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1
Introduction

1.1. Prelude
On a rainy evening in Utrecht, you decide to host ten of your friends to play
board games. You ask each of them for a list of board games that they would
like to play. Fortunately, the group collectively owns all the games on the list.
However, you realize that each of the games on the list can be played with
strictly fewer than ten players. You make peace with splitting the group in
two, each group playing a different selection of games. How do you decide
which of your friends should be in the same group?

After fiddling with the list of game preferences for some time, you realize
that it is not so easy to ensure that everyone gets to play at least one game of
their choice, while also ensuring that not too many of your friends are cross
with you because they do not get to play some game on their list. Luckily,
you are aware of the dictum, “When in doubt, draw a graph”! So you draw a
graph with each of your friends and yourself as nodes of the graph. Whenever
two people like the same game, you connect their nodes by a line. You start to
notice that some pairs of your friends’ lists of games have more than one game
in common. Certainly, friends whose lists have the most in common should be
in the same group. So, you decide to write the number of common games next
to the line connecting them. All that is left to do is identify the set of lines in
the graph that results in the smallest sum of numbers written next to them.

At first, you try to find these lines by trial and error. However, after the
third try, you lose patience and start looking for an easier approach. While you
are hopelessly staring at the graph, you hear a familiar voice say, “Lose hope
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Chapter 1. Introduction

not, you must! Stumbled upon the age-old graph problem, you have: finding
the minimum-cut, hm”. You look around, startled, only to see a diminutive
figure with large pointed ears float away into the distance. You are not one to
ignore the advice of a floating figure, so you look up how to find a minimum-cut
in a graph and manage to divide your friends into two groups that play together.
Each group is happy with their selection of games and while it pours heavily
outside, the warmth of friendly banter and laughter fills your home.

Finding the minimum cut is arguably one of the oldest and most famous
problems in graph theory. It is a natural dual to the problem of finding the
maximum flow in a network. The first ever algorithm to solve the problem
was given by Ford and Fulkerson [86] as early as 1956. While their algorithm
was good, it fueled the quest to find more efficient algorithms [74, 68], with
the fastest algorithm, at the time of writing this thesis, being the one due to
Chen et al. [47]. Several practical problems can be modeled as problems on
graphs. Be it finding the shortest path from point A to point B, or finding
the shortest tour visiting every major city of a country, or creating a railway
network connecting a set of cities in a cost-effective way, it translates naturally
to an algorithmic problem on graphs. Decades of research have focused on
finding more efficient algorithms for a multitude of problems on graphs.

Generally speaking, the faster an algorithm, the “more efficient” it is. How
do we quantify “fastness”? The “fastness” of an algorithm, known as its run-
time, is the maximum number of computations that an algorithm performs on
any given input. It is measured as a function of the size of its input. Typically,
computer scientists define the size of any input to be the number of bits used
to describe it in binary encoding. The run-time of an algorithm is expressed
using the big-Oh notation, written as O(·). For functions f, g, we say that
f(x) = O(g(x)), if there exists some natural number x0 and some real constant
c, such that for all x ≥ x0, f(x) ≤ c · g(x). We can think of big-Oh as the
asymptotic order of growth of a function.

How fast is fast enough? The consensus in the community of computer
scientists is that algorithms with a polynomial run-time, that is, run-time of
the form O(nc), where n is the size of the input and c is some constant, are
“efficient”. We call such algorithms polynomial-time algorithms. On the other
hand, algorithms with an exponential run-time, that is, run-time of the form
O(cn), are considered “inefficient”. The terms “efficient” and “inefficient” must
be taken with a grain of salt for two reasons. First, in practice, some exponential-
time algorithms can perform better than polynomial-time algorithms if the
size of the input is small enough. Secondly, the run-time is defined for the
worst-case input. When we say that an algorithm runs in time O(2n), we mean
that there exists at least one input of size n for which the algorithm must
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1.2. Dealing with NP-hardness

perform O(2n) computations.
In general, the goal of an algorithmist is to design polynomial-time algo-

rithms, if possible. All the aforementioned algorithms to find the minimum
cut in a network are polynomial-time algorithms. However, there are problems
for which generations of algorithmists have failed to design any. For example,
an extension of the problem of finding the minimum cut is that of finding
the minimum k-cut where k is part of the input. In this problem, instead of
splitting the graph into two parts, you are asked to split it into k parts by
removing a subset of edges of weight at most s, for some positive integer s.
The latter is not known to have any polynomial-time algorithm. However, if
you were to give a standard computer a solution to the problem, it could easily
verify whether your solution is correct in polynomial time. Already at the start
of 1970s, we knew of hundreds of problems that exhibited a similar behavior.
The book of Garey and Johnson [93] compiles a couple of hundreds of them in
its appendix.

Before we delve into the discussion about categories of problems, we need
to define what we mean by a problem. A problem is a question to be answered.
Inherently, it consists of free variables and parameters whose values are un-
specified. An instance of the problem has a specific input, where the values of
these variables and parameters are fixed. A decision problem is a problem that
can be answered as YES or NO. It is of the form:

Input: A, B, C
Question: Does there exist. . . ?/ Is it true that. . . ?, etc.

An instance of a decision problem that can be answered as YES is called
a YES-instance; otherwise, it is called a NO-instance. Another class of prob-
lems, called optmization problems, are those for which the answer is the
minimum/maximum value of some quantity of interest.

Any problem that can be solved by a polynomial-time algorithm belongs
in the class P. Decision problems for which there exists an algorithm, which
given a proof of a YES-instance can verify it in polynomial-time, constitute
the complexity class NP. Problems that are at least as hard any problem in
NP are called NP-hard and the problems in NP that are NP-hard are called
NP-complete. It is widely believed that P ̸= NP. However, a proof of this belief
has eluded generations of computer scientists.

1.2. Dealing with NP-hardness
What do algorithmists do when they encounter NP-hard problems? The
inability to design polynomial-time algorithms for these problems is no reason
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Chapter 1. Introduction

NPP NP-hard

NP-complete

Figure 1.1: The figure shows how different complexity classes relate to each other.

to get disheartened. In this section, we shall see four broad approaches to cope
with NP-hardness. First, one can compromise the optimality of the solution to
design polynomial-time algorithms that find solutions reasonably close to the
optimum. Second, for sufficiently small inputs, exponential-time algorithms
perform reasonably well. Therefore, it is worthwhile to try to design “efficient”
exponential-time algorithms. Third, in the same spirit as the previous approach,
one can strive to design algorithms that are exponential-time in some small
“parameter” of the input while being polynomial-time in the input size. Finally,
one can isolate classes of input to the problem where one can hope to solve
the problem in polynomial time. In what follows, we discuss each of these
approaches in some detail with respect to NP-hard problems on graphs.

Approximation algorithms Finding an optimal solution is not always
a wise pursuit. Sometimes in practice, the difference between a suboptimal
solution and an optimal solution is negligible. Approximation algorithms
are those that find an “approximate” solution to an NP-hard optimization
problem, with a provable guarantee that the “approximate” solution is not too
far from the optimum. These algorithms classically run in polynomial-time
and strive to get a solution as close to the optimum as possible. In a wide
variety problems, the solution found by an approximation algorithm is within
a constant multiplicative factor of the optimum. This multiplicative factor
is called the approximation ratio. Just like the notion of NP-hardness, there
exist several notions of inapproximability. An example of a problem that is
notoriously hard to approximate is the Maximum Independent Set, where
given a graph G with n vertices, the goal is to find the size of the largest
subset of vertices that does not have an edge between any pair of vertices.
Unless P = NP, Maximum Independent Set cannot be approximated within
n1−ε factor of the optimum, for any ε > 0. We refer the reader to the book
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1.2. Dealing with NP-hardness

of Vazirani [185] or Williamson and Shmoys [189] for more information on
approximation algorithms.

Figure 1.2: The figure shows a graph on 9 vertices. The vertices drawn in turquoise
constitute a maximum independent set.

Exact Exponential algorithms Every NP-complete problem can be solved
by enumerating all possible solutions. However, this can be excruciatingly
slow. While designing exact algorithms for NP-complete problems, we make
peace with the run-time being exponential while striving to make the base of
the exponent as small as possible. For example, consider again the problem
Maximum Independent Set. The brute-force approach to solve the problem
would be to enumerate all the subsets of vertices in O(2n) time and for each
subset, check if an edge exists in G for any pair of vertices in the subset. The first
improvement on the brute-force run-time was by Tarjan and Trojanowski [179]
in 1977. Their algorithm ran in time O(2n/3) by using clever branching
strategies. Besides branching, several techniques are known to design reasonably
fast exponential algorithms. For example, Held and Karp [112] used dynamic
programming across subsets to solve the well-known problem, Travelling
Salesperson in O(2n) time instead of O(n!) ∼ nO(n) time that brute-force
would take. Algebraic tools like Inclusion-Exclusion and Measure and Conquer
also show great promise while designing exponential algorithms [126, 19, 141,
83, 84, 183].

On one hand we see the development of several strategies to design algo-
rithms that perform better than brute-force, while on the other some problems
keep evading all attempts at breaking the O(2n) barrier. The Exponential-
Time Hypothesis (ETH), states that for a certain decision problem, known
as 3-SAT, there exists no algorithm that can decide it in time O(2o(n)) for
any ε > 0. Another rather strong conjecture, called the Strong Exponential
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Chapter 1. Introduction

Time Hypothesis (SETH), states that the decision problem called CNF-SAT
cannot be solved by any algorithm running in time O((2 − δ)n) for any δ > 0.
While the particular decision problems are not relevant to this discussion, if
you believe any of these conjectures, then you believe that for some decision
problems brute-force is inevitable. We refer the reader to the book of Fomin
and Kratsch [82] for an in-depth study of exponential algorithms.
Parameterized algorithms The class of NP-hard problems is vast and
diverse. While the P versus NP-hard dichotomy may help us distinguish
between problems that allow polynomial-time algorithms and those that do
not, any two NP-hard problems can vary greatly in their complexity. Consider
two close relatives of the Maximum Independent Set, namely, Clique and
Vertex Cover. In the problem Clique, given a graph G with n vertices,
one is asked if there exists a subset of vertices of size at least k such that there
is an edge between every pair of vertices in the subset. Such a subset is called
a clique of G. In Vertex Cover one is asked to find a subset of vertices of
G of size at most k such that every edge of G has an endpoint in the subset.
Such a subset is called a vertex cover. Both Clique and Vertex Cover are
NP-hard [125]. While Vertex Cover can be solved in time O(2k · n2) [36],
Clique can not be solved by any algorithm that runs in time n(1−ε)k, for any
fixed ε > 0 [38], unless ETH fails. This elucidates the need for a more precise
analysis of the complexity of NP-hard problems.

A B

Figure 1.3: The figure shows a graph on 16 vertices. In graph A, we show the maximum
clique in turquoise. In the graph B, the vertices in the minimum vertex cover are
drawn as turquoise discs.

Downey and Fellows [70, 71] introduced the paradigm of parameterized
complexity in 1992. The fundamental goal of parameterized analysis is to iden-
tify the properties of the problem that make it intractable. In that endeavor,
we study the complexity of any problem not only with respect to the size of
its input but also other measures that may be the source of its complexity. A
parameterized problem takes the following form:
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1.2. Dealing with NP-hardness

Input: A, B, C
Parameter: k

Question: Does there exist. . . ?/ What is the maximum size of. . . ?,
etc.

The parameter k is some relevant secondary measure that captures a property
of the input instance. It could be a wide variety of things, for example, the
size of the subgraph sought after, some measure of structural complexity of
the input, etc.

Parameterized problems that can be solved in time nf(k) belong to the
class XP, read as slicewise polynomial. Problems that can be solved by an
algorithm that runs in time f(k) · nc, for some constant c, belong to the class
FPT, and are fixed-parameter tractable. We also refer to the algorithms with
such running times as FPT algorithms. Clearly, FPT ⊆ XP. In fact, in their
monograph [72] Downey and Fellows presented a proof of the fact that FPT⊂
XP. They also defined a hierarchy of complexity classes, called W -hierarchy.
According to this hierarchy:

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [P ] ⊆ XP

It is conjectured that each inclusion in the above hierarchy is strict, i.e.,
FPT ̸= W [1] ̸= W [2] ̸= . . . W [P ] ̸= XP. We refer the readers to the monograph
of Downey and Fellows [72] and the book of Cygan et al. [58] for a detailed
and comprehensive description of the topic of parameterized algorithms.
Restriction to special graph classes It turns out that several problems
that are NP-hard on general graphs, can be solved in polynomial time when
the input is restricted to have a particular structure. For example, the problem
Maximum Clique, as we know, is NP-hard [125] and even W [1]-hard [38]
on general graphs. However, it can be solved in polynomial time when the
input is restricted to the class of planar graphs. The algorithm makes use of
Kuratowski’s theorem [137], which implies that any planar graph cannot have
a subgraph that is a clique of size five or more. Consequently, if k is the size
of the maximum clique in the given planar graph, the problem boils down to
deciding if k = 1, 2, 3 or 4. The simple approach would be to enumerate all
subsets of vertices of size 4 and check if any of them forms a clique. If yes,
the size of the maximum clique must be 4 as it cannot be any larger. If not,
then enumerate all subsets of size 3 and check if any of them forms a clique. If
yes, output 3, else output 2 (if the planar graph has an edge). One can easily
extrapolate from this that on any class of graphs that cannot have a subgraph
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Chapter 1. Introduction

that is a clique of size at least ℓ, for some constant ℓ, Maximum Clique can
be solved in polynomial time. Therefore, it is reasonable to conclude that
absence of large cliques in the input makes the problem tractable.

The above discussion points to the fact that the hardness of any problem de-
pends on the structure of the input. Particularly, the exclusion of “problematic”
structures from the input can make the problem tractable. This observation
has fueled decades of research on the complexity of problems on special classes
of graphs.

A graph class G is hereditary if for every graph in the class, all of its induced
subgraphs (subgraphs obtained by deletion of vertices) also belong to the class.
It is folklore that hereditary classes of graphs can be characterized by a set of
minimal graphs denoted by Forb(G), such that if F ∈ Forb(G) then F ̸⊆i G for
any G ∈ G. Similarly, a graph class is closed under taking minors if for every
graph G in the class, the graph obtained by deleting its vertices or edges, or
contracting its edges also belongs to the class. It was shown by Robertson and
Seymour that any minor-closed graph class can be characterized by a finite
set of forbidden minors [170]. The class of graphs that exclude a graph H as
an induced subgraph are called H-free graphs and those that exclude H as a
minor are called H-minor-free graphs.

Several notoriously intractable problems can be solved in polynomial-time
on H-free and H-minor-free graphs. For example, Maximum Independent
Set, can be solved in polynomial-time on P5-free graphs (graphs excluding
a path on 5 vertices as an induced subgraph) [142] and K1,3-free (claw-free)
graphs [154]. For more information on graph classes, we refer the reader to
the book of Golumbic [104] and the more recent one by Brandstäd et al. [33].

1.3. Outline of the Thesis
In this thesis, we continue the research on well-known NP-hard problems
by looking at them from two lenses, namely, parameterized complexity and
restriction of input to classes of graphs forbidding certain subgraphs. The
thesis comprises three parts.

Part I. Foundations
In this part we introduce the fundamental notions that we implicitly use
throughout the thesis. While Chapter 1 serves as a gentle exposure to
relevant concepts in algorithmics and complexity, Chapter 2 gives a formal
definition of the terminologies and notations used across further chapters.
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1.3. Outline of the Thesis

Part II. Multiway Cut
This part focuses on the problem Minimum Multiway Cut. This problem is
a natural generalization of the problem of finding the minimum (s, t)-cut.

In Chapter 3, we present a parameterized subexponential-time algorithm
to solve Minimum Multiway Cut when the input is restricted to plane graphs
with terminal face-cover number at most k. While it was known that Minimum
Multiway Cut can be solved in subexponential time parameterized by the
number of terminals, not having an upper bound on the number of terminals
poses severe challenges. The algorithm is founded on an in-depth analysis of
the structure of the graph induced by the edges of minimum multiway cut in
the dual of the input plane graph. Assuming ETH, the running time of this
algorithm is tight. This chapter contains an extended version of joint work
with Erik Jan van Leeuwen [161].

In Chapter 4, we prove that Minimum Multiway Cut remains NP-hard
even on unweighted planar subcubic graphs. While the gadgets created are
inspired by the original proof of Dahlhaus et al. [60], the real achievement is
reducing the maximum degree of the hard instance from 11 in [60] to 3. The
proof relies on several astute observations about the interactions of various
novel gadgets. This chapter is based on joint work with Johnson et al. [122].

Part III. Complexity Framework for Forbidden
Subgraphs
In this part, we develop an algorithmic meta-classification for problems that
satisfy three properties. The properties are:

C1. The problem is polynomial-time solvable on graphs of bounded treewidth.

C2. The problem is NP-hard on subcubic graphs.

C3. The problem is NP-hard on edge subdivisions of subcubic graphs.

We show that a huge compendium of problems satisfy these three properties.
In Chapter 5, we prove the statement of our meta-classification. We then

compare our framework with the existing frameworks for minor-freeness and
topological-minor-freeness. We also discuss the limitations of our framework.
This chapter contains results from joint work with Johnson et al. [120].

Finally, in Chapter 6, we consider problems that almost fit our framework,
i.e. they satisfy condition C1 but not C2. We prove that Independent Feed-
back Vertex Set is one such problem that is tractable on subcubic graphs.
Some problems known to be tractable on subcubic graphs are Feedback
Vertex Set, Matching Cut, and k-Coloring. For all these problems we
obtain complexity dichotomies on classes of graphs forbidding a finite set of
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subgraphs. The results presented in this chapter were published in joint work
with Johnsonet al. [121].

1.4. List of Publications
The results presented in this thesis are based on the following publications.

• Sukanya Pandey and Erik Jan van Leeuwen. Planar Multiway Cut
with Terminals on Few Faces. In Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022, pages 2032-2063.
SIAM, 2022.

• Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma,
Siani Smith, and Erik Jan van Leeuwen. Edge Multiway Cut and
Node Multiway Cut are Hard for Planar Subcubic Graphs.
In Proceedings of 19th Scandinavian Symposium and Workshops on
Algorithm Theory, SWAT 2024, volume 294 of LIPIcs, pages 29:1-29:17,
Schloss Dagstuhl–Leibniz Zentrum für Informatik, 2024.

• Matthew Johnson, Barnaby Martin, Jelle Oostveen, Sukanya Pandey,
Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complex-
ity Framework for Forbidden Subgraphs I. The Framework.
arXiv:2211.12887v5 [math.CO] (Under review.)

• Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma,
Siani Smith, and Erik Jan van Leeuwen. Complexity Framework for
Forbidden Subgraphs III: When Problems Are Tractable on
Subcubic Graphs. In Proceedings of 48th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2023, volume
272 of LIPIcs, pages 57:1-57:15, Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2023.
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2
Definitions

In this chapter, we formally define the mathematical notations and graph-
theoretic terminologies that we shall use throughout this thesis.

2.1. Mathematical Notations
The set of natural numbers N is the set {0, 1, 2, . . .}. We denote by R+ and
Q+ the sets of positive real and rational numbers, respectively. For a natural
number n, we denote by [n] the set of numbers {0, 1, 2, . . . n}. For natural
numbers x and y, [x, y] is the set {i : x ≤ i ≤ y} and (x, y) denotes the set
{i : x < i < y}.

We use weight functions in the input for several problems in this thesis. A
weight function is of the form ω : S −→ U , where S is part of the input and
U = N. For a set X ⊆ S, its weight is defined as w(X) = ∑

x∈X w(x).

Asymptotic functions The running time of an algorithm is a function,
T (n), that measures the number of computations performed by the algorithm
on an input of size n in the worst-case. The domain of this function is the set
of natural numbers N. Running times are described by asymptotic functions.

For a function g(n), we denote by O(g(n)) the class of functions:

O(g(n)) =
{

f(n) : ∃ c, n0 ∈ R+ such that f(n) ≤ c · g(n) ∀n ≥ n0

}
.

If a function f(n) ∈ O(g(n)), we write f(n) = O(g(n)) to imply that g(n)
is an asymptotic upper bound for f(n). The function O(·), however, does not
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Chapter 2. Definitions

denote a tight bound. The following notion of asymptotic upper bound is
stronger.

o(g(n)) =
{

f(n) : ∀c > 0, c ∈ R+, ∃n0 ∈ R+, n0 > 0,

such that f(n) ≤ c · g(n), ∀n ≥ n0

}
.

Equivalently, o(·) is defined as:

o(g(n)) =
{

f(n) : lim
n→∞

f(n)
g(n) = 0

}
.

For more information on asymptotic functions, we refer the reader to the
book of Cormenet al. [55] which contains a comprehensive coverage of the
topic.

2.2. Parameterized Complexity
We follow the notations and definitions in the books of Cyganet al. [58] and
Downey and Fellows [72].
Basics A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a
fixed, finite language. For any instance (x, k) ∈ L, k is called the parameter.

A parameterized problem L is called fixed-parameter tractable if there exists
an algorithm A (called fixed parameter algorithm), a function f : N → N, and
a positive constant c, such that given (x, k) ∈ Σ∗ × N, A correctly decides if
(x, k) ∈ L in time bounded by f(k)·|(x, k)|c. The complexity class containing all
fixed-parameter tractable algorithms is called FPT. Any problem that is FPT is
known to have a kernelization algorithm. A kernelization algorithm or a kernel
is defined as an algorithm A, which given an instance (I, k) of a parameterized
problem L, run in polynomial-time and returns an equivalent instance (I ′, k′)
such that there exists a computable function g(·) for which |I ′| + k′ ≤ g(k).
If for some problem, g(·) is a polynomial, then the problem is said to have a
polynomial-kernel.

A problem is slicewise polynomial if there exists an algorithm A, functions
f, g : N → N such that for any (x, k) ∈ Σ∗ ×N, A correctly decides if (x, k) ∈ L
in time bounded by f(k) · |(x, k)|g(k). The complexity class containing all
slicewise polynomial problems is called XP.

We sometimes use the notation O∗(·) to describe the running time of
FPT or XP algorithms, if the polynomial factor is not particularly interesting.
We say that a function f(n, k) = O∗(g(k)) if f(n, k) is upper bounded by
g(k) · nO(1).
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Exponential Time Hypothesis A propositional formula ϕ, on Boolean
variables x1, x2, . . . xn, is said to be in Conjunctive-Normal Form(CNF) if it
is a conjunction of disjunctions, i.e., ϕ = C1 ∧ C2 ∧ . . . ∧ Cm, where each
Ci = xi1 ∨ xi2 ∨ . . . ∨ xik

. The problem CNF-SAT is defined as: given a CNF
formula ϕ on n Boolean variables containing m clauses, does there exist an
assignment of true/false values to each variable such that ϕ evaluates to true?
If we restrict the number of variables in each clause to be 3, the problem is
referred to as 3-SAT.

The Exponential Time Hypothesis states that there cannot exist any algo-
rithm solving 3-SAT in time 2o(n).

Let q-SAT be the problem derived from CNF-SAT by restricting the
number of variables in each clause to be at most q. Then the Strong Exponential
Time Hypothesis states that as q tends to infinity, there cannot exist any
algorithm that solves q-SAT in time O∗((2 − ε)n), for any ε > 0.

2.3. Graphs
Basic terminology A graph is a pair G(V, E), such that E ⊆

(V
2
)
. Unless

otherwise specified, a graph is undirected. The elements of V are called the
vertices of the graph and the elements of E its edges. For vertices u, v ∈ V , an
edge between u and v is denoted by uv. We also denote the cardinality of the
vertex and edge sets as |V | = n and |E| = m. We also use the notations V (G)
or E(G) to denote the vertex and edge sets of the graph G respectively.

A graph is edge-weighted if there exists a function ω : E −→ Q+ such that
ω(e) ∈ Q+, for all e ∈ E. A graph is node-weighted if such a function has the
domain V .

A subgraph G′(V ′, E′) of G, written as G′ ⊆ G, is a graph such that V ′ ⊆ V
and E′ ⊆ E. If G′ ⊆ G and G′ ̸= G, then G′ is a proper subgraph of G. G′ is
an induced subgraph of G, written as G′ ⊆i G, if for all x, y ∈ V ′, if xy ∈ E
then xy ∈ E′.

A walk in a graph is a sequence of vertices v1, v2, . . . vℓ such that for all
1 ≤ i < ℓ, vivi+1 ∈ E. If v0 = vℓ, the walk is closed. A path is a non-empty
graph P of the form V (P ) = {x0, x1, . . . , xk} and E(P ) = {x0x1, . . ., xk−1xk},
where all xi are distinct. The graph formed by adding the edge x0xk to the
path P is called a cycle. The number of edges in a path (cycle) is its length.
We use the notation P [xi, xj ] to denote the subpath of P between vertices xi

and xj .
A graph is connected if there is a path between any two vertices in a graph,

and disconnected otherwise.
A connected undirected graph without cycles is called a tree. An undirected
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graph without cycles is called a forest. For a tree N , we use N [x, y] to denote
the unique path in N between the vertices x and y.

The girth of a graph G that is not a forest is the length of a shortest cycle
in G.

The contraction of an edge e = (u, v) of G is the operation of identifying
u and v, while removing any loops or parallel edges that arise. We use the
notation G/e. This extends to sets F ⊆ E(G) of edges, for which we can use the
notation G/F . If v had degree 2 and its two neighbors in G are non-adjacent,
then the operation is called the (vertex) dissolution of v, and v is said to have
been dissolved.

A graph H is a minor of graph G if H can be obtained from G after a series
of vertex and edge deletions and edge contractions. H is a topological minor of
G if it can be obtained from G after a series of vertex and edge deletions and
vertex dissolutions.

A matching in a graph G(V, E) is a subset of E such that no two edges in
the subset share any endpoint.
Connectivity A cut vertex of a connected graph is a vertex whose removal
yields a disconnected graph. A biconnected graph is a graph without cut
vertices. A biconnected component or block of a graph is a maximal subgraph
that is biconnected.

A bridge of a connected graph is an edge whose removal yields a disconnected
graph. A bridgeless graph is a graph that has no bridges. A bridgeless component
or bridge block of a graph is a maximal subgraph that is bridgeless. A bridge
block that consists of more than one edge is called a nontrivial bridge block;
the other bridge blocks consist of just a single edge, which is a bridge in the
graph. Bridge blocks are incident on each other at cut vertices of the graph.

Given two disjoint vertex subsets X, Y ⊆ V , an (X, Y )-cut is a set of edges
whose removal leaves no path between any vertex of X and any vertex of Y . If
such a cut also induces a matching in the graph, it is called a matching cut.

Given a subset T ⊆ V , a (edge) multiway cut of T is a set of edges whose
removal leaves no path between any pair of distinct vertices in T .

Given a subset T ⊆ V (called terminals), a Steiner tree on T is a minimally
connected subgraph H of G such that there is a path in H between any two
terminals in T .
Graph Classes A graph G is H-subgraph-free if H is not a subgraph of G,
H-free if H is not an induced subgraph of G, H-topological-minor-free if H is
not a topological-minor of G, and H-minor-free if H is not a minor of G.

For a set H of graphs, a graph G is H-subgraph-free if G is H-subgraph-free
for every H ∈ H. If H = {H1, . . . , Hp} for some integer p ≥ 1, we also say that
G is (H1, . . . , Hp)-subgraph-free. We also define the analogous notions of being
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H-free, H-topological-minor-free and H-minor-free.
A class of graphs is hereditary if it is closed under deletion of vertices and

monotone if it is closed under the deletion of edges.
Decompositions and Width Measures A tree decomposition of a graph
G(V, E) is a pair (T, X ) where T is a tree and X is a collection of subsets of V
called bags such that the following holds:

• A vertex i ∈ T is a node and corresponds to exactly one bag Xi ∈ X .

• The tree T has the following properties.

1. For each edge vw ∈ E, there is at least one node of T that contains
both v and w.

2. For any vertex u ∈ V , the nodes of T corresponding to the bags of
X that contain u induce a connected subgraph of T .

The width of (T, X ) is one less than the size of the largest bag in X . The
treewidth of G is the minimum width of its tree decompositions. If we require
T to be a path, then we obtain the notions path decomposition and pathwidth.

A graph parameter p dominates a parameter q if there is a function f such
that p(G) ≤ f(q(G)) for every graph G. If p dominates q, but q does not
dominate p, then p is more powerful than q. If p dominates q and vice versa,
then we say that p and q are equivalent. Note that every graph of pathwidth
at most c has treewidth at most c. However, the class of trees has treewidth 1,
but unbounded pathwidth (see [67]). Hence, treewidth is more powerful than
pathwidth.

For further information on graphs, we refer the reader to the books of
Diestel [67] or Harary [110].
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II

Multiway Cut
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Overview

A graph with weighted edges, and a subset of its vertices called terminals,
is given. How would you pairwise disconnect the terminals by removing a
subset of the edges of the graph of minimum possible weight? Widely known
as the Minimum (Edge) Multiway Cut problem, this question is a natural
generalization of the popular minimum (s, t)-cut problem. A variant of the
problem was first introduced by T.C. Hu in 1969 [115]. Formally, we can define
the Minimum Edge Multiway Cut problem as follows:

Minimum Edge Multiway Cut
Instance: A graph G(V, E), weight function ω : E(G) → Q+, T ⊆

V (G)
Question: What is the minimum possible weight of an edge multiway

cut of (G, T )?

The subset of edges (vertices) which when deleted from the input graph
pairwise disconnects all the vertices of T is called an edge (node) multiway
cut (also known as multiterminal cut). When all the edge weights are equal
(equivalently, the edges are not weighted), the goal is to find an edge multiway
cut of minimum cardinality.

In the decision variant of this problem, the goal is to decide if for a given
integer s there is an edge multiway cut of size at most s. We formally define
the decision problem as:

Edge Multiway Cut
Instance: A graph G(V, E), a set of terminals T ⊆ V , and an integer

s.
Question: Does (G, T ) have an edge multiway cut S ⊆ E of size at

most s?

We shall refer to the aforementioned problems as Multiway Cut when it
is clear from the context which variant of the problem we are referring to.
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Figure 2.1: The three different types of multiway cuts that we consider in this part.
In all figures, the red square nodes form the terminal set T . In the top left figure, the
green lines form an edge multiway cut. In the top right, the green encircled vertices
form a node multiway cut not containing a vertex of T . In the bottom figure, the
green encircled vertices form a node multiway cut that contains two vertices of T . The
coloured parts depict the components formed after removing the edges/vertices of the
multiway cut.

The study of the complexity of Edge Multiway Cut was pioneered by
Dahlhaus et al. in their seminal paper [60]. The authors showed that Edge
Multiway Cut is NP-hard on arbitrary graphs for any fixed t ≥ 3, where
t is the number of terminals. They also showed that Minimum Multiway
Cut is Max-SNP-hard for all fixed t ≥ 3 even if the edges are unweighted,
while giving an O(tnm log(n2/m))-time approximation algorithm, which given
an arbitrary graph and an arbitrary t finds a solution within a 2 − 2/t ratio
of the optimum. Following these hardness results, began a twofold quest: to
find approximation algorithms with a better approximation ratio [40, 124]
and to find exact algorithms that were more efficient than any brute-force
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approach [148, 41, 191, 129, 57, 46, 108, 49].
Until 2006, not much was known with regard to the parameterized com-

plexity of Multiway Cut. Marx [148] got the ball rolling with his result that
Node Multiway Cut, where one must delete vertices instead of edges, is
FPT parameterized by the size of the solution s. It was only two years after
Garg et al. [98] pioneered the study of Node Multiway Cut showing that
Node Multiway Cut is NP-hard. Formally, Node Multiway Cut can be
defined as:

Node Multiway Cut
Instance: A graph G(V, E), a set of terminals T ⊆ V and an integer

s.
Question: Does (G, T ) have a node multiway cut S ⊆ V \ T of size

at most s?

Marx’s algorithm ran in time O∗(4s3). Since then, the run time has been
considerably improved [191, 41, 46, 108, 57], with the current best being
O∗(1.84s) for Edge Multiway Cut [41], and O∗(2s) for Node Multiway
Cut [57]. Starting with the seminal work of Marx [148], significant research
effort was also put in understanding the parameterized complexity of Edge
Multiway Cut for the parameter s [191, 41, 46, 108, 57]. It is a notoriously
hard problem to determine if Multiway Cut has a polynomial kernel. The
best known kernel on general graphs has size 2O(s), which follows from the
FPTalgorithm of Marx [148]. Kratsch and Wahlstöm [133] presented a kernel
that has O(st+1) vertices for Node Multiway Cut if |T | ≤ t. Their result
implies a polynomial kernel also for Edge Multiway Cut. However, when |T |
is unbounded, the question whether a polynomial kernel exists for Multiway
Cut is far from resolved. Recently, Wahlstöm [187] made progress towards
answering this question by demonstrating a kernel of size kO(log3 k). On directed
graphs, Chitnis et al. [49] showed that Node Multiway Cut and Edge
Multiway Cut are equivalent and admit an FPT algorithm running in time
O∗(22O(s)).
Restriction to planar graphs Given the hardness of the problem on
arbitrary graphs, even for small constant values of t, it was but natural to
look for specific graph classes where the problem might be more tractable with
respect to the number of terminals t. In fact, Dahlhaus et al. [60] already
considered the restriction to planar graphs. When t is part of the input,
Edge Multiway Cut still is NP-hard, on edge-weighted planar subcubic
graphs. When the edges are unweighted, Edge Multiway Cut is NP-hard on
planar graphs of maximum degree 11. In contrast, they also showed that
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Edge Multiway Cut could be solved in polynomial time for any constant
t. For t = 3, their algorithm runs in time O(n3 log n) and for t ≥ 4 in time
O((4t)t · n2t−1 log n). In the parameterized complexity parlance, their result
implied that Edge Multiway Cut belongs to the class XP. The obvious
next step was to investigate if it was also FPT. In 2012, however, Marx [149]
showed that assuming ETH holds, the problem does not admit any algorithm
running in time f(t) · no(

√
t) and showed that it is W [1]-hard.

In a companion paper, Klein and Marx [129] gave a subexponential algo-
rithm for Planar Multiway Cut with a run-time of 2O(t) · nO(

√
t). Later,

Colin de Verdière [63] showed that this result extends to surfaces of any fixed
genus. He showed this even holds for the more general Edge Multicut
problem, where given a set of terminal pairs, we ask for the smallest set of
edges, which when removed, disconnects all the given terminal pairs. This
yielded an algorithm which solves the problem in time (g + t)O(g+t)nO(

√
g2+gt),

where g is the genus of the surface. This bound is almost tight assuming ETH
holds, as was recently shown by Cohen-Added et al. [54].

Besides the above, some other algorithms for Planar Multiway Cut are
noteworthy. In particular, Hartvigsen [111] gave an O(t4tn2t−4 log n) time
algorithm, which improved on the original exact algorithm by Dahlhaus et al.
[60]. The simple algorithm by Yeh [194], unfortunately, seems incorrect [48].
The mentioned algorithm of Klein and Marx [129] is faster than all of them.
Benz also considered the generalization to Edge Multicut, first with terminals
only on the outer face [14] and for the general case [13]. Unfortunately, the
latter general result seems to have several flaws [63]. The algorithm by Colin
de Verdière [63] for this problem that we already mentioned is also faster and
more general. Finally, for planar graphs and parameter s, Pilipczuk et al. [164]
showed that even a polynomial kernel in s exists for Edge Multiway Cut,
leading to an algorithm with running time O∗(2O(

√
s log s)). This kernel was

recently extended to Node Multiway Cut by Jansen et al. [117].

Restriction to other hereditary graph classes There have been surpris-
ingly few studies investigating the complexity of Multiway Cut on other
hereditary graphs classes. Until recently, even the classical complexity of the
problem was unknown on well-known hereditary graphs classes like chordal
or interval graphs. Misra et al. [155] showed that on chordal graphs, Node
Multiway Cut admits a polynomial kernel parameterized by the solution size.
Later, Bergougnoux et al. [15] showed that Node Multiway Cut is FPT pa-
rameterized by the rankwidth, and XP parameterized by the mimwidth of the
input graph. Their result implies a polynomial time algorithm for the problem
on interval graphs, permutation graphs, bi-interval graphs, circular arc and cir-
cular permutation graphs, convex graphs, and k-polygon and dilworth-k graphs

24



for fixed k. Recently, Galby et al. improved both the aforementioned results
on chordal graphs by showing that Node Multiway Cut is polynomial-time
solvable on the class of chordal graphs [90].
Approximation algorithms We already mentioned several constant-factor
approximations for general graphs [60, 40, 124] and planar graphs [44]. Bateni et
al. [12] presented a PTAS for Edge Multiway Cut on planar graphs,
which combined the technique of brick-decomposition from [32], the clustering
technique from [11], and a technique to find short cycles enclosing prescribed
amounts of weight from [163]. The more general Minimum Edge Multicut
problem is known to be APX-hard, even on trees [97]. However, Cohen-Addad et
al. [53] recently gave a (1 + ε)-approximation scheme for Minimum Edge
Multicut on graphs embedded on surfaces, with a fixed number of terminals.
Their approximation scheme runs in time (g + t)O((g+t)3) · (1/ε)O(g+t) · n log n.
Outline In this part, we shall present two results on Multiway Cut. In
Chapter 3, we investigate the complexity of Edge Multiway Cut on planar
graphs, parameterized by the terminal face cover number. We present an
algorithm that runs in subexponential time in this parameter, and is tight
assuming ETH. In Chapter 4, we show that both Edge Multiway Cut and
Node Multiway Cut are NP-hard on planar subcubic graphs. Prior to
our work, hardness was known only for planar graphs of maximum degree 11.
Given that both the versions of Multiway Cut are polynomial time solvable
on graphs of maximum degree 2, we obtain a complexity dichotomy in terms
of the maximum degree of the input graph.
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3
Planar Multiway Cut With
Terminals On A Few Faces

We consider the Edge Multiway Cut problem on planar graphs.
When the number of terminals is t, it is known that this can be solved
in nO(

√
t) time [Klein, Marx, ICALP 2012] and not in no(

√
t) time

under the Exponential Time Hypothesis [Marx, ICALP 2012]. A
generalization of this parameter is the number k of faces of the planar
graph that jointly cover all terminals. For the related Steiner Tree
problem, an nO(

√
k) time algorithm was recently shown [Kisfaludi-

Bak et al., SODA 2019]. By a completely different approach, in
this chapter, we prove that Edge Multiway Cut can be solved in
2O(k2 log k) · nO(

√
k) time as well.
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Chapter 3. MwC: planar graphs

3.1. Introduction
Our focus, in this chapter, is the problem Planar Multiway Cut. Formally,
we define the problem as:

Planar Multiway Cut
Instance: Plane graph G(V, E), T ⊆ V , ω : E −→ Q+

Question: What is the minimum possible weight of the cut that
pairwise separates the vertices in T?

In the overview of Part-I, we discussed in detail the enormous body of research
surrounding Edge Multiway Cut and its variants. In particular, we discussed
previous work that looked into the parameterized complexity of the problem
with respect to parameters like the number of terminals and the size of the
edge (node) multiway cut. On planar graphs, Dahlhaus et al. showed the
problem is polynomial time solvable if the number of terminals is fixed, but
NP-hard when the number of terminals is part of the input [60]. Their result
implies that Planar Multiway Cut is in the class XP. Klein and Marx
improved the complexity to 2O(t) · nO(

√
t) [129], following which Marx showed

that assuming ETH, this is the best one can do [149].
Parameterization by terminal face cover number Due to the intractabil-
ity of Planar Multiway Cut when the number of terminals is part of the
input, it is worthwhile to look for other parameters that might generalize
t. In particular, we could look at imposing restrictions on the location of
terminals in the input plane-embedded graph. An extensively explored such
restriction is when all the terminals are present on a small number of faces
of the planar graph. This restriction on the input graph was studied by Ford
and Fulkerson in their classic paper [86]. The minimum number of faces of
the input planar graph that cover all the terminals was termed the termi-
nal face cover number γ(G) by Krauthgamer et al. [135]. The terminal face
cover number is of broad interest as a parameter and has been studied with
respect to several cut and flow problems [135, 134, 44, 151], shortest path
problems [89, 45], finding non-crossing walks [76], and the minimum Steiner
tree problem [118]. In particular, Planar Steiner Tree has an algorithm
running in time 2O(γ(G) log γ(G))nO(

√
γ(G)).

The case when γ(G) = 1 is known as an Okamura-Seymour graph. It was
shown by Chen and Wu [44] that when γ(G) = 1 and G is biconnected, the
minimum multiway cut in G forms a minimum Steiner tree in its planar dual1.

1They consider an augmented planar dual, which differs from the standard dual graph
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Consequently, one can find a minimum Steiner tree in the dual graph using
the algorithm by Erickson et al. [79] (see also Bern [16]) for the case when
all the terminals lie on the outer face boundary of the graph. They also gave
an approximation algorithm for the case when γ(G) > 1, which runs in time
max{O(n2 log n log γ(G)), O(γ(G)2n1.5log2n + tn)} and finds a solution within
a ratio of 2 − 2/t of the optimum multiway cut. However, for the case when
γ(G) > 1, no exact algorithm was known.
Main theorem We resolve the complexity of Planar Multiway Cut pa-
rameterized by the terminal face cover number, hereafter referred to as k.
Given an edge-weighted planar graph G(V, E) with a fixed embedding, a set of
terminals T ⊆ V , and a collection of faces F that cover all the terminals in
T , our goal is to find a minimum weight cut of G that pairwise separates the
terminals in T from each other. Note that |F| = k. We show the following:

Theorem 3.1.1. Planar Multiway Cut can be solved in time
2O(k2 log k)nO(

√
k). Unless ETH fails, there can be no algorithm that

solves Planar Multiway Cut and runs in time no(
√

k).

Our main contribution is the algorithm. Since k ≤ t, the lower bound
immediately follows from Marx’s result [149].

We note that our algorithm requires that the set F is known. Fortunately,
such a set of size k can be computed in time 2O(k)nO(1) through the algorithm
of Bienstock and Monma [17]. Hence, we can run their algorithm before our
own, and this does not affect the running time of the final algorithm.

We also note that while the running time of our algorithm is reminiscent
of the algorithm by Kisfaludi-Bak et al. [118] for Planar Steiner Tree
parameterized by the terminal face cover number, our algorithm is and needs
to be substantially more involved. The intuition of their algorithm is to show
that a minimum Steiner tree for a set of terminals that can be covered by k
faces has bounded treewidth. Then they can ‘trace’ this tree by a recursive
algorithm that guesses the vertices of the solution in a separator implied by
the tree decomposition. While one can show that the dual of a minimum
multiway cut is a subgraph of the planar dual of bounded treewidth, tracing
a solution through such a tree decomposition is not straightforward, and we
need significant assistance from tools from topology, particularly homotopy,
which were not needed for Planar Steiner Tree.

Our work leans on a proper specification of the homotopy of the dual of the
solution. This approach was first applied explicitly to Edge Multicut (and
by extension to Edge Multiway Cut) by Colin de Verdière [63] and is also

in that the outer face is represented by several vertices, one per interval of the boundary
vertices between two consecutive terminals (see also Section 3.4.2.)
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evident in the work of Klein and Marx [129]. In this sense, our algorithm has
more in common with the approaches of Klein and Marx [129] and Colin de
Verdière [63], which extensively rely on topological arguments, and particularly
homotopy. The understanding of homotopy and its uses in cut and flow
problems on graphs on surfaces was built through a sequence of works, see e.g.
[42, 43, 78, 77, 76]. While our algorithm is similar in spirit to those of Colin
de Verdière [63] and Klein and Marx [129], significant effort is needed to
generalize from the parameter number of terminals employed in those works to
the parameter number of faces covering terminals. This not only affects the
structural results that employ homotopy, but also makes the final algorithms
more involved.

Intuitively, we describe the high-level topology that must be respected by
the dual of some optimum solution. Part of this topology is a planar graph, of
which we can find a sphere-cut decomposition of width O(

√
k). We then apply

a dynamic programming routine on this decomposition to find the optimum
solution. While this dynamic programming routine is sufficient to find the
high-level structure, the number of terminals is too large for this to effectively
deal with the local structure of the solution. We then merge the popular
algorithm by Dreyfus-Wagner [73] for finding minimum Steiner trees, which
runs in polynomial time in cases relevant for us [79, 16], with the algorithm of
Frank-Schrijver [88] to find shortest paths homotopic to a given prescription.
We argue that this prescription can be efficiently guessed. This leads to a neat
dynamic program used to find the local structure, and then finally, an optimum
solution.

We provide a more detailed overview of our algorithm in Section 3.2.

3.2. Bird’s-eye View of the Algorithm
Since our approach is reminiscent of the one by Klein and Marx [129] as well as
Colin de Verdière [63] used for the weaker parameter t, the number of terminals,
we start by giving a short overview of their work.

3.2.1. Previous Approaches
The starting observation is that cuts in planar graphs correspond to cycles in the
dual of the graph [167]. Hence, it makes sense that almost the entire algorithms
and structural descriptions of Klein and Marx and Colin de Verdière, as well as
ours, work with the planar dual. If the number t of terminals is bounded, this
quickly leads to the intuition that the planar dual of a multiway cut should be
a planar graph with t faces, one for each terminal [60]. By dissolving vertices
of degree 2 of this planar graph and applying Euler’s formula, one obtains

30



3.2. Bird’s-eye View of the Algorithm

a planar graph S with O(t) faces, vertices, and edges. One can then guess
what S looks like by exhaustive enumeration and guess the vertices of the dual
corresponding to the vertices of S. Then it remains to expand the edges of the
graph back into shortest paths.

However, these paths are not just any shortest paths. Instead, they must
contort themselves between the terminals in a particular way, such that they
perform their job in separating the terminals. This is where topological
arguments come in. The layout of these paths is described using the sequence
of crossings with a Steiner tree on the terminals. The main thrust of the work of
Klein and Marx and Colin de Verdière is to argue that in some optimal solution
these crossing sequences are short, in the sense that their length depends only
on t. One can then guess the crossing sequences of each of the paths in the
optimum and find a shortest path following a particular crossing sequence in
polynomial time using an algorithm by Frank and Schrijver’s algorithm [88,
Section 5].

The above leads to an f(t) · nO(t) time algorithm. To improve to an
f(t)nO(

√
t) time algorithm, it suffices to observe that since S is planar, it has

treewidth O(
√

t), as follows from the planar separator theorem [140]. One can
then replace the guessing of the vertices of the dual corresponding to vertices
of S by a dynamic program on the tree decomposition.

3.2.2. Warm-up: An nO(k)-time Algorithm
We design our approach along the same lines, in that we show that the
topology of the dual graph of the minimum multiway cut is constrained and
then enumerate all the possible topologies. For a certain topology, we find
the shortest solution respecting the topology. However, since we must deal
with a huge number of terminals, possibly O(n) many of them, this is not
straightforward. Indeed, we need stronger structural properties of the solution
to limit the number of diverse topologies.
Structure: Global and Local From a global perspective, however, the
structure of an optimal solution looks very similar. If we think of a terminal
face as a single terminal, then as in the previous works, we see that (some part
of) the dual of the solution must separate the different terminal faces. We
call this part the skeleton of the dual of the solution2. The paths between its

2Our notion of skeleton should not be confused with the notion of skeleton as defined by
Cohen-Addad et al. [53]. In particular, our notion of a (shrunken) skeleton is very reminiscent
of the multicut dual of Colin de Verdière [63], provides a high-level view of the solution, and
has no weight restrictions. The skeleton of [53] instead can be seen as ‘orthogonal’ to the
solution; by controlling its weight, the skeleton can be portalized (as in Arora [10]) and the
solution can be approximated by combining Steiner trees of a particular homotopy between
portals. This is different from our use and definition of a skeleton.
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branching points are called bones. By dissolving dual vertices of degree 2 in the
skeleton, we obtain the shrunken skeleton; its edges are called shrunken bones.
The shrunken skeleton has k faces and O(k) vertices and edges by Euler’s
formula. It follows that the shrunken skeleton of the optimum can be guessed
by exhaustive enumeration and has treewidth O(

√
k), a great starting point.

This is discussed in more detail in Section 3.5.
Now consider the local parts of the solution, namely the part of the dual

of the solution inside each of the k faces of the skeleton. Chen and Wu [44]
proved that when there is a single terminal face that is a simple cycle, then
the dual of a minimum multiway cut is a minimum Steiner tree in the dual
graph. To be more precise, this holds in the augmented dual graph. This
graph splits the dual vertex of s of the face corresponding to the simple cycle
into r parts, where r is the number of terminals of the face, such that all
dual edges of each maximal subpath of the cycle without terminals belong
to the same part of s. The solution is then a minimum Steiner tree on the
augmented dual vertices. We generalize this argument to prove that inside
each face of the skeleton, the solution is a forest of minimum Steiner trees on
the augmented terminals, defined with respect to the terminal face inside the
face of the skeleton. We call these nerves. All nerves attach to the boundary
of the face of the skeleton. Crucially, the augmented terminals belonging to
each of these nerves form an interval of the set of augmented terminals. Then,
by applying the Dreyfus-Wagner algorithm [73], any nerve can be found in
polynomial time [79, 16], if we know the interval. See Section 3.5.

Algorithm: Global and Local As a warm-up, we now discuss how to find
an algorithm with running time f(k)nO(k). First, guess the shrunken skeleton
of the optimum solution by exhaustive enumeration. Then, for each shrunken
bone of this shrunken skeleton, we note that it needs to expand to separate
two terminal faces, say Fα, Fβ ∈ F , and some terminals on each of them. For
both the terminal faces, we guess the intervals of augmented terminals Iα and
Iβ covered by nerves that attach to the corresponding bone. Since intervals
are between two augmented terminals, there are nO(k) intervals, and we can
guess the optimal intervals by exhaustive enumeration in the same time.

We now apply a dynamic program to find the bone. The crux here is to
find the paths between the attachment points of different nerves. While each of
those paths individually again has a short crossing sequence, as can be argued
by adapting the approach of Klein and Marx [129] and Colin de Verdière [63],
there are too many of these paths to efficiently guess all these crossing sequences.
Instead, we argue that we can group these crossing sequences while keeping
them small, and that we do not need to guess the crossing sequences for all
groups.
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Figure 3.1: This figure illustrates the broken bones of the minimum multiway cut
dual. In the figure, the terminal faces are drawn as black circles. In red, we depict
the partial solution, which we term the broken bones. We fix these broken bones by
splints to get C+.

We start by discussing the grouping. We group consecutive nerves towards
the same terminal face. We then prove that the union of the paths between
the nerves in such a group has a bounded crossing sequence (see Section 3.6).
Then we can guess the optimal crossing sequence by exhaustive enumeration.
Assuming we know the starting and ending nerve of the group, we can then
employ a dynamic program to find all nerves in between, while ensuring that
the path between the attachment points of the nerves follows the guessed
crossing sequence. This will take care of all (augmented) terminals between
the intervals.

Next, we argue that we only need few groups. We say that two groups of
nerves alternate if they are towards different terminal faces. If there are two
alternating groups of nerves on the left part of the bone, and two alternating
groups of nerves on the right part of the bone, then we can observe that these
nerves effectively cordon off part of the plane. Inside this region, we can show
that all terminals effectively lie on a cycle. This enables us to use the ideas of
Chen and Wu [44] again to find an optimal solution.

To conclude our algorithm, we note that we need at most four groups. If
there are indeed four, then there is a part between them for which we have
a polynomial time algorithm. For the groups themselves, we know the paths
between their attachment points has a crossing sequence of small size, and we
can guess the optimal crossing sequences by exhaustive enumeration. For each
group, we use a dynamic program that runs in polynomial time. By applying
Frank and Schrijver’s algorithm [88, Section 5], we can find shortest paths that

33



Chapter 3. MwC: planar graphs

follow a particular crossing sequence in polynomial time. See Section 3.7.3 for
details.

The total running time of this algorithm is indeed f(k) · nO(k). The
latter term originates from the guessing of the terminals corresponding to the
branching points of the skeleton, the guessing of the intervals, and the guessing
of the nerves at the bookends of the groups. For each shrunken bone, we call
this information a broken bone (we effectively guess its parts) and the solution
that fixes it a splint.

3.2.3. Towards the Final Algorithm
We now develop the ideas for the final algorithm. To avoid guessing the broken
bones globally, we aim to apply the fact that the shrunken skeleton has bounded
treewidth. Using a tree decomposition directly is cumbersome and not very
intuitive. Instead, we use sphere-cut decomposition.

A sphere-cut decomposition is a branch decomposition, which can be
thought of as a set of separators of the graph organized in a tree-like fashion.
The tree structure enables dynamic programming in the usual manner. The
crux is that the vertices of each separator induce a noose in the planar graph.
A noose in this sense is a (closed) curve in the plane that intersects every
face of the planar graph at most once and intersects the drawing only in the
vertices of the separator. The tree-structure of the decomposition is organized
in such a way that each separator has two child-separators and the symmetric
difference of the corresponding two nooses is the noose of the parent-separator.
A formal definition is in Section 3.3.1.

We now apply a dynamic program where we just maintain the broken bones
for the shrunken bones of the faces intersected by a noose of the decomposition.
In fact, this still is too much information, and instead we maintain only a
relevant part of those broken bones, namely the first nerve that we encounter
in either direction on the shrunken bones of each face that is intersected by
the noose. We argue that this yields sufficient information to know all broken
bones and obtain an optimum solution. See Section 3.8.2 for details.

It is known that there is a sphere-cut decomposition of a planar multigraph
on k vertices where all nooses (and separators) have O(

√
k) vertices [69,

150, 165]. This will lead to the nO(
√

k) running time. This decomposition
requires that the planar graph is connected, has no bridges, nor has self-loops.
Unfortunately, our shrunken skeleton does not satisfy any of those demands
out of the box. The issue of self-loops is quickly handled by not dissolving all
vertices of degree 2 when obtaining a shrunken skeleton from a skeleton, but
only those that do not lead to a self-loop.

Next, we ensure connectivity of the shrunken skeleton. To this end, we con-
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sider a connected component of the shrunken skeleton that is ‘innermost’ in the
embedding of the shrunken skeleton. We can guess which of the terminal faces
are enclosed by this connected component. However, for one of those terminal
faces, some terminal might not be enclosed by the connected component. We
cannot guess this terminal (as there are n choices), even though it is necessary
to know the terminal to correctly guess the structure of the optimum solution.
To circumvent this issue, we argue that we can pick a single terminal of this
face as a representative of this ‘exposed’ terminal. Thus we completely avoid
knowing which terminal is exposed. This enables a 2O(k)nO(1) time subroutine
to guess the components of the dual of an optimum solution and to reduce to
the case where such duals are connected. We then argue that this implies that
the shrunken skeleton is connected as well. See Section 3.4.2 for details.

Finally, we consider bridges of the shrunken skeleton. It seems hard to
avoid them completely. Instead, we design another dynamic program (see
Section 3.8.1). We use a bridge block tree of the skeleton to guide this dynamic
program. Recall that a bridge block tree is a tree representation of the bridge
blocks (bridgeless components) of a graph and the cut vertices between those
bridge blocks, generalizing the more familiar block cut tree. To ensure this
bridge block tree is suitable for the dynamic program, we need a modified
version of a bridge block tree that organizes itself according to the embedding
of the shrunken skeleton. To this end, we develop an embedding-aware bridge
block tree (see Section 3.3.2), which may be of independent interest.

In conclusion, our final algorithm is as follows. First, we perform a sub-
routine to ensure that the dual of any minimum multiway cut is connected.
Then we guess the structure of the dual of such a solution, namely its shrunken
skeleton, how the nerves of each bone are grouped, and what the crossing
sequences are of each path between nerves of the same group and between the
groups. We call this a topology.3 We guess the optimal topology by exhaustive
enumeration. Consider its shrunken skeleton and define a dynamic program
on its bridge blocks to combine partial solutions for each bridge block. For
each bridge block, we show that it has a sphere-cut decomposition with nooses
of bounded size, which enables us to find a partial solution using a dynamic
program. The guessing of the topology and the dynamic programs combined
lead to an algorithm running in time 2O(k2 log k)nO(

√
k).

3The word topology has many well-known meanings, including a branch of mathematics.
We use the term here in a cartographic sense, as an abstract map of the solution. This is in
line with previous uses in the literature, e.g. [63].
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3.3. Preliminaries
Topology and Planar Graphs A Jordan arc in the plane is an injective
continuous map of [0, 1] to R2. A Jordan curve in the plane is an injective
continuous map of S1 to R2. If one of the points on this curve is special,
we may also call this a closed arc on this point. Consider a set Z of Jordan
(possibly closed) arcs in the plane. Let P (Z) denote the union of the set of
points of each arc of Z. Observe that R2 \ P (Z) is an open set. A region of
Z is a maximal subset X of R2 \ P (Z) that is arc-connected; that is, there
is a Jordan arc in X (meaning all its points belong to X) between any pair
of points in X. If R2 \ P (Z) has more than one region, then Z is separating.
Let X be a region of a separating set Z. The boundary ∂X of a region X is
the set of all points p ∈ R2 such that every open disk around p contains both
a point of X and of R2 \ X. The complement of a region X is the union of
Y ∪ ∂Y for each region of R2 \ (X ∪ ∂X). Note that the complement of a
region is not necessarily a region itself, but possibly a union of regions (and
their boundaries), particularly if X has holes.

We say that a region X encloses a set Y if Y ⊆ X ∪∂X and strictly encloses
Y if Y ⊆ X.

For the definition of planar graphs, we follow Diestel [67]. A graph G(V, E)
is plane if V corresponds to a set of points (vertex points) in the plane and
E corresponds to a set of arcs in the plane (edge arcs) between the points
corresponding to its endpoints, such that the interior of each edge arc contains
no vertex point and no point of any other edge arcs. We call the vertex points
and edge arcs an embedding of G. If G admits an embedding, we call the graph
a planar graph. A face of a plane graph is any region of the set of edge arcs.
Exactly one face is unbounded, also called the outer face, whereas all other
faces are bounded.

Two plane graphs are equivalent if they are isomorphic and the circular
order of the edges around each vertex is the same in both embeddings. In
particular, this means that boundaries of the faces of the embeddings have the
same edge sets and there is a bijection between the faces of both embeddings.

Let G(V, E, F ) and G∗(V ∗, E∗, F ∗) be two plane graphs, where V, E and
F (V ∗, E∗ and F ∗) denote the set of vertices, edges, and faces of G (G∗). G∗

is called a plane dual of G, if there exist bijections
f∗ : V → F ∗ e∗ : E → E∗ v∗ : F → V ∗

v → f∗(v) e → e∗(e) f → v∗(f) satisfying the following conditions:

(a.) v∗(f) ∈ f, ∀f ∈ F

(b.) e and e∗ intersect in exactly one point, which lies in the interior of both
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e and e∗.

(c.) v ∈ f∗(v), ∀v ∈ V

We note the following basic properties, which follow from Diestel [67]. We
will often use them without explicitly referring to this proposition.

Proposition 3.3.1. If G is connected, then the edges of G bounding each face
form a closed walk (also known as a face walk). If G is bridgeless, then for
any edge, the faces on both sides are distinct.

Let O be a set of points in the plane, called obstacles. Consider two Jordan
arcs a, b between the same pair of points, such that neither arc contains a
point of O. Then these arcs are homotopic if and only if there is a continuous
deformation between a and b that does not cross a point of O. In the plane,
this means that the region induced by the union of a and b does not contain
any point of O.

3.3.1. Sphere-cut Decompositions
A main component of our algorithm is a dynamic program over a planar graph
of bounded treewidth. However, using a normal tree decomposition is rather
cumbersome in this case, and it turns out to be much easier to instead use a
sphere-cut decomposition, a branch decomposition especially suited for planar
graphs. We define all necessary notions and state the relevant theorem below.

A branch decomposition of a graph G(V, E) is a pair (R, η) of a ternary
tree R and a bijection η between the leaves of R and the edges in E. For an
edge e of R, we define the middle set mid(e) to be the set of vertices in V
for which an incident edge is mapped by η to a leaf in the one component of
R − e and an incident edge is mapped by η to a leaf in the other component.
The width of the branch decomposition is defined as the maximum size of the
middle set of any edge of R. The branchwidth of G is then the minimum width
of any branch decomposition of G.

Let G be a (planar) graph with a fixed embedding on the sphere. Then
a noose γ⃗ (with respect to G) is a closed, directed curve in the sphere that
meets the embedding of G only in its vertices and that traverses each face at
most once. The length of the noose is equal to the number of vertices of G
traversed by it. If we enumerate the vertices of the noose, we implicitly assume
that this enumeration follows the order of appearance on the noose, that is,
following its direction. Note that a noose cuts the sphere into two regions, each
homeomorphic to an open disk. The region bounded by and to the right when
following the noose with its direction is denoted by enc(γ⃗) and the other by
exc(γ⃗).

37



Chapter 3. MwC: planar graphs

A sphere-cut decomposition of a graph G with a fixed embedding on the
sphere is a triple (R, η, δ) consisting of a branch decomposition (R, η) and a
mapping δ from an ordered pair of adjacent vertices x, y of R to nooses (with
respect to G) on the sphere, such that

• δ(x, y) is the same noose as δ(y, x) but with the direction reversed. Note
that then it holds enc(δ(x, y)) = exc(δ(y, x));

• δ(x, y) meets the embedding of G exactly in the vertices of the middle set
mid(x, y); moreover, enc(x, y) contains all the embeddings of all edges
of the one component of R − xy and exc(x, y) contains the embeddings
of all other edges.

As noted by Dorn et al. [69] and Pilipczuk et al. [165], we may assume that a
sphere-cut decomposition is faithful. That is, for every internal vertex x of R
with adjacent vertices y1, y2, y3, we may assume that enc(x, y1) is equal to the
disjoint union of enc(y2, x), enc(y3, x), and (δ(y2, x) ∩ δ(y3, x)) \ δ(x, y1). We
also note that δ(y2, x) ∩ δ(y3, x) ∩ δ(x, y1) consists of two points, each of which
may (or may not) coincide with a vertex of G.

As described by Dorn et al. [69], we can root any sphere-cut decomposition
(R, η, δ) by subdividing an arbitrary edge e of R. Let u be the newly created
vertex and e′, e′′ be the newly created edges. Set mid(e′) = mid(e′′) = mid(e).
Add a new vertex r, connect it to u, and set mid(ru) = ∅. We then direct
the tree R towards the root r. In the remainder, we assume our sphere-cut
decompositions are rooted.

The following result was observed by Dorn et al. [69] and follows from [107,
174] (see also Marx and Pilipczuk [150] and Pilipczuk et al. [165]).

Theorem 3.3.2. Every n-vertex connected, bridgeless multigraph without
self-loops but with a fixed embedding on the sphere has a faithful sphere-cut
decomposition of width

√
4.5n. Moreover, such a sphere-cut decomposition can

be found in O(n3) time.

3.3.2. Embedding-Aware Bridge Block Trees
An important aspect of our algorithm will be to deal with bridge blocks of a
planar graph, as a sphere-cut decomposition can not. We define the following
notion, which lends itself in a nice way to the dynamic programming algorithm
we develop towards the end of the paper.

We can define a bridge block tree of a graph H as follows. Consider the
graph F that has a node for every bridge block (i.e. bridgeless component or a
bridge), called the BB-nodes of F , and for every endpoint of a bridge, called
the C-nodes of F . There is an edge between a BB-node corresponding to a
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bridge block B and a C-node that corresponds to a cut vertex v if v ∈ V (B). It
is immediate that this graph is a tree if H is connected and a forest otherwise.
A bridge block that has only one edge is called a trivial bridge block, otherwise
it is non-trivial. For simplicity, we call two bridge blocks neighboring if they
share a cut vertex. We can observe that any nontrivial bridge block neighbors
only trivial bridge blocks.

Theorem 3.3.3 (Tarjan [178]). A bridge block tree of a graph can be computed
in linear time.

If H is plane and connected, then we use an extension of this definition.
An embedding-aware bridge block tree (or eabb tree) L = L(H) of H is formed
from the bridge block tree F as follows. Root F at a BB-node ℓ = ℓ(F ) that
corresponds to a bridge block that has an edge bordering the outer face of H.
We now perform two operations on the BB-nodes.

A
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f1

u

e3
e1

e2

v3 v1

v2
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v1
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e3 e2 B

v3 v2
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e3 B
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v2
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Figure 3.2: The leftmost image is that of a graph with bridge blocks A, B, C and D.
The bridges are denoted by e1, e2 and e3, whereas the cut vertices are u, v1, v2, and
v3. The figure in the middle shows a bridge-block tree corresponding to the graph.
The rightmost figure shows the embedding aware bridge block tree.

First, for any nontrivial bridge block B whose corresponding BB-node b
has a C-node parent p in F corresponding to a cut vertex v, note that all other
BB-node children c′ of p correspond to trivial bridge blocks. For each bounded
face f of B, create a new C-node child cf

1 of b corresponding to v and f , and
for any child c′ ̸= b of p corresponding to a bridge edge that is contained in f ,
make the subtree of F rooted at c′ a child of cf

1 . We only add cf
1 if there are

any such children c′.
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Second, for any nontrivial bridge block B whose corresponding BB-node
p has a C-node child c in F corresponding to a cut vertex v, note that all
BB-node children c′ of c correspond to trivial bridge blocks. For each bounded
face f of B, create a new C-node child cv,f

2 of p corresponding to v and f , and
for any child c′ of c corresponding to a bridge edge that is contained in f , make
the subtree of F rooted at c′ a child of cv,f

2 . We only add cv,f
2 if there are any

such children c′.
Perform these two operations on all nontrivial bridge blocks. Observe that

the operations essentially apply to the children of C-nodes corresponding to cut
vertices contained in a nontrivial bridge block. As nontrivial bridge blocks are
not neighboring, the sets of cut vertices contained in nontrivial bridge blocks
are pairwise disjoint. Hence, these operations do not interfere with each other
and can be performed independently.

Then, finally, order the children of a C-node p in the tree according to the
order in which their edges appear around the corresponding cut vertex. The
resulting tree is L(H).

Lemma 3.3.4. An embedding-aware bridge block tree of a plane, connected
graph H can be computed in polynomial time.

Proof. First, we invoke Theorem 3.3.3 to obtain a bridge block tree of H. Using
a Doubly-Connected Edge List (DCEL) of the embedding, we can then find
the information necessary to make it embedding-aware in polynomial time.

We now make several observations about L(H). Let B and B′ be distinct
bridge blocks of a plane graph H. Since H is plane (and ignoring possible
intersections of the embedding on the cut vertex), B is enclosed by a bounded
face of B′, or vice versa, or B and B′ are both in each other’s outer face. We
now define a strict partial order ≺P on the bridge blocks of H, where B ≺P B′

if B is embedded in a bounded face of B′.

Lemma 3.3.5. Let B and B′ be two bridge blocks of a connected plane graph
H. If B ≺P B′, then the node b corresponding to B is a descendant of the
node b′ corresponding to B′ in L(H).

Proof. Observe that B′ needs to be a nontrivial bridge block. Let F be the
bridge block tree of H, rooted at ℓ(F ). Let p denote the C-node parent of
b′ in F , or p = ℓ(F ) if b′ = ℓ(F ). We claim that b is a descendant of p in
F . Indeed, suppose that b is not a descendant of p. Consider any path in G
from a vertex in B to a vertex bordering the outer face. Since B ≺P B′, any
such path cannot avoid a vertex of B′. Hence, b is a descendant of p in F .
Moreover, any such path must enter B′ at the same cut vertex v, which can
correspond to p ̸= ℓ(F ) or a C-node that is a child of b′. We only consider
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the case when this cut vertex corresponds to the C-node p ̸= ℓ(F ); the other
case is similar. Let P be a path from a vertex in B through the cut vertex v
corresponding to p ̸= ℓ(F ) to a vertex bordering the outer face. Then the edge
of P preceding v must be a bridge in H, and thus a trivial bridge block B′′.
Let b′′ be the corresponding node of F . The first operation ensures that b′′

becomes a descendant of b′, and thus b becomes a descendant of b′ in L(H), as
claimed.

Lemma 3.3.6. Let H be a connected plane graph. Let c and c′ be two C-nodes
in L(H) corresponding to the same cut vertex v of H. Then on the path between
c and c′ in L(H), all other C-nodes correspond to v.

Proof. This is immediate from the construction of L(H). Indeed, the C-node
corresponding to a cut vertex v is only replicated in c1 or cv

2 for a particular
nontrivial bridge block B. As nontrivial bridge blocks are not neighboring,
the sets of cut vertices contained in nontrivial bridge blocks are pairwise
disjoint. Hence, there can be at most one such nontrivial bridge block B
that is responsible for replicating the C-node corresponding to v. From the
construction, the property set forth in the lemma holds.

3.4. Basic Properties and Connectivity of the
Planar Multiway Cut Dual

Let G(V, E) be a connected simple undirected planar graph on n vertices and
m edges with a fixed embedding. Let T ⊆ V be the set of terminals. The set of
faces covering all the terminals in T is denoted by F = {Fα : 1 ≤ α ≤ k}. We
call these the terminal faces of G. The edges of E are weighted. By removing
edges of weight 0 or less and then scaling the weights of the remaining edges,
we can obtain an equivalent instance with weights specified by the function
ω : E → [1, . . . , W ] for some integer W . Note that during this transformation,
possibly, the set of terminal faces changes, but there will still be at most k of
them. Moreover, the graph might become disconnected, but we can solve the
instance associated with each connected component independently. Hence, by
abuse of notation, we may assume that our instance is still defined by G, T , k,
F , and ω as defined previously.

In the remainder, we use edge weight ∞ to indicate undeletable edges.
Instead of ∞, one could use mW + 1, but using ∞ simplifies later notation.
Note that the initial instance has no undeletable edges, and thus has a finite-
weight solution. In future transformations and reductions, we shall always
maintain the property that a finite-weight solution exists. By abuse of notation,
we still use ω : E → [1, . . . , W ] ∪ {∞} to denote the weights.
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Arbitrarily assign each terminal t ∈ T to a face of F that has t on its
boundary. For each face Fα ∈ F , let Tα ⊆ T be the set of terminals on the
boundary of Fα that are assigned to Fα. Let pα = |Tα|. We may assume that
pα > 0 for each terminal face, or we could reduce the set of terminal faces.
Observe that the sets Tα form a partition of T . Note that F can be partitioned
into F1 = {Fα | pα = 1} (called the singular faces) and F2 = F \ F1 (called
the plural faces); possibly, one of these sets is empty.

For a terminal face Fα, we order the terminals in Tα as follows. Note
that G is connected and thus the boundary of Fα forms a closed walk. Pick
an arbitrary starting vertex on this closed walk. Now traverse the walk in
clockwise direction and add a terminal to the ordering at the first moment it
is encountered. Index the terminals in Tα as αt1, . . . ,α tpα according to this
ordering.

We prove the following transformation is possible, which is reminiscent of
Chen and Wu [44, Lemma 8].

Lemma 3.4.1. In polynomial time, one can transform the instance into an
equivalent instance where G is bridgeless, the faces of F are vertex disjoint,
and all vertices of each face in F are terminals.

Proof. First, we make G bridgeless. For each edge e = (u, v) of G that is a
bridge, remove e and add new vertices w1, w2 and edges (u, w1), (w1, v) and
(u, w2), (w2, v). Set the weight of each of those edges to be equal to ω(e)/2. To
show equivalence, we note that in any solution for the original instance that
contains e, e can be replaced by say (u, w1) and (u, w2) to obtain a solution
of the new instance of the same weight. Conversely, any minimal solution to
the new instance that contains either (u, w1) or (w1, v) (but never both) if
and only if it contains either (u, w2) or (w2, v) (but never both). If it contains
either of these edges, they can be replaced by e to obtain a solution of the
original instance of the same weight.

By scaling and abuse of notation, we still denote the instance by (G, T, ω)
where ω : E → [1, . . . , W ] ∪ {∞}.

For each terminal face Fα ∈ F , add an edge of weight 1 from αti to αti+1
(indices modulo pα) for each 1 ≤ i ≤ pα. If an edge e from αti to αti+1
already existed, first subdivide e to obtain edges e1 and e2, and set the weight
of e1 and e2 to ω(e); then add the new edge. Call the resulting graph G′

and the resulting weight function ω′. Because G is connected and thus the
boundary of Fα forms a closed walk, the new edges can be embedded inside
the corresponding terminal faces and thus G′ is planar. The embedding of G
can be extended to G′ in a natural way. In particular, a new face F ′

α is created
for each face Fα whose boundary consists of the vertices of Tα and the newly
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created edges. Note that G′ and the set {F ′
α | Fα ∈ F} has all the properties

set forth in the lemma statement.
To show equivalence, we observe that (G, T, ω) has a solution of weight K

if and only if (G′, T, ω′) has a solution of weight K + ∑
Fα:pα>1 pα. Indeed, it is

necessary in (G′, T, ω′) to remove all newly added edges for faces with pα > 1.
The remaining graph is G; note that the subdivisions that were potentially
performed do not affect anything.

We call an instance transformed if it has the properties as set forth in
Lemma 3.4.1. We note that the transformation might make G no longer simple,
but have parallel edges or self-loops. In the remainder, we assume that the
instance is transformed.

3.4.1. Dual, Cuts, and Connectivity Properties
Let G∗ be the dual of G. By definition, G∗ has an embedding in the plane
such that each vertex of G∗ is embedded in the corresponding face and each
dual edge crosses the corresponding primal edge exactly once and no other
edges. For practical purposes, any time we consider a set C∗ of dual edges,
we also denote by C∗ the subgraph of the dual induced by the edges in C∗.
Then C∗ is again a planar graph with an embedding where each edge of C∗ is
embedded as it is in the embedding of G∗. We denote by C the set of edges in
G corresponding to the dual edges in C∗.

The following was observed by Dahlhaus et al. [60], based on the original
observation of Reif [167].
Proposition 3.4.2. Let C be a (minimum) multiway cut of (G, T, ω) and let
C∗ be the set of corresponding dual edges. Then each face of C∗ encloses at
most (exactly) one terminal.

We will often use this fact without explicitly referring to it. We also require
the following structural properties of C∗.
Lemma 3.4.3. Let C be any inclusion-wise minimal multiway cut of (G, T, ω)
and let C∗ be the set of corresponding dual edges. C∗ is bridgeless.

Proof. Let e∗ be a bridge in C∗. Then there is a face of C∗ for which e∗

appears on the boundary twice. Removing e∗ from C∗ does not change the set
of vertices of G enclosed by the face. Hence, C − {e} is a feasible solution for
(G, T, ω). This contradicts that C is inclusion-wise minimal.

Lemma 3.4.4. Let C be any inclusion-wise minimal multiway cut of (G, T, ω)
and let C∗ be the set of corresponding dual edges. Then for any dual vertex vα

corresponding to a plural terminal face Fα ∈ F , all dual edges incident on vα

are in C∗.
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Proof. Since the instance is transformed, any edge of Fα is between a pair of
distinct terminals, and thus must be in C.

Lemma 3.4.5. Let C be any multiway cut of (G, T, ω) and C∗ the set of
corresponding dual edges. Then no terminal face of F corresponds to a cut-
vertex of C∗.

Proof. Suppose that vα is a cut vertex of C∗ that corresponds to the terminal
face Fα ∈ F . Let B∗ be the set of maximal biconnected components of C∗

that intersect exactly in vα. Since vα is a cut vertex, |B∗| ≥ 2. For any
maximal biconnected component B∗ ∈ B∗, there is a simple cycle XB∗ of G∗

that determines the outer face of B∗, because B∗ is biconnected. We call this
the bounding cycle of B∗. Note that all of B∗ is enclosed by XB∗ . The planarity
of G∗ ensures that no two bounding cycles of biconnected components in B∗

can cross, and in fact, they intersect exactly in vα.
Choose a biconnected component B∗ ∈ B∗ for which its bounding cycle

encloses the smallest region in the plane among all biconnected components in
B∗. Since the bounding cycles of the biconnected components of B∗ \ {B∗} do
not cross the bounding cycle of B∗ nor can they be enclosed by it (by definition
of B∗), there is a biconnected component B̃∗ of B∗ \ {B∗} in the outer face of
B∗.

Consider the two edges of XB∗ that are incident on vα. Let e and e′ be the
edges of G dual to these edges. Now, let t and t′ be the endpoints of e and e′

that are not enclosed by XB∗ . Observe that t and t′ are distinct terminals of
Tα by the existence of B̃∗; indeed, B̃∗ is in the outer face of B∗ and encloses
at least one terminal of Tα as the instance is transformed.

We claim that t and t′ are in the same face of C∗, contradicting that C is
a multiway cut. Since no two bounding cycles of blocks of B∗ can cross each
other, if there were a face of C∗ enclosing t but not t′, its boundary would
contain at least one edge of XB∗ , namely the one dual to e. This however,
contradicts that XB∗ is a bounding cycle.

3.4.2. Reduction to Connected Duals
We argue that by spending 2O(k) time, we can reduce to the case where we may
assume that the graph induced by the set of edges dual to the edges of any
minimum multiway cut is connected. Our approach extends the work of Klein
and Marx [129, Lemma 3.1] to plural faces while simplifying the requirements
for later algorithms; we discuss the differences in more detail at the end.

Intuitively, we want to focus on connected components of C∗ that are
‘innermost’ in the embedding: none of its bounded faces encloses another
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connected component of C∗. We aim to solve a simplified instance for such a
connected component separately (by an algorithm we describe in subsequent
sections) and then solve the remaining instance recursively. To make the
formalities work, we need a more expansive definition of ‘innermost component’.

Internal Sets

We formalize the intuition of an ‘innermost component’ of a plane graph with
the following notion.

Definition 3.4.6. Let H be any plane graph. Let J be the union of a subset
of the biconnected components of H such that there is a single face f of H − J
that encloses J and there is a single face f ′ of J that encloses H − J . We
call J an internal set, f its enclosing region, and f ′ its exclosing region. The
intersection of the enclosing region and exclosing region is called the middle
region.

Refer to Figure 3.3 for an illustration of the above definitions applied to
H = C∗, where C∗ is the set of dual edges corresponding to any multiway cut
of (G, T, ω), and J = D∗, a set of biconnected components of C∗.

Figure 3.3: C∗ is depicted in green. The region of the plane bounded by the face f is
the enclosing region of D∗. The plane minus the region bounded by the faces of D∗,
is the exclosing region of D∗. The shaded region represents the middle region.

Observe that neither the enclosing region nor the exclosing region is nec-
essarily homeomorphic to a disk, nor are they necessarily equal. Also, the
middle region is a face of H. In particular, at least one of the two regions is the
outer face of J or H − J . Crucially, if J is not connected, then any connected
component of H for which none of its bounded faces encloses another connected
component of H is an internal set. This corresponds to our earlier intuition
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that ‘innermost’ connected components are internal sets (but the definition of
internal sets is much more general).

Remark 3.4.7. By abuse of terminology, H itself can be viewed as an internal
set, with the complement of the outer face of H as its enclosing region and
the outer face as its exclosing and middle region. In particular, when H = C∗,
where C∗ is the set of dual edges corresponding to any multiway cut of (G, T, ω),
the highly relevant Lemma 3.4.10 below holds when using C∗ as the internal
set.

We now prove a useful property of internal sets.

Proposition 3.4.8. Let J be an internal set of a plane graph H. Then H − J
is also an internal set.

Proof. Since J is the union of a set of biconnected components, so is its
complement H − J . The enclosing region of H − J is the exclosing region of J
and the exclosing region of H − J is the enclosing region of J .

Internal Sets and Multiway Cuts
We now prove a useful property of internal sets of a minimal multiway cut.

Definition 3.4.9. Let C be any multiway cut of (G, T, ω) and C∗ the set of
corresponding dual edges. Let D∗ be an internal set of C∗. We say that a point
in the plane is covered by an internal set D∗ if it is enclosed by the complement
of the exclosing region of D∗.

In our intuition of internal sets being ‘innermost’ connected components, a
covered point is enclosed by a bounded face of the component.

Lemma 3.4.10. Let C be any inclusion-wise minimal multiway cut of (G, T, ω)
and C∗ the set of corresponding dual edges. Let D∗ be an internal set of C∗

and D the set of corresponding edges in G. Let Fα ∈ F be any terminal face
for which a terminal of Tα is covered by D∗. Then C − D does not contain
any edge of Fα and at least max{1, pα − 1} terminals of Tα are covered by
D∗. Moreover, there is at most one terminal face Fα for which this number is
pα − 1.

Proof. When pα = 1, trivially all terminals of Tα are covered by D∗. Moreover,
C does not contain the edge of Fα, because the corresponding dual edge is a
bridge in G∗ and C∗ is bridgeless by Lemma 3.4.3.

So assume that pα > 1. Let vα denote the dual vertex corresponding to Fα.
Following Lemma 3.4.4, C∗ contains all (at least two) dual edges incident on
vα. As a terminal of Tα is covered by D∗, there is an edge of D∗ incident on
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vα. By Lemma 3.4.5, vα is not a cut vertex of C∗ and thus the definition of an
internal set implies that D∗ contains vα and all its incident dual edges. Hence,
C∗ − D∗ does not contain a dual edge incident on vα and thus, C − D does
not contain an edge of Fα.

Now let t and t′ be two distinct terminals of Tα not covered by D∗. Then
both t and t′ are in the exclosing region D∗. As no dual edges incident on vα

belong to C∗ − D∗ and D∗ is a union of biconnected components, t and t′ are
in the enclosing region of D∗. Hence, they are in the same face of C∗, which
contradicts that C is a multiway cut. Hence, at least pα − 1 terminals of Tα

are covered by D∗.
A similar contradiction holds for any two distinct terminals on distinct

terminal faces which are not covered by D∗. Hence, there is at most one
terminal face of which a terminal is covered by D∗ and a terminal is not fully
covered by D∗.

The intuition of our approach is now as follows. If a terminal of Tα for a
terminal face Fα ∈ F is covered by D∗, then it follows from Lemma 3.4.10 that
almost all terminals of Tα are covered by D∗. We then say that this component
covers this terminal face. Then we could guess (by exhaustive enumeration)
in 2k time the subset FD∗ of terminal faces covered by D∗ and obtain our
simplified instance.

However, there is an important exception to this intuition, namely the
unique terminal t in the middle region of D∗. This terminal t might not be on
a face of FD∗ , or worse, is on a face of FD∗ (and thus not covered by D∗; the
possible existence of such a terminal is hinted at by Lemma 3.4.10). Knowing
this terminal is important to the algorithm, but guessing (by exhaustive
enumeration) this terminal could require O(n) guesses. Since C∗ has at most
k terminal faces, this would lead to an undesirable O(nk) running time overall.
We show that knowing the precise terminal t is actually unnecessary. By some
small modifications to the weights, we argue that we can pick an arbitrary
terminal of Tα that functions as a representative for t, avoiding the O(n)
guesses altogether.

Lemma 3.4.11. Let C be any inclusion-wise minimal multiway cut of (G, T, ω)
and C∗ the set of corresponding dual edges. Let D∗ be an internal set. Let
T ′ be the set of terminals covered by D∗ and let t be a terminal in the middle
region of D∗. Let Fα ∈ F be the unique terminal face that contains t. If Fα is
a plural face and T ′ ∩ Tα = ∅ (none of the terminals of Tα are covered by D∗),
let ω′ be obtained from ω by setting the weight of each edge of Fα to ∞ and let
t′ be any terminal of Fα. Otherwise, let t′ = t and ω′ = ω. Then:
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a. for any finite-weight solution B of (G, T ′ ∪ {t′}, ω′), B ∪ (C − D) is a
feasible solution for (G, T, ω);

b. D is an optimum solution for (G, T ′ ∪ {t′}, ω′), and thus (G, T ′ ∪ {t′}, ω′)
has a finite-weight solution;

c. for any optimum solution B for (G, T ′ ∪ {t′}, ω′), B∗ is an internal set
of B∗ ∪ (C∗ − D∗).

Proof. a. Let B be a finite-weight solution of (G, T ′ ∪ {t′}, ω′). We claim
that B ∪ (C − D) is a feasible solution for (G, T, ω). Let B∗ be the
set of corresponding dual edges to B. Since B has finite weight, the
construction of ω′ and the definition of t′ ensures that either t = t′ or the
face of B∗ that encloses t′ also encloses Tα. Hence, in either case there is
a face of B∗ that encloses t and no other terminal of T ′.
Consider the enclosing region f of D∗. Every terminal of T ′ ∪ {t} is
enclosed by f . Then the intersections of each face of B∗ with f yields
a set of regions in the plane that each contain at most one terminal of
T ′ ∪ {t}. Since each terminal of T − T ′ − {t} is contained in a face of
C∗ − D∗ enclosed by the complement of f , it follows that each face of
B∗ ∪ (C∗ − D∗) contains at most one terminal (note that any edge of B∗

not enclosed by f only partitions the faces of C∗ − D∗ and is not relevant
to the feasibility of B ∪ (C − D)).

b. We now prove that D is an optimum solution for (G, T ′ ∪ {t′}, ω′). We
first argue that D is a feasible solution for (G, T ′ ∪ {t′}, ω′) of finite
weight. If pα = 1, then Fα consists of a single loop and the optimality of
C ensures that C (and thus D) does not contain this loop. D has finite
weight by construction. Moreover, t′ = t is in the exclosing region of D∗

by definition, and thus, D is a feasible solution.
Otherwise, if pα > 1, consider two cases. If D∗ covers a terminal of Tα,
then ω′ = ω and D trivially has finite weight. Moreover, t′ = t is in the
exclosing region of D∗ by definition, D is a feasible solution. If none of
the terminals of Tα are covered by D∗, then all terminals of Tα are in
the exclosing region of D∗. Then D∗ does not contain the dual vertex vα

(and therefore, no edge incident on vα). Thus, D∗ has finite weight. As
Tα is in the exclosing region of D∗, so is t′. Since all terminals of T ′ are
not in the exclosing region of D∗, D is a feasible solution.
To complete the argument, let B be an optimum solution for (G, T ′ ∪
{t′}, ω′) of weight strictly smaller than D. By the feasibility of D, B
must have finite weight. Moreover, by the preceding, B ∪ (C − D) is a
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feasible solution for (G, T, ω). Then it has smaller weight (with respect
to ω) than C, a contradiction. Hence, D is an optimum solution for
(G, T ′ ∪ {t′}, ω).

c. Next, suppose that B is an optimum solution for (G, T ′ ∪ {t′}, ω′). We
prove that B∗ is an internal set with respect to A∗, where A∗ is the set
of dual edges corresponding to A = B ∪ (C − D). Note that A is an
optimum solution for (G, T, ω) by the preceding. We now argue that
B∗ is enclosed by the enclosing region f of D∗ and only possibly shares
vertices with f . Suppose that B∗ is not enclosed by the enclosing region
f of D∗ or shares edges with the boundary of f . As mentioned earlier in
the proof, dual edges of B∗ that are not enclosed by f are irrelevant to
the feasibility of A. On the other hand, shared dual edges are effectively
counted twice in A. Hence, let X∗ be the set of dual edges in B∗ that
are either not enclosed by f or shared with the boundary of f . Let X be
the corresponding set of edges in G. Note that X∗ ̸= ∅ by assumption
and thus ω(X) > 0. We have just argued that (B − X) ∪ (C − D) is still
feasible. Moreover, ω(B) = ω(D) and thus ω(B − X) < ω(D). Then
ω((B − X) ∪ (C − D)) < ω(D ∪ (C − D)) = ω(C), a contradiction to the
optimality of C. Hence, B∗ is enclosed by f and possibly shares only
vertices with f . Hence, we can define f as the enclosing region of B∗ and
there is a single face of B∗ that encloses A∗ − B∗ that is the exclosing
region.
Finally, suppose that for this optimum solution B for (G, T ′ ∪{t′}, ω′), B∗

is not a union of biconnected components of A∗. Since B∗ itself is trivially
a union of biconnected components, this means that the intersection of
the enclosing region and exclosing region of B∗ with respect to A∗ is in
fact a union of at least two regions, and not a single middle region. Each
of these regions is a face of A∗. Since at most one of these regions (faces)
can contain a terminal by Lemma 3.4.10, A is not an optimum solution,
a contradiction.

Algorithm
We are now ready to develop the algorithm. Let A be any algorithm for
Planar Multiway Cut that always outputs a feasible solution, but is only
guaranteed to find an optimum solution if for all optimum solutions C to the
instance it holds that C∗ is connected. We show in later sections that we can
find such an algorithm A with the claimed running time bounds. Using it as a
black box for now, we can give a recursive algorithm for Planar Multiway
Cut.
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Let (G, T, ω) be a transformed instance of Planar Multiway Cut with
F the set of terminal faces. Recall that F can be partitioned into the set F1
of singular faces and the set F2 of plural faces; possibly, one of these sets is
empty.

In the first phase of the algorithm, consider two new types of sub-instances.
For the first type, if F2 ̸= ∅, consider each Fβ ∈ F2 and each set T̃ that is
the union of the sets {Tα | Fα ∈ F̃} for a subset F̃ of F \ {Fβ}, and solve
recursively on the transformed version of the sub-instance (G, T ′′, ω′′) where
T ′′ = T̃ ∪ {βt1} and ω′′ is equal to ω, except it is set to ∞ for all edges
of Fβ. For the second type, consider each set T ′′ that is the union of the
sets {Tα | Fα ∈ F̃} for a strict subset F̃ of F , and solve recursively on the
transformed version of the sub-instance (G, T ′′, ω′′) where ω′′ = ω.

Let B be the solution that is recursively found for any such sub-instance
(G, T ′′, ω′′) and let B∗ denote the set of corresponding dual edges. In the
second phase of the algorithm, let T ′ be the set of terminals in the outer
face of B∗. If there is a terminal face Fα for which ∅ ⊂ T ′ ∩ Tα ⊂ Tα, then
consider the sub-instance (G, (T ′ \ Tα) ∪ {αt1}, ω′), where ω′ is obtained from
ω′′ by setting the weight of each edge of Fα to ∞. Otherwise, consider the
sub-instance (G, T ′, ω). Let ZB be the solution that is recursively found for
such a sub-instance. Among all such combinations B ∪ ZB that are feasible
solutions and A(G, T, ω), return the feasible solution of minimum weight.

This finishes the description of the algorithm. We prove the following
result.

Lemma 3.4.12. Let A be any algorithm for Planar Multiway Cut that
always outputs a feasible solution, but is only guaranteed to find an optimum
solution if for all optimum solutions C to the instance it holds that C∗ is
connected. Let T (n, k) be a monotone function that describes the running
time of A on instances with n vertices and k terminal faces. Then Planar
Multiway Cut can be solved in O(2O(k)T (n, k)poly(n)) time.

Proof. We prove that the above algorithm solves a given instance of Planar
Multiway Cut in the claimed running time. Note that the described algorithm
always returns a feasible solution, because A returns a feasible solution. To
prove that the algorithm returns an optimum solution, let C∗ be an optimum
solution to (G, T, ω) with the maximum number of connected components. If
C∗ is connected, then A will find an optimum solution. Otherwise, let D∗ be
a connected component of C∗ for which none of its bounded faces encloses
another connected component of C∗. Then D∗ is an internal set.

We observe that the instance constructed by Lemma 3.4.11 with respect
to D∗ and C∗ is one of the sub-instances considered in the first phase of the
algorithm. Indeed, we note that D∗ is merely a connected component of C∗
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(in particular, not equal to C∗) and by Lemma 3.4.10, there is at most one
terminal t of the terminal faces covered by D∗ such that t is not covered by D∗.
Hence, the set of terminal faces covered by D∗ is a strict subset of F . If D∗

does not cover all terminals of each terminal face covered by D∗, then t exists
and is the terminal in the middle region of D∗. The instance of Lemma 3.4.11
simply consists of the terminals on the subset of terminal faces covered by D∗.
As we argued, this is a strict subset of F , and thus this instance is considered
as a sub-instance in the second type of instances of phase one of the algorithm.
If D∗ does cover all terminals of each terminal face covered by D∗, then the
terminal t in the middle region of D∗ belongs to a terminal face not covered by
D∗. If this is a singular face, then there is another terminal face not covered by
D∗ (in the part of the exclosing region of D∗ that is not the middle region), and
thus the instance of Lemma 3.4.11 is considered in the second type of instances
of phase one of the algorithm. If this is a plural face, then the instance of
Lemma 3.4.11 is considered in the first type of instances of phase one of the
algorithm.

Consider the optimum solution B found by the algorithm for the instance
constructed by Lemma 3.4.11 with respect to D∗ and C∗. Let A = B ∪ (C −D).
Let B∗ and A∗ denote the sets of corresponding dual edges. By Lemma 3.4.11,
ω(B) = ω(D), A is an optimum solution to (G, T, ω), and B∗ is an internal set
of A∗. Hence, C∗ − D∗ is an internal set of A∗ by Proposition 3.4.8. Repeating
the same arguments as in the previous paragraph, we see that the instance
constructed by Lemma 3.4.11 with respect to C∗ − D∗ and A∗ is considered in
phase two of the algorithm.

Consider the optimum solution ZB found by the algorithm for the instance
constructed by Lemma 3.4.11 with respect to C∗−D∗ and A∗. By Lemma 3.4.11,
ω(Z) = ω(C − D) and thus Z ∪ B is an optimum solution for (G, T, ω). Hence,
the algorithm will return an optimum solution. Here we note that if the
instance is of the first type, then Fα = Fβ in the second phase by the fact that
B∗ is an internal set.

Finally, to see the running time, note that each sub-instance is formed by
a set of terminals T1 ∪ T2, where T1 is the union of the terminals of a subset of
the terminal faces of F and T2 is the set of first terminals of a subset F ′ of the
plural faces of F , such that these subsets of terminal faces are disjoint. The
weight of all edges of the terminal faces in F ′ is set to ∞ and then the instance
is transformed. It follows that there are at most 3k distinct sub-instances
ever considered by the algorithm. We also observe that for each sub-instance,
compared to the input instance, the number of terminal faces decreases or else
a plural face becomes singular. Hence, instead of the above top-down recursive
algorithm, we can apply a bottom-up dynamic programming algorithm. Here
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we look at the instances in order of increasing total number of terminal faces
plus number of plural faces. To fill each table entry, we need to consider at
most (k + 1)2k table entries in the first phase and exactly one in the second
phase. For each combination, we need polynomial time for feasibility check
and to run A. Hence, the total running time is as claimed.

Klein and Marx [129, Lemma 3.1] also considered biconnected components,
but individually. Then in their sub-instances, for a subset X of terminals,
they not only need to pairwise separate the terminals of X, but also need to
separate X from T \ X. We use the planarity of the solution to effectively
argue that the latter condition is not necessary. Hence, our sub-instances are
‘normal’ instances of Planar Multiway Cut, without further constraints.
To this end, it is required that the definition of an internal set is slightly more
involved. Regardless, we need substantially more effort to deal with plural
faces.

Following Lemma 3.4.12, we need to develop the required algorithm A.
Hence, in the remainder, we assume that the dual of any optimum solution to
our instance of Planar Multiway Cut is connected.

3.5. Augmented Planar Multiway Cut Dual:
Skeleton and Nerves

An important challenge for our algorithm is to find the part of an optimum
solution that cuts the many terminal pairs incident on a single terminal face (of
course, in concert with cutting terminal pairs on other faces). In the case that
k = 1, Chen and Wu [44] proposed the notion of an augmented dual in order to
reduce to an instance of Planar Steiner Tree wherein all the terminals lie
on a single face. This, in turn, can be solved in polynomial time [79, 16]. Such
a simple reduction does not work in our case, but we do borrow and extend
the notion of an augmented dual.

Definition 3.5.1. The augmented dual graph G+ of G with respect to F
is constructed as follows. Starting with the planar dual of G, for each face
Fα ∈ F , replace the corresponding dual vertex vα by a set of vertices T +

α =
{αt+

1 ,α t+
2 , . . . ,α t+

pα
} (called the augmented terminals), each being an end point

of an edge incident on vα. For 1 ≤ j ≤ pα, each αt+
j and its incident edge

represents the edge (αtj−1,α tj) on the boundary of Fα. The weight function on
the edges of G+ is denoted by ω+; all the edges in the augmented dual graph
have the same weight as their corresponding edge in G under ω.

Figure 3.4 illustrates the structure of C+.
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Figure 3.4: The figure shows the graph G in black. The red blocks represent terminals,
while the green dots depict the augmented vertices. The black dots represent the dual
vertices for each non-terminal face in the augmented dual. The green curves are the
edges of C+.

Observe that there is still a one-to-one correspondence between edges of G
and (augmented dual) edges of G+, as there is between edges of G and (dual)
edges of G∗. We also note that an alternative construction of G+ would be to
subdivide each dual edge of G∗ incident on the dual vertex vα corresponding to
a terminal face Fα ∈ F and subsequently removing vα. For practical purposes,
any time we consider a set C+ of augmented dual edges, we also denote by C+

the subgraph of the dual induced by the edges in C+.

Lemma 3.5.2. Let C be any minimum multiway cut of (G, T, ω) and C+ the
set of corresponding augmented dual edges. Then C+ is a connected planar
graph with k faces, one per terminal face in F .

Proof. Let C∗ be the set of corresponding dual edges. By assumption and
Proposition 3.4.2, we know that C∗ is a connected subgraph of the dual, each
face of which encloses exactly one terminal. First we show that C+ is connected.
Let vα ∈ V (C∗) be the dual vertex representing the terminal face Fα. Recall
that any dual vertex of a terminal face is not a cut vertex in C∗, by Lemma 3.4.5.
Therefore, after splitting vα into augmented terminals, every pair of augmented
terminals remains connected in C+. Suppose that there exists a path P in
C∗ from vertex a∗ to b∗, such that P passes through vα. Let x∗ and y∗ be
the vertices on P adjacent to vα. Note that in C+, x∗ and y∗ are respectively
the sole neighbors of two of the augmented terminals of Fα. Without loss of
generality, let these augmented terminals be αt+

j and αt+
k . By the preceding

argument, there exists a path from αt+
j and αt+

k in C+. To go from a∗ to b∗,

53



Chapter 3. MwC: planar graphs

we can follow the path from a∗ to αt+
j , then go along the path from αt+

j to αt+
k

and finally from αt+
k to b∗. Since a∗ and b∗ were arbitrary, this holds for any

path passing through the dual vertex of a terminal face. Since no modification
was made to any other path of C∗, this proves that C+ is connected.

Next, we show that C+ contains exactly k faces, each enclosing a terminal
face of F . For all Fα such that Fα ∈ F , observe that its dual vertex vα lies at
the intersection of face boundaries enclosing each terminal on the boundary of
Fα. None of these face boundaries intersect a dual vertex corresponding to any
face Fβ , for β ̸= α, or else C∗ would enclose more than one terminal in that
face, contradicting its feasibility. After splitting vα into augmented terminals,
by the preceding paragraph, we get a connected graph. In particular, each pair
of consecutive augmented terminals is connected in C+ by a path. The union
of these paths bounds a region in the plane enclosing the face Fα. Therefore,
C+ has exactly k faces.

3.5.1. Skeleton
Considering Lemma 3.5.2, we note in particular that C+ has k faces. However,
each of these k faces can be highly complex. By ‘zooming out’, we can show
that C+ in fact has a very nice global structure with k faces that are much
easier to describe. To this end, we prove the following.

We define the action of dissolving a vertex v of degree 2 with distinct
neighbors u and w, as removing v from the graph and adding an edge from
u to w. If we drop the constraint that u, w are distinct, we speak of strongly
dissolving. We explicitly mention that while dissolving a vertex we retain any
parallel edges that may arise. Moreover, no self-loops may arise while dissolving
a vertex, while this is possible when strictly dissolving a vertex.

Definition 3.5.3. Let C be any minimum multiway cut of (G, T, ω) and C+

the set of corresponding augmented dual edges. Then the set of augmented dual
edges that remain after exhaustively removing all the edges incident on a vertex
of degree 1 of C+, induces a graph called the skeleton of C+, denoted by S+.
The set of augmented dual edges that remain after dissolving all vertices of
degree 2 from S+ induces a graph called the shrunken skeleton of C+.

Lemma 3.5.4. Let C be any minimum multiway cut of (G, T, ω) and C+ the
set of corresponding augmented dual edges. Then the shrunken skeleton of C+

is a connected planar multi-graph without self-loops and with k faces, such that
each of its faces strictly encloses exactly one terminal face of F .

Proof. Following Lemma 3.5.2, C+ has k faces. Recall that for any bridge of
a planar graph, the faces on both sides of the bridge are the same. Hence,
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removing a bridge does not decrease the number of faces. It follows immediately
that the skeleton S+ has k faces, one per terminal face in F . Since each
augmented terminal has degree one, its incident edge is a bridge of G+. Hence,
each face of S+ strictly encloses exactly one terminal face of F . Since C+ is
connected by Lemma 3.5.2, by construction, S+ is also connected. Note that,
while dissolving vertices of degree 2, we can maintain essentially the same
embedding as of S+. Hence, the shrunken skeleton has the same properties.

Finally, we consider the possibility of self-loops. Since self-loops cannot
arise by dissolving vertices of degree 2 or removing edges incident on a vertex
of degree 1, this means that C+ and thus even C∗ must have a self-loop. This
self-loop encloses a terminal by the minimality of C. Then the edge of G
corresponding to this self-loop is a bridge of G. However, G is bridgeless by
Lemma 3.4.1.

It is crucial to note that while the skeleton is connected, it is not necessarily
bridgeless. This has important algorithmic consequences discussed later.

Definition 3.5.5. Let Fα ∈ F and let fα be the corresponding face of the
skeleton of C+. We call the set of augmented dual edges of fα the spine of Fα

with respect to C+.

Note that a spine is not necessarily isomorphic to a cycle, but only to a
closed walk, because the skeleton is not necessarily bridgeless.

Definition 3.5.6. Let Fα ∈ F . An enclosing cut is a cut that separates Tα

from T \ Tα and also separates each terminal in Tα from every other terminal.

Remark 3.5.7. Chen and Wu [44] use the term island cut to denote the
(Tα, T \ Tα)-cut for each Fα ∈ F . Since they find a 2-approximate solution
instead of an exact one, it suffices to separate the graphs into islands and then
find a multiway cut for each island.

Corollary 3.5.8. Let C be any minimum multiway cut of (G, T, ω) and C+ the
set of corresponding augmented dual edges. Consider a face fα of the skeleton
of C+ and let Fα ∈ F be the single terminal face strictly enclosed by it. Then
the set of edges of G corresponding to the spine of Fα is a (Tα, T \ Tα)-cut and
the set of edges of G corresponding to the augmented dual edges of C+ enclosed
by fα is an enclosing cut.

Proof. This is immediate from the fact that, by Lemma 3.5.4, each face of the
skeleton strictly encloses exactly one terminal face of F .

The following is proved as in Dahlhaus et al. [60, Lemma 2.2] with some
modifications.
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Lemma 3.5.9. Let C be any minimum multiway cut of (G, T, ω) and C+ the
set of corresponding augmented dual edges. Then the shrunken skeleton of C+

has at most 4k vertices and at most 7k edges.

Proof. Consider the shrunken skeleton of C+. It has no vertices of degree 1
and no self-loops, is connected, and has k faces by Lemma 3.5.4. However, it
might have parallel edges and vertices of degree 2.

We now propose a charging scheme to obtain a simple connected planar
graph without vertices of degree 1 and 2. To this end, we perform three types
of operations: we dissolve vertices of degree 2, remove vertices of degree 1,
and remove edges incident on two distinct faces. Note that these operations
preserve the properties that the graph is connected and has no self-loops. We
charge the number of vertices and edges removed during these operations to
the faces of the graph. Any time we use the charge of a face, the operations
we perform also destroy the face. Then, we will be able to relate the number
of vertices and edges removed to the number of faces of the shrunken skeleton.

Initially, we give each face a charge of (4, 7): these charges are to account
for removed vertices and edges respectively. During the process, we move some
of the charge onto certain vertices. As an invariant, called the charge invariant,
we maintain that

• every face has charge (4, 7);

• every vertex of degree 2 has charge (2, 3), except possibly if its incident
edges are parallel;

• every vertex of degree 1 as well as its neighbor has charge (2, 3).

Note that the charge invariant initially holds, as the shrunken skeleton has
no vertex of degree 1 and any vertex of degree 2 must be incident on parallel
edges (or it would have been dissolved).

We now describe the scheme. Consider a path P of maximum length for
which all internal vertices have degree 2, and such that P has length at least 2,
has an endpoint of degree 1, or is a single edge parallel to another edge. Let
q denote the length of P and let u, v denote its ends. We perform different
operations depending on the structure of P :

• there is an edge e between u and v that is not on P . Note that this
includes the case when P is a single edge parallel to another edge.
We observe that e and P form a cycle, and thus e borders two distinct
faces. Let f denote one of these faces. Remove e and charge this removal
to f . Assign the remaining charge (4, 6) of f to u, v such that they both
hold charge (2, 3).
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Note that the charge invariant is still satisfied. Indeed, f has disappeared
after the removal of e, so every face still has charge (4, 7). The degree of
u and v has dropped, but they were assigned charge (2, 3). If their degree
becomes 1, note that u, v are still adjacent through P or are incident
on an internal vertex of P . These internal vertices must have degree 2
(already prior to the operation) and are not incident on parallel edges by
the fact that u, v are distinct, and thus have charge (2, 3).

• u, v both have degree at least 2.

Dissolve every internal vertex of P . Since they have degree 2 and u, v
are distinct, this is well-defined. The available charge of the internal
vertices of P is (2(q − 1), 3(q − 1)). Since q − 1 vertices and q − 1 edges
are removed, this is sufficient.

The charge invariant is still satisfied, as the degree and charge of u and
v is unchanged.

• u has degree 1.

Note that v must have degree at least 3 or degree 1 by the maximality
of P . Iteratively remove every vertex of degree 1 on the path, except
v. The available charge from the removed vertices is (2q, 3q). Since q
vertices and q edges are removed, this is sufficient. If q = 1, then v has
charge (2, 3) by the charge invariant and still has degree at least 2 or
degree 0 by the definition of P , and thus the charge invariant holds again.
If q ≥ 2, then a charge of at least (2, 3) has remained, which we assign
to v. As before, v still has degree at least 2 or degree 0, and the charge
invariant holds.

We perform these operations until no such path P exists. Note that the
first operation does not remove P ; however, after removing all the edges not
on P between u and v, it will end up being removed. The remaining graph is
a simple connected planar graph without vertices of degree 1 and 2. Moreover,
by the charging scheme, the number of vertices and edges removed during the
scheme is at most four (respectively, seven) times the number of faces that
were removed.

Let v, e, and f be the number of vertices, edges, and faces of the remainder
of the shrunken skeleton. By Euler’s formula, v −e+f = 2. The remainder has
no vertices of degree 1 and 2; hence, e ≥ 3v/2 and thus v − 3v/2 + f ≥ 2. Then
v ≤ 2(f − 2) ≤ 2f . We also recall that any simple connected planar graph
satisfies e ≤ 3v − 6 by Euler’s formula, and thus e ≤ 6f . Combined with the
charging scheme, the bound on the number of vertices and edges follows.
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3.5.2. Single Face
Per Corollary 3.5.8, for each face Fα ∈ F and corresponding face fα of the
skeleton, the spine of Fα is an island cut and the set of augmented dual edges
of C+ enclosed by fα is an enclosing cut. We show that the enclosing cut has
a very specific structure.
Intervals
We need the following definitions.

Definition 3.5.10. Let Fα ∈ F . An interval of augmented terminals of T +
α is

the set {αt+
i | i ∈ I}, where I ⊆ {1, . . . , pα} is any set such that either |I| = pα

or for each i ∈ {1, . . . , pα} except exactly one, it holds that there is a j ∈ I where
j = i + 1 mod pα. We say that the interval is between i and j (1 ≤ i, j ≤ pα)
if i ≤ j and I = {i, . . . , j}, or i > j and I = {i, . . . , pα, 1, . . . , j}.

It is important to note that we treat intervals as ordered sets of terminals. In
particular, the intervals {αt+

1 , . . . ,α t+
pα

} and {αt+
2 , . . . ,α t+

pα
,α t+

1 } are distinct.
This definition invites several additional definitions that will prove useful

in later parts of the paper. Two intervals I, I ′ of the same terminal face Fα are
consecutive if they are disjoint and there is a third (possibly empty) interval
I ′′, disjoint from I and I ′, such that I ∪ I ′ ∪ I ′′ = T +

α .
Given two consecutive intervals I = {αt+

1 , . . . ,α t+
a } and I ′ =

{αt+
a+1, . . . ,α t+

b } of the same terminal face Fα, a terminal t ∈ Tα is in-
between I and I ′ if t = αta. Note that there is exactly one terminal inbetween
two consecutive intervals, unless I ∪ I ′ = T +

α , in which case there are exactly
two. A terminal t ∈ Tα is between I = {αt+

1 , . . . ,α t+
a } if t ∈ {t1, . . . , ta−1}.

A subinterval of an interval I = {αt+
1 , . . . ,α t+

a } is any subset {αt+
b , . . . ,α t+

c }
of I such that 1 ≤ b ≤ c ≤ a or is the empty interval. A prefix of an interval
I = {αt+

1 , . . . ,α t+
a } is any subinterval of I containing αt+

1 or is the empty
interval. A suffix of an interval I = {αt+

1 , . . . ,α t+
a } is any subinterval of I

containing αt+
a or is the empty interval.

(Note that we have started the intervals at αt+
1 only for simplicity and to

avoid modulo-calculus, but the definitions extend in the obvious manner.)
Enclosing Cut on your Nerves
Using the notion of intervals, we can describe the enclosing cut. To this end,
we rely on the following result.

Theorem 3.5.11 (Chen and Wu [44, Lemma 3]). Let (G, T, ω) be an instance
of Edge Multiway Cut where G is a biconnected plane graph such that all
terminals of T lie on the outer face. Then a set of edges is a minimal multiway
cut for this instance if and only if the corresponding augmented dual edges form
a minimal Steiner tree in the augmented dual on the augmented terminals.
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In this result, the biconnectivity of G ensures that the augmented dual G+

is connected. For the conclusion of the above theorem to hold, it suffices that
G+ is connected.

Corollary 3.5.12. Let (G, T, ω) be an instance of Edge Multiway Cut
where G is a plane graph such that all terminals of T lie on the outer face
and G+ is connected. Then a set of edges is a minimal multiway cut for this
instance if and only if the corresponding augmented dual edges form a minimal
Steiner tree in G+ on the augmented terminals.

We can also obtain the following corollary.

Corollary 3.5.13. Let (G, T, ω) be an instance of Edge Multiway Cut
where G is a plane graph such that the outer face is bounded by a cycle and all
terminals of T lie on this cycle. Then a set of edges is a minimal multiway cut
for this instance if and only if the corresponding augmented dual edges form a
minimal Steiner tree in the augmented dual on the augmented terminals.

Proof. We observe that in G∗, the vertex representing the outer face is not a
cut vertex of the solution by Lemma 3.4.5. Hence, G+ is connected and the
result follows from Corollary 3.5.12.

It is important to note that the mentioned cycle might be two parallel arcs
or a self-loop.

These results suggest that Steiner trees in the augmented dual are impor-
tant for a multiway cut. This is indeed the case, although the situation is
substantially more involved when |F| > 1.

Lemma 3.5.14. Let C be any minimum multiway cut of (G, T, ω) and C+ the
set of corresponding augmented dual edges. Consider a face fα of the skeleton
S+ of C+ and let Fα ∈ F be the single terminal face strictly enclosed by it.
Let Y + be the spine of Fα and let X+ be the set of remaining augmented dual
edges enclosed by fα. Then X+ is a forest of minimum Steiner trees with the
terminals of each minimum Steiner tree lying in some interval of T +

α , such
that the union of all intervals is T +

α , and each minimum Steiner tree having a
single vertex on Y + that is incident on a single edge of that tree.

Proof. By Corollary 3.5.8, G \ Y does not contain any path connecting the
terminals of Tα to terminals of T \ Tα. Therefore, the region of G+ bounded
by Y + and the boundary of Fα does not contain any terminal of T \ Tα. The
edges in X thus correspond to a multiway cut of Tα in G \ Y . Moreover, this
multiway cut is minimal in G \ Y : any edge that could be removed from X
while it remains a multiway cut in G \ Y can also be removed from C while it
remains a multiway cut in G, which would contradict the minimality of C.
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Now consider G \ Y . Note that the spine does not contain any augmented
terminals, as those have degree 1 in C+ and thus are not part of the skeleton
by definition. Hence, Y does not contain any edges of Fα and therefore, Fα

persists in G\Y . Let Q be the component of G\Y that contains Fα. Since the
instance is preprocessed by adding an edge between every pair of consecutive
vertices on any terminal face of the input graph G, Fα is a simple cycle in Q.
Moreover, X is a minimal multiway cut for Tα in Q, as argued above. Hence,
by Corollary 3.5.13, X+ is a minimal Steiner tree in the augmented dual of Q
on the terminal set T +

α . It is in fact of minimum weight; otherwise, we could
replace X+ by a minimum-weight Steiner tree on T +

α and obtain a minimum
multiway cut for G of smaller weight using Corollary 3.5.13 and the fact that
Y forms an island cut.

Now we consider what X+ looks like in the augmented dual of G. We note
that all edges of the augmented dual of G \ Y also appear in the augmented
dual of G. Hence, we can think of X+ as a set of edges in G+. Let X be
the corresponding set of edges of G. Deleting the set of edges in Y from G is
equivalent to contracting the edges of Y + in the augmented dual. Let y+ be
the vertex formed by contracting all the edges in Y +. Since C+ is connected
by Lemma 3.5.2, it follows that at least one edge of X+ is incident on y+.

Deleting y+ from X+ creates deg(y+) many connected components of X+.
We treat each of these connected components as subsets of edges, which includes
the unique edge incident on y+. We claim that each of these components is a
minimum Steiner tree in G+ containing some interval of T +

α in its vertex set.
Clearly, each of the components is a Steiner tree on y+ and some subset of T +

α .
We first show that the augmented terminals contained in each component form
an interval of T +

α . Due to the planarity of G+, no two tree edges cross each
other. Therefore, if the terminals of any two connected components were to
cross each other on T +

α , then they must intersect in some vertex. However, since
each connected component is maximally connected, we reach a contradiction.
Hence, the terminals form an interval.

Due to the minimality of X+ in G+/Y +, with respect to the terminal
set T +

α ∪ {y+}, we claim that each of the components is a minimum Steiner
tree on G+/Y + containing its respective interval of T +

α . Suppose that one of
these trees is not a minimum Steiner tree in G+. Then, there must exist in
G+ a Steiner tree W + of lower weight on the same terminal set, such that
it either contains some edges of Y + or crosses Y +. In the latter case, there
is a subpath of this Steiner tree that intersects Y + in at least two vertices,
leading to the creation of a cycle enclosing no terminal of Tα. That would
contradict the minimality of X+. In the former scenario, suppose that we
replace the concerned component of X+ with W +. We claim that all the
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Y +

t

αt+1 αt+2

αt+3

αt+4
αt+5

αt+6
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c

Figure 3.5: The boundary of the face Fα is shown in black. The terminals of Tα lying
on the boundary are drawn as red boxes. The spine Y + of the minimum enclosing
cut dual is drawn in blue dotted lines. The green trees are the minimum Steiner trees
of X+ \ {y+} in G+/Y +. The violet dashed lines represent the minimum Steiner
tree in G+ on the terminal set {αt+

4 ,α t+
5 ,α t+

6 }, in which the path between αt+
5 and

αt+
6 contains the subpath of Y + between the vertices a and b that does not enclose t.

previously enclosed terminals by the component of X+, remain enclosed after
the replacement. If for some terminal t ∈ Tα in the interval, W + does not
contain a subpath enclosing it, then the path between the augmented vertices
flanking it contains edges of Y +. This path in W + crosses all the paths from t
to Tα \ {t}, and the segment of Y + between the points of intersection crosses
all the paths from t to terminals in T \ Tα. Therefore, the region bounded by
W + and Y + that contains t cannot contain any other terminal of Tα, and t
remains enclosed. The replacement would, thus, yield an enclosing cut of Tα,
strictly smaller than X+ ∪ Y +. This, again, contradicts the minimality of X+.
Figure 3.5 illustrates the argument.

Finally, suppose that some minimum Steiner tree intersects the spine in
more than one vertex. Then X+ ∪ Y + would contain a cycle that encloses no
terminals, which contradicts Proposition 3.4.2.

Therefore, X+ is a forest of minimum Steiner trees on intervals of T +
α with

the terminals of each minimum Steiner tree lying in some interval of T +
α , such

that the union of all intervals is T +
α , and each minimum Steiner tree having a

single vertex on Y + that is incident on a single edge of that tree.

Remark 3.5.15. For the above lemma and proof, it is important to observe
that we can replace X+ by any other forest of minimum Steiner trees on the
same intervals and same vertices on Y +. Indeed, such a forest would form a
minimum Steiner tree in G+/Y +. Then we can replace X+ in the argument
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of the lemma by the new forest.

This remark inspires the following definition.

Definition 3.5.16. Each minimum Steiner tree in the forest X+ is called a
nerve. Each nerve intersects the spine in exactly one vertex, which is incident
on a single edge of the nerve. The unique vertex of the spine at which a nerve
is rooted is called its attachment point.

A nerve for a plural face Fα ∈ F can be specified by a triple (v, i, j) with
1 ≤ i, j ≤ p such that the nerve is a minimum Steiner tree in G+ with terminal
set being the attachment point v and the interval of augmented terminals
between i and j, and a single edge incident on v.

For a nerve (v, i, j), we may speak of the interval between i and j as
simply the interval of the nerve. In this way, we can extend the definitions of
consecutive, between, and in between, originally defined for intervals, to nerves
in the straightforward manner.

A Steiner tree, as in Definition 3.5.16 might not necessarily exist, but we
have argued in Lemma 3.5.14 that our solution is built only from such Steiner
trees.

We now argue that nerves can be computed in polynomial time.

Lemma 3.5.17. Given vertices v and an interval I of a terminal face Fα

between i and j, we can compute in polynomial time a nerve (v, i, j), if it exists.

Proof. It follows from Bern [16] (or Kisfaludi-Bak et al. [118]) that a minimum
Steiner tree on a set of terminals with at most two faces can be computed in
polynomial time. We first compute a minimum Steiner tree Z+ in G+ on v
and the augmented terminals in the interval between i and j. Then, for each
neighbor u of v, we compute a minimum Steiner tree Z+

u in G+ \ {v} on u and
the augmented terminals between i and j. By the preceding, this can be done
in polynomial time. Then we compute ω(Z+) with ω(Z+

u ) + ω(v, u) for all u.
If there is a u for which they are equal, then Z+

u combined with the edge (v, u)
is a nerve. Moreover, any nerve can be constructed in this way.

Now note that nerves are not necessarily unique for a triple (v, i, j). From
now on, we associate a unique minimum Steiner tree with each triple (if it exists),
namely the one computed by Lemma 3.5.17. We call this the unique nerve
(v, i, j). In the remainder, whenever we talk about a nerve, we mean the unique
nerve on the same interval and attachment point. Following Remark 3.5.15,
we may assume that minimum-weight multiway cuts are built from a skeleton
and (unique) nerves.
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Definition 3.5.18. Let C be any minimum multiway cut of (G, T, ω) and C+

the set of corresponding augmented dual edges. Then C+ (and by extension,
C) is called nerved if the edges of C+ that are not part of the skeleton each
belong to a nerve.

Observe that following Remark 3.5.15 and the discussion above, we can
assume that any minimum-weight multiway cut is nerved.

3.6. Bones and Homotopy
We now wish to describe the structure of the paths between the attachment
points of nerves and to branching points of the skeleton. To this end, we start
with the following definition.

Definition 3.6.1. Each edge of the shrunken skeleton is called a shrunken
bone and corresponds to a path of the skeleton, called a bone. Any vertex of
the shrunken skeleton is called a branching point.

By Lemma 3.5.4, each (shrunken) bone is incident on one or two faces of
the (shrunken) skeleton, and thus separates at most two faces of F , called the
separated terminal faces of the (shrunken) bone. Note that both sides of a
(shrunken) bone might be incident on the same face, as the shrunken skeleton
can contain bridges.

3.6.1. Orienting Nerves
To further discussions in the remainder of the paper, it helps to define an
orientation of the nerves, which specifies where a nerve goes with respect to
a bone. Let C be any minimum multiway cut of (G, T, ω) and C+ the set of
corresponding edges in the augmented dual. For any augmented dual vertex
x, there is a small ball centered on x that only contains x and points of its
incident augmented dual edges. Let e and e′ be two augmented dual edges
incident on x. Then this small ball is split into two parts by the union of e
and e′. An augmented dual edge is west of x with respect to e and e′ if it is
contained in the part of the ball clockwise from e′ to e and east otherwise.

Now consider two augmented dual edges e and e′ of the skeleton of C+ that
appear in counterclockwise order on the boundary of a face fα of the skeleton of
C+ (so e appears after e′). Let x be their shared endpoint. If the boundary of
fα is a walk, then we only consider the first appearance of an augmented dual
edge to define the ordering. Let Fα ∈ F be the terminal face corresponding to
fα. We then say that a nerve (x, h, i) for Fα with 1 ≤ h, i ≤ pα extends west
of x if it holds that the augmented dual edge incident on x that belongs to the
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nerve is west of x. If the augmented dual edge incident on x that belongs to
the nerve is east of x, then the nerve extends east. By definition, a nerve has
only a single incident edge, and thus it either extends east or it extends west.

3.6.2. Homotopy and the Optimum Solution
We now want to describe the structure of bones. While it might seem that
these are just shortest paths between certain branching and attachment points,
this does not account for their role in separating pairs of terminals. In order
to specify this role, we need assistance from homotopy.

To facilitate the discussion of homotopy, we first need some definitions.
First, we need the notion of crossings between two paths P and Q in a planar
graph. Then we say that P crosses Q if, after contracting any common edges
of P and Q, there are two edges of P and two edges of Q, all distinct and
incident on the same vertex, such that a clockwise rotation around the vertex
will see the two edges of P and Q alternately.

Now we construct a cut graph K for G∗, which is a Steiner tree in G∗ with
the set V ∗

F of dual vertices of the terminal faces in F as terminal set. Here we
follow Frank and Schrijver [88, Proposition 1]. First, compute a shortest path
between each pair of dual vertices in V ∗

F . Let P denote the resulting set of
paths. By a slight modification of the weights for the sake of this computation,
we can assume all shortest paths in G∗ are unique. Then we can assume that
any pair P, Q of shortest paths in P either crosses at most once, or has a
common endpoint and does not cross. Now build an auxiliary complete graph
on V ∗

F with the lengths of the paths in P as weights and find a minimum
spanning tree in this auxiliary graph. The paths in P ′ ⊆ P corresponding to
this spanning tree form the cut graph K.

As explained by Frank and Schrijver [88, Proposition 1], we may assume
the paths in P ′ do not cross. We call the paths in P ′ the spokes of the cut
graph. Note that K has k − 1 spokes, each of which can be associated with a
unique identifier. We also orient each spoke in an arbitrary direction. Then any
oriented path P that crosses a spoke Q can be said to cross Q in a particular
direction, depending on whether P goes towards the west or east side of Q.

Definition 3.6.2. The crossing sequence or homotopy string of a path P
in G+ is an ordered sequence of the spokes of K crossed by it, along with an
indication of the orientation of each crossing. Let P and P ′ be two paths in
G+. We say that P is homotopic to P ′ if they have the same endpoints as well
as the same crossing sequence with respect to K.

Note that we perform a slight abuse here by considering crossings of a path
in G+ with paths in G∗. However, we will never consider crossings of paths
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in G+ that have an endpoint in an augmented dual terminal, alleviating any
possible cause for confusion.

Using this precise definition of homotopy, we now fix a particular solution
to the instance. Among all possible nerved minimum multiway cuts C of
(G, T, ω), we assume henceforth that C is one of which the skeleton of C+ has
the minimum number of crossings with K. Note that the skeleton contains no
augmented dual vertices, as those have degree 1 in G+.

From now on, we fix this solution as ‘the’ optimal solution or ‘the’ optimum.
Let C+ be the set of corresponding augmented dual edges. It is reasonable to
assume that such a solution is inclusion-wise minimal, that is, removing any of
its edges must make it an infeasible multiway cut.

Our main goal in the next subsections will be to show that (a sufficient part
of) the bones of the skeleton of the optimum solution have short homotopy
strings and that replacing such parts by parts with the same homotopy string
leads to another optimum solution.

3.6.3. Nerve Path
We now consider a subpath of a bone that starts and ends at attachment
point of two distinct nerves and contains attachment points only of nerves that
extend towards the same direction. In particular, the nerves extend towards
the same terminal face. We call such a subpath a nerve path. We aim to prove
the following crucial property of nerve paths, namely that any nerve path has
a homotopy string of bounded length.

For the remainder of this section, let u, v be two endpoints of a nerve
path P of C+. Let fα, fβ be the faces of the skeleton separated by P and let
Fα, Fβ ∈ F be the corresponding terminal faces. If α = β, then without loss of
generality, we assume that all the nerves extend towards the west of P .

Lemma 3.6.3. Any nerve path crosses any path of K O(k) times.

Proof. We modify the proof of [63, Lemma 5.2] to prove the claim above. Let
K be the graph defined above and γ be a path in K. We treat the dual vertices
of the terminal faces as obstacles. Since P is a path in the augmented dual
G+, P does not pass through any terminal of K, in particular, through the
endpoints of γ.

Let the nerves attaching to the ends of P be denoted N1 and N2. Without
loss of generality, we assume that both N1 and N2 (and all the other nerves
on P , if they exist) extend towards Fβ . We push all the crossings of P with γ
together to a single point p/p. Then the subpaths of P between consecutive
crossings of P with γ form cycles containing p/p, which we call loops. The
corresponding system of loops is P ∗ = P/p. Then, P ∗ is a set of pairwise
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disjoint loops L intersecting at p/p. The contracted point is referred to as the
base point of the loops. A face of L is called a monogon if it is homeomorphic
to an open disc (contains no terminal face in its interior) and has only one
copy of the base point on its boundary. Likewise, a bigon is an open disc with
two copies of p/p on its boundary. In the bone P , a bigon occurs as a strip
bounded by two subpaths of the path γ and two subpaths of P . To show that
the number of crossings of P with γ is O(k), we need to show that the degree
of p/p is O(k) in P ∗.

Figure 3.6: The figure shows all possible ways in which a loop in L can be incident on
two bigons. The two bigons are shaded in orange and turquoise. The blue line depicts
γ.

Figure 3.6 (same as [63, Figure 2]) shows an exhaustive list of configurations
of any path crossing an edge of the cut graph K, which lead to the occurrence
of a loop incident on two bigons in L. Note that the right-most configuration
does not occur in our setting since P is a path.

We claim that no loop in L can be incident on two bigons. Let us assume
the contrary. The following claim rules out some configurations giving rise to
such a loop.

Figure 3.7: The figure shows the configurations described in Claim 3.6.4.
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Claim 3.6.4. Let γ[a, b] be a subpath of γ on the boundary of one of the two
bigons and P [a, b] a subpath of P that is not incident any of the two bigons.
If Fβ is contained in the region bounded by γ[a, b] ∪ P [a, b] and there exists a
subpath P [x, y] incident on at least one of the bigons such that γ[a, b] ⊆ γ[x, y]
then we can shortcut P .

Proof. Any nerve reaching Fβ must either cross γ[a, b] or have its attachment
point on P [a, b]. Therefore, we can remove P [x, y] from C+ and replace it
with γ[a, b]. Since γ[x, y] is a shortest path in G∗ and therefore G+, it is at
most the length of P [x, y] and since γ[a, b] is a subpath of γ[x, y], we get a
solution of weight at most that of C+ with strictly fewer crossings. This is a
contradiction. ⋄

Consider the two bigons depicted as orange and turquoise strips in Figure 3.6.
There are three loops that together bound the union of the two bigons, namely,
the top-most loop incident on the orange bigon only, the middle loop incident
on both the bigons and the bottom-most loop incident on the turquoise bigon
only. As neither of the bigons contain any terminal and due to Claim 3.6.4,
the terminal face Fβ can be contained in the following two regions:

• Region A : the region bounded by the bottom-most loop incident on the
turquoise bigon and the subpath of γ between its endpoints.

• Region B: the unbounded region incident on the union of top-most loop
incident only on the orange bigon and the subpath of γ between its
endpoints.

We consider different configurations of P creating a loop incident on two
bigons and in each such configuration, we present an exchange argument to
replace P by a shorter path in C+ that preserves the feasibility of C+. The
replacement is based on the intuition that any nerve that must cross γ to reach
Fβ can be shortcut to have its attachment point on γ. However, there can be
nerves that never cross γ. Then, we must preserve all subpaths of P containing
the attachment points of such nerves.

We say that a nerve traverses a bigon if any path of the nerve from its
attachment point to its leaves crosses each of the two distinct subpaths of γ
bounding the bigon an odd number of times.

Case 1: Fβ is contained in Region A.
Here, we consider two subcases, namely, whether subpaths of nerves are
contained in the orange or the turquoise bigon. Figure 3.8 shows the specific
replacement for every configuration possible in this case (modulo symmetric
configurations with the same replacement).
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Figure 3.8: Case 1: The terminal face is in the region A. The black curve shows the
nerve path P . The directed blue line is the path γ. In dark green lines, we depict the
nerves attached to P . The face Fβ is drawn as a black splinegon in the outer face of
P ∗. In the top figure, we consider the case where the nerves extend to the side of the
orange bigon whereas in the bottom figure we consider the configurations where the
nerves extend to the side of the turquoise bigon.
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Figure 3.9: Case 2a: In the top row, we show configurations where Fβ is contained in
the outer face of P ∗. Either N1 or N2 traverses one of the two bigons. The bottom
row shows the replacement as bold red curves.

Case 2: Fβ is contained in Region B.
We shall consider two subcases here:
Case 2a. Either N1 or N2 traverses one of the two bigons.
Suppose that N1 traverses a bigon. Figure 3.9 depicts this case. Suppose that
the leftmost crossing of N1 with γ is x and the rightmost crossing is y. Then
γ[x, y] is at most as long as N1[x, y], allowing us to shortcut the nerve.
Case 2b. Neither N1 nor N2 must traverse any bigon.
Figure 3.10 depicts this case. The top figure shows the cases where the nerves
extend toward the orange bigon whereas the bottom figure depicts the cases
where the nerves extend towards the turquoise bigon.

Since in each of the cases we can replace P by a shorter path that has
fewer crossings with K, we obtain a contradiction to the minimality of C+.
Therefore, no loop of L can be incident on two bigons.

Next, we deal with the monogons. Some monogons may have nerves
attached to them that extend towards the nerve face without ever crossing γ.
These are the monogons that we cannot replace by the subpath of γ bounding
them on one side. However, in what follows, we argue that only O(k) of these
monogons actually exist in C+.

We orient γ and P arbitrarily. Without loss of generality, assume that the
nerves extend to the west of P . Consider the system of loops P ∗. Let good
loops be those that are present to the east (or west) of γ, possibly have nerves
attached to them extending to the west (or east) of P , and border a monogon
or enclose a bigon that it borders. We can remove the good loops from C+
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Figure 3.10: Case 2b: The top two rows depict the case when the nerves attached to
P extend towards the orange bigon and the bottom two rows depict the case when
they extend towards the turquoise bigon.
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without contradicting its feasibility by shortcutting (see Figure 3.11). Loops
that enclose any terminal face (the end point of a path of K) in their interior are
called obstacle loops. Now consider loops that form monogons. Bad monogons
are those that are present on the west (or east) of γ and contain nerves attached
to them that extend towards the west (or east) of P . Figure 3.11 shows two
bad monogons flanking a good loop. In what follows, we argue that between
two obstacle loops, there can be at most four bad monogons.

Fβ

Fβ

1 2 ba

Figure 3.11: The blue line is the path γ and the arrow indicates its orientation. The
black curve shows P . The dark green curves are the nerves attached to P . The first
and third monogons are bad, and the middle loop is good. The figure at the bottom
shows the shortcut of the good loop as a thick red curve.

Fβ

1 2 ba 3 c

QR

Figure 3.12: We assume that no two of the three consecutive bad monogons appear in
the same order as on P .

The direction of a bad monogon depends on how its loop is oriented with
respect to γ: either the head or the tail of the loop comes first on γ. Two bad
monogons are consecutive if there exists no other bad monogon between them.
Consider any five consecutive bad monogons on P that have no obstacle loop
between them. Without loss of generality, we assume that three of them are
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Fβ

1 2 ba 3 c

QR

Figure 3.13: Case 1: Q crosses γ for the first time to the right of c.

Fβ

1 2 ba 3 c

Q

Fβ

1 2 ba 3 c

Q
d ed

e

Figure 3.14: Case 2: Q crosses γ between b and 3 for the first time and to the right of
the first crossing after that.

bad monogons in the same direction. If any two of these appear in the same
order along γ as their order on P , then we can shortcut P as in Figure 3.11,
because the subpath of P between them does not contain an obstacle loop and
thus contains a good loop. So, we assume that no two of them appear in the
same order. We denote the crossing points of these three monogons with γ
by 1, a, 2, b, 3, c in the order along γ. Let Q be the subpath connecting c to
2 and R be the subpath of P connecting b to 1. Figure 3.12 illustrates the
configuration.

We consider the following cases:
Case 1: Q crosses γ for the first time to the right of c
In this case, we can shortcut the loop of Q to the east of γ from c to the
crossing. We can do so as this loop is good; indeed, it suffices to observe it is
not an obstacle loop, as it is between two of the chosen bad monogons.
Case 2: Q crosses γ between b and 3 and crosses γ a second time to
the right of the first crossing
As illustrated in Figure 3.14, we either reach the next monogon of the sequence
(as in the right figure) or reach a point e to the right of c, and must cross γ
again to reach 2. In the latter case, we follow the subpath of Q that starts
at e and restart the case analysis from e onwards. Then, in either of the two
scenarios, due to the planarity of C+, the loop R from b to 1 must cross γ to
the right of b to avoid crossing Q. Then, we get a good loop, and can shortcut
P .
Case 3: Q crosses γ between b and 3 and again to the left of its
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Fβ

1 2 ba 3 c

Q

Fβ

1 2 ba 3 c

Q
de de

Figure 3.15: Case 3: Q crosses γ for the first time between b and 3 and then to the
left of the first crossing.

crossing point
The second crossing could lie in between b and the first crossing of Q, or to
the left of 2. In the former case, Q forms a good loop, and we can shortcut it
by the piece of γ between the two crossings. In the latter case, there must not
be any obstacle in the region enclosed by the loop 2-b and the one formed by
Q, or else Q would contain an obstacle loop. Therefore, we get a good loop
formed by the loop of Q between the two crossings. This is a contradiction to
the loop between 2 and b being a bad monogon, and we can shortcut P .
Case 4: Q crosses γ the first time to the left of 2
Figure 3.16 illustrates all the configurations of Q. In A and C, we get a good
loop and we can shortcut P by the piece γ[d, e] in A and the piece of γ between
the crossing to left of e and the right of d in case C. In configurations B and
D, we treat e as the first crossing of Q with γ, and we land in the cases 2 or 3
based on where Q crosses γ after e.

We explicitly mention that these transformations hold good even if α = β
and b is a bridge of the shrunken skeleton. So, we have argued that there are
no good loops in C+ and at most four consecutive bad monogons between two
obstacle loops.

Now, we deal with the remaining bigons. Whenever we encounter a face of
L that is a bigon, we remove one of the two loops incident on it, and iterate
until no bigons remain. Therefore, in the proof of [42, Lemma 2.1], which
essentially counts the number of obstacle loops, we can multiply the total
number of crossings by 10 to get an upper bound on the total number of
crossings of P with K. The number of obstacle loops remaining in L is at most
6ℓ + 2g − 3, where g is the genus of the surface on which C+ is embedded and
ℓ is the number of obstacles of the surface. We treat the obstacles we place on
the dual vertices of the terminal faces as obstacles. Since there are k terminal
faces, and therefore k “obstacles”, there are k obstacles in all. Therefore ℓ = k
and g = 0. This proves that the number of loops, and thus the degree of p/p is
O(k).
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Fβ

1 2 ba 3 c

Q

Fβ

1 2 ba 3 c

Q
de d e

A B

Fβ

1 2 ba 3 c

Q
d e

Fβ

1 2 ba 3 c

Q
d e

C D

Figure 3.16: Case 4: First crossing of Q is to the left of 2.

3.6.4. Alternating Nerves
Let u, v be two endpoints of a shrunken bone b of the shrunken skeleton of C+.
Then b separates two terminal faces Fα, Fβ ∈ F (possibly Fα = Fβ if b is a
bridge of the shrunken skeleton). We denote by P the path corresponding to b in
the skeleton of C+. While the previous section builds sufficient understanding
to build the path between consecutive nerves that extend west towards the
same terminal face, this does not help if two consecutive attachment points
have nerves towards different terminal faces, or towards the same terminal
face, but one extends east and one extends west. To this end, we need more
elaborate methods.

Definition 3.6.5. Let x and y be consecutive attachment points on P (possibly
x = y) such that x is the attachment point for a nerve that extends west towards
Fα and y is the attachment point for a nerve that extends east towards Fβ.
Then we call these nerves an alternating pair of nerves.

Let Nu denote the pair of alternating nerves closest to u along with the
path between their attachment points. Let Nv be the corresponding pair closer
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Pb

Nu

Nvu v

v′

u

v

Nu

Nv

Figure 3.17: The figure shows the two cases when alternating pairs of nerves occur. The
left case is handled by Lemma 3.6.7 while the right case is handled by Remark 3.6.6.

to v. Contracting the edges in Nu and Nv to form the vertices u∗ and v∗

respectively is equivalent to deleting the corresponding edges in G. This forms
an isolated, connected region in the plane with pieces of the boundary of Fα

and Fβ bounding it on two sides. We denote this region by B.

Remark 3.6.6. We call a pair of alternating nerves bad if the subpath of the
skeleton between them lies in the region R2 \ B. One such case is shown in
the right figure of Figure 3.17. To deal with bad alternating nerves, we look
at the nerve directly to the left and right of the exposed terminal and add an
“artificial” branching point between them. This splits the bone b into two and
thus, Nu and Nv no longer form an alternating pair. We also note that each
part of b after the split will be found by our algorithm.

Lemma 3.6.7. The augmented minimum multiway cut dual C+ restricted to
B comprises a minimum Steiner tree containing the vertices u∗, v∗, and the
augmented terminals corresponding to terminals on the pieces of the boundary
of Fα and Fβ bounding B.

Proof. The terminals embedded in the region B are not connected to any
terminal outside. They lie on the boundary of the outer face of B. Also note
that the augmented dual restricted to the region B is connected (because
the restriction of C+ to B is connected) and equal to the augmented dual of
the subgraph of G restricted to B. By Corollary 3.5.12, we know that the
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minimum multiway cut restricted to B forms a minimum Steiner tree in the
augmented dual graph. The terminals of the minimum Steiner tree are the
augmented terminals corresponding to the intervals on the segments of Fα

and Fβ bounding B, along with u∗ and v∗. The vertices u∗ and v∗ serve as
augmented vertices representing the intervals on the boundary of B connecting
Fα and Fβ.

We now consider the structure of the bone for the parts that are not
in the region B, or what they look like when there are no two alternating
pairs of nerves. In the previous section, we already discussed what happens
to nerve paths. Hence, we only need to consider paths between attachment
points of alternating nerves and between an attachment point of a nerve and a
branching point. The following result is immediate from [63, Lemma 5.2] with
the substitution g = 0 and t = k.

Lemma 3.6.8. Each path on a bone of C+ between the attachment points of a
pair of alternating nerves on a bone, as well as the one from a branching point
to its closest attachment point, crosses any path of K O(1) times.

Finally, we argue that replacing certain subpaths of a bone by a homotopi-
cally equivalent path still yields an optimal solution. The proof of this lemma
is reminiscent of the proof of [63, Lemma 7.2].

Lemma 3.6.9. Let b be any shrunken bone of the shrunken skeleton of C+

and let P be the path that forms the corresponding bone. Let x and y be two
augmented dual vertices on Pb such that Pb[x, y] contains no attachment points
nor branching points, except possibly x or y.

Then there exists a minimum multiway cut dual which contains a shortest
path in the plane homotopic to P [x, y].

Proof. Let P ′ be a shortest path with the same crossing sequence as P =
Pb[x, y]. It is sufficient to prove that for any t1, t2 ∈ T , P ′ disconnects all t1-t2
paths that are disconnected by P and that are not disconnected by any other
part of C+.

Suppose that R is a t1-t2 path that is crossed by P but not by any other
part of C+ \ P . Let f1 and f2 be the faces of C+ that enclose t1 and t2
respectively. Note that P lies in the intersection of the boundaries of f1 and
f2. Also observe that R is fully contained in the region bounded by the union
of f1, and f2. Moreover, since t1 is in f1 and t2 is in f2, R must cross P an
odd number of times. Since P and P ′ have the same endpoints, the union
of their drawings in the plane decomposes the plane into a set X of two or
more regions. Since P and P ′ are homotopic and both are disjoint from the
boundaries of Fα and Fβ, neither t1 nor t2 lies in any bounded region of X.
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Hence, if R enters a bounded region of X, then R must also exit it, and thus
R intersects any bounded region of X an even number of times. However, by
the preceding argument, R crosses P an odd number of times. Hence, R must
cross P ′.

3.7. Towards a nO(k)-time Algorithm
With the structure of the optimum solution in place, we are now ready to
develop the algorithm. Our guiding light will be the topology of the optimum
solution, which consists of its skeleton and a compact description of its bones
and is defined more formally below. As we do not know any optimum solution,
we enumerate all possible topologies and argue that we find a feasible, minimum-
weight solution for the topology that corresponds to an optimum solution. The
algorithm to do this consists of two parts. First, we show that each bridgeless
component of the skeleton in the topology can be treated separately. Second, for
each bridgeless component of the skeleton, we build a sphere-cut decomposition
and perform dynamic programming on the decomposition that finds a solution
according to the topology.

3.7.1. Topology
We first define a topology and then show that all topologies can be efficiently
enumerated.

Definition 3.7.1. A topology consists of a triple (S, s, h):

• a connected plane multigraph S (possibly containing parallel edges but no
self-loops) with k faces. This is the (shrunken) skeleton of the topology.
We direct the edges of the skeleton in an arbitrary fashion to obtain a
directed skeleton;

• for each face of S, a unique corresponding face in F ;

• for each shrunken bone b, separating faces fα, fβ of the skeleton (possibly
α = β), a structural description, describing:

– a (possibly empty) ordered multisubset s(b) of {α, α, β, β} such that
s(b)[i] and s(b)[i + 1] are not equal for any 1 ≤ i < |s(b)|, except
possibly for i = 2 when |s(b)| = 4;

– for any 1 ≤ i ≤ 2|s(b)| + 1, h(b)[i] is a homotopy string of length
O(k). When |s(b)| = 4, then h(b)[5] is unspecified.
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If α = β, then we use α or β to denote east and west respectively in s(b).
The intuition behind the definition of a topology is as follows. The directed

skeleton guides the overall structure of the solution that will be found by our
algorithm. Ideally, it is equivalent to the shrunken skeleton of an optimum
solution. By Lemma 3.5.4, it has k faces and is connected. Moreover, each face
of the shrunken skeleton corresponds to a unique face in F . The orientation of
the skeleton will prove useful in later definitions and algorithms.

The multiset s(b) describes the direction of maximal sets of consecutive
nerves along the bone that have the same direction. By this intuition, it makes
sense to force the directions to be alternating, as in the definition. We also
note that we do not need to specify more than four such sets, because when
we have four sets, we obtain two alternating pairs of nerves and can apply
Lemma 3.6.7 to the region between them.

For each set of consecutive nerves as described by s(b), we use h(b) to
denote the homotopy of the (up to four) subpaths of the bone to which the
nerves attach. We also use h(b) to describe the homotopy of the (up to five)
subpaths of the bone between these sets of nerves. Following Lemma 3.6.3,
each of those homotopy strings has length O(k). When |s(b)| = 4, we do not
(need to) specify the homotopy of the middle subpaths of the bone, as we
handle this part as in Lemma 3.6.7.

Recall that C is the optimal solution and C+ its set of corresponding
augmented dual edges. We call a topology (S, s, h) optimal if the shrunken
skeleton S+ of C+ is equivalent to (the underlying graph of) S, each face of F
is assigned to the same face in S+ and S, and for each bone b of the shrunken
skeleton, directed in an arbitrary fashion:

• there are |s(b)| nonempty maximal sets of nerves, where nerves in the
i-th set are towards Fs(b)[i], and their attachment points are consecutive
and uninterrupted on b; the nerves preceding a nerve from the i-th set
belong to the i-th set or the i − 1-th set, or if |s(b)| = 4 and i = 3, can
be arbitrary nerves to Fα or Fβ, until a nerve of the i − 1-th set is hit;

• the part of the bone between the nerves at the ends of the i-th set of
nerves has homotopy string h(b)[i];

• the part of the bone between the i-th and i + 1-th sets of nerves, for
0 ≤ i ≤ |s(b)| where we pretend the 0-th nerve is the one end of the bone
and the |s(b)| + 1-th nerve is the other end of the bone, has homotopy
string h(b)[2i + 1]. When |s(b)| = 4, we do not have to satisfy this for
i = 2.

Note that since we fixed C, there is a unique optimal topology, which effectively
describes C. We may thus speak of ‘the’ optimal topology.
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Our goal is to enumerate all topologies. Then for each topology, we aim to
find a solution that corresponds to this topology. By considering all topologies,
we ensure that we consider the optimal topology at some point. Then we argue
that we find a multiway cut of minimum weight. Before proceeding with that
algorithm, we bound the number of topologies and show how to enumerate
them. We require the following auxiliary lemma.

Lemma 3.7.2. There are 2O(k log k) connected plane multigraphs with O(k)
vertices, k faces and without self-loops. Moreover, they can be enumerated in
the same time.

Proof. A trivial bound shows that there are 2O(p log p) labeled simple planar
graphs on p vertices (although more precise bounds are known [100]). We
can extend this to planar multigraphs by guessing the subset of edges of the
simple planar graph that are parallel and partitioning the number of parallel
edges over them. Note that a planar multigraph with O(k) vertices and k faces
must have O(k) edges. Since there are 2O(q) partitions of the integer q, there
are 2O(k log k) possible planar multigraphs with p = O(k) vertices and k faces
and without self-loops. All such planar graphs can be trivially enumerated in
2O(k log k) time by enumerating all graphs and testing each for planarity [114].

We now consider embeddings. Recall that two embeddings of a planar
graph are equivalent if the ordering of the edges around each of the vertices is
the same. In our case, there are 2O(k log k) different such orderings. Hence, there
are 2O(k log k) plane multigraphs with O(k) vertices and k faces and without
self-loops. Since each such planar graph can be enumerated in 2O(k log k) time
and embeddings can be enumerated in time linear in their number [37], the
bound of 2O(k log k) follows.

Lemma 3.7.3. There are 2O(k2 log k) different topologies. Moreover, they can
be enumerated in the same time.

Proof. By the analysis of Lemma 3.5.9, the skeleton has k faces, O(k) vertices,
and O(k) edges. By Lemma 3.7.2, there are 2O(k log k) different skeletons for
a topology. For each bone b of a skeleton, there are O(1) choices for s(b).
Moreover, each homotopy string has length O(k) and there are at most 8 of
them for every bone, meaning length O(k) for each bone and O(k2) in total.
Each entry of a homotopy string has O(k) possible values by the definition of
a cut graph. Hence, there are 2O(k2 log k) topologies.

We note that by Lemma 3.7.2, all skeletons can be enumerated in 2O(k log k)

time. It is immediate from the preceding that all topologies can be enumerated
in 2O(k2 log k) time.
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3.7.2. Broken Bones and Splints
We now become more formal about our interpretation of topologies. Let (S, s, h)
be a topology. We define the following notion, which states how we interpret s
and h for a shrunken bone b.

Definition 3.7.4. Let (S, s, h) be a topology. Let b be a shrunken bone (edge)
of the shrunken skeleton S, separating the faces fα and fβ, and directed from u
to v. Let s(b) = {γ1, . . . , γ|s(b)|}, where each γj ∈ {α, β}. Let Fα and Fβ be the
terminal faces enclosed by the faces fα and fβ, respectively. A broken bone is
a tuple that consists of intervals Iα and Iβ of augmented terminals lying on Fα

and Fβ respectively, augmented dual vertices x+
1 , . . . , x+

|s(b)|+1 and y+
0 , . . . , y+

|s(b)|
that are not augmented dual terminals, and nerves N1, . . . , N2|s(b)| towards Fα

and Fβ, where:

• for each 1 ≤ i ≤ |s(b)|, nerves N2j−1 and N2j extend towards γj and
have root x+

j and y+
j respectively. These nerves might be the same, but

are non-empty if Ij is non-empty.

• the interval of a nerve among N1, . . . , N2|s(b)| towards Fα (resp. Fβ) is
a subinterval of Iα (resp. Iβ). Moreover, these subintervals appear in
the order indicated by their indices on Iα and Iβ (but do not necessarily
cover Iα and Iβ completely);

• if Iα is non-empty, then a prefix of Iα is the interval of a nerve among
N1, . . . , N2|s(b)|. The same holds for a suffix of Iα (possibly, this is the
same nerve). The same holds with respect to Iβ if it contains at least two
augmented terminals.

A splint, fixing a given broken bone, is a subset D+ of the edges of the
augmented dual graph G+ with the following properties:

• for each terminal t between Iα (or between Iβ), there is a unique bounded
face of D∗ that encloses t, where D∗ is the set of dual edges corresponding
to the edges of D+.

• there is a path Pb in D+ between y+
0 and x+

|s(b)|+1. These two augmented
dual vertices are called the ends of the splint.

• x+
1 , . . . , x+

|s(b)|+1 and y+
0 , . . . , y+

|s(b)| are in D+ and appear in the order y+
0 ,

x+
1 , y+

1 , x+
2 , y+

2 , . . . , x+
|s(b)|+1 on Pb.

• for each 0 ≤ i ≤ |s(b)| (except i = 2 when |s(b)| = 4), the (possibly
empty) subpath of Pb from y+

j to x+
i+1 consists only of vertices that have

degree 2 in D+ and has homotopy string equal to h(b)[2j + 1].
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• for each 1 ≤ i ≤ |s(b)|, the only vertices on the subpath of Pb between x+
j

and y+
j that have degree more than 2 in D+ are the attachment points

of nerves towards Fγj ; these nerves include N2j−1 and N2j. The subpath
has homotopy string equal to h(b)[2j].

• if |s(b)| = 4, then for the vertices on the subpath of Pb between y+
2 and x+

3 ,
the only vertices that have degree more than 2 in D+ are the attachment
points of nerves towards Fα or Fβ.

• the intervals of all the aforementioned nerves jointly partition Iα and Iβ

with the exception that for each 1 ≤ i ≤ |s(b)|, the nerves N2j−1 and N2j

are not necessarily distinct (but are distinct from all other nerves).

We refer to Figure 3.18 for an illustration of a splint and its broken bone.

Figure 3.18: In this example, s(b) = {α, β, β, α}. The blue lines depict the “guessed”
nerves attached to the broken bone. In green, we depict the splint that is used to fix
the broken bone. The arrows point to the first and last terminals of the intervals Iα

and Iβ .

Note that in the definition of a broken bone, it is not strictly necessary
to specify x+

1 , . . . , x+
|s(b)| and y+

1 , . . . , y+
|s(b)|, as their definition is implied by

N1, . . . , N2|s(b)|. Similarly, we do not actually need all the nerves we have
specified when |s(b)| = 4. We still write this to streamline and simplify the
definition (which admittedly is already quite complex).

We now define the notion of an optimal broken bone. We refer back to the
definition of an optimal topology to recall the |s(b)| maximal sets of nerves
defined there. For the optimal solution C, the optimal topology, and a shrunken
bone b, we call a broken bone x+

1 , . . . , x+
|s(b)|+1, y+

0 , . . . , y+
|s(b)|, N1, . . . , N2|s(b)|,

Iα, Iβ optimal if for the bone of C+ corresponding to b, its ends are y+
0 and

x+
|s(b)|+1 in the direction of the directed skeleton, the i-th set of nerves has the

nerves N2i−1 and N2i at the ends of the set (where N2i−1 and N2i are possibly

81



Chapter 3. MwC: planar graphs

equal), and the intervals Iα and Iβ correspond to the union of the intervals of
all nerves that have their attachment point on the bone.

The latter may lead to a nerve that attaches to a branching point and its
corresponding interval to be assigned to two broken bones (for the two bones
that meet at the branching point and whose shrunken bones bound the same
face of the skeleton). In that case, we break ties arbitrarily, but in such a way
that all nerves that attach to this branching point are assigned to the same
bone and no terminal face is enclosed by the union of any two nerves assigned
to the same bone in this way. This ensures that each augmented terminal is
in some interval of some optimal broken bone and moreover, no terminal face
and its broken bones ‘interrupt’ the sequence of nerves of the bone.

Finally, we call a splint optimal if it fixes an optimal broken bone and all
its nerves are the nerves of C+ that were defined to belong to the bone. Again,
an optimal broken bone and splint are unique with respect to C, so we may
speak of ‘the’ optimal broken bone and splint of a bone.

For a given topology and a particular shrunken bone of the topology,
our goal is to enumerate all broken bones for this shrunken bone and find a
minimum-weight splint for it. By enumerating all broken bones, we ensure
that we consider the optimal broken bone. Then the minimum-weight splint
that we find will have the same weight and structure of the optimal splint. We
discuss that algorithm in a moment, but first argue that we can enumerate all
possible broken bones efficiently.

Proposition 3.7.5. There are O(n26) distinct broken bones fixed by a splint.

Proof. Using Euler’s formula, G+ has O(n) augmented dual vertices. We note
that any interval can be specified by two augmented dual vertices and (thus)
any nerve by three augmented dual vertices. Since |s(b)| ≤ 4, there are at most
8 nerves and two endpoints per broken bone. It follows that there are O(n26)
distinct broken bones.

3.7.3. Splinting Algorithm
We now describe an algorithm that, given a topology (S, s, h) and a broken
bone x+

1 , . . . , x+
|s(b)|+1, y+

0 , . . . , y+
|s(b)|, N1, . . . , N2|s(b)|, Iα, Iβ for a bone b of S,

finds a splint of minimum weight.
For any 0 ≤ i ≤ |s(b)| (except i = 2 when |s(b)| = 4), to find the path from

y+
i to x+

i+1, we invoke the algorithm by Frank and Schrijver [88, Section 5] to
find the shortest path with the homotopy string h(b)[2i + 1]. These paths do
not contain any attachment points of nerves.

The following algorithm computes the weight of the part of a minimum
weight splint between the vertices x+

i and y+
i of the augmented dual, for all
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1 ≤ i ≤ |s(b)|. Note that this is a nerve path. For simplicity, we consider only
i = 1, as the other cases are similar. Without loss of generality, s(b)[1] = α. We
find the part of the splint starting at x+

1 , with its corresponding nerve N1, and
ending at y+

1 , with its corresponding nerve N2. Also, we assume that N1 spans
the interval {αt+

ℓ , . . . ,α t+
ℓ′ } and N2 spans the interval {αt+

j , . . . ,α t+
j′}. Then the

interval covered by all nerves attaching to this nerve path is I1 = {αtℓ, . . . ,α tj′}.
We compute this part of the splint as follows. By c[x+, a, a′], we denote the

weight of the unique nerve on x+ ∈ V (G+) and the interval {αt+
a , . . . ,α t+

a′},
which can be computed by Lemma 3.5.17. By c′[x+, a, a′, e] we denote the
weight of a partial splint passing through the vertex x+ ∈ V (G+), that encloses
every terminal between the augmented terminals {αt+

ℓ , . . . ,α t+
a′}, contains the

unique nerve (x+, a, a′), and the partial nerve path of the homotopy given by
the prefix of h(b)[2] of length e.

The dynamic programming algorithm is given in Algorithm 1 below. We
use dh(b)[2](e′,e](x′+, x+) to denote the length of a shortest path from x′+ to
x+ with homotopy string equal to the substring of h(b)[2] between indices e′

and e (not including the symbol on index e′). In other words, this substring is
equal to the prefix of length e minus the prefix of length e′. This shortest path
length can again be computed by the algorithm by Frank and Schrijver [88,
Section 5].

We also use
∗

min to denote that the minimum is only allowed over certain
combinations. In particular, in Line 8, the nerve (x+, a, a′) being considered
in combination with nerve (x′+, z, a − 1) and the path between x′+ and x+ of
homotopy string h(b)[2](e′, e] must define a region that only encloses αta−1 (the
terminal inbetween the two nerves). Moreover, the nerve (x+, a, a′) itself must
create a region for every terminal in {αta, . . . ,α ta′−1}. A similar constraint
holds in Line 13. Furthermore, if x+ lies on a path γ of the graph K, then in
Line 8, we find the minimum over values of e′ < γ and enforce the next index
on the homotopy string h(b)[2] to be γ.

The same algorithm is used to compute all the other parts of the splints,
too. Note that even though the algorithm only computes an optimal value, it
can be easily modified to return the optimal solution (nerves and nerve path).

Finally, if |s(b)| = 4, then we know from Lemma 3.6.7 that embedded in the
region bounded by the nerves attached to y+

1 and x+
2 , and y+

3 and x+
4 , along

with the paths between them, as well as the segments of Fα and Fβ bounding
the region on either side is a minimum Steiner tree with its terminals on the
boundary of the region. Using the algorithm of Erickson et al. [79] (see also
Bern [16]), we find the minimum Steiner tree. This finishes the description of
the splinting algorithm.

Lemma 3.7.6. Given a topology (S, s, h), a bone b of S, and the optimal
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1 c′[x+
1 , ℓ, ℓ′, 0] = c[x+

1 , ℓ, ℓ′];
2 c′[x+, a, a′, e] = ∞ for all x+ ̸= x+

1 , e ̸= 0, a ̸= ℓ, or a′ ̸= ℓ′;
3 for ℓ′ < a′ < j do
4 for ℓ′ < a ≤ a′ do
5 for x+ ∈ V (G+) do
6 for 0 ≤ e ≤ |h(b)[2]| do
7

c′[x+, a, a′, e] =
∗

min
ℓ≤z<a

x′+∈V (G+)
0≤e′≤e

{
c′[x′+, z, a − 1, e′] + c[x+, a, a′]

+ dh(b)[2](e′,e](x′+, x+)
}

8

9 end
10 end
11 end
12 end
13 return

∗
min

ℓ≤z<j
x+∈V (G+)

0≤e≤|h(b)[2]|

{
c′[x+, z, j − 1, e] + dh(b)[2](e,|h(b)[2]|](x+, y+

1 ) + c[y+
1 , j, j′]

}

Algorithm 1: Splinting Algorithm

broken bone for b, we can fix the broken bone by a minimum-weight splint found
through the splinting algorithm. Moreover, the splinting algorithm runs in time
nO(1).

Proof. The correctness and optimality of finding the shortest path with the
homotopy strings h(b)[2i + 1] between y+

i and x+
i+1 for 0 ≤ i ≤ |s(b)| (except

i = 2 when |s(b)| = 4) follows from Lemma 3.6.9. Moreover, if |s(b)| = 4, the
correctness of finding a minimum Steiner tree between the alternating nerves
follows from Lemma 3.6.7.

Then, we show that the algorithm finds a feasible splint. This is immediate
by the definition of

∗
min, which ensures that the nerves cover all terminals

between their intervals as well as inbetween the nerves.
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Next, we argue that the algorithm finds an optimal splint for the optimal
broken bone. We again only consider the part of the bone between x+

i and
y+

i for i = 1 and s(b)[1] = α; the other cases are similar. Let (x+, a, a′) be
any nerve that is part of C+ and where x+ lies on Pb between x+

1 and y+
1 .

From Lemma 3.5.14 (see also Figure 3.5), it follows that it creates a set of
regions that each enclose only a single terminal, each between the interval of
the nerve. Consider the prefix of the homotopy string of the subpath of Pb

between x+
1 and x+ and let it have length e. If N1 = (x+, a, a′) and (thus)

e = 0, then c′ contains the optimum weight of a partial splint for x+, a, a′, e,
namely the weight of N1. Otherwise, let (x′+, z, a − 1) be the nerve preceding
(x+, a, a′) on Pb and let e′ be the length of the homotopy string of the subpath
of Pb from x+

1 to x′+. Then the subpath of Pb from x′+ to x+ has homotopy
string h(b)[2](e′, e]. By Lemma 3.6.9, replacing this subpath by any other path
with the same homotopy string, still yields an optimal solution. Hence, the
algorithm will consider and allow z, x′+, e′ in the minimization for x+, a, a′, e
in Line 8 or 13. Using induction on x′+, z, a − 1, e′, it follows that c′ contains
the optimum weight of a partial splint for x+, a, a′, e. Moreover, the algorithm
returns the value of a minimum-weight splint.

It remains to argue the running time. Finding shortest paths with a
specified homotopy using Frank and Schrijver’s [88] algorithm takes nO(1) time.
Finding all nerves takes polynomial time through Lemma 3.5.17. Finding a
minimum Steiner tree in a planar graph, when all the terminals appear on
the boundary of a single face, takes another nO(1) time using the algorithm
of Erickson et al. [79] (see also Bern [16]). Finally, we loop over all O(n5 · k2)
choices for x+, a, a′, e, x′+, z, e′ to compute c′ in Line 8 of the algorithm and
O(n2 · k) choices in Line 13. Therefore, our algorithm runs in nO(1) time.

Using the algorithm, we can compute a splint for each broken bone of
each topology. Since the homotopy of each nerve path and each path between
branching points and the starts/ends of nerve paths are maintained, it follows
that we can replace each bone and attached nerves of the optimum solution by
the minimum-weight splint computed by the algorithm for the corresponding
optimal broken bone. In particular, the homotopy strings ensure that the
number of crossings of the bones with the cut graph K stays minimum.

Definition 3.7.7. We call an optimum solution splinted if it has the property
that each of its bones and attached nerves are splints.

Remark 3.7.8. From now on, we assume that the optimum solution is splinted.

For the sake of intuition, we note that we have now gathered sufficient
ideas to prove a 2O(k2 log k)nO(k) time algorithm for Planar Multiway Cut.
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In particular, we can enumerate all topologies in 2O(k2 log k) time and then
enumerate all broken bones for any shrunken bone in nO(k) time total. For the
combination of the optimal topology and the optimal broken bones for each
shrunken bone, the splinting algorithm then delivers an optimal solution for
each shrunken bone, which can be combined to form an optimal solution to
the whole (modulo some details). In the next section, we argue how to reduce
the nO(k) factor down to nO(

√
k).

3.8. Algorithm Using Sphere-Cut
Decomposition

We are now ready to discuss how we go from a topology to a multiway cut. If
the topology is optimal, we argue that we find a minimum-weight multiway
cut that has the same structure as the optimal multiway cut C. Our aim
is to employ Theorem 3.3.2 on the shrunken skeleton to get a small branch
decomposition and then apply a dynamic program. However, as already noted a
few times, the shrunken skeleton might have bridges and Theorem 3.3.2 cannot
be applied directly, but only on the bridge blocks of the shrunken skeleton.
Therefore, we first develop a dynamic program that combines solutions of the
bridge blocks of the shrunken skeleton, effectively reducing the problem.

3.8.1. Reduction to Bridge Blocks
When we want to combine solutions of different bridge blocks, it is natural to
use the bridge block tree in a dynamic program. However, if we do this naively,
we immediately run into the issue that in order to compute a solution for a
non-trivial bridge block, we need to know the solutions for all bridge blocks
contained in its bounded faces. This can be resolved by enforcing an ordering
on the computation of the bridge blocks that depends on the embedding.
To that end, we proposed the embedding-aware bridge block (eabb) tree in
Section 3.3.2. We now show how to use it.

Let (S, s, h) be a topology. Let L = L(S) be the eabb tree for S and let B
denote the set of bridge blocks of S. For a BB-node l of L, let B(l) denote the
bridge block corresponding to l. Extending this notation, for a subtree L′ of L,
we use B(L′) to denote the set of all bridge blocks corresponding to BB-nodes
in L′. For a node l of L, we use Ll to denote the subtree of L rooted at l. In
particular, Lℓ(L) = L, where we recall that ℓ(L) is the root of L.

Lemma 3.8.1. For any node l of L, B(Ll) is an internal set of S.

Proof. By Lemma 3.3.5, if there is a bridge block B and a bridge block
B′ ∈ B(Ll) such that B ≺P B′, then B ∈ B(Ll). Hence, any bridge block not
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in B(Ll) is in the outer face of each of the blocks in B(Ll). Hence, there is a
single face of B − B(Ll) that encloses B(Ll) and there is a single face of B(Ll)
that encloses B − B(Ll). It follows that B(Ll) is an internal set.

We now perform a bottom-up dynamic programming with respect to L.
The crux here is to understand the relation that a child l has with its parent.
This is formed by two parts. The first and easier part is the cut vertex shared
by neighboring bridge blocks. The second, more complicated part, is the
terminal face Fl in the middle region induced by the internal set B(Ll). The
terminals in Tl are covered jointly by B(Ll), the blocks induced by siblings of l
in L, and by the block induced by l’s parent. Using a similar argument as in
the proof of Lemma 3.5.14, we can see that each of these is responsible for a
single interval of Tl. To help in the computations, we additionally consider the
first nerves that cover the prefix and suffix of this interval. We now expand on
this intuition of the dynamic program and define the table more formally.

Let l be a node of L. Define w = w(l) as follows: if l is a C-node, then
let w be the corresponding cut vertex; if l is a BB-node and l has a parent in
L, then this parent is a C-node and we let w be its corresponding cut vertex;
otherwise, let w be any vertex of B(l). Let Fl ∈ F denote the unique terminal
face in the middle region of B(Ll).

Definition 3.8.2. Given a vertex w+ of the augmented dual, an interval Il

of Fl, and two (possibly empty) nerves N1
l , N2

l towards Fl, a stretcher is a set
D+ of augmented dual edges such that:

(i) the interval of N1
l is a prefix of Il and the interval of N2

l is a suffix of
Il. N1

l and N2
l are either both empty or both non-empty and cannot be

empty if there is at least one terminal between Il.

(ii) there is a (possibly empty) set of nerves in D+ towards Fl whose aug-
mented terminal sets are intervals that jointly partition Il. N1

l and N2
l

are among those nerves;

(iii) for any terminal t ∈ Tl between Il, there is a bounded face of D∗ that
encloses only t and no other terminals. Here D∗ is the set of dual edges
corresponding to the augmented dual edges in D+;

(iv) for any terminal t ∈ Tα of a bounded face fα in the subgraph of S induced
by the bridge blocks of Ll, there is a bounded face of D∗ that encloses
only t and no other terminals;

(v) D+ contains a splint for each bone in B(Ll) and N1
l and N2

l are included
in these splints;
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(vi) w+ is the vertex of D+ that is an end of all splints for the bones in B(Ll)
that are incident on w.

We call w+, Il, N1
l , and N2

l a binder of the stretcher and a binder for l. We
say a binder is valid if it adheres to (i).

Proposition 3.8.3. For each node l of L, there are nO(1) binders. These can
be enumerated in the same time.

Proof. It suffices to observe that a binder has one augmented dual vertex, an
interval of a terminal face, and two nerves, each of which can be described by
a constant number of vertices of the augmented dual.

Consider any vertex l of the embedding-aware block-cut tree L of the
shrunken skeleton of an optimum solution C+. Let Il be the union of intervals
of the nerves in C+ towards Fl that attach to a block in B(Ll) and let N1

l

and N2
l be the nerves whose intervals are a prefix and suffix of Il respectively.

Following Remark 3.7.8, C+ is a union of splints for each of the shrunken bones
of S. Let w+ be the vertex of C+ that is an end of all splints for the bones
in B(Ll) that are incident on w = w(l). Then we call w+, Il, N1

l , and N2
l

an optimal binder. Note that for each optimal binder, a stretcher does exist,
which we call an optimal stretcher. We may speak of ‘the’ optimal binder and
stretcher, because the minimum-weight solution and topology are uniquely
defined.

Then for each binder Il, N1
l , N2

l , w+, define Al[Il, N1
l , N2

l , w+] as a
minimum-weight stretcher for this binder. If no such stretcher exists, then we
define Al[Il, N1

l , N2
l , w+] to be the set of all augmented dual edges. We argue

that the table A can be computed in a dynamic programming fashion.
In the next section, we prove the following.

Lemma 3.8.4. For any BB-node l of L and the optimal binder B for l, we
can compute a minimum-weight stretcher for l when given minimum-weight
stretchers for all optimal binders of all children of l. Moreover, it can be
computed in nO(

√
|B(l)|) time.

We now describe how to compute a table entry for Il and w+ if l is a
C-node. Let l1, . . . , lq denote the children of l in L. Note that the children of
l are all BB-nodes. We assume that the bridge blocks appear in this order
around w in S. Then we compute Al[Il, N1

l , N2
l , w+] as the minimum-weight

union of Alj [Ilj , N1
lj

, N2
lj

, w+] over all families Il1 , . . . , Ilq of (possibly empty)
intervals of Fl that form a partition of Il and appear in this order on Il and over
all nerves N1

lj
, N2

lj
whose interval is a prefix respectively suffix of Ilj . During

this computation, we discard any union that does not form a stretcher. If all
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unions are discarded in this way, we set Al[Il, N1
l , N2

l , w+] equal to the set of
all augmented dual edges.

Lemma 3.8.5. For any C-node l of L and the optimal binder B for l, we can
compute a minimum-weight stretcher when given minimum-weight stretchers
for all optimal binders of all children of l. Moreover, the table A will store a
stretcher of minimum weight for the optimal binder. Finally, it can be computed
in O(qnO(1)) time

Proof. Consider an optimal binder for l and optimal binders for l1, . . . , lq. By
assumption, A contains a minimum-weight stretcher for the optimal binder
for l1, . . . , lq. We only need to be concerned with the terminals t inbetween
consecutive non-empty intervals Ilj and Ilj′ , where j < j′. That is, Ilj and
Ilj′ are non-empty intervals and there is no j < j′′ < j′ such that Ilj′′ is a
non-empty interval. The remainder follows by definition. So consider such a
terminal t. Consider the nerves N2

lj
and N1

lj′ of the optimal binders for lj and
lj′ . Now follow the nerve paths of the splints belonging to bones bordering fj

contained in Blj′′ for all j ≤ j′′ ≤ j′ of the stretcher stored in A. This path
has the same homotopy as in the optimal solution and goes between the same
vertices as in the optimal solution, namely the roots of N2

lj
and N1

lj′ . Together
with the sides of N2

lj
and N1

lj′ , which are as in the optimum, this path thus
yields a region that encloses t and no other terminals by Lemma 3.6.9. Hence,
the algorithm computes a stretcher for the optimal binder.

Finally, it remains to argue that the computed stretcher has minimum
weight. We note that the optimal stretcher (for the optimal binder) can be
decomposed into optimal stretchers (for the optimal binders) for each of the
children l1, . . . , lq by the definition of optimality. Then, it follows by the
description of the algorithm that A stores a minimum-weight stretcher for the
optimal binder.

Note that a trivial implementation would compute this minimum in O(nO(q))
time by enumerating all partitions of Il and all nerves. However, using a simple
dynamic program using partial unions, this can be reduced to O(qnO(1)) time.

3.8.2. Algorithm for a Bridge Block
We now set out to prove Lemma 3.8.4. Consider any BB-node l of L. It is
either a single edge or a connected and bridgeless graph without self-loops.
Hence, it has a sphere-cut decomposition by Theorem 3.3.2. Assuming that
the table A has been computed for all children of l in L (which are C-nodes),
we compute the table entry for l. By Lemma 3.8.1, B(Ll) is an internal set.
Let Fl be the terminal face in the middle region of B(Ll). Consider a binder
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Il, N1
l , N2

l , w+ for l. We assume that the binder is valid. We now wish to
compute a stretcher for this binder by a dynamic program over the sphere-cut
decomposition.

An important part of the dynamic program is how to incorporate the
solutions for the children of l in L. Since we effectively consider B(l) as a
collection of (shrunken) bones, we need to associate a bone with each child to
ensure this. We now make this more formal. For each C-node of L that is child
l′ of l, corresponding to a cut vertex c, consider the middle region fl′ of B(Ll′)
and let b, b′ be two of the bones on the boundary of B(l) that are incident on
c. Since l′ is a child of l, it follows from the definition of an eabb tree that b
and b′ are well defined (and possibly b = b′). Pick one of b, b′ in a consistent
manner (say b) and associate l′ with this bone. We call l′ an associated child
of the bone b, the cut vertex c, and the middle region fl′ . Later, when we
propose the algorithm, we will discuss how to specify the binders for associated
children.

Now let (R, η, δ) be a sphere-cut decomposition of B(l); refer back to
Section 3.3.1 for the definitions. For every pair x, y of adjacent vertices of R
such that y is the parent of x, consider the noose γ⃗ = δ(x, y). Let Fγ⃗ ⊆ F be
the set of terminal faces for which the corresponding face of S is intersected by
γ⃗ and let Fenc(γ⃗) ⊆ F be the set of terminal faces for which the corresponding
face of S is enclosed by enc(γ⃗). We include in Fenc(γ⃗) the bridge blocks of
any associated children of any bone enclosed by enc(γ⃗). Note that Fenc(γ⃗) is
possibly empty, but Fγ⃗ never is.

We now describe a bottom-up dynamic programming algorithm that aims
to compute a stretcher of minimum weight for the given binder. To develop
this algorithm, we first need a notion of what the partial solution is that we
compute during the algorithm.

To this end, we need the notion of a partial binder and a partial stretcher.
The intuition is that a partial binder is a dynamic programming state for
the intersection of a noose γ⃗ with the hypothetical solution prescribed by the
topology. For each vertex of the topology intersected by γ⃗, the state stores a
corresponding vertex of the augmented dual. For each terminal face Fα in Fγ⃗ ,
we only see part of the hypothetical solution, which is described by an interval
of Tα and the (possibly empty) first and last nerves that (possibly together
with other nerves) cover the interval. Then a corresponding partial stretcher
is the entry stored in the dynamic programming table for the partial binder,
which essentially stores a solution for all terminal faces in Fenc(γ⃗) and a partial
solution for all terminals between the mentioned interval.

An important situation occurs when Fl, the face in the middle region of
the internal set B(Ll), is in Fγ⃗ . Recall that the binder specifies an interval
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of Tl (and certain nerves) that must be covered by the stretcher that we
are computing. Hence, in this case, the partial solution needs to satisfy (at
least, partially) these demands as well. This constraint is met in part (I) of
Definition 3.8.6 below.

We now define this intuition more formally. Throughout, if w1, . . . , wq are
the q vertices of B(l) intersected by a noose γ⃗, then we assume that the faces
of Fγ⃗ are numbered F1, . . . , Fq, where Fj is the terminal face corresponding
to the face of B(l) intersected by the part of γ⃗ between wj and wj+1 (or w1 if
j = q).

Figure 3.19: The noose γ⃗ is drawn in blue. It intersects the skeleton only in its vertices.
The skeleton here is drawn in green. The outermost nerves N1 and N2 of each face
of the skeleton are shown in purple. These form a part of the partial binder. The
outermost nerves that are unique to the partial binders for the child edges (y1, x) and
(y2, x) of the current edge (x, y) in the sphere-cut decomposition tree R are drawn in
turquoise.

Definition 3.8.6. Given a binder Il, N1
l , N2

l , w+ for l, the noose γ⃗ = δ(x, y),
augmented dual vertices w+

1 , . . . , w+
q , where q = |Fγ⃗ |, intervals I1, . . . , Iq of

F1, . . . , Fq respectively, and (possibly empty) nerves N1
1 , N2

1 , . . . , N1
q , N2

q to-
wards F1, . . . , Fq respectively, a partial stretcher for (x, y) is a set D+ of
augmented dual edges such that:

(I) the intervals of N1
1 , . . . , N1

q are a prefix of I1, . . . , Iq (if non-empty) and
the intervals of N2

1 , . . . , N2
q are a suffix of I1, . . . , Iq (if non-empty) re-

spectively. For each 1 ≤ i ≤ q, N1
i and N2

i are either both empty or both
non-empty and cannot be empty if Ii has more than one terminal. If
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Fl ∈ Fγ⃗, say Fl = Fj, then: Ij is a subinterval of Il; if Ij is a prefix of
Il, then N1

j = N1
l ; if Ij is a suffix of Il, then N2

j = N2
l ;

(II) there is a (possibly empty) set of (possibly empty) nerves in D+ to-
wards F1, . . . , Fq whose corresponding intervals jointly partition I1, . . . , Iq.
N1

1 , . . . , N1
q and N2

1 , . . . , N2
q are among those nerves;

(III) for each terminal t between I1, or . . ., or Iq, there is a bounded face of
D∗ that encloses only t and no other terminals of T . Here D∗ is the set
of dual edges corresponding to the augmented dual edges in D+;

(IV) for any terminal t ∈ Tα of a terminal face Fα ∈ Fenc(γ⃗), there is a
bounded face of D∗ that encloses only t and no other terminals of T ;

(V) D+ is the union of a set of splints, one for each bone enclosed by enc(γ⃗).
N1

1 , N2
1 , . . . , N1

q , N2
q are included in these splints;

(VI) if w is in enc(γ⃗), then w+ is the vertex of D+ that is an end of all splints
for the bones in enc(γ⃗) that are incident on w;

(VII) w+
1 , . . . , w+

q are the ends of splints in D+ that correspond to w1, . . . , wq.

We call w+
1 , . . . , w+

q , I1, . . . , Iq, and N1
1 , . . . , N1

q , N2
1 , . . . , N2

q a partial binder of
the partial stretcher and of (x, y). We say a partial binder is valid if it adheres
to Property (I).

Proposition 3.8.7. For any binder and noose γ⃗ = δ(x, y), there are nO(q)

distinct partial binders, where q = |Fγ⃗ |. These can be enumerated in the same
time.

Proof. It suffices to observe that a partial binder has O(q) augmented dual
vertices, intervals of terminal faces, and nerves, each of which can be described
by a constant number of vertices of the augmented dual.

For the dynamic program, we define a function Z that assigns to any partial
binder a minimum-weight partial stretcher. If such a partial stretcher does
not exist, then Z assigns the set of all augmented dual edges. Below, we show
how we compute the table Z and argue that a minimum-weight stretcher is
computed. To that end, we perform dynamic programming on the sphere-cut
decomposition and describe two cases: a base case on a leaf of the branch
decomposition, and an inductive case.
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3.8. Sphere-cut decomposition

Dynamic Program: Base Case Consider the base case, when x is a leaf.
Since B(l) is bridgeless and connected, mid(x, y) consists of the endpoints of a
single bone b = (w1, w2), enclosed by the noose γ⃗ = δ(x, y). Let w+, Il, N1

l , N2
l

be a valid binder and w+
1 , w+

2 , I1, I2, and N1
1 , N1

2 , N2
1 , N2

2 be a partial binder.
We assume that the partial binder is valid, i.e. it satisfies property (I) of
Definition 3.8.6. We also assume that if w is in enc(γ⃗), then w+ = w+

j when
w = wj for j ∈ {1, 2}. Let Fα and Fβ be the two terminal faces separated by b.

An important consideration here is how to deal with associated children of
b.

The partial binder makes the partial solution for b responsible for covering
the terminals between I1 and I2, but part of this responsibility can be delegated
to the associated children of b. We only need to specify which subintervals of I1
and I2 is covered by the associated children by splitting it. We now formalize
this intuition.

Suppose l′ is an associated child of b. Say it is associated with w1 and
face Fα. Without loss of generality, b follows w1 in the face ordering. Then
we enumerate all possible intervals I ′

1 and I ′′
1 of Fα that partition I1 (with

I ′
1 preceding I ′′

1 ) and enumerate all possible (possibly) nerves N ′
1 and N ′′

1
towards Fα, such that w+

1 , I ′
1, N1

1 , and N ′
1 is a valid binder for l′ (called a

split-parameterized binder) and w+
1 , w+

2 , I ′′
1 , I2, and N ′′

1 , N1
2 , N2

1 , N2
2 is a valid

partial binder (a split partial binder). Then we call I ′
1, I ′′

1 , N ′
1, and N ′′

1 a
splitter for the partial binder with respect to the associated child l′. Tying this
to our earlier intuitive understanding, the splitter effectively specifies which
part of I1 is covered by the bone and which part by the associated child. This
specification leads to a binder for the associated child (the split-parameterized
binder) and a new partial binder for b (the split partial binder). We will later
consider every possible splitter and take the best solution we find.

From now on, we assume that the partial binder is split with respect to
all associated children of b (we might call it split even if b has no associated
children). By abuse of notation, we still use the same variables for it.

We now enumerate all broken bones for b for which Iα = I1, Iβ = I2, y+
0 =

w+
1 , x+

|s(b)|+1 = w+
2 , and nerves N1, . . . , N2|s(b)| that correspond to N1

1 , N1
2 and

N2
1 , N2

2 . Here we mean by ‘correspond’ that for the smallest j ∈ {1, . . . , |s(b)|}
for which s(b)[j] = α, it holds that N2j−1 = N1

1 and for the largest j ∈
{1, . . . , |s(b)|} for which s(b)[j] = α, it holds that N2j = N2

1 ; a similar condition
holds with respect to β. We say that such a broken bone specializes the partial
binder. Conversely, the partial binder generalizes the broken bone. Note that
there is a unique partial binder generalizing a broken bone, while this is not
true for the converse. Then we use Algorithm 1 to compute a minimum-weight
splint for each broken bone that specializes the split partial binder. Finally, set
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Z of the partial binder to be equal to a minimum-weight union of the splint
found in this manner for the split partial binder and the stretchers stored
in A for the split-parameterized binders. This minimum is optimized over
all splitters for which the aforementioned union forms a partial stretcher. If
no such union yields a partial stretcher, set Z to be equal to the set of all
augmented dual edges.

For the optimal topology and the optimal binder for a node l of L(S), a
partial binder is optimal if C+ contains a partial stretcher for this partial binder
where each of the splints of the partial stretcher (mentioned in part V) are
optimal. By Remark 3.7.8, we may assume that any optimum solution indeed
consists of splints. We then call this partial stretcher optimal as well. It follows
that, for a bone b, a split partial binder is optimal if it generalizes the optimal
broken bone for b. A splitter is optimal if the resulting split-parameterized
binders and split partial binder are optimal.

Proposition 3.8.8. Let x be a leaf and b the corresponding bone whose
endpoints are in mid(x, y). Consider any broken bone specializing a valid
partial binder B for (x, y) and if w is in enc(γ⃗), then w+ = w+

j when w = wj

for j ∈ {1, 2}. If B is split or b has no associated children, then any splint for
the broken bone is a partial stretcher for B. If b has associated children, B is
optimal, and the splitter is optimal, then the union of a splint for the broken
bone and the stretchers stored in A for the optimal split-parameterized binders
is a partial stretcher. Finally, for the optimal partial binder, the table entry
Z(B) will store a partial stretcher of minimum weight.

Proof. We verify that all properties of Definition 3.8.6 hold. Property (I)
holds by definition. Property (II) and (III) follow by the definition of a splint
for a broken bone specializing the partial binder. Property (IV) follows from
the definition of a splint. Property (V) follows from the definition of a splint
for a broken bone specializing the partial binder. Property (VI) follows by
assumption and the definition of a splint. Finally, Property (VII) follows by
the definition of a splint for a broken bone specializing the partial binder.

If b has associated children, then we augment the argument for Property (III)
and (IV). Indeed, Property (III) is satisfied for all terminals except possibly
the terminal t inbetween I ′

1 and I ′′
1 of the optimal splitter. However, w+

1 , N ′
1,

and the attachment point of N ′′
1 are as in the optimum and thus the path

between w+
1 and the attachment point of N ′′

1 has the same homotopy as in the
optimum (by the definition of a splint) and goes between the same vertices
as the optimum. Together with the flanks of N ′

1 and N ′′
1 , which are as in the

optimum, this path thus yields a region that encloses t and no other terminals
by Lemma 3.6.9. Property (IV) follows by the definition of a partial stretcher
applied to the associated children.

94



3.8. Sphere-cut decomposition

For the final part, we note that the preceding establishes that for the
optimal (original) partial binder and optimal splitter, the algorithm yields a
partial stretcher. Note that the optimal broken bone is among the broken bones
specializing the optimal partial binder by definition. Then, by the optimality
of the splinting algorithm, the resulting splint for the optimal split partial
binder is optimal. Then, by the optimality of the table A for each associated
child and of the splinting algorithm, the resulting splint and partial stretcher
will have minimum weight.

Dynamic Program: Inductive Case Now consider the inductive case,
when x is an internal vertex. Let w+, Il, N1

l , N2
l be a valid binder. Let

w+
1 , . . . , w+

q , I1, . . . , Iq, and N1
1 , . . . , N1

q , N2
1 , N2

q be a partial binder B for (x, y).
We assume that the partial binder satisfies property (I) of Definition 3.8.6. We
also assume that if w is on γ⃗, then w+ = w+

j when w = wj for j ∈ {1, . . . , q}.
Let v+

1 , . . . , v+
r , J1, . . . , Jr, and M1

1 , . . . , M1
r , M2

1 , . . . , M2
r be a valid partial

binder B1 for (y1, x) and let u+
1 , . . . , u+

s , K1, . . . , Ks, and L1
1, . . . , L1

s, L2
1, . . . , L2

s

be a valid partial binder B2 for (y2, x). Let α⃗ = δ(y1, x) and β⃗ = δ(y2, x). Note
that the terminal faces in Fγ⃗ , Fα⃗, and F

β⃗
can be categorized into four classes:

those that appear in all three (of which there are at most two), those that
appear in Fγ⃗ and Fα⃗ but not F

β⃗
, those that appear in Fγ⃗ and F

β⃗
, but not in

Fα⃗, and those that appear in Fα⃗ and F
β⃗
, but not in Fγ⃗ .

We say that these partial binders match if

• for each terminal face Fj ∈ Fγ⃗ that is in Fα⃗ (say it is also numbered j
in Fα⃗) but not in F

β⃗
, the state for this face is the same in B and B1.

Formally, Ij = Jj , w+
j = v+

j , w+
j+1 = v+

j+1, N1
j = M1

j , and N2
j = M2

j ;

• for each terminal face Fj ∈ Fγ⃗ that is in F
β⃗

(say it is also numbered j

in F
β⃗
) but not in Fα⃗, the state for this face is the same in B and B1.

Formally, Ij = Kj , w+
j = u+

j , w+
j+1 = u+

j+1, N1
j = L1

j , and N2
j = L2

j ;

• for each terminal face Fj ∈ Fγ⃗ that is in both Fα⃗ and F
β⃗

(say it is also
numbered j in both Fα⃗ and F

β⃗
), the state for this face in B is the ‘union’

of the states stored in B1 and B2. Formally, Ij = Jj ⊎ Kj , w+
j = v+

j ,
v+

j+1 = u+
j , w+

j+1 = u+
j+1, N1

j = M1
j , and N2

j = L2
j ;

• for each terminal face Fj that is in both Fα⃗ and F
β⃗

(say it is numbered
j in both Fα⃗ and F

β⃗
) but not in Fγ⃗ , the state for this face in B1 and

B2 jointly covers all terminals. Formally, Jj ⊎ Kj = T +
j , v+

j+1 = u+
j , and

v+
j = u+

j+1.
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To simplify the presentation, we did not consider index overflow, e.g., when
j + 1 > |Fγ⃗ |, we should use index 1 instead. The following is immediate from
the definition above and that of optimal partial binders.

Proposition 3.8.9. The triple of optimal partial binders for (x, y), (y1, x),
and (y2, x) match.

The algorithm now does the following. For each valid partial binder B for
(x, y), we enumerate all matching, valid partial binders B1, B2 for (y1, x) and
(y2, x) respectively and set Z to be equal to the minimum-weight union of the
corresponding partial stretchers stored in Z for B1 and B2 that form a partial
stretcher for B. If no such union forms a partial stretcher for B, then we set
Z to be equal to the set of all augmented dual edges.

Proposition 3.8.10. Consider the triple of optimal partial binders B, B1, B2
for (x, y), (y1, x), and (y2, x) respectively. The union of any partial stretcher for
B1 and any partial stretcher for B2 forms a partial stretcher for B. Moreover,
the table entry Z(B) will store a partial stretcher of minimum weight.

Proof. Consider partial stretchers P1 and P2 for B1 and B2 respectively. It
is important to remember the fact that the set of edges (bones) in enc(y1, x)
and in enc(y2, x) are disjoint by the definition of a sphere-cut decomposition.
Property (VI) and (VII) now follow using the fact that each vertex in mid(x, y)
is in mid(y1, x) or mid(y2, x) or matched in the partial binders. It is also
clear that P1 ∪ P2 is a union of a set of splints, almost verifying Property (V).
Moreover, for each face in Fenc(α⃗) or Fenc(β⃗), Property (IV) is satisfied. We
now verify the remaining (parts of the) properties.

By Proposition 3.8.9, the partial binders match. We then consider each of
the cases:

• for each terminal face Fj ∈ Fγ⃗ that is in Fα⃗ (say it is also numbered
j in Fα⃗) but not in F

β⃗
, P1 contains augmented dual edges to satisfy

Property (II), (III), and (V) with respect to Fj ;

• for each terminal face Fj ∈ Fγ⃗ that is in F
β⃗

(say it is also numbered
j in F

β⃗
) but not in Fα⃗, P2 contains augmented dual edges to satisfy

Property (II), (III), and (V) with respect to Fj ;

• for each terminal face Fj ∈ Fγ⃗ that is in both Fα⃗ and F
β⃗

(say it is also
numbered j in both Fα⃗ and F

β⃗
), P1 and P2 jointly contain augmented

dual edges to satisfy Property (II), (III), and (V) with respect to Fj . The
only exception is the terminal inbetween Jj and Kj . If such a terminal t
indeed exists, then follow the nerve paths stored in the splints of P1 for
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the bones of face fj in enc(α⃗) from the root of nerve M2
j (which must be

non-empty since t exists) to v+
j+1 = u+

j , and then the nerve paths stored
in the splints of P2 for the bones of face fj in enc(β⃗) from v+

j+1 = u+
j

to the root of nerve L1
j (which must be non-empty since t exists). This

path has the same homotopy as in the optimum, by the optimality of the
topology and the splints. It also goes between the same vertices as in
the optimum, by the optimality of the partial binders. Together with the
sides of M2

j and L1
j , which are as in the optimum, this path thus yields a

region that encloses t and no other terminals by Lemma 3.6.9.

• for each terminal face Fj that is in both Fα⃗ and F
β⃗

(say it is numbered j

in both Fα⃗ and F
β⃗
) but not in Fγ⃗ , we note it is contained in Fenc(γ⃗), but

not in Fenc(α⃗) or Fenc(β⃗). To verify Property (IV), we note that it holds
for all terminals in Tj by Property (III) applied to P1 and P2, except for
the one or two terminals inbetween Jj and Kj . Let t be such a terminal.
Then follow the nerve paths stored in the splints of P1 for the bones of
face fj in enc(α⃗) from the root of nerve M1

j (or from L1
j if the nerve is

empty, or from v+
j+1 if both are empty) to v+

j = u+
j+1, and then the nerve

paths stored in the splints of P2 for the bones of face fj in enc(β⃗) from
v+

j = u+
j+1 to the root of nerve L2

j (or to M2
j if this nerve is empty or to

u+
j if both nerves are empty). This path has the same homotopy as in

the optimum, by the optimality of the topology and the splints. It also
goes between the same vertices as in the optimum, by the optimality of
the partial binders. Together with the sides of M1

j (or of L1
j ) and L2

j (or
of M2

j ), which are as in the optimum, this path thus yields a region that
encloses t and no other terminals by Lemma 3.6.9.

It follows that the union of P1 and P2 is a partial stretcher for B.
For the final part, we note that by the preceding, the table entry is indeed a

partial stretcher. It remains to argue that it has minimum weight. It suffices to
argue that an optimum partial stretcher for B can be decomposed into (disjoint)
partial stretchers for B1 and B2; to this end, we note that the optimum partial
stretcher for B is decomposed into the optimum partial stretchers for B1 and
B2 by definition of optimality and matching. Then, it follows by induction and
Proposition 3.8.8 that Z stores a minimum-weight partial stretcher for B1 and
B2, and thus Z will store a minimum-weight partial stretcher for B.

Finally, we observe that for the root of the sphere-cut decomposition, any
partial binder is equal to the given binder and any partial stretcher for the
partial binder is a stretcher for the given binder. This is immediate from the
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definitions. Thus, we can set A for the given binder as the entry stored in Z
for the corresponding (equal) partial binder.

Proof of Lemma 3.8.5. By Theorem 3.3.2, B(l) has a sphere-cut decomposition
of width O(

√
|B(l)|). We then compute the table Z. By Proposition 3.8.7,

we can enumerate all partial binders in nO(
√

|B(l)|) time. We can immediately
see that the dynamic program takes nO(

√
|B(l)|) time as well. The base case

relies on the splinting algorithm, which takes polynomial time by Lemma 3.7.6.
As observed previously, for the root of the sphere-cut decomposition, any
partial binder is equal to the given binder and any partial stretcher for the
partial binder is a stretcher for the given binder. Hence, the correctness of the
algorithm follows from Proposition 3.8.8 and Proposition 3.8.10.

3.9. Proof of Theorem 3.1.1
The following theorem implies the algorithmic part of Theorem 3.1.1. As already
mentioned, the lower bound immediately follows from Marx’s result [149].

Theorem 3.9.1. Consider an instance (G, T, ω) of Planar Multiway Cut.
We can compute a minimum-weight multiway cut of (G, T ) in 2O(k2 log k)nO(

√
k)

time, where k is the number of faces needed to cover all terminals.

Proof. First, in time 2O(k)nO(1) through the algorithm of Bienstock and
Monma [17], we compute a set of faces of size k that covers all the terminals.
This is the set F . We then transform the instance through the transformations
of Section 3.4, and particularly Lemma 3.4.1. We then apply the algorithm of
Lemma 3.4.12 to reduce to the case when the dual of any optimum solution is
connected.

Now, by Lemma 3.7.3, we can enumerate all topologies in 2O(k2 log k) time.
For each topology (S, s, h), build an embedding-aware bridge block tree L =
L(S) in linear time by Lemma 3.3.4. Now we perform the dynamic program of
Lemma 3.8.5 and 3.8.4 on L(S). Since the nodes corresponding to the same
cut vertex of H effectively form a subtree of L through Lemma 3.3.6, the
binders contain the same cut vertex w and w+ throughout. Then it follows
that by induction on the depth of l in L that a minimum-weight stretcher is
computed for each optimal binder. Finally, for the root node of L, we consider
the minimum-weight stretcher that is found among all binders. One of those
will be the optimal binder, and thus we find a stretcher of weight at most that
of the optimal stretcher for the optimal binder. Recalling that a topology has
O(k) vertices, it follows from Lemma 3.8.5 and 3.8.4 that the running time is
nO(

√
k).
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Finally, we note here that the running-time our algorithm does not depend
on the sum of edge-weights W in a unit cost model of computation. It only
linearly depends on log W .

3.10. Conclusions
We showed in this chapter that Edge Multiway Cut can be solved on
planar graphs with terminal face-cover number k, in time 2O(k2·log k) · nO(

√
k).

While one cannot hope to find an algorithm that solves the problem in no(
√

k)

time unless ETH fails, we would like to point out that there still is room
for improvement in the exponent of 2. It is known that Steiner Tree can
be solved in time nO(

√
k), on planar graphs with terminal face-cover number

k [118]. It remains open to study the complexity of both of these problems
with respect to the same parameter in other classes of embedded graphs, for
example, bounded genus graphs.
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4
Complexity of Multiway Cut on

Planar Subcubic Graphs

It is known that the weighted version of Edge Multiway Cut (also
known as Multiterminal Cut) is NP-complete on planar graphs of
maximum degree 3 [60]. In contrast, for the unweighted version, NP-
completeness is only known for planar graphs of maximum degree 11.
In fact, the complexity of unweighted Edge Multiway Cut was
open for graphs of maximum degree 3 for over twenty years. We
prove that the unweighted version is NP-complete even for planar
graphs of maximum degree 3. As weighted Edge Multiway Cut is
polynomial-time solvable for graphs of maximum degree at most 2, we
have now closed the complexity gap. We also prove that (unweighted)
Node Multiway Cut (both with and without deletable terminals) is
NP-complete for planar graphs of maximum degree 3. By combining
our results with known results, we can apply two meta-classifications
on graph containment from the literature. These yield full dichotomies
for all three problems on H-topological-minor-free graphs and, should
H be finite, on H-subgraph-free graphs as well. Previously, such
dichotomies were only implied for H-minor-free graphs.

101
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In this chapter, we consider the unweighted edge and node versions of the
Multiway Cut problem. As before, let S be the set of edges (or vertices)
that we remove from the graph G to pairwise disconnect all the terminals of
T ⊆ V (G). We consider two versions of Node Multiway Cut depending on
whether S can contain vertices of T or not: Unrestricted Node Multiway
Cut, and Restricted Node Multiway Cut.

Our goal in this chapter is to answer the following question:
What is the computational complexity of Edge Multiway Cut and both
versions of Node Multiway Cut for planar subcubic graphs?
Chapter Outline: We describe our motivation behind investigating the above
question in Section 4.1. Then we go on to prove our main result, i.e. the
NP-completeness of Edge Multiway Cut on planar, subcubic graphs in
Section 4.2. Next we discuss the complexity of Node Multiway Cut on
subcubic graphs in Section 4.3. Finally, we discuss the consequences of our
results and open problems left to investigate in Section 4.4.

4.1. Motivation
Our first reason to study the problem is due to a complexity gap that was
left open in the literature for over twenty years. That is, in addition to their
NP-completeness result for |T | = 3, Dahlhaus et al. [60] also proved that
Weighted Edge Multiway Cut is NP-complete on planar subcubic graphs
using integral edge weights. Any edge of integer weight j can be replaced by
j parallel edges (and vice versa) without changing the problem. Hence, their
reduction implies that Edge Multiway Cut is NP-complete on planar graphs
of maximum degree at most 11 [60, Theorem 2b]. Dahlhaus et al. [60] write
that “The degree bound of 11 is not the best possible. Using a slight variant
on the construction and considerably more complicated arguments, we believe
it can be reduced at least to 6”, but no further arguments were given. Even
without the planarity condition and only focussing on the maximum degree
bound, the hardness result of [60] is still best known. Given that the problem
is polynomial-time solvable if the maximum degree is 2, this means that there
is a significant complexity gap that has yet to be addressed.

To the best of our knowledge, there is no explicit hardness result in the
literature that proves NP-completeness of either version of Node Multiway
Cut on graphs of any fixed degree or on planar graphs.

However, known and straightforward reductions (see e.g. [98, 162]) immedi-
ately yield NP-hardness on planar subcubic graphs for Unrestricted Node
Multiway Cut (see Theorem 4.1.2), but only on planar graphs of maximum
degree 4 for Node Multiway Cut (see Proposition 4.3.1).
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Our second reason is the central role planar subcubic graphs play in
complexity dichotomies of graph problems restricted to graphs that do not
contain any graph from a set H as a topological minor1 or subgraph; such graphs
are said to be H-topological-minor-free or H-subgraph-free, respectively. For
both the topological minor containment relation [169] and the subgraph relation
(see [120]) meta-classifications exist. To apply these meta-classifications, a
problem must satisfy certain conditions, in particular being NP-complete for
subcubic planar graphs for the topological minor relation, and being NP-
complete for subcubic graphs for the subgraph relation. These two conditions
are exactly what is left to prove for Edge Multiway Cut and both versions
of Node Multiway Cut. In contrast, the results of [9, 60, 169] and the
aforementioned reductions from [98, 162] imply that all three problems are fully
classified for H-minor-free graphs: the problems are polynomial-time solvable if
H contains a planar graph and NP-complete otherwise (see also [120]). Hence,
determining the complexity status of our three problems for planar subcubic
graphs is a pressing issue.

Our third reason is the rich tradition to investigate the NP-completeness
of problems on subcubic graphs and planar subcubic graphs (see e.g. the list
in [120]) which continues till this day, as evidenced by recent NP-completeness
results for subcubic graphs (e.g. [26, 186]) and planar subcubic graphs (e.g. [30,
196]).

We also note that Edge Multicut, the standard generalization of Edge
Multiway Cut, is NP-complete even on subcubic trees [39].

For the above reasons, the fact that the complexity status of our three
problems restricted to (planar) subcubic graphs has remained open this long is
unexpected.

Our Results: The following three results fully answer our research question.

Theorem 4.1.1. Edge Multiway Cut is NP-complete for planar subcubic
graphs.

Theorem 4.1.2. Unrestricted Node Multiway Cut is NP-complete for
planar subcubic graphs.

Theorem 4.1.3. Node Multiway Cut is NP-complete for planar subcubic
graphs.

1A graph G contains a graph H as a topological minor if G can be modified into H by a
sequence of edge deletions, vertex deletions and vertex dissolutions, where a vertex dissolution
is the contraction of an edge incident to a vertex of degree 2 whose (two) neighbors are
non-adjacent.

103



Chapter 4. MWC: subcubic graphs

The NP-completeness for Node Multiway Cut for planar subcubic graphs
follows from the NP-hardness of Edge Multiway Cut by constructing the
line graph of input graph. The hardness for Unrestricted Node Multiway
Cut on planar subcubic graphs follows from a straightforward reduction from
Vertex Cover.

4.2. The Proof of Theorem 4.1.1
In this section, we show that Edge Multiway Cut is NP-complete on planar
subcubic graphs. In spirit, our construction for Edge Multiway Cut is
similar to the one by Dahlhaus et al. [60] for graphs of maximum degree 11.
For non-terminal vertices of high degree, a local replacement by a (sub)cubic
graph is relatively easy. However, for terminal vertices of high degree, a local
replacement strategy seems impossible. Hence, the fact that terminals in the
construction of Dahlhaus et al. [60] can have degree up to 6 becomes a crucial
bottleneck.

To ensure that our constructed graph has maximum degree 3, we therefore
need to build different gadgets. We then leverage several deep structural
properties of the edge multiway cut in the resulting instance, making for a
significantly more involved and technical correctness proof. Crucially, we first
prove NP-completeness for a weighted version of the problem on graphs of
maximum degree 5, in which the terminals all have degree 3. Then we replace
weighted edges and high-degree vertices with appropriate gadgets.

We reduce the problem from a special case of Planar 2P1N-3SAT, which
is a restricted version of 3-SAT. Given a CNF-formula Φ with the set of
variables X and the set of clauses C, the incidence graph of the formula is the
graph GX,C which is a bipartite graph with one of the partitions containing a
vertex for each variable and the other partition containing a vertex for each
clause of Φ. There exists in GX,C an edge between a variable-vertex and
a clause-vertex if and only if the variable appears in the clause. We define
Planar 2P1N-3SAT as follows.

Planar 2P1N-3SAT
Instance: A set X = {x1, . . . , xn} of variables and a CNF formula

Φ over X and clause set C with each clause containing
at most three literals and each variable occurring twice
positively and once negatively in Φ such that GX,C is
planar.

Question: Is there an assignment A : X → {0, 1} that satisfies Φ?

The above problem was shown to be NP-complete in [60]. Let Planar 2P1N-
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3SAT-2 be a special case of Planar 2P1N-3SAT in which every variable
occurs in at least two clauses of size two. The construction given by Dahlhaus
et al. [60], generates instances with the property that each variable occurs
in at least two clauses having size two. Hence, by their reduction Planar
2P1N-3SAT-2 is NP-complete.

We need two further definitions. Recall that in Weighted Edge Multi-
way Cut, we are given a function ω : E(G) → Q+ in addition to G, T, k. The
goal is to decide if (G, T ) admits an edge multiway cut of total weight at most
k. If the image of ω is the set X, we denote the corresponding Weighted
Edge Multiway Cut problem as X-Edge Multiway Cut. Also note that
if an edge/node multiway cut S has the smallest possible size (weight) among
all edge/node multiway cuts for the pair (G, T ), then S is a minimum(-weight)
edge/node multiway cut.

We show the reduction in two steps. In the first step, we reduce from
Planar 2P1N-3SAT-2 to {1, 2, 3, 6}-Edge Multiway Cut restricted to
planar graphs of maximum degree 5 where the terminals all have degree 3. In
the second step, we show how to make the instance unweighted while keeping
it planar and making its maximum degree bounded above by 3.

Theorem 4.1.1 (Restated). Edge Multiway Cut is NP-complete for planar
subcubic graphs.

Proof. Clearly, Edge Multiway Cut is in NP. We reduce Edge Multiway
Cut from Planar 2P1N-3SAT-2. Let Φ be a given CNF formula with at
most three literals in each clause and each variable occurring twice positively
and once negatively.

We assume that each clause has size at least 2 and every variable occurs
in at least two clauses of size 2. Let X = {xi | 1 ≤ i ≤ n} be the set of
variables in Φ and C = {cj | 1 ≤ j ≤ m} be the set of clauses. We assume that
the incidence graph GX,C is planar. By the reduction in Dahlhaus et al. [60],
Planar 2P1N-3SAT-2 is NP-complete for such instances.

We now describe the graph construction. For each vertex of GX,C corre-
sponding to a clause cj in C, we create a clause gadget (depending on the
size of the clause), as in Figure 4.1. For each vertex of GX,C corresponding
to a variable xi ∈ X, we create a variable gadget, also shown in Figure 4.1.
The gadgets have two terminals each (marked as red squares in Figure 4.1),
a positive and a negative one. In a variable gadget, the positive terminal is
attached to the diamond and the negative one to the hat, by edges of weight 3;
refer to Figure 4.1. In a clause gadget, each literal corresponds to a triangle,
with these triangles connected in sequence, and the positive and negative
terminal are attached to triangles at the start and end of the sequence, again
by edges of weight 3.
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c+h c−h
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Outer edges
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1

Outer edges

outer triangle
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Figure 4.1: The gadgets for the variables (top) as well as those for the clauses (bottom).
The bottom-left gadget corresponds to a clause with three literals whereas the bottom-
right one corresponds to a clause with two literals. The terminals are depicted as red
squares.

Each degree-2 vertex in a gadget (marked blue in Figure 4.1) acts as a
connector. For a variable xi, if xi ∈ cj and xi ∈ ck for clauses cj , ck, then we
connect the degree-2 vertices of the diamond of xi to some degree-2 vertex of
the gadgets for cj and ck, each by an edge of weight 6. If xi ∈ cl for clause cl,
then we connect the degree-2 vertex of the hat of xi and some degree-2 vertex
on the gadget for cl, again by an edge of weight 6. These connecting edges are
called links. An example of such variable and clause connections is depicted
in Figure 4.4. By the assumptions on Φ, we can create the links such that
each degree-2 vertex in the variable gadget is incident on exactly one link and
corresponds to one occurrence of the variable. Similarly, each degree-2 vertex
of a clause gadget is incident on exactly one link.

The graph thus created is denoted by G. We can construct G in such a way
that it is planar, because GX,C is planar and has maximum degree 3. Note that
G has maximum degree 5. Let T be the set of terminals in the constructed
graph G. Note that G has a total of 2n + 2m terminals.

We observe that all edges in G have weight at most 6. Non-terminal vertices
are incident on edges of total weight at most 8. Crucially, terminals are incident
on edges of total weight at most 3.

We introduce some extra notions to describe the constructed graph G. The
edges of the two triangles adjacent to a link are called connector edges. The
edge of such a triangle that is not adjacent to the link is called the base of
the triangle. The connector edges closest to the terminals are called outer
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xi xi

c+j c−j

6

1 1

1 1

Figure 4.2: The figure shows a link structure formed by the connector edges of a
clause-triangle and its corresponding variable-triangle. The two bases that complete
the triangles are not drawn.

edges, as indicated in Figure 4.1. The structure formed by the two pairs of
connector edges and the link is called the link structure; see Figure 4.2. Since
each variable occurs twice positively and once negatively in Φ, the constructed
graph G has exactly 3n link structures.

We now continue the reduction to obtain an unweighted planar subcubic
graph. We replace all the edges in G of weight greater than 1 by as many
parallel edges between their end-vertices as the weight of the edge. Each of
these parallel edges has weight 1. We refer to this graph as G′. Next, for each
vertex v in G′ of degree greater than 3, we replace v by a large honeycomb
(hexagonal grid), as depicted in Figure 4.3, of size 1000 × 1000 (these numbers
are picked for convenience and not optimized). The neighbors of v, of which
there are at most eight by the construction of G, are now attached to distinct
degree-2 vertices on the boundary of the honeycomb such that the distance
along the boundary between any pair of them is 100 cells of the honeycomb.
These degree-2 vertices on the boundary are called the attachment points of
the honeycomb. The edges not belonging to the honeycomb that are incident
on these attachment points are called attaching edges. In the construction,
we ensure that the attaching edges occur in the same cyclical order on the
boundary as the edges to the neighbors of v originally occurred around v. Let
the resultant graph be G̃.

Note that the degree of any vertex in G̃ is at most 3. For terminals, this
was already the case in G′. Note that, therefore, terminals were not replaced by
honeycombs to obtain G̃. For non-terminals, this is clear from the construction
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Figure 4.3: Construction of G̃ from G by replacing every edge of weight greater than
1 by as many parallel edges as its weight and then replacing the vertices of degree
greater than 3 by a honeycomb of size 1000 × 1000.

of G′ and G̃. Moreover, all the edge weights of G̃ are equal to 1, and thus we
can consider it unweighted. Also, all the replacements can be done as to retain
a planar embedding of G and hence, G̃ is planar. G̃ has size bounded by a
polynomial in n + m and can be constructed in polynomial time. Finally, we
set k = 7n + 2m.

For the sake of simplicity, we shall first argue that Φ is a yes instance of
Planar 2P1N-3SAT-2 if and only if (G, T, k) is a yes instance of {1, 2, 3, 6}-
Edge Multiway Cut. Later, we show that the same holds for G̃ by proving
that no edge of the honeycombs is ever present in any minimum edge multiway
cut in G̃. We defer the proof of this claim for now.

Suppose that A is a truth assignment satisfying Φ. Then, we create a set
of edges S ⊆ E(G), as follows:

• If a variable is set to “true” by A, then add to S all the three edges of
the hat in the corresponding gadget. If a variable is set to “false” by A,
then add to S all the five edges of the diamond.

• For each clause, pick a true literal in it and add to S all the three edges
of the clause-triangle corresponding to this literal.

• Finally, for each link structure with none of its edges in S yet, add the
two connector edges of its clause-triangle to S.

Claim 4.2.1. S is an edge multiway cut of (G, T ) of weight at most 7n + 2m.
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Proof. For each variable, either the positive literal is true, or the negative one.
Hence, either all the three edges of its hat are in S or all the five edges of the
diamond. Therefore, all the paths between terminal pairs of the form xi − xi,
for all 1 ≤ i ≤ n, are disconnected in G − S. Consider the link structure in
Figure 4.2. By our choice of S, at least one endpoint of each link in G − S
is a vertex of degree 1, hence a dead end. Therefore, no path connecting any
terminal pair in G − S passes through any link. As all the paths in G between
a variable-terminal and a clause-terminal must pass through some link, we
know that all terminal pairs of this type are disconnected in G − S. Since A
is a satisfying truth assignment of Φ, all the edges of one triangle from every
clause gadget are in S. Hence, all the paths between terminal pairs of the form
c+

j − c−
j , for all 1 ≤ j ≤ m, are disconnected in G − S. Hence, S is an edge

multiway cut.
It remains to show that the weight of S is at most 7n+2m. Since A satisfies

each clause of Φ at least once, there are exactly m triangle-bases of weight 2
from the clause gadgets in S. Similarly, the variable gadgets contribute exactly
n bases to S. Finally, for each of the 3n link structures, by the definition of
S, either the two connector edges of the variable-triangle are in S or the two
connector edges of the clause-triangle. Together, they contribute a weight of
6n to the total weight of S. Therefore, S is an edge multiway cut in G of
weight at most 7n + 2m. ⋄

Conversely, assume that (G, T, k) is a yes instance of {1, 2, 3, 6}-Edge
Multiway Cut. Hence, there exists an edge multiway cut of (G, T ) of weight
at most 7n + 2m. We shall demonstrate an assignment that satisfies Φ. Before
that, we shall discuss some structural properties of a minimum-weight edge
multiway cut. In the following arguments, we assume that the clauses under
consideration have size three, unless otherwise specified. While making the
same arguments for clauses of size two is easier, we prefer to argue about
clauses of size three for generality.

Claim 4.2.2 (adapted from [60]). If e is an edge in G incident on a vertex v
of degree > 2 such that e has weight greater than or equal to the sum of the
other edges incident on v, then there exists a minimum-weight edge multiway
cut in G that does not contain e.

The above claim implies that no such edge e is contained in the solution.
To see this, note that an iterative application of the local replacement used in
Claim 4.2.2 would cause a conflict in the event that the replacement is cyclical.
Suppose that the edges are replaced in the sequence e → e1 → . . . → er → e.
Then the weight of e1, denoted by w(e1) must be strictly less than the weight
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Figure 4.4: Shown in the figure is the variable interface of xi. The positive literal xi

occurs in the clauses cj and cg, whereas xi occurs in ch. No terminal is reachable from
the vertex closest to the red dashed lines in the direction of the paths crossed by it.

of e. Similarly, w(ei) < w(ej) for i < j. This would mean that w(e) < w(e),
which is a contradiction.

Claim 4.2.3 ([60]). If a minimum-weight edge multiway cut contains an edge
of a cycle, then it contains at least two edges from that cycle.

It follows from Claim 4.2.2 and the construction of G that there exists
a minimum-weight edge multiway cut for (G, T ) that neither contains the
edges incident on the terminals nor does it contain the links. Among the
minimum-weight edge multiway cuts that satisfy Claim 4.2.2, we shall select
one that contains the maximum number of connector edges and from the ones
that satisfy both the aforementioned properties, we shall pick one that contains
the maximum number of triangle-bases from clause gadgets of size two. Let S
be a minimum edge multiway cut that fulfills all these requirements.

We say a link e incident on a gadget reaches a terminal t if e is the first
edge on a path P from the connector e in the gadget to t and no edge on P is
contained in S.

A terminal t is reachable by a gadget if one of the links incident on the
gadget reaches t. Note that, for any terminal t′ in the gadget, if t is reached
from some incident link by a path P , then P can be extended to a t′-t path in
G using only edges inside the gadget. However, among the edges used by such
an extension, at least one must belong to S, or t = t′.
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Claim 4.2.4. S contains exactly one base of a triangle from each variable
gadget.

Proof. Clearly, S must contain at least one base from each variable gadget,
else by the fact that S contains no edges incident on terminals, a path between
the terminals in such a gadget would remain in G − S.

Suppose that S contains two bases of some variable gadget, say that of
xi. By Claim 4.2.3, S must also contain at least three connector edges from
this variable gadget: at least two connector edges (of the two triangles) of the
diamond and at least one connector edge of the hat. We claim that, without
loss of generality, at least all the outer connector edges must be in S. If for
some triangle the outer connector edge next to terminal t is not in S, then the
link incident on this triangle does not reach any terminal t′ ̸= t; otherwise, a
t-t′ path would remain in G − S, a contradiction. Hence, we simultaneously
replace all inner connector edges for which the corresponding outer connector
edge is not in S by their corresponding outer connector edge. For the resulting
set S′, the variable terminals of the gadget and their neighbors in G form a
connected component of G − S′. Since the link incident on a triangle for which
the outer connector edge (next to terminal t) was not in S does not reach
any terminal t′ ̸= t, S′ is feasible. Moreover, it has the same properties we
demanded of S. Thus, henceforth, we may assume that all the outer connector
edges of the xi-gadget are in S.

We now distinguish six cases:

Case 1. No link of the xi gadget reaches a terminal.
We can remove one of the two bases from S without connecting any terminal
pairs. This is so because in order to disconnect xi from xi, it suffices for S
to contain either the base of the diamond along with the two outer connector
edges or the base and outer connector edge of the hat. No other terminal
pairs are connected via the gadget by the assumption of this case. Hence, we
contradict the minimality of S. Figure 4.5 depicts this case.

Case 2. A link of the xi-gadget reaches at least two distinct terminals.
By the definition of reaches, this implies that there is a path in G − S between
any two of the reached terminals. This contradicts that S is an edge multiway
cut for (G, T ). (See Figure 4.6)

Case 3. Exactly one link e of the xi-gadget reaches some terminal t.
We remove from S the base of a triangle that is not attached to e and add
the remaining connector edge of the triangle that is attached to e (if it is
not already in S). Consequently, although e reaches t, both connector edges
incident on e are in S. Since no other link reached any terminals and xi

remains disconnected from xi in G − S, we can obtain an edge multiway cut

111



Chapter 4. MWC: subcubic graphs

3 3

1 1

1 1
1

1 1

xi xi1

2 2

2

1 1

1 1 1 1

u

3 3

1 1

1 1
1

1 1

xi xi
1

2 2

2

1 1

1 1 1 1

u

u′′

u u′

Figure 4.5: Case 1: In the figure on the left, we see the xi-gadget with the three clause
gadgets it is linked to. None of the links can reach any terminal. The red dashed
curves indicate that the path is intersected by the multiway cut S. The edges labeled
with a red cross are contained in S. In the right figure, we show how S can be modified
without compromising its feasibility.

for (G, T ) satisfying Claim 4.2.2 that has the same or less weight as S, but has
strictly more connector edges than S. This is a contradiction to our choice of
S. Figure 4.7 depicts this case.

Case 4. Exactly two links e, e′ of the xi-gadget reach two distinct terminals t
and t′, respectively.
Recall that all three outer connected edges are in S. Now at least one of the
inner connector edges of the gadget must be in S, or else t would be connected
to t′ via this gadget. In particular, both the connector edges of at least one
of the two triangles attached to e, e′ must be in S. We can remove from S
one of the two bases and add instead the remaining connector edge of the
other triangle (if it is not already in S). Consequently, although e reaches t
and e′ reaches t′, all connector edges incident on e and e′ are in S. Moreover,
xi and xi are not connected to each other in G − S, as one base and its
corresponding outer connector(s) are still in S. The transformation results
in an edge multiway cut for (G, T ) satisfying Claim 4.2.2 that has the same
or less weight than S, but has strictly more connector edges than S. This is
a contradiction to our choice of S. Figure 4.8 shows the situation described
above.
Case 5. All the three links of the xi-gadget reach distinct terminals t, t′, t′′,
respectively.
Recall that all three outer connected edges are in S. Now at most one (inner)
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Figure 4.6: Case 2: In the figure we see the xi-gadget with one of its links reaching
two distinct terminals. The dashed curve shows that there exists a path between its
endpoints.
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Figure 4.7: Case 3: The left figure shows the situation when exactly one link of the
xi-gadget reaches a terminal. The edges labeled with a red cross are contained in S.
The right figure shows the replacement made in this case.

connector edge of the xi-gadget is not in S, or else at least one pair of terminals
among {(t, t′), (t′, t′′), (t′′, t)} would remain connected via the gadget. We
replace one of the bases in S with this connector edge (if it is not already in S).
The resulting edge multiway cut is no heavier. To see that it is also feasible,
note that while t, t′, t′′ are still reached from the links of the gadget, all the
connector edges of this gadget are in the edge multiway cut. The terminals xi

and xi are disconnected from each other in G − S′ because one triangle-base
and its connectors are still in the edge multiway cut. Hence, we obtain an edge
multiway cut for (G, T ) satisfying Claim 4.2.2 that has the same or less weight
than S, but with strictly more connector edges than S, a contradiction to our
choice of S. Figure 4.9 depicts this scenario.
Case 6. At least two links of the xi-gadget reach exactly one terminal t outside
the gadget.
Recall that every variable occurs in at least two clauses of size two. Hence, t is
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Figure 4.8: Case 4: The left figure shows the situation when exactly two links of
the xi-gadget reach two distinct terminals. The edges labeled with a red cross are
contained in S. The right figure depicts the situation after the replacement.

reachable via a link from the xi-gadget to at least one directly linked clause
gadget of a clause of size two. Also recall that S is a minimum-weight edge
multiway cut containing the maximum number of bases from clauses of size
two.

Suppose that there exists a size-two clause gadget c, directly linked to
the xi-gadget, that does not contain t and via which t is reachable from the
xi-gadget. (See Figure 4.10). That is, some link reaches t via a path P that
contains edges of c, but t is not in c. Then S must contain two base-connector
pairs from c; else, some terminal of c would not be disconnected from t in
G − S. Now remove from S the base of one of the two triangles of c and add
the remaining two connector edges of c. This does not increase the weight, as
the base of the clause-triangle has weight 2 and the connectors have weight 1
each. The only terminal pair that could get connected by the transformation
is the pair of terminals on c itself. However, one of the bases is still in the
transformed cut. This new cut contradicts our choice of S, as it has strictly
more connector edges and satisfies the other conditions.

Suppose t is contained in one of the size-two clause gadgets, c′, directly
linked to the xi-gadget. If the link between the xi-gadget and c′ is not one
of the links meant in the assumption of this case, then the situation of the
previous paragraph holds, and we obtain a contradiction. Thus, t is reachable
from the xi-gadget via both links of c′. Hence, a base-connector pair of the
triangle of c′ that t is not attached to must be in S. Consider the link of the
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Figure 4.9: Case 5: The left figure shows the situation when all the three links of
the xi-gadget reach three distinct terminals. The edges labeled with a red cross are
contained in S. The right figure shows the situation after the replacement.

xi-gadget that is not attached to c′ but reaches t and let P be a corresponding
path, starting at this link and going to t. Note that P passes through a clause
gadget c′′ directly linked to the xi-gadget. If c′′ is a size-two clause gadget,
then we obtain a contradiction as before. Hence, c′′ corresponds to a size-three
clause (as in Figure 4.11). Since P must either enter or leave c′′ through one
of its outer triangles, a base-connector pair of at least one outer triangle of c′′

must be in S, or the attached terminal would reach t in G − S, contradicting
that S is an edge multiway cut for (G, T ). Let Λ be such an outer triangle (see
Figure 4.11).

We argue that, without loss of generality, S contains a base-connector pair
of the other outer triangle, ∆. Suppose not. Then, in particular, the base of
∆ is not in S. If P passes through the link attached to ∆, then one of the
endpoints of the base of ∆ must be on P . Since the base of ∆ is not in S, the
terminal t′′ next to ∆ remains connected to t in G − S, a contradiction. Hence,
P must either enter or exit c′′ via the link attached to its middle triangle µ.
Moreover, S must contain a base-connector pair of µ (see Figure 4.11), or t′′

would still reach t in G − S. We now modify S to obtain a set S′. If both
connector edges of ∆ are in S, then replace the base of µ by the base of ∆
to obtain S′. Then all edges of ∆ are in S′. Otherwise, no edge of ∆ is in S
and thus no terminal is reachable via the link attached to ∆ (or it would be
connected to t′′ in G − S). So, we replace the base-connector pair of µ by a
base-connector pair of ∆ to obtain S′. Then S′ is an edge multiway cut for
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Figure 4.10: Case 6: The figure on the left shows the situation when the xi-gadget
reaches a terminal t via a clause gadget of size two. The dashed curve indicates that
there exists a path between its endpoints that is not cut by S. The figure on the right
depicts the situation after the replacement.

(G, T ) of the same weight at S that has the same properties as S. Hence, we
may assume S = S′. Then S contains a base-connector pair of ∆.

Now remove from S the base and connector edge of Λ. Then t and t′

become connected to each other in G − S, but not to any other terminal, or
that terminal would already be connected to t in G − S. Now add the base and
outer connector edge of the triangle in c′ that t is attached to. This restores
that S is an edge multiway cut for (G, T ). Since the edge multiway cut we
obtain has the same weight as S, satisfies Claim 4.2.2, has no fewer connectors
than S but contains at least one more base of a clause gadget of size two, we
contradict our choice of S.

⋄

We now focus on the link structures.

Claim 4.2.5. There cannot exist a link structure in G that contributes less
than two edges to S and for which the clause-triangle of the link structure
contributes no connector edges to S.

Proof. Towards a contradiction, suppose that such a link structure exists. Let
the clause gadget containing the link structure be c and the variable gadget
containing it be xi. By Claim 4.2.4, we know that there exists a triangle of
the xi-gadget that does not contribute its base to S. Therefore, at least one
terminal t of the xi-gadget is reachable from the clause gadget c. This implies
that the clause-triangle of the link structure is the middle triangle of c, or else
there would exist a path in G − S between t and the closest clause-terminal
on c. Then, since S is feasible, it must contain the base and at least one
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Figure 4.11: Case 6: In the top figure, there is a terminal t reachable via (at least)
two links of the xi-gadget. Moreover, t appears in a clause gadget c′ corresponding
to a clause of size two that is directly connected to the xi-gadget. The dashed curve
indicates the existence of a path, not cut by S, between its endpoints.
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ℓ

xi-gadget

c-gadget

ab

e

Figure 4.12: A link structure with the variable gadget of xi at the top and its clause
gadget for c at the bottom. The crossed-out edges are assumed to be in the minimum
edge multiway cut S. The dashed red lines depict that the terminals cannot be reached
from the vertices a or b.

connector edge of each of the two outer triangles of c. Else, at least one of the
clause-terminals would be reachable from t in G − S.

It must also be the case that both connector edges of each of the outer
triangles must be in S or the incident link reaches no terminal t′ ̸= t is reachable
from the incident link; otherwise, t or the incident clause-terminal would be
connected to t′ in G − S. Now, we can remove one of the two bases from S
and add the two connector edges of the middle triangle, without compromising
the feasibility of the edge multiway cut. Thus, there exists an edge multiway
cut of no greater weight than S, satisfying Claim 4.2.2, and containing two
more connector edges (those of the clause-triangle of the link structure). This
is a contradiction to our choice of S. ⋄

Claim 4.2.6. S contains at least two edges from each link structure.

Proof. Suppose that there exists a link structure ℓ that contributes less than two
edges to S. Suppose that ℓ connects the clause gadget c and the variable gadget
xi. By Claim 4.2.5, we know that the clause-triangle of ℓ must contribute an
edge e to S. Therefore, none of the connectors of the variable-triangle attached
to ℓ are in S. As a result, the variable-terminal of the xi-gadget attached to ℓ,
say we call it t, is reachable from c via ℓ.

Claim 4.2.3 and the fact that only e is in S, the base of the clause-triangle
must also be in S. We do the following replacement: remove from S the
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base-connector pair of the clause-triangle and add the base and (possibly two)
connectors of the variable-triangle of ℓ, as follows. If the variable-triangle of ℓ is
part of a diamond, then we add to S the base and two outer connectors, thereby
getting an edge multiway cut of equal weight but strictly more connectors. If
the variable-triangle is a hat, then we add to S the base and outer connector
of the hat, obtaining an edge multiway cut for (G, T ) of strictly smaller weight
than S. If we can show that the resultant edge multiway cut is feasible, we
obtain a contradiction in either scenario. We claim that such a replacement
does not compromise the feasibility of S.

Let a, b be the endpoints of the base of the clause-triangle of ℓ, where a is
the endpoint on which e is incident (see Figure 4.12). Note that no terminal
other than t should be reachable in G − S from b; else, there would be a path
from t to that terminal via ℓ. In particular, the terminal of the clause gadget
for c on the side of b can not be reached in G − S from the vertex b. By
removing the base-connector pair of the clause-triangle of ℓ, we may expose the
clause-terminal on the side of the vertex a (or another terminal outside c) to
t. However, by adding the base and (possibly two) connectors closest to t, we
disconnect any path between this terminal and t. Since we did not modify the
cut in any other way, no new connections would have been made. This shows
the feasibility of the resultant edge multiway cut and thus proves our claim.

⋄

Claim 4.2.7. If there exists an edge multiway cut of weight at most 7n + 2m
for (G, T ), then there exists a satisfying truth assignment for Φ.

Proof. Let S be the edge multiway cut defined before. The immediate conse-
quence of Claims 4.2.4 and 4.2.6 is that the weight of S is at least n+2·(3n) = 7n.
S must also contain at least one base per clause gadget lest the two terminals
on a clause gadget remain connected. Therefore, its weight is at least 7n + 2m.
Since it is an edge multiway cut of weight at most 7n + 2m, it has exactly one
base per clause gadget.

We also claim that for each link structure, if one of the triangles attached to
it has its base in S, then the other one cannot: note that if both the triangles
had their bases in S, then each of them would also have a connector edge in S
by Claim 4.2.3. By Claim 4.2.6 and the assumption that the weight of S is at
most 7n + 2m, the other two connector edges of the link structure are not in S.
Since at most one base per variable/clause gadget can be in S, there would be
a path between one of the variable-terminals and one of the clause-terminals
in the linked gadgets through the link structure, a contradiction to S being an
edge multiway cut for (G, T ). Figure 4.13 shows one such case.
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Figure 4.13: The figure shows a link structure with the variable gadget at the bottom
and its connected clause gadget at the top. The crossed-out red edges are the ones
contained in the minimum edge multiway cut S. The green curve shows the existence
of a path between a variable-terminal and a clause-terminal.

We now define the truth assignment A. For each variable-terminal, if the
diamond has its base in S, we make it “false”, otherwise if the hat has its base
in S we make it “true”. Each clause gadget has exactly one triangle contributing
its base to S. From the above argument, we know that the variable-triangle
linked to this clause-triangle must not contribute its base to S. Hence, every
clause gadget is attached to one literal triangle such that its base is not in S,
and is therefore “true”. Hence, every clause is satisfied by the truth assignment
A and Φ is a yes instance of Planar 2P1N-3SAT-2. ⋄

The above implies that {1, 2, 3, 6}-Edge Multiway Cut is NP-complete
on planar subcubic graphs. We now proceed to prove that (unweighted)
Edge Multiway Cut is NP-complete on planar subcubic graphs. The proof
follows from the observation that the honeycombs of G̃ (defined before) do not
contribute any edge to any minimum edge multiway cut for (G̃, T ).

Claim 4.2.8. Any minimum edge multiway cut for (G̃, T ) does not contain
any of the honeycomb edges.

Proof. Let S′ be a minimum edge multiway cut for (G̃, T ). Recall that G̃
is planar. Note that for any two vertices s, t, an s-t cut in a planar graph
corresponds to a simple (possibly degenerate) cycle in the planar dual [167].
Therefore, the dual of an edge multiway cut comprises several cycles. Let the
edges corresponding to S′ in the planar dual of G̃ be S∗. In fact, S∗ induces a
planar graph such that exactly one terminal of T is embedded in the interior
of each face of this graph. If any face of the S∗ did not contain a terminal, we
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could remove the edge in S′ dual to one of the edges of this face. This would
not connect any terminal pair, and hence contradicts the minimality of S′.

Suppose that S′ contains some edges of the honeycomb in G̃ replacing
the vertex v ∈ V (G′). We denote the intersection of S′ with the edges of
this honeycomb by S′

h. Let the set of edges dual to S′
h in be S∗

h. By abuse
of notation, we also denote by S∗

h the graph formed by contracting all the
edges in S∗ \ S∗

h. Since each face of S∗ encloses a terminal, each bounded
face of S∗

h must enclose an attachment point of the honeycomb. If not, then
we could remove from S′ an edge in S′

h dual to some edge of the face of S∗
h

not enclosing an attachment point. This does not make any new terminal-
to-terminal connections, as the part of the honeycomb enclosed by this face
does not contain any path to any of the terminals of T . This would be a
contradiction to the minimality of S′.

Next, we observe that no bounded face of S∗
h can enclose more than one

attachment point. Suppose that there exists a bounded face in S∗
h that encloses

two attachment points. Since the two attachment points are separated by
100 cells of the honeycomb, the length of the face boundary must be at least
50. We could remove all the 50 edges from S′ dual to the edges of the face
boundary and add all the attaching edges to S′, instead. All the terminal-
to-terminal paths passing through the honeycomb will remain disconnected
after the transformation. Since at most eight attaching edges can be added,
we again get a contradiction to the minimality of S′. So, each bounded face of
S∗

h must enclose exactly one attachment point.
To enclose the attachment points, each of these faces must cross the bound-

ary of the honeycomb exactly twice. We claim that the faces of S∗
h, enclosing

consecutive attachment points on the boundary of the honeycomb, are pairwise
edge-disjoint. Suppose that the faces enclosing two consecutive attachment
points, a and a′, share an edge. Then, they must also share an edge that
crosses the boundary of the honeycomb. If they do not, then let e be the last
edge of the face enclosing a to cross the boundary and e′ be the first edge of the
face enclosing a′ to cross the boundary of the honeycomb. The edges e and e′

along with the other edges not shared between the respective face boundaries
bound a region of the plane containing no attachment points, a contradiction!

Therefore, any two faces of S∗
h enclosing consecutive attachment points

share an edge which crosses the boundary of the honeycomb. Without loss of
generality, let this edge be closer to a. Then, the face enclosing a′ must contain
at least 50 edges as a and a′ are separated by 100 cells of the honeycomb. This
implies that S′

h contains at least 50 edges. However, we could remove from it
all the 50 edges and add all the (at most eight) attaching edges. This cut is
smaller and disconnects all the terminal-terminal paths passing through the
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honeycomb. Once again, we contradict the minimality of S′.
Hence, all the faces in S∗

h enclosing attachment points are edge-disjoint.
So, there are at least 2 · degG′(v) edges in S′

h. We could replace this cut by a
smaller cut, namely, the edge multiway cut formed by removing the edges in
S′

h from S′ and adding to it all the attaching edges incident on the attachment
points. This cut disconnects all terminal-paths passing through the honeycomb
and yet, is smaller than S′, a contradiction to its minimality. Hence, S′ does
not contain any edge of the honeycombs. ⋄

By the construction of G̃ and Claims 4.2.1, 4.2.7, and 4.2.8, we conclude
that Edge Multiway Cut is NP-complete on planar subcubic graphs.

4.3. The Proofs of Theorem 4.1.2 and 4.1.3
We observe the hardness of Unrestricted Node Multiway Cut.

Theorem 4.1.2 (Restated). Unrestricted Node Multiway Cut is NP-
complete for planar subcubic graphs.

Proof. It is readily seen that Unrestricted Node Multiway Cut belongs
to NP. We now reduce from Vertex Cover on planar subcubic graphs, which
is known to be NP-complete [156]. Let G be the graph of an instance of this
problem. We keep the same graph, but set T = V (G). Since any two adjacent
vertices are now adjacent terminals, any vertex cover in G corresponds to a
node multiway cut for (G, T ). The result follows.

As a warm-up, we now observe the following easy result.

Proposition 4.3.1. Node Multiway Cut is NP-complete for planar graphs
of maximum degree 4.

Proof. It is readily seen that Node Multiway Cut belongs to NP. We now
reduce from Unrestricted Node Multiway Cut on planar subcubic graphs.
Let (G, T, k) be an instance of this problem. Let G′ be obtained from G by
adding a pendant vertex v′ per vertex v ∈ T . Let T ′ = {v′ | v ∈ T}. If (G′, T ′)
has a node multiway cut S ⊆ V (G′)\T ′, then S is immediately a node multiway
cut for (G, T ). Conversely, if (G, T ) has a node multiway cut S ⊆ V (G), then
S is immediately a node multiway cut for (G′, T ′) with S ⊆ V (G′) \ T ′. The
result follows.

To prove that Node Multiway Cut is NP-complete for planar subcubic
graphs, we need the following lemma from [120].

122



4.3. The Proofs of Theorem 4.1.2 and 4.1.3

Figure 4.14: The figure shows the construction in Theorem 4.1.3. The leftmost figure
is an instance of Edge Multiway Cut on planar subcubic graphs. The figure in
between shows a 2-subdivision of the instance. The rightmost figure shows the line
graph of the subdivided graphs drawn in green. In each figure, the terminals are shown
as red squares.

Lemma 4.3.2. If Edge Multiway Cut is NP-complete for a class H of
graphs, then it is also NP-complete for the class of graphs consisting of the
1-subdivisions of the graphs of H.

Proof. Let G belong to H and T be a set of terminals in G. Let G′ be the
graph G after subdividing each edge. For each edge e in G, there exist two
edges in G′. If an edge of G is in an edge multiway cut for (G, T ), then it
suffices to replace it by only one of the two edges created from it in G′ to
disconnect the path e lies on. This yields an edge multiway cut for (G′, T )
of the same size. Conversely, if an edge of G′ is in an edge multiway cut for
(G′, T ), then we replace it by the corresponding original edge of G. This yields
an edge multiway cut for (G, T ) of the same size. Hence, (G, T ) has an edge
multiway cut of size at most k if and only if (G′, T ) has an edge multiway cut
of size k.

We are now ready to prove Theorem 4.1.3.

Theorem 4.1.3 (Restated). Node Multiway Cut is NP-complete for planar
subcubic graphs.

Proof. It is readily seen that Node Multiway Cut belongs to NP. In Theo-
rem 4.1.1, we showed that Edge Multiway Cut is NP-complete on the class
of planar subcubic graphs. We will now reduce Node Multiway Cut from
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Edge Multiway Cut restricted to the class of planar subcubic graphs. Let
G be a planar subcubic graph with a set of terminals T .

From G, we create an instance of Node Multiway Cut by the following
operations; here, the line graph of a graph G = (V, E) has E as vertex set and
for every pair of edges e and f in G, there is an edge between e and f in the
line graph of G if and only if e and f share an end-vertex.

• We construct the 2-subdivision of G, which we denote by G′.

• Next, we construct the line graph of G′, which we denote by L.

• Finally, we create the terminal set of L as follows: for each terminal t in
G′, consider the edges incident on it. In the line graph L, these edges
must form a clique, Ki for i ∈ {1, 2, 3} : i = deg(t). In this clique, we
pick one vertex and make it a terminal. We denote the terminal set in L
by TL.

Note that L is planar, as G′ is planar and every vertex in G′ has degree
at most 3 [172]. Note also that L is subcubic, as every edge in G′ has one
end-vertex of degree 2 and the other end-vertex of degree at most 3. Moreover,
L and TL can be constructed in polynomial time.

Claim 4.3.3. There exists an edge multiway cut of (G, T ) of size at most k if
and only if there exists a node multiway cut of (L, TL) of size at most k.

Proof. We assume that (G, T ) has an edge multiway cut S of size at most k.
By Lemma 4.3.2, G′ also has an edge multiway cut of size at most k. We claim
that there exists an edge multiway cut S′ of G′ of size at most k which does
not contain any edge incident on a terminal. Every edge in G′ is adjacent to
some edge with both its ends having degree two. Therefore, if an edge in the
edge multiway cut of G′ is incident on a terminal, we can replace it with its
adjacent edge, which disconnects all the paths disconnected by the former and
does not increase the size of the edge multiway cut. Now, for each edge in S′

we add its corresponding vertex in L to a set SL. Since S′ pairwise disconnects
the terminals in G′, SL disconnects all the terminal cliques from each other.
Therefore, SL is a node multiway cut of L.

Conversely, let S′
L ⊆ V (L) \ TL be a node multiway cut of (L, TL) of size

at most k. By similar arguments as above, we may assume that S′
L does not

contain any vertex from any terminal-clique. We claim that G has an edge
multiway cut of size at most k. To that end, we show that G′ has an edge
multiway cut of size at most k and apply Lemma 4.3.2 to prove the same for
G. We add to the edge multiway cut S the edges of G′ that correspond to the
vertices in S′

L. The size of S is clearly at most k. To see that it is an edge
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multiway cut of G′, note that pairwise disconnecting the terminal-cliques of L
amounts to pairwise disconnecting the set of edges incident on any terminal in
G′ from its counterparts. This, in turn, pairwise disconnects all the terminals
in G′. ⋄

By our construction and Claim 4.3.3, Node Multiway Cut is NP-complete
on the class of planar subcubic graphs.

4.4. Conclusions
We proved that Edge Multiway Cut and both versions of Node Multiway
Cut are NP-complete for planar subcubic graphs. We immediately have the
following dichotomy.

Corollary 4.4.1. For every ∆ ≥ 1, Edge Multiway Cut and both versions
of Node Multiway Cut on graphs of maximum degree ∆ are polynomial-time
solvable if ∆ ≤ 2, and NP-complete if ∆ ≥ 3.

From a result of Robertson and Seymour [169], it follows that any problem Π
that is NP-hard on subcubic planar graphs but polynomial-time solvable for
graphs of bounded treewidth can be fully classified on H-topological minor-free
graphs. Namely, Π is polynomial-time solvable if H contains a subcubic planar
graph and NP-hard otherwise. It is known that Edge Multiway Cut and
both versions of Node Multiway Cut satisfy the second property [9]. As
Theorems 4.1.1–4.1.3 show the first property, we obtain the following dichotomy.

Corollary 4.4.2. For every set of graphs H, Edge Multiway Cut and
both versions of Node Multiway Cut on H-topological-minor-free graphs
are polynomial-time solvable if H contains a planar subcubic graph, and NP-
complete otherwise.

Let the ℓ-subdivision of a graph G be the graph obtained from G after replacing
each edge uv by a path of length ℓ + 1 with end-vertices u and v. A problem Π
is NP-hard under edge subdivision of subcubic graphs if for every integer j ≥ 1
there is an ℓ ≥ j such that: if Π is NP-hard for the class G of subcubic graphs,
then Π is NP-hard for the class Gℓ consisting of the ℓ-subdivisions of the
graphs in G. Now say that Π is polynomial-time solvable on graphs of bounded
treewidth and NP-hard for subcubic graphs and under edge subdivision of
subcubic graphs. The meta-classification from [120] states that for every finite
set H, Π on H-subgraph-free graphs is polynomial-time solvable if H contains
a graph from S, and NP-hard otherwise. Here, S is the set consisting of all
disjoint unions of zero or more paths and subdivided claws (4-vertex stars
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in which edges may be subdivided). Results from [9, 120] show the first two
properties. Theorems 4.1.1–4.1.3 show the last property. Thus, we obtain:

Corollary 4.4.3. For every finite set of graphs H, Edge Multiway Cut
and both versions of Node Multiway Cut on H-subgraph-free graphs are
polynomial-time solvable if H contains a graph from S, and NP-complete
otherwise.

The last dichotomy result assumes that H is a finite set of graphs. We
therefore pose the following challenging question: classify the complexity of
Edge Multiway Cut and both versions of Node Multiway Cut for H-
subgraph-free graphs when H is infinite. Answering this question requires
novel insights into the structure of H-subgraph-free graphs.
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Overview

Algorithmic meta-theorems are general algorithmic results applying to a whole
range of problems, rather than a single problem alone [136]. An algorithmic
meta-theorem is a statement saying that all problems sharing some property
or properties P , restricted to a class of inputs I, can be solved efficiently by
a certain form of algorithm. Probably the most famous algorithmic meta-
theorem is that of Courcelle [56], which proves that every graph property
expressible in monadic second-order logic is decidable in linear time if restricted
to graphs of bounded treewidth (see Chapter 2 for a definition of treewidth).
Another example is that of Seese [173], which proves that every graph property
expressible in first-order logic is decidable in linear time when restricted to
graphs of bounded degree. A third example comes from Dawar et al. [62],
who proved that every first-order definable optimization problem admits a
polynomial-time approximation scheme on any class of graphs excluding at
least one minor. There is a wealth of further algorithmic meta-theorems (see,
for example, [23, 65, 85]), many of which combine structural graph theory (e.g.
from graph minors) with logic formulations or other broad problem properties
(such as bidimensionality).

An extension of an algorithmic meta-theorem is a so-called algorithmic
meta-classification. This is a general statement saying that all problems
that share some property or properties P admit, over some classes of input
restrictions I, a classification according to whether or not they have property S.
If the input-restricted class has property S, then this problem is “efficiently
solvable”; otherwise it is “computationally hard”. Throughout, we let these two
notions depend on context; for example, efficiently solvable and computationally
hard could mean being solvable in polynomial time and being NP-complete,
respectively.

Algorithmic meta-classifications are less common than algorithmic meta-
theorems, but let us mention two famous results. Grohe [105] proved that
there is a polynomial-time algorithm for finite-domain constraint satisfaction
problems whose left-hand input structure is restricted to C if and only if
every graph in C is homomorphically equivalent to a graph that has bounded
treewidth (assuming W[1] ̸= FPT). Bulatov [35] and Zhuk [195] proved that for
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any finite constraint language Γ over a finite set, CSP(Γ) is either polynomial-
time solvable or NP-complete, that is, it cannot belong to any intermediate
complexity class (which are known to exist if P ̸= NP, due to Ladner’s [138]
theorem).

Two well-known meta-classifications apply to the classes of H-minor-free
graphs and H-topological-minor-free graphs. For a set H of graphs, these
are the class of graphs G where, starting from G, no graph H ∈ H can be
obtained by a series of vertex deletions, edge deletions, and edge contractions,
respectively a series of vertex deletions, edge deletions, and vertex dissolutions
(see Chapter 2 for full definitions). Both are a consequence of a classic result
of [169].

Theorem 5.1.4. Let Π be a problem that is computationally hard on planar
graphs, but efficiently solvable for every graph class of bounded treewidth. For
any set of graphs H, the problem Π on H-minor-free graphs is efficiently solvable
if H contains a planar graph (or equivalently, if the class of H-minor-free graphs
has bounded treewidth) and is computationally hard otherwise.

Theorem 5.1.5. Let Π be a problem that is computationally hard on pla-
nar subcubic graphs, but efficiently solvable for every graph class of bounded
treewidth. For any set of graphs H, the problem Π on H-topological-minor-free
graphs is efficiently solvable if H contains a planar subcubic graph (or equiva-
lently, if the class of H-topological-minor-free graphs has bounded treewidth)
and is computationally hard otherwise.

Later, we will discuss many problems that satisfy the conditions of The-
orems 5.1.4 and 5.1.5. We refer, for example, to [87, 158] for a number of
problems that satisfy the conditions of Theorem 5.1.5, and thus also of Theo-
rem 5.1.4, and that are NP-complete even for planar subcubic graphs of high
girth.

On the other end of the spectrum lie the classes of H-free graphs (or
hereditary graph classes). A graph G is H-free if, starting from G, no graph
H ∈ H can be obtained by a series of vertex deletions. Hereditary graph
classes are much more complex in structure than H-minor-free graphs and
H-topological-minor-free graphs, and there exist infinite antichains (such as
the set of cycles) under the induced subgraph relation. This makes the task of
finding algorithmic meta-classifications much harder. In fact, even algorithmic
meta-theorems are difficult to obtain for the induced subgraph relation, even for
a single forbidden graph H. Indeed, complexity dichotomies for H-free graphs
are rare and only known for specific problems (see e.g. [25, 102, 123, 127]).

Despite the above, some attempts have been made to study complexity
boundaries, e.g. through the notion of boundary graph classes [5] (see also [7,
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Figure 5.15: The left example shows that the C4 is not P4-subgraph-free (the red
edges correspond to a P4 subgraph), but it is P4-free. The right example shows that
the net is not K1,3-minor-free (the vertex sets indicated in blue correspond to a K1,3
minor), but it is K1,3-topological-minor-free.

132, 158]). However, we are far from a broad understanding. For example,
after more than forty years of research on Independent Set for H-free graphs
starting from the work of Alekseev [5], we currently only know a trichotomy
between being polynomial-time solvable, quasi-polynomial-time solvable and
NP-complete (see the recent work of Gartland et al. [99]). We do not yet
know how to obtain the dichotomy between polynomial-time solvable and
NP-complete (see [106] for the most recent progress). Many other fundamental
problems are still far from being settled for H-free graphs with infinitely many
open cases even when H is a connected graph.

Between H-minor-free graphs and H-topological-minor-free graphs on the
one side and H-free graphs on the other side, lies the class of H-subgraph-free
graphs. These are the graphs G where, starting from G, no graph H ∈ H can
be obtained by a series of vertex or edge deletions. In general, for every set H
of graphs, the following holds (see also Figure 5.15 for some small examples):

H-minor-free graphs ⊆ H-topological-minor-free graphs ⊆ H-subgraph-free
graphs ⊆ H-free graphs.

Forbidden subgraphs represent many rich graph classes. To explain this, let Pr,
Kr and Cr denote the path, complete graph and cycle on r vertices, respectively,
and let Kp,q denote the complete bipartite graph whose two partition classes
each have size p and q, respectively. It is readily seen that, for example:

• the classes of graphs of maximum degree at most r and K1,r+1-subgraph-
free graphs coincide;

• the class of graphs with girth larger than g for some integer g ≥ 3
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coincides with the class of (C3, . . . , Cg)-subgraph-free graphs (and with
the class of (C3, . . . , Cg)-free graphs);

• a class of graphs G has bounded treedepth if it is a subclass of Pr-
subgraph-free graphs for some constant r, and vice versa [159]; and

• for every class G of degenerate or nowhere dense graphs [160], there exists
an integer t such that every G ∈ G is Kt,t-subgraph-free (see [181] for a
proof).

Moreover, H-free graphs and H-subgraph-free graphs coincide if and only if
H = Kr for some integer r ≥ 1. This leads to a rich structural landscape.

A substantial body of work has studied the parameterized complexity of
graph problems on a restricted set of subgraph-free graph classes (notably
through the lens of sparsity, see e.g. [175]). However, H-subgraph-free graphs
have been significantly less studied in the context of classical complexity theory
than the other classes, despite capturing many natural graph classes. This
warrants a more in-depth look at H-subgraph-free graphs.

Adding to this, H-subgraph-free graphs seem to exhibit extreme and unex-
pected jumps in problem complexity. For example, there exist problems that
are PSPACE-complete in general but constant-time solvable for every H-free
graph class [147] and thus for every H-subgraph-free graph class, where H is
any (possibly infinite) nonempty set of graphs. Another example is the Clique
problem, which is to decide for a given integer k and graph G, if G contains a
clique (set of pairwise adjacent vertices) of size at least k. The Clique problem
is well-known to be NP-hard (see [93]). However, for H-subgraph-free graphs,
the situation drastically changes. The reason is that the size of a largest clique
is bounded by the number of vertices of a smallest graph in H and hence, one
can just apply brute force to find a largest clique in an H-subgraph-free graph
in polynomial time. Hence, the following holds.

Observation 5.1.6. For every set of graphs H, Clique is polynomial-time
solvable for H-subgraph-free graphs.

In contrast to H-free graphs, some work has pointed to more complex di-
chotomy results being possible. Kamiński [123] gave a complexity dichotomy
for Max-Cut restricted to H-subgraph-free graphs, where H is any finite set
of graphs. Twenty years earlier, Alekseev and Korobitsyn [6] did the same
for Independent Set, Dominating Set and Long Path; see [103] for a
short, alternative proof (similar to the one of [123] for Max-Cut) for the
classification for Independent Set for H-subgraph-free graphs. In [102] the
computational complexity of List Coloring for H-subgraph-free graphs has
been determined for every finite set of graphs H. More recently, Bodlaender et
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al. [24] determined the computational complexity of Subgraph Isomorphism
for H-subgraph-free graphs for all connected graphs H except the case where
H = P5, and they reduced all open “disconnected” cases to either H = P5 or
H = 2P5. However, even for a classical problem such as Coloring, a complete
complexity classification for H-subgraph-free graphs is far from settled [103].
Many more problems have not been studied in this context at all.

Motivated by our apparent lack of understanding of H-subgraph-free graphs,
we embark on a deeper investigation of the computational complexity of graph
problems restricted to H-subgraph-free graphs. In this way, we will pioneer
a new meta-classification of H-subgraph-free graphs, which is only the third
meta-classification for graph containment apart from Theorems 5.1.4 and 5.1.5.
Besides the aforementioned complexity dichotomies from [6, 103, 123], we will
show that many other problems are covered by this meta-classification. In
Chapter 5, we will survey and apply known results from the literature and also
prove some new results.
Outline In this part, we shall discuss in detail the complexity framework for
classes of forbidden subgraphs. We shall define the framework in Chapter 5
and prove a complexity dichotomy for all the problems that lie within the
framework. We shall also compare our framework for forbidden subgraphs to
its forbidden minors and topological-minors counterparts and discuss some
limitations of our framework. Following this, in Chapter 6, we try to classify
the problems that flout exactly one condition of our framework, namely, NP-
hardness on the class of subcubic graphs. Some examples of such problems
are Feedback Vertex Set, Independent Feedback Vertex Set, Col-
oring, Connected Vertex Cover and Matching Cut. We examine the
complexity of these problems on the class of H-subgraph-free graphs, where H
is a connected graph.
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5
Complexity Framework for

Subgraph Free Graphs

For a set of graphs H, a graph G is H-subgraph-free if G does not
contain any graph from H as a subgraph. We propose general and
easy-to-state conditions on graph problems that explain a large set
of results for H-subgraph-free graphs. Namely, a graph problem
must be efficiently solvable on graphs of bounded treewidth, NP-hard
on subcubic graphs, and NP-hard on subdivided subcubic graphs.
Our meta-classification says that if a graph problem Π satisfies all
three conditions, then for every finite set H, it is “efficiently solvable”
on H-subgraph-free graphs if H contains a disjoint union of one or
more paths and subdivided claws, and Π is “computationally hard”
otherwise.
We apply our meta-classification on many well-known problems to
obtain a dichotomy between polynomial-time solvability and NP-
completeness. Apart from capturing numerous explicitly and implic-
itly known results in the literature, we also prove a number of new
results. Moreover, we perform an extensive comparison between the
subgraph framework and the existing frameworks for the minor and
topological minor relations, and pose several new open problems and
research directions.

135



Chapter 5. Complexity Framework

Before we define the framework, we first recall some terminology. A class
of graphs has bounded treewidth if there is a constant c such that every graph
in it has treewidth at most c. A graph is subcubic if every vertex has degree
at most 3. For an integer ℓ ≥ 1, the ℓ-subdivision of an edge e = uv of a
graph replaces e by a path of length ℓ + 1 with endpoints u and v (and ℓ new
vertices). The ℓ-subdivision of a graph G is the graph obtained from G after
ℓ-subdividing each edge (see Figure 5.1 for an example of a 2-subdivision). For
a graph class G and an integer ℓ, let Gℓ consist of the ℓ-subdivisions of the
graphs in G.

A graph problem Π is computationally hard under edge subdivision of
subcubic graphs if for every integer j ≥ 1 there is an integer ℓ ≥ j such that:
if Π is computationally hard for the class G of subcubic graphs, then Π is
computationally hard for Gℓ. Commonly, we can prove the condition holds by
showing that computational hardness is maintained under ℓ-subdivision for a
small integer ℓ (e.g. ℓ = 1, 2, 3, 4) and then repeatedly apply the ℓ-subdivision
operation.

5.1. The Meta-classification for
H-subgraph-free graphs

Our framework contains every graph problem Π satisfying the following three
conditions:

C1. Π is efficiently solvable for every graph class of bounded treewidth;

C2. Π is computationally hard for the class of subcubic graphs; and

C3. Π is computationally hard under edge subdivision of subcubic graphs.

A problem Π that satisfies conditions C1–C3 is called a C123-problem. We
defer to Section 5.4.2 the reasons why we cannot simplify condition C3 and,
particularly, why being subcubic is important in this condition.

For some p, q, r ≥ 1, the subdivided claw Sp,q,r is obtained from the claw
(the 4-vertex star K1,3) after (p − 1)-, (q − 1)-, and (r − 1)-subdividing its three
edges respectively. The disjoint union G1 + G2 of two vertex-disjoint graphs
G1 and G2 is the graph (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We now define the
set S, which is well known in the literature and also plays an important role in
this chapter; see the left side of Fig. 5.1 for an example of a graph that belongs
to S.

Definition 5.1.1. The set S consists of all non-empty disjoint unions of zero
or more subdivided claws and paths.
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5.1. The Meta-classification for H-subgraph-free graphs

Figure 5.1: Left: An example of a graph in S (the graph S3,3,3 + P2 + P3 + P4); also
note that S3,3,3 is the 2-subdivision of K1,3. Right: the graphs H1 and H3, where H1
is the “H”-graph, formed by an edge (the middle edge) joining the middle vertices of
two P3s, and Hi (i ≥ 2) is obtained from H1 by (i − 1)-subdividing the middle edge.

Our main result is the following theorem that can be seen as the “subgraph
variant” of Theorems 5.1.4 and 5.1.5. Note that it suggests, just like Theo-
rems 5.1.4 and 5.1.5, that boundedness of treewidth might be the underlying
explanation for the polynomial-time solvability.

Theorem 5.1.2. Let Π be a C123-problem. For any finite set of graphs H,
the problem Π on H-subgraph-free graphs is efficiently solvable if H contains
a graph from S (or equivalently, if the class of H-subgraph-free graphs has
bounded treewidth) and computationally hard otherwise.

We prove Theorem 5.1.2 as a consequence of a stronger result in Section 5.2.
Next, in Section 5.3, we apply our subgraph framework to a wealth of problems
as described above. We provide a discussion on limitations of the framework
in Section 5.4, and an extensive comparison of the applicability of the three
meta-classifications (Theorem 5.1.4, 5.1.5, and 5.1.2) in Section 5.5. Finally,
we conclude this chapter with a list of open problems and research directions
in Section 6.7.

5.1.1. Impact
The impact of the subgraph framework is three-fold. These impacts follow
from the broad overview of the literature provided in this chapter on problems
that exhibit zero or more of the properties C1, C2, C3.

First and foremost, we are able to provide a complete dichotomy for many
problems on H-subgraph-free graphs by showing they are C123-problems. In
this way, we obtain a dichotomy between polynomial-time solvability and NP-
completeness for many well-known partitioning, covering and packing problems,
network design problems and width parameter problems. The applications of
Theorem 5.1.2, as well as a number of applications of Theorem 5.1.4 and 5.1.5,
are summarized in Table 5.1. A detailed comparison is deferred to Section 5.5.

The second impact of our framework is that we uncover several open ques-
tions in the literature and we subsequently resolve them. In [120] we prove,
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graph problem MF TMF SF plan. subc. plan. C1 C2 C3

Pathwidth ✓ ✓ ✓ [157] [157] [22] [157] T 5.3.1
Tree-Width ? ? ✓ ? ? [21] [26] T 5.3.3
Dominating Set ✓ ✓ ✓ [93] [93] [8] [93] [50]
Independent Dominating Set ✓ ✓ ✓ [52] [52] [180] [52] [50]
Edge Dominating Set ✓ ✓ ✓ [193] [193] [9] [193] [50]
Independent Set ✓ ✓ ✓ [156] [156] [8] [156] [166]
Vertex Cover ✓ ✓ ✓ [156] [156] [8] [156] [166]
Connected Vertex Cover ✓ [92] no [9] no triv
Feedback Vertex Set ✓ [176] no [9] no triv
Independent Feedback Vertex Set ✓ [176] no [177] no triv
Odd Cycle Transversal ✓ ✓ ✓ [120] [120] [9] [120] [120]
Independent Odd Cycle Transv. ✓ ✓ ✓ [120] [120] [9] [120] [120]
C5-Coloring ✓ ✓ [144] [120] [64] [91] no
3-Coloring ✓ [101] no [8] no triv
Star 3-Coloring ✓ ✓ [4] [28] [56] [28] no
List Coloring ✓ ✓ ✓ [119] [120] [120] [120] [120]
P3-Factor ✓ ✓ ✓ [190] [190] [7] [7] [7]
Edge Steiner Tree ✓ ✓ ✓ [92] T 5.3.7 [9] T 5.3.7 T 5.3.7
Node Steiner Tree ✓ ✓ ✓ [92] T 5.3.7 [9] T 5.3.7 T 5.3.7
Steiner Forest [92] T 5.3.7 no T 5.3.7 T 5.3.7
Disjoint Paths ✓ ✓ ✓ [153] [153] [171] [153] T 5.3.12
Induced Disjoint Paths ✓ ✓ ✓ T 5.3.12 T 5.3.12 [171] T 5.3.12 T 5.3.12
Long Cycle ✓ ✓ ✓ [94] [94] [20] [94] T 5.3.13
Long Induced Cycle ✓ ✓ ✓ [94] [94] [116] T 5.3.13 T 5.3.13
Hamilton Cycle ✓ ✓ [94] [94] [8] [96] no
Long Path ✓ ✓ ✓ [94] [94] [20] [94] T 5.3.13
Long Induced Path ✓ ✓ ✓ T 5.3.13 T 5.3.13 [116] T 5.3.13 T 5.3.13
Hamilton Path ✓ ✓ [94] [94] [8] [96] no
Max-Cut ✓ no no [9] [192] [123]
Edge Multiway Cut ✓ ✓ ✓ [122] [122] [66] [122] T 5.3.9
Node Multiway Cut ✓ ✓ ✓ [122] [122] [9] [122] T 5.3.9
Matching Cut ✓ [31] no [31] no triv
Perfect Matching Cut ✓ ✓ ✓ [30] [30] [139] [139] [81]
Diameter ∗ ∗ ✓ no no [1] [80] [120]
Radius ∗ ∗ ✓ no no [1] [80] [120]
Subgraph Isomorphism [24] [24] no [24] triv
Clique no no triv no triv

Table 5.1: The minor framework (MF), topological minor framework (TMF), and
subgraph framework (SF), with the conditions. The problems are mainly chosen
to illustrate the wide reach of the frameworks and their differences. If a problem
satisfies the conditions of a meta-classification, we indicate this with ✓; if not, with
a ; and if unknown with a “?”. A reference in a column is a reference to where the
condition is shown to hold, “triv” means that the condition holds trivially, and “no”
means the condition does not hold. A further discussion of the table, explaining the
“no”-statements, is in Section 5.5.
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5.2. The Proof of Theorem 5.1.2

as new results, that List Coloring, Odd Cycle Transversal, Indepen-
dent Odd Cycle Transversal, and C5-Coloring are NP-complete for
planar subcubic graphs, and thus satisfy C2. For the following problems we
give explicit proofs to show that they satisfy C3: Pathwidth, Tree-Width,
Edge/Node Steiner Tree, and Edge/Node Multiway Cut. Hence, our
framework on H-subgraph-free graphs shows the way towards new results.

The third impact of our framework is that it enables a structured investiga-
tion into complexity dichotomies for graph problems that do not satisfy some
of the conditions, C1, C2 or C3, particularly when only one is not satisfied.
We call such problems C23, C13, or C12, respectively. This led to new insights
into the complexity of well-studied problems such as Hamilton Cycle [146],
Steiner Forest [27], and Feedback Vertex Set as we shall see in Chap-
ter 6. For all these problems, the complexity classifications are different from
the one in Theorem 5.1.2. Hence, our framework has the potential to open a
new and rich research area.

5.2. The Proof of Theorem 5.1.2
We present a stronger result that will imply Theorem 5.1.2. A graph class
closed under edge deletion is also called monotone [7, 29, 132]. For a set of
graphs H, the class of H-subgraph-free graphs is finitely defined if H is a finite
set. We say that a problem Π is C1′D if Π satisfies the following two conditions
(see Fig. 5.1 for examples of the subdivided “H”-graphs Hi):

C1′. Π is efficiently solvable for every finitely defined monotone graph class of
bounded Pathwidth;

D. For every i ≥ 3, Π is computationally hard for the class of
(C3, . . . , Ci, K1,4,H1, . . . ,Hi)-subgraph-free graphs.

Our first theorem shows that the class of C1′D-problems is a proper superclass
of the class of C123-problems.

Theorem 5.2.1. Every C123-problem is C1′D, but not every C1′D-problem is
C123.

Proof. Let Π be a C123-problem. Then Π satisfies C1 and thus C1′. To show
condition D, let i ≥ 3, and let Gi be the class of (C3, . . . , Ci, K1,4,H1, . . . ,Hi)-
subgraph-free graphs. As Π satisfies C2, Π is computationally hard for the
class G of subcubic graphs, that is, K1,4-subgraph-free graphs. As Π satisfies
C3, there exists an integer ℓ ≥ i + 1, such that Π is computationally hard for
Gℓ. We note that Gℓ is a subclass of Gi. Hence, Π is computationally hard for
Gi and thus satisfies D. We conclude that Π is a C1′D-problem.
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To show that the reverse statement does not necessarily hold, we define the
following (artificial) example problem. Let B be the set of all graphs obtained
from a cycle after adding a new vertex made adjacent to precisely one vertex
of the cycle. Then the problem B-Modified List Coloring takes as input a
graph G with a list assignment L and asks whether G simultaneously has a
coloring respecting L and has a connected component that is a graph from B.

We now prove that B-Modified List Coloring is not C123 but is
C1′D. We distinguish between “being polynomial-time solvable” and “being
NP-complete”. We first observe that B satisfies the following four properties:

1. For every integer p, the p-subdivision of any graph in B is not in B.

2. We can recognize whether a graph belongs to B in polynomial time.

3. Every graph in B admits a 3-coloring.

4. For every finite set H disjoint from S, there is an H-subgraph-free graph
in B.

Due to Property 1, B-Modified List Coloring does not satisfy C3. Hence,
B-Modified List Coloring is not a C123-problem. We will prove that
B-Modified List Coloring is C1′D. As List Coloring is C123 [120], it
satisfies C1 and thus C1′. By Property 2, we can check in polynomial time if a
graph has a connected component in B. Hence, B-Modified List Coloring
satisfies C1′. Below we prove that it also satisfies condition D.

Let i ≥ 3, and let Gi be the class of (C3, . . . , Ci, K1,4,H1, . . . ,Hi)-subgraph-
free graphs. As List Coloring is C123, it follows from the first statement
that it is also C1′D. Hence, List Coloring is NP-complete on Gi. Let (G, L)
be an instance of List Coloring where G is a graph from Gi. We note that
{C3, . . . , Ci, K1,4,H1, . . . ,Hi)} ∩ S = ∅. Hence, by Property 4, there is an H-
subgraph-free graph B ∈ B. Let G′ = G + B. Extend L to a list assignment L′

by giving each vertex of B list {1, 2, 3}. We claim that (G, L) is a yes-instance
of List Coloring if and only if (G′, L′) is a yes-instance of B-Modified List
Coloring.

First suppose G has a coloring respecting L. By Property 3, B is 3-
colourable. As vertices of B have list {1, 2, 3}, G′ has a coloring respecting
L′. As G has B ∈ B as a connected component, (G′, L′) is a yes-instance of
B-Modified List Coloring. Now suppose that (G′, L′) is a yes-instance
of B-Modified List Coloring. Then, G′ has a coloring respecting L′, and
thus G has a coloring respecting L. We conclude that B-Modified List
Coloring satisfies D and is thus a C1′D-problem. As we already showed that
B-Modified List Coloring is not C123, this proves the second statement of
the theorem.
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We also need a theorem from Bienstock, Robertson, Seymour and Thomas.

Theorem 5.2.2 ([18]). For every forest F , all F -minor-free graphs have
Pathwidth at most |V (F )| − 2.

We now prove a result, which shows that the conditions C1′ and D are both
necessary and sufficient.

Theorem 5.2.3. Let Π be a problem. Then the following two statements are
equivalent:

(i) Π is C1′D; and

(ii) for any finite set of graphs H, the problem Π on H-subgraph-free graphs
is efficiently solvable if H contains a graph from S and computationally
hard otherwise.

Proof. First assume that Π is C1′D. Let H be a finite set of graphs. First
suppose that H contains a graph H from S. Let G be a H-subgraph-free graph.
As G is H-subgraph-free, G is H-subgraph-free. It is known (see e.g. [102, 103])
that, for any graph H ′ ∈ S, a H ′-subgraph-free graph is also H ′-minor-free.
Hence, G is H-minor-free. So by Theorem 5.2.2, G has constant pathwidth at
most |V (H)| − 2, meaning we can solve Π efficiently by C1′.

Now suppose that H contains no graph from S. Let H ∈ H. As
H /∈ S, H has a connected component containing a K1,4 (or equiva-
lently, a vertex of degree at least 4); or a cycle Ch for some h ≥ 3; or
a graph Hi for some i ≥ 1. Hence, the class of H-subgraph-free graphs
contains the K1,4-subgraph-free graphs; or Ch-subgraph-free graphs for
some h ≥ 3; or Hi-subgraph-free graphs for some i ≥ 1, each of which
contains the (C3, . . . , Cj(H), K1,4,H1, . . . ,Hj(H))-subgraph-free graphs, where
j(H) = max{h, i}. Hence, the class of H-subgraph-free graphs contains the
(C3, . . . , Cj(H), K1,4,H1, . . . ,Hj(H))-subgraph-free graphs. Consequently, the
class of H-subgraph-free graphs contains the (C3, . . . , Cj∗ , K1,4,H1, . . . ,Hj∗)-
subgraph-free graphs, where j∗ = maxH∈H j(H) (note that j exists, as
H is finite). As Π satisfies D, we find that Π is computationally hard
for (C3, . . . , Cj∗ , K1,4,H1, . . . ,Hj∗)-subgraph-free graphs, and thus for
H-subgraph-free graphs.

Now assume that for any finite set of graphs H, the problem Π on H-subgraph-
free graphs is efficiently solvable if H contains a graph from S and computa-
tionally hard otherwise. We first prove C1′. Let H be a finite set, such that the
class of H-subgraph-free graphs has bounded pathwidth. Recall that the latter
holds if and only if H contains a graph from S [168]. Hence, Π satisfies C1′.
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We now prove that condition D holds. Let i ≥ 3, and let Gi be the class
of H-subgraph-free graphs, where H = {C3, . . . , Ci, K1,4,H1, . . . ,Hi}. Then H
contains no graph from S. Hence, Π is computationally hard for H-subgraph-
free graphs. Consequently, Π satisfies D.

We are now ready to prove Theorem 5.1.2, which we restate below.

Theorem 5.1.2 (restated). Let Π be a C123-problem. For any finite set of
graphs H, the problem Π on H-subgraph-free graphs is efficiently solvable if H
contains a graph from S (or equivalently, if the class of H-subgraph-free graphs
has bounded treewidth) and computationally hard otherwise.

Proof. The result follows from combining Theorems 5.2.1 and 5.2.3, and the
well-known fact that for a finite set of graphs H, a class of H-subgraph-free
graphs has bounded pathwidth if and only if it has bounded treewidth if and
only if H contains a graph from S [168] (see e.g. [29, 59], for an explanation
with respect to the more powerful parameter cliquewidth, and hence, replacing
“bounded pathwidth” in C1′ by “bounded treewidth” or “bounded cliquewidth”
yields the same equivalence as in Theorem 5.2.3).

Remark 5.2.4. We emphasize that we are not aware of any natural C1′D-
problem that is not C123. As the conditions C1–C3 are more intuitive, we have
therefore chosen to present our subgraph framework in terms of the C1–C3
conditions instead of the C1′-D conditions.

5.3. Application to NP-Complete Problems
We provide a complete dichotomy between polynomial-time solvability and
NP-completeness for many problems on H-subgraph-free graphs by showing
they are C123-problems. In Section 5.3.1, we give examples of width parameter
problems that are C123. In Section 5.3.2 we show the same for a number of
network design problems. In fact, we do a bit more. Namely, we also show
that these problems belong to the minor and topological minor frameworks
whenever the relevant NP-completeness result applies to subcubic planar graphs,
as reflected in Table 5.1. We will not explicitly remark this in the remainder
of the section.

5.3.1. Width Parameter Problems
Let Path-Width and Tree-Width be the problems of deciding for a given
integer k and graph G, if G has pathwidth, or respectively, treewidth at most k.
We observe that it is unclear whether a pathwidth bound is maintained under
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subdivision, and thus proving property C3 for Path-Width is non-trivial. We
show a more specific result that is sufficient for our purposes. For Treewidth,
we can follow a more direct proof.

Theorem 5.3.1. Path-Width is a C123-problem.

Proof. Path-Width is linear-time solvable for every graph class of bounded
treewidth [22] so satisfies C1. It is NP-complete for 2-subdivisions of planar
cubic graphs [157] so satisfies C2. It also satisfies C3, as we will prove the
following claim:

Claim 5.3.2. A graph G = (V, E) that is a 2-subdivision of a graph G′′ has
pathwidth k if and only if the 1-subdivision G′ of G has pathwidth k.

Proof. First suppose that G = (V, E) that is a 2-subdivision of a graph G′′

has pathwidth k. We use the known equivalence of pathwidth to the vertex
separation number [128]. We recall the definition. Let L be a bijection between
V and {1, . . . , |V |}, also called a layout of G. Let

VL(i) = {u | L(u) ≤ i and ∃v ∈ V : uv ∈ E and L(v) > i}.

Then vsL(G) = maxi∈{1,...,|V |}{|VL(i)|} and vs(G) = minL{vsL(G)} is the
vertex separation number of G.

As shown by Kinnersley [128], G has a layout L such that vsL(G) = k
since G has pathwidth k. In a 2-subdivision, such as G, any edge uv of the
original graph (G′′ in this case) gets replaced by edges ua, ab, and bv, where a
and b are new vertices specific to the edge uv. In a standard layout L for G,
L(a) = L(b) − 1 and L(u) < L(a) for each such edge uv of G′′. By applying the
transformation of Ellis, Sudborough and Turner [75, Lemma 2.3] if necessary,
we may assume that L is a standard layout and still vsL(G) = k.

For some edge uv of G′′ and its 2-subdivision into ua, ab, bv in G, consider
a further subdivision of each of these three edges. Let x, y, z be the newly
created vertices respectively. Modify L by placing x directly before a, y between
a and b, and z directly after b. Let L′ denote the new layout. For simplicity
and abusing notation, we use L′(x) = L(a) − 1

2 , L′(y) = L(a) + 1
2 = L(b) − 1

2
and L′(z) = L(b) + 1

2 to denote the positions of x, y and z in the new layout
respectively. For any i < L(a) − 1

2 , VL′(i) = VL(i), because L(a) > i and
L′(x) > i. Next, we observe that

VL′(L′(x)) = VL′(L(a) − 1
2) = (VL(L(a)) \ {a}) ∪ {x},

because b follows after a in L and now a follows after x in L′. Hence, VL′(L′(x))
has the same size as VL(L(a)), so size at most k. Similarly, we can observe
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that VL′(L(a)) = VL(L(a)) (note that L′(u) = L(u) < L(a)), VL′(L(a) + 1
2) =

(VL(L(a)) \ {a}) ∪ {y}, and VL′(L(b)) = (VL(L(a)) \ {a}) ∪ {b}, which all have
size at most k. We then observe that VL′(L(b) + 1

2) is equal to VL(L(b)) with b
replaced by z if b ∈ VL(L(b)). Similarly, for any i > L(b), if b ∈ VL(i), we can
replace b by z to obtain VL′(i); otherwise, VL′(i) = VL(i). Note that a is never
part of VL(i) for i > L(b). In all cases, the size remains bounded by k. Hence,
vsL′ ≤ k and by the aforementioned equivalence between pathwidth and vertex
separation number [128], G′ has pathwidth at most k.

Now suppose that G′ has pathwidth k. As subdivision cannot decrease
pathwidth (or consider the converse, contraction cannot increase it), G has
pathwidth at most k.

From the above, we conclude that G has pathwidth k if and only if G′ has
pathwidth k. Hence, the claim, and thus C3, is proven. ⋄

This finishes the proof of Theorem 5.3.1.

Theorem 5.3.3. Tree-Width is a C123-problem.

Proof. Tree-Width is linear-time solvable for every graph class of bounded
treewidth [21]. Very recently, it was shown that Tree-Width is NP-complete
for cubic graphs [26], so the problem satisfies C2. It also satisfies C3, as we
will prove the following claim:

Claim 5.3.4. A graph G has treewidth k if and only if the 1-subdivision of G
has treewidth k.

Proof. Taking a minor of a graph does not increase its treewidth so the
treewidth cannot decrease after subdividing an edge. If a graph G has
treewidth 1, then G remains a tree after subdividing an edge. Suppose G
has treewidth at least 2. Then we can argue similarly as in Kneiset al. [130,
Lemma 4.2]. Let (T, X ) be a tree decomposition of G with width k ≥ 2. Let
G′ be the graph obtained by replacing an edge uv with edges ux and xv for a
new vertex x. Pick an arbitrary bag B from X containing u and v. Introduce
the bag {u, v, x} and make the corresponding node adjacent to the B-node.
This yields a tree decomposition of G′ of width k, as k ≥ 2 and the bag we
added has size 3. Hence, the claim and thus the theorem is proven. ⋄

This concludes the proof of Theorem 5.3.3.

5.3.2. Network Design Problems
A (edge) cut of a graph G = (V, E) is a partition (S, V \ S) of V . The size
of (S, V \ S) is the number of edges with one end in S and the other in V \ S.
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The Max-Cut problem is to decide if a graph has a cut of size at least k for
some integer k. By combining the next result with Theorem 5.1.2, we recover
the classification of [123].

Theorem 5.3.5 ([123]). Max-Cut is a C123-problem.

Proof. Max-Cut is linear-time solvable for graphs of bounded treewidth [9]
and NP-complete for subcubic graphs [192] so satisfies C1 and C2. A cut C of
a graph G is maximum if G has no cut of greater size. Kamiński [123] proved
that a graph G = (V, E) has a maximum cut of size at least c if and only if the
2-subdivision of G has a maximum cut of size at least c + 2|E|. This shows
C3.

Let G = (V, E) be a graph. A set M ⊆ E is a perfect matching if no two
edges in M share an end-vertex and moreover, every vertex of the graph is
incident on an edge of M . A set M ⊆ E is an edge cut of G if it is possible
to partition V into two sets B and R, such that M consists of all the edges
with one end-vertex in B and the other one in R. A set M ⊆ E is a perfect
matching cut of G if M is a perfect matching that is also an edge cut. The
Perfect Matching Cut is to decide if a graph has a perfect matching cut.
Lucke et al. [81] recently showed that Perfect Matching Cut is C123.

Theorem 5.3.6 ([81]). Perfect Matching Cut is a C123-problem.

Proof. Le and Telle [139] observed that Perfect Matching Cut is
polynomial-time solvable for graphs of bounded treewidth. In the same
paper [139], they also proved that for every integer g ≥ 3, it is NP-complete
even for subcubic bipartite graphs of girth at least g. Hence, Perfect
Matching Cut satisfies C1 and C2. The NP-completeness proof in [139]
implicitly showed that to get C3 we may take k = 4 (see also [81]).

We note that C2 also follows for Perfect Matching Cut from a recent
result of Bonnet, Chakraborty and Duron [30], who proved that Perfect
Matching Cut is NP-complete even for 3-connected subcubic planar graphs.

Given a graph G and a set of terminals T ⊆ V (G), and an integer k, the
problems Edge (Node) Steiner Tree are to decide if G has a subtree
containing all the terminals of T , such that the subtree has at most k edges
(vertices). We give explicit proofs that Node Steiner Tree and Edge
Steiner Tree are NP-complete on planar subcubic graphs and that this
is maintained under subdivision, leading to these two problems being C123-
problems.

Theorem 5.3.7. Edge and Node Steiner Tree are C123-problems.
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Proof. As the two variants are equivalent (on unweighted graphs), we only
consider Edge Steiner Tree, which is linear-time solvable for graphs of
bounded treewidth [9] so satisfies C1. For showing C2, we reduce from Edge
Steiner Tree, which is NP-complete even for grid graphs [92], and thus for
planar graphs.

Let (G, T, k) be an instance, where G is a planar graph with |V (G)| = n.
We build a planar subcubic graph G′ where we replace each vertex v in G with
a rooted binary tree Tv in which there are n leaf vertices (so the tree contains
at most 2n vertices and is of depth ⌈log n⌉). For each edge e = uv of G, add to
G′ a path e′ of length 4n2 between some leaf of Tu and a leaf of Tv (ensuring
that each leaf is incident with at most one such path and the ordering of the
paths is the same as the ordering around u, v to ensure planarity). If v in G
is in T , then the root vertex of Tv is a terminal in G′ (and these are the only
terminals in G′ and form the set T ′). We note that G is planar subcubic, and
we claim that (G, T, k) is a yes-instance if and only if (G′, T ′, 4n2 · k + 2n2) is
a yes-instance.

First, suppose G has a Steiner tree S with at most k edges. We build a
Steiner tree S′ in G′: if e = uv is in S, then we add to S′ a path that comprises
e′ and paths that join the roots of Tu and Tv to e′. The sum of the lengths of
these paths, additional to the 4n2 · k, is bounded above by 2 · n · ⌈log n⌉ ≤ 2n2.

Now suppose G′ has a Steiner tree S′ with at most 4n2 · k + 2n2 edges. We
build a tree S in G: if e = uv and e′ is in S′, we add e to S. Then S is a
Steiner tree in G. As the length of a path from Tu to Tv is 4n2, the sum of the
lengths of all such paths in S′ is a whole multiple of 4n2, so |E(S)| ≤ k.

Finally, to prove C3, it suffices to show the following claim:

Claim 5.3.8. A graph G has an edge Steiner tree for terminals T of size
at most k if and only if the 1-subdivision of G has an edge Steiner tree for
terminals T of size at most 2k.

Proof. In order to see this, let G′ be the 1-subdivision of G. Let e1 and e2 be
the two edges obtained from subdividing an edge e ∈ E(G). Given a Steiner
tree S of G with at most k edges, we obtain a Steiner tree of G′ with at most
2k edges by replacing each edge e of S with e1 and e2. Given a Steiner tree S′

of G′ with at most 2k edges, we may assume that for any edge e of G, either
none or both of e1 and e2 are in S′; if S′ contains only one it can safely be
discarded. To obtain a Steiner tree of G with at most k edges, include each
edge e if both e1 and e2 are in S′. ⋄

This concludes the proof of Theorem 5.3.7.

Theorem 5.3.9. Edge and Node Multiway Cut are C123-problems.
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Proof. Edge Multiway Cut is linear-time solvable for graphs of bounded
treewidth [66] (also following [9]) and NP-complete for planar subcubic
graphs [122] so satisfies C1 and C2. It satisfies C3 as well, as we will prove the
following claim:

Claim 5.3.10. A graph G has an edge multiway cut for a set of terminals T
of size at most k if and only if the 1-subdivision of G has an edge multiway cut
for T of size at most k.

Proof. In order to see this, let G′ be the 1-subdivision of G. For each edge e in
G, there exist two edges in G′. If an edge of G is in an edge multiway cut for
G and T , then it suffices to pick only one of the two edges created from it in G′

to disconnect the paths e lies on. Vice versa, if an edge e′ of G′ is in an edge
multiway cut for G′ and T , then it suffices to pick the unique corresponding
edge in G to disconnect the paths e′ lies on. ⋄

We now turn to Node Multiway Cut, which is linear-time solvable for
graph classes of bounded treewidth [9] (it is an extended monadic second-order
linear extremum problem) and NP-complete for planar subcubic graphs [122]
so satisfies C1 and C2. It satisfies C3, as we will prove the following claim:

Claim 5.3.11. A graph G has a node multiway cut for a set of terminals T
of size at most k if and only if its 1-subdivision has a node multiway cut for T
of size at most k.

Proof. In order to see this, let G′ be the 1-subdivision of G. We observe that
subdividing any edge of a graph does not create new connections between
terminals. Moreover, we can assume that none of the newly introduced vertices
of the subdivision are used in some optimal solution for G′ and T . ⋄

This concludes the proof of Theorem 5.3.9.

Given a graph G and disjoint vertex pairs (s1, t1), (s2, t2), . . . (sk, tk), the Dis-
joint Paths problem is to decide if G has k pairwise vertex-disjoint paths
from si to ti for every i. We obtain the Induced Disjoint Paths problem
if the paths are required to be mutually induced; a set of paths P 1, . . . , P k is
mutually induced if P 1, . . . , P k are pairwise vertex-disjoint and there is no edge
between a vertex of some P i and a vertex of some P j if i ̸= j.

Theorem 5.3.12. Disjoint Paths and Induced Disjoint Paths are C123-
problems.
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Proof. The Disjoint Paths problem is linear-time solvable for graphs of
bounded treewidth [171] and NP-complete for planar subcubic graphs [153] so
satisfies C1 and C2. The Induced Disjoint Paths problem is solvable in
polynomial time for graphs of bounded mimwidth [116] and thus for bounded
treewidth [184], so it satisfies C1. Let G′ be the 1-subdivision of a subcubic
graph G and let T be a set of disjoint vertex pairs. Then, (G, T ) is a yes-
instance of Disjoint Paths if and only if (G′, T ) is a yes-instance of Disjoint
Paths if and only if (G′, T ) is a yes-instance of Induced Disjoint Paths.
Hence, C2 is satisfied for Induced Disjoint Paths as well and C3 is satisfied
for both problems.

The problems Long Path and Long Induced Path are to decide for a
given graph G and integer k, whether G contains Pk as a subgraph or induced
subgraph, respectively. The Long Cycle and Long Induced Cycle prob-
lems are defined similarly. By combining the next result with Theorem 5.1.2,
we recover the classification of [123] for Long Path. The classification of
Long Cycle was not made explicit in [7], but is implicitly there (combine
Proposition 1 of [7] with Lemma 12 of [7]).

Theorem 5.3.13. Long Path, Long Induced Path, Long Cycle and
Long Induced Cycle are C123-problems.

Proof. Bodlaender [20] proved that Long Path and Long Cycle are
polynomial-time solvable for graphs of bounded treewidth. Hence, Long
Path and Long Cycle satisfy C1. As Hamilton Path (so Long Path with
k = |V (G)|) and Hamilton Cycle (so Long Cycle with k = |V (G)|) are
NP-complete for subcubic planar graphs [94], Long Path and Long Cycle
satisfy C2.

Let G′ be the 1-subdivision of a subcubic graph G. Now the following holds:
(G, k) is a yes-instance of Long Path if and only if (G′, 2k) is a yes-instance
of Long Path if and only if (G′, 2k) is a yes-instance of Long Induced
Path. Hence, C2 is satisfied for Long Induced Path as well, and C3 is
satisfied for both Long Path and Longest Path. Moreover, Long Induced
Path satisfies C1; it is even polynomial-time solvable for graphs of bounded
mimwidth [116]. We can make the same observations for Long Cycle and
Long Induced Cycle.

5.4. Limitations of our Framework
We give two limitations of our framework.
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5.4.1. Forbidding an Infinite Number of Subgraphs
We observe that in Theorems 5.1.4 and 5.1.5, the set of graphs H is allowed to
have infinite size. However, the set of graphs H in Theorems 5.1.2 and 5.2.3
cannot be allowed to have infinite size. This is because there exist infinite sets
H such that

1. H contains no graphs from S.

2. All C123-problems are efficiently solvable on H-subgraph-free graphs.

To illustrate this, we give two examples. See, e.g. [123], for another example.

Example 1. Let H be the set of cycles C. No graph from C belongs to S.
Every C-subgraph-free graph is a forest and thus has treewidth 1. Hence, every
C123-problem is efficiently solvable on the class of C-subgraph-free graphs (as
it satisfies condition C1).

Example 2. Let H = {H1,H2, . . .}; see also Fig. 5.1. No graph from H belongs
to S. Every H-subgraph-free graph G is H1-minor-free. By Theorem 5.2.2, G
has pathwidth, and thus treewidth, at most 4. Hence, every C123-problem is
efficiently solvable on the class of H-subgraph-free graphs.

5.4.2. Relaxing Condition C3
In C3, we require the class G to be subcubic. In this way we are able to show in
Theorem 5.2.1 that every C123-problem Π satisfies condition D, that is, for every
i ≥ 3, Π is computationally hard for the class of (C3, . . . , Cℓ, K1,4,H1, . . . ,Hℓ)-
subgraph-free graphs.1 If we allow G to be any graph class instead of requiring
G to be subcubic, then we can no longer show this, and hence the proof of Theo-
rem 5.1.2 no longer holds in that case. That is, following the same arguments we
can only construct a graph class that due to C2, is either K1,4-subgraph-free (or
equivalently, subcubic) or, due to C3, is (C3, . . . , Cℓ,H1, . . . ,Hℓ)-subgraph-free.
Consequently, in that case, we can only obtain the dichotomy for H-subgraph-
free graphs if |H| = 1. This relaxation could potentially lead to a classification
of more problems. However, so far, we have not identified any problems that
belong to this relaxation but not to our original framework.

We also note that the integers ℓ for which ℓ-subdivision maintains compu-
tational hardness is highly problem-specific. For instance, the 1-subdivision
of any graph is bipartite and some computationally hard problems, such as
Independent Set, become efficiently solvable on bipartite graphs.

1The aforementioned papers [87, 158] show a number of problems to be NP-complete for
planar subcubic graphs of high girth, whereas we consider subcubic graphs of high girth that,
instead of being planar, do not contain any small subdivided “H”-graph as a subgraph.
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5.5. Comparison between the Three
Frameworks

In this section, we provide an extensive discussion and comparison of the three
frameworks mentioned in the overview: Theorem 5.1.4, 5.1.5, and 5.1.2. See
also Table 5.1.

5.5.1. Problems That Belong to All Three Frameworks
Apart from Max-Cut and possibly Tree-Width, all C123-problems from
Section 5.3 are NP-complete for planar subcubic graphs, and thus also satisfy
the conditions of Theorems 5.1.4 and 5.1.5. In the proofs of Section 5.3 we
made explicit observations about this. The complexity of Tree-Width is still
open for planar graphs and planar subcubic graphs.

5.5.2. Problems That Do Not Belong to Any of the
Three Frameworks

Every problem that is NP-complete for graphs of bounded treewidth does not
satisfy any of the frameworks. An example is the aforementioned Subgraph
Isomorphism problem, which is NP-complete even for input pairs (G1, G2) that
are linear forests (see, for example, [24] for a proof) and thus have treewidth 1.

As another example, the Steiner Forest problem is to decide
for a given integer k, graph G and set of pairs of terminal vertices
S = {(s1, t1), . . . , (sp, tp)}, if G has a subforest F with at most k edges,
such that si and ti, for every i ∈ {1, . . . , p}, belong to the same connected
component of F . It is readily seen that Steiner Forest generalizes Edge
Steiner Tree: take all pairs of vertices of T as terminal pairs to obtain
an equivalent instance of Steiner Forest. Hence, Steiner Forest
is NP-complete on planar subcubic graphs and this is maintained under
subdivision, due to Theorem 5.3.7. As Steiner Forest is NP-complete on
graphs of treewidth 3 [11], Steiner Forest does not belong to any of the
three frameworks. We refer to [27] for a partial complexity classification of
Steiner Forest on H-subgraph-free graphs.

As an example on the other extreme end, the Clique problem does not
fall under any of the three frameworks for different reasons. As observed in
Section 6.1, Clique is polynomial-time solvable for H-subgraph-free graphs for
every set of graphs H. Consequently, Clique does not belong to the subgraph
framework. Moreover, Clique is polynomial-time solvable for planar graphs,
as every clique in a planar graph has size at most 4. Hence, Clique does not
belong to the minor and topological minor frameworks either.
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5.5.3. Problems That Only Belong to the Minor
Framework

We observe that every problem that satisfies the conditions of Theorem 5.1.5
also satisfies the conditions of Theorem 5.1.4. However, there exist problems
that satisfy the conditions of Theorem 5.1.4 but not those of Theorems 5.1.5
and 5.1.2. For example, 3-Coloring satisfies C1 (this even holds for its
generalization List Coloring [119]). Moreover, 3-Coloring is NP-complete
even for 4-regular planar graphs [61]. Hence, 3-Coloring belongs to the
minor framework. However, 3-Coloring does not satisfy the conditions of
Theorems 5.1.5 and 5.1.2, as 3-Coloring is polynomial-time solvable for
subcubic graphs due to Brooks’ Theorem [34].

To give some further examples, we can also take the problems Connected
Vertex Cover, Feedback Vertex Set and Independent Feedback
Vertex Set. It is known that all three problems satisfy C1 [9]. Moreover,
Connected Vertex Cover [92] and Feedback Vertex Set [176] are
NP-complete for planar graphs of maximum degree at most 4. By taking
1-subdivisions, we find that the same holds for Independent Feedback
Vertex Set. However, unlike the related problems Vertex Cover and Odd
Cycle Transversal, the three problems do not satisfy the conditions of
Theorems 5.1.5 and 5.1.2. This is because Connected Vertex Cover [182],
Feedback Vertex Set [182] and Independent Feedback Vertex Set
[Chapter 6] are polynomial-time solvable for subcubic graphs. Munaro [158]
showed that even Weighted Feedback Vertex Set is polynomial-time
solvable for subcubic graphs.

As a final example, we can take the Matching Cut problem. This problem
satisfies C1 [31]. Moreover, it is NP-complete for planar graphs of girth 5 [31]
but polynomial-time solvable for subcubic graphs [51].

5.5.4. Problems That Only Belong to the Minor and
Topological Minor Frameworks

We also know of problems that satisfy the conditions of Theorem 5.1.5, and thus
of Theorem 5.1.4, but not those of Theorem 5.1.2. For example, Hamilton
Cycle is solvable in polynomial-time for graphs of bounded treewidth [8], so
satisfies C1, and it is NP-complete for planar subcubic graphs [96] (even if they
are also bipartite and have arbitrarily large girth [158]). Hence, Hamilton
Cycle satisfies the conditions of Theorem 5.1.5, and also satisfies C2. However,
unlike its generalization Long Cycle, which is C123, Hamilton Cycle does
not satisfy C3 [146], so it is not a C123-problem. The same holds for Hamilton
Path (which contrasts the C123-property of Long Path).

To give another example, Star 3-Coloring is to decide if a graph G has
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a 3-coloring such that the union of every two color classes induces a star forest
(forest in which each connected component is a star). This problem is known
to be NP-complete even for subcubic planar subgraphs of arbitrarily large fixed
girth [26], but does not satisfy C3 [146], so is not C123.

To give a final example of a problem that satisfies the conditions of The-
orems 5.1.4 and 5.1.5 but not those of Theorem 5.1.2, we can consider the
C5-Coloring problem. This problem is to decide if a given graph allows
a homomorphism to C5. It is known to be NP-complete on both subcubic
graphs [91] and planar graphs [144]. In order to show NP-completeness for sub-
cubic planar graphs, one can take the gadget of MacGillivray and Siggers [144]
and augment it with a degree reduction gadget2 However, C5-Coloring does
not satisfy C3 [146], so it not C123.

5.5.5. Problems That Only Belong to the Subgraph
Framework

There also exist problems that satisfy the conditions of Theorem 5.1.2, and thus
are C123, but that do not satisfy the conditions of Theorems 5.1.4 and 5.1.5.
Namely, Max-Cut is polynomial-time solvable for planar graphs [109] (and
thus also for planar subcubic graphs). However, we show in Section 5.3 that
Max-Cut satisfies the conditions of Theorem 5.1.2, that is, is a C123-problem.

5.6. Conclusions
By giving a meta-classification, we were able to unify a number of known
results from the literature, reprove some of them, and give new complexity
classifications for a variety of graph problems on classes of graphs characterized
by a finite set H of forbidden subgraphs. Similar frameworks existed (even
for infinite sets H) already for the minor and topological minor relations,
whereas for the subgraph relation, only some classifications for specific problems
existed [6, 102, 123]. We showed that many problems belong to all three
frameworks, and also that there exist problems that belong to one framework
but not to (some of) the others.

In order to have stronger hardness results for our subgraph framework,
we considered the unweighted versions of these problems. However, we note
that most of the vertex-weighted and edge-weighted variants of these problems
satisfy C1 as well; see [9]. We finish this section by setting out some directions
for future work.

2The use of this gadget for this purpose was proposed to us by Mark Siggers.
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5.6.1. Refining and Extending the Subgraph
Framework

We describe three approaches for refining or extending the subgraph framework.
First, in the proof of Theorem 5.2.1 we gave an example of a C1’D-problem,
namely B-Modified List Coloring, that is not C123. However, this example
is rather artificial. To increase our understanding of the conditions C1–C3 of
our framework, addressing the following question would be helpful.
Open Problem 5.1. Do there exist any natural graph C1’D-problems that
are not C123-problems?
As a second approach, we recall from Section 5.4.2 that we cannot relax
condition C3 by allowing the class G to be an arbitrary graph class instead
of being subcubic. If we do this nevertheless, we are only able to obtain
a dichotomy for H-subgraph-free graphs if |H| = 1. This relaxation could
potentially lead to a classification of more problems, and we pose the following
open problem.
Open Problem 5.2. Can we classify more problems for H-subgraph-free
graphs by no longer demanding that the class G in C3 is subcubic?
So far, we have not identified any problems that belong to the relaxation but
not to our original framework.

Recall that the set of forbidden graphs H is allowed to have infinite size in
Theorems 5.1.4 and 5.1.5. For any infinite set of graphs H, a C123-problem
on H-subgraph-free graphs is still efficiently solvable if H contains a graph H
from S. However, a C123-problem may no longer be computationally hard
for H-subgraph-free graphs if H has infinite size, as shown in Section 5.4.1
with some examples. Hence, as a third approach for extending the subgraph
framework, we propose the following problem. This problem was also posed by
Kamiński [123], namely for the C123-problem Max-Cut.
Open Problem 5.3. Can we obtain dichotomies for C123-problems restricted
to H-subgraph-free graphs when H is allowed to have infinite size?
In order to solve Open Problem 5.3, we need a better understanding of the
treewidth of H-subgraph-free graphs when H has infinite size. In recent years,
such a study has been initiated for the induced subgraph relation; see, for
example, [3, 2, 131, 188] for many involved results in this direction.

5.6.2. Finding More Problems Falling under the Three
Frameworks

There still exist many natural problems for which it is unknown whether they
belong to the minor, topological minor or subgraph framework. For the first two
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frameworks, we recall the following open problems, which have been frequently
stated as open problems before.

Open Problem 5.4. Determine the computational complexity of Tree-Width
for planar graphs and for planar subcubic graphs.

We now turn to the subgraph framework. We showed that Tree-Width
and Pathwidth are C123, but further investigation might reveal more such
problems that fit the subgraph framework.

Open Problem 5.5. Do there exist other width parameters with the property
that the problem of computing them is C123?

We also made a detailed comparison between the minor, topological minor and
subgraph frameworks (see Section 5.5). To increase our general understanding
of the complexity of graph problems, it would be interesting to find more
problems that either belong to all frameworks or just to one or two. In
particular, we pose the following question.

Open Problem 5.6. Does there exist a graph problem that belongs to the
minor and subgraph frameworks, but not to the topological minor framework?

We note that such a problem (if it exists) must be computationally hard
for planar graphs and subcubic graphs, but efficiently solvable for subcubic
planar graphs.

5.6.3. Dropping One of the Conditions C1, C2, or C3
Another compelling direction is to investigate if we can obtain new complexity
dichotomies for computationally hard graph problems that do not satisfy one
of the conditions, C1, C2 or C3. We call such problems C23, C13, or C12,
respectively.

Some interesting progress has recently been made on such problems (see
e.g. [27, 121, 146]). However, we note that in general, obtaining complete
classifications is challenging for C12-, C13- and C23-problems. In particular,
we need a better understanding of the structure of Pr-subgraph-free graphs
and Hi-subgraph-free graphs (recall that Hi is a subdivided “H”-graph). Recall
that a graph is Pr-subgraph-free if and only if it is Pr-(topological)-minor-free.
Hence, if a problem is open for the case where H = Pr for one of the frameworks,
then it is open for all three of them.

To illustrate the challenges with an example from the literature, consider
the aforementioned Subgraph Isomorphism problem. This problem takes
as input two graphs G1 and G2. Hence, it does not immediately fit in our
framework, but one could view it as a C23-problem. The question is whether
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G1 is a subgraph of G2. Recall that the Subgraph Isomorphism problem is
NP-complete even for input pairs (G1, G2) that are linear forests and thus even
have Pathwidth 1. Yet, even a classification for H-subgraph-free graphs was
not straightforward; recall that Bodlaender et al. [24] essentially settled the
computational complexity of Subgraph Isomorphism for H-subgraph-free
graphs except if H = P5 or H = 2P5. These cases are open for the minor and
topological minor frameworks as well due to the above observation (which also
holds for linear forests).

5.6.4. The Induced Subgraph Relation
We finish this chapter with some remarks on the induced subgraph relation.
As mentioned, there exist ongoing and extensive studies on boundary graph
classes (cf. [5, 7, 132, 158]) and treewidth classifications (cf. [3, 2, 131, 188]) in
the literature. We note that for the induced subgraph relation, it is also useful
to check C2 and C3. Namely, let Π be a problem satisfying C2 and C3. For
any finite set of graphs H, the problem Π on H-free graphs is computationally
hard if H contains no graph from S. This follows from the same arguments as
in the proof of Theorem 5.2.3.3 Hence, if we aim to classify the computational
complexity of problems satisfying C2 and C3 for H-free graphs (which include
all C123-problems), then we may assume that H ∈ S. For many of such
problems, such as Independent Set, this already leads to challenging open
cases.

As mentioned, we currently do not know even any algorithmic meta-theorem
for the induced subgraph relation, not even for a single forbidden graph H.
However, a recent result of Lozin and Razgon [143] provides at least an initial
starting point. To explain their result, the line graph of a graph G has vertex
set E(G) and an edge between two vertices e1 and e2 if and only if e1 and e2
share an end-vertex in G. Let T be the class of line graphs of S. Lozin
and Razgon [143] showed that for any finite set of graphs H, the class of
H-free graphs has bounded treewidth if and only if H contains a complete
graph, a complete bipartite graph, a graph from S and a graph from T . Their
characterization leads to the following theorem, which could be viewed as a
first meta-classification for the induced subgraph relation.

Theorem 5.6.1. Let Π be a problem that is NP-complete on every graph class
of unbounded treewidth, but polynomial-time solvable for every graph class of
bounded treewidth. For every finite set of graphs H, the problem Π on H-free
graphs is polynomial-time solvable if H contains a complete graph, a complete

3The reason is that for any integer k and a sufficiently large integer ℓ, the class
of subcubic (C3, . . . , Cℓ,H1, . . . ,Hk)-free graphs coincides with the class of subcubic
(C3, . . . , Cℓ,H1, . . . ,Hk)-subgraph-free graphs.
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bipartite graph, a graph from S and a graph from T , and it is NP-complete
otherwise.

Note that by the aforementioned result of Hickingbotham [113], we may replace
“treewidth” by “Pathwidth” in Theorem 5.6.1. However, currently, we know
of only one problem that satisfies the conditions of Theorem 5.6.1, namely
Weighted Edge Steiner Tree [25], where we allow the edges to have
weights. As we showed, even Edge Steiner Tree (the unweighted version)
is a C123-problem. Even though the conditions of Theorem 5.6.1 are very
restrictive, we believe the following open problem is still interesting.

Open Problem 5.7. Determine which graph problems satisfy the conditions
of Theorem 5.6.1.
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6
Problems Tractable on Subcubic

Graphs

For any finite set H = {H1, . . . , Hp} of graphs, a graph is H-subgraph-
free if it does not contain any of H1, . . . , Hp as a subgraph. In the
previous chapter, meta-classifications have been studied: these show
that if graph problems satisfy certain prescribed conditions, their
complexity is determined on classes of H-subgraph-free graphs. We
focus on problems that can be solved in polynomial-time on classes
that have bounded treewidth or maximum degree at most 3 and
examine their complexity on H-subgraph-free graph classes where H
is a connected graph. With this approach, we obtain comprehensive
classifications for (Independent) Feedback Vertex Set, Con-
nected Vertex Cover, Coloring and Matching Cut.

6.1. Introduction
In the previous chapter, we gave a complete classification of the complexity of
several problems for H-subgraph-free graphs. In general, such classifications
are hard to obtain. There are still many graph problems that are not C123.
In [146], results were obtained for problems that satisfy C1 and C2 but not
C3. Such problems are called C12-problems and include k-Induced Disjoint
Paths, C5-Coloring, Hamilton Cycle and Star 3-Coloring [146]. In [27],
Steiner Forest was investigated as a problem that satisfies C2 and C3 but
not C1.
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Here, we consider the research question:

How do C13-problems — that is, problems that satisfy C1 and C3 but not C2
— behave for H-subgraph-free graphs? Can we still classify their computational
complexity?

Let us immediately note some redundancy in the definition of C13-problems:
if a problem does not satisfy C2, then C3 is implied. Nevertheless, we retain
the terminology to preserve the link to the approach of Chapter 5. To show
a problem is a C13 problem there are two requirements: that the problem
is efficiently solvable both on classes of bounded treewidth and on classes of
subcubic graphs. In fact, the tractable cases for C123 problems rely on that
the problems satisfy C1.

A claw is the graph K1,3. A subdivided claw is the graph formed by
subdividing one or more edges of the claw. Let S be the class of graphs that
are disjoint union of paths and subdivided claws.

Theorem 6.1.1 (Chapter 5). Let Π be a problem that satisfies C1. For a
finite set H, the problem Π on H-subgraph-free graphs is efficiently solvable if
H contains a graph from S.

As an important step towards a full dichotomy for C13 problems, we restrict
ourselves to considering H-subgraph-free graphs where H is connected. We
focus on five well-known NP-complete problems discussed in Section 5.5.3 that
are not C123 but C13-problems: Feedback Vertex Set, Independent
Feedback Vertex Set, Connected Vertex Cover and Matching Cut.
We introduce these problems below. With one exception, we can recognize
that they are C13 problems using known results.

For a graph G = (V, E), a set W ⊆ V is a feedback vertex set of G if every
cycle in G contains a vertex of W . Moreover, W is an independent feedback
vertex set if W is an independent set. We note that G has a feedback vertex
set of size k if and only if the 2-subdivision of G has an independent feedback
vertex set of size k. A graph G might contain no independent feedback vertex
set: consider, for example, a complete graph on four or more vertices.

(Independent)Feedback Vertex Set
Instance: Undirected graph G(V, E), integer k.
Question: Does G have an (independent) feedback vertex set of size

at most k?

A set W ⊆ V is a connected vertex cover of G if every edge of E is incident on
a vertex of W , and moreover W induces a connected subgraph.
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Connected Vertex Cover
Instance: Undirected graph G(V, E), integer k.
Question: Does G have a connected vertex cover of size at most k?

A k-coloring of G is a function c : V → {1, . . . , k} such that for each edge
uv ∈ E, c(u) ̸= c(v).

Coloring
Instance: Undirected graph G(V, E), integer k.
Question: Does G have a k-coloring?

A matching cut of a connected graph is a matching (set of pairwise non-adjacent
edges) that is also an edge cut, i.e., its removal creates a disconnected graph.

Matching Cut
Instance: Undirected, connected graph G(V, E).
Question: Does G have a matching cut?

6.1.1. Our Results
Both Feedback Vertex Set [9] and Independent Feedback Vertex
Set [177] satisfy C1. Whereas Feedback Vertex Set does have a polynomial-
time algorithm on subcubic graphs [182] and thus does not satisfy C2, a
polynomial-time algorithm for Independent Feedback Vertex Set on
subcubic graphs was not previously known. In Section 6.2, we prove the
following result addressing this gap in the literature.

Theorem 6.1.2. A minimum size independent feedback vertex set of every
connected subcubic graph G ̸= K4 is also a minimum size feedback vertex set
of G. Moreover, it is possible to find a minimum independent feedback vertex
set of G in polynomial time.

The star K1,s is the graph that contains a vertex of degree s whose neighbors
each have degree 1. A subdivided star is obtained from a star by subdividing
one or more of its edges.

Definition 6.1.3. An Sw,x,y,z is a graph formed by subdividing the edges of a
K1,4, w − 1, x − 1, y − 1, and z − 1 times respectively. Each of the subdivided
edges is called a tentacle. The vertex of degree 4 is the center.

In Section 6.3, we investigate the structure of H-subgraph-free graphs when H
is a subdivided star and use this in Section 6.4 to show a general approach to
C13 problems that requires some additional extra properties (that we can solve
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the problems on each connected component after possibly removing bridges,
and the union of those solutions is the solution for the entire instance). This is
sufficient to obtain the following result.

Theorem 6.1.4. Let q and r be positive integers. The following problems
can be solved in polynomial time on S1,1,q,r-subgraph-free graphs: Feedback
Vertex Set, Independent Feedback Vertex Set, Connected Vertex
Cover, Coloring and Matching Cut.

In Section 6.5, we obtain a hardness result.

Theorem 6.1.5. Feedback Vertex Set and Independent Feedback
Vertex Set are NP-complete on the class of S2,2,2,2-subgraph free graphs that
have maximum degree 4.

6.1.2. State-of-the-Art Summaries
We now state complexity classifications for each of the problems. These results,
proved in Section 6.6, combine the results above with a number of other
results from [51, 81, 93, 95, 103, 145, 158, 166, 176]. None of these papers
presented general results for C13 problems. However, we note, for example,
that hardness when H contains a cycle follows from past results on classes of
bounded girth which were proved separately for each problem, but often using
a similar technique. There are other results that just apply to one or two of
the problems.

Theorem 6.1.6. Let H be a connected graph. On H-subgraph-free graphs,
Feedback Vertex Set and Independent Feedback Vertex Set are
solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1}. They are NP-
complete if H contains a cycle or more than one vertex of degree at least 3 or
H ∈ {K1,5, S2,2,2,2}.

Theorem 6.1.7. Let H be a connected graph. On H-subgraph-free graphs,
Connected Vertex Cover is solvable in polynomial time if H ∈ S∪{S1,1,q,r |
q ≥ r ≥ 1}. It is NP-complete if H contains a cycle or H = K1,5.

The following result refers to trees defined in Figure 6.1.

Theorem 6.1.8. Let H be a connected graph. On H-subgraph-free graphs,
Coloring is solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1}
or if H is a forest with maximum degree 4 and at most seven vertices. It is
NP-complete if H contains a cycle, or H ∈ {K1,5, S2,2,2,2}, or if H contains
a subdivision of the tree T1 as a subgraph, or H contains as a subgraph the
tree obtained from T2 after subdividing some edge p times, 0 ≤ p ≤ 9, or H
contains one of the trees S2,2,2,2, T4, T5, T6 as a subgraph.
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T1 T2 T3

T4 T5 T6

Figure 6.1: Illustration of the trees T1, . . . , T6 reproduced from [103]; note that
T3 = S2,2,2,2.

Theorem 6.1.9. Let H be a connected graph. On H-subgraph-free graphs,
Matching Cut is solvable in polynomial time if H ∈ S ∪{S1,1,q,r | q ≥ r ≥ 1}.
It is NP-complete if H contains a cycle or H = K1,5.

A graph G contains a graph H as a subgraph if H can be obtained from G
by vertex deletions and edge deletions; else G is said to be H-subgraph-free. If
H can be obtained from G using only vertex deletions, then H is an induced
subgraph of G, and if not then G is H-free.

For a set of graphs H = {H1, . . . , Hp}, a graph G is H-subgraph-free if G
is H-subgraph-free for every H ∈ H; we also write that G is (H1, . . . , Hp)-
subgraph-free.

There are few studies of complexity classifications of graph problems for
H-subgraph-free graphs (compare the greater attention given to problems on
H-free graphs). There are results for Independent Set, Dominating Set
and Longest Path [6], and List Coloring [102]

In these papers, complete classifications are presented giving the complexity
of the problems for H-subgraph-free graphs, where H is any finite set of graphs.
Such classifications seem difficult to obtain. For example, for Coloring, there
is only a partial classification[103]. For this reason — and also noting that
the classifications for the problems above were all the same — a systematic
approach was developed in Chapter 5 with the introduction of a new framework
which we will describe after introducing some terminology.

A class of graphs has bounded treewidth if there exists a constant c such
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that every graph has treewidth at most c. A graph is subcubic if every vertex
has degree at most 3. The subdivision of an edge e = uv replaces e by a vertex
w and edges uw and wv. For an integer k ≥ 1, the k-subdivision of a graph is
obtained by subdividing each edge exactly k times. For a class of graphs G
and integer k, Gk contains a k-subdivision of each graph in G.

The framework of Chapter 5 has three conditions which refer to problems
as “efficiently solvable” or “computationally hard” when the input is in certain
graph classes. When the framework is applied, these terms are often interpreted
as “polynomial-time solvable” and “NP-complete”, as they will be in this paper,
but the framework can also be used to, for example, distinguish different
polynomial complexities. Let Π be a decision problem that takes as input a
(possibly weighted) graph. We say that Π is computationally hard under edge
subdivision of subcubic graphs if there exists an integer k ≥ 1 such that the
following holds for the class of subcubic graphs G: if Π is computationally hard
for G, then Π is computationally hard for Gkp for every integer p ≥ 1. Here is
the framework: we say that a graph problem Π is a C123-problem (belongs to
the framework) if it satisfies the following three conditions:

C1. Π is efficiently solvable for every graph class of bounded treewidth;

C2. Π is computationally hard for the class of subcubic graphs; and

C3. Π is computationally hard under edge subdivision of subcubic graphs.

The claw is the 4-vertex star. A subdivided claw is a graph obtained from a
claw after subdividing each of its edges zero or more times. The disjoint union
of two vertex-disjoint graphs G1 and G2 has vertex set V (G1) ∪ V (G2) and
edge set E(G1) ∪ E(G2). The set S consists of the graphs that are disjoint
unions of subdivided claws and paths. As shown in [120], C123-problems allow
for full complexity classifications for H-subgraph-free graphs (as long as H has
finite size).

Theorem 6.1.10 ([120]). Let Π be a C123-problem. For a finite set H, the
problem Π on H-subgraph-free graphs is efficiently solvable if H contains a
graph from S and computationally hard otherwise.

Examples of C123-problems include Independent Set, Dominating Set,
List Coloring, Odd Cycle Transversal, Max Cut, Steiner Tree and
Vertex Cover; see [120] for a comprehensive list. Thus, we see the power
of the framework to aid progress in deciding the complexity of problems on
H-subgraph-free graphs. But there are still many graph problems that are not
C123-problems. In [146], the following question was addressed: for problems
that satisfy C1 and C2 but not C3, can one find complexity classifications?
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Such problems are called C12-problems and include k-Induced Disjoint
Paths, C5-Coloring, Hamilton Cycle and Star 3-Coloring, for each of
which results were presented in [146].

In this paper we consider the following research question:

How do C13-problems — that is, problems that satisfy C1 and C3 but not C2
— behave for H-subgraph-free graphs? Can we still classify their computational
complexity?

Let us immediately note some redundancy in the definition of C13-problems: if
a problem does not satisfy C2, then C3 is implied. Nevertheless, we retain the
terminology to preserve the link to the approach of [120] and later papers. To
show a problem is a C13 problem there are two requirements: that the problem
is efficiently solvable both on classes of bounded treewidth and on subcubic
classes. In fact, the tractable cases of Theorem 6.1.10 rely on that the problems
satisfy C1. Hence, the tractable cases also hold for C13 problems. Though this
can be seen within the proof of Theorem 6.1.10 in [120], for convenience we
restate and prove it here.

Theorem 6.1.11 ([120]). Let Π be a problem that satisfies C1. For a finite
set H, the problem Π on H-subgraph-free graphs is efficiently solvable if H
contains a graph from S.

Proof. It is known [102, 103] that, for each H ∈ S, a H-subgraph-free graph
is H-minor-free. By a result of [18], as H is a tree, all H-minor-free graphs
have pathwidth at most |V (H)| − 2. As a graph’s treewidth is at most its
pathwidth, the class of H-subgraph-free graphs has bounded treewidth. So, by
C1, Π can be solved efficiently on H-subgraph-free graphs.

We are not able to provide a full dichotomy for C13 problems. We will
restrict ourselves to considering H-subgraph-free graphs where H is connected
and will focus on five well-known problems that we will see are C13 problems.

Our Focus. Let us introduce the candidate problems for our research question.
We will see that, with one exception, we can recognize that they are C13
problems using known results.

For a graph G = (V, E), a set W ⊆ V is a feedback vertex set of G if every
cycle in G contains a vertex of W . Moreover, W is an independent feedback
vertex set if no pair of vertices of W is adjacent.

Feedback Vertex Set
Instance: A graph G and an integer k ≥ 0.
Question: Does G have a feedback vertex set of size at most k?
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Independent Feedback Vertex Set
Instance: A graph G and an integer k ≥ 0.
Question: Does G have an independent feedback vertex set of size

at most k?

An independent feedback vertex set is certainly a feedback vertex set. Also,
a graph G might contain no independent feedback vertex set: consider, for
example, a complete graph on four or more vertices. We also observe that if
we transform a graph G into a graph J by subdividing every edge, then the
problem of finding a minimum size feedback vertex set of G is equivalent to the
problem of finding a minimum size feedback vertex set of J . Suppose that a
graph class contains G if and only if it contains J . Then, for that graph class,
if Independent Feedback Vertex Set can be solved in polynomial time,
then so can Feedback Vertex Set, and hardness results for Feedback
Vertex Set hold also for Independent Feedback Vertex Set. Both are
NP-complete on general graphs [93].

It was shown in [177] that Independent Feedback Vertex Set can be
solved in polynomial time on graph classes of bounded treewidth. Whereas
Feedback Vertex Set does have a polynomial-time algorithm on subcubic
graphs [182], a polynomial-time algorithm for Independent Feedback Ver-
tex Set on subcubic graphs was not previously known. In the next section, we
shall provide one by showing that, on this class, it is equivalent to Feedback
Vertex Set, thus proving the following result.

Theorem 6.1.12. Let G be a connected subcubic graph. Then a minimum size
independent feedback vertex set of G is also a minimum size feedback vertex
set of G if and only if G ̸= K4.

A set W ⊆ V is a vertex cover of G if every edge of E is incident with
a vertex of W . And W is a connected vertex cover of G if the vertices of W
induce a connected subgraph.

Connected Vertex Cover
Instance: A graph G and an integer k ≥ 0.
Question: Does G have a connected vertex cover of size at most k?

We note that Connected Vertex Cover can be solved in polynomial
time on subcubic graphs [182] and on graphs of bounded treewidth by a result
of Arnborg et al. [9].

A proper k-coloring of G is a function c : V → {1, . . . , k} such that for each
edge uv ∈ E, c(u) ̸= c(v).
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Coloring
Instance: A graph G and an integer k.
Question: Does G have a proper k-coloring?

By Brooks’ Theorem [34], Coloring can be solved in polynomial time on
subcubic graphs, and, by [8], also on graphs of bounded treewidth.

A matching of G is a subset of E that contains no adjacent edges. An edge
cut of G is a subset of E whose removal from G creates a disconnected graph.

Matching Cut
Instance: A graph G.
Question: Does G contain a set of edges that form both a matching

and an edge cut?

Chvátal [51] proved that Matching Cut polynomial-time solvable for
subcubic graphs, and Bonsma [31] proved the same for graphs of bounded
treewidth.

Our Results
Using past results and, in Theorem 6.1.12, proving a new result on subcubic
graphs, we have shown that the five problems defined above are C13 problems.
We need more definitions. A star, denoted K1,s, is a graph that contains a
vertex of degree s whose neighbors each have degree 1. A subdivided star is
obtained from a star by subdividing one or more of its edges.

Definition 6.1.13. An Sw,x,y,z is a graph formed by subdividing the edges of
a K1,4, w − 1, x − 1, y − 1, and z − 1 times respectively. Each of the subdivided
edges is called a tentacle. The vertex of degree 4 is the center.

In Section 6.3, we investigate the structure of H-subgraph-free graphs when
H is a subdivided star and use this in Section 6.4 to show a general approach
to C13 problems that requires some additional extra properties (that they can
be solved on each connected component of the input graph after, possibly, the
removal of bridges and the union of the respective solutions for each component
is an optimum solution for the whole instance). This is sufficient to obtain the
following result.

Theorem 6.1.14. Let q and r be positive integers. The following problems
can be solved in polynomial time on S1,1,q,r-subgraph-free graphs: Feedback
Vertex Set, Independent Feedback Vertex Set, Connected Vertex
Cover, Coloring and Matching Cut.

In Section 6.5, we obtain a hardness result.
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Theorem 6.1.15. Feedback Vertex Set and Independent Feedback
Vertex Set are NP-complete on the class of S2,2,2,2-subgraph free graphs that
have maximum degree 4.

We now state complexity classifications for each of the problems. These
results, proved in Section 6.6, combine the results above with a number of
other results from [51, 81, 93, 95, 103, 145, 158, 166, 176]. None of these
presented general results for C13 problems though we note, for example, that
hardness when H contains a cycle follows from past results on classes of
bounded girth which were proved separately for each problem, but often using
a similar technique. There are other results that just apply to one or two of
the problems.

Theorem 6.1.16. Let H be a connected graph. On H-subgraph-free graphs,
Feedback Vertex Set and Independent Feedback Vertex Set are
solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1}. They are NP-
complete if H contains a cycle or more than one vertex of degree at least 3 or
H ∈ {K1,5, S2,2,2,2}.

Theorem 6.1.17. Let H be a connected graph. On H-subgraph-free graphs,
Connected Vertex Cover is solvable in polynomial time if H ∈ S∪{S1,1,q,r |
q ≥ r ≥ 1}. It is NP-complete if H contains a cycle or H = K1,5.

Theorem 6.1.18. Let H be a connected graph. On H-subgraph-free graphs,
Coloring is solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1}
or if H is a forest with maximum degree 4 and at most seven vertices. It is
NP-complete if H contains a cycle, or H ∈ {K1,5, S2,2,2,2}, or if H contains
a subdivision of the tree T1 as a subgraph, or H contains as a subgraph the
tree obtained from T2 after subdividing the edge st p times, 0 ≤ p ≤ 9, or H
contains one of the trees T3, T4, T5, T6 as a subgraph.

Theorem 6.1.19. Let H be a connected graph. On H-subgraph-free graphs,
Matching Cut is solvable in polynomial time if H ∈ S ∪{S1,1,q,r | q ≥ r ≥ 1}.
It is NP-complete if H contains a cycle or H = K1,5.

6.2. Independent Feedback Vertex Sets of
Subcubic Graphs

In [182], Ueno, Kajitani and Gotoh gave a polynomial-time algorithm for
Feedback Vertex Set on subcubic graphs. In this section, we prove
Theorem 6.1.12 by showing that Independent Feedback Vertex Set is
also polynomial-time solvable on subcubic graphs by demonstrating that the
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problems are alike as, for any subcubic graph, one can find a minimum size
feedback vertex set that is also an independent set (with a single exceptional
case). As the problems can be solved component-wise, we consider only
connected graphs.

In fact, we are going to prove a result that is an expansion of Theorem 6.1.12
that will come in handy later. We need some definitions. A cactus is a graph
in which no two cycles have an edge in common. A cactus is nice if no two
cycles have a vertex in common (every subcubic cactus is nice since if two
cycles share a vertex but not an edge, we can find a vertex of degree 4). A
cactus is very nice if every vertex belongs to exactly one cycle.

Theorem 6.2.1. Let G be a connected subcubic graph. Then a minimum size
independent feedback vertex set of G is also a minimum size feedback vertex
set of G if and only if G ̸= K4. Moreover, if G ̸= K4 there is a minimum size
independent feedback vertex set of G that contains only vertices of degree 3 if
and only if G is not a very nice cactus. There is a polynomial-time algorithm
to find a minimum size independent feedback vertex set and if G is not a very
nice cactus it finds a set that contains only vertices of degree 3.

Proof. It will be seen that the proof implies a polynomial-time algorithm for
finding an independent feedback vertex set of size no greater than a given
feedback vertex set.

A feedback vertex set of K4 must contain at least two vertices and so K4
has no independent feedback vertex set. In a very nice cactus, the minimum
size of a feedback vertex set is equal to the number of cycles and one can easily
find such a set that is independent if one permits the inclusion of degree 2
vertices. (For example, pick an arbitrary vertex v and form an independent
feedback vertex set by taking the vertex in each cycle that is farthest from v.)
If there are k (disjoint) cycles, then, considering the tree-like structure of a
very nice cactus, there are 2(k − 1) vertices of degree 3 that can be considered
as k − 1 adjacent pairs. Thus, no set of k vertices of degree 3 is independent.

So suppose that G ̸= K4 is not a very nice cactus. Of course, we may as
well also assume that G is not a tree. Let F be a feedback vertex set of G. To
prove the theorem, we show that we can find an independent feedback vertex
set of G that is no larger than F . We can assume that F contains only vertices
of degree 3 since any vertex of degree 2 can be replaced by a nearest vertex of
degree 3. As G is neither a tree nor a cycle (a cycle is a very nice cactus), we
know that G has vertices of degree 3.

Let J = ∅. Our approach is to add vertices to J until it forms an independent
feedback vertex set. We make some trivial but useful statements:

1. F is a feedback vertex set containing only vertices of degree 3,
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2. J ⊆ F , and

3. J is a nonseparating independent set of G; that is, no pair of vertices of
J are joined by an edge and G − J is connected.

We will repeatedly modify F and J in such a way that these three statements
remain true and the size of F does not increase and it remains a feedback
vertex set. We can make the following changes without contradicting the three
statements.

• We can add a vertex x ∈ F \ J to J if x has no neighbor in J and is not
a cutvertex in G − J .

• If x ∈ F \ J , then we can redefine F as F \ {x} ∪ {y} if y is a vertex
that belongs to every cycle of G − (F \ {x}) and has degree 3 (that is, y
belongs to every cycle of G that contains x but no other vertex of F ).

Let H := G − J . Our initial aim is to make changes so that H is a graph
where no two cycles have a vertex in common; that is, it is a nice cactus.

Claim 6.2.2. We can modify F and J until H is a nice cactus.

Proof. Assume H contains two cycles with a common vertex, and, therefore,
as G is subcubic, a common edge, else we are done. Consider a subgraph K
induced by two cycles of H that have a common edge (so K is 2-connected
and has no cut vertex). Of course, F must contain at least one vertex of K;
let r be such a vertex.

If r has degree 3 in K, then we can add it to J since it has three neighbors
in H (so none in J) and is not a cutvertex in H since K − {r} is connected.

Otherwise, r has degree 2 in K. Traversing edges of K away from r in
either direction, let p and q be the first vertices of degree 3 in K that are
reached (and p ̸= q by the definition of K).

Let r′ be the first vertex of degree 3 in G reached from r on the path in K
towards p.

If r has a neighbor j ∈ J , then we can redefine F as F \ {r} ∪ {r′} since
every cycle in G containing r also contains either j or r′. Suppose instead
that r has no neighbor in J . Let r′′ be the neighbor of r in H but not K. If
r is not a cutvertex in H, then we can add r to J . If r is a cutvertex in H,
then no cycle of H includes the edge rr′′. Thus, again, we can redefine F as
F \ {r} ∪ {r′}.

So we either add a vertex to J or modify F by replacing a vertex with
another that is closer in K to p. By repetition, we either add a vertex to J
or modify F to include p in which case, as noted above, we can add p to J .
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Figure 6.2: The figure shows the situation described in Claim 6.2.2.

Therefore, if H contains two cycles with a common edge, we can increase the
size of J and so, ultimately, we can assume that H contains no such pair of
cycles and is a nice cactus. This completes the proof of Claim 6.2.2. ⋄

By Claim 6.2.2, the cycles of H are vertex disjoint and the graph has a
treelike structure: if one replaces each cycle by a single vertex, then a tree is
obtained. As F must contain at least one vertex of each cycle of H, if we add
to J one vertex chosen from each cycle of H (in any way), it will be no larger
than F . If we can do this in such a way that J is an independent set and each
vertex has degree- 3, then the proof will be complete. Thus, we must describe
how to choose a degree 3 vertex from each cycle of H such that the union of
these vertices and J is an independent set, possibly after some further minor
modifications.

The reasoning about these modifications will require that H is connected
so the requirement above that J be nonseparating was needed.

If H contains no cycles, then J is already an independent feedback vertex
set and there is nothing to prove. Otherwise, for any cycle C of H define the
following: let S(C) be the set of vertices that contains, for each cycle C ′ of H
other than C, the vertex of C ′ that is nearest to C in H. See Figure 6.3. Each
vertex u of S(C) has degree 3 in H since it has two neighbors in a cycle C ′ and
a neighbor not in C ′ on the path from u to C. Thus, no vertex of S(C) has a
neighbor in J . Moreover, clearly S(C) is an independent set. Thus, J ∪ S(C)
is an independent set that covers every cycle of G except C. For a vertex v in
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C

v

w

Figure 6.3: A nice subcubic cactus. The central 5-cycle is denoted C and the white
vertices form the set S(C). Note that w does not belong to any cycle and v is the
nearest vertex to w in a cycle. Thus, S(C) ∪ {v} is an independent feedback vertex
set for the graph.

C, let F (v) = J ∪ S(C) ∪ {v}. Note that F (v) can be defined with respect to
the cycle that contains v, if such a cycle exists. If we can find a cycle C that
contains a vertex v of degree- 3 not adjacent to J or to another cycle in H,
then F (v) is an independent feedback vertex set, and we are done.

Suppose instead that no such cycle can be found. Notice that this implies
that every vertex of H belongs to a cycle. (If there was a vertex w not in
a cycle, then let v be a nearest vertex to w in a cycle and then F (v) is an
independent feedback vertex set of degree 3 vertices; again, see Figure 6.3.) So
H is a very nice cactus and, moreover, J ̸= ∅.

Let j be a vertex in J with neighbors v1, v2 and v3 in H. Suppose that
these three vertices are in the same cycle C of H. If C is a 3-cycle, then
{j, v1, v2, v3} induces K4, a contradiction. So we can assume that v1 and v2 are
not adjacent. Then J1 = J \ {j} ∪ {v1, v2} ∪ S(C) is an independent feedback
vertex set of degree 3 vertices and |J1| = |F |. Indeed, all cycles are covered
by J1 since v1 and S(C) cover the cycles of H and every cycle containing j
includes at least one of v1 and v2; J1 is independent as v1 and v2 have degree 2
in H so no other neighbor in J and are not adjacent to vertices in H, such as
those of S(C), that do not belong to C, and the vertices of S(C) have degree 3
in H so no neighbors in J .

Suppose instead that v1, v2 and v3 do not all belong to the same cycle.
Let C be the cycle that contains v1 and suppose that v2 and v3 do not
belong to the same cycle as each other (one might belong to C). Then
J2 = J \ {j} ∪ {v1} ∪ S(C) is an independent feedback vertex set of degree- 3
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vertices and |J2| = |F | − 1. Indeed all cycles are covered by J2 since v1 and
S(C) cover the cycles of H and every cycle containing j includes either v1
or both v2 and v3 and all the paths from v2 to v3 (that do not include j) go
through either a vertex of J or a vertex of S(C) as they are in different cycles
in H; J2 is independent as v1 has degree 2 in H so, as before, no other neighbor
in J or S(C), and the vertices of S(C) have degree 3 in H so no neighbors in
J .

6.3. Graphs Excluding Subdivided Stars as a
Subgraph: Structure

Recall that the treedepth of a graph G is the minimum height of a forest F
such that for every pair of vertices in G one is the ancestor of the other in
F . It is well known that the treewidth of a graph is at most its treedepth. In
this section, we aim to show that H-subgraph-free graphs, for certain H, have
bounded treedepth. Then we know that problems that are tractable on classes
of bounded treewidth are also tractable on these classes. Before presenting our
results, we need the following result from [159].

Theorem 6.3.1 ([159]). Let G be a graph of treedepth at least d. Then G has
a subgraph isomorphic to a path of length at least d.

Our next two theorems consider graphs Sw,x,y,z. By Definition 6.1.13, this
graph is four paths sharing an endpoint.

In a small abuse of terminology, we will use leaf to mean only a vertex of
degree 1 that is adjacent to the center.

Theorem 6.3.2. Let r be a positive integer. Then the subclass of connected
S1,1,1,r-subgraph-free graphs that are not subcubic has bounded treedepth.

Proof. Let G be a connected S1,1,1,r-subgraph-free graph that is not subcubic.
Hence, it contains a vertex v0 with neighbors v1, v2, v3, v4. We will show that
G has treedepth at most 2r + 2. Suppose instead that the treedepth of G is
at least 2r + 3. The graph G \ {v0, v1, v2, v3, v4} must have treedepth at least
2r − 2 (since adding a vertex to a graph cannot increase the treedepth by more
than one), and therefore, by Theorem 6.3.1, it must contain a path P of length
at least 2r − 2. Let Q be a shortest path in G between P and v0 (which must
exist as G is connected). Let z be the vertex where P and Q meet. Let P ′

be the longest subpath of P of which z is an endpoint. As P ′ is at least half
the length of P , and Q contains at least one edge, the path P ′ ∪ Q contains at
least r edges. Thus, there exists in G a subgraph isomorphic to S1,1,1,r; the
center is v0, P ′ ∪ Q is the tentacle of length r, and three of v1, v2, v3, v4 are the
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three leaves (since at most one of these four vertices can belong to Q and none
belong to P ′). This contradiction completes the proof.

The assumption that the graphs are connected is needed: the class of all
graphs that are each a disjoint union of a path and a K1,4 is not subcubic but
has unbounded treedepth.

Consider now the class of all connected graphs that are each the union of a
path and a K1,4, one of whose leaves is identified with the endpoint of the path.
This is a class of graphs that are connected, not subcubic and S1,1,q,r-subgraph-
free and again has unbounded treedepth. Thus, in the following analogue of
Theorem 6.3.2, we need an additional property. A bridge is proper if neither of
its incident vertices has degree 1. A graph is quasi-bridgeless if it contains no
proper bridge.

Theorem 6.3.3. Let q and r be positive integers. Then the subclass of
connected S1,1,q,r-subgraph-free graphs that are not subcubic and are quasi-
bridgeless has bounded treedepth.

Proof. Let G be a connected quasi-bridgeless S1,1,q,r-subgraph-free graph that
is not subcubic. Hence, it contains a vertex v0 with neighbors v1, v2, v3, v4. We
will show that G has treedepth at most 2(q+r+3)2+6. Suppose instead that the
treedepth of G is at least 2(q +r +3)2 +7. The graph J = G\{v0, v1, v2, v3, v4}
must have treedepth at least 2(q + r + 3)2 + 2 and therefore, by Theorem 6.3.1,
it must contain a path P of length at least 2(q + r + 3)2 + 2. Let z be the
middle vertex of P . We prove the following claim.

Claim 6.3.4. If there is a cycle C in G that contains z and also a vertex
v ̸= z that has two neighbors a and b not on C, then G contains a subgraph
isomorphic to S1,1,q,r.

Proof. A big adorned cycle is a graph that contains a cycle with at least q+r+1
edges and two further vertices each joined by an edge to the same vertex on
the cycle; the latter vertex is called the center. If we find a big adorned cycle
in G we are done as it contains a subgraph isomorphic to S1,1,q,r (the center
is the same, and it is obtained by deleting one or more edges of the cycle).
Let C+ be the union of C, the vertices a and b and the edges va and vb. If
|C| ≥ q + r + 1, then C+ is a big adorned cycle.

So suppose that |C| ≤ q + r. Consider the intersections of P with V (C+).
A maximal subpath of P whose internal vertices are not in V (C+) is called an
interval of P . Note that P has at most |C+| + 1 ≤ q + r + 3 intervals. If all
intervals of P have length at most q + r − 1, then P itself has length at most
(q + r + 3)(q + r − 1) < (q + r + 3)2, a contradiction. Hence, at least one of the
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intervals has length at least q + r; we call such an interval long. See Figure 6.4
for an illustration.

v

z

y
P

C C C

v v

z z

P P

(a) (b) (c)

x x xy

a b a b a b

Figure 6.4: The cycle C and path P from the proof of Claim 6.3.4 illustrating the
three cases (a) there is a long interval with both endpoints in P , (b) there are two
vertex-disjoint long intervals, and (c) there are two long intervals that meet in a single
vertex.

Suppose that there is a long interval L of which both endpoints x and y
are in V (C+). Then there are shortest (possibly trivial) paths S and T on C+

from v to x and y respectively that are vertex disjoint except for v. As x and
y are distinct, the union of L, S and T is a cycle on at least q + r + 1 edges.
As v has four neighbors in C+, two of them do not belong to this cycle and
considering these two neighbors (and the incident edges that join them to v)
with the cycle, we have a big adorned cycle centered at v.

Hence, there is no long interval with both endpoints in V (C+) and we can
assume any long interval has just one endpoint in V (C+).

Suppose that there are two long intervals L1 and L2 whose endpoints in
C+ are x and y respectively. If x = y, then L1 and L2 are the only intervals
and their union is P . Since, there is no S1,1,q,r subgraph in G, this implies
that P only intersects C+ in x and so we must have x = z. Then there exists
in G a subgraph isomorphic to an S1,1,q,r with z as its center, the neighbors
of z on C as the leaves and subpaths of L1 and L2 as the tentacles. If x ̸= y,
then there are shortest paths S, T on C+ from v to x and y respectively that
are vertex disjoint except for v. Then there exists in G a subgraph isomorphic
to an S1,1,q,r with v as its center, the paths S and T , possibly extended by
subpaths of L1 and L2, as the tentacles and two neighbors of v in C+ that do
not belong to S or T as the leaves.

Hence, there is only one long interval L. As the other intervals are short,
they have total length at most |C+| · (q + r) < (q + r + 3)2. Hence, L has
length at least (q + r + 3)2 + 2. As L contains more than half the vertices of
P , the middle vertex of P is an internal vertex of L and so does not belong to
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C+. This contradicts that z is the middle vertex of P and completes the proof
of the claim. ⋄

We now apply the above claim. Note that v0 and z are distinct as z belongs to
J but v0 does not. Since G is quasi-bridgeless and neither v0 nor z has degree
1, it follows from Menger’s Theorem [152] that there exist two edge-disjoint
paths S, T from v0 to z. If S and T are internally vertex-disjoint paths, then
their union forms a cycle that contains z. We can assume that each of S and
T contain only one neighbor of v0 else we can find shortcuts and redefine them.
Hence, v0 has two neighbors not in the cycle and we can apply Claim 6.3.4. If S
and T are not internally vertex-disjoint, let v′ be a vertex of (V (S)∩V (T ))\{z}
that is furthest from v on T . Consider the subpath T ′ of T from v′ to z and
the subpath S′ of S from v′ to z. Since T ′ does not intersect S by definition,
S′ and T ′ are internally vertex disjoint. Hence, their union forms a cycle that
contains z. Moreover, v′ has degree at least four, of which two neighbors are
not on S′ or T ′. Hence, we can apply Claim 6.3.4 to obtain a contradiction to
the assumption that the graph is S1,1,q,r-subgraph-free.

6.4. Graphs Excluding Subdivided Stars as a
Subgraph: Algorithms

We present several applications of the structural results of the previous section.
We note that Feedback Vertex Set, Independent Feedback Ver-

tex Set and Coloring can be solved componentwise. In a sense, so can
Connected Vertex Cover and Matching Cut since disconnected graphs
are NO-instances (except possibly for Connected Vertex Cover instances
with edgeless components but these can be ignored).

Theorem 6.4.1. Let r be a positive integer. A problem Π can be solved in
polynomial time on S1,1,1,r-subgraph-free graphs if the following hold:

a) Π can be solved in polynomial time on subcubic graphs,

b) Π can be solved in polynomial time on graphs of bounded treedepth, and

c) Π can be solved componentwise on disconnected graphs.

Proof. Let C be a connected component of a S1,1,1,r-subgraph-free graph G. If
C is subcubic, then the problem can be solved in polynomial time. Otherwise,
by Theorem 6.3.2, C has bounded treedepth and again the problem can be
solved in polynomial time. Finally, the solutions for its connected components
can be merged in polynomial time.
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Theorem 6.4.2. Let q and r be positive integers. A problem Π can be solved
in polynomial time on S1,1,q,r-subgraph-free graphs if the following hold:

a) Π can be solved in polynomial time on subcubic graphs,

b) Π can be solved in polynomial time on graphs of bounded treedepth, and

c) Π can be solved on graphs with proper bridges using a polynomial-time
reduction to a family of instances on graphs that are either of bounded
treedepth or subcubic.

Proof. Let H be one of the family of instances obtained from an instance G of
Π. As H is either of bounded treedepth or subcubic, the problem can be solved
in polynomial time. As we have a reduction, once solved on all the family of
instances, we can solve Π on G.

The simplest way to apply Theorem 6.4.2 is to show that if it is possible to
solve Π on each of the family of components obtained by deleting the proper
bridges of an instance, then these solutions combine to provide a solution for
the initial instance (since the components are quasi-bridgeless and so certainly
either of bounded treedepth or subcubic by Theorem 6.3.3),

We now use Theorem 6.4.2 to prove Theorem 6.1.14. We do not apply
Theorem 6.4.1 in this paper, as the results it would give us would just be special
cases of those we have obtained using Theorem 6.4.2. Nevertheless, there are
potential applications of Theorem 6.4.1 as there might be C13 problems that
can be solved componentwise but cannot be solved by finding the reduction
required by Theorem 6.4.2. We will see, in the proof below, that to solve
Independent Feedback Vertex Set via a reduction requires an intricate
argument and the careful analysis of possible solutions on subcubic graphs that
was provided by Theorem 6.2.1.
Theorem 6.1.14 (restated). Let q and r be positive integers. The following
problems can be solved in polynomial time on S1,1,q,r-subgraph-free graphs:
Feedback Vertex Set, Independent Feedback Vertex Set, Con-
nected Vertex Cover, Coloring and Matching Cut.

Proof of Theorem 6.1.14. To show that the result follows immediately from
Theorem 6.4.2, we can show that the problems can be solved by deleting bridges
and considering the resulting graph componentwise; this will be trivial for some
problems, but for others we will need to find a different reduction.

For Feedback Vertex Set, as bridges do not belong to cycles, the
problem is unchanged when they are deleted.

For Independent Feedback Vertex Set such a straightforward ap-
proach is not possible as if we simply delete bridges and solve the problem
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on the components, the merged solution might not be independent (since we
might choose both endpoints of a deleted bridge). We must argue a little more
carefully.

Let G be a S1,1,q,r-subgraph-free graph and consider the treelike structure of
G when thinking of its non-trivial bridge blocks — the connected components
when the bridges are deleted. In fact, consider a subgraph of G that is a block
plus all its incident bridges. Some of these subgraphs might be subcubic; let
us call these C-type. For those that are not, we can assume, by Theorem 6.3.3,
that there is a constant c such that their treewidth is at most c; let us call these
subgraphs T-type (note that this is a weaker claim that the Theorem 6.3.3
provides as we could assume that the treedepth was bounded). If such a
subgraph is both subcubic and has treewidth at most c, we will think of it as
T-type. We can assume c ≥ 3 so a very nice cactus is T-type. If subgraphs
of the same type overlap (because they are joined by a bridge), we observe
that their union is also of that type (since the union is also either, respectively,
subcubic or of treewidth at most c). So, merging overlapping subgraphs of the
same type as much as possible we can consider G as being made up of C- and
T-type subgraphs and bridges that each join a C-type subgraph to a T-type
subgraph. As Independent Feedback Vertex Set is a C13 problem and
by Theorem 6.2.1, we can solve it on these subgraphs. Before we solve it
on a C-type subgraph, we can delete pendant bridges (that link to a T-type
subgraph in G) so the incident vertex now has degree at most 2. As a very nice
cactus is being considered as a T-type subgraph, we know, by Theorem 6.2.1,
that the solutions we find for C-type subgraphs do not use the vertices incident
with the bridges. Thus, the solutions can be merged for a solution for G that
is also independent.

For Connected Vertex Cover, let G be a S1,1,q,r-subgraph-free graph.
Clearly, we may assume G is connected, or it has no connected vertex cover.
As for Independent Feedback Vertex Set, consider each subgraph J that
is a non-trivial bridge block of G and also include the bridges of G incident
with the block. Observe that J is quasi-bridgeless and S1,1,q,r-subgraph-free.
Noticing that a connected vertex cover W of G must contain both vertices
incident with any proper bridge, we see that the restriction of W to the vertices
of J is a connected vertex cover of J that includes vertices incident with bridges
of G. The construction of J means its connected vertex covers will include
these vertices adjacent to bridges in G. Thus, we see that have a reduction
and can solve the problem on G.

For Coloring, if for a graph G, we color the components of the graph
obtained by deleting bridges, then we can merge these into a coloring of G. If
the two endpoints of a bridge have been colored alike, then we just permute
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Figure 6.5: The variable and clause gadgets (for clauses of size 3) from the proof of
Theorem 6.1.15. The vertices x, y, and z of a variable gadget will be identified with
the (labeled) vertices of clause gadgets.

the colors on one of the components. This might create new clashes, but we
move to the adjacent components and permute there. By the definition of
bridge, we will never have to permute the colors on a component more than
once so the process terminates.

For Matching Cut, if a graph contains a bridge, then we have immediately
that it is a yes instance.

6.5. Graphs Excluding Subdivided Stars as a
Subgraph: Hardness

We show that on S2,2,2,2-subgraph-free graph classes both Feedback Vertex
Set and Independent Feedback Vertex Set are NP-complete.

Theorem 6.1.15 (restated). Feedback Vertex Set and Independent
Feedback Vertex Set are NP-complete on the class of S2,2,2,2-subgraph free
graphs that have maximum degree 4.

Proof. Both problems belong to NP. We shall show a reduction from the
following NP-complete problem 2P1N-3SAT [60].

2P1N-3SAT
Instance: A CNF formula Φ where each clause contains at most

three literals and each variable occurs twice positively and
once negatively.

Question: Does Φ have a satisfying assignment?
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Given an instance of 2P1N-3SAT with variables {v1, . . . , vn}, we construct
a graph G as follows. For each variable vi, we construct the gadget shown in
Figure 6.5. The triangles xx′a and yy′b represent the positive occurrences of
the variable, while the diamond zstc represents the negative occurrence. For
each clause Cj , we construct a hexagon if the clause has size 3 and a square
if the clause has size 2 (we may assume that no clause has size 1). Alternate
vertices of this clause gadget represent literals and are identified with a vertex
x, y or z of the corresponding variable gadget. Clearly, this can be done in
such a way that each vertex x and y of each variable gadget is identified with
exactly one vertex from a clause gadget that represents a positive literal and
each vertex z of each variable gadget is identified with exactly one vertex from
a clause gadget that represents a negative literal. Note that G has maximum
degree 4.

Claim 6.5.1. G does not contain S2,2,2,2 as a subgraph.

Proof. Let us consider where we might find the center vertex of an S2,2,2,2 in
G. Clearly, a vertex v cannot be the center vertex if its 2-neighborhood in G
contains a cut of size 3 (that is, if there are three vertices each of distance at
most 2 from v that form a cut in G). The center vertex cannot be the vertices
p or q of a variable gadget, because the set {a, b, c} of the same gadget forms a
cut of size 3 in the 2-neighborhood of p and q. The center vertex cannot be
the vertices a, b, or c of a variable gadget either, because {x, p, q}, {y, p, q}
and {z, p, q} respectively form cuts of size 3 in their 2-neighbourhoods. The
vertices x, y, and z cannot be the center vertex, as in their 2-neighborhood
is a cut of size 3 that contains their two neighbors in a clause gadget and,
respectively, a, b and c. The remaining vertices of G have degree less than 4.
The claim is proved. ⋄

Any feedback vertex set of a variable gadget has size at least 4, because
it contains four disjoint cycles. So any feedback vertex set of G must contain
at least 4n vertices. It only remains to show that G has an (independent)
feedback vertex set of size at most 4n if and only if Φ is satisfiable.

Assume that Φ has a satisfying assignment. We construct a feedback vertex
set F of G. If a variable is true, then the vertices x, y, p, and t of the variable
gadget belong to F . If a variable is false, then instead z, a, b, and c belong to
F . Thus, F is an independent set (vertices of distinct variable gadgets are not
adjacent) and its size is exactly 4n.

Claim 6.5.2. F is a feedback vertex set.

Proof. Notice that if a literal of a clause is satisfied, then, in the clause gadget,
the corresponding vertex is in F . Thus, as clause is satisfied, each cycle
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contained in a single variable or clause gadget contains a vertex of F . Consider
a cycle of G that is not contained within a single gadget. It must include
a non-trivial path of some variable gadget where the endpoints are two of
{x, y, z}. If it includes x it must also include a and if it includes y it must also
include b. But F contains one of {x, a} and one of {y, b} so such a cycle also
intersects F . Thus, F intersects all the cycles of G. ⋄

Conversely, suppose that G has a feedback vertex set F of size at most 4n.
Again, each variable gadget contains at least four vertices of F and so contains
exactly four vertices of F . Notice that F cannot contain either {x, z} or {y, z}
as, in each case, there remain three disjoint cycles of the gadget that would
need to be covered by just two vertices.

Let us describe a satisfying assignment of Φ. If, for a variable gadget, either
x or y belongs to F , we let the variable be true. If z belongs to F , we let it
be false. By the preceding argument, there is no possibility that we must set
a variable to be both true and false. If none of {x, y, z} belong to F , we set
the value of the variable arbitrarily. This is a satisfying assignment as every
clause gadget (which is a cycle) must have at least one vertex in F and the
corresponding variable is satisfied.

6.6. Proofs of the Classifications
We prove Theorems 6.1.16–6.1.19. Noting that the theorems contain some
analogous results, and wishing to avoid repetition, we make a few general
comments that apply to all proofs.

We state again that the five problems under consideration are C13 prob-
lems. Thus, when H ∈ S, each theorem follows from Theorem 6.1.11. When
H = S1,1,q,r, we apply Theorem 6.1.14. Thus, except for Theorem 6.1.18 on
Coloring, the following proofs need only cover the NP-complete cases.

Proof of Theorem 6.1.16. We note again that Feedback Vertex Set reduces
to Independent Feedback Vertex Set after subdividing each edge, so
here we consider only the former.

By Poljak’s construction [166], for every integer g ≥ 3, Feedback Vertex
Set is NP-complete for graphs of girth at least g (the girth of a graph is the
length of its shortest cycle). Thus, Feedback Vertex Set is NP-complete
for H-subgraph-free graphs whenever H contains a cycle.

Suppose that H has m vertices and more than one vertex of degree at least
3. From any graph G, if we subdivide each edge m times, we obtain a graph
J that is H-subgraph-free, since the distance between any pair of vertices of
degree more than 2 is at least m + 1. In finding a minimum size feedback
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vertex set of J , we may as well restrict ourselves to selecting vertices of G.
This implies that Feedback Vertex Set is NP-complete for H-subgraph-free
graphs.

The problem is NP-complete on planar graphs of maximum degree 4 [176]
(so for K1,5-subgraph-free graphs).

Theorem 6.1.15 completes the proof.

Proof of Theorem 6.1.17. For every integer g ≥ 3, Connected Vertex
Cover is NP-complete for graphs of girth at least g [158], so also for H-
subgraph-free graphs whenever H contains a cycle. It is NP-complete on
graphs of maximum degree 4 [93], so for K1,5-subgraph-free graphs.

Proof of Theorem 6.1.18. For every integer g ≥ 3, Coloring is NP-complete
for graphs of girth at least g [145], so also for H-subgraph-free graphs whenever
H contains a cycle. In [95], it was shown that Coloring is NP-complete on
(planar) graphs of maximum degree 4, and so too for K1,5-subgraph-free graphs.
The other cases are all proved in [103].

Proof of Theorem 6.1.19. For every integer g ≥ 3, Matching Cut is NP-
complete for graphs of girth at least g [81], so also for H-subgraph-free graphs
whenever H contains a cycle. It is NP-complete on graphs of maximum
degree 4 [51], so for K1,5-subgraph-free graphs.

6.7. Conclusions
We made significant progress towards classifying the complexity of five well-
known C13-problems on H-subgraph-free graphs, extending previously known
results. In particular, we identified a gap in the literature, and provided a
polynomial-time algorithm for Independent Feedback Vertex Set for
subcubic graphs.

If H is connected, then we narrowed the gap for these problems to the open
case where H = S1,p,q,r, so H is a subdivided star with one short leg and three
arbitrarily long legs. To obtain a result for connected S1,p,q,r-subgraph-free
graphs similar to our previous results, we would need the graphs to be 3-edge-
connected. Indeed, the statement is false without this assumption. Consider
the class of all graphs that are each the union of a path and a K1,4 two of
whose leaves are identified with distinct endpoints of the path and whose other
two leaves are made adjacent. This is a class of graphs that are bridgeless, not
subcubic and S1,p,q,r-subgraph-free, and again has unbounded treedepth. It
is not yet clear whether a suitably modified theorem statement would indeed
hold. In addition, it is unclear whether this would yield a result that could be
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applied in the same way as Theorems 6.3.2 and 6.3.3 were above. We leave the
case H = S1,p,q,r as future research.

Finally, we also leave determining the complexity of Connected Vertex
Cover and Matching Cut on S2,2,2,2-subgraph-free graphs as an open
problem.

181





7
Conclusion

In this thesis, we studied some well known NP-hard problems and investigated
the limits of their tractability. By imposing restrictions on the structure of
the input graph, we were able to design efficient algorithms for some of these
problems. On the other hand, we also discovered problems that are hard even
on simple classes of input.

In Chapter 3, we investigated the parameterized complexity of Planar
Edge Multiway Cut with respect to the parameter terminal face-cover
number (k). We presented an algorithm with a run-time of 2O(k2·log k)nO(

√
k).

Due to the result of Marx [149], we know this algorithm to be ETH-tight.
A similar complexity was observed for the closely related problem Minimum
Steiner Tree on planar graphs parameterized by the terminal face cover
number [118]. An interesting direction for further research is to investigate the
parameterized complexity of these problems on other classes of embedded graphs
with respect to the same parameter. More specifically, it is an open question
whether there exists a subexponential parameterized algorithm (with the
exponent being the parameter) solving either of the aforementioned problems
on bounded-genus graphs.

Next, we showed in Chapter 4 that Edge Multiway Cut and Node
Multiway Cut are NP-hard on planar subcubic graphs. Our result implies a
dichotomy in terms of the maximum degree of the input graph, that is, both
the problems are in P when the input graph has maximum degree at most 2 and
NP-hard otherwise. It also implies that both the problems can be completely
classified on H-topological-minor-free graphs and H-subgraph-free graphs due
to the result of Robertson and Seymour [169] in the former case and Johnson
et al. [120] in the latter.
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In Chapter 5, our meta-classification was able to congregate from literature
as well as prove new complexity classifications for a multitude of problems.
Our classification for H-subgraph-free graphs requires that H is a finite set of
graphs. It is an interesting open problem to find a similar dichotomy for all
those problems when H can be infinite. The biggest hurdle here is our lack of
understanding of the treewidth of H-subgraph-free graphs for an infinite set H.
Besides that, finding more problems that fit our complexity framework can help
classify their complexity on H-subgraph-free graphs. Finally, an interesting
open problem is to investigate the complexity of problems that satisfy only
two of the three conditions of our framework, on the class of H-subgraph-free
graphs.

Motivated by last question, there have been recent studies looking at the
complexity of the problems that partly fit into our framework [121, 122, 146].
In Chapter 6, we investigate the complexity of problems that are tractable on
graphs of bounded treewidth as well as graphs of maximum degree at most 3,
on the class of H-subgraph-free graphs. Firstly, we showed that Independent
Feedback Vertex Set is one such problem. There was no polynomial-time
algorithm known for the problem on the class of subcubic graphs prior to our
result. For any connected graph H, we came close to obtaining a complexity
dichotomy for Feedback Vertex Set and Independent Feedback Vertex
Set on H-subgraph-free graphs, with the only open case being H = S1,p,q,r,
that is a subdivided star with one tiny leg and three long legs. Furthermore, it
remains open to determine the complexity of Connected Vertex Cover
and Matching Cut on S2,2,2,2-subgraph-free graphs.

We conclude this thesis with the hope that with our deeper understanding
of the structure of various classes of graphs, in particular H-subgraph-free
graphs, we can push further the frontiers of tractability of important NP-hard
problems.
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[33] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph
Classes: A Survey. SIAM, 1999. ISBN 978-0-89871-432-6.

[34] Rowland Leonard Brook. On Colouring the Nodes of a Network. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 37:194–197,
1941.

[35] Andrei A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In
Proc. of FOCS 2017, pages 319–330. IEEE Computer Society, 2017.

[36] Jonathan F. Buss and Judy Goldsmith. Nondterminism within P. In
Proc. of STACS 1991, volume 480 of LNCS, pages 348–359. Springer,
1991.

[37] Jiazhen Cai. Counting Embeddings of Planar Graphs Using DFS Trees.
SIAM Journal of Discrete Mathematics, 6(3):335–352, 1993.

[38] Leizhen Cai. Parameterized Complexity of Cardinality Constrained
Optimization Problems. The Computer Journal, 51(1):102–121, 2008.
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Samenvatting

Bij het ontwerpen van algoritmen letten we op hoe efficiënt deze een probleem
oplossen. We meten de efficiëntie van een algoritme in termen van het aantal
stappen dat het algoritme moet uitvoeren op de meest ongunstige invoer. In de
race om de efficiëntie van algoritmen te verbeteren, is het nuttig om te weten
hoe ver men deze kan verbeteren. Daartoe analyseren algoritmedeskundigen
graag de complexiteit van elk probleem door een ondergrens te geven aan het
aantal stappen dat elk algoritme moet uitvoeren om het op te lossen. Klassiek
worden de problemen gecategoriseerd als diegenen die in polynomiale tijd
kunnen worden opgelost versus diegenen die dat niet kunnen, indien P ̸= NP.

In dit proefschrift bestuderen we problemen die als uiterst complex worden
beschouwd, dat wil zeggen: elk algoritme moet waarschijnlijk een exponentieel
aantal stappen uitvoeren om deze problemen op een willekeurige invoer op
te lossen. Deze problemen worden NP-moeilijk genoemd. Onze belangrijkste
focus is het identificeren van klassen van invoer waarbij we efficiënte algoritmen
kunnen ontwerpen voor NP-moeilijke problemen. Hiertoe hanteren we een
tweeledige benadering. Ten eerste identificeren we een parameter van het
probleem naast de grootte van de invoer. De looptijd van ons algoritme wordt
dan gemeten als een functie van deze parameter, naast de grootte van de
probleeminvoer. Een efficiënt algoritme in dit paradigma is er een die in
polynomiale tijd draait als de waarde van deze parameter constant is. Ten
tweede lossen we het probleem op voor beperkte klassen van invoer. Het doel
hierbij is om alle klassen van invoer te vinden waarvoor men het probleem
efficiënt kan oplossen, dat wil zeggen, de doenbaarheid van het probleem
identificeren.

We richten ons op problemen die zich voordoen in grafen. Een graaf is
een netwerk van punten en lijnen. Verschillende praktische problemen kunnen
worden gemodelleerd als problemen op grafen, bijvoorbeeld het vinden van het
kortste pad tussen twee punten, het vinden van de kortste route die alle steden
in een provincie bezoekt, het vinden van de maximale verkeersstroom door
een wegennetwerk, enzovoort. We bestuderen enkele bekende graafproblemen,
beperkt tot de klasse van monotone grafen. Een graafklasse wordt monotone
genoemd als voor elke graaf in de klasse de graaf die wordt gevormd na het
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verwijderen van enkele van zijn punten en/of lijnen een graaf oplevert die ook
lid is van deze klasse.

In de eerste helft van dit proefschrift richten we ons op het Edge (Node)
Multiway Cut probleem. In dit probleem krijgen we als invoer een ongerichte
graaf, een deelverzameling van zijn knopen die terminals worden genoemd en
een geheel getal s. Het doel is te beslissen of er een deelverzameling van kanten
(knopen) bestaat met een kardinaliteit van hoogstens s die, wanneer verwijderd
uit de graaf, de terminals paargewijs niet verbonden maakt. Dit probleem is
een natuurlijke generalisatie van het Minimum (s, t)-cut probleem waarbij
het aantal terminals precies twee is. We onderzoeken de complexiteit van dit
probleem op planaire grafen met een terminalfacetbedekkingsgetal k en planaire
grafen met een maximale graad van hoogstens 3. In het eerste geval tonen
we aan dat Edge Multiway Cut kan worden opgelost in 2O(k2 log k)nO(

√
k)

tijd. Onder de aanname van ETH is de looptijd van ons algoritme optimaal.
Op planaire grafen van maximale graad 3 tonen we aan dat Edge (Node)
Multiway Cut NP-volledig is. Ons resultaat verbetert de eerder bekende
grens van 11. Bijgevolg bewijzen we dat de grens van polynomiale oplosbaarheid
voor Edge (Node) Multiway Cut in termen van de maximale graad van de
invoergraaf ∆ = 2 is, daarbuiten is het probleem NP-moeilijk.

De tweede helft van dit proefschrift is gewijd aan het ontwikkelen van een
complexiteitskader voor monotone graafklassen. We presenteren een meta-
classificatiestelling over de klasse van H-deelgraafvrije grafen, waarbij H een
eindige verzameling grafen is. Ons resultaat stelt dat elk probleem dat voldoet
aan drie specifieke eigenschappen volledig kan worden geclassificeerd op H-
deelgraafvrije grafen. Deze drie eigenschappen zijn de volgende: het probleem
kan worden opgelost in polynomiale tijd op de klasse van grafen met begrensde
boombreedte; het probleem is NP-moeilijk op subcubische grafen; en er bestaat
een ℓ ≥ 1 waarvoor het probleem NP-moeilijk blijft op ℓ-onderverdelingen van
subcubische grafen. In het bijzonder kan een dergelijk probleem in polynomiale
tijd worden opgelost wanneer H een graaf bevat die een niet-lege disjuncte
vereniging is van paden en onderverdeelde klauwen. Als dit niet het geval is,
is het probleem NP-moeilijk. We hebben aangetoond dat een groot aantal
natuurlijk voorkomende problemen op grafen binnen dit classificatiekader past.

Bovendien hebben we gestreefd naar het classificeren van problemen die
niet voldoen aan een van de drie genoemde eigenschappen, namelijk: de NP-
moeilijkheid op de klasse van subcubische grafen. Hierbij toonden we eerst
aan dat Independent Feedback Vertex Set in polynomiale tijd kan
worden opgelost op subcubische grafen. We hebben voortgang geboekt bij het
classificeren van de complexiteit van dergelijke problemen op H-deelgraafvrije
grafen. Wanneer H = {H}, waarbij H een verbonden graaf is, hebben we
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de kloof tussen computationeel makkelijke en moeilijke gevallen voor het
probleem (Independent) Feedback Vertex Set verkleind, met als enige
open geval H = S1,p,q,r, dat wil zeggen, een ster met vier bladeren, waarvan
er drie respectievelijk p − 1, q − 1 en r − 1 keer zijn onderverdeeld. We
hebben ook classificaties verkregen voor problemen zoals Connected Vertex
Cover, Coloring en Matching Cut, die een vergelijkbaar gedrag vertonen
als Feedback Vertex Set met betrekking tot de voorwaarden van ons
classificatiekader.

We sluiten dit proefschrift af met de hoop dat met ons diepere begrip
van de structuur van verschillende klassen van grafen, in het bijzonder H-
deelgraafvrije grafen, we de grenzen van de doenbaarheid van belangrijke
NP-moeilijke problemen verder kunnen verleggen.
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