3.6 Model evaluation

The deep learning model was evaluated using a 5-fold cross validation. In every

fold, the available data was divided into a non-overlapping training, validation

and test set (60%, 20% and 20%, respectively). Test sets did not overlap between

folds. The model was fitted on the training set. The tuning set was used to monitor

training performance, terminate training if results did not improve for 10 epochs

and select the best model. This model was subsequently evaluated on the test set.

Performance was evaluated using the receiver operator characteristics (ROC) curve

and corresponding area under the curve (AUROC). The cvAUC R-package was

used to calculate 95% confidence intervals for the mean AUROC across folds [31].

Separate models were trained for predicting outcomes on primary and metastatic

samples.
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6.4 Results

6.4.1 Patient characteristics

A total of 1944 eligible patients were identified, of which 716 patients (37%) were

included. In these 716 patients, a total of 471 primary and 516 metastatic samples

were available. Characteristics of included patients are shown in Table 6.1. The

proportion of patients with clinical benefit and objective response was 62% and

52%, respectively.

Overall Primary available Metastasis available

n 716 471 516

Age, mean (SD) 65.7 (12.5) 66.1 (12.5) 64.7 (12.0)

Sex, n (%)
Female 251 (35.1) 164 (34.8) 171 (33.1)
Male 465 (64.9) 307 (65.2) 345 (66.9)

Therapy, n (%)
Anti-PD1 448 (62.6) 305 (64.8) 308 (59.7)
Ipilimumab & Nivolumab 268 (37.4) 166 (35.2) 208 (40.3)

Stage, n (%)

IIIC 53 (7.4) 33 (7.0) 36 (7.0)
IV M1a 55 (7.7) 32 (6.8) 39 (7.6)
IV M1b 96 (13.4) 69 (14.6) 67 (13.0)
IV M1c 339 (47.3) 235 (49.9) 235 (45.5)
IV M1d 168 (23.5) 99 (21.0) 136 (26.4)
missing 5 (0.7) 3 (0.6) 3 (0.6)

ECOG performance status, n (%)

0 349 (48.7) 230 (48.8) 248 (48.1)
1 291 (40.6) 195 (41.4) 217 (42.1)
2-4 52 (7.3) 35 (7.4) 35 (6.8)
missing 24 (3.4) 11 (2.3) 16 (3.1)

Brain metastases, n (%)

absent 466 (65.1) 323 (68.6) 321 (62.2)
asymptomatic 100 (14.0) 64 (13.6) 78 (15.1)
symptomatic 68 (9.5) 35 (7.4) 58 (11.2)
missing 82 (11.5) 49 (10.4) 59 (11.4)

Liver metastases, n (%)
absent 446 (62.3) 287 (60.9) 322 (62.4)
present 210 (29.3) 146 (31.0) 153 (29.7)
missing 60 (8.4) 38 (8.1) 41 (7.9)

LDH, n (%)

normal 462 (64.5) 308 (65.4) 325 (63.0)
1-2x ULN 190 (26.5) 119 (25.3) 143 (27.7)
>2x ULN 54 (7.5) 39 (8.3) 39 (7.6)
missing 10 (1.4) 5 (1.1) 9 (1.7)

Number of affected organs, n (%)
<3 384 (53.6) 251 (53.3) 278 (53.9)
>2 332 (46.4) 220 (46.7) 238 (46.1)

Clinical benefit, n (%)
no 270 (37.7) 178 (37.8) 198 (38.4)
yes 446 (62.3) 293 (62.2) 318 (61.6)

Objective response, n (%)
no 323 (45.1) 214 (45.4) 235 (45.5)
yes 393 (54.9) 257 (54.6) 281 (54.5)

Table 6.1: Characteristics of included patients. Abbreviations: SD=standard de-
viation, ECOG=Eastern Cooperative Oncology Group, LDH=lactate dehydrogenase,
ULN=upper limit of normal
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6.4.2 Hyperparameter tuning

Initial experiments showed small differences in performance for different feature ex-

tractors, magnification levels and classifiers. Overall, the PLIP and HIPT models

outperformed the ImageNet feature-extractor for most prediction targets. Based

on these results, the region-level HIPT feature extractor at 20x magnification was

selected in combination with a Transformer classifier.

6.4.3 Treatment outcome prediction

’ For predicting clinical benefit based on primary tissue samples, the model achieved

an AUROC of 0.51 [0.46 – 0.56] (Figure 6.2). For predicting objective response,

the AUROC was 0.47 [0.42-0.52] (Figure 6.3). The deep learning model based

on metastatic tissue samples reached an AUROC of 0.51 [0.46 - 0.56] for predict-

ing clinical benefit, and an AUROC of 0.53 [0.49-0.58]. Heatmaps showing model

attention are provided in the Supplementary Figures 1. No clear patterns were

observed in the patches that were given the most attention.

Figure 6.2: Receiver operator characteristic curve for predicting clinical benefit using
primary (left) and metastatic (right) samples
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Figure 6.3: Receiver operator characteristic curve for predicting objective response
using primary (left) and metastatic (right) samples

6.4.4 Other prediction targets

For distinguishing primary from metastatic samples, the model achieved an AU-

ROC of 0.94 [0.93-0.96] (Figure 6.4). Examples of cases which were misclassified by

the model are shown in Supplementary Figures 2; most cases were either primary

samples with little to no epidermis visible, or samples of cutaneous metastases.

The model achieved an AUROC of 0.63 [0.58-0.68] for classifying BRAF mutation

status in primary samples. By comparison, a logistic regression based on primary

subtype, location and ulceration reached an AUROC of 0.61 [0.56-0.66] (Figure

6.5, where sensitivity and specificity of solar elastosis are also shown). For pre-

dicting lymphocytic infiltration, the model reached an AUROC of 0.68 [0.62–0.74]

and 0.66 [0.62-0.71] in primary and metastatic samples, respectively (Figure 6.5).

6.5 Discussion

The results of this preliminary study indicate that predicting checkpoint inhibitor

treatment outcomes using deep learning on H&E histopathology images is a chal-

lenging task. We did not reach a performance significantly better than random

using either primary or metastatic samples, despite the use of methodology which

is both diverse and proven to reach state-of-the-art results on histopathology clas-
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Figure 6.4: Receiver operator characteristic curve for distinguishing primary from
metastatic samples

sification, and the largest dataset for this purpose to date. Several open questions,

however, remain to be answered.

Such an open issue is the random performance of the model, although these

images are known to hold information that is associated with checkpoint inhibitor

treatment outcomes. For one, lymphocytic infiltration in metastases is discernible

from H&E images and was previously shown to be positively associated with better

response. In addition, BRAF mutation status is associated with better response in

patients receiving anti-PD1 + anti-CTLA4 combination therapy [32]. Histopatho-

logical characteristics associated with BRAF mutation status should therefore hold

some predictive power. A potential explanation for why this information is not

learned by the model is that it must be picked up among the vast number of

features available. This is made even more difficult since the association of both

lymphocytic infiltration and BRAF mutation status with treatment outcomes is

modest [14,32].

Furthermore, the use of pretrained feature extractors raises the question whether

all useful information is captured. With current hardware capabilities, simulta-

neous training of feature extractor and classifier is practically infeasible due to

the enormous memory requirements. Feature extraction is therefore a necessary

step, but this will always result in the loss of some information. The feature ex-
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Figure 6.5: Receiver operator characteristic curve for predicting BRAF mutation
status in primary samples through the end-to-end deep learning model (left) and based
on known clinicopathological characteristics (right)

tractors used in this work are trained using state-of-the-art methodologies that

are designed to maximize the retention of relevant information, as evidenced by

their high performance for on other classification datasets [27,33]. This does not

guarantee, however, that all relevant information is retained. An open question

is therefore how results may change with simultaneous training of feature extrac-

tor and classifier, or with the development of new method for feature extractor

pretraining.

In addition, our method does not approach human performance for all evalu-

ated tasks. For distinguishing primary from metastatic samples, performance is

as expected: a high AUC of 0.94 with misclassifications in metastatic metastases,

or primary cases where epidermis is absent. Furthermore, the performance of the

deep learning model is comparable to that of clinicopathological characteristics for

classifying BRAF mutation status. However, the performance for classifying de-

gree of lymphocytic infiltration is significantly lower than may be expected based

on the interobserver variability for human observers [34]. This is an important

observation, especially since lymphocytic infiltration in metastases is the patho-

logical characteristic that is most strongly associated with checkpoint inhibitor

treatment response [14]. The limitations of the model in reaching the expected
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performance raises the question what other potentially informative features are

missed.

To address these open questions, three research directions could be consid-

ered for further exploration. First, multitarget learning should be explored. This

technique adds one or several auxiliary prediction targets alongside the target of

interest. Since model weights are shared among these prediction targets, this en-

ables the model to extract features for an easier target, which may be subsequently

leveraged for the more difficult target. Clearly, the auxiliary targets should be in-

formative for the prediction task of interest. In this case, these targets could be

BRAF mutations status and degree of lymphocytic infiltration.

Second, the lower performance of the model for classifying lymphocytic infil-

tration should be investigated. This can be approached in several ways. For one,

it would be insightful to show if the utilized feature extractors encode informa-

tion that is associated with the number of TILs in a single patch. Furthermore,

evaluating model performance on similar tasks in other datasets could provide an

indication as to whether this diminished performance is specific for this combina-

tion of task and dataset, or if this result is consistent across datasets. Pursuing

this direction would also be valuable for the field of computational pathology in

general, as it would give insight into the kind of information that is available

through pretrained feature extractors.

Third, the use of more targeted regions of interest, as opposed to the use of all

foreground patches, can be explored. As the foreground includes all the material

visible on the slide, this means that information from healthy or damaged tissue

parts is also available to the model. These tissue parts are unlikely to contain

information that is associated with response to checkpoint inhibitor treatment,

and therefore probably only dilute the signal that may be present. This can be

addressed by segmenting the areas which are likely to be the most informative,

such as the area of vital tumor tissue, or the interface between tumor and host

tissue.

In conclusion, this preliminary study describes a deep learning model based

on H&E histopathology images, trained to predict checkpoint inhibitor outcomes.

In both primary and metastatic samples, the model did not perform significantly

better than random. Further work remains to be done, namely (i) further ex-

pansion of the dataset, (ii) use of multitarget learning, (iii) investigation of the

106



Chapter 6. Deep learning on histopathology to predict checkpoint
inhibitor outcomes in advanced melanoma: a preliminary study

reason for the relatively poor performance for classifying lymphocytic infiltration

of the presented method and (iv) use of more specific regions of interest. For now,

the present work indicates that predicting checkpoint inhibitor outcomes based on

H&E images is a challenging task.

6.6 Supplementary Materials

Supplementary Materials are available through:

https://drive.google.com/file/d/1rVY93rArrNi61JggOfDoNPN3Wp4RFkcN/view?

usp=sharing
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[24 ] Bauer J, Büttner P, Murali R, Okamoto I, Kolaitis NA, Landi MT, et al. BRAF mutations in cutaneous

melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar

elastosis at the primary tumor site. Pigment Cell Melanoma Res 2011;24:345–51. https://doi.org/10.1111/j.1755-

148X.2011.00837.x.

[25 ] Spathis A, Katoulis AC, Damaskou V, Liakou AI, Kottaridi C, Leventakou D, et al. BRAF Mutation Status

in Primary, Recurrent, and Metastatic Malignant Melanoma and Its Relation to Histopathological Parameters.

Dermatol Pract Concept 2019;9:54–62. https://doi.org/10.5826/dpc.0901a13.

[26 ] Huang Z, Bianchi F, Yuksekgonul M, Montine TJ, Zou J. A visual–language foundation model for pathology

image analysis using medical Twitter. Nat Med 2023;29:2307–16. https://doi.org/10.1038/s41591-023-02504-3.

[27 ] Caron M, Touvron H, Misra I, Jégou H, Mairal J, Bojanowski P, et al. Emerging Properties in Self-Supervised

Vision Transformers 2021. https://doi.org/10.48550/arXiv.2104.14294.

[28 ] Review The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge n.d. https://www.termedia.pl/

Review-The-Cancer-Genome-Atlas-TCGA-an-immeasurable-source-of-knowledge,77,24047,0,1.html(accessedFebruary12,2024).

[29 ] Ilse M, Tomczak J, Welling M. Attention-based Deep Multiple Instance Learning. Proc. 35th Int. Conf.

Mach. Learn., PMLR; 2018, p. 2127–36.

[30 ] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is All you Need. Adv.

Neural Inf. Process. Syst., vol. 30, Curran Associates, Inc.; 2017.

108

https://doi.org/10.1200/JCO.21.01701
https://doi.org/10.1101/2023.11.27.23299053
https://doi.org/10.1093/jnci/81.24.1893
https://doi.org/10.1093/jnci/81.24.1893
https://tinyurl.com/3vnhtj7u (accessed January 23, 2024)
https://doi.org/10.1007/978-3-319-59480-4_3
https://doi.org/10.1158/1078-0432.CCR-20-2415
https://doi.org/10.1016/j.tranon.2020.100921
https://doi.org/10.1016/j.tranon.2020.100921
https://doi.org/10.1038/s41551-020-00682-w
https://doi.org/10.1038/s41551-020-00682-w
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1111/bjd.13521
https://doi.org/10.1111/j.1755-148X.2011.00837.x
https://doi.org/10.1111/j.1755-148X.2011.00837.x
https://doi.org/10.5826/dpc.0901a13
https://doi.org/10.1038/s41591-023-02504-3
https://doi.org/10.48550/arXiv.2104.14294
https://www.termedia.pl/Review-The-Cancer-Genome-Atlas-TCGA-an-immeasurable-source-of-knowledge,77,24047,0,1.html (accessed February 12, 2024)
https://www.termedia.pl/Review-The-Cancer-Genome-Atlas-TCGA-an-immeasurable-source-of-knowledge,77,24047,0,1.html (accessed February 12, 2024)


Chapter 6. Deep learning on histopathology to predict checkpoint
inhibitor outcomes in advanced melanoma: a preliminary study

[31 ] LeDell E, Petersen M, van der Laan M. Computationally efficient confidence intervals for cross-validated area

under the ROC curve estimates. Electron J Stat 2015;9:1583–607. https://doi.org/10.1214/15-EJS1035.

[32 ] van Not OJ, Blokx WAM, van den Eertwegh AJM, de Meza MM, Haanen JB, Blank CU, et al. BRAF and

NRAS Mutation Status and Response to Checkpoint Inhibition in Advanced Melanoma. JCO Precis Oncol

2022:e2200018. https://doi.org/10.1200/PO.22.00018.

[33 ] Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, et al. Learning Transferable Visual Models

From Natural Language Supervision 2021. https://doi.org/10.48550/arXiv.2103.00020.

[34 ] Busam KJ, Antonescu CR, Marghoob AA, Nehal KS, Sachs DL, Shia J, et al. Histologic Classification

of Tumor-Infiltrating Lymphocytes in Primary Cutaneous Malignant Melanoma: A Study of Interobserver

Agreement. Am J Clin Pathol 2001;115:856–60. https://doi.org/10.1309/G6EK-Y6EH-0LGY-6D6P.

109

https://doi.org/10.1214/15-EJS1035
https://doi.org/10.1200/PO.22.00018
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.1309/G6EK-Y6EH-0LGY-6D6P


6.7. References

110



Chapter 7

General discussion

7.1 Overview

The main research question of this thesis is as follows: what is the added value of

CT- and histopathology-based predictors over known clinical predictors for check-

point inhibitor outcomes in advanced melanoma?

As discussed in chapter 1, the motivation for finding accurate predictors in this

treatment setting is to prevent unnecessary toxicity and high costs. A predictor

must have a high negative predictive value for it to influence clinical decision

making, since the potential benefits from checkpoint inhibitor therapy are very

large. Although some clinical predictors have been identified, further research is

needed to improve the accuracy of available models.

This thesis therefore explores predictors derived from pretreatment CT scans

and histopathology material, which were categorized as follows:

1. Readily obtainable characteristics, such as tumor burden, location and avid-

ity on FDG-PET imaging.

2. Machine learning models based on radiomics features of lesions on CT imag-

ing.

3. Deep learning models that use the raw volume of lesions on CT imaging as

input.
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4. Body composition metrics, such as skeletal muscle density or the amount of

visceral adipose tissue.

5. Deep learning models based on H&E histopathology images of both primary

and metastatic samples.

This chapter will discuss for every category of predictors the most important

findings. Subsequently, it will put these findings into context and outline the

limitations, main conclusions and recommendations for clinical practice and future

research.

7.2 Summary of findings

When considering image-derived predictors, higher tumor burden, and presence of

liver and symptomatic brain metastases were shown to be associated with worse

outcomes. The studies reviewed in chapter 2 consistently supported these pre-

dictors. Of these predictors, the presence of brain and liver metastases has been

integrated into a multivariable model by Da Silva et al., demonstrating the added

value of these predictors [1]. However, with an AUROC of 0.67, their model leaves

room for further improvement. For tumor burden, the added value over known

predictors is less well established: serum lactate dehydrogenase (LDH) was previ-

ously shown to be correlated with tumor burden [2], and since the included studies

did not evaluate tumor burden alongside LDH, the added value of tumor burden

as assessed on radiological imaging remains to be determined.

The added prognostic value of markers derived from 18F-FDG PET/CT imag-

ing is not well supported by previously published studies. Reviewed studies that

reported on standardized uptake value, which reflects tumor metabolism, showed

conflicting findings. Results on metabolic tumor volume were in line with those on

tumor burden: higher volume was associated with worse outcomes, but the added

value over metrics such as LDH was not investigated. Lastly, the combined results

on total lesion glycolysis are not conclusive on the prognostic value of this marker.

Although a radiomics model reached a significant predictive performance, adding

this model to previously identified clinical predictors did not yield improvement.

The radiomics model presented in chapter 3 reached a modest AUROC of 0.61.

Although statistically significant, this performance is considerably lower than the
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AUROC of 0.77 reported in earlier work [3]. Furthermore, chapter 3 shows that

the information learned by the radiomics model overlaps with known predictors,

namely presence of liver metastases and tumor burden. This can explain why com-

bining the radiomics model with clinical predictors did not improve over a model

of clinical predictors alone.

A deep learning approach also reached a significant predictive performance, but

did not improve over traditional radiomics for predicting outcomes. The hypothesis

that the added flexibility of a deep learning model can improve performance for

this purpose, must therefore be rejected. As shown in chapter 4, both models

reached very similar accuracies, and the same relation with known predictors was

observed: the output of the deep learning model correlated with the presence of

liver metastases and overall tumor burden, and adding the output to a clinical

model did not improve results.

Lower skeletal muscle density and higher visceral adipose tissue index are as-

sociated with worse overall survival. For skeletal muscle density, the findings of

the study presented in chapter 5 and those of previous works agree. Regarding

visceral adipose tissue index, the results of previous works varied. Chapter 5, how-

ever, showed a clear correlation between larger amounts of visceral adipose tissue

and worse outcomes. These associations were independent of previously identified

predictors. For the purpose of predicting individual patient outcomes, however,

it must be noted that the absolute effect sizes are modest. Although body com-

position metrics may improve clinical models, it is therefore unlikely that these

metrics alone will increase performance enough to significantly impact decision

making regarding treatment.

Obesity, when measured as BMI, was not found to be associated with out-

comes. The findings presented in chapter 5 therefore argue against the obesity

paradox, which has been postulated by others, hypothesizing better outcomes in

obese patients. In fact, the observed association between more visceral adipose

tissue and worse outcomes even suggests an opposite effect. The results are in

line with those of the two previous largest studies which investigated the asso-

ciation between BMI and checkpoint inhibitor treatment outcomes in advanced

melanoma.

A deep learning model trained on whole-slide HE histopathology samples did

not achieve a significant predictive value (chapter 6). This was true for both
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primary and metastatic samples. These results should be regarded as preliminary,

as improvements to the method can be made and additional data can be added.

Furthermore, a previous study showed that the degree of lymphocytic infiltration,

manually scored on HE images, is predictive of checkpoint inhibitor outcomes [4].

Results may therefore improve, and a deep learning model based on HE samples

may prove to add to existing predictors. The current negative results, however,

suggest that predicting treatment outcomes based on this data is a challenging

task.

In short, several predictors that add to existing ones were identified, but these

are not yet accurate enough to definitively guide treatment decisions. From the

predictors investigated in this thesis, most predictive value is added by the pres-

ence of liver and symptomatic brain metastases and, to a lesser extent, by skeletal

muscle density and visceral adipose tissue index. Even if the association between

these factors and outcomes reflects a general prognostic relation rather than one

specific to checkpoint inhibitor treatment, they may nonetheless be useful in in-

forming clinical decisions. In order to truly reduce unnecessary costs and toxicity,

however, further improvements are necessary.

7.3 Strengths and limitations

The research presented in this thesis has four key strengths. First, every study

included in this thesis has a substantial sample size. In fact, the collected datasets

are all significantly larger than those of previous works. This is especially impor-

tant for the research on machine and deep learning methods: as these methods are

very flexible in the relationships that they can learn, a large dataset is vital to en-

sure that this flexibility is leveraged. Second, the presented data is collected from

multiple centers. Although this may have lead to a more heterogeneous dataset

and therefore more difficult prediction task, this provides a more realistic of per-

formance when implemented in practice. Third, the machine and deep learning

models of chapters 3, 4 and 6 are all evaluated using a cross validation method.

This method of evaluation is much less likely to produce outlier results than a fixed

train-test split, the method that is used in most prior works. Fourth, all tested

predictors are evaluated alongside known predictors. This is perhaps the most

important strength of the presented research, since this is what makes it possible
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to draw conclusions about their real value in clinical practice.

The first limitation is that results may change with even more data. This is

an important discussion point since the performance of machine and deep learning

models is typically better in larger datasets. An extreme case of this is ChatGPT,

where the massive upscaling of dataset size and training resources had led to

unprecedented performance in natural language processing [5]. Could a similar

brute-force approach also work for predicting checkpoint inhibitor outcomes? This

question cannot be answered based on the research in this thesis, but three things

should be noted here. The first is that in the case of ChatGPT, the model has

the information necessary to perform its task. We know this, because humans can

also perform the this “chat-bot” task. In contrast, human experts cannot predict

response based on baseline CT scans or histopathology material. This indicates

that the information available in these sources of data is likely to be a limiting

factor for performance. Second, the models in chapter 3 and 4 learn only the

information that is already present in the clinical models, but nothing more. This

suggests that any additional information is at least much harder to extract than

what is currently learned. Third, collecting the data necessary for a brute-force

approach will require extensive resources. These costs must be carefully weighed

against the expected benefits, especially given the limited predictive value of the

presented models thus far.

The second limitation is that results may change with more advanced modelling

techniques. This limitation is important for the same reasons as the previous: bet-

ter, yet to be discovered models could potentially improve results and change the

negative conclusions of chapters 3, 4 and 6 to positive ones. Again, the research in

this thesis cannot exclude this possibility. And in fact, incremental improvements

in the field of image classification are seen every year. It is important to note,

however, that these improvements seem to be subject to the law of diminishing

returns: the introduction of convolutional neural networks to image classification

was a major paradigm shift [6], whereas subsequent developments were iterative

refinements [7]. Furthermore, recent developments are becoming increasingly de-

pendent on large datasets. Illustrative in this respect is the introduction of Vision

Transformers: although Transformers formed a paradigm shift in natural language

processing alike that of CNNs in computer vision, their application to computer

vision tasks resulted in modest gains only in large datasets [8]. In summary, there
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is a possibility that new techniques may significantly change results, but this would

be unexpected based on the current trend of improvements.

Furthermore, the retrospective, observational and uncontrolled design of the

presented research must be acknowledged. This has two important implications

for the interpretation of the results. The first is that included patients were those

for which the decision to give treatment was already made. This makes the stud-

ied population slightly different from the population of interest, namely patients

in which the decision to give checkpoint inhibitor treatment is yet to be made.

For example, clinicians may advise against treatment in patients with very poor

prognosis, potentially leading to a lower proportion of these patients being in-

cluded. Reported findings are therefore not guaranteed to generalize, and further

prospective validation is required to investigate this. The second is that it is not

possible to distinguish between general prognostic factors and predictors specific

to checkpoint inhibitor efficacy. Making this distinction would require a control

group of patients not treated with checkpoint inhibitors, which would not be eth-

ical to attain. This means that the predictors investigated in this thesis cannot

be used to decide between treatments; they can only be used to identify patients

with a poor prognosis regardless of treatment.

7.4 Interpretation

What makes prediction of checkpoint inhibitor outcomes such a challenging task?

At this point a comparison with other forecasting challenges may be useful, such as

human population growth, economics, epidemics or meteorology. These forecasting

challenges are approached by considering a system that is made up of a state (e.g.

the number of active COVID-19 cases) and a set of laws that describe how this

state will evolve through time (e.g. exponential growth). Predictions are then

made by stepping forward through time, while updating the state based on the

governing laws [9,10].

Making accurate predictions is more difficult in some problems than in others.

Predictions for population growth, for example, are typically accurate [11]. Factors

that contribute to this are the relatively small number of relevant variables that

form the state (i.e. the number of persons per age category and birth rate), and

the relatively straightforward dynamics. Contrast this with meteorology, the sci-
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ence of weather predictions. The governing physical laws can be precisely defined,

but the number of relevant variables is huge: temperature, pressure and humidity,

among others, must be known with a high spatial resolution [12]. Another key

difference is that small differences in initial conditions can lead to drastically dif-

ferent outcomes, a phenomenon that is colloquially known as the ‘butterfly effect’

[13]. This last factor, especially, makes accurate predictions challenging to make,

as small measurement errors are typically amplified [14].

Predicting checkpoint inhibitor outcomes has several factors that make it a

challenging prediction problem. First, the exact governing dynamics of cancer im-

munology remain elusive, in part because the immune system does not lend itself

well to controlled, repeatable experiments [15]. Second, there are many relevant

variables that influence the behavior of the system, such as the amount and lo-

cation of many different types of cells and molecules. Adding to this is the fact

that these variables are only partially available through blood samples, radiological

scans and tissue biopsies. Third, studies on the immune system suggest a simi-

lar susceptibility to initial conditions as observed in meteorology [16–20]. These

challenges manifest themselves not only in the setting of predicting checkpoint in-

hibitor treatment outcomes, but also in, for example, predicting flares in patients

with auto-immune disease [21].

These factors may explain the results described in this thesis. Machine and

deep learning models are immensely powerful in the relationships between input

data and corresponding labels. In making predictions, however, they are limited by

the information that is provided to them. The complexity of cancer immunology,

along with the huge number of relevant variables, make it plausible that not enough

information is captured by diagnostic modalities to make accurate predictions of

the course of disease for an individual patient.

Furthermore, these factors suggest that a detailed understanding of the gov-

erning dynamics and high-resolution measurements are necessary to achieve the

goal of accurate, individualized predictions. Clearly, this is much more challenging

in cancer immunology than in meteorology, where the most important governing

laws of meteorology have been known for centuries and real-time measurements of

the relevant variables are widely available. Nonetheless, previous research has re-

sulted in major breakthroughs, of which checkpoint inhibitor treatment is a prime

example. Future research that focuses on more accurate understanding and mea-
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surements may thereby not only facilitate better predictions, but also new treat-

ment options. This is not to say that a data-driven approach cannot be of value.

The results presented in this thesis, however, suggest that using these methods

may be of more value when employed alongside others, working together towards

a better understanding of the dynamics of cancer immunology. And in fact, the

large number of relevant variables in cancer immunology may make data-driven

methods invaluable for their analysis.

7.5 Recommendations

Based on the findings presented in this thesis, several recommendations for future

research and clinical practice may be made. First, the presented findings give no

reason to deviate from regular dietary and exercise recommendation in patients

treated with checkpoint inhibitors for advanced melanoma. No conclusions can

be drawn about a causal relationship between diet or exercise with treatment

outcomes. However, the observational evidence of chapter 5 suggests a positive

association between higher muscle density and less visceral adipose tissue with

better outcomes. In addition, no association between higher body mass index and

better outcomes was supported by both chapter 5 and a recent meta-analysis on

this topic. Regular dietary and exercise recommendations are generally considered

to be safe, and the presented findings do not suggest otherwise.

Second, future research should work towards accurate understanding and mea-

surements in cancer immunology, potentially leveraging data-driven techniques.

This will require the development and use of new research methodologies. A con-

crete example of this is the use of spatial transcriptomics [22], a cutting-edge

technology that provides insight into which genes are expressed at a specific loca-

tion in a tissue section. These patterns of localized gene expression could prove

to be predictive of checkpoint inhibitor outcomes. In addition, this technique can

provide a granular view into the spatial organization of a tumor and its surround-

ing tissue in terms of its microenvironment, which may significantly contribute to

our understanding of cancer immunology.

Third, future research into data-driven techniques for clinical outcome predic-

tions should investigate their added value over known predictors. Although this

has been recognized before, the results of chapter 3 and 4 underline its importance.
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This is especially true in settings where simple image-derived characteristics, such

as size or organ location, are known to be predictive, as a machine or deep learning

model can trivially learn to detect these characteristics.
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[18 ] Kumar S, Kumar A, Samet B, Gómez-Aguilar JF, Osman MS. A chaos study of tumor and effector cells in

fractional tumor-immune model for cancer treatment. Chaos Solitons Fractals 2020;141:110321. https://doi.org/

10.1016/j.chaos.2020.110321.

[19 ] Mayer H, Zaenker KS, an der Heiden U. A basic mathematical model of the immune response. Chaos Inter-

discip J Nonlinear Sci 1995;5:155–61. https://doi.org/10.1063/1.166098.

[20 ] Sharma V. The Application of Chaos Theory and Fractal Mathematics to the Study of Cancer Evolution:

Placing Metabolism and Immunity Centre Stage. Med Res Arch 2016;4.

[21 ] Gensous N, Marti A, Barnetche T, Blanco P, Lazaro E, Seneschal J, et al. Predictive biological markers of

systemic lupus erythematosus flares: a systematic literature review. Arthritis Res Ther 2017;19:238. https:

//doi.org/10.1186/s13075-017-1442-6.

[22 ] St̊ahl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis

of gene expression in tissue sections by spatial transcriptomics. Science 2016;353:78–82. https://doi.org/10.1126/

science.aaf2403.

120

https://doi.org/10.1016/j.chaos.2020.110321
https://doi.org/10.1016/j.chaos.2020.110321
https://doi.org/10.1063/1.166098
https://doi.org/10.1186/s13075-017-1442-6
https://doi.org/10.1186/s13075-017-1442-6
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1126/science.aaf2403


Chapter 7. General discussion

121



7.6. References

122



Chapter 8

Summary

This thesis investigates the predictive value of computed tomography (CT) and

histopathology based predictors for outcomes of checkpoint inhibitor treatment in

patients with advanced melanoma. The overarching goal is to identify accurate

predictors based on routine diagnostic modalities that can guide clinical decisions,

thereby mitigating unnecessary toxicity and healthcare costs. The presented re-

search is part of the PREMIUM study, a multicenter effort of eleven melanoma

treatment centers in The Netherlands.

Chapter 1 introduces the role of checkpoint inhibitor treatments in managing

advanced melanoma, emphasizing the significant improvements in patient survival

rates. It also highlights the challenge of predicting treatment outcomes due to the

variable response among patients, serious toxicity and high costs associated with

these treatments. Predictors explored include radiological characteristics, body

composition metrics, and models based on CT scans and histopathology material,

focusing on their added value over known predictors.

Chapter 2 presents a systematic review of previous literature on imaging biomark-

ers for response and survival in checkpoint inhibitor treatments across cancer types.

To this end, 119 studies with a total of 15,580 patients were included and criti-

cally appraised. It found evidence supporting several imaging biomarkers, such as

tumor burden and liver metastases, but notes the limited added value of baseline

FDG-PET parameters. Radiomics and radioactive drug labeling are highlighted

as promising yet methodologically challenging approaches.
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We assessed the predictive value of CT radiomics in chapter 3. These radiomics

are visual characteristics such size, roundness and texture, which together capture

the appearance of a metastatic lesion on CT imaging. Pretreatment CT imaging

of 620 patients was collected, visible lesions were manually segmented and total

of 9370 features per lesion were extracted. Lastly, a machine learning model was

trained to predict clinical benefit based on the extracted features. While this model

achieved moderate predictive accuracy (AUROC = 0.61), it did not significantly

outperform a clinical model (AUROC = 0.65) based on the presence of brain and

liver metastases, performance status and serum lactate dehydrogrenase An overlap

in information between radiomics and clinical predictors can explain why radiomics

does not provide additional value for predicting checkpoint inhibitor outcomes in

melanoma.

Chapter 4 investigates deep learning models trained on CT images of metastatic

lesions for predicting checkpoint inhibitor treatment outcomes. In contrast to the

method used in chapter 3, no predefined features are extracted. Instead, a deep

learning model is trained to predict treatment outcomes using the raw CT image

of the lesion. The hypothesis explored in this chapter was that this method will

improve over the method in chapter 3, because it is not limited by the choice of

extracted features. Baseline CT scans from 730 patients were collected, lesions

were located and a deep learning model was trained on lesion volumes to predict

treatment outcomes. Results were similar to those of chapter 3: the model achieved

a significant predictive value (AUC = 0.61) but did not improve over a model of

known clinical predictors (AUC = 0.64). Again, an overlap in learned information

appears to explain this lack of improvement.

Chapter 5 explores the association between body composition metrics derived

from CT scans and treatment outcomes. For 1471 patients, data was collected

on pretreatment body mass index, in addition to the CT-derived metrics skeletal

muscle index and density, and subcutaneous and visceral adipose tissue. The asso-

ciation of these metrics with overall and progression-free survival was investigated

using Cox proportional hazards models. Results suggest that underweight BMI,

lower skeletal muscle density and higher visceral adipose tissue index associated

with worse outcomes, which is independent of known clinical predictors.

The preliminary study presented in chapter 6 investigates deep learning to

analyze histopathology images for predicting treatment outcomes. The investi-
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gated deep learning model works by splitting the whole-slide histopathology im-

age into square, non-overlapping patches, extracting features from these patches

using pretrained deep learning models and training a classifier to predict treat-

ment outcomes based on these features. From 716 patients, a total of 471 primary

and 516 metastatic samples were collected. This model did not perform signif-

icantly better than random for predicting treatment outcomes in both primary

(AUC = 0.50) and metastatic samples (AUC = 0.54). Although further research

is required, this preliminary result suggests that predicting checkpoint inhibitor

treatment outcomes based on histopathology imaging is a challenging task.

The thesis concludes by synthesizing the findings from the various explored

predictors, acknowledging the complexity of accurately predicting checkpoint in-

hibitor outcomes. The discussion emphasizes the challenging nature of predict-

ing immune response to cancer and suggests that advancements in understanding

cancer immunology and high-resolution measurements are crucial for future im-

provements in prediction accuracy. Recommendations for future research include

leveraging new methodologies like spatial transcriptomics and ensuring data-driven

techniques are evaluated against known predictors. Despite identifying several

predictors that add to existing knowledge, the thesis acknowledges that current

predictive accuracy is insufficient to withhold checkpoint inhibitor treatment, al-

though it can be used to inform shared decision making.
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Chapter 9

Dutch Summary

(Nederlandse Samenvatting)

Dit proefschrift onderzoekt de voorspellende waarde van op computertomografie

(CT) en histopathologie gebaseerde voorspellers voor de uitkomsten van patiënten

die worden behandeld met immuuntherapie (checkpointremmers) voor een gevorderd

melanoom. De beoordeling van het histopathologische materiaal (microscopische

beelden van tumorweefsel) en CT-scan maken onderdeel uit van het aanvullend on-

derzoek dat standaard wordt verricht om de diagnose te stellen en uitgebreidheid

van de ziekte vast te stellen. Het doel is om nauwkeurige voorspellers te identifi-

ceren op basis van deze databronnen, zodat onnodige bijwerkingen en zorgkosten

kunnen worden voorkomen. Dit onderzoek werd verricht in het kader van de

PREMIUM studie, een samenwerking van elf behandelcentra voor melanoom in

Nederland.

Hoofdstuk 1 introduceert de grote verbeteringen in de overlevingskansen van

patiënten sinds de ontdekking van immuuntherapie. Het benadrukt echter ook de

uitdagingen, namelijk de wisselende uitkomsten van therapie, ernstige bijwerkin-

gen en hoge zorgkosten die met deze behandeling gepaard gaan. In dit proef-

schrift onderzoeken we radiologische kenmerken, lichaamssamenstelling en mod-

ellen gebaseerd op CT-scans en histopathologisch materiaal, waarbij de nadruk

ligt op hun toegevoegde waarde ten opzichte van bekende voorspellers.

Hoofdstuk 2 geeft een systematisch overzicht van radiologische kenmerken die
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de respons en overleving voorspellen bij behandelingen met checkpointremmers

voor alle soorten kanker. In totaal werden 119 studies met 15,580 patiënten

gëıncludeerd. In deze studies werd gevonden dat sommige kenmerken op scans,

zoals het totale volume van de uitzaaiingen en de aanwezigheid van uitzaaiingen in

de lever enige voorspellende waarde hebben. FDG-PET-parameters. Radiomics

en radioactieve labeling van geneesmiddelen worden benoemd als veelbelovende

maar methodologisch uitdagende benaderingen.

In hoofdstuk 3 onderzochten we de voorspellende waarde van CT-radiomics in

hoofdstuk 3. Radiomics zijn visuele kenmerken zoals grootte, vorm en textuur, die

samen het uiterlijk van een uitzaaiing op CT-beelden samenvatten. CT-beelden

van 620 patiënten werden verzameld, zichtbare laesies werden handmatig ingek-

leurd en in totaal 9370 kenmerken per laesie werden berekend. Tot slot werd een

model getraind om behandeluitkomsten te voorspellen op basis van deze berek-

ende kenmerken. Hoewel dit model enige voorspellende waarde bereikt, voorspelt

dit model niet significant beter dan een model gebaseerd op voorspellers uit het

medisch dossier van de patiënt, zoals de aanwezigheid van hersen- en leveruitza-

aiingen, de conditie van de patiënt en de hoogte van lactaat dehydrogenase in

het bloed. De overlap in informatie tussen radiomics en klinische voorspellers kan

verklaren waarom radiomics geen extra waarde bieden voor het voorspellen van

de uitkomsten van checkpointremmers bij melanoom.

Hoofdstuk 4 onderzoekt deep learning modellen die zijn getraind op CT-beelden

van uitzaaiingen om behandelresultaten van checkpointremming te voorspellen. In

tegenstelling tot de methode die in hoofdstuk 3 wordt gebruikt, worden er hierbij

geen vooraf gedefinieerde kenmerken geëxtraheerd. In plaats daarvan wordt een

model getraind om de behandelresultaten te voorspellen aan de hand van de ruwe

CT-beelden van de laesie. In dit hoofdstuk onderzochten we of deze methode een

verbetering oplevert ten opzichte van de methode in hoofdstuk 3, omdat deze niet

wordt beperkt door de keuze van de berekende kenmerken. Er werden baseline

CT-scans van 730 patiënten verzameld, laesies werden gelokaliseerd en een deep

learning-model werd getraind op laesievolumes om de behandelresultaten te voor-

spellen. De resultaten waren vergelijkbaar met die uit hoofdstuk 3: het model

behaalde een significante voorspellende waarde (AUC = 0.61), maar verbeterde de

voorspelling niet ten opzichte van een model met bekende klinische voorspellers

(AUC = 0.64). Opnieuw leek een overlap in geleerde informatie dit gebrek aan
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verbetering te verklaren.

Hoofdstuk 5 onderzoekt de associatie tussen lichaamssamenstelling, bepaald

op basis van CT-scans, en behandelresultaten. Voor 1471 patiënten werd data

verzameld over BMI en verschillende maten van lichaamssamenstelling op basis

van CT-beelden, namelijk skeletspierindex en -dichtheid, en de hoeveelheid sub-

cutaan en visceraal vetweefsel. De associatie van deze statistieken met de algehele

en progressievrije overleving werd onderzocht met behulp van Cox proportional

hazards modellen. De resultaten suggereren dat patiënten met een te lage BMI,

een lagere skeletspierdichtheid en/of een hogere viscerale vetweefselindex minder

vaak goed effect van immuuntherapie hebben. Deze voorspellende waarde lijkt

onafhankelijk te zijn van bekende voorspellers.

Het voorlopige onderzoek dat in hoofdstuk 6 wordt gepresenteerd, onderzoekt

deep learning op microscopische beelden van tumorweefsel om behandeluitkom-

sten van checkpointremming te voorspellen. Het onderzochte model werkt door

het microscopische beeld op te delen in vierkante, niet-overlappende patches, ken-

merken uit deze patches te extraheren door middel van vooraf getrainde deep

learning modellen en een model te trainen dat behandelresultaten kan voorspellen

op basis van deze kenmerken. Van 716 patiënten werden in totaal 471 pathologie-

beelden van het oorspronkelijke melanoom en 516 beelden van uitzaaiingen verza-

meld. Zowel het model gebaseerd op primaire melanomen (AUC = 0.50) als dat

waarbij beelden van uitzaaiingen werden gebruikt (AUC = 0.54) had geen voor-

spellende waarde. Hoewel verder onderzoek nodig is, suggereert dit voorlopige

resultaat dat het voorspellen van behandelresultaten van immuuntherapie op ba-

sis van histopathologische beelden een uitdagende taak is.

Het proefschrift sluit af met het samenvatten van de bevindingen voor de ver-

schillende onderzochte voorspellers. Deze resultaten benadrukken de complexiteit

van de immuunrespons op kanker en suggereren dat verder onderzoek zich moet

richten op een gedetailleerder begrip van kankerimmunologie om voorspellingen te

verbeteren. Aanbevelingen voor toekomstig onderzoek zijn onder meer het benut-

ten van nieuwe methodes zoals “spatial transcriptomics”, waarbij data-gedreven

technieken veel waarde kunnen toevoegen. Concluderend kunnen voorspellers uit

het medisch dossier samen met informatie over lichaamssamenstelling op CT iets

zeggen over de kans op respons op immuuntherapie. De combinatie van deze fac-

toren is echter op dit moment nog niet genoeg om patiënten op basis hiervan be-
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handeling te onthouden. Wel kunnen ze gebruikt worden in de in de gezamenlijke

besluitvorming van patiënt en arts.
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