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Chapter 1: General Introduction
Ubiquitous exposures in the environment

The study of the impact of environmental stressors on human health is a subject of great 
interest within the scientific community, with significant implications for public health. 
This thesis considers various environmental factors that are commonly encountered in 
our everyday lives, with a specific emphasis on two exposure groups used as case studies 
across the different chapters: air pollution and radiofrequency electromagnetic fields 
(RF-EMFs).

Air pollution represents a large group of environmental exposures and a major contrib-
utor to the global burden of disease that affects millions of people worldwide (Cohen et 
al., 2017). Extensive research has been conducted over the years to quantify its adverse 
effects, with studies showing the harmful impact of air pollution on population health 
(Boogaard et al., 2022; Chen & Hoek, 2020). Along with population growth and the in-
crease in urbanisation levels, several sources contribute to the increase in exposure lev-
els, such as emissions from industries, pollution from vehicles, energy production pro-
cesses, and construction activities. As a consequence, the regulation of air pollution, 
especially in urban areas, requires the implementation of different measures to control 
the levels of pollutants aiming at reducing the adverse health effects and bringing air 
quality to safe levels (The Economic Consequences of Outdoor Air Pollution | En | OECD, 
2016).

Similarly to air pollution, exposure to RF-EMFs is ubiquitous in our society, and mobile 
phones and wireless communication devices represent major sources of exposure (van 
Wel et al., 2021). The increased use of mobile phones over 
the past decades, along with the rapid spread of wireless technologies in the population, 
raised concerns about potential adverse health effects associated with the exposure to 
RF-EMFs. As a result, there is growing attention in studying the biological impact of RF-
EMFs on health (Schüz et al., 2011; Verbeek et al., 2021).

Interestingly, despite the increase in frequency and duration of use of devices emitting 
radiofrequencies, the intensity of RF-EMF exposure among users has decelerated over 
time due to the advancement and evolution of new network generations, which involve 
higher efficiency of data transfer. As such, the exposure levels normally encountered in 
the population remain well below the established limits of safety for RF-EMF exposure 
(International Commission on Non-Ionizing Radiation Protection (ICNIRP), 2020; Iyare et 
al., 2021).
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While nature and sources of air pollution and RF-EMF exposure differ significantly and 
are typically studied separately within the broader field of environmental epidemiology, 
they both share one crucial similarity: their widespread presence in the environment 
means that everyone is constantly exposed to them at varying levels.
Air pollution pervades urban and rural areas alike, affecting individuals indoors and out-
doors, regardless of their location or lifestyle. Likewise, RF-EMFs permeate the modern 
built environment, with wireless communication devices omnipresent in society. As a 
consequence, even a slight increase or decrease in exposure levels of air pollution and 
RF-EMFs could potentially have significant implications on population health.
From a public health perspective, in addition to measured exposure levels, a relevant 
research stream within environmental epidemiology relates to how the exposure is per-
ceived. In fact, by assessing exposure and risk perception, we complement information 
on measured and estimated exposure levels, ultimately providing important insights into 
health and well-being (Baliatsas et al., 2015; Cori et al., 2020).

Despite air pollution and RF-EMFs representing exposure groups of primary interest in 
epidemiological research, in the real world, individuals on a daily basis are exposed to a 
multitude of environmental factors, that have the potential to impact their health.
This research spans various environmental domains, which traditionally include expo-
sures to chemicals, physical elements, and biological agents (Brunekreef, 2008; Pekka-
nen & Pearce, 2001). In addition to these determinants, to account for the complex 
interrelationship between environmental factors and individual behaviours, a consid-
erable number of potentially modifiable risk factors have been incorporated, including 
diet, sedentary behavior, and other lifestyle factors and individual characteristics (Vineis 
et al., 2020). The totality of these factors contributing to establishing and preserving a 
healthy life throughout an individual’s lifetime is commonly referred to as exposome 
(Vermeulen et al., 2020).
In this regard, the exposures comprising the component of the exposome (i.e. urban 
exposome) were considered in the thesis. Specifically, the urban exposome represents 
a rich data source where information on various aspects of the life of individuals, such 
as their physical activity, smoking and alcohol consumption, and other lifestyle factors, 
is included. Further information collected within the urban exposome involves chemical 
and physical exposures, such as the presence of chemicals and contaminants in water, in 
addition to air pollution and RF-EMFs, and neighbourhood characteristics, such as urban 
temperatures, presence of green and blue spaces, the access to healthy food options, 
healthcare facilities, and more (Ohanyan et al., 2022).

Health outcomes considered in the thesis

Multiple health outcomes are evaluated in the thesis based on their characteristics and 
distinctive methodological approaches used for their study: first, we consider head-
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aches. Headache disorders, characterised by their diverse intensity and frequency, rep-
resent one of the most prevalent and incapacitating health conditions globally (GBD 
2016 Headache Collaborators, 2018; Rasmussen et al., 1991; Steiner & World Headache 
Alliance, 2004). The etiology of headache appears to be complex and multifactorial, 
with both genetic and environmental factors playing a role (Robbins & Lipton, 2010; 
Svensson, 2004). Previous research emphasises the substantial impact of lifestyle and 
behavioural characteristics, as well as environmental factors such as air pollution and 
RF-EMFs, on the initiation and persistence of the symptoms. Therefore, it is possible that 
a combination of factors, rather than one single stressor, is responsible for the onset of 
headaches in the population (Friedman & De Ver Dye, 2009; Molarius et al., 2008; Ulrich 
et al., 2004).

The second outcome considered in the thesis is the condition known as electromagnetic 
hypersensitivity (EHS). EHS is a term used to define individuals who claim to be sensitive 
to EMFs (Dieudonné, 2020; Leszczynski, 2021). However, an important aspect of EHS is 
the concurrent attribution of health complaints to RF-EMFs, in which case the condition 
is more correctly specified as idiopathic environmental intolerance attributed to electro-
magnetic fields (IEI-RF).
In this thesis, for the sake of accuracy in terminology, we refer to IEI-RF to describe a 
set of self-reported non-specific symptoms that individuals attribute to electromagnetic 
field exposure, and EHS to describe individuals who claim to be sensitive but without 
necessarily attributing symptoms (Baliatsas et al., 2012; Martens et al., 2017; Röösli et 
al., 2004, 2010). For those subjects who claim to have IEI-RF, the condition shows a range 
of symptoms they believe are triggered or exacerbated by exposure to common sourc-
es of RF-EMFs, such as mobile phones, cordless phones, laptops, and other electronic 
devices emitting radiofrequencies. The reported symptoms vary widely, including head-
aches, fatigue, difficulty concentrating, sleep disturbances, and skin-related issues. In 
this regard, it is worth noting that clear diagnostic criteria for this condition are lacking 
(Stein & Udasin, 2020). 

We considered mortality as an additional endpoint in the thesis. Mortality is a frequent 
study outcome in epidemiological studies as it represents the most serious endpoint. 
From a methodological perspective, it has the advantages of not displaying the transient 
nature typical of symptoms and being easily measured without ambiguity. Unlike head-
aches and EHS, mortality data is directly available from routinely collected sources such 
as death certificates and vital statistics registries.

Mechanisms of action

Understanding the mechanisms of action through which environmental exposures af-
fect health is challenging, as these mechanisms often show traits of ambiguity and, as a 
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result, their interpretation is not straightforward. For some exposures, such as air pol-
lution, the biological mechanisms of action are better defined than RF-EMF exposure.
In the case of air pollution, extensive research has revealed clear pathways involving ox-
idative stress, inflammation, and direct damage to cellular structures, which contribute 
to the onset of various health conditions, including respiratory and cardiovascular dis-
eases, and neurological disorders, among others (Block & Calderón-Garcidueñas, 2009; 
Leikauf et al., 2020; Miller, 2020). 

The scenario for RF-EMFs is more uncertain, particularly at the low exposure levels 
normally encountered in the population. On the one hand, a number of experimental 
studies have explored the effects of RF-EMF exposure on various outcomes, and the ac-
cepted biological mechanism from these studies to date is represented by tissue heating 
(D’Andrea et al., 2007). Furthermore, oxidative stress has been proposed as a potential 
biological response to RF-EMF exposure, though this remains controversial, especially 
since biological reactions at low exposure levels may be negligible in terms of health 
impact (Henschenmacher et al., 2022; Kamali et al., 2018; Tkalec et al., 2007). Converse-
ly, observational studies are scarce and results inconsistent. Following results from the 
INTERPHONE study, which showed an isolated increased risk of glioma among mobile 
phone users classified in the highest decile of cumulative call-time (INTERPHONE Study 
Group, 2010), in 2011 the International Agency of Research on Cancer (IARC) classified 
RF-EMF exposure as possibly carcinogenic to humans (IARC Publications Website - IARC 
Monographs on the Identification of Carcinogenic Hazards to Humans, 2013). However, 
follow-up studies did not yield the same conclusion, and lack of association was also 
supported by recent findings from the international COSMOS and MOBI-Kids studies 
(Castaño-Vinyals et al., 2022; Feychting et al., 2024; Swerdlow et al., 2011).

If the potential mechanisms of action for low levels of RF-EMF exposure remain unclear 
for more established health outcomes, such as cancer, this uncertainty is possibly even 
more pronounced for outcomes that, due to their inherent nature and characteristics, 
appear to be transient in the population and therefore difficult to assess. This is the case 
for headache, which represents a highly prevalent condition in the population carrying a 
significant burden of disability.
In this respect, a number of experimental and epidemiological studies have investigated 
the role of RF-EMFs in the onset of headaches. Results from experimental studies focused 
on short-term exposure, and did not find strong evidence of an association (Augner et 
al., 2012; Cinel et al., 2008; Oftedal et al., 2007). Epidemiological studies investigating 
the health effects associated with long-term RF-EMF exposure showed varying results, 
such as the weak association between mobile phone use and migraine observed in a 
cohort study conducted in Denmark (Schüz et al., 2009), and the more recent findings 
from the cohort study conducted in Finland and Sweden suggesting that other factors 
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related to mobile phone use than RF-EMFs may explain the weak association that was 
found among users (Auvinen et al., 2019).

With regard to EHS and IEI-RF, the mechanisms of action remain uncertain (Baliatsas 
et al., 2009; Dieudonné, 2019; Stein & Udasin, 2020). Currently, three hypotheses can 
be identified (Dieudonné, 2020): first, the biological route assumes a direct effect of 
RF-EMF exposure on reporting symptoms. The second route, which reflects the cogni-
tive hypothesis, argues that perceived exposure and risk promote a nocebo response 
that generates symptoms. The third route, in accordance to the attributive hypothesis, 
argues that symptoms may be attributed by an individual to RF-EMF exposure to help 
explain a health problem for which no diagnosis has been made.

Challenges in studying how environmental factors influence human health

Well-formulated research questions and hypotheses serve as pillars to efficiently de-
sign an epidemiological study, ensure reliable inferences, and draw meaningful conclu-
sions from the analysis (Kleinbaum et al., 2013). However, researchers in environmental 
health encounter several challenges of different nature when analysing epidemiological 
data. Addressing these challenges necessitates appropriate statistical techniques, and, 
at times, novel approaches to better understand the underlying causes of action in order 
to prevent health effects.

Here, some of these challenges are briefly outlined: first, depending on the exposure be-
ing considered, understanding the underlying potential mechanisms linking exposures 
to health outcomes may not be straightforward. This difficulty is relatively common 
in studies assessing the health effects of non-ionising radiation, where the biological 
mechanisms of action at the exposure levels generally encountered in the population 
are uncertain (Erwin, 1988; Stein & Udasin, 2020). However, for exposures where the 
mechanisms of action are clearer, such as in the case of air pollution, the high correlation 
structure existing between the air pollutants introduces further complexity in the anal-
ysis and interpretation of the results, making it difficult to disentangle the underlying 
mechanisms in the exposure-outcome association (Billionnet et al., 2012). This can also 
be the case for devices emitting RF-EMFs, where the exposure could correlate with user 
behaviours, and therefore the underlying mechanisms of action may not be easily dis-
tinguishable (Schoeni et al., 2017). In this scenario, the main challenge lies in discerning 
RF-EMFs from other aspects of mobile phone use, such as those reflecting the behaviour 
of the user, which may not necessarily result in high exposure levels (e.g. texting) (van 
Wel et al., 2021).
Second, in situations where researchers aim to investigate the occurrence of chronic 
conditions or symptoms, which inherently undergo changes over time due to their na-
ture, relying on a single follow-up may not provide sufficient insights into the potential 
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patterns involved in the exposure-outcome association, and common statistical meth-
ods may struggle to unravel the underlying dynamics of change (Kowall et al., 2012; 
Martens et al., 2018).
An example is provided by EHS, for which previous studies indicated a frequent turn-
over in individuals reporting symptoms over time, suggesting that EHS is transient and 
highly temporary in the population (Kowall et al., 2012; Martens et al., 2018; Röösli et 
al., 2010). In these situations, additional complexity may arise from the characteristics 
of the exposure itself, such as in the case of RF-EMF exposure that is subject to frequent 
changes over time. In addition, the risk of reverse causation, which could potentially lead 
to misinterpretation of the findings, is common in these scenarios.
Third, in settings where the aim is to evaluate the effect of multiple exposures of inter-
est occurring simultaneously, such as in the case of environmental mixtures, regression 
techniques may fail to capture underlying signals in the mixture-outcome association, 
including interactions and synergistic effects. In these scenarios, better-suited approach-
es should be considered (Agier et al., 2016; Barrera-Gómez et al., 2017).

With regard to environmental mixtures, some of the most common research questions 
that researchers may want to answer include addressing the high correlation structure 
usually present among the components of the mixture, as well as the presence of inter-
actions and nonlinearities, the estimation of the overall effect of the mixture and the 
identification of the main contributors within the mixture responsible for the effect, the 
integration of environmental mixtures in mediation analysis, and more (Maitre et al., 
2022; Bellavia et al., 2021; Wilson et al., 2018; Blum et al., 2020; Bellavia et al., 2019). 
In this regard, within the causal inference framework, particular attention has been di-
rected over the past few years towards the development of novel approaches aimed at 
estimating causal effects and establishing causal relationships in epidemiological studies 
(Wager & Athey, 2018; Williams & Crespi, 2020).

Following this brief overview of some of the challenges commonly encountered in the 
analysis of prospective data in environmental epidemiology, that is by no means intend-
ed to be exhaustive, I introduce in this thesis some novel approaches designed to tackle 
different challenges across scenarios of varying complexities with the underlying aim 
to determine the most plausible mechanisms of action and elucidate what may, or may 
not, be causally related. 

Aim of the thesis

The overarching aim of the thesis is to propose informative approaches for the analysis 
of common environmental factors in relation to health outcomes, across different sce-
narios, using data from large prospective epidemiological studies. These approaches aim 
to provide valuable insights and understanding of exposure-outcome associations, in-
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cluding mechanisms of action and potential causal pathways, in order to prevent health 
effects.

This thesis has the following specific aims:
i.	 To extract meaningful insights and draw conclusions regarding exposure-outcome 

associations in scenarios where the mechanisms of action are uncertain and/or 
difficult to determine, by exploring different potential pathways while optimising 
available exposure data;

ii.	 To explore the temporal dynamics of health outcomes characterised by consider-
able fluctuations over time, by analysing data across multiple time points, account-
ing for time-dependent risk factors;

iii.	 To explore an environmental mixture and determine the causal effect of its compo-
nents on health, within a simplified exposure-outcome scenario involving a prese-
lected set of exposures and mortality as endpoint;

iv.	 To identify a relevant set of exposures and estimate their causal effects in studies 
assessing the impact of multiple exposures occurring simultaneously on health, in 
an exposure-outcome scenario characterised by high-dimensional exposure data 
typical of exposome-wide studies.

Study design and databases used in the thesis

In this thesis, data from large prospective epidemiological studies are analysed. Cohort 
studies represent one of the most commonly used study designs for the analysis of ob-
servational data in environmental epidemiology. Within this framework, the conduct of 
prospective studies plays a crucial role in exploring the relationship between exposures 
and health outcomes. Their distinctive characteristic is the temporal sequence, where 
the exposure is assessed before the outcome occurs, allowing for the evaluation of the 
relationship over time (Morgenstern & Thomas, 1993). As a result, using a prospective 
study design may facilitate the identification of potential causal relationships, although 
this characteristic is not sufficient to prove causality (Nowinski et al., 2022).

To achieve the objectives of the thesis, data from the cohort study of mobile phone use 
and health (COSMOS), LIFEWORK, and the Dutch occupational and environmental health 
cohort study (AMIGO) were analysed (Figure 1).
COSMOS is an international study investigating possible health effects of long-term use 
of mobile phones and other wireless technologies (Schüz et al., 2011). The specific ob-
jective of COSMOS is to track the health of over 250,000 individuals over a long period 
of time to determine whether adverse health effects are observed in relation to their 
use of mobile phones and other wireless technologies. Information is obtained from 
repeated harmonised questionnaires, repeated downloads from traffic operators, and 
health registries depending on data availability. COSMOS is an international consortium 
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involving Denmark, Finland, Sweden, the Netherlands, the UK, and France. It was initi-
ated between 2008 and 2012 in all countries except France, which joined in 2019. All 
countries, expect France, completed the first follow-up by 2017. According to the COS-
MOS protocol, data from participating countries are pooled to achieve sufficient statis-
tical power for investigating mobile phone use in relation to several health outcomes, 
including brain cancer, headaches, and neurological disorders. A significant strength of 
COSMOS lies in its prospective design, which minimises recall and selection biases. In 
this thesis, data from the Netherlands and the UK cohorts of COSMOS were analysed.

LIFEWORK is a large federated prospective cohort in the Netherlands that quantifies the 
health effects of occupational and environmental exposures (Reedijk et al., 2018). With 
nearly 90,000 participants, LIFEWORK represents the second largest contributor to the 
international COSMOS study. In 2011, the nationwide prospective cohort LIFEWORK was 
initiated to explore occupational and environmental health factors among people living 
in the Netherlands. Representing the Dutch contribution to COSMOS, LIFEWORK specifi-
cally focuses on assessing EMF exposure from mobile phones and other wireless devices. 
Three Dutch cohorts, namely EPIC-NL, Nightingale, and AMIGO, are part of LIFEWORK 
and participants completed the first follow-up questionnaire between 2015 and 2017.

AMIGO is the Dutch occupational and environmental health cohort study and represents 
one of the subcohorts included in LIFEWORK, which investigates occupational and en-
vironmental determinants of diseases and well-being relying on a multidisciplinary and 
life course approach (Slottje et al., 2014). In AMIGO, approximately 14,000 individuals 
were recruited in the Netherlands between 2011 and 2012, to explore underlying caus-
es of health conditions in the population, such as respiratory diseases, cardiovascular 
diseases, and dementia, and uncover the potential influence of the daily living environ-
ment on well-being. A subcohort of AMIGO was established in 2013, and a follow-up 
questionnaire was completed by this subgroup of participants in 2021, with dedicated 
questions to assess relationships between exposure, risk perception, symptom reporting 
and symptom attribution to environmental factors, including RF-EMFs.
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Outline of the thesis

In this section, I provide an overview of the content covered in the different chapters 
of the thesis, outlining their main objectives and the methodological approaches used.

In Chapter 2, we conducted a prospective analysis of the association between mobile 
phone use and the occurrence of headaches analysing pooled data from the Nether-
lands and the United Kingdom as part of the COSMOS project. Given that the potential 
mechanisms of action linking mobile phone use and headaches are uncertain, we ex-
plored two possible causal pathways: RF-EMF exposure and the behavioural aspect of 
mobile phone usage with negligible RF-EMF exposure. By optimising the exposure data 
available in COSMOS, we were able to disentangle the exposure-outcome relationship, 
ultimately identifying the most plausible route for this association.

In Chapter 3, we explored the temporal dynamics of attributing symptoms to RF-EMFs 
(IEI-RF) by assessing factors related to developing, maintaining, or discarding IEI-RF over 
10 years, using data from the subcohort of AMIGO. We modelled the process in which 
participants move through a series of states of IEI-RF by estimating multi-state Markov 
models, a flexible statistical technique for estimating rates of transition between stages 
or health conditions. Finally, we applied logistic regression to explore predictors of sen-
sitivity at follow-up, without necessarily attributing symptoms (EHS).

In Chapter 4, we proposed a pluralistic approach to prospectively explore the relationship 
between a mixture of air pollutants and mortality in LIFEWORK. Using targeted methods 

Figure 1. Overview of the data used in the thesis.
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for high-dimensional exposures, we assessed the relevance of mixture’s components 
in the mixture-outcome association, and investigated interactions and nonlinearities. 
Based on these results, we built a multivariate generalised propensity score model to 
jointly estimate the causal effects of the pollutants on overall mortality.

In Chapter 5, we prospectively explored the urban exposome of AMIGO in relation to 
headaches by using a combination of machine learning techniques. Specifically, we fol-
lowed a two-stage approach where we first applied Boruta to identify relevant exposures 
in the exposome-outcome association, and then estimated causal forest to quantify the 
causal effect of these exposures on the occurrence of headache.

In Chapter 6, the main findings of this thesis are summarised, followed by discussions of 
the different approaches used, including challenges and limitations associated with their 
use, and policy implications and possible directions for future research. 
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Abstract

Headache is a common condition with a substantial burden of disease worldwide. Con-
cerns have been raised over the potential impact of long-term mobile phone use on 
headache due to radiofrequency electromagnetic fields (RF-EMFs). We explored pro-
spectively the association between mobile phone use at baseline (2009-2012) and head-
ache at follow-up (2015-2018) by analysing pooled data consisting of the Dutch and UK 
cohorts of the Cohort Study of Mobile Phone Use and Health (COSMOS) (N=78,437). 
Frequency of headache, migraine, and information on mobile phone use, including use 
of hands-free devices and frequency of texting, were self-reported. We collected objec-
tive operator data to obtain regression calibrated estimates of voice call duration. In the 
model mutually adjusted for call-time and text messaging, participants in the high cat-
egory of call-time showed an adjusted odds ratio (OR) of 1.04 (95% CI: 0.94–1.15), with 
no clear trend of reporting headache with increasing call-time. However, we found an 
increased risk of weekly headache (OR=1.40, 95% CI: 1.25–1.56) in the high category of 
text messaging, with a clear increase in reporting headache with increasing texting. Due 
to the negligible exposure to RF-EMFs from texting, our results suggest that mechanisms 
other than RF-EMFs are responsible for the increased risk of headache that we found 
among mobile phone users.
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Introduction

Over the past few decades, wireless technology has rapidly proliferated throughout so-
ciety, revolutionising how we interact worldwide. As a result, frequency and duration 
of use of wireless devices have increased over time, while the intensity of exposure to 
radiofrequency electromagnetic fields (RF-EMFs) has seen a reduction following the pro-
gression and evolution of new network generations (Iyare et al., 2021). With the expand-
ing uptake of wireless devices and the advancements in mobile technologies, concerns 
regarding the potential health consequences of long-term exposure to RF-EMFs have 
been raised. Several experimental and epidemiological cross-sectional and case-control 
studies have explored the possible link between RF-EMF exposure and symptoms such 
as headache and migraine. Results showed no consistent evidence of adverse health ef-
fects at the exposure levels typically encountered in the population (Augner et al., 2012; 
Cerutti et al., 2016; Cinel et al., 2008; Durusoy et al., 2017; Oftedal et al., 2007; Wang et 
al., 2017). However, results from cohort studies are still scarce.
The Cohort Study of Mobile Phone Use and Health (COSMOS) is a large prospective co-
hort study of mobile phone users comprising more than 300,000 adults who will be 
followed up for over 25 years. COSMOS was established in six European countries (Den-
mark, Finland, France, Sweden, the Netherlands, and the United Kingdom (UK)) to pro-
spectively investigate possible health effects associated with long-term use of mobile 
phones and other wireless technologies (Schüz et al., 2011). Several health outcomes 
are being invest﻿igated, including headache and migraine. These represent important 
causes of disability worldwide with a high public health relevance (GBD 2016 Headache 
Collaborators, 2018), and the possible association with RF-EMF exposure among mobile 
phone users has yet to be clarified.
A study conducted in Sweden and Finland as part of COSMOS found limited evidence 
for an association between weekly headache and the highest level of mobile phone use 
and no clear trend with increasing call-time (Auvinen et al., 2019). The association of 
headache with call-time appeared stronger for calls via the Universal Mobile Telecom-
munication System (UMTS) (3G) network than via the older Global System for Mobile 
(GSM) (2G) telecommunications technology, despite the latter involving higher RF-EMF 
exposure levels to the head (van Wel et al., 2021).
In this study, we assessed the relationship between mobile phone use at baseline and 
headache at follow-up by exploring two mobile phone use activities: voice calling and 
texting. Calling, depending on the technology and other usage characteristics, such as 
the position of the device relative to the body and the use of hands-free devices, expos-
es the head to different levels of RF-EMFs. Texting produces negligible RF-EMF exposure. 
Therefore, any association is hypothesized to have other underlying mechanisms than 
RF-EMF exposure.
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Methods

Study participants

In this prospective study, we pooled data from the Dutch and UK cohorts of COSMOS 
comprising more than 180,000 participants who completed the baseline questionnaire 
providing information on mobile phone use, health, environmental exposures, lifestyle, 
and demographics.
In the Netherlands, 88,466 participants were enrolled in three cohort studies between 
2011 and 2012, constituting the LIFEWORK cohort, representing the Dutch contribution 
to COSMOS. LIFEWORK was designed as a federated study integrating the Nightingale 
Study, the Occupational and Environmental Health Cohort Study (AMIGO), and the Euro-
pean Prospective Investigation into Cancer and Nutrition in the Netherlands (EPIC-NL). In 
LIFEWORK, a follow-up questionnaire was completed between 2015 and 2017 by 53,697 
participants. Compared to the general adult population in the Netherlands, there is a 
higher proportion of women (89.2%) and the average age is older (around 50 years old). 
The rationale, study design, and participant recruitment in LIFEWORK were discussed in 
detail elsewhere (Beulens et al., 2010; Pijpe et al., 2014; Reedijk et al., 2018; Slottje et 
al., 2014).
In the UK, 99,424 participants were recruited from across the country between 2009 
and 2012 and filled in the baseline questionnaire. Recruitment was from mobile phone 
subscriber lists (65%) and the UK edited electoral register (35%). A follow-up question-
naire was completed by 45,308 UK participants between 2015 and 2018. UK COSMOS 
participants seem to enjoy better health than the general adult population in the UK, as 
evidenced by a lower current smoking rate and lower prevalence of obesity. The ratio-
nale, study design, and participant recruitment of UK COSMOS were discussed in detail 
elsewhere (Toledano et al., 2017).
After exclusions, the pooled cohort of Dutch and UK participants with baseline and fol-
low-up data consisted of 78,437 individuals (Figure 1).

Exposure assessment

In this study, the exposure information was collected prospectively in relation to the 
health outcome being analysed. Participants self-reported information on their mobile 
phone use for the 3 months before baseline, via questionnaire. This included weekly 
call-time, the proportion of use with hands-free devices, frequency of text messages, 
use of multiple mobile phones, and whether other people used the participants’ mobile 
phone(s). Call-time on cordless phones was also reported.
In addition to self-reported mobile phone use, outgoing and incoming voice call dura-
tions were obtained during the same 3-month period at baseline from network opera-
tors for participants (with consent) who had a subscription under their own name. The 
proportion of participants for whom complete data from network operators at baseline 
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was available was 3% (the Netherlands) and 58% (the UK). Information on 2G and 3G 
networks, technologies that were in use at the time of this study, was not available for 
these two cohorts.
Self-reported duration of voice calling on a mobile phone is considered an error-prone 
proxy for mobile phone use (Aydin et al., 2011; Berg et al., 2005; Heinävaara et al., 2011; 
Vrijheid et al., 2009). We leveraged self-reported and objective operator-recorded mo-
bile phone use data available in the subset of participants with complete network op-
erator data to deal with measurement error in self-reported mobile phone data and 
improve the estimation of exposure-outcome relationships in COSMOS. Country-specific 
regression-calibrated estimates based on operator data for both incoming and outgoing 
mobile phone calls (the average operator-recorded value per category per country) were 
applied to self-reported weekly mobile phone call-time categories, for all participants 
(Reedijk et al., 2023).
We adjusted call-time according to the proportion of hands-free use the participant re-
ported (response options “hardly ever”, “less than half of the time”, “about half of the 
time”, “more than half of the time”, “always or nearly always”), reducing voice call du-
ration by 5%, 10%, 25%, 35%, and 50%, respectively, for each hands-free use category 
(Goedhart et al., 2015).
To assess the potential effects of RF-EMF exposure on headache accounting for co-ex-
posure from multiple sources, we estimated the RF-EMF dose to the brain using an or-
gan-specific integrated exposure model (IEM). The IEM uses specific absorption rate 
transfer algorithms to provide RF-EMF weekly dose estimates (mJ/kg/week) using 
source-specific attributes (e.g. output power, distance), personal characteristics (e.g. 
height and weight) and usage patterns. Exposure input data for the IEM included call-
time on mobile phones and cordless phones as these were identified as primary contrib-
utors to the brain dose (van Wel et al., 2021).
Finally, call-time and RF-EMF dose exposure metrics were categorised into four expo-
sure categories (“very low”, “low”, “medium”, and “high”) based on the pooled exposure 
distribution, with cut-offs aligned as close as possible to predefined percentiles (“lowest 
30%”, “30th–69th percentile”, “70th–89th percentile”, “90th–100th percentile”) (Supplemen-
tary Table 1). “Low” was selected as the referent exposure category in regression models 
as it had the highest proportion of both Dutch and UK participants.
The number of text messages sent on a mobile phone at baseline was used as a proxy for 
use with negligible RF-EMF exposure. It was categorised into three exposure categories 
(“low”, “medium”, and “high”) corresponding to the response options “never/less than 1 
text message per week/1–6 text messages per week”, “1–9 text messages per day”, “10–
29 text messages per day/30 or more text messages per day”. For clarity, text messages 
here refer to Short Message Service (SMS) via the mobile cellular network, and does not 
include instant messaging via the internet. An overview of the exposure metrics used in 
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this study is provided in Supplementary Table 2.

Headaches and migraine

Headaches were self-reported at baseline and follow-up. The primary outcome was 
weekly headache at follow-up. The secondary outcomes were severe weekly headache, 
daily headache, and migraine diagnosis at follow-up. Headaches were defined according 
to the question “How often do you get headache at the moment?”, with response cate-
gories of “almost every day”, ”5 or 6 days a week”, “3–4 days a week”, “once or twice a 
week” “1–2 days per month”, and “less often”. The Headache Impact Test (HIT-6) score 
with a cut-off of 56 points defined severe weekly headache. The HIT-6 is a tool used to 
measure the impact headaches have on one’s ability to function in various aspects of 
daily life, including work, school, home, and social contexts. The score, ranging from 36 
to 78 points, provides a measure of the degree to which headaches affect daily life and 
functioning, with higher scores indicating a more significant impact on the participant’s 
overall life (Kosinski et al., 2003). Migraine diagnosis at follow-up was defined based 
on the question “Have you ever been diagnosed by a medical doctor with migraine?”. 
To avoid potential reverse causation, we restricted all analyses to participants who did 
not report weekly or more frequent headaches at baseline (N=66,858) and likewise for 
migraine diagnosis (N=53,576) (Auvinen et al., 2019).

Covariates

We identified the following potential confounders of the associations between mo-
bile phone use and headaches a priori based on previous studies (Auvinen et al., 2019; 
Farashi et al., 2022; Wang et al., 2017): sex, age group (18-29, 30-39, 40-49, 50-59, 60+), 
country (the Netherlands, the UK), highest level of education attained (elementary, sec-
ondary and higher), body mass index (BMI) group (normal or underweight, overweight 
or obese), general health indicator (good, poor), sleep disturbance index, painkiller use 
(yes, no), depression diagnosis (yes, no), high blood pressure diagnosis (yes, no), smok-
ing status (never, former, current), alcohol consumption (never, former, current). Models 
were adjusted for these factors, as measured at baseline, a priori.

Statistical analysis

Missing values were imputed on covariates only through multivariate imputation by 
chained equations (complete-case data set including 58,229 participants), performed 
separately for each cohort. All covariates (except country), exposures, and study out-
comes were used as predictors, and Rubin’s rule was used to combine the regression 
parameters over 30 imputed data sets (Buuren & Groothuis-Oudshoorn, 2011; White et 
al., 2011).
Descriptive statistics of the study population were calculated overall, by country, and by 
exposure level. Correlation between exposure metrics was evaluated using Spearman’s 
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rank correlation coefficients.
To evaluate the exposure-outcome associations, we estimated multivariable logistic re-
gression models. We first assessed call-time and texting exposures separately, and then 
mutually adjusted for both exposures in one model. Weekly minutes of call-time at 
baseline (country-specific regression calibrated estimates adjusted by the proportion of 
hands-free use (RC-hfa)) was the primary exposure metric.
We calculated a p-value for linear trend across exposure categories as an ordered factor, 
to test for dose-response relationships between exposure and outcome.
We performed stratified analyses for sex, age group, and country. To examine interac-
tions between call-time and texting and potential modifiers (sex, age group, and coun-
try) on the risk of weekly headache, we tested for significance of interaction terms add-
ed to the models using a likelihood ratio test.
As secondary analyses, we analysed self-reported mobile phone call-time adjusted by 
the proportion of hands-free use (SR-hfa), operator-recorded call-time adjusted by the 
proportion of hands-free use (OP-hfa), and the RF-EMF estimated dose to the brain with 
the IEM (IEMRC-hfa, DECT) as exposure metrics at baseline, respectively.
We performed the following sensitivity analyses: first, we used country-specific regres-
sion calibrated call-time estimates without adjustment for hands-free use (RC) as the 
exposure metric. Second, we excluded painkiller use as a model covariate, in case use 
results from headaches. Third, we lowered the cut-off for the “high” exposure category 
to approximate the 80th percentile of the pooled exposure distribution - for compari-
son with the main analyses in which the top 10th percentile was used to define highly 
exposed participants. Fourth, we replicated the analyses by categorising the RC-hfa ex-
posure into quartiles for comparison with the main findings. Last, we performed a com-
plete-case analysis to compare with results obtained on imputed datasets.
All analyses were performed using R Statistical Software (v4.2.3; R Core Team 2023) (R 
Core Team (2023). R: A Language and Environment for Statistical Computing. R   Founda-
tion for Statistical Computing, Vienna, Austria. URL Https://Www.R-Project.Org/., n.d.). 
Computing code for all analyses presented is available on request.

Results

Baseline characteristics of the study population by categories of call-time and texting 
are presented in Table 1 and Supplementary Table 3 (baseline characteristics by country 
in Supplementary Tables 4-7), respectively. No relevant differences in the distribution of 
baseline characteristics of the study participants were observed when including those 
who did not complete a follow-up questionnaire (Supplementary Tables 8-9). There was 
a greater proportion of women than men across all levels of exposures, as almost 90% of 
the Dutch cohort were women. Individuals in the high call-time (RC-hfa) category were 
all UK participants. The baseline distribution of RC-hfa was skewed towards low values, 
with Dutch participants on average reporting less call-time than the UK participants (Fig-
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ure 2).
Call-time exposure metrics were strongly correlated with the RF-EMF estimated dose 
(Spearman’s correlation coefficient ρ: 0.63 ≤ ρ ≤ 0.99). We observed weak to moderate 
correlations between texting and call-time metrics and RF-EMF estimated dose (Spear-
man’s correlation coefficient ρ: 0.24 ≤ ρ ≤ 0.54) (Figure 3).
Of 66,858 participants who were free of weekly headache at baseline and included in 
analysis of call-time and texting, 5,452 (8.2%) reported weekly headache at follow-up, 
and 382 (0.6%) reported daily headache. 1,660 (2.5%) individuals were classified as hav-
ing severe weekly headache out of 66,234 with complete information on the HIT-6 score 
at follow-up. Of 53,576 participants free of migraine at baseline, 1,812 (3.4%) reported 
migraine at follow-up.
In adjusted single exposure models, we found an increased risk of weekly headache at 
follow-up (OR=1.10, 95% CI: 1.01–1.22) in the high category of regression calibrated call-
time at baseline (RC-hfa), with a clear increase of reporting headache with increasing 
call-time (P trend=0.002) (Table 2).
Similarly, we found an increased risk in weekly headache at follow-up (OR=1.42, 95% CI: 
1.28–1.58) in the high category of texting, also with a clear trend of increasing risk with 
increasing texting (P trend<0.001) (Table 3).
Results from two-exposure models mutually adjusting for both call-time and texting 
at baseline, showed substantially lower risk estimates for weekly headache in the high 
call-time (RC-hfa) category (OR=1.04, 95% CI: 0.94–1.15), and no evidence of a trend 
(P trend=0.292) (Table 2). Associations with texting were robust to adjustment for call-
time: we observed an increased risk of weekly headache in the high category of texting 
(OR=1.40, 95% CI: 1.25–1.56) and a trend of increasing risk with increasing texting fre-
quency (P trend<0.001), in line with results from the single-exposure model (Table 3).
Regarding secondary health outcomes, we found consistent patterns of results for se-
vere weekly headache and migraine at follow-up in terms of increased risk estimates 
and significant trends. Increasing risk of daily headache was associated with increasing 
texting (P trend<0.001) but not with increasing call-time (P trend=0.448) (Tables 2–3).
We did not detect interactions between call-time and texting, respectively, and poten-
tial modifiers (sex, age group, and country) on the risk of weekly headache, and results 
showed that the exposure-response associations were remarkably consistent across 
sex, age groups and countries, particularly with regard to texting (Supplementary Tables 
10–11).
Secondary analyses, including self-reported mobile phone call-time and operator-re-
corded call-time as exposure metrics in the separate regression models produced com-
patible results with the main analysis of regression calibrated call-time (Supplementary 
Tables 12–15). Results using the RF-EMF estimated brain dose as exposure metric in the 
models were consistent with those using regression calibrated call-time (Supplemen-
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tary Tables 16–17). The models using the hands-free unadjusted regression calibrated 
call-time exposure metric showed no further increase in risk among users compared to 
the main analyses (Supplementary Tables 18-19). Results from sensitivity analyses were 
compatible with the main findings (Supplementary Tables 20–29).

Discussion

In this large international prospective cohort of mobile phone users in the Netherlands 
and the UK, mobile phone use for calling and texting at baseline was associated with 
headaches at follow-up. Mutually adjusting for both call-time and texting considerably 
attenuated risk estimates for call-time, while associations with texting were still strong 
and robust to adjustment, with a clear exposure-outcome gradient.
Headache has been linked to excessive mobile phone use, but the mechanism by which 
mobile phone use may cause symptoms is not properly understood (Cerutti et al., 2016; 
Frey, 1998; Hocking, 1998; Oftedal et al., 2000; Schoeni et al., 2015; Wang et al., 2017). 
Previous research in adolescents has suggested that other exposures related to mobile 
phone use, but not exposure to RF-EMFs, should be considered the causal factor for 
various symptoms, as the strongest associations were found with activities that cause 
minimal RF-EMF exposure to the head, such as texting or gaming (Schoeni et al., 2017). 
Other studies have indicated that stress or unfavourable usage, such as late-night use, 
may be associated with an increase in reported health symptoms, such as headache 
(Röösli, 2008; Szyjkowska et al., 2014; Thomée et al., 2011). It is therefore crucial to dis-
tinguish between using a mobile phone for calling and other activities that expose the 
brain to RF-EMFs at lower levels, such as Internet browsing (Cabré-Riera et al., 2022a; 
SSM’s Scientific Council on Electromagnetic Fields, 2020).
Our study attempted to disentangle the exposure-outcome gradient by considering call-
time as a proxy for RF-EMF exposure and texting as a proxy for usage with negligible 
RF-EMF exposure to the brain (Wall et al., 2019). This study’s mobile phone usage data 
was gathered between 2009 and 2012. During those years, texting was the most popular 
activity unrelated to RF-EMF exposure.
In both scenarios, we found an increased risk of headache in the high exposure category 
of mobile phone use with a positive exposure-outcome gradient confirmed by the test 
for trend. The attenuated risk estimates for call-time in the mutually adjusted model 
argue against an effect of exposure to RF-EMFs due to the negligible exposure attributed 
to texting. This conclusion is also supported by comparing call-time analyses with and 
without hands-free adjustment, where no risk reduction was found among users for the 
adjusted exposure metrics.
In this study, the distribution of the exposure, specifically regarding call-time, differed 
between Dutch and UK participants. Mobile phone usage behaviour across countries 
cannot be assumed to be identical due to various factors such as cultural, economic, 
technological, and market dynamics (Böhm, 2015). To assess the consistency of our find-
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ings, we showed that defining the top exposure category for call-time based on the 80th 
percentile cut-off, thereby ensuring the inclusion of Dutch participants in the “high” ex-
posure category, yielded results consistent with those obtained using the 90th percentile 
as a cut-off. These findings suggested that the association we found between call-time 
and headache was driven not only by UK but also Dutch participants. Of note, all analy-
ses were adjusted for country of residence.
Our study has several strengths. This is the largest prospective study to explore the re-
lationship between mobile phone use and headache using a prospective study design 
and several exposure metrics, including the regression calibrated estimates where op-
erator-recorded and self-reported call-time were combined to improve the estimation 
of the exposure by reducing recall bias resulting in more informative exposure-outcome 
relations (Reedijk et al., 2023).
Furthermore, the RF-EMF estimated dose to the participant’s brain calculated with the 
IEM provided detailed estimates of exposure levels by considering multiple sources of 
exposure and the intensity of RF-EMFs associated with specific functions (such as the 
specific absorption rate) (van Wel et al., 2021).
An accurate exposure assessment of RF-EMFs from the use of mobile phones has proved 
difficult as the dose of exposure depends on several factors, which include source-specif-
ic attributes (output power), characteristics of the subject (age, sex, body mass), and the 
way devices are used (position relative to the body, type of use, duration of use) (Lönn et 
al., 2004; van Wel et al., 2021). Nevertheless, the quantity and quality of data collected 
in COSMOS allowed us to characterise mobile phone use for calling and texting in detail.
Given the speed at which technology is developing and the need to assess RF-EMF expo-
sure more thoroughly, we used the IEM to estimate the integrative RF-EMF dose to the 
brain of participants. The IEM represents the most complete RF-EMF dose estimation 
tool to date. It can estimate RF-EMF dose to different anatomical sites, including the 
brain as target organ for headache (Cabré-Riera et al., 2022b; van Wel et al., 2021). 
Our study also has limitations. First, we did not have information about “true” RF-EMF 
exposure. Exposure to RF-EMFs emitted by wireless devices is difficult to quantify, par-
ticularly in large populations and over extended periods, as it depends on different fac-
tors, such as reception quality or other factors influencing signal strength. In our study, 
we calculated several exposure metrics as proxies for RF-EMF exposure, which allowed 
us to estimate the average individual RF-EMF exposure in the population. Additionally, 
information on other aspects of usage, such as screen time, blue light exposure or unfa-
vourable use at night, may be helpful to include in future studies.
For highly transient and acute symptoms such as headache, using the peak of RF-EMF 
exposure might be theoretically preferable over the weekly exposure assessed in our 
study. However, adopting this approach would require substantially different exposure 
assessment methods that are impractical for large cohort studies, such as asking partici-
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pants to regularly fill in a detailed usage diary. Given the study design and methodology 
used to assess RF-EMF exposure in COSMOS, the analysis of the association between RF-
EMF peak exposure and reporting of headache symptoms was precluded. In light of the 
transient nature of headaches, future research may explore the potential effect of peak 
RF-EMF exposure on symptom onset more thoroughly.
The composition of the Dutch cohort is not representative of the adult population of 
the Netherlands with respect to sex and age. In fact, the majority of participants in LIFE-
WORK were over the age of 50 years and the Nightingale study source population com-
prised women who were registered as having completed training to be a nurse in the 
nationwide register for healthcare professionals in the Netherlands. Furthermore, the 
EPIC study source population was based on women participating in a regional breast 
cancer screening program (Reedijk et al., 2018). We, a priori, had no indications that the 
effects of RF-EMFs on the occurrence of headaches would be different between men 
and women, or across age groups. In any case, these characteristics in the study popula-
tion are unlikely to have hampered the ability to detect and estimate exposure–outcome 
associations, given the adequate control of confounding variables that were included in 
our analyses.
Finally, participants reported headache at baseline and follow-up, and no information 
was available in between. Therefore, these evaluations might not accurately reflect 
symptoms between these two time points, particularly for a transient condition such 
as headache. However, secondary analyses on migraine diagnosis, which should be less 
likely to change over time, were conducted, and results were consistent with those on 
headaches.
According to the Global Burden of Disease study, headaches are among the most com-
mon nervous system disorders, with migraine being the second among the world’s caus-
es of disability (Steiner et al., 2020; Stovner et al., 2022). These conditions are identified 
as a major public health concern, given the deleterious impact on the personal pain 
burden, the resulting impairment in the quality of life of those affected, and the related 
societal costs (Stovner et al., 2006).
Our results showed that the associations with headache and migraine found with call-
time were largely explained by texting, and this suggests that the mechanism may be 
related to lifestyle, other exposures, or behavioural factors associated with the usage 
of mobile devices. Given the ubiquity of mobile phone use worldwide, more research 
is warranted to understand the exact underlying mechanism generating headaches and 
migraines among mobile phone users to develop options for prevention. Future research 
should also encompass the rapid technological advances and changes in mobile phone 
usage habits among the population and the associated possible health consequences.

Conclusions

In summary, we found that the use of mobile phones, particularly texting, is associat-
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ed with headaches and migraines, and the associations with call-time were largely ex-
plained by texting. As the associations are driven more by text messaging than call-time, 
they do not appear to be explained by RF-EMF exposure from the mobile device but are 
likely to reflect lifestyle, other exposures, or behavioural factors associated with mobile 
phone use.
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Table 1. Characteristics of the participants by amount of mobile phone use at baseline (weekly minutes of call-time, country-
specific regression calibrated estimates adjusted by the proportion of hands-free use (RC-hfa)).

Amount of mobile phone use at baseline (call-time in categoriesa)

Very low 
(N=23211)

Low 
(N=31310)

Medium 
(N=14475)

High 
(N=9441)

Overall 
(N=78437)

Sex, n (%)

Men 3420 (14.7) 7648 (24.4) 5665 (39.1) 4344 (46.0) 21077 (26.9)
Wormen 19791 (85.3) 23662 (75.6) 8810 (60.9) 5097 (54.0) 57360 (73.1)

Age group (years), n (%)
18-29 578 (2.5) 2750 (8.8) 1703 (11.8) 1582 (16.8) 6613 (8.4)
30-39 1868 (8.0) 4305 (13.7) 2293 (15.8) 1719 (18.2) 10185 (13.0)
40-49 5103 (22.0) 6982 (22.3) 2838 (19.6) 1813 (19.2) 16736 (21.3)
50-59 7108 (30.6) 10322 (33.0) 4820 (33.3) 2802 (29.7) 25052 (31.9)
60+ 8554 (36.9) 6951 (22.2) 2821 (19.5) 1525 (16.2) 19851 (25.3)

Country, n (%)
The Netherlands 19462 (83.8) 20401 (65.2) 4780 (33.0) 0 (0) 44643 (56.9)
UK 3749 (16.2) 10909 (34.8) 9695 (67.0) 9441 (100) 33794 (43.1)

Highest level of education attained, 
n (%)

Elementary 3641 (15.7) 2558 (8.2) 871 (6.0) 663 (7.0) 7733 (9.9)
Secondary and higher 19431 (83.7) 28379 (90.6) 13255 (91.6) 8465 (89.7) 69530 (88.6)
Missing 139 (0.6) 373 (1.2) 349 (2.4) 313 (3.3) 1174 (1.5)

BMI group, n (%)
Normal or underweight 12727 (54.8) 16296 (52.0) 6891 (47.6) 3996 (42.3) 39910 (50.9)
Overweight or obese 10241 (44.1) 14386 (45.9) 6988 (48.3) 4831 (51.2) 36446 (46.5)
Missing 243 (1.0) 628 (2.0) 596 (4.1) 614 (6.5) 2081 (2.7)

General health indicator, n (%)
Good 20307 (87.5) 28296 (90.4) 13274 (91.7) 8734 (92.5) 70611 (90.0)
Poor 2798 (12.1) 2901 (9.3) 1175 (8.1) 707 (7.5) 7581 (9.7)
Missing 106 (0.5) 113 (0.4) 26 (0.2) 0 (0) 245 (0.3)

Sleep disturbance index, mean (SD) 27.9 (18.8) 26.2 (18.7) 25.3 (19.4) 26.1 (21.5) 26.5 (19.2)
Missing, n (%) 26 (0.1) 41 (0.1) 43 (0.3) 38 (0.4) 148 (0.2)

Painkiller use, n (%)
No 17691 (76.2) 25918 (82.8) 12819 (88.6) 8702 (92.2) 65130 (83.0)
Yes 2832 (12.2) 3803 (12.1) 1331 (9.2) 671 (7.1) 8637 (11.0)
Missing 2688 (11.6) 1589 (5.1) 325 (2.2) 68 (0.7) 4670 (6.0)

Depression diagnosis, n (%)
No 18044 (77.7) 25994 (83.0) 11981 (82.8) 7496 (79.4) 63515 (81.0)
Yes 2400 (10.3) 3709 (11.8) 2195 (15.2) 1881 (19.9) 10185 (13.0)
Missing 2767 (11.9) 1607 (5.1) 299 (2.1) 64 (0.7) 4737 (6.0)

High blood pressure diagnosis, n (%)
No 15971 (68.8) 24463 (78.1) 11837 (81.8) 7969 (84.4) 60240 (76.8)
Yes 5430 (23.4) 5633 (18.0) 2368 (16.4) 1407 (14.9) 14838 (18.9)
Missing 1810 (7.8) 1214 (3.9) 270 (1.9) 65 (0.7) 3359 (4.3)

Smoking status, n (%)
Never 11703 (50.4) 15096 (48.2) 6929 (47.9) 4618 (48.9) 38346 (48.9)
Former 9255 (39.9) 13135 (42.0) 6027 (41.6) 3729 (39.5) 32146 (41.0)
Current 2085 (9.0) 2944 (9.4) 1417 (9.8) 1002 (10.6) 7448 (9.5)
Missing 168 (0.7) 135 (0.4) 102 (0.7) 92 (1.0) 497 (0.6)

Alcohol consumption, n (%)
Never 1393 (6.0) 1136 (3.6) 304 (2.1) 118 (1.2) 2951 (3.8)
Former 662 (2.9) 738 (2.4) 314 (2.2) 226 (2.4) 1940 (2.5)
Current 20665 (89.0) 28667 (91.6) 13169 (91.0) 8295 (87.9) 70796 (90.3)
Missing 491 (2.1) 769 (2.5) 688 (4.8) 802 (8.5) 2750 (3.5)

Weekly headacheb, n (%)
No 20461 (88.2) 26831 (85.7) 12041 (83.2) 7525 (79.7) 66858 (85.2)
Yes 2750 (11.8) 4479 (14.3) 2434 (16.8) 1916 (20.3) 11579 (14.8)

Severe weekly headacheb, n (%)
No 21859 (94.2) 29345 (93.7) 13552 (93.6) 8728 (92.4) 73484 (93.7)
Yes 1084 (4.7) 1743 (5.6) 866 (6.0) 705 (7.5) 4398 (5.6)
Missing 268 (1.2) 222 (0.7) 57 (0.4) 8 (0.1) 555 (0.7)

Daily headacheb, n (%)
No 22914 (98.7) 30882 (98.6) 14238 (98.4) 9225 (97.7) 77259 (98.5)
Yes 297 (1.3) 428 (1.4) 237 (1.6) 216 (2.3) 1178 (1.5)

Migraine diagnosisb, n (%)
No 13611 (58.6) 21614 (69.0) 10862 (75.0) 7489 (79.3) 53576 (68.3)
Yes 2108 (9.1) 3388 (10.8) 1924 (13.3) 1513 (16.0) 8933 (11.4)
Missing 7492 (32.3) 6308 (20.1) 1689 (11.7) 439 (4.7) 15928 (20.3)

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 107.8 (min/week); High: RC-
hfa ≥ 107.8 (min/week), (max=256.8 min/week).
bAt baseline.
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Table 2. Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily headache, and 
migraine diagnosis at follow-up by amount of mobile phone use at baseline (weekly minutes of call-time, 
country-specific regression calibrated estimates adjusted by the proportion of hands-free use (RC-hfa)) without 
(A) and with (B) mutual adjustment for the number of text messages sent with a mobile phone at baseline. 
Number of participants with the outcome indicated in square brackets.

Amount of mobile phone use at baseline (call-time in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

0.94 (0.88 – 1.01)
[1432]

1 (reference)
[2160]

1.08 (1.00 – 1.17)
[1086]

1.10 (1.01 – 1.22)
[774] 0.002

Weekly head-
acheb (B)

66858
[5452]

0.99 (0.92 – 1.07)
[1432]

1 (reference)
[2160]

1.05 (0.96 – 1.13)
[1086]

1.04 (0.94 – 1.15)
[774] 0.292

Severe weekly 
headacheb (A)

66234
[1660]

0.97 (0.86 – 1.10)
[465]

1 (reference)
[671]

1.08 (0.93 – 1.25)
[299]

1.36 (1.13 – 1.63)
[225] 0.001

Severe weekly 
headacheb (B)

66234
[1660]

0.99 (0.87 – 1.13)
[465]

1 (reference)
[671]

1.05 (0.90 – 1.21)
[299]

1.25 (1.04 – 1.51)
[225] 0.035

Daily headacheb 
(A)

66858
[382]

1.04 (0.79 – 1.38)
[94]

1 (reference)
[136]

0.98 (0.73 – 1.31)
[75]

1.23 (0.90 – 1.67)
[77] 0.448

Daily headacheb 
(B)

66858
[382]

1.09 (0.82 – 1.46)
[94]

1 (reference)
[136]

0.93 (0.69 – 1.24)
[75]

1.09 (0.79 – 1.50)
[77] 0.900

Migraine diag-
nosisc (A)

53576
[1812]

0.93 (0.82 – 1.06)
[396]

1 (reference)
[725]

0.97 (0.85 – 1.11)
[355]

1.19 (1.02 – 1.39)
[336] 0.013

Migraine diag-
nosisc (B)

53576
[1812]

0.97 (0.85 – 1.11)
[396]

1 (reference)
[725]

0.94 (0.82 – 1.08)
[355]

1.12 (0.96 – 1.30)
[336] 0.247

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 107.8 (min/week); High: 
RC-hfa ≥ 107.8 (min/week), (max=256.8 min/week).
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline.
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Table 3. Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily headache, and 
migraine diagnosis at follow-up by number of text messages sent with a mobile phone at baseline without 
(A) and with (B) mutual adjustment for the amount of mobile phone use at baseline (weekly minutes of call-
time, country-specific regression calibrated estimates adjusted by the proportion of hands-free use (RC-hfa)). 
Number of participants with the outcome indicated in square brackets.

Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

1 (reference)
[2770]

1.17 (1.10 – 1.26)
[2012]

1.42 (1.28 – 1.58)
[670] <0.001

Weekly head-
acheb (B)

66858
[5452]

1 (reference)
[2770]

1.16 (1.08 – 1.25)
[2012]

1.40 (1.25 – 1.56)
[670] <0.001

Severe weekly 
headacheb (A)

66234
[1660]

1 (reference)
[868]

1.06 (0.94 – 1.20)
[553]

1.63 (1.37 – 1.94)
[239] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

1 (reference)
[868]

1.04 (0.91 – 1.19)
[553]

1.55 (1.29 – 1.87)
[239] <0.001

Daily headacheb 

(A)
66858
[382]

1 (reference)
[181]

1.08 (0.84 – 1.40)
[131]

1.86 (1.33 – 2.61)
[70] <0.001

Daily headacheb 

(B)
66858
[382]

1 (reference)
[181]

1.12 (0.85 – 1.47)
[131]

1.89 (1.33 – 2.69)
[70] <0.001

Migraine diag-
nosisc (A)

53576
[1812]

1 (reference)
[791]

1.12 (1.00 – 1.26)
[727]

1.51 (1.29 – 1.78)
[294] <0.001

Migraine diag-
nosisc (B)

53576
[1812]

1 (reference)
[791]

1.11 (0.99 – 1.26)
[727]

1.47 (1.24 – 1.75)
[294] <0.001

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline
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Figure 1. Flowchart of the COSMOS study data.

 

aIn the UK, 99424 participants provided baseline questionnaire information and 101540 consented to operator data matching out of 105028 par-
ticipants recruited at baseline (14).

B=baseline questionnaire; F=follow-up questionnaire
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Figure 2. Distribution of the amount of mobile phone use at baseline (weekly minutes of call-time, country-
specific regression calibrated estimates adjusted by the proportion of hands-free use (RC-hfa) in the pooled 
cohort, and in the Dutch (The Netherlands (NL)) and UK sub-cohorts of COSMOS.



47

Chapter 2

Texting=frequency of text messages; OP-hfa=operator-recorded call-time adjusted by the proportion of hands-free use; SR-hfa=self-reported mo-
bile phone call-time adjusted by the proportion of hands-free use; RC-hfa= country-specific regression calibrated call-time estimates adjusted by 
the proportion of hands-free use; IEM:RC-hfa_DECT= RF-EMF dose (mJ/kg/week) to the brain of the participants calculated with an integrated 
exposure model (IEM), including country-specific regression calibrated estimates adjusted by the proportion of hands-free use (minutes/week) and 
cordless phone use (minutes/week).

Figure 3. Spearman rank correlation coefficients and correlation plot of the exposure metrics at baseline. 
Darker colors and larger circles indicate higher positive correlation levels.
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(A) and with (B) mutual adjustment for RF-EMF dose (mJ/kg/week) to the brain of the 
participants at baseline. Number of participants with the outcome indicated in square 
brackets.



51

Chapter 2

Supplementary Table 18. Single-exposure (RC) and two-exposure (RC, texting) multivari-
able logistic regression models. Odds ratio (OR) with 95% CI for weekly headache, severe 
weekly headache, daily headache, and migraine diagnosis at follow-up by amount of 
mobile phone use at baseline (weekly minutes of call-time, country-specific regression 
calibrated estimates (RC)) without (A) and with (B) mutual adjustment for the number 
of text messages sent with a mobile phone at baseline. Number of participants with the 
outcome indicated in square brackets.
Supplementary Table 19. Single-exposure (texting) and two-exposure (RC, texting) mul-
tivariable logistic regression models. Odds ratio (OR) with 95% CI for weekly headache, 
severe weekly headache, daily headache, and migraine diagnosis at follow-up by num-
ber of text messages sent with a mobile phone at baseline without (A) and with (B) 
mutual adjustment for the amount of mobile phone use at baseline (weekly minutes of 
call-time, country-specific regression calibrated estimates (RC)). Number of participants 
with the outcome indicated in square brackets.
Supplementary Table 20. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) 
multivariable logistic regression models, excluding painkiller use. Odds ratio (OR) with 
95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by amount of mobile phone use at baseline (weekly minutes of 
call-time, country-specific regression calibrated estimates adjusted by the proportion of 
hands-free use (RC-hfa)) without (A) and with (B) mutual adjustment for the number of 
text messages sent with a mobile phone at baseline. Number of participants with the 
outcome indicated in square brackets.
Supplementary Table 21. Single-exposure (texting) and two-exposure (RC-hfa, texting) 
multivariable logistic regression models, excluding painkiller use. Odds ratio (OR) with 
95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by number of text messages sent with a mobile phone at baseline 
without (A) and with (B) mutual adjustment for the amount of mobile phone use at 
baseline (weekly minutes of call-time, country-specific regression calibrated estimates 
adjusted by the proportion of hands-free use (RC-hfa)). Number of participants with the 
outcome indicated in square brackets.
Supplementary Table 22. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) 
multivariable logistic regression models with minimal adjustment for sex, age group, 
country. Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, 
daily headache, and migraine diagnosis at follow-up by amount of mobile phone use at 
baseline (weekly minutes of call-time, country-specific regression calibrated estimates 
adjusted by the proportion of hands-free use (RC-hfa)) without (A) and with (B) mutual 
adjustment for the number of text messages sent with a mobile phone at baseline. Num-
ber of participants with the outcome indicated in square brackets.
Supplementary Table 23. Single-exposure (texting) and two-exposure (RC-hfa, texting) 
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multivariable logistic regression models with minimal adjustment for sex, age group, 
country. Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, 
daily headache, and migraine diagnosis at follow-up by number of text messages sent 
with a mobile phone at baseline without (A) and with (B) mutual adjustment for the 
amount of mobile phone use at baseline (weekly minutes of call-time, country-specific 
regression calibrated estimates adjusted by the proportion of hands-free use (RC-hfa)). 
Number of participants with the outcome indicated in square brackets.
Supplementary Table 24. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) 
multivariable logistic regression models (“high” call-time exposure category 80th per-
centile). Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, 
daily headache, and migraine diagnosis at follow-up by amount of mobile phone use at 
baseline (weekly minutes of call-time, country-specific regression calibrated estimates 
adjusted by the proportion of hands-free use (RC-hfa)) without (A) and with (B) mutual 
adjustment for the number of text messages sent with a mobile phone at baseline. Num-
ber of participants with the outcome indicated in square brackets.
Supplementary Table 25. Single-exposure (texting) and two-exposure (RC-hfa, texting) 
multivariable logistic regression models (“high” call-time exposure category 80th percen-
tile). Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily 
headache, and migraine diagnosis at follow-up by number of text messages sent with a 
mobile phone at baseline without (A) and with (B) mutual adjustment for the amount of 
mobile phone use at baseline (weekly minutes of call-time, country-specific regression 
calibrated estimates adjusted by the proportion of hands-free use (RC-hfa)). Number of 
participants with the outcome indicated in square brackets.
Supplementary Table 26. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) 
multivariable logistic regression models, with RF-hfa exposure categorised into quartiles. 
Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily head-
ache, and migraine diagnosis at follow-up by amount of mobile phone use at baseline 
(weekly minutes of call-time, country-specific regression calibrated estimates adjusted 
by the proportion of hands-free use (RC-hfa)) without (A) and with (B) mutual adjust-
ment for the number of text messages sent with a mobile phone at baseline. Number of 
participants with the outcome indicated in square brackets.
Supplementary Table 27. Single-exposure (texting) and two-exposure (RC-hfa, texting) 
multivariable logistic regression models, with RF-hfa exposure categorised into quar-
tiles. Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily 
headache, and migraine diagnosis at follow-up by number of text messages sent with a 
mobile phone at baseline without (A) and with (B) mutual adjustment for the amount of 
mobile phone use at baseline (weekly minutes of call-time, country-specific regression 
calibrated estimates adjusted by the proportion of hands-free use (RC-hfa)). Number of 
participants with the outcome indicated in square brackets.
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Supplementary Table 28. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) 
multivariable logistic regression models (complete-case analysis). Odds ratio (OR) with 
95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by amount of mobile phone use at baseline (weekly minutes of 
call-time, country-specific regression calibrated estimates adjusted by the proportion of 
hands-free use (RC-hfa)) without (A) and with (B) mutual adjustment for the number of 
text messages sent with a mobile phone at baseline. Complete-case analysis. Number of 
participants with the outcome indicated in square brackets.
Supplementary Table 29. Single-exposure (texting) and two-exposure (RC-hfa, texting) 
multivariable logistic regression models (complete-case analysis). Odds ratio (OR) with 
95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by number of text messages sent with a mobile phone at baseline 
without (A) and with (B) mutual adjustment for the amount of mobile phone use at 
baseline (weekly minutes of call-time, country-specific regression calibrated estimates 
adjusted by the proportion of hands-free use (RC-hfa)). Complete-case analysis. Number 
of participants with the outcome indicated in square brackets.

Exposure metrics abbreviations:
RC-hfa: country-specific regression calibrated call-time estimates adjusted by the pro-
portion of hands-free use (minutes/week).
SR-hfa: self-reported mobile phone call-time adjusted by the proportion of hands-free 
use (minutes/week).
OP-hfa: operator-recorded mobile phone call-time adjusted by the proportion of hands-
free use (minutes/week).
IEMRC-hfa_DECT: RF-EMF estimated dose (mJ/kg/week) with the integrated exposure model 
(IEM).
RC: country-specific regression calibrated call-time estimates (RC) (minutes/week).
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Supplementary Table 1. Call-time and RF-EMF dose exposure metrics cut-offs defined on the pooled cohort 
at baseline (N=78437)

Categories of exposure

Very low Low Medium High

RC-hfaa <19.1 19.1 – 58.5 58.6 – 107.7 107.8 – 256.8

SR-hfab <12.8 12.8 – 42.2 42.3 – 113.8 113.9 – 342.0

OP-hfac <18.5 18.5 – 73.8 73.9 – 157.7 157.8 – 1040.6

IEMRC-hfa_DECT
d <1449.0 1449.0 – 4196.0 4196.1 – 7746.1 7746.2 – 19047.05

RCe <25.5 25.5 – 65.0 65.1 – 113.4 113.5 – 270.3

Very low Low Medium High

RC-hfaf <19.1 19.1 – 58.5 58.6 – 62.7 62.8 – 256.8

RC-hfag <11.8 11.8 – 29.9 30.0 – 61.8 61.9 – 256.8

aCountry-specific regression calibrated estimates adjusted by the proportion of hands-free use (minutes/week).
bSelf-reported mobile phone call-time adjusted by the proportion of hands-free use (minutes/week).
cOperator-recorded call-time adjusted by the proportion of hands-free use (minutes/week).
dRF-EMF dose (mJ/kg/week) to the brain of the participants calculated with an integrated exposure model (IEM), including country-specific regres-
sion calibrated estimates adjusted by the proportion of hands-free use (minutes/week), and cordless phone call-time (minutes/week) as input data 
for the IEM.
eCountry-specific regression calibrated estimates (minutes/week).
fCountry-specific regression calibrated estimates adjusted by the proportion of hands-free use (minutes/week), with the high exposure category 
defined as to include both Dutch and UK participants (“high” call-time exposure category defined according to the 80th percentile).
gCountry-specific regression calibrated estimates adjusted by the proportion of hands-free use (minutes/week), with the exposure categorised 
into quartiles.
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Exposure metric name (abbreviation) Exposure metric description Specifications

Country-specific regression calibrated estimates 
adjusted by the proportion of hands-free use 
(RC-hfa)

Weekly minutes of voice calling on a mobile 
phone at baseline adjusted by the self-reported 
proportion of hands-free use, using country-spe-
cific regression calibrated estimates based on 
the self-report.

We replaced the ordinal indicators of self-re-
ported voice calling in the baseline question-
naire with the average operator recorded value 
across all subjects at a given level of self-report. 
We subtracted an estimated proportion of call-
time with hands-free devices from the metric 
based on self-report.

Self-reported mobile phone call-time adjusted 
by the proportion of hands-free use (SR-hfa)

Weekly minutes of voice calling on a mobile 
phone at baseline adjusted by the self-reported 
proportion of hands-free use.

Self-reported voice calling in the baseline ques-
tionnaire using midpoints of the category inter-
vals, except the top category where (more than) 
x was set equal to x. We subtracted an estimated 
proportion of call-time with hands-free devices 
from the metric based on self-report.

Operator-recorded mobile phone call-time 
adjusted by the proportion of hands-free use 
(OP-hfa)

Weekly minutes of operator-recorded voice call-
ing on a mobile phone at baseline adjusted by 
the self-reported proportion of hands-free use.

Providers collected information on duration of 
outgoing and incoming calls over a period of 
three months at the time the baseline question-
naire was administered. We subtracted an esti-
mated proportion of call-time with hands-free 
devices from the metric based on self-report. 
The proportion of participants for whom com-
plete data from network operators at baseline 
was available was 3% (the Netherlands) and 58% 
(the UK).

RF-EMF estimated dose with the integrated ex-
posure model (IEMRC-hfa_DECT)

RF-EMF estimated dose (mJ/kg/week) to the 
brain of the participants calculated with an 
integrated exposure model (IEM), including 
country-specific regression calibrated estimates 
adjusted by the proportion of hands-free use 
(minutes/week), and cordless phone call-time 
(minutes/week).

In the IEM we assumed that the type of mobile 
phone used was ‘smartphone’, the proportion of 
time the phone was used on left/right side of the 
head was 50%, the proportion of time the phone 
was used at low (800-900 MHz) and high (1800-
2100 MHz) frequencies was 0.361 (lowF), 0.639 
(highF), and the proportion of time the phone 
was used at 2G and 3G networks was 50% (van 
Wel et al., 2021).

Country-specific regression calibrated estimates 
(RC)

Weekly minutes of voice calling on a mobile 
phone at baseline, using country-specific re-
gression calibrated estimates based on self-re-
port.

We replaced the ordinal indicators of self-re-
ported voice calling in the baseline question-
naire with the average operator recorded value 
across all subjects at a given level of self-report.

Number of text messages (texting) Self-reported number of text messages sent 
with a mobile phone at baseline. -

Supplementary Table 2. Exposure metrics overview.
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Supplementary Table 3. Characteristics of the participants by number of text messages sent with a mobile 
phone at baseline.

Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

Low
(N=46190)

Medium
(N=25684)

High
(N=6563)

Overall 
(N=78437)

Sex, n (%)
Men 11391 (24.7) 7629 (29.7) 2057 (31.3) 21077 (26.9)

Women 34799 (75.3) 18055 (70.3) 4506 (68.7) 57360 (73.1)

Age group (years), n (%)
18-29 1393 (3.0) 3296 (12.8) 1924 (29.3) 6613 (8.4)
30-39 4048 (8.8) 4791 (18.7) 1346 (20.5) 10185 (13.0)
40-49 9284 (20.1) 5947 (23.2) 1505 (22.9) 16736 (21.3)
50-59 15806 (34.2) 7903 (30.8) 1343 (20.5) 25052 (31.9)
60+ 15659 (33.9) 3747 (14.6) 445 (6.8) 19851 (25.3)

Country, n (%)
The Netherlands 34036 (73.7) 9470 (36.9) 1137 (17.3) 44643 (56.9)

UK 12154 (26.3) 16214 (63.1) 5426 (82.7) 33794 (43.1)
Highest level of education 
attained, n (%)

Elementary 5925 (12.8) 1347 (5.2) 461 (7.0) 7733 (9.9)
Secondary and 
higher 39757 (86.1) 23847 (92.8) 5926 (90.3) 69530 (88.6)

Missing 508 (1.1) 490 (1.9) 176 (2.7) 1174 (1.5)
BMI group, n (%)

Normal or under-
weight 23652 (51.2) 13059 (50.8) 3199 (48.7) 39910 (50.9)

Overweight or obese 21753 (47.1) 11714 (45.6) 2979 (45.4) 36446 (46.5)
Missing 785 (1.7) 911 (3.5) 385 (5.9) 2081 (2.7)

General health indicator, 
n (%)

Good 40894 (88.5) 23703 (92.3) 6014 (91.6) 70611 (90.0)
Poor 5097 (11.0) 1939 (7.5) 545 (8.3) 7581 (9.7)
Missing 199 (0.4) 42 (0.2) 4 (0.1) 245 (0.3)

Sleep disturbance index, 
mean (SD) 26.8 (18.7) 25.4 (19.2) 29.4 (22.3) 26.5 (19.2)

Missing, n (%) 60 (0.1) 52 (0.2) 36 (0.5) 148 (0.2)
Painkiller use, n (%)

No 36545 (79.1) 22751 (88.6) 5834 (88.9) 65130 (83.0)
Yes 5480 (11.9) 2504 (9.7) 653 (9.9) 8637 (11.0)
Missing 4165 (9.0) 429 (1.7) 76 (1.2) 4670 (6.0)

Depression diagnosis, n (%)
No 36905 (79.9) 21456 (83.5) 5154 (78.5) 63515 (81.0)
Yes 5034 (10.9) 3819 (14.9) 1332 (20.3) 10185 (13.0)
Missing 4251 (9.2) 409 (1.6) 77 (1.2) 4737 (6.0)

High blood pressure diag-
nosis, n (%)

No 32805 (71.0) 21654 (84.3) 5781 (88.1) 60240 (76.8)
Yes 10470 (22.7) 3657 (14.2) 711 (10.8) 14838 (18.9)
Missing 2915 (6.3) 373 (1.5) 71 (1.1) 3359 (4.3)

Smoking status, n (%)
Never 22055 (47.7) 12884 (50.2) 3407 (51.9) 38346 (48.9)
Former 19534 (42.3) 10310 (40.1) 2302 (35.1) 32146 (41.0)
Current 4316 (9.3) 2347 (9.1) 785 (12.0) 7448 (9.5)
Missing 285 (0.6) 143 (0.6) 69 (1.1) 497 (0.6)

Alcohol consumption, n (%)
Never 2187 (4.7) 641 (2.5) 123 (1.9) 2951 (3.8)
Former 1199 (2.6) 567 (2.2) 174 (2.7) 1940 (2.5)
Current 41619 (90.1) 23402 (91.1) 5775 (88.0) 70796 (90.3)
Missing 1185 (2.6) 1074 (4.2) 491 (7.5) 2750 (3.5)

Weekly headacheb, n (%)
No 40569 (87.8) 21347 (83.1) 4942 (75.3) 66858 (85.2)
Yes 5621 (12.2) 4337 (16.9) 1621 (24.7) 11579 (14.8)

Severe weekly headacheb, 
n (%)

No 43588 (94.4) 24026 (93.5) 5870 (89.4) 73484 (93.7)
Yes 2171 (4.7) 1553 (6.0) 674 (10.3) 4398 (5.6)
Missing 431 (0.9) 105 (0.4) 19 (0.3) 555 (0.7)

Daily headacheb, n (%)
No 45595 (98.7) 25282 (98.4) 6382 (97.2) 77259 (98.5)
Yes 595 (1.3) 402 (1.6) 181 (2.8) 1178 (1.5)

Migraine diagnosisb, n (%)
No 34843 (75.4) 21325 (83.0) 5256 (80.1) 61424 (78.3)
Yes 5297 (11.5) 3716 (14.5) 1198 (18.3) 10211 (13.0)
Missing 6050 (13.1) 643 (2.5) 109 (1.7) 6802 (8.7)

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 
text messages per day/30 or more text messages per day.
bAt baseline.
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Supplementary Table 4. Characteristics of the participants in the Netherlands by amount of mobile phone 
use at baseline (weekly minutes of call-time, country-specific regression calibrated estimates adjusted by the 
proportion of hands-free use (RC-hfa)).

Very low 
(N=19462)

Low 
(N=20401)

Medium 
(N=4780)

High
(N=0)

Overall 
(N=44643)

Sex, n (%)
Men 1744 (9.0) 2381 (11.7) 689 (14.4) 0 (0.0) 4814 (10.8)
Wormen 17718 (91.0) 18020 (88.3) 4091 (85.6) 0 (0.0) 39829 (89.2)

Age group (years), n (%)
18-29 309 (1.6) 1665 (8.2) 655 (13.7) 0 (0.0) 2629 (5.9)
30-39 1464 (7.5) 2623 (12.9) 790 (16.5) 0 (0.0) 4877 (10.9)
40-49 4603 (23.7) 5333 (26.1) 1244 (26.0) 0 (0.0) 11180 (25.0)
50-59 6195 (31.8) 7104 (34.8) 1656 (34.6) 0 (0.0) 14955 (33.5)
60+ 6891 (35.4) 3676 (18.0) 435 (9.1) 0 (0.0) 11002 (24.6)

Highest level of education attained, 
n (%)

Elementary 3354 (17.2) 1715 (8.4) 196 (4.1) 0 (0.0) 5265 (11.8)
Secondary and higher 16078 (82.6) 18649 (91.4) 4573 (95.7) 0 (0.0) 39300 (88.0)
Missing 30 (0.2) 37 (0.2) 11 (0.2) 0 (0.0) 78 (0.2)

BMI group, n (%)
Normal or underweight 10870 (55.9) 11685 (57.3) 2873 (60.1) 0 (0.0) 25428 (57.0)
Overweight or obese 8528 (43.8) 8660 (42.4) 1897 (39.7) 0 (0.0) 19085 (42.8)
Missing 64 (0.3) 56 (0.3) 10 (0.2) 0 (0.0) 130 (0.3)

General health indicator, n (%)
Good 16821 (86.4) 18069 (88.6) 4225 (88.4) 0 (0.0) 39115 (87.6)
Poor 2535 (13.0) 2219 (10.9) 529 (11.1) 0 (0.0) 5283 (11.8)
Missing 106 (0.5) 113 (0.6) 26 (0.5) 0 (0.0) 245 (0.5)

Sleep disturbance index, mean (SD) 28.9 (18.6) 27.7 (18.0) 27.9 (18.0) 0 (0.0) 28.2 (18.3)
Missing, n (%) 20 (0.1) 26 (0.1) 5 (0.1) 0 (0.0) 51 (0.1)

Painkiller use, n (%)
No 14172 (72.8) 15755 (77.2) 3806 (79.6) 0 (0.0) 33733 (75.6)
Yes 2617 (13.4) 3091 (15.2) 720 (15.1) 0 (0.0) 6428 (14.4)
Missing 2673 (13.7) 1555 (7.6) 254 (5.3) 0 (0.0) 4482 (10.0)

Depression diagnosis, n (%)
No 14925 (76.7) 17019 (83.4) 4108 (85.9) 0 (0.0) 36052 (80.8)
Yes 1782 (9.2) 1808 (8.9) 434 (9.1) 0 (0.0) 4024 (9.0)
Missing 2755 (14.2) 1574 (7.7) 238 (5.0) 0 (0.0) 4567 (10.2)

High blood pressure diagnosis, n (%)
No 13028 (66.9) 15606 (76.5) 3865 (80.9) 0 (0.0) 32499 (72.8)
Yes 4636 (23.8) 3616 (17.7) 705 (14.7) 0 (0.0) 8957 (20.1)
Missing 1798 (9.2) 1179 (5.8) 210 (4.4) 0 (0.0) 3187 (7.1)

Smoking status, n (%) 0 (0.0)

Never 9524 (48.9) 9513 (46.6) 2192 (45.9) 0 (0.0) 21229 (47.6)
Former 7877 (40.5) 8596 (42.1) 1915 (40.1) 0 (0.0) 18388 (41.2)
Current 1914 (9.8) 2208 (10.8) 660 (13.8) 0 (0.0) 4782 (10.7)
Missing 147 (0.8) 84 (0.4) 13 (0.3) 0 (0.0) 244 (0.5)

Alcohol consumption, n (%)
Never 1344 (6.9) 1042 (5.1) 207 (4.3) 0 (0.0) 2593 (5.8)
Former 606 (3.1) 537 (2.6) 108 (2.3) 0 (0.0) 1251 (2.8)
Current 17323 (89.0) 18718 (91.8) 4447 (93.0) 0 (0.0) 40488 (90.7)
Missing 189 (1.0) 104 (0.5) 18 (0.4) 0 (0.0) 311 (0.7)

Weekly headacheb, n (%)
No 17200 (88.4) 17587 (86.2) 4051 (84.7) 0 (0.0) 38838 (87.0)
Yes 2262 (11.6) 2814 (13.8) 729 (15.3) 0 (0.0) 5805 (13.0)

Severe weekly headacheb, n (%)
No 18241 (93.7) 18922 (92.8) 4392 (91.9) 0 (0.0) 41555 (93.1)
Yes 954 (4.9) 1257 (6.2) 335 (7.0) 0 (0.0) 2546 (5.7)
Missing 267 (1.4) 222 (1.1) 53 (1.1) 0 (0.0) 542 (1.2)

Daily headacheb, n (%)
No 19217 (98.7) 20124 (98.6) 4709 (98.5) 0 (0.0) 44050 (98.7)
Yes 245 (1.3) 277 (1.4) 71 (1.5) 0 (0.0) 593 (1.3)

Migraine diagnosisb, n (%)
No 10545 (54.2) 12739 (62.4) 3081 (64.5) 0 (0.0) 26365 (59.1)
Yes 1541 (7.9) 1738 (8.5) 435 (9.1) 0 (0.0) 3714 (8.3)
Missing 7376 (37.9) 5924 (29.0) 1264 (26.4) 0 (0.0) 14564 (32.6)

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 107.8 (min/week); High: RC-hfa ≥ 
107.8 (min/week), (max=256.8 min/week).
bAt baseline.
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Supplementary Table 5. Characteristics of the participants in the UK by amount of mobile phone use at baseline 
(weekly minutes of call-time, country-specific regression calibrated estimates adjusted by the proportion of 
hands-free use (RC-hfa)).

Very low 
(N=3749)

Low 
(N=10909)

Medium 
(N=9695)

High

(N=9441)

Overall 
(N=33794)

Sex, n (%)
Men 1676 (44.7) 5267 (48.3) 4976 (51.3) 4344 (46.0) 16263 (48.1)
Wormen 2073 (55.3) 5642 (51.7) 4719 (48.7) 5097 (54.0) 17531 (51.9)

Age group (years), n (%)
18-29 269 (7.2) 1085 (9.9) 1048 (10.8) 1582 (16.8) 3984 (11.8)
30-39 404 (10.8) 1682 (15.4) 1503 (15.5) 1719 (18.2) 5308 (15.7)
40-49 500 (13.3) 1649 (15.1) 1594 (16.4) 1813 (19.2) 5556 (16.4)
50-59 913 (24.4) 3218 (29.5) 3164 (32.6) 2802 (29.7) 10097 (29.9)
60+ 1663 (44.4) 3275 (30.0) 2386 (24.6) 1525 (16.2) 8849 (26.2)

Highest level of education attained, 
n (%)

Elementary 287 (7.7) 843 (7.7) 675 (7.0) 663 (7.0) 2468 (7.3)
Secondary and higher 3353 (89.4) 9730 (89.2) 8682 (89.6) 8465 (89.7) 30230 (89.5)
Missing 109 (2.9) 336 (3.1) 338 (3.5) 313 (3.3) 1096 (3.2)

BMI group, n (%)
Normal or underweight 1857 (49.5) 4611 (42.3) 4018 (41.4) 3996 (42.3) 14482 (42.9)
Overweight or obese 1713 (45.7) 5726 (52.5) 5091 (52.5) 4831 (51.2) 17361 (51.4)
Missing 179 (4.8) 572 (5.2) 586 (6.0) 614 (6.5) 1951 (5.8)

General health indicator, n (%)
Good 3486 (93.0) 10227 (93.7) 9049 (93.3) 8734 (92.5) 31496 (93.2)
Poor 263 (7.0) 682 (6.3) 646 (6.7) 707 (7.5) 2298 (6.8)

Sleep disturbance index, mean (SD) 22.7 (19.0) 23.4 (19.6) 24.0 (20.0) 26.1 (21.5) 24.3 (20.2)
Missing, n (%) 6 (0.2) 15 (0.1) 38 (0.4) 38 (0.4) 97 (0.3)

Painkiller use, n (%)
No 3519 (93.9) 10163 (93.2) 9013 (93.0) 8702 (92.2) 31397 (92.9)
Yes 215 (5.7) 712 (6.5) 611 (6.3) 671 (7.1) 2209 (6.5)
Missing 15 (0.4) 34 (0.3) 71 (0.7) 68 (0.7) 188 (0.6)

Depression diagnosis, n (%)
No 3119 (83.2) 8975 (82.3) 7873 (81.2) 7496 (79.4) 27463 (81.3)
Yes 618 (16.5) 1901 (17.4) 1761 (18.2) 1881 (19.9) 6161 (18.2)
Missing 12 (0.3) 33 (0.3) 61 (0.6) 64 (0.7) 170 (0.5)

High blood pressure diagnosis, n (%)
No 2943 (78.5) 8857 (81.2) 7972 (82.2) 7969 (84.4) 27741 (82.1)
Yes 794 (21.2) 2017 (18.5) 1663 (17.2) 1407 (14.9) 5881 (17.4)
Missing 12 (0.3) 35 (0.3) 60 (0.6) 65 (0.7) 172 (0.5)

Smoking status, n (%)
Never 2179 (58.1) 5583 (51.2) 4737 (48.9) 4618 (48.9) 17117 (50.7)
Former 1378 (36.8) 4539 (41.6) 4112 (42.4) 3729 (39.5) 13758 (40.7)
Current 171 (4.6) 736 (6.7) 757 (7.8) 1002 (10.6) 2666 (7.9)
Missing 21 (0.6) 51 (0.5) 89 (0.9) 92 (1.0) 253 (0.7)

Alcohol consumption, n (%)
Never 49 (1.3) 94 (0.9) 97 (1.0) 118 (1.2) 358 (1.1)
Former 56 (1.5) 201 (1.8) 206 (2.1) 226 (2.4) 689 (2.0)
Current 3342 (89.1) 9949 (91.2) 8722 (90.0) 8295 (87.9) 30308 (89.7)
Missing 302 (8.1) 665 (6.1) 670 (6.9) 802 (8.5) 2439 (7.2)

Weekly headacheb, n (%)
No 3261 (87.0) 9244 (84.7) 7990 (82.4) 7525 (79.7) 28020 (82.9)
Yes 488 (13.0) 1665 (15.3) 1705 (17.6) 1916 (20.3) 5774 (17.1)

Severe weekly headacheb, n (%)
No 3618 (96.5) 10423 (95.5) 9160 (94.5) 8728 (92.4) 31929 (94.5)
Yes 130 (3.5) 486 (4.5) 531 (5.5) 705 (7.5) 1852 (5.5)
Missing 1 (0.0) 0 (0) 4 (0.0) 8 (0.1) 13 (0.0)

Daily headacheb, n (%)
No 3697 (98.6) 10758 (98.6) 9529 (98.3) 9225 (97.7) 33209 (98.3)
Yes 52 (1.4) 151 (1.4) 166 (1.7) 216 (2.3) 585 (1.7)

Migraine diagnosisb, n (%)
No 3066 (81.8) 8875 (81.4) 7781 (80.3) 7489 (79.3) 27211 (80.5)
Yes 567 (15.1) 1650 (15.1) 1489 (15.4) 1513 (16.0) 5219 (15.4)
Missing 116 (3.1) 384 (3.5) 425 (4.4) 439 (4.6) 1364 (4.0)

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 107.8 (min/week); High: RC-hfa ≥ 107.8 
(min/week), (max=256.8 min/week).
bAt baseline.
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Supplementary Table 6. Characteristics of the participants in the Netherlands by number of text messages 
sent with a mobile phone at baseline.

Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

Low
(N=34036)

Medium
(N=9470)

High
(N=1137)

Overall 
(N=44643)

Sex, n (%)
Men 4093 (12.0) 643 (6.8) 78 (6.9) 4814 (10.8)
Women 29943 (88.0) 8827 (93.2) 1059 (93.1) 39829 (89.2)

Age group (years), n (%)
18-29 933 (2.7) 1388 (14.7) 308 (27.1) 2629 (5.9)
30-39 2917 (8.6) 1724 (18.2) 236 (20.8) 4877 (10.9)
40-49 7860 (23.1) 2997 (31.6) 323 (28.4) 11180 (25.0)
50-59 11945 (35.1) 2787 (29.4) 223 (19.6) 14955 (33.5)
60+ 10381 (30.5) 574 (6.1) 47 (4.1) 11002 (24.6)

Highest level of education 
attained, n (%)

Elementary 4898 (14.4) 326 (3.4) 41 (3.6) 5265 (11.8)
Secondary and 
higher 29082 (85.4) 9124 (96.3) 1094 (96.2) 39300 (88.0)

Missing 56 (0.2) 20 (0.2) 2 (0.2) 78 (0.2)
BMI group, n (%)

Normal or under-
weight 18929 (55.6) 5802 (61.3) 697 (61.3) 25428 (57.0)

Overweight or obese 15004 (44.1) 3643 (38.5) 438 (38.5) 19085 (42.8)
Missing 103 (0.3) 25 (0.3) 2 (0.2) 130 (0.3)

General health indicator, 
n (%)

Good 29626 (87.0) 8501 (89.8) 988 (86.9) 39115 (87.6)
Poor 4211 (12.4) 927 (9.8) 145 (12.8) 5283 (11.8)
Missing 199 (0.6) 42 (0.4) 4 (0.4) 245 (0.5)

Sleep disturbance index, 
mean (SD) 28.4 (18.4) 27.5 (17.8) 29.1 (19.2) 28.2 (18.3)

Missing, n (%) 34 (0.1) 12 (0.1) 5 (0.4) 51 (0.1)
Painkiller use, n (%)

No 25230 (74.1) 7641 (80.7) 862 (75.8) 33733 (75.6)
Yes 4702 (13.8) 1483 (15.7) 243 (21.4) 6428 (14.4)
Missing 4104 (12.1) 346 (3.7) 32 (2.8) 4482 (10.0)

Depression diagnosis, n (%)
No 26697 (78.4) 8350 (88.2) 1005 (88.4) 36052 (80.8)
Yes 3141 (9.2) 785 (8.3) 98 (8.6) 4024 (9.0)
Missing 4198 (12.3) 335 (3.5) 34 (3.0) 4567 (10.2)

High blood pressure diagno-
sis, n (%)

No 23599 (69.3) 7923 (83.7) 977 (85.9) 32499 (72.8)
Yes 7578 (22.3) 1248 (13.2) 131 (11.5) 8957 (20.1)
Missing 2859 (8.4) 299 (3.2) 29 (2.6) 3187 (7.1)

Smoking status, n (%)
Never 15953 (46.9) 4675 (49.4) 601 (52.9) 21229 (47.6)
Former 14342 (42.1) 3679 (38.8) 367 (32.3) 18388 (41.2)
Current 3533 (10.4) 1087 (11.5) 162 (14.2) 4782 (10.7)
Missing 208 (0.6) 29 (0.3) 7 (0.6) 244 (0.5)

Alcohol consumption, n (%)
Never 2057 (6.0) 477 (5.0) 59 (5.2) 2593 (5.8)
Former 992 (2.9) 231 (2.4) 28 (2.5) 1251 (2.8)
Current 30703 (90.2) 8737 (92.3) 1048 (92.2) 40488 (90.7)
Missing 284 (0.8) 25 (0.3) 2 (0.2) 311 (0.7)

Weekly headacheb, n (%)
No 29974 (88.1) 7960 (84.1) 904 (79.5) 38838 (87.0)
Yes 4062 (11.9) 1510 (15.9) 233 (20.5) 5805 (13.0)

Severe weekly headacheb, 
n (%)

No 31856 (93.6) 8694 (91.8) 1005 (88.4) 41555 (93.1)
Yes 1752 (5.1) 675 (7.1) 119 (10.5) 2546 (5.7)
Missing 428 (1.3) 101 (1.1) 13 (1.1) 542 (1.2)

Daily headacheb, n (%)
No 33609 (98.7) 9328 (98.5) 1113 (97.9) 44050 (98.7)
Yes 427 (1.3) 142 (1.5) 24 (2.1) 593 (1.3)

Migraine diagnosisb, n (%)
No 18869 (55.4) 6714 (70.9) 782 (68.8) 26365 (59.1)
Yes 2682 (7.9) 886 (9.4) 146 (12.8) 3714 (8.3)
Missing 12485 (36.7) 1870 (19.7) 209 (18.4) 14564 (32.6)

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAt baseline.
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Supplementary Table 7. Characteristics of the participants in the UK by number of text messages sent with a 
mobile phone at baseline.

Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

Low
(N=12154)

Medium
(N=16214)

High
(N=5426)

Overall 
(N=33794)

Sex, n (%)
Men 7298 (60.0) 6986 (43.1) 1979 (36.5) 16263 (48.1)
Women 4856 (40.0) 9228 (56.9) 3447 (63.5) 17531 (51.9)

Age group (years), n (%)
18-29 460 (3.8) 1908 (11.8) 1616 (29.8) 3984 (11.8)
30-39 1131 (9.3) 3067 (18.9) 1110 (20.5) 5308 (15.7)
40-49 1424 (11.7) 2950 (18.2) 1182 (21.8) 5556 (16.4)
50-59 3861 (31.8) 5116 (31.6) 1120 (20.6) 10097 (29.9)
60+ 5278 (43.4) 3173 (19.6) 398 (7.3) 8849 (26.2)

Highest level of education 
attained, n (%)

Elementary 1027 (8.4) 1021 (6.3) 420 (7.7) 2468 (7.3)
Secondary and 
higher 10675 (87.8) 14723 (90.8) 4832 (89.1) 30230 (89.5)

Missing 452 (3.7) 470 (2.9) 174 (3.2) 1096 (3.2)
BMI group, n (%)

Normal or under-
weight 4723 (38.9) 7257 (44.8) 2502 (46.1) 14482 (42.9)

Overweight or obese 6749 (55.5) 8071 (49.8) 2541 (46.8) 17361 (51.4)
Missing 682 (5.6) 886 (5.5) 383 (7.1) 1951 (5.8)

General health indicator, 
n (%)

Good 11268 (92.7) 15202 (93.8) 5026 (92.6) 31496 (93.2)
Poor 886 (7.3) 1012 (6.2) 400 (7.4) 2298 (6.8)

Sleep disturbance index, 
mean (SD) 22.2 (19.0) 24.1 (19.9) 29.5 (22.9) 24.3 (20.2)

Missing, n (%) 26 (0.2) 40 (0.2) 31 (0.6) 97 (0.3)
Painkiller use, n (%)

No 11315 (93.1) 15110 (93.2) 4972 (91.6) 31397 (92.9)
Yes 778 (6.4) 1021 (6.3) 410 (7.6) 2209 (6.5)
Missing 61 (0.5) 83 (0.5) 44 (0.8) 188 (0.6)

Depression diagnosis, n (%)
No 10208 (84.0) 13106 (80.8) 4149 (76.5) 27463 (81.3)
Yes 1893 (15.6) 3034 (18.7) 1234 (22.7) 6161 (18.2)
Missing 53 (0.4) 74 (0.5) 43 (0.8) 170 (0.5)

High blood pressure diagno-
sis, n (%)

No 9206 (75.7) 13731 (84.7) 4804 (88.5) 27741 (82.1)
Yes 2892 (23.8) 2409 (14.9) 580 (10.7) 5881 (17.4)
Missing 56 (0.5) 74 (0.5) 42 (0.8) 172 (0.5)

Smoking status, n (%)
Never 6102 (50.2) 8209 (50.6) 2806 (51.7) 17117 (50.7)
Former 5192 (42.7) 6631 (40.9) 1935 (35.7) 13758 (40.7)
Current 783 (6.4) 1260 (7.8) 623 (11.5) 2666 (7.9)
Missing 77 (0.6) 114 (0.7) 62 (1.1) 253 (0.7)

Alcohol consumption, n (%)
Never 130 (1.1) 164 (1.0) 64 (1.2) 358 (1.1)
Former 207 (1.7) 336 (2.1) 146 (2.7) 689 (2.0)
Current 10916 (89.8) 14665 (90.4) 4727 (87.1) 30308 (89.7)
Missing 901 (7.4) 1049 (6.5) 489 (9.0) 2439 (7.2)

Weekly headacheb, n (%)
No 10595 (87.2) 13387 (82.6) 4038 (74.4) 28020 (82.9)
Yes 1559 (12.8) 2827 (17.4) 1388 (25.6) 5774 (17.1)

Severe weekly headacheb, 
n (%)

No 11732 (96.5) 15332 (94.6) 4865 (89.7) 31929 (94.5)
Yes 419 (3.4) 878 (5.4) 555 (10.2) 1852 (5.5)
Missing 3 (0.0) 4 (0.0) 6 (0.1) 13 (0.0)

Daily headacheb, n (%)
No 11986 (98.6) 15954 (98.4) 5269 (97.1) 33209 (98.3)
Yes 168 (1.4) 260 (1.6) 157 (2.9) 585 (1.7)

Migraine diagnosisb, n (%)
No 10046 (82.7) 13025 (80.3) 4140 (76.3) 27211 (80.5)
Yes 1698 (14.0) 2538 (15.7) 983 (18.1) 5219 (15.4)
Missing 410 (3.4) 651 (4.0) 303 (5.6) 1364 (4.0)

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per day/30 or more text 
messages per day.
bAt baseline.
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Amount of mobile phone use at baseline (call-time in categoriesa)

Very low 
(N=42322)

Low 
(N=61078)

Medium 
(N=34134)

High 
(N=28136)

Overallb 
(N=165670)

Sex, n (%)
Men 6849 (16.2) 16534 (27.1) 13826 (40.5) 12744 (45.3) 49953 (30.2)
Women 35472 (83.8) 44537 (72.9) 20306 (59.5) 15389 (54.7) 115704 (69.8)
Missing 1 (0.0) 7 (0.0) 2 (0.0) 3 (0.0) 13 (0.0)

Age group (years), n (%)
18-29 1674 (4.0) 7744 (12.7) 6176 (18.1) 7434 (26.4) 23028 (13.9)

30-39 4097 (9.7) 9783 (16.0) 6410 (18.8) 5921 (21.0) 26211 (15.8)

40-49 9607 (22.7) 13763 (22.5) 6604 (19.3) 5185 (18.4) 35159 (21.2)

50-59 12255 (29.0) 17701 (29.0) 9369 (27.4) 6246 (22.2) 45571 (27.5)

60+ 14686 (34.7) 12076 (19.8) 5565 (16.3) 3328 (11.8) 35655 (21.5)

Missing 3 (0.0) 11 (0.0) 10 (0.0) 22 (0.1) 46 (0.0)

Country, n (%)
The Netherlands 34014 (80.4) 34899 (57.1) 9136 (26.8) 0 (0) 78049 (47.1)

UK 8308 (19.6) 26179 (42.9) 24998 (73.2) 28136 (100) 87621 (52.9)
Highest level of education attained, 
n (%)

Elementary 7569 (17.9) 5910 (9.7) 2867 (8.4) 2870 (10.2) 19216 (11.6)

Secondary and higher 34237 (80.9) 53640 (87.8) 29799 (87.3) 23425 (83.3) 141101 (85.2)

Missing 516 (1.2) 1528 (2.5) 1468 (4.3) 1841 (6.5) 5353 (3.2)

BMI group, n (%)
Normal or underweight 21607 (51.1) 28733 (47.0) 13720 (40.2) 9556 (34.0) 73616 (44.4)

Overweight or obese 18739 (44.3) 26104 (42.7) 14091 (41.3) 10982 (39.0) 69916 (42.2)

Missing 1976 (4.7) 6241 (10.2) 6323 (18.5) 7598 (27.0) 22138 (13.4)

General health indicator, n (%)
Good 36236 (85.6) 54697 (89.6) 31094 (91.1) 25644 (91.1) 147671 (89.1)

Poor 5855 (13.8) 6176 (10.1) 2996 (8.8) 2492 (8.9) 17519 (10.6)

Missing 231 (0.5) 205 (0.3) 44 (0.1) 0 (0) 480 (0.3)

Sleep disturbance index, mean (SD) 28.1 (19.4) 26.7 (19.4) 26.6 (20.6) 28.8 (23.1) 27.4 (20.3)

Missing, n (%) 109 (0.3) 228 (0.4) 217 (0.6) 264 (0.9) 818 (0.5)

Painkiller use, n (%)
No 32335 (76.4) 50807 (83.2) 29994 (87.9) 25378 (90.2) 138514 (83.6)
Yes 5444 (12.9) 7537 (12.3) 3306 (9.7) 2241 (8.0) 18528 (11.2)
Missing 4543 (10.7) 2734 (4.5) 834 (2.4) 517 (1.8) 8628 (5.2)

Depression diagnosis, n (%)
No 33062 (78.1) 50505 (82.7) 27830 (81.5) 21931 (77.9) 133328 (80.5)
Yes 4592 (10.9) 7853 (12.9) 5522 (16.2) 5746 (20.4) 23713 (14.3)
Missing 4668 (11.0) 2720 (4.5) 782 (2.3) 459 (1.6) 8629 (5.2)

High blood pressure diagnosis, n (%)
No 29547 (69.8) 48430 (79.3) 28242 (82.7) 24034 (85.4) 130253 (78.6)
Yes 9760 (23.1) 10496 (17.2) 5165 (15.1) 3643 (12.9) 29064 (17.5)
Missing 3015 (7.1) 2152 (3.5) 727 (2.1) 459 (1.6) 6353 (3.8)

Smoking status, n (%)
Never 20822 (49.2) 29152 (47.7) 15962 (46.8) 13141 (46.7) 79077 (47.7)

Former 16647 (39.3) 24456 (40.0) 13393 (39.2) 10106 (35.9) 64602 (39.0)

Current 4447 (10.5) 6895 (11.3) 4262 (12.5) 4192 (14.9) 19796 (11.9)

Missing 406 (1.0) 575 (0.9) 517 (1.5) 697 (2.5) 2195 (1.3)

Alcohol consumption, n (%)
Never 2702 (6.4) 2183 (3.6) 715 (2.1) 362 (1.3) 5962 (3.6)

Former 1336 (3.2) 1648 (2.7) 876 (2.6) 832 (3.0) 4692 (2.8)

Current 36996 (87.4) 54852 (89.8) 30139 (88.3) 23639 (84.0) 145626 (87.9)

Missing 1288 (3.0) 2395 (3.9) 2404 (7.0) 3303 (11.7) 9390 (5.7)

Weekly headachec, n (%)
No 36630 (86.6) 51102 (83.7) 27592 (80.8) 21311 (75.7) 136635 (82.5)
Yes 5692 (13.4) 9976 (16.3) 6542 (19.2) 6825 (24.3) 29035 (17.5)

Severe weekly headachec, n (%)
No 39387 (93.1) 56673 (92.8) 31601 (92.6) 25389 (90.2) 153050 (92.4)
Yes 2383 (5.6) 3941 (6.5) 2399 (7.0) 2691 (9.6) 11414 (6.9)
Missing 552 (1.3) 464 (0.8) 134 (0.4) 56 (0.2) 1206 (0.7)

Daily headachec, n (%)
No 41610 (98.3) 60068 (98.3) 33457 (98.0) 27307 (97.1) 162442 (98.1)
Yes 712 (1.7) 1010 (1.7) 677 (2.0) 829 (2.9) 3228 (1.9)

Migraine diagnosisc, n (%)
No 31028 (73.3) 49522 (81.1) 28201 (82.6) 23130 (82.2) 131881 (79.6)
Yes 4776 (11.3) 7703 (12.6) 4863 (14.2) 4545 (16.2) 21887 (13.2)
Missing 6519 (15.4) 3852 (6.3) 1070 (3.1) 461 (1.6) 11902 (7.2)

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 107.8 (min/week); High: RC-hfa ≥ 
107.8 (min/week), (max=256.8 min/week).
bAfter exclusion of participants with missing information on handsfree device use (N=8568), self-reported mobile phone use (N=8098), texting (N=10734), 
frequency of headache at baseline (N=10508), and finally participants whose phone was “often” used by others (N=5681).
cAt baseline.

Supplementary Table 8. Characteristics of the participants who completed the baseline questionnaire (irrespective of their 
subsequent completion of the follow-up questionnaire) by amount of mobile phone use at baseline (weekly minutes of call-
time, country-specific regression calibrated estimates adjusted by the proportion of hands-free use (RC-hfa)).
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Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

Low
(N=85534)

Medium
(N=57580)

High
(N=22556)

Overallb 
(N=165670)

Sex, n (%)
Men 23324 (27.3) 18595 (32.3) 8034 (35.6) 49953 (30.2)
Women 62203 (72.7) 38980 (67.7) 14521 (64.4) 115704 (69.8)
Missing 7 (0.0) 5 (0.0) 1 (0.0) 13 (0.0)

Age group (years), n (%)
18-29 3941 (4.6) 9926 (17.2) 9161 (40.6) 23028 (13.9)

30-39 9210 (10.8) 12331 (21.4) 4670 (20.7) 26211 (15.8)

40-49 17671 (20.7) 13086 (22.7) 4402 (19.5) 35159 (21.2)

50-59 27362 (32.0) 14951 (26.0) 3258 (14.4) 45571 (27.5)

60+ 27337 (32.0) 7269 (12.6) 1049 (4.7) 35655 (21.5)

Missing 13 (0.0) 17 (0.0) 16 (0.1) 46 (0.0)

Country, n (%)
The Netherlands 57967 (67.8) 17605 (30.6) 2477 (11.0) 78049 (47.1)

UK 27567 (32.2) 39975 (69.4) 20079 (89.0) 87621 (52.9)
Highest level of education 
attained, n (%)

Elementary 12676 (14.8) 4266 (7.4) 2274 (10.1) 19216 (11.6)
Secondary and 
higher

70886 (82.9) 51160 (88.9) 19055 (84.5) 141101 (85.2)

Missing 1972 (2.3) 2154 (3.7) 1227 (5.4) 5353 (3.2)

BMI group, n (%)
Normal or under-
weight

39632 (46.3) 24888 (43.2) 9096 (40.3) 73616 (44.4)

Overweight or obese 38843 (45.4) 22824 (39.6) 8249 (36.6) 69916 (42.2)

Missing 7059 (8.3) 9868 (17.1) 5211 (23.1) 22138 (13.4)
General health indicator, 
n (%)

Good 74378 (87.0) 52705 (91.5) 20588 (91.3) 147671 (89.1)

Poor 10765 (12.6) 4796 (8.3) 1958 (8.7) 17519 (10.6)

Missing 391 (0.5) 79 (0.1) 10 (0.0) 480 (0.3)
Sleep disturbance index, 
mean (SD)

27.0 (19.4) 26.4 (20.1) 31.2 (23.6) 27.4 (20.3)

Missing, n (%) 285 (0.3) 295 (0.5) 238 (1.1) 818 (0.5)

Painkiller use, n (%)
No 67940 (79.4) 50716 (88.1) 19858 (88.0) 138514 (83.6)
Yes 10591 (12.4) 5711 (9.9) 2226 (9.9) 18528 (11.2)
Missing 7003 (8.2) 1153 (2.0) 472 (2.1) 8628 (5.2)

Depression diagnosis, n (%)
No 68444 (80.0) 47323 (82.2) 17561 (77.9) 133328 (80.5)
Yes 9975 (11.7) 9178 (15.9) 4560 (20.2) 23713 (14.3)
Missing 7115 (8.3) 1079 (1.9) 435 (1.9) 8629 (5.2)

High blood pressure diag-
nosis, n (%)

No 61370 (71.7) 48858 (84.9) 20025 (88.8) 130253 (78.6)
Yes 19258 (22.5) 7703 (13.4) 2103 (9.3) 29064 (17.5)
Missing 4906 (5.7) 1019 (1.8) 428 (1.9) 6353 (3.8)

Smoking status, n (%)
Never 39828 (46.6) 27954 (48.5) 11295 (50.1) 79077 (47.7)

Former 35190 (41.1) 22238 (38.6) 7174 (31.8) 64602 (39.0)

Current 9632 (11.3) 6631 (11.5) 3533 (15.7) 19796 (11.9)

Missing 884 (1.0) 757 (1.3) 554 (2.5) 2195 (1.3)

Alcohol consumption, n (%)
Never 4182 (4.9) 1400 (2.4) 380 (1.7) 5962 (3.6)

Former 2488 (2.9) 1470 (2.6) 734 (3.3) 4692 (2.8)

Current 75178 (87.9) 51232 (89.0) 19216 (85.2) 145626 (87.9)

Missing 3686 (4.3) 3478 (6.0) 2226 (9.9) 9390 (5.7)

Weekly headachec, n (%)
No 73667 (86.1) 46745 (81.2) 16223 (71.9) 136635 (82.5)
Yes 11867 (13.9) 10835 (18.8) 6333 (28.1) 29035 (17.5)

Severe weekly headachec, 
n (%)

No 79907 (93.4) 53322 (92.6) 19821 (87.9) 153050 (92.4)
Yes 4745 (5.5) 4013 (7.0) 2656 (11.8) 11414 (6.9)
Missing 882 (1.0) 245 (0.4) 79 (0.4) 1206 (0.7)

Daily headachec, n (%)
No 84176 (98.4) 56513 (98.1) 21753 (96.4) 162442 (98.1)
Yes 1358 (1.6) 1067 (1.9) 803 (3.6) 3228 (1.9)

Migraine diagnosisc, n (%)
No 65738 (76.9) 47863 (83.1) 18280 (81.0) 131881 (79.6)
Yes 9797 (11.5) 8294 (14.4) 3796 (16.8) 21887 (13.2)
Missing 10000 (11.7) 1422 (2.5) 480 (2.1) 11902 (7.2)

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per day/30 
or more text messages per day.
bAfter exclusion of participants with missing information on handsfree device use (N=8568), self-reported mobile phone use (N=8098), texting 
(N=10734), frequency of headache at baseline (N=10508), and finally participants whose phone was “often” used by others (N=5681).
cAt baseline.

Supplementary Table 9. Characteristics of the participants who completed the baseline questionnaire 
(irrespective of their subsequent completion of the follow-up questionnaire) by number of text messages sent 
with a mobile phone at baseline.
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Amount of mobile phone use at baseline (call-time in categoriesa)

Very low Low Medium High P interaction

Sexb Sex:RC-hfa

Men 1.00 (0.82 – 1.22)
[155]

1 (reference)
[398]

1.02 (0.88 – 1.20)
[323]

1.15 (0.98 – 1.36)
[302]

0.480
Women 0.94 (0.87 – 1.01)

[1277]
1 (reference)

[1762]
1.10 (1.00 – 1.21)

[763]
1.07 (0.94 – 1.21)

[472]

Age groupb Age group:RC-hfa

18-29 1.03 (0.76 – 1.39)
[63]

1 (reference)
[286]

0.91 (0.73 – 1.12)
[172]

0.83 (0.65 – 1.05)
[153]

0.103

30-39 0.96 (0.79 – 1.17)
[168]

1 (reference)
[385]

1.03 (0.86 – 1.24)
[211]

1.14 (0.92 – 1.42)
[167]

40-49 1.09 (0.95 – 1.25)
[405]

1 (reference)
[512]

1.20 (1.02 – 1.43)
[251]

1.25 (1.01 – 1.54)
[177]

50-59 0.88 (0.77 – 1.01)
[406]

1 (reference)
[633]

1.15 (0.99 – 1.34)
[313]

1.23 (1.02 – 1.49)
[194]

60+ 0.88 (0.75 – 1.03)
[390]

1 (reference)
[344]

1.01 (0.82 – 1.26)
[139]

1.09 (0.84 – 1.42)
[83]

Countryb Country:RC-hfa

The Netherlands 0.93 (0.86 – 1.02)
[1190]

1 (reference)
[1403]

1.09 (0.97 – 1.23)
[374]

NA
[0]

0.611
The United Kingdom 0.99 (0.85 – 1.15)

[242]
1 (reference)

[757]
1.07 (0.96 – 1.19)

[712]
1.11 (1.00 – 1.24)

[774]

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 107.8 (min/week); High: 
RC-hfa ≥ 107.8 (min/week), (max=256.8 min/week).
bModels adjusted for highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller use, depression 
diagnosis, high blood pressure diagnosis, smoking status, alcohol consumption, and mutually adjusted for sex, age group, country at baseline.

Supplementary Table 10. Single-exposure (RC-hfa) multivariable logistic regression models stratified by sex, 
age group, country.
Odds ratio (OR) with 95% CI for weekly headache at follow-up by amount of mobile phone use at baseline 
(weekly minutes of call-time, country-specific regression calibrated estimates adjusted by the proportion of 
hands-free use (RC-hfa)), stratified by sex, age group, country. Excluding participants with weekly headache at 
baseline. Number of participants with the outcome indicated in square brackets.
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Supplementary Table 11. Single-exposure (texting) multivariable logistic regression models stratified by sex, 
age group, country.
Odds ratio (OR) with 95% CI for weekly headache at follow-up by number of text messages sent with a mobile 
phone at baseline, stratified by sex, age group, country. Excluding participants with weekly headache at 
baseline. Number of participants with the outcome indicated in square brackets.

Number of text messages sent with a mobile phone at baseline
(frequency of texting in categoriesa)

Low Medium High P interaction

Sexb Sex:Text messages

Men 1 (reference)
[522]

1.09 (0.93 – 1.28)
[461]

1.58 (1.23 – 2.04)
[195]

0.461
Women 1 (reference)

[2248]
1.19 (1.09 – 1.29)

[1551]
1.52 (1.32 – 1.76)

[475]

Age groupb Age group:Text 
messages

18-29 1 (reference)
[130]

0.94 (0.75 – 1.19)
[245]

1.40 (1.06 – 1.84)
[146]

0.448

30-39 1 (reference)
[311]

1.18 (0.99 – 1.40)
[356]

1.69 (1.30 – 2.21)
[97]

40-49 1 (reference)
[660]

1.10 (0.96 – 1.26)
[411]

1.34 (1.05 – 1.71)
[97]

50-59 1 (reference)
[845]

1.37 (1.20 – 1.55)
[441]

1.59 (1.21 – 2.10)
[66]

60+ 1 (reference)
[702]

1.07 (0.88 – 1.31)
[151]

1.48 (0.91 – 2.40)
[20]

Countryb Country:Text mes-
sages

The Netherlands 1 (reference)
[2082]

1.19 (1.09 – 1.31)
[772]

1.39 (1.12 – 1.71)
[113]

0.295
The United Kingdom 1 (reference)

[688]
1.15 (1.02 – 1.29)

[1240]
1.62 (1.37 – 1.90)

[557]

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text 
messages per day/30 or more text messages per day.
bModels adjusted for highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller use, 
depression diagnosis, high blood pressure diagnosis, smoking status, alcohol consumption, and mutually adjusted for sex, age group, 
country at baseline.
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Supplementary Table 12. Single-exposure (SR-hfa) and two-exposure (SR-hfa, texting) multivariable logistic 
regression models.
Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by amount of mobile phone use at baseline (weekly minutes of call-time, self-reported 
mobile phone use adjusted by the proportion of hands-free use (SR-hfa)) without (A) and with (B) mutual 
adjustment for the number of text messages sent with a mobile phone at baseline. Number of participants 
with the outcome indicated in square brackets.

Amount of mobile phone use at baseline (call-time in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

0.97 (0.90 – 1.04)
[1457]

1 (reference)
[1849]

1.07 (0.98 – 1.16)
[1017]

1.13 (1.04 – 1.22)
[1129] <0.001

Weekly head-
acheb (B)

66858
[5452]

1.01 (0.93 – 1.09)
[1457]

1 (reference)
[1849]

1.04 (0.96 – 1.13)
[1017]

1.07 (0.99 – 1.17)
[1129] 0.167

Severe weekly 
headacheb (A)

66234
[1660]

1.04 (0.91 – 1.19)
[474]

1 (reference)
[530]

1.10 (0.95 – 1.28)
[288]

1.35 (1.18 – 1.56)
[368] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

1.06 (0.92 – 1.21)
[474]

1 (reference)
[530]

1.08 (0.93 – 1.26)
[288]

1.28 (1.11 – 1.48)
[368] 0.016

Daily headacheb 
(A)

66858
[382]

1.14 (0.86 – 1.51)
[98]

1 (reference)
[119]

1.04 (0.77 – 1.40)
[71]

1.25 (0.95 – 1.66)
[94] 0.532

Daily headacheb 
(B)

66858
[382]

1.18 (0.88 – 1.58)
[98]

1 (reference)
[119]

0.99 (0.73 – 1.34)
[71]

1.14 (0.85 – 1.52)
[94] 0.838

Migraine diag-
nosisc (A)

53576
[1812]

0.92 (0.81 – 1.05)
[402]

1 (reference)
[651]

0.94 (0.82 – 1.08)
[335]

1.06 (0.93 – 1.21)
[424] 0.146

Migraine diag-
nosisc (B)

53576
[1812]

0.96 (0.84 – 1.10)
[402]

1 (reference)
[651]

0.92 (0.80 – 1.05)
[335]

1.00 (0.88 – 1.15)
[424] 0.860

aVery low: SR-hfa < 12.8 (min/week); Low: SR-hfa ≥ 12.8 & SR-hfa < 42.3 (min/week); Medium: SR-hfa ≥ 42.3 & SR-hfa < 113.9 (min/week); High: 
SR-hfa ≥ 113.9 (min/week), (max=342.0 min/week).
bModels adjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, 
painkiller use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants 
with (weekly, severe weekly, daily) headache at baseline.
cModels adjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, 
painkiller use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants 
with migraine diagnosis at baseline.
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Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

1 (reference)
[2770]

1.17 (1.10 – 1.26)
[2012]

1.42 (1.28 – 1.58)
[670] <0.001

Weekly head-
acheb (B)

66858
[5452]

1 (reference)
[2770]

1.16 (1.08 – 1.25)
[2012]

1.39 (1.25 – 1.55)
[670] <0.001

Severe weekly 
headacheb (A)

66234
[1660]

1 (reference)
[868]

1.06 (0.94 – 1.20)
[553]

1.63 (1.37 – 1.94)
[239] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

1 (reference)
[868]

1.03 (0.91 – 1.18)
[553]

1.54 (1.28 – 1.84)
[239] <0.001

Daily headacheb 

(A)
66858
[382]

1 (reference)
[181]

1.08 (0.84 – 1.40)
[131]

1.86 (1.33 – 2.61)
[70] <0.001

Daily headacheb 

(B)
66858
[382]

1 (reference)
[181]

1.12 (0.85 – 1.47)
[131]

1.88 (1.32 – 2.68)
[70] <0.001

Migraine diag-
nosisc (A)

53576
[1812]

1 (reference)
[791]

1.12 (1.00 – 1.26)
[727]

1.51 (1.29 – 1.78)
[294] <0.001

Migraine diag-
nosisc (B)

53576
[1812]

1 (reference)
[791]

1.12 (0.99 – 1.26)
[727]

1.50 (1.27 – 1.78)
[294] <0.001

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline.

Supplementary Table 13. Single-exposure (texting) and two-exposure (SR-hfa, texting) multivariable logistic 
regression models.
Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by number of text messages sent with a mobile phone at baseline without (A) and with 
(B) mutual adjustment for the amount of mobile phone use at baseline (weekly minutes of call-time, self-
reported mobile phone use adjusted by the proportion of hands-free use (SR-hfa)). Number of participants 
with the outcome indicated in square brackets.
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Amount of mobile phone use at baseline (call-time in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

16213
[1429]

0.96 (0.84 – 1.10)
[405]

1 (reference)
[569]

1.05 (0.91 – 1.23)
[290]

1.12 (0.93 – 1.35)
[165] 0.107

Weekly head-
acheb (B)

16213
[1429]

1.01 (0.88 – 1.16)
[405]

1 (reference)
[569]

1.03 (0.88 – 1.19)
[290]

1.07 (0.89 – 1.29)
[165] 0.519

Severe weekly 
headacheb (A)

16170
[352]

0.87 (0.67 – 1.13)
[95]

1 (reference)
[147]

0.92 (0.68 – 1.25)
[62]

1.30 (0.92 – 1.83)
[48] 0.056

Severe weekly 
headacheb (B)

16170
[352]

0.93 (0.71 – 1.21)
[95]

1 (reference)
[147]

0.87 (0.64 – 1.19)
[62]

1.20 (0.85 – 1.70)
[48] 0.289

Daily headacheb 
(A)

16213
[124]

1.08 (0.70 – 1.66)
[37]

1 (reference)
[48]

0.91 (0.55 – 1.51)
[23]

1.16 (0.65 – 2.06)
[16] 0.893

Daily headacheb 
(B)

16213
[124]

1.14 (0.73 – 1.76)
[37]

1 (reference)
[48]

0.87 (0.52 – 1.44)
[23]

1.05 (0.58 – 1.87)
[16] 0.690

Migraine diag-
nosisc (A)

15421
[563]

0.99 (0.80 – 1.23)
[158]

1 (reference)
[214]

1.21 (0.96 – 1.52)
[130]

1.03 (0.77 – 1.39)
[61] 0.534

Migraine diag-
nosisc (B)

15421
[563]

1.01 (0.82 – 1.26)
[158]

1 (reference)
[214]

1.19 (0.95 – 1.50)
[130]

1.01 (0.75 – 1.36)
[61] 0.759

aVery low: OP-hfa < 18.5 (min/week); Low: OP-hfa ≥ 18.5 & OP-hfa < 73.9 (min/week); Medium: OP-hfa ≥ 73.9 & OP-hfa < 157.8 (min/week); High: 
OP-hfa ≥ 157.8 (min/week), (max=1040.6 min/week).
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline.

Supplementary Table 14. Single-exposure (OP-hfa) and two-exposure (OP-hfa, texting) multivariable logistic 
regression models.
Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by amount of mobile phone use at baseline (weekly minutes of call-time, operator-
recorded data adjusted by the proportion of hands-free use (OP-hfa)) without (A) and with (B) mutual 
adjustment for the number of text messages sent with a mobile phone at baseline. Number of participants 
with the outcome indicated in square brackets.
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Supplementary Table 15. Single-exposure (texting) and two-exposure (OP-hfa, texting) multivariable logistic 
regression models.
Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by number of text messages sent with a mobile phone at baseline without (A) and 
with (B) mutual adjustment for the amount of mobile phone use at baseline (weekly minutes of call-time, 
operator-recorded data adjusted by the proportion of hands-free use (OP-hfa)). Number of participants with 
the outcome indicated in square brackets

Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

16213
[1429]

1 (reference)
[358]

1.23 (1.07 – 1.42)
[751]

1.59 (1.33 – 1.89)
[320] <0.001

Weekly head-
acheb (B)

16213
[1429]

1 (reference)
[358]

1.23 (1.07 – 1.42)
[751]

1.57 (1.31 – 1.89)
[320] <0.001

Severe weekly 
headacheb (A)

16170
[352]

1 (reference)
[69]

1.40 (1.04 – 1.89)
[182]

2.11 (1.49 – 2.99)
[101] <0.001

Severe weekly 
headacheb (B)

16170
[352]

1 (reference)
[69]

1.39 (1.03 – 1.88)
[182]

2.06 (1.44 – 2.94)
[101] <0.001

Daily headacheb 

(A)
16213
[124]

1 (reference)
[32]

1.02 (0.65 – 1.62)
[56]

1.88 (1.10 – 3.21)
[36] <0.001

Daily headacheb 

(B)
16213
[124]

1 (reference)
[32]

1.06 (0.66 – 1.68)
[56]

1.97 (1.14 – 3.42)
[36] <0.001

Migraine diag-
nosisc (A)

15421
[563]

1 (reference)
[126]

1.13 (0.91 – 1.42)
[303]

1.32 (1.00 – 1.74)
[134] 0.006

Migraine diag-
nosisc (B)

15421
[563]

1 (reference)
[126]

1.12 (0.89 – 1.41)
[303]

1.29 (0.98 – 1.71)
[134] 0.072

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline.
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Supplementary Table 16. Single-exposure (IEMRC-hfa_DECT) and two-exposure (IEMRC-hfa_DECT, texting) multivariable 
logistic regression models. Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily 
headache, and migraine diagnosis at follow-up by RF-EMF dose (mJ/kg/week) to the brain of the participants 
at baseline (IEMRC-hfa_DECT) without (A) and with (B) mutual adjustment for the number of text messages sent 
with a mobile phone at baseline. Number of participants with the outcome indicated in square brackets.

RF-EMF dose (mJ/kg/week in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

63933
[5201]

0.94 (0.87 – 1.01)
[1376]

1 (reference)
[2076]

1.06 (0.97 – 1.15)
[1110]

1.11 (1.00 – 1.24)
[639] 0.002

Weekly head-
acheb (B)

63933
[5201]

0.99 (0.91 – 1.07)
[1376]

1 (reference)
[2076]

1.02 (0.94 – 1.11)
[1110]

1.05 (0.95 – 1.17)
[639] 0.284

Severe weekly 
headacheb (A)

63350
[1578]

1.01 (0.89 – 1.14)
[455]

1 (reference)
[634]

1.10 (0.95 – 1.28)
[310]

1.36 (1.09 – 1.61)
[179] 0.008

Severe weekly 
headacheb (B)

63350
[1578]

1.03 (0.90 – 1.17)
[455]

1 (reference)
[634]

1.07 (0.92 – 1.24)
[310]

1.22 (1.00 – 1.49)
[179] 0.110

Daily headacheb 
(A)

63933
[362]

1.05 (0.79 – 1.40)
[88]

1 (reference)
[129]

0.98 (0.73 – 1.31)
[80]

1.26 (0.91 – 1.75)
[65] 0.399

Daily headacheb 
(B)

63933
[362]

1.10 (0.82 – 1.48)
[88]

1 (reference)
[129]

0.93 (0.69 – 1.25)
[80]

1.13 (0.81 – 1.58)
[65] 0.973

Migraine diag-
nosisc (A)

51578
[1728]

0.97 (0.85 – 1.10)
[392]

1 (reference)
[687]

0.98 (0.86 – 1.12)
[375]

1.21 (1.03 – 1.42)
[274] 0.028

Migraine diag-
nosisc (B)

51578
[1728]

1.01 (0.88 – 1.16)
[392]

1 (reference)
[687]

0.95 (0.83 – 1.09)
[375]

1.13 (0.96 – 1.33)
[274] 0.369

aVery low: IEMRC-hfa_DECT < 1449.0 (mJ/kg/week); Low: IEMRC-hfa_DECT ≥ 1449.0 & IEMRC-hfa_DECT < 4196.1 (mJ/kg/week); Medium: IEMRC-hfa_DECT ≥ 4196.1 & 
IEMRC-hfa_DECT < 7746.2 (mJ/kg/week); High: IEMRC-hfa_DECT ≥ 7746.2 (mJ/kg/week), (max=19047.05 mJ/kg/week).
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline.
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Supplementary Table 17. Single-exposure (texting) and two-exposure (IEMRC-hfa_DECT, texting) multivariable 
logistic regression models. Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily 
headache, and migraine diagnosis at follow-up by number of text messages sent with a mobile phone at 
baseline (IEMRC-hfa_DECT) without (A) and with (B) mutual adjustment for RF-EMF dose (mJ/kg/week) to the brain 
of the participants at baseline. Number of participants with the outcome indicated in square brackets.

Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

63933
[5201]

1 (reference)
[2658]

1.18 (1.10 – 1.26)
[1916]

1.41 (1.27 – 1.57)
[627] <0.001

Weekly head-
acheb (B)

63933
[5201]

1 (reference)
[2658]

1.17 (1.08 – 1.26)
[1916]

1.39 (1.24 – 1.55)
[627] <0.001

Severe weekly 
headacheb (A)

63350
[1578]

1 (reference)
[837]

1.04 (0.92 – 1.18)
[520]

1.58 (1.32 – 1.89)
[221] <0.001

Severe weekly 
headacheb (B)

63350
[1578]

1 (reference)
[837]

1.03 (0.91 – 1.18)
[520]

1.53 (1.27 – 1.85)
[221] <0.001

Daily headacheb 

(A)
63933
[362]

1 (reference)
[171]

1.08 (0.83 – 1.41)
[126]

1.77 (1.25 – 2.50)
[65] <0.001

Daily headacheb 

(B)
63933
[362]

1 (reference)
[171]

1.11 (0.84 – 1.47)
[126]

1.78 (1.24 – 2.57)
[65] <0.001

Migraine diag-
nosisc (A)

51578
[1728]

1 (reference)
[763]

1.11 (0.99 – 1.25)
[687]

1.51 (1.28 – 1.78)
[278] <0.001

Migraine diag-
nosisc (B)

51578
[1728]

1 (reference)
[763]

1.12 (0.99 – 1.27)
[687]

1.49 (1.25 – 1.77)
[278] <0.001

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline.
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Amount of mobile phone use at baseline (call-time in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

0.94 (0.87 – 1.01)
[1388]

1 (reference)
[2053]

1.08 (1.00 – 1.16)
[1592]

1.12 (0.99 – 1.27)
[419] 0.004

Weekly head-
acheb (B)

66858
[5452]

0.99 (0.91 – 1.06)
[1388]

1 (reference)
[2053]

1.04 (0.97 – 1.12)
[1592]

1.04 (0.92 – 1.18)
[419] 0.348

Severe weekly 
headacheb (A)

66234
[1660]

0.98 (0.86 – 1.11)
[449]

1 (reference)
[635]

1.16 (1.01 – 1.32)
[445]

1.39 (1.20 – 1.85)
[131] 0.001

Severe weekly 
headacheb (B)

66234
[1660]

1.00 (0.87 – 1.14)
[449]

1 (reference)
[635]

1.12 (0.98 – 1.28)
[445]

1.24 (1.07 – 1.68)
[131] 0.021

Daily headacheb 
(A)

66858
[382]

1.04 (0.79 – 1.39)
[91]

1 (reference)
[126]

1.04 (0.79 – 1.36)
[120]

1.27 (0.94 – 1.98)
[45] 0.315

Daily headacheb 
(B)

66858
[382]

1.09 (0.81 – 1.46)
[91]

1 (reference)
[126]

0.98 (0.75 – 1.28)
[120]

1.17 (0.80 – 1.71)
[45] 0.787

Migraine diag-
nosisc (A)

53576
[1812]

0.93 (0.82 – 1.06)
[384]

1 (reference)
[690]

0.98 (0.87 – 1.11)
[539]

1.27 (1.04 – 1.53)
[199] 0.010

Migraine diag-
nosisc (B)

53576
[1812]

0.98 (0.85 – 1.12)
[384]

1 (reference)
[690]

0.95 (0.84 – 1.08)
[539]

1.26 (1.00 – 1.49)
[199] 0.140

aVery low: RC < 25.5 (min/week); Low: RC ≥ 25.5 & RC < 65.1 (min/week); Medium: RC ≥ 65.1 & RC < 113.5 (min/week); High: RC ≥ 113.5 (min/
week), (max=270.3 min/week).
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline.

Supplementary Table 18. Single-exposure (RC) and two-exposure (RC, texting) multivariable logistic regression 
models.
Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by amount of mobile phone use at baseline (weekly minutes of call-time, country-
specific regression calibrated estimates (RC)) without (A) and with (B) mutual adjustment for the number of 
text messages sent with a mobile phone at baseline. Number of participants with the outcome indicated in 
square brackets.
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Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

1 (reference)
[2770]

1.17 (1.10 – 1.26)
[2012]

1.42 (1.28 – 1.58)
[670] <0.001

Weekly head-
acheb (B)

66858
[5452]

1 (reference)
[2770]

1.16 (1.08 – 1.25)
[2012]

1.40 (1.25 – 1.56)
[670] <0.001

Severe weekly 
headacheb (A)

66234
[1660]

1 (reference)
[868]

1.06 (0.94 – 1.20)
[553]

1.63 (1.37 – 1.94)
[239] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

1 (reference)
[868]

1.03 (0.91 – 1.18)
[553]

1.53 (1.27 – 1.84)
[239] <0.001

Daily headacheb 

(A)
66858
[382]

1 (reference)
[181]

1.08 (0.84 – 1.40)
[131]

1.86 (1.33 – 2.61)
[70] <0.001

Daily headacheb 

(B)
66858
[382]

1 (reference)
[181]

1.11 (0.84 – 1.46)
[131]

1.86 (1.30 – 2.66)
[70] <0.001

Migraine diag-
nosisc (A)

53576
[1812]

1 (reference)
[791]

1.12 (1.00 – 1.26)
[727]

1.51 (1.29 – 1.78)
[294] <0.001

Migraine diag-
nosisc (B)

53576
[1812]

1 (reference)
[791]

1.12 (0.99 – 1.26)
[727]

1.46 (1.23 – 1.73)
[294] <0.001

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline.

Supplementary Table 19. Single-exposure (texting) and two-exposure (RC, texting) multivariable logistic 
regression models.
Odds ratio (OR) with 95% CI for weekly headache, severe weekly headache, daily headache, and migraine 
diagnosis at follow-up by number of text messages sent with a mobile phone at baseline without (A) and with 
(B) mutual adjustment for the amount of mobile phone use at baseline (weekly minutes of call-time, country-
specific regression calibrated estimates (RC)). Number of participants with the outcome indicated in square 
brackets.
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Supplementary Table 20. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models, excluding painkiller use. Odds ratio (OR) with 95% CI for weekly headache, severe weekly 
headache, daily headache, and migraine diagnosis at follow-up by amount of mobile phone use at baseline 
(weekly minutes of call-time, country-specific regression calibrated estimates adjusted by the proportion of 
hands-free use (RC-hfa)) without (A) and with (B) mutual adjustment for the number of text messages sent 
with a mobile phone at baseline. Number of participants with the outcome indicated in square brackets.

Amount of mobile phone use at baseline (call-time in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

0.94 (0.87 – 1.01)
[1432]

1 (reference)
[2160]

1.08 (0.99 – 1.17)
[1086]

1.10 (1.00 – 1.22)
[774] 0.002

Weekly head-
acheb (B)

66858
[5452]

0.99 (0.91 – 1.06)
[1432]

1 (reference)
[2160]

1.04 (0.96 – 1.13)
[1086]

1.04 (0.94 – 1.15)
[774] 0.291

Severe weekly 
headacheb (A)

66234
[1660]

0.96 (0.85 – 1.09)
[465]

1 (reference)
[671]

1.08 (0.93 – 1.25)
[299]

1.36 (1.13 – 1.63)
[225] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

0.99 (0.86 – 1.12)
[465]

1 (reference)
[671]

1.04 (0.90 – 1.21)
[299]

1.25 (1.03 – 1.50)
[225] 0.038

Daily headacheb 
(A)

66858
[382]

1.03 (0.78 – 1.37)
[94]

1 (reference)
[136]

0.97 (0.73 – 1.30)
[75]

1.22 (0.90 – 1.67)
[77] 0.429

Daily headacheb 
(B)

66858
[382]

1.08 (0.81 – 1.45)
[94]

1 (reference)
[136]

0.92 (0.69 – 1.24)
[75]

1.09 (0.79 – 1.49)
[77] 0.901

Migraine diag-
nosisc (A)

53576
[1812]

0.92 (0.81 – 1.05)
[396]

1 (reference)
[725]

0.97 (0.85 – 1.11)
[355]

1.19 (1.02 – 1.39)
[336] 0.010

Migraine diag-
nosisc (B)

53576
[1812]

0.96 (0.84 – 1.10)
[396]

1 (reference)
[725]

0.94 (0.82 – 1.08)
[355]

1.11 (0.96 – 1.30)
[336] 0.226

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 107.8 (min/week); High: 
RC-hfa ≥ 107.8 (min/week), (max=256.8 min/week).
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, severe weekly, 
daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with migraine diagnosis at 
baseline.
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Supplementary Table 21. Single-exposure (texting) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models, excluding painkiller use. Odds ratio (OR) with 95% CI for weekly headache, severe weekly 
headache, daily headache, and migraine diagnosis at follow-up by number of text messages sent with a mobile 
phone at baseline without (A) and with (B) mutual adjustment for the amount of mobile phone use at baseline 
(weekly minutes of call-time, country-specific regression calibrated estimates adjusted by the proportion of 
hands-free use (RC-hfa)). Number of participants with the outcome indicated in square brackets.

Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

1 (reference)
[2770]

1.18 (1.10 – 1.26)
[2012]

1.43 (1.29 – 1.59)
[670] <0.001

Weekly head-
acheb (B)

66858
[5452]

1 (reference)
[2770]

1.16 (1.08 – 1.25)
[2012]

1.41 (1.26 – 1.57)
[670] <0.001

Severe weekly 
headacheb (A)

66234
[1660]

1 (reference)
[868]

1.07 (0.94 – 1.20)
[553]

1.65 (1.39 – 1.97)
[239] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

1 (reference)
[868]

1.05 (0.92 – 1.19)
[553]

1.58 (1.31 – 1.90)
[239] <0.001

Daily headacheb 

(A)
66858
[382]

1 (reference)
[181]

1.09 (0.84 – 1.41)
[131]

1.89 (1.35 – 2.65)
[70] <0.001

Daily headacheb 

(B)
66858
[382]

1 (reference)
[181]

1.12 (0.86 – 1.48)
[131]

1.92 (1.35 – 2.74)
[70] <0.001

Migraine diag-
nosisc (A)

53576
[1812]

1 (reference)
[791]

1.13 (1.01 – 1.27)
[727]

1.53 (1.30 – 1.80)
[294] <0.001

Migraine diag-
nosisc (B)

53576
[1812]

1 (reference)
[791]

1.12 (0.99 – 1.26)
[727]

1.49 (1.26 – 1.77)
[294] <0.001

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, severe weekly, 
daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with migraine diagnosis at 
baseline.
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Amount of mobile phone use at baseline (call-time in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

0.95 (0.89 – 1.02)
[1432]

1 (reference)
[2160]

1.09 (1.01 – 1.18)
[1086]

1.16 (1.05 – 1.28)
[774] <0.001

Weekly head-
acheb (B)

66858
[5452]

1.00 (0.93 – 1.08)
[1432]

1 (reference)
[2160]

1.05 (0.97 – 1.14)
[1086]

1.08 (0.97 – 1.19)
[774] 0.164

Severe weekly 
headacheb (A)

66234
[1660]

0.99 (0.88 – 1.12)
[465]

1 (reference)
[671]

1.10 (0.95 – 1.27)
[299]

1.45 (1.21 – 1.74)
[225] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

1.02 (0.89 – 1.16)
[465]

1 (reference)
[671]

1.06 (0.92 – 1.22)
[299]

1.30 (1.08 – 1.56)
[225] 0.023

Daily headacheb 
(A)

66858
[382]

1.08 (0.82 – 1.42)
[94]

1 (reference)
[136]

0.99 (0.74 – 1.33)
[75]

1.33 (0.97 – 1.81)
[77] 0.310

Daily headacheb 
(B)

66858
[382]

1.14 (0.86 – 1.52)
[94]

1 (reference)
[136]

0.94 (0.70 – 1.26)
[75]

1.15 (0.84 – 1.58)
[77] 0.946

Migraine diag-
nosisc (A)

53576
[1812]

0.93 (0.82 – 1.06)
[396]

1 (reference)
[725]

0.98 (0.85 – 1.12)
[355]

1.23 (1.06 – 1.43)
[336] 0.004

Migraine diag-
nosisc (B)

53576
[1812]

0.97 (0.85 – 1.11)
[396]

1 (reference)
[725]

0.95 (0.83 – 1.08)
[355]

1.14 (0.98 – 1.33)
[336] 0.175

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 107.8 (min/week); High: 
RC-hfa ≥ 107.8 (min/week), (max=256.8 min/week).
bAdjusted for sex, age group, and country at baseline. Excluding participants with (weekly, severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, and country at baseline. Excluding participants with migraine diagnosis at baseline.

Supplementary Table 22. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models with minimal adjustment for sex, age group, country. Odds ratio (OR) with 95% CI for weekly 
headache, severe weekly headache, daily headache, and migraine diagnosis at follow-up by amount of mobile 
phone use at baseline (weekly minutes of call-time, country-specific regression calibrated estimates adjusted 
by the proportion of hands-free use (RC-hfa)) without (A) and with (B) mutual adjustment for the number of 
text messages sent with a mobile phone at baseline. Number of participants with the outcome indicated in 
square brackets.
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Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

1 (reference)
[2770]

1.18 (1.10 – 1.26)
[2012]

1.57 (1.41 – 1.74)
[670] <0.001

Weekly head-
acheb (B)

66858
[5452]

1 (reference)
[2770]

1.17 (1.08 – 1.25)
[2012]

1.53 (1.38 – 1.71)
[670] <0.001

Severe weekly 
headacheb (A)

66234
[1660]

1 (reference)
[868]

1.05 (0.93 – 1.19)
[553]

1.85 (1.56 – 2.20)
[239] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

1 (reference)
[868]

1.04 (0.92 – 1.19)
[553]

1.76 (1.47 – 2.11)
[239] <0.001

Daily headacheb 

(A)
66858
[382]

1 (reference)
[181]

1.07 (0.83 – 1.38)
[131]

2.14 (1.54 – 2.98)
[70] <0.001

Daily headacheb 

(B)
66858
[382]

1 (reference)
[181]

1.12 (0.85 – 1.46)
[131]

2.17 (1.53 – 3.08)
[70] <0.001

Migraine diag-
nosisc (A)

53576
[1812]

1 (reference)
[791]

1.12 (1.00 – 1.26)
[727]

1.60 (1.36 – 1.88)
[294] <0.001

Migraine diag-
nosisc (B)

53576
[1812]

1 (reference)
[791]

1.11 (0.99 – 1.26)
[727]

1.55 (1.31 – 1.84)
[294] <0.001

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, and country at baseline. Excluding participants with (weekly, severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, and country at baseline. Excluding participants with migraine diagnosis at baseline.

Supplementary Table 23. Single-exposure (texting) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models with minimal adjustment for sex, age group, country. Odds ratio (OR) with 95% CI for weekly 
headache, severe weekly headache, daily headache, and migraine diagnosis at follow-up by number of text 
messages sent with a mobile phone at baseline without (A) and with (B) mutual adjustment for the amount 
of mobile phone use at baseline (weekly minutes of call-time, country-specific regression calibrated estimates 
adjusted by the proportion of hands-free use (RC-hfa)). Number of participants with the outcome indicated in 
square brackets.
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Supplementary Table 24. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models (“high” call-time exposure category 80th percentile). Odds ratio (OR) with 95% CI for weekly 
headache, severe weekly headache, daily headache, and migraine diagnosis at follow-up by amount of mobile 
phone use at baseline (weekly minutes of call-time, country-specific regression calibrated estimates adjusted 
by the proportion of hands-free use (RC-hfa)) without (A) and with (B) mutual adjustment for the number of 
text messages sent with a mobile phone at baseline. Number of participants with the outcome indicated in 
square brackets.

Amount of mobile phone use at baseline (call-time in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

0.94 (0.88 – 1.02)
[1432]

1 (reference)
[2160]

1.03 (0.93 – 1.15)
[511]

1.11 (1.03 – 1.20)
[1349] 0.001

Weekly head-
acheb (B)

66858
[5452]

0.99 (0.92 – 1.07)
[1432]

1 (reference)
[2160]

1.01 (0.90 – 1.12)
[511]

1.06 (0.98 – 1.15)
[1349] 0.208

Severe weekly 
headacheb (A)

66234
[1660]

0.98 (0.86 – 1.11)
[465]

1 (reference)
[671]

1.02 (0.83 – 1.25)
[126]

1.20 (1.05 – 1.38)
[398] 0.021

Severe weekly 
headacheb (B)

66234
[1660]

1.00 (0.88 – 1.14)
[465]

1 (reference)
[671]

1.00 (0.82 – 1.23)
[126]

1.14 (0.99 – 1.31)
[398] 0.184

Daily headacheb 
(A)

66858
[382]

1.05 (0.80 – 1.39)
[94]

1 (reference)
[136]

1.03 (0.72 – 1.47)
[44]

1.10 (0.84 – 1.44)
[108] 0.790

Daily headacheb 
(B)

66858
[382]

1.10 (0.82 – 1.47)
[94]

1 (reference)
[136]

0.99 (0.69 – 1.42)
[44]

0.99 (0.75 – 1.31)
[108] 0.598

Migraine diag-
nosisc (A)

53576
[1812]

0.94 (0.82 – 1.06)
[396]

1 (reference)
[725]

1.00 (0.84 – 1.19)
[190]

1.07 (0.95 – 1.22)
[501] 0.122

Migraine diag-
nosisc (B)

53576
[1812]

0.98 (0.86 – 1.12)
[396]

1 (reference)
[725]

0.98 (0.82 – 1.16)
[190]

1.02 (0.89 – 1.16)
[501] 0.735

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 62.8 (min/week); High: 
RC-hfa ≥ 62.8 (min/week), (max=256.8 min/week).
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, severe weekly, 
daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with migraine diagnosis at 
baseline.
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Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

1 (reference)
[2770]

1.17 (1.10 – 1.26)
[2012]

1.42 (1.28 – 1.58)
[670] <0.001

Weekly head-
acheb (B)

66858
[5452]

1 (reference)
[2770]

1.16 (1.08 – 1.25)
[2012]

1.39 (1.25 – 1.55)
[670] <0.001

Severe weekly 
headacheb (A)

66234
[1660]

1 (reference)
[868]

1.06 (0.94 – 1.20)
[553]

1.63 (1.37 – 1.94)
[239] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

1 (reference)
[868]

1.04 (0.91 – 1.18)
[553]

1.57 (1.30 – 1.88)
[239] <0.001

Daily headacheb 

(A)
66858
[382]

1 (reference)
[181]

1.08 (0.84 – 1.40)
[131]

1.86 (1.33 – 2.61)
[70] <0.001

Daily headacheb 

(B)
66858
[382]

1 (reference)
[181]

1.12 (0.85 – 1.47)
[131]

1.92 (1.35 – 2.73)
[70] <0.001

Migraine diag-
nosisc (A)

53576
[1812]

1 (reference)
[791]

1.21 (1.00 – 1.26)
[727]

1.51 (1.29 – 1.78)
[294] <0.001

Migraine diag-
nosisc (B)

53576
[1812]

1 (reference)
[791]

1.11 (0.99 – 1.26)
[727]

1.49 (1.26 – 1.77)
[294] <0.001

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, severe weekly, 
daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with migraine diagnosis at 
baseline.

Supplementary Table 25. Single-exposure (texting) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models (“high” call-time exposure category 80th percentile). Odds ratio (OR) with 95% CI for weekly 
headache, severe weekly headache, daily headache, and migraine diagnosis at follow-up by number of text 
messages sent with a mobile phone at baseline without (A) and with (B) mutual adjustment for the amount 
of mobile phone use at baseline (weekly minutes of call-time, country-specific regression calibrated estimates 
adjusted by the proportion of hands-free use (RC-hfa)). Number of participants with the outcome indicated in 
square brackets.
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Amount of mobile phone use at baseline (call-time in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

0.94 (0.87 – 1.03)
[918]

1 (reference)
[1614]

1.04 (0.95 – 1.13)
[1571]

1.13 (1.04 – 1.24)
[1349] 0.001

Weekly head-
acheb (B)

66858
[5452]

0.98 (0.90 – 1.08)
[918]

1 (reference)
[1614]

1.01 (0.93 – 1.10)
[1571]

1.07 (0.97 – 1.17)
[1349] 0.165

Severe weekly 
headacheb (A)

66234
[1660]

1.12 (0.97 – 1.29)
[318]

1 (reference)
[503]

1.15 (1.00 – 1.33)
[441]

1.32 (1.13 – 1.54)
[398] 0.025

Severe weekly 
headacheb (B)

66234
[1660]

1.14 (0.98 – 1.33)
[318]

1 (reference)
[503]

1.14 (0.98 – 1.32)
[441]

1.24 (1.06 – 1.46)
[398] 0.227

Daily headacheb 
(A)

66858
[382]

1.06 (0.75 – 1.48)
[59]

1 (reference)
[85]

1.21 (0.88 – 1.65)
[130]

1.23 (0.88 – 1.71)
[108] 0.313

Daily headacheb 
(B)

66858
[382]

1.09 (0.77 – 1.54)
[59]

1 (reference)
[85]

1.19 (0.87 – 1.63)
[130]

1.11 (0.79 – 1.56)
[108] 0.729

Migraine diag-
nosisc (A)

53576
[1812]

0.94 (0.81 – 1.10)
[244]

1 (reference)
[516]

0.94 (0.81 – 1.08)
[551]

1.04 (0.90 – 1.20)
[501] 0.248

Migraine diag-
nosisc (B)

53576
[1812]

0.99 (0.85 – 1.17)
[244]

1 (reference)
[516]

0.91 (0.79 – 1.05)
[551]

0.97 (0.83 – 1.12)
[501] 0.580

aVery low: RC-hfa < 11.8 (min/week); Low: RC-hfa ≥ 11.8 & RC-hfa < 30.0 (min/week); Medium: RC-hfa ≥ 30.0 & RC-hfa < 61.9 (min/week); High: 
RC-hfa ≥ 61.9 (min/week), (max=256.8 min/week).
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, severe weekly, 
daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with migraine diagnosis at 
baseline.

Supplementary Table 26. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models, with RF-hfa exposure categorised into quartiles. Odds ratio (OR) with 95% CI for weekly 
headache, severe weekly headache, daily headache, and migraine diagnosis at follow-up by amount of mobile 
phone use at baseline (weekly minutes of call-time, country-specific regression calibrated estimates adjusted 
by the proportion of hands-free use (RC-hfa)) without (A) and with (B) mutual adjustment for the number of 
text messages sent with a mobile phone at baseline. Number of participants with the outcome indicated in 
square brackets.
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Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

66858
[5452]

1 (reference)
[2770]

1.17 (1.10 – 1.26)
[2012]

1.42 (1.28 – 1.58)
[670] <0.001

Weekly head-
acheb (B)

66858
[5452]

1 (reference)
[2770]

1.16 (1.07 – 1.24)
[2012]

1.39 (1.25 – 1.55)
[670] <0.001

Severe weekly 
headacheb (A)

66234
[1660]

1 (reference)
[868]

1.06 (0.94 – 1.20)
[553]

1.63 (1.37 – 1.94)
[239] <0.001

Severe weekly 
headacheb (B)

66234
[1660]

1 (reference)
[868]

1.05 (0.92 – 1.19)
[553]

1.58 (1.31 – 1.90)
[239] <0.001

Daily headacheb 

(A)
66858
[382]

1 (reference)
[181]

1.08 (0.84 – 1.40)
[131]

1.86 (1.33 – 2.61)
[70] <0.001

Daily headacheb 

(B)
66858
[382]

1 (reference)
[181]

1.07 (0.81 – 1.40)
[131]

1.85 (1.30 – 2.63)
[70] <0.001

Migraine diag-
nosisc (A)

53576
[1812]

1 (reference)
[791]

1.21 (1.00 – 1.26)
[727]

1.51 (1.29 – 1.78)
[294] <0.001

Migraine diag-
nosisc (B)

53576
[1812]

1 (reference)
[791]

1.14 (1.01 – 1.29)
[727]

1.52 (1.28 – 1.80)
[294] <0.001

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, severe weekly, 
daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, depression 
diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with migraine diagnosis at 
baseline.

Supplementary Table 27. Single-exposure (texting) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models, with RF-hfa exposure categorised into quartiles. Odds ratio (OR) with 95% CI for weekly 
headache, severe weekly headache, daily headache, and migraine diagnosis at follow-up by number of text 
messages sent with a mobile phone at baseline without (A) and with (B) mutual adjustment for the amount 
of mobile phone use at baseline (weekly minutes of call-time, country-specific regression calibrated estimates 
adjusted by the proportion of hands-free use (RC-hfa)). Number of participants with the outcome indicated in 
square brackets.
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Amount of mobile phone use at baseline (call-time in categoriesa)

No. of participants Very low Low Medium High P trend

Weekly head-
acheb (A)

58229
[4803]

0.95 (0.88 – 1.03)
[1243]

1 (reference)
[1953]

1.08 (0.99 – 1.17)
[966]

1.08 (0.97 – 1.20)
[641] 0.021

Weekly head-
acheb (B)

58229
[4803]

1.00 (0.92 – 1.08)
[1243]

1 (reference)
[1953]

1.05 (0.96 – 1.14)
[966]

1.02 (0.92 – 1.14)
[641] 0.593

Severe weekly 
headacheb (A)

57679
[1457]

0.97 (0.85 – 1.11)
[408]

1 (reference)
[611]

1.07 (0.92 – 1.25)
[262]

1.31 (1.07 – 1.61)
[176] 0.007

Severe weekly 
headacheb (B)

57679
[1457]

0.99 (0.86 – 1.13)
[408]

1 (reference)
[611]

1.04 (0.88 – 1.21)
[262]

1.22 (0.99 – 1.50)
[176] 0.080

Daily headacheb 
(A)

58229
[312]

1.03 (0.76 – 1.39)
[74]

1 (reference)
[118]

0.95 (0.69 – 1.30)
[63]

1.08 (0.77 – 1.54)
[57] 0.868

Daily headacheb 
(B)

58229
[312]

1.09 (0.80 – 1.50)
[74]

1 (reference)
[118]

0.90 (0.65 – 1.23)
[63]

0.96 (0.67 – 1.37)
[57] 0.493

Migraine diag-
nosisc (A)

49783
[1648]

0.93 (0.81 – 1.06)
[377]

1 (reference)
[676]

0.97 (0.84 – 1.12)
[318]

1.17 (0.99 – 1.38)
[277] 0.030

Migraine diag-
nosisc (B)

49783
[1648]

0.97 (0.84 – 1.11)
[377]

1 (reference)
[676]

0.94 (0.82 – 1.09)
[318]

1.10 (0.93 – 1.30)
[277] 0.362

aVery low: RC-hfa < 19.1 (min/week); Low: RC-hfa ≥ 19.1 & RC-hfa < 58.6 (min/week); Medium: RC-hfa ≥ 58.6 & RC-hfa < 107.8 (min/week); High: 
RC-hfa ≥ 107.8 (min/week), (max=256.8 min/week).
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with mi-
graine diagnosis at baseline.

Supplementary Table 28. Single-exposure (RC-hfa) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models (complete-case analysis). Odds ratio (OR) with 95% CI for weekly headache, severe weekly 
headache, daily headache, and migraine diagnosis at follow-up by amount of mobile phone use at baseline 
(weekly minutes of call-time, country-specific regression calibrated estimates adjusted by the proportion of 
hands-free use (RC-hfa)) without (A) and with (B) mutual adjustment for the number of text messages sent 
with a mobile phone at baseline. Complete-case analysis. Number of participants with the outcome indicated 
in square brackets.
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Supplementary Table 29. Single-exposure (texting) and two-exposure (RC-hfa, texting) multivariable logistic 
regression models (complete-case analysis). Odds ratio (OR) with 95% CI for weekly headache, severe weekly 
headache, daily headache, and migraine diagnosis at follow-up by number of text messages sent with a mobile 
phone at baseline without (A) and with (B) mutual adjustment for the amount of mobile phone use at baseline 
(weekly minutes of call-time, country-specific regression calibrated estimates adjusted by the proportion 
of hands-free use (RC-hfa)). Complete-case analysis. Number of participants with the outcome indicated in 
square brackets.

Number of text messages sent with a mobile phone at baseline (frequency of texting in categoriesa)

No. of partici-
pants Low Medium High P trend

Weekly head-
acheb (A)

58229
[4803]

1 (reference)
[2427]

1.16 (1.08 – 1.25)
[1802]

1.41 (1.26 – 1.57)
[574] <0.001

Weekly head-
acheb (B)

58229
[4803]

1 (reference)
[2427]

1.15 (1.07 – 1.24)
[1802]

1.39 (1.24 – 1.56)
[574] <0.001

Severe weekly 
headacheb (A)

57679
[1457]

1 (reference)
[771]

1.04 (0.92 – 1.19)
[491]

1.56 (1.29 – 1.89)
[195] <0.001

Severe weekly 
headacheb (B)

57679
[1457]

1 (reference)
[771]

1.03 (0.90 – 1.18)
[491]

1.50 (1.23 – 1.83)
[195] <0.001

Daily headacheb 

(A)
58229
[312]

1 (reference)
[144]

1.12 (0.85 – 1.48)
[113]

1.86 (1.28 – 2.70)
[55] <0.001

Daily headacheb 

(B)
58229
[312]

1 (reference)
[144]

1.17 (0.87 – 1.58)
[113]

1.95 (1.31 – 2.88)
[55] <0.001

Migraine diag-
nosisc (A)

49783
[1648]

1 (reference)
[744]

1.12 (1.00 – 1.26)
[657]

1.47 (1.24 – 1.75)
[247] <0.001

Migraine diag-
nosisc (B)

49783
[1648]

1 (reference)
[744]

1.11 (0.98 – 1.26)
[657]

1.44 (1.20 – 1.72)
[247] <0.001

aLow: Never/Less than 1 text message per week/1-6 text messages per week; Medium: 1-9 text messages per day; High: 10-29 text messages per 
day/30 or more text messages per day.
bAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with (weekly, 
severe weekly, daily) headache at baseline.
cAdjusted for sex, age group, country, highest level of education attained, BMI group, general health indicator, sleep disturbance index, painkiller 
use, depression diagnosis, high blood pressure diagnosis, smoking status, and alcohol consumption at baseline. Excluding participants with migraine 
diagnosis at baseline.
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Abstract

Background: Some individuals attribute health complaints to radiofrequency electro-
magnetic field (RF-EMF) exposure. This condition, known as idiopathic environmental 
intolerance attributed to RF-EMFs (IEI-RF) or electromagnetic hypersensitivity (EHS), can 
be disabling for those who are affected. In this study we assessed factors related to de-
veloping, maintaining, or discarding IEI-RF over the course of 10 years, and predictors of 
developing EHS at follow-up using a targeted question without the condition of report-
ing health complaints attributed to RF-EMF exposure.
Methods: Participants (n=892, mean age 50 at baseline, 52 % women) from the Dutch 
Occupational and Environmental Health Cohort Study AMIGO filled in questionnaires in 
2011/2012 (T0), 2013 (T1), and 2021 (T4) where information pertaining to perceived RF-
EMF exposure and risk, non-specific symptoms, sleep problems, IEI-RF, and EHS was col-
lected. We fitted multi-state Markov models to represent how individuals transitioned 
between states (“yes”, “no”) of IEI-RF.
Results: At each time point, about 1 % of study participants reported health complaints 
that they attributed to RF-EMF exposure. While this percentage remained stable, the 
individuals who reported such complaints changed over time: of nine persons reporting 
health complaints at T0, only one reported IEI-RF at both T1 and T4, and two newly report-
ed health complaints at T4. Overall, participants had a 95 % chance of transitioning from 
“yes” to “no” over a time course of 10 years, and a chance of 1 % of transitioning from 
“no” to “yes”. Participants with high perceived RF-EMF exposure and risk had a general 
tendency to move more frequently between states.
Conclusions: We observed a low prevalence of IEI-RF in our population. Prevalence did 
not vary strongly over time but there was a strong aspect of change: over 10 years, there 
was a high probability of not attributing symptoms to RF-EMF exposure anymore. IEI-RF 
appears to be a more transient condition than previously assumed.
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Introduction

Over the past few decades, the rapid advancement of wireless technologies and elec-
tronic devices has led to a considerable increase in exposure to radiofrequency electro-
magnetic fields (RF-EMFs) and RF signals are now part of everyday life. The condition 
known as idiopathic environmental intolerance attributed to electromagnetic fields (IEI-
EMF) is used to describe individuals who attribute health complaints such as headaches, 
sleep disturbances, or problems in concentrating, to EMF exposure (Baliatsas et al., 
2012; Martens et al., 2017; Röösli et al., 2004), and in severe cases it can be disabling or 
result in a lower quality of life (Kjellqvist et al., 2016). Similarly, the term electromagnetic 
hypersensitivity (EHS) refers to someone who claims to be hypersensitive to EMFs, but 
does not necessarily report health complaints attributed to such exposure (Röösli et al., 
2010). In particular, IEI-EMF and EHS have been hypothesized to correspond to different 
levels of involvement in the EMF topic (Röösli et al., 2010). Nevertheless, diagnostic 
criteria for these conditions are not fully established and research has yet to produce 
clear evidence on the mechanisms causing people to attribute health complaints to EMF 
exposure or to define themselves as hypersensitive to EMFs (Baliatsas et al., 2009; Dieu-
donné, 2019, 2020; Stein & Udasin, 2020), although psychosocial factors are thought 
to play a role (Augner & Hacker, 2009; Baliatsas et al., 2015; Frick et al., 2002; Martens 
et al., 2018; Ramirez-Vazquez et al., 2019; Rubin et al., 2010; Watrin et al., 2022). As a 
consequence, the terms IEI-EMF and EHS are frequently used interchangeably in epide-
miological studies, and this is likely to affect the range in estimated prevalence, which in 
industrialized countries varies between 1.5 % and 21 % (Eltiti et al., 2007; Hillert et al., 
2002; Karvala et al., 2018; Levallois et al., 2002; Schreier et al., 2006).
Little is understood in how far IEI-EMF changes over time: intriguingly, some studies 
observed a similar percentage of IEI-EMF at baseline and at follow-up one or two years 
later (Kowall et al., 2012; Martens et al., 2018; Röösli et al., 2010), despite a high turn-
over rate in the population reporting IEI-EMF at follow-up. This implies that attribution 
of health complaints to EMF exposure is temporary for many but not all people. There-
fore, it would be informative to study not only predictors of developing IEI-EMF, but 
also predictors of maintaining or discarding IEI-EMF. This requires a longitudinal design 
with repeat surveys on both symptom experience and attribution to EMF exposure, to 
understand what comes first. To the best of our knowledge, while several studies have 
addressed risk factors for developing IEI-EMF, few research efforts have targeted the 
question for whom IEI-EMF is a transient phenomenon.
In this study we aim to evaluate the time course of attribution of health complaints 
specifically to RF-EMF exposure (IEI-RF) in a Dutch population assessed at three time 
points over the course of 10 years by examining factors that are related to developing, 
maintaining, or discarding IEI-RF, defined as reporting any health complaint attributed 
to RF-EMF exposure sources. Second, we aim to assess predictors of developing EHS at 
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follow-up using a question targeting the notion of being electromagnetic hypersensitive, 
without the condition of self-reporting health complaints attributed to RF-EMF expo-
sure.

Material and methods

Study participants

We used data from the population-based occupational and environmental health pro-
spective cohort study (AMIGO) established in 2011/2012 to investigate environmental 
and occupational determinants of diseases and symptoms in the Dutch adult population. 
The rationale, study design and participant recruitment in AMIGO were described in 
detail previously (Slottje et al., 2014). In short, AMIGO participants were recruited from 
the general population in the Netherlands through the Primary Care Database of the 
Netherlands Institute for Health Services Research (NIVEL), which consists of routinely 
recorded data from health care providers to monitor health and utilization of health 
services in the Dutch population (Nivel Primary Care Database | Nivel, 2022). The sam-
ple includes 14,829 adults (16 % of those invited), aged 31-65 years at the time of data 
collection (2011/2012), who were randomly selected within households based on their 
address. The AMIGO cohort study includes dedicated questionnaires to assess relation-
ships between exposure, risk perception, symptom reporting and symptom attribution 
to environmental factors including RF-EMFs. Participants filled in an online question-
naire at baseline (2011/2012; T0) and in 2015 (n=7,905; T3; response rate 54 %), and a 
targeted subset of participants sampled based on contrast in perceived and estimated 
RF-EMF exposure at baseline filled in two additional follow-up questionnaires in 2013 
(n=2,228; T1; response rate 56 %) and 2014 (n=1,740; T2; response rate 78 %) to answer 
questions about perceived RF-EMF and other environmental factor exposure and risk, 
health concerns, symptom attribution to RF-EMF exposure, non-specific symptoms and 
sleep disturbances (Martens et al., 2017, 2018). We performed an update in 2021 (T4) in 
which individuals who had participated at T1 completed a questionnaire where informa-
tion pertaining to RF-EMF perceptions (perceived exposure, risk and concern, including 
pertaining to 5G technology), symptoms, and attribution to RF-EMF exposure were as-
sessed again (n=892; response rate 40 %). In the 2021 (T4) questionnaire additional items 
were added related to EHS. We included in the current analyses participants who filled 
in questionnaires at time points T0, T1, and T4 in order to achieve the largest possible 
sample size (Figure 1).

Health complaints attributed to RF-EMF exposure – IEI-RF

Self-reported health complaints attributed to RF-EMF exposure (IEI-RF) were assessed 
at time points T0 and T1 with the subsequent questions: “Do you currently have health 
complaints that you attribute to the environment” and “if so, to what environmental 
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factors/sources, select from the following or describe another factor/source”. From this 
list of sources we selected: (1) electromagnetic fields from mobile phone base stations, 
radio or TV; (2) electromagnetic fields from mobile phones; (3) electromagnetic fields 
from cordless phones; (possible answers “yes” or “no”)?”, and at time point T4 with the 
subsequent questions: “Do you currently have health complaints that you attribute to 
the environment” and “if so, to what environmental factors/sources, select from the 
following or describe another factor/source”. From this list of sources we selected: (1) 
electromagnetic fields from mobile phone base stations, radio or TV; (2) electromagnetic 
fields from mobile phones, cordless phones and other wireless devices, (e.g. laptop, tab-
let); (3) electromagnetic fields from 5G technology; (possible answers “yes” or “no”)?”. 
Participants were considered as IEI-RF at any time point if at least one RF-EMF category 
was marked in the respective questionnaires.

Self-reported notion of being electromagnetic hypersensitive – EHS

At T4 we asked participants to indicate to which extent they considered themselves as 
electromagnetic hypersensitive by asking the following question: “Do you think you are 
electromagnetic hypersensitive (on a scale of 0-6, where 0=not at all and 6=very much)?”.
In the analyses we classified as electromagnetic hypersensitive participants whose score 
ranged between 4 and 6.

Perceived RF-EMF exposure and risk

Perceived exposure to RF-EMFs (among other environmental exposures) was assessed 
at T0 and T1 with the question: “To what extent do you think you are exposed to: (1) 
electromagnetic fields from mobile phone base stations, radio or TV; (2) electromagnetic 
fields from mobile phones; (3) electromagnetic fields from cordless phones; (on a scale 
of 0-6, where 0=not at all and 6=very much)?”, and at time point T4 with the question: 
“To what extent do you think you are exposed to: (1) electromagnetic fields from mobile 
phone base stations, radio or TV; (2) electromagnetic fields from mobile phones, cord-
less phones and other wireless devices, (e.g. laptop, tablet); (3) electromagnetic fields 
from 5G technology; (on a scale of 0-6, where 0=not at all and 6=very much)?”.
Perceived risk with respect to RF-EMFs (amongst other specified environmental factors) 
was assessed at T0 and T1 with the question: “To what extent do you think that ((1) 
electromagnetic fields from mobile phone base stations, radio or TV; (2) electromagnet-
ic fields from mobile phones; (3) electromagnetic fields from cordless phones) pose a 
risk to the health in everyday circumstances? (on a scale of 0-6, where 0=not at all and 
6=very much)”, and at time point T4 with the question: “To what extent do you think that 
((1) electromagnetic fields from mobile phone base stations, radio or TV; (2) electro-
magnetic fields from mobile phones, cordless phones and other wireless devices, (e.g. 
laptop, tablet); (3) electromagnetic fields from 5G technology) pose a risk to the health 
in everyday circumstances? (on a scale of 0-6, where 0=not at all and 6=very much)”.
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The cut-offs to define low/high exposure and risk perception categories were calculated 
based on the distribution of perceived RF-EMF exposure and risk at T0 (low: 0th-90th per-
centile, high: 90th-100th percentile, cut-off point perceived RF-EMF exposure=12; cut-off point perceived 

RF-EMF risk=12).

Self-reported non-specific symptoms and sleep disturbances

We assessed non-specific symptoms and sleep disturbances at time points T0, T1, and T4. 
For the first, we used the Four-Dimensional Symptom Questionnaire (4DSQ) (Terluin et 
al., 2006), a self-report questionnaire developed in the Dutch language and validated to 
discriminate in clinical practice between four dimensions (distress, somatization, anxiety, 
depression). We calculated the total symptom score (range 0-32) from the somatization 
scale (4DSQ-S) which consists of 16 nonspecific somatic symptoms (e.g. headache, pal-
pitations, low back pain) commonly reported by patients with somatization (disorder). 
Participants self-reported on a 5-point scale ranging from “no” to “constantly” whether 
they had experienced any of these symptoms during the previous week. To obtain a total 
score, we trichotomized and then summed over the symptoms (no=0; sometimes=1; 
regularly/often/constantly=2) (Martens et al., 2017). Sleep disturbances were assessed 
using the 6-item medical outcomes study (MOS) scale, a sleep problem index which 
ranges from 0 to 100, with higher scores indicating more sleep disturbances or lower 
sleep quality (Spritzer & Hays, 2003).

Socio-demographic characteristics

Socio-demographic characteristics collected at baseline included sex, age, the highest 
level of education attained (low: primary school, lower vocational training or lower sec-
ondary education; intermediate: intermediate vocational education or intermediate/
higher secondary education; high: higher vocational education or university degree), 
and self-reported mobile phone use (user; nonuser).  In addition, urbanicity level was 
determined for each participants home address based on the density of addresses (very 
highly urban: ≥ 2,500 addresses per km2; highly urban: 1,500–2,500 addresses per km2; 
moderately urban: 1,000–1,500 addresses per km2; little urban: 500–1,000 addresses 
per km2; non-urban: < 500 addresses per km2) (Statistiek, 2011).

Statistical analysis

We calculated descriptive statistics for age, sex, the highest level of education attained, 
urbanicity level, and self-reported mobile phone use at baseline, and at each time point 
for perceived RF-EMF exposure, perceived RF-EMF risk, 4DSQ-S score, and MOS sleep 
index. We used one-way repeated measures ANOVA to compare group means of 4DSQ-S 
score and MOS sleep index, respectively, across all time points. The proportion of par-
ticipants reporting IEI-RF was calculated at each time point T0, T1, and T4, whereas the 
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proportion of those defining themselves as EHS was only available at T4.

We used the R package msm to calculate the observed transitions and transition prob-
abilities of IEI-RF over different time intervals, and fit multi-state Markov models to our 
data (Jackson, 2011). In short, the multi-state Markov model is a flexible way of describ-
ing a process in which an individual moves through a discrete set of states, assuming 
that there is a continuous process underlying the data (i.e. the event varies continu-
ously through time, but is only observed at the same times as the state of the Markov 
process). It relies on the Markov assumption that future evolution only depends on the 
current state (Kalbfleisch & Lawless, 1985). We fitted multi-state Markov models to rep-
resent how individuals in our cohort transitioned between two states defined by the 
presence (“yes”) or absence (“no”) of IEI-RF. More specifically, we estimated four multi-
state Markov models including perceived RF-EMF exposure (Model 1), perceived RF-EMF 
risk (Model 2), 4DSQ-S score (Model 3), MOS sleep index (Model 4) as time-dependent 
risk factors to investigate potential time-variant effects on transition rates, adjusted for 
sex and age. To fit a multi-state model to our data, we estimated a transition intensity 
matrix in which each individual may transition from one state to another at each time 
point T0, T1, and T4, and the next state to which the individual moves, and the time of the 
change, are governed by a set of transition intensities for each pair of states. The defined 
multi-state model is illustrated in Supplementary Figure 1. The intensities represent the 
instantaneous risk of moving from one state to another. It may depend on the time of 
the process, or more generally a set of individual-specific or time-varying explanatory 
variables, assuming that they are constant in between the observation times of the Mar-
kov process. We performed Pearson-type goodness-of-fit tests to assess the overall fit 
of the models (Titman & Sharples, 2008). This method, available in the msm package, 
compares observed and expected numbers of transitions between pairs of states for a 
series of transition starting times, transition time intervals and covariate categories, and 
it is intended for data which represent observations of the process at arbitrary times. In 
cases where there are several low expected counts in the resulting contingency tables, 
the number of observation time, time interval, or covariate categories may be reduced 
to improve the χ2 approximation (Aguirre-Hernández & Farewell, 2002; Jackson, 2011).

We explored the association between EHS at T4 and perceived RF-EMF exposure and 
risk, 4DSQ-S score, MOS sleep index assessed at T0. We estimated four logistic regression 
models including perceived RF-EMF exposure (Model 5), perceived RF-EMF risk (Model 
6), 4DSQ-S score (Model 7), MOS sleep index (Model 8) as independent variables, ad-
justed for sex and age. We fitted two mutually adjusted logistic regression models where 
perceived RF-EMF exposure, perceived RF-EMF risk, 4DSQ-S score, and MOS sleep index 
were considered simultaneously, adjusted for sex and age (Model 9), and sex, age, the 
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highest level of education attained, urbanicity level, and self-reported mobile phone use 
(Model 10) as sensitivity analysis, respectively.
In addition, we conducted the following secondary analyses to explore the association 
between EHS at T4 and perceived RF-EMF exposure and risk, 4DSQ-S score, MOS sleep 
index assessed at T1: we estimated four logistic regression models including perceived 
RF-EMF exposure (Model 11), perceived RF-EMF risk (Model 12), 4DSQ-S score (Model 
13), MOS sleep index (Model 14) as independent variables, adjusted for sex and age. 
We fitted two mutually adjusted logistic regression models where perceived RF-EMF ex-
posure, perceived RF-EMF risk, 4DSQ-S score, and MOS sleep index were considered 
simultaneously, adjusted for sex and age (Model 15), and sex, age, the highest level of 
education attained, urbanicity level, and self-reported mobile phone use (Model 16) as 
sensitivity analysis, respectively.

This population-based cohort study was conducted according to an analysis plan de-
veloped a priori and defining in detail the planned statistical analysis (Supplementary 
Analysis Plan). Missing values (<1.0 %) were replaced with the most common category 
(categorical variables) or with the mean value (continuous variables). All analyses were 
conducted with the R statistical software, version 4.0.4. Computing code related to all 
analyses presented is publicly available at https://github.com/eugeniotraini/multistate_
RF_EMF.

Results

Descriptive statistics

Baseline characteristics of the study population are presented in Table 1. The AMIGO 
sub-cohort for this analysis consisted of 892 adults, half of whom were male, with a 
mean age of 50 years. More than half of the respondents attained a high level of educa-
tion and most of the participants lived in urban areas. Three-quarters of the cohort were 
mobile phone users. 
Participant characteristics in the full cohort at baseline were similar to those of the re-
spondents included in the sub-cohort, although highly educated participants and those 
living in urban areas were slightly overrepresented in the sub-cohort compared to the 
full cohort (Supplementary Table 1).
Median perception of RF-EMF exposure (T0=5; T1=6; T4=9) and risk (T0=4; T1=6; T4=9) 
showed a rising trend over time (Supplementary Figure 2), with around 5 % and 7 % of 
participants classified in the high perception group at T0, values that increased up to 20 
% and 14 % at T4 (Table 2). The distribution of scores of perceived RF-EMF exposure and 
risk grouped by exposure source are presented in Supplementary Figure 3 and showed 
that participants at T4 indicated they perceived themselves to be stronger exposed to 
and more at risk from RF-EMFs compared to T0 and T1. Additionally, around 28% of re-
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spondents self-reported they were exposed to RF-EMFs from 5G at T4, and the same 
percentage also applied to those who indicated that 5G may pose risks to their health.
The 4DSQ-S score (F(2,24)=1.39, p=0.3) and MOS sleep index (F(2,46)=1.62, p=0.2) were 
not statistically significantly different at T0, T1, and T4, respectively (Table 2).
Table 3 lists the proportion of participants reporting IEI-RF at each time point, and those 
self-declaring as EHS at T4. Results showed that 12 % of the respondents claimed to 
be EHS at T4, whereas the percentage of individuals reporting IEI-RF was limited in our 
population and did not vary substantially over time (ranging from 1.0 % at T0 to 1.2 % at 
T4) (Table 3).

Observed transitions, estimated transition probabilities, and multi-state Markov mod-
els

The observed transitions, that is the number of times each pair of states were observed 
in successive observation times between T0 and T1, T1 and T4, and any consecutive time 
points T0, T1, T4, are shown in Supplementary Table 2. Results indicated that the number 
of participants transitioning between the two states of IEI-RF (from “no” to “yes”, or 
“yes” to “no”) between T0 and T1 (A) and T1 and T4 (B) was stable over time, however, the 
transition did not always involve the same participants. Of nine respondents reporting 
IEI-RF at T0, three still reported the same at T4, but only one of them also reported the 
same at both T1 and T4 (Supplementary Figure 4). Based on the results from the fitted 
transition probability matrix, we observed that participants had a 95 % chance of tran-
sitioning from “yes” to “no” over a time course of 10 years (46 % in 2 years’ time), and a 
1 % chance of transitioning from “no” to “yes” (0.6 % in 2 years’ time) (Supplementary 
Table 3).
The results of the multi-state Markov models are presented in Table 4 and suggested 
that participants with a high perception of both RF-EMF exposure (Model 1) and risk 
(Model 2) at any time point had an increased tendency to switch state by attributing 
health complaints to RF-EMF exposure (HR=4.11, 95 % CI:0.87,19.53; HR=3.81, 95 % 
CI:0.76,19.18). On the other hand, participants had a reduced tendency of no longer 
attributing health complaints to RF-EMF exposure (HR=0.56, 95 % CI:0.11,2.82; HR=0.46, 
95 % CI:0.10,2.16) compared to those in the low exposure perception group. 4DSQ-S 
score (Model 3), and MOS sleep index (Model 4) were not associated with transitioning 
between states.

Factors associated with the self-reported notion of being EHS

In Table 5 we present results from logistic regression on the association between the 
self-reported notion of being EHS at T4 and independent variables assessed at T0. In 
the models evaluating each independent variable separately, perceived RF-EMF expo-
sure and risk, 4DSQ-S score, and MOS sleep index were significantly associated with 
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increased odds of being EHS at T4. More specifically, participants who showed a high 
perception of RF-EMF exposure at T0 had an increased odds of being EHS at T4 (OR=4.17, 
95 % CI:2.10,8.00). Similarly, participants with a high perception of RF-EMF risk at T0 
had an increased odds of being EHS at T4 (OR=4.08, 95 % CI:2.26,7.17). Finally, both the 
4DSQ-S score and the MOS sleep index at T0 were associated with an increase in the odds 
of being EHS at T4 (OR=1.07, 95 % CI:1.03,1.10; OR=1.02, 95 % CI:1.00,1.03). Results from 
the mutually adjusted model with minimal adjustment (Model 9) and full adjustment 
(Model 10) were consistent with those from the models evaluating each independent 
variable separately, although the estimates were generally attenuated (Table 5). Results 
from secondary analyses exploring the association between EHS at T4 and perceived 
RF-EMF exposure and risk, 4DSQ-S score, MOS sleep index assessed at T1 showed no 
discrepancies from the main results (Table 6). 

Discussion

In our study we observed a low prevalence (~1 %) of adults reporting IEI-RF over the 
10-year follow-up. While this 1 % of persons remained stable at all time points in our 
study, the individuals who reported IEI-RF changed over time: of nine persons reporting 
symptoms attributed to RF-EMF at T0, only one still reported the same at T1 and T4, and 
two newly reported health complaints at T4. In addition, about 12 % of the participants 
reported the notion of being EHS (without the condition of health complaints attributed 
to RF-EMF exposure) at T4, and we observed that high RF-EMF risk and exposure per-
ception, as well as self-reported symptoms and sleep disturbances at T0 and T1, were 
statistically significant risk factors for this condition.

To the best of our knowledge, this is the first epidemiological study investigating the 
time course of IEI-RF in a well-established general population cohort of adult individuals 
assessed at multiple time points over a long time period of follow-up, which enabled us 
to investigate the dynamic process of IEI-RF with 2 and 10 years of latency. Furthermore, 
by collecting data on perceived RF-EMF exposure and risk, and non-specific symptoms 
(i.e. symptom reporting and sleep disturbances) over the 10-year follow-up, we were 
well positioned to investigate the dynamics of several individual factors possibly related 
to IEI-RF.
Weakness of our study includes that it was not feasible to measure true exposure in our 
study participants and we were therefore not able to follow the time course of actual RF-
EMF exposure. Because we asked for the “most important health complaint” attributed 
to RF-EMF exposure, we were also not able to reliably follow which exact symptoms 
were included into the attribution over time. Furthermore, given the sparseness of con-
sistent “yes” data of IEI-RF over time, we did not estimate mutually adjusted multi-state 
Markov models. Finally, we could not assess the time course of EHS in the study popula-
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tion due to the lack of EHS data at T0 and T1.
A previous longitudinal study conducted in Switzerland in 2008 and 2009 showed that 
only a minority of the participants who attributed health complaints to RF-EMF exposure 
(27 %) made the same declaration after one year (Röösli et al., 2010), and a longitudinal 
study conducted in Germany between 2004 and 2006 found a slightly larger proportion 
of participants (31 %) who did the same after two years of follow-up (Kowall et al., 2012). 
These results are consistent with what we found in our study, with a strong change in 
the population reporting symptoms attributed to RF-EMF exposure. Over the course of 
10 years this translated to a 95 % probability of not attributing health complaints to RF-
EMF exposure any more in persons who did so at baseline, and to a 1 % probability of 
acquiring such an attribution in those who did not attribute at baseline.
The estimated prevalence of EHS as well as of IEI-RF and IEI-EMF in the general popula-
tion is uncertain (Eltiti et al., 2007; Hillert et al., 2002; Karvala et al., 2018; Levallois et 
al., 2002; Schreier et al., 2006). In our cohort we observed a lower prevalence of IEI-RF 
compared to previous studies. Kowall et al. estimated the prevalence of IEI-RF to be 8.7 
% (2004) and 7.2 % (2006) based on attribution of health complaints to RF-EMF expo-
sure (Kowall et al., 2012). However, this study was limited to only focusing on RF-EMF 
exposure from mobile phone base stations. Röösli et al. reported an IEI-RF prevalence 
of 13.0 % and 14.3 % in 2008 and 2009, respectively, when evaluating health complaints 
generally attributed to electromagnetic pollution in everyday life. In that same study, 
EHS prevalence was also assessed based on a question targeting the notion of being 
EHS. Based on that question, the EHS prevalence was lower (8.6 % and 7.7 % in 2008 and 
2009, respectively), and lower than what we found in our general population cohort in 
2021 (12.1 %) using a similar question to define EHS (Röösli et al., 2010). We provided 
data about prevalence of IEI-RF and EHS by year, in our and in the named other studies, 
in Supplementary Table 4.
The following factors could contribute to the disagreement between the estimated prev-
alence of IEI-RF and EHS: first, the term “electromagnetic hypersensitivity” may not be 
familiar to all individuals in our Dutch cohort. Interestingly, of the 11 participants report-
ing IEI-RF in 2021, only 6 defined themselves as EHS when answering the question tar-
geting the notion of being electromagnetic hypersensitive in the same year. In contrast, 
only 6 out of 108 participants defining themselves as EHS also attributed own health 
complaints to RF-EMF exposure in the same year. These results indicated that our par-
ticipants provided a different interpretation of IEI-RF and the notion of being EHS, thus 
suggesting that future studies should carefully design their survey and questionnaire in 
order to obtain the most comprehensive and accurate estimates of IEI-RF and EHS preva-
lence in the study population. Due to the considerable heterogeneity in the criteria used 
by researchers to define EHS, reports of EHS as well as of IEI-RF prevalence in different 
populations may be difficult to align (Baliatsas et al., 2012).
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Second, people who self-describe as electromagnetic hypersensitive may avoid expo-
sure and thus not be attributing symptoms. As a consequence, one could expect a higher 
prevalence for being sensitive than for experiencing symptoms that can be attributed. At 
the same time, the exact wording of the question in the questionnaire can play a role. It 
might be easier for participants who generally consider themselves sensitive to any (en-
vironmental) stressors to perceive themselves also electromagnetic hypersensitive. On 
the other hand, by asking for health complaints attributed to specific RF-EMF sources, it 
might be less likely for those who generally consider themselves sensitive to say “yes”.
Third, we did not consider in our analyses health complaints attributed to extremely low 
frequency electric and magnetic fields (ELF-EMF), such as from powerlines or electric 
appliances. Therefore, we cannot exclude that these additional EMF sources may have 
influenced the proportion of participants defining themselves as sensitive to RF-EMF 
exposure at T4. However, information on health complaints attributed to ELF-EMF was 
available at T0 and T1 and showed that only 2 out of 892 participants reported at least 
one symptom that they attributed to ELF-EMF exposure. This result suggested that an 
underestimation of EHS prevalence due to missing information on ELF-EMF at T4 was 
unlikely to have been large in our study.
Finally, given the sample size of the AMIGO sub-cohort, the difference in estimated prev-
alence of EHS and IEI-RF should be interpreted cautiously.

Three main pathways have been hypothesized to explain what underlies EHS or IEI-RF: 
first, the biological pathway outlines that participants’ RF-EMF exposure causes symp-
toms (Dieudonné, 2020). Presumably, for symptoms to go away, exposure would need to 
be attenuated. Given that we did not measure true RF-EMF exposure of our participants 
over time, we are limited in our ability to explore this exposure attenuation hypothesis 
in detail. However, it has been shown that one’s own exposure is primarily driven by 
the own use of devices, in particular when calling with mobile phones (van Wel et al., 
2021). Exposure reduction over time thus should entail that participants are aware of 
their own behavior changes and thus one would expect that their perceived exposure 
would be reduced as well. However, persons who attributed symptoms to RF-EMF ex-
posure at T0 or T1, but not at T4, tended to report higher exposure perception at T4 than 
at the two previous time points, which does not fit this hypothesized pattern. Of note, 
current evidence is limited regarding a biological pathway in causing symptoms (French 
Agency for Food, Environmental and Occupational Health & Safety (ANSES), 2013; SSM’s 
Scientific Council on Electromagnetic Fields, 2021). Second, the cognitive pathway hy-
pothesizes that perceived exposure and risk promote a nocebo response that generates 
symptoms (Dieudonné, 2020). Ample experimental evidence supports nocebo effects 
(Martens et al., 2017; Szemerszky et al., 2010), although duration of such induced health 
problems have rarely been assessed. In our study, participants with higher risk and expo-
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sure perception were somewhat more likely to transition towards attributing symptoms, 
indicating that nocebo effects may be relevant. Contrasting this, the observation that 
study participants reporting IEI-RF at T0 and T1, but not at T4, overall increased (and not 
decreased) exposure and risk perception over time, does not support the cognitive hy-
pothesis. Alternatively, symptoms triggered by nocebo effects may not be persistent. A 
recent qualitative study on IEI-EMF subjects suggested symptom reports preceded EMF 
risk perception which also contradicts the cognitive pathway (Dieudonné, 2016). As a 
third hypothesized pathway, symptoms may be attributed to RF-EMF exposure to help 
explain a health problem and reduce uncertainty regarding the underlying cause (at-
tributive hypothesis) (Dieudonné, 2020). Prevalence of non-specific symptom reporting 
based on the 4DSQ-S score was 91, 91, and 95 % of the participants reporting at least 
one non-specific symptom at T0, T1, and T4, respectively. Given that we cannot explore 
whether symptom reporting or risk perception came first, we are not able to prove or 
disprove this pathway. Nevertheless, the high prevalence of symptom reports means 
that this pathway was possible in our population.

Conclusion

In our study we found that IEI-RF appears to be a more transient phenomenon than 
previously assumed. At each time point, about 1 % of study participants reported health 
complaints that they attributed to RF-EMF exposure and, overall, participants had a 95 % 
chance of transitioning from “yes” to “no” over a time course of 10 years, and a chance 
of 1 % of transitioning from “no” to “yes”. Participants with a high perception of both 
RF-EMF exposure and health risk had a general tendency to transition more frequently 
between states. 
RF-EMF perceptions as well as non-specific symptom reporting and sleep disturbances 
at baseline were predictive for the notion of being EHS at 10 years follow-up, regardless 
of whether reporting health complaints attributed to RF-EMF exposure. The knowledge 
regarding predictors of these dynamics may provide opportunities for future risk com-
munication and prevention, particularly targeting those individuals in the population 
who consistently attribute health complaints to RF-EMF exposure over time.
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Cohort at T0 (2011/2012)

n (%) Mean (SD)

Sex
male
female

424 (47.5)
468 (52.5)

Age (in years) 50.4 (9.0)

Highest level of education attaineda

low
intermediate
high

157 (17.6)
266 (29.8)
469 (52.6)

Urbanicity levelb

very highly urban
highly urban
moderately urban
little urban
non-urban

117 (13.1)
282 (31.6)
238 (26.7)
177 (19.8)
78 (8.8)

Mobile phone use
nonuser
user

234 (26.2)
658 (73.8)

aLow: primary school, lower vocational training or lower secondary education; intermediate: intermediate vocational education or intermediate/
higher secondary education; high: higher vocational education or university degree.
bVery highly urban: ≥ 2,500 addresses per km2; highly urban: 1,500–2,500 addresses per km2; moderately urban: 1,000–1,500 addresses per km2; 
little urban: 500–1,000 addresses per km2; non-urban: < 500 addresses per km2.

Table footnote for publication: Characteristics of the participants at baseline (T0: 2011/2012) in the sub-cohort of AMIGO (n=892).

Table 1. Characteristics of the participants at T0 (2011/2012) in the sub-cohort of AMIGO (n=892).
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Cohort at T0 (2011/2012)

n (%) Mean (SD)
Sex

male
female

424 (47.5)
468 (52.5)

Age (in years) 50.4 (9.0)

Highest level of education attaineda

low
intermediate
high

157 (17.6)
266 (29.8)
469 (52.6)

Urbanicity levelb

very highly urban
highly urban
moderately urban
little urban
non-urban

117 (13.1)
282 (31.6)
238 (26.7)
177 (19.8)
78 (8.8)

Mobile phone use
nonuser
user

234 (26.2)
658 (73.8)

aLow: primary school, lower vocational training or lower secondary education; intermediate: intermediate vocational education or intermediate/
higher secondary education; high: higher vocational education or university degree.
bVery highly urban: ≥ 2,500 addresses per km2; highly urban: 1,500–2,500 addresses per km2; moderately urban: 1,000–1,500 addresses per km2; 
little urban: 500–1,000 addresses per km2; non-urban: < 500 addresses per km2.

Table footnote for publication: Characteristics of the participants at baseline (T0: 2011/2012) in the sub-cohort of AMIGO (n=892).

Table 2. Perceived RF-EMF exposure, perceived RF-EMF risk, and symptom characteristics at T0 (2011/2012), T1 
(2013), and T4 (2021) in the sub-cohort of AMIGO (n=892).

Cohort at T0
(2011/2012)

Cohort at T1
(2013)

Cohort at T4
(2021)

n (%) Mean (SD) n (%) Mean (SD) n (%) Mean (SD)

Perceived RF-EMF exposurea

low perception
high perception

847 (94.9)
45 (5.1)

826 (92.6)
66 (7.4)

718 (80.5)
174 (19.5)

Perceived RF-EMF riskb

low perception
high perception

828 (92.8)
64 (7.2)

805 (90.2)
87 (9.8)

767 (86.0)
125 (14.0)

4DSQ-S score 5.9 (5.3) 5.7 (4.9) 7.0 (5.1)

MOS sleep index 26.7 (14.3) 27.0 (14.1) 26.4 (14.8)

aThe cut-off point for low/high perception was based on the distribution of perceived RF-EMF exposure at T0 (low: 0th-90th percentile, high: 90th-100th 
percentile, cut-off point=12).
bThe cut-off point for low/high perception was based on the distribution of perceived RF-EMF risk at T0 (low: 0th-90th percentile, high: 90th-100th 
percentile, cut-off point=12).

Abbreviations: 4DSQ-S, somatization scale of the Four-Dimensional Symptom Questionnaire; MOS, Medical Outcomes Study; n, number of partic-
ipants; SD, standard deviation.

Table footnote for publication: Distribution of perceived RF-EMF exposure and perceived RF-EMF risk at T0 (2011/2012), T1 (2013), and T4 (2021) 
and mean (standard deviation) of non-specific symptoms (4DSQ-S score) and sleep disturbances (MOS sleep index) at T0 (2011/2012), T1 (2013), 
and T4 (2021) in the sub-cohort of AMIGO (n=892).
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Cohort at T0
(2011/2012)

Cohort at T1
(2013)

Cohort at T4
(2021)

n % n % n %

Health complaints attributed to 
RF-EMF exposure (IEI-RF)

no
yes

883
9

99.0
1.0

882
10

98.9
1.1

881
11

98.8
1.2

Self-reported notion of being 
electromagnetic hypersensitive 
(EHS)

no
yes

-
-

-
-

784
108

87.9
12.1

Table footnote for publication: Distribution of health complaints attributed to RF-EMF exposure (IEI-RF) at T0 (2011/2012), T1 (2013), and T4 (2021) 
and self-reported notion of being electromagnetic hypersensitive (EHS) at T4 (2021) in the sub-cohort of AMIGO (n=892).

Table 3. Prevalence of self-reported health complaints attributed to RF-EMF exposure (IEI-RF) at T0 (2011/2012), 
T1 (2013), and T4 (2021), and self-reported notion of being electromagnetic hypersensitive (EHS) at T4 (2021), in 
the sub-cohort of AMIGO (n=892).
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transition HR 95% CI
Model 1a

Perceived RF-EMF exposure

low perception
no-yes 1
yes-no 1

high perception
no-yes 4.11 (0.87;19.53)
yes-no 0.56 (0.11;2.82)

Model 2a

Perceived RF-EMF risk

low perception
no-yes 1
yes-no 1

high perception
no-yes 3.81 (0.76;19.18)
yes-no 0.46 (0.10;2.16)

Model 3a

4DSQ-S Score
no-yes 1.07 (0.95;1.20)
yes-no 0.96 (0.85;1.08)

Model 4a

MOS Sleep Index
no-yes 0.98 (0.91;1.05)
yes-no 0.93 (0.87;1.01)

aAdjusted for sex and age at T0.

Abbreviations: 4DSQ-S, somatization scale of the Four-Dimensional Symptom Questionnaire; MOS, Medical Outcomes Study; HR, Hazard Ratios; CI, 
Confidence Interval.

Table footnote for publication: Results from four multi-state Markov models representing how individuals in the sub-cohort transitioned between two 
states defined by the presence (“yes”) or absence (“no”) of IEI-RF. We included perceived RF-EMF exposure (Model 1), perceived RF-EMF risk (Model 2), 
4DSQ-S score (Model 3), and MOS sleep index (Model 4) as time-dependent risk factors to investigate potential time-variant effects on transition rates, 
adjusted for sex and age.

Table 4. Associations of self-reported health complaints attributed to RF-EMF exposure (IEI-RF) with perceived 
RF-EMF exposure (Model 1), perceived RF-EMF risk (Model 2), 4DSQ-S score (Model 3), MOS sleep index 
(Model 4), evaluated with multi-state models with transitions at T0, T1, and T4 in the sub-cohort of AMIGO 
(n=892).
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Model 5a Model 6a Model 7a Model 8a Model 9a Model 10b

OR 95 % CI OR 95 % CI OR 95 % CI OR 95 % CI OR 95 % CI OR 95 % CI

Perceived RF-EMF 
exposure

low perception
high perception

1
4.17 

(2.10;8.00)

- - - 1
2.39 

(1.09;4.97)

1
2.38 

(1.08;5.01)

Perceived RF-EMF risk
low perception

high perception
- 1

4.08 
(2.26;7.17)

- - 1
2.92 

(1.50;5.49)

1
3.07 

(1.57;5.83)

4DSQ-S Score - - 1.07 
(1.03;1.10)

- 1.05 
(1.01;1.09)

1.05 
(1.00;1.09)

MOS Sleep Index - - - 1.02 
(1.00;1.03)

1.01 
(0.99;1.02)

1.01 
(0.99;1.02)

aAdjusted for sex and age at T0.
bAdjusted for sex, age, the highest level of education attained, urbanicity level, and self-reported mobile phone use at T0.

Table footnote for publication: Results from logistic regression on the association between EHS at T4 and perceived RF-EMF exposure, perceived 
RF-EMF risk, 4DSQ-S score, MOS sleep index, assessed at T0. We estimated four logistic regression models including each independent variable 
separately, and two mutually adjusted logistic regression models (with minimal and full adjustment) where perceived RF-EMF exposure, perceived 
RF-EMF risk, 4DSQ-S score, MOS sleep index were considered simultaneously.

Table 5. Associations of self-reported notion of being electromagnetic hypersensitive (EHS) at T4 with perceived 
RF-EMF exposure (Model 5), perceived RF-EMF risk (Model 6), 4DSQ-S score (Model 7), MOS sleep index 
(Model 8), and perceived RF-EMF exposure, perceived RF-EMF risk, 4DSQ-S score, MOS sleep index mutually 
adjusted (Model 9 with minimal adjustment; Model 10 with full adjustment) assessed at T0.
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Model 11a Model 12a Model 13a Model 14a Model 15a Model 16b

OR 95 % CI OR 95 % CI OR 95 % CI OR 95 % CI OR 95 % CI OR 95 % CI

Perceived RF-EMF 
exposure

low perception
high perception

1
2.85 

(1.53;5.10)

- - - 1
1.64 

(0.79;3.28)

1
1.84 

(0.87;3.72)

Perceived RF-EMF risk
low perception

high perception
- 1

3.02 
(1.74;5.09)

- - 1
2.36 

(1.24;4.36)

1
2.41 

(1.25;4.51)

4DSQ-S Score - - 1.06 
(1.02;1.10)

- 1.04 
(0.99;1.09)

1.03 
(0.99;1.08)

MOS Sleep Index - - - 1.02 
(1.00;1.03)

1.01 
(0.99;1.03)

1.01 
(0.99;1.03)

aAdjusted for sex and age at T0.
bAdjusted for sex, age, the highest level of education attained, urbanicity level, and self-reported mobile phone use at T0.

Table footnote for publication: Results from logistic regression on the association between EHS at T4 and perceived RF-EMF exposure, perceived 
RF-EMF risk, 4DSQ-S score, MOS sleep index, assessed at T1. We estimated four logistic regression models including each independent variable 
separately, and two mutually adjusted logistic regression models (with minimal and full adjustment) where perceived RF-EMF exposure, perceived 
RF-EMF risk, 4DSQ-S score, MOS sleep index were considered simultaneously.

Table 6. Associations of self-reported notion of being electromagnetic hypersensitive (EHS) at T4 with perceived 
RF-EMF exposure (Model 11), perceived RF-EMF risk (Model 12), 4DSQ-S score (Model 13), MOS sleep index 
(Model 14), and perceived RF-EMF exposure, perceived RF-EMF risk, 4DSQ-S score, MOS sleep index mutually 
adjusted (Model 15 with minimal adjustment; Model 16 with full adjustment) assessed at T1.
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Figure 1. Flow of participants. We included in the analyses participants who filled in questionnaires at time 
points T0, T1, and T4.

Figure footnote for publication: Flow of participants. In the sub-cohort of AMIGO, we included participants who filled in questionnaires at time 
points T0, T1, and T4 (n=892 of 2,228 invited participants). 
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Cohort at T0 (2011/2012)

n (%) Mean (SD)

Sex
male
female

6,561 (44.2)
8,268 (55.8)

Age (in years) 50.6 (9.3)

Highest level of education attaineda

low
intermediate
high

4,546 (30.6)
4,627 (31.2)
5,656 (38.2)

Urbanicity level
very highly urban
highly urban
moderately urban
little urban
non-urban

1,263 (8.5)
3,307 (22.3)
3,228 (21.8)
3,615 (24.4)
3,416 (23.0)

Mobile phone use
nonuser
user
no answer

4,384 (29.6)
10,278 (69.3)
167 (1.1)

aLow: primary school, lower vocational training or lower secondary education; intermediate: intermediate vocational education or intermediate/
higher secondary education; high: higher vocational education or university degree.
bVery highly urban: ≥ 2,500 addresses per km2; highly urban: 1,500–2,500 addresses per km2; moderately urban: 1,000–1,500 addresses per km2; 
little urban: 500–1,000 addresses per km2; non-urban: < 500 addresses per km2.Table footnote for publication: Characteristics of the participants at 
baseline (T0: 2011/2012) in the full cohort of AMIGO (n=14,829).

Supplementary Table 1. Characteristics of the participants at T0 (2011/2012) in the full cohort of AMIGO 
(n=14,829).
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Supplementary Table 2. Transitions of health complaints attributed to RF-EMF exposure (IEI-RF) that are 
observed between T0 and T1 (A), T1 and T4 (B), and any consecutive time points T0, T1, T4 (C).

A.

from	 to no yes
no 875 8
yes 7 2

B.

from	 to no yes
no 874 8
yes 7 3

C.

from	 to no yes
no 1749 16
yes 14 5

Table footnote for publication: The observed transitions, that is the number of times each pair of states of health complaints attributed to RF-EMF 
exposure (IEI-RF) were observed in successive observation times between T0 and T1, T1 and T4, and any consecutive time points T0, T1, T4.
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to
from no yes

t=2
no 0.994 (0.989;0.997) 0.006 (0.004;0.010)

yes 0.464 (0.283;0.687) 0.536 (0.313;0.717)

t=10
no 0.987 (0.978;0.991) 0.013 (0.008;0.021)

yes 0.945 (0.808;0.986) 0.055 (0.014;0.192)

Table footnote for publication: Fitted transition probabilities for each pair of states of health complaints attributed to RF-EMF exposure (IEI-RF) over 
different time intervals (t=2, 10 years).

Supplementary Table 3. Fitted transition probabilities of health complaints attributed to RF-EMF exposure (IEI-
RF) over different time intervals (t=2, 10 years).
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Supplementary Table 4. Prevalence of IEI-RF and EHS by year, respectively, in this and other studies.

Prevalence (%) of IEI-RF Prevalence (%) of EHS Year

Kowall et al. 2012a
8.7 2004

7.2 2006

Roosli et al. 2010b
13.0 8.6 2008

14.3 7.7 2009

Traini et al. 2022c

1.0 2011/2012 (T0)

1.1 2013 (T1)

1.2 12.1 2021 (T4)

aPrevalence of IEI-RF was estimated based on the question: “Do you feel compromised in your health because of (mobile phone base station) 
electromagnetic fields?”. Possible answers were “yes” or “no”.
bPrevalence of IEI-RF was estimated based on the question: “Do you think that you develop detrimental health symptoms due to electromagnetic 
pollution in everyday life?”; those answering “yes” but not declaring to be hypersensitive were called “attributers”. Prevalence of EHS was estimated 
based on the question: “Are you electrohypersensitive?”; those answering “yes” were considered electromagnetic hypersensitive.
cPrevalence of IEI-RF was estimated based on the question: “Do you currently have health complaints that you attribute to the environment” and 
“if so, to what environmental factors/sources, select from the following or describe another factor/source” ((1) electromagnetic fields from mobile 
phone base stations, radio or TV; (2) electromagnetic fields from mobile phones; (3) electromagnetic fields from cordless phones) at T0 and T1, and 
based on the question: “Do you currently have health complaints that you attribute to the environment” and “if so, to what environmental factors/
sources, select from the following or describe another factor/source” ((1) electromagnetic fields from mobile phone base stations, radio or TV; (2) 
electromagnetic fields from mobile phones, cordless phones and other wireless devices, (e.g. laptop, tablet); (3) electromagnetic fields from 5G 
technology) at T4; prevalence of EHS was estimated at T4 estimated based on the question: “Are you electrohypersensitive?”.

Table footnote for publication: Data about prevalence of IEI-RF and EHS by year, in this and other studies, including questions asked to assess IEI-RF 
and EHS in each study.
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Supplementary Figure 1. A multi-state Markov process illustrated along the time axis with two separate states 
(“no”, “yes”) of IEI-RF, indicated by the nodes. The defined model allows transitions between states at each 
time point, with qno-yes and qyes-no representing transition intensities for the two state switches.

Figure footnote for publication: A multi-state Markov process illustrated along the time axis with two separate states (“no”, “yes”) of IEI-RF, indi-
cated by the nodes.
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Figure footnote for publication: Distribution of perceived RF-EMF exposure and perceived RF-EMF risk at T0, T1, and T4. The boxplots show median, 1st quar-
tile, and 3rd quartile, with whiskers extending to the most extreme data point which is no more than 1.5 times the interquartile range (IQR)

Supplementary Figure 2. Distribution of perceived RF-EMF exposure and risk at T0, T1, and T4.



117

Chapter 3

Supplementary Figure 3. Distribution of scores (scale of 0-6 where 0=not at all, 6=very much) of perceived 
RF-EMF exposure (A) and risk (B) grouped by exposure source at T0, T1, and T4.

A.

B.

Abbreviations: mpbs, mobile phone base stations; mp, mobile phones ; cp, cordless phones ; mp_cp_otherWiFi, mobile phones, cordless phones, 
and other wireless devices; 5G, 5 Generation technology.

Figure footnote for publication: Distribution of scores of perceived RF-EMF exposure (A) and perceived RF-EMF risk (B), grouped by exposure source 
at T0, T1, and T4. Perceived exposure with respect to RF-EMFs (amongst other environmental exposures) was assessed at T0 and T1 with the ques-
tion: “To what extent do you think you are exposed to: (1) electromagnetic fields from mobile phone base stations, radio or TV; (2) electromagnetic 
fields from mobile phones; (3) electromagnetic fields from cordless phones; (on a scale of 0-6, where 0=not at all and 6=very much)?”, and at time 
point T4 with the question: “To what extent do you think you are exposed to: (1) electromagnetic fields from mobile phone base stations, radio or 
TV; (2) electromagnetic fields from mobile phones, cordless phones and other wireless devices, (e.g. laptop, tablet); (3) electromagnetic fields from 
5G technology; (on a scale of 0-6, where 0=not at all and 6=very much)?”.
Perceived risk with respect to RF-EMFs (amongst other specified environmental factors) was assessed at T0 and T1 with the question: “To what 
extent do you think that ((1) electromagnetic fields from mobile phone base stations, radio or TV; (2) electromagnetic fields from mobile phones; (3) 
electromagnetic fields from cordless phones) pose a risk to the health in everyday circumstances? (on a scale of 0-6, where 0=not at all and 6=very 
much)”, and at time point T4 with the question: “To what extent do you think that ((1) electromagnetic fields from mobile phone base stations, radio 
or TV; (2) electromagnetic fields from mobile phones, cordless phones and other wireless devices, (e.g. laptop, tablet); (3) electromagnetic fields 
from 5G technology) pose a risk to the health in everyday circumstances? (on a scale of 0-6, where 0=not at all and 6=very much)”.
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Supplementary Figure 4. The dynamic process of IEI-RF with 2 and 10 years of latency, with the nodes 
representing the two states (“no”, “yes”) of IEI-RF. The number of participants in each state at T0, T1, and T4 is 
indicated in the each node.

Figure footnote for publication: The multi-state Markov process illustrated along the time axis with two separate states (“no”, “yes”) of IEI-RF, 
showing the number of participants at T0, T1, and T4 in each node.







121

Chapter 4

Chapter 4: A multi-pollutant approach to esti-
mating causal effects of air pollution mixtures 
on overall mortality in a large, prospective co-
hort
Authors: Eugenio Traini1, Anke Huss1, Lützen Portengen1, Matti Rookus2, W.M. Monique 
Verschuren3,4, Roel Vermeulen1, Andrea Bellavia1,5

1Utrecht University, Institute for Risk Assessment Sciences, Utrecht, the Netherlands.
2Department of Epidemiology, Netherlands Cancer Institute (NKI), Amsterdam, the 
Netherlands.
3Centre for Nutrition, Prevention and Health Services, National Institute for Public Health 
and the Environment, Bilthoven, the Netherlands.
4Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 
Utrecht University, Utrecht, the Netherlands.
5Department of Environmental Health, Harvard T.H. Chan School of Public Health, Bos-
ton, MA, United States.

Published in: Epidemiology, 2022, 33(4): p 514-522.



122

Chapter 4

Abstract

Background: Several studies have confirmed associations between air pollution and 
overall mortality, but it is unclear to what extent these associations reflect causal rela-
tionships. Moreover, few studies to our knowledge have accounted for complex mixtures 
of air pollution. In this paper, we evaluate causal effects of a mixture of air pollutants on 
overall mortality in a large, prospective cohort of Dutch individuals.
Methods: We evaluated 86,882 individuals from the LIFEWORK study, assessing over-
all mortality between 2013-2017 through national registry linkage. We predicted out-
door concentration of five air pollutants (PM2.5, PM10, NO2, PM2.5 absorbance, oxidative 
potential) with land-use regression. We used logistic regression and mixture modeling 
(weighted quantile sum and boosted regression tree models) to identify potential con-
founders, assess pollutants relevance in the mixture–outcome association, and inves-
tigate interactions and non-linearities. Based on these results, we built a multivariate 
generalized propensity score model to estimate causal effects of pollutant mixtures.
Results: Regression model results were influenced by multicollinearity. Weighted quan-
tile sum and boosted regression tree models indicated that all components contributed 
to a positive linear association with the outcome, with PM2.5 being the most relevant con-
tributor. In the multivariate propensity score model, PM2.5 (OR=1.18, 95% CI:1.08,1.29) 
and PM10 (OR=1.02, 95% CI:0.91,1.14) were associated with increased odds of mortality 
per interquartile range increase.
Conclusion: Using novel methods for causal inference and mixture modeling in a large 
prospective cohort, this study strengthened the causal interpretation of air pollution 
effects on overall mortality, emphasizing the primary role of PM2.5 within the pollutant 
mixture.
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Introduction

Exposure to air pollution has been found to be associated with higher mortality rates in 
several studies over the last decades (Brook et al., 2010; Di et al., 2017; World Health Or-
ganization. Ambient (Outdoor) Air Quality and Health. Fact Sheet No. 313. Geneva: World 
Health Organization., 2015), and associations have been reported even at low levels of 
exposure (Beelen et al., 2013; Chen et al., 2021; Di et al., 2017; Strak et al., 2021; Wei 
et al., 2021). However, to improve our understanding of these associations and to facil-
itate the development of better targeted public health regulations and interventions, it 
is important to determine to which extent these associations reflect causal relationships 
(HEI Health Effect Institute. Strategic Plan for Understanding the Health Effects of Air Pol-
lution. 2020–2025. Fist Draft May 2019. Available Online: Https://Www.Healtheffects.
Org/Sites/Default/Files/First-Draft-HEI-StrategicPlan2020-2025.Pdf, 2019).
When evaluating the health effects of environmental exposures such as air pollutants, it 
is  important to account for the co-occurrence of multiple environmental constituents, 
present in the real world as a complex mixture (Dominici et al., 2010a). To evaluate the 
causal effects of air pollution on health, it is thus critical that studies account for this 
complex nature of exposure. This approach would allow identifying relevant contribu-
tors within the mixture as well as detecting potential interactions between pollutants. 
Several analytical methods have been proposed to deal with statistical challenges in-
herent to mixtures, such as co-exposure confounding, high correlation, and interaction 
between components of the mixture (Billionnet et al., 2012; Stafoggia et al., 2017; Tay-
lor et al., 2016). Furthermore, regulatory policies are still mostly designed to regulate 
one pollutant or one source at the time, whereas more complex evaluations regarding 
causality may possibly lead to a more targeted regulatory policy (HEI Health Effect Insti-
tute. Strategic Plan for Understanding the Health Effects of Air Pollution. 2020–2025. Fist 
Draft May 2019. Available Online: Https://Www.Healtheffects.Org/Sites/Default/Files/
First-Draft-HEI-StrategicPlan2020-2025.Pdf, 2019). As such, there is a need to improve 
our understanding of the causal effects of environmental mixtures evaluated as a com-
plex exposure situation of high-dimensional data (Carone et al., 2020; Dominici & Zigler, 
2017).
In this study, we investigated the effects of a mixture of five pollutants on overall mortal-
ity in a large population-based cohort of Dutch individuals where air pollution exposure 
has been assessed through state-of-the-art methodologies. We adopted a pluralistic 
approach exploring the pollutant mixture with targeted methods for high-dimensional 
exposures, including boosted regression tree and weighted quantile sum models, and in-
vestigated the causal relationships between multiple pollutants and mortality with novel 
extensions of propensity score approaches.

Material and methods
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Study participants and outcome definition

We used data from the LIFEWORK study, a large prospective cohort consortium com-
prising nearly 90,000 participants aged 18+ living in the Netherlands. LIFEWORK was 
designed as a federated study resulting from the integration of three existing Dutch co-
horts: the Nightingale study, initiated in 2011 and the largest contributor to the LIFE-
WORK study (68%), the Occupational and Environmental Health Cohort Study (AMIGO) 
(17%) started in 2011, and the European Prospective Investigation into Cancer and Nu-
trition in the Netherlands (EPIC-NL) (15%), established between 1993 and 1997. Data 
were collected from each cohort between 2011 and 2012 (baseline questionnaires for 
AMIGO and Nightingale, follow-up questionnaire for EPIC-NL) and pooled to set up the 
LIFEWORK cohort, setting the baseline at January 1st, 2013. The rationale, study design 
and participant recruitment in LIFEWORK were discussed in detail elsewhere (Beulens 
et al., 2010; Pijpe et al., 2014; Reedijk et al., 2018; Slottje et al., 2014). The contribut-
ing subcohorts were approved by the local research ethics review committee or institu-
tional review board (AMIGO and EPIC-NL Prospect by the committee at the University 
Medical Center Utrecht; EPIC-NL MORGEN by the committee at TNO Nutrition and Food 
Research; and Nightingale by the committee at the Netherlands Cancer Institute), and 
participants signed an informed consent form for each subcohort prior to enrolment.
From the original 88,466 LIFEWORK participants, we excluded 683 individuals with miss-
ing exposure information (their residential address either was incomplete; fell in the 
sea, river or another water course; or at least one predictor for the land-use regression 
models was missing), 378 with reported emigration during the study, and 523 with no 
informed consent to link to the Municipal Personal Records Database (GBA). The GBA is 
a centralized automated population registration system that holds information on resi-
dence (home address) and date of death of people who reside in the Netherlands as well 
as personal data on migration. After exclusions, the total population evaluated in this 
study consisted of 86,882 individuals. 
The outcome of interest was all-cause mortality, assessed by ascertaining vital status 
from the Dutch Central Bureau of Statistics (CBS) and date of death over a 5-year fol-
low-up period (1 January 2013 - 31 December 2017) via data linkage to the GBA.

Exposure assessment

We evaluated air pollution as a mixture of five components: particulate matter with aero-
dynamic diameter less than 2.5 µm (PM2.5), particulate matter with aerodynamic diam-
eter less than 10 µm (PM10), a marker of diesel exhaust particulate (PM2.5 absorbance), 
nitrogen dioxide (NO2), and the oxidative potential estimated in PM2.5 by dithiothreitol.
Land-use regression models were fitted to estimate outdoor concentrations of air pollut-
ants at the home address for each participant, combining monitoring of air pollution at 
different locations and predictor variables obtained from spatial data (Hoek et al., 2008). 
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Model development has been described in detail elsewhere (Chen et al., 2021). Briefly, 
we developed land-use regression models based upon annual average concentrations of 
PM2.5, PM2.5 absorbance, PM10 and NO2 measured between October 2008 and April 2011 
during three 14-day periods to account for seasonal variation. We conducted measure-
ments in 20 European study areas at 20–40 sites for PM and at 40–80 sites per area for 
NO2. The annual average ambient pollutant concentrations were estimated at addresses 
of study participants at baseline using as predictor variables data on traffic intensity, 
household density, land use and other study-area variables such as altitude and distance 
to the sea. The median model explained variance (R2) ranged from 71% (PM2.5) to 89% 
(PM2.5 absorbance) (Beelen et al., 2013; Eeftens et al., 2012). Oxidative potential concen-
tration was estimated based on a sampling period of three 2-week PM measurements 
carried out at 40 sites spread over the Netherlands and Belgium between February 
2009 and February 2010 taking into account temporal variability. Land-use regression 
models for oxidative potential were estimated at participants’ addresses at baseline and 
achieved an R2 value of 60% (Yang et al., 2015).

Covariates

We selected potential confounders of the associations between air pollution and overall 
mortality a priori based on results from preliminary studies (Beelen et al., 2013; Chen 
et al., 2021; Eeftens et al., 2012). These potential confounders included age, sex, body 
mass index (BMI, weight (kg)/height (m)2)), cardiovascular disease (CVD) diagnosis, 
chronic obstructive pulmonary disease (COPD) diagnosis, cancer diagnosis, smoking sta-
tus (never, former, current), highest level of education attained (low, intermediate, high), 
the estimated monthly household income of the neighborhood based on income data 
provided by CBS in 2012 (www.cbs.nl), and the normalized difference vegetation index 
which quantifies vegetation density around each participant’s address based on Landsat 
8 satellite images taken in 2008 (Rhew et al., 2011).

Statistical analysis

Descriptive statistics of the study population were evaluated overall, and by levels of air 
pollution exposure. As the interest of this analysis was in pollutant mixtures, we identi-
fied profiles of pollutant mixture exposure through K-means cluster analysis. We evalu-
ated correlation between pollution components by calculating Spearman’s rank correla-
tion coefficients. 
We first evaluated the association between air pollution constituents and overall mor-
tality with classical regression models, both independently (one model for each mixture 
component) as well as mutually adjusting pollutants in the same statistical model. In the 
primary analysis, mutual adjustment was performed by considering the full set of com-
ponents available in the LIFEWORK cohort. Overall mortality was evaluated as a binary 
outcome (dead/alive) with logistic regression, estimating ORs for mortality risk, as well 
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as with Poisson and Cox models to account for the duration of follow-up and for possible 
changes in event rates over time. A sensitivity analysis was conducted using multiple im-
putation by chained equation (MICE) to impute missing values in the exposures (Buuren 
& Groothuis-Oudshoorn, 2011). Age, sex, BMI, smoking, and CVD diagnosis were speci-
fied as predictors in the algorithm for each incomplete exposure variable. An additional 
sensitivity analysis was performed by excluding individuals with baseline CVD diagnosis 
(angina, heart attack, transient ischemic attack, stroke, other heart conditions, defined 
according to ICD-9 and ICD-10), COPD, and cancer diagnosis. Last, we conducted a sec-
ondary analysis on overall mortality and a subset of components (NO2, PM2.5, PM10) rep-
resenting a group of already regulated pollutants based on existing legislation (World 
Health Organization. Ambient (Outdoor) Air Quality and Health. Fact Sheet No. 313. Ge-
neva: World Health Organization., 2015).
We used multiple regression models to identify confounders of the association to be 
evaluated in causal models. Specifically, we first evaluated a fully adjusted multiple re-
gression model by adjusting for all covariates presented in the previous section and then 
removed those confounders that did not change any exposure coefficient by more than 
10%. To assess the impact of multicollinearity of multiple regression estimates, we cal-
culated variance inflation factors (VIFs). 
To address issues of multicollinearity and to identify pollution constituents from clusters 
of correlated exposures that should be included in the causal analysis, we used weighted 
quantile sum and boosted regression tree models. In brief, these methods are techniques 
used in mixture modeling to identify the relative contribution of several exposures in the 
overall effect between the mixture and the outcome of interest, while accounting for 
high correlation structures (Carrico et al., 2015; Lampa et al., 2014). While both correla-
tion analysis and multivariable regression can inform on the levels of correlation, neither 
of them can detect which covariates within the mixture are driving the associations, and 
to what extent. Weighted quantile sum summarizes the mixtures with a single index esti-
mated as a weighted linear combination of the exposures and allows identifying the rela-
tive contribution of each mixture constituent. This technique makes the assumptions of 
linear associations on the quantile scale and of unidirectionality (all exposures-outcome 
associations are either positive or negative), but directly provides an estimate of the 
relative percent contribution of each exposure within the mixture (Carrico et al., 2015). 
Boosted regression tree, on the other hand, is a machine learning technique based on 
trees modeling that does not provide any estimate of exposures contribution but allows 
ranking their relative importance while relaxing assumptions of unidirectionality and lin-
earity, strengthening the interpretation of the results from the weighted quantile sum. 
In addition, boosted regression tree provides a qualitative assessment of interactions 
importance (through the use of the measure called H-statistics), which can be used as an 
exploratory tool to detect 2-way or higher order interactions that should be incorporat-



127

Chapter 4

ed in subsequent analyses (Bellavia et al., 2021; Lampa et al., 2014).
To estimate the causal effects of pollutant mixture on overall mortality we used propen-
sity score methods, building the propensity scores from the set of confounders identi-
fied in the regression modeling (Rosenbaum & Rubin, 1983). Propensity score meth-
ods achieve balance across a set of confounders thus reducing the confounding effect 
in the exposure-outcome relation. To evaluate pollutants as continuous exposures, we 
used the generalized propensity scores extension, which handles single continuous ex-
posures given a set of confounders (Hirano & Imbens, 2005; Imai & Dyk, 2004), under 
the assumption that exposures follow a normal distribution. We first used generalized 
propensity scores to generate weights for each continuous exposure separately (Greifer, 
2017). Next, to account for the mixture nature of air pollution, we used the multivari-
ate generalized propensity score, a novel extension of the generalized propensity score 
for multiple simultaneous continuous exposures implemented in the R package mvGPS 
(Williams & Crespi, 2020). Multivariate generalized propensity score has the advantage 
over generalized propensity score of simultaneously estimating weights for multivariate 
continuous exposures that are constructed as the ratio of the marginal density of the 
exposures to the conditional density (Williams & Crespi, 2020). Specifically, the multivar-
iate generalized propensity score generates stabilized inverse probability of treatment 
weights (IPTWs) assuming a multivariate normal distribution for the simultaneous ex-
posures. These weights have been shown to balance confounders and provide unbiased 
exposure–response estimates (Robins et al., 2000). To optimize propensity score weights 
and avoid possible effects due to extreme weights, the procedure allows to trim both 
the upper and lower bounds of the weights’ distribution (Lee et al., 2011). We conduct-
ed the main analysis using the recommended weights threshold at the 99th percentile 
(Williams & Crespi, 2020), and evaluated other thresholds (0.97, 0.95) in sensitivity anal-
yses. All analyses were conducted with the R statistical software, version 4.0.4. Comput-
ing code related to all analyses presented is publicly available at https://github.com/
andreabellavia/causalpm, also  presenting different approaches to deal with categorical 
confounders, option that is not automatized in the current version of the mvGPS pack-
age (1.2.1) and requires additional coding. All exposures were evaluated as continuous 
variables and results indicate changes per interquartile range width (IQRw) increase in 
mean air pollution exposure.

Results

Baseline characteristics of the study population, overall and by levels of air pollution 
exposures, are presented in Table 1. K-means clustering identified three groups as the 
optimal characterization of the mixture, with the clusters summarizing levels of low, 
moderate, and high exposure to air pollution. Individuals with higher levels of exposures 
were on average older, lived in areas with lower normalized difference vegetation in-
dex, and were more likely to be smokers. The Figure presents the correlation structure 
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between air pollution constituents at baseline, while eTable 1 provides the distribution 
of each pollutant at baseline. All mixture components were highly positively correlated 
with each other.
During 5 years of follow up we observed 1,071 deaths (1.2%). Results from logistic regres-
sion models are reported in Table 2 and eTable 2. Out of all potential confounders eval-
uated in fully adjusted models, only age, sex, BMI, smoking, and baseline CVD diagnosis 
met the criteria for confounding to be selected for inclusion in the final model (referred 
to, in tables, as minimally adjusted model). When mutually adjusting the full set of air 
pollution constituents in the same statistical model, both PM2.5 and PM10 were associat-
ed with higher odds of mortality (respectively, OR=1.17, 95% CI:0.99,1.37; OR=1.21, 95% 
CI:1.03,1.42), even though VIFs for these coefficients were relatively high (Table 2). PM2.5 
absorbance was associated with a reduction in the odds of mortality, but the extremely 
high VIF associated with this coefficient suggests that this result might be due to (multi)
collinearity. Results from the multivariable logistic regression model using MICE to im-
pute the missing exposures showed no discrepancies from findings on complete cases 
(eTable 3). When mutually adjusting the models for a subset of air pollution constituents 
represented by NO2 , PM2.5, and PM10, both PM2.5 (OR=1.03, 95% CI:0.94,1.14) and PM10 
(OR=1.06, 95% CI:0.95,1.17) showed a positive, albeit much weaker, association with 
overall mortality (eTable 4). We observed negligible differences when excluding individ-
uals with baseline CVD, and when using Poisson (data not shown) or Cox models (eTable 
5). We therefore chose to only present results from logistic regression, as this allows a 
direct comparison with the statistical methods we used in our study to explore causal 
relationships, for which time-to-event models are not currently available.
To evaluate the mixture of pollutants while accounting for the strong correlations, we 
estimated the relative contribution of each exposure in the mixture–outcome associ-
ation with boosted regression tree and weighted quantile sum models. In the boosted 
regression tree model, which provides a non-parametric estimation that accounts for 
non-linearities and interactions, all measures of H-statistics were consistently low, indi-
cating a negligible impact of interactions in the mixture–outcome association (eFigure 
1), and confirmed that exposure–response relationships were mostly linear and positive 
or null for all mixture components (data not shown). As such, weighted quantile sum 
assumptions were met, and this method could be used to provide an accurate estimate 
of the relative importance of the mixture components. Estimates of weighted quantile 
sum weights, presented in eFigure 2, show a prominent role of PM2.5 in the association, 
greatly surpassing the contribution of PM10 and other components of the mixture. More-
over, the negligible weight associated with PM2.5 absorbance indicates that the nega-
tive association observed in multiple regression for that variable is likely due to (multi)
collinearity. The association between the overall mixture and mortality, estimated by 
the weighted quantile sum index, was negligible in our population (β=0.01, 95% CI:-
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0.03,0.04) (eFigure 3).
Based on results from multiple regression and mixture modeling, we built propensity 
score models using the minimal set of confounders (age, sex, BMI, smoking, CVD diagno-
sis), and all exposures were included in the models as continuous covariates, thus eval-
uating their linear effect on the outcome. Furthermore, based on results from boosted 
regression tree and weighted quantile sum models, we excluded PM2.5 absorbance from 
the analysis to limit the impact of multicollinearity on the results.

Table 3 presents results from the univariate and multivariate generalized propensity 
score models, with the recommended weights trimming at 0.99. All exposures met the 
normality distribution assumption required by these techniques. PM2.5 was associated 
with increased odds of mortality (OR=1.18, 95% CI:1.08,1.29). PM10 was also associated 
with increased odds of mortality, even though the coefficient was attenuated (OR=1.02, 
95% CI:0.91,1.14) as compared to those from the multiple regression model. Results that 
considered alternative trimming are shown in eTable 6 and indicate no discrepancies 
with the main finding.

Discussion

In this study, conducted on a large sample of individuals from the Dutch general popu-
lation, we observed positive associations between air pollution mixtures and all-cause 
mortality, with PM2.5 being the main driver of the associations. Through the application 
of causal modeling approaches for environmental mixtures, we strengthened the causal 
interpretation of these findings, observing a strong effect of PM2.5 and a moderate effect 
of PM10.
Our findings are in line with results from previous studies (Cohen et al., 2017; Pinault 
et al., 2016; Strak et al., 2021), with the Netherlands being characterized by homoge-
neous geographic conditions due to its relatively small land extension and high popu-
lation density compared to other geographic areas around the globe. In this regard, a 
recent systematic review supporting the derivation of updated guidelines by the World 
Health Organization (WHO) on PM exposure and mortality, highlighted the importance 
of considering the heterogeneity of study location and population characteristics, as well 
as level and composition of PM, among others, when interpreting and comparing results 
from different studies (Chen & Hoek, 2020).
The potential harmful effects of air pollution on overall mortality have been the primary 
focus of extensive research over the last decades (Brook et al., 2010; Di et al., 2017; 
Wei et al., 2021; World Health Organization. Ambient (Outdoor) Air Quality and Health. 
Fact Sheet No. 313. Geneva: World Health Organization., 2015). Associations have been 
repeatedly observed all over the world, and recent studies have also suggested that 
associations might follow linear relationships where even low levels of pollution might 
be harmful for health (Di et al., 2017; Shi et al., 2016; Strak et al., 2021). Nevertheless, 
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several research gaps in air pollution epidemiology remain to be addressed. First, air 
pollution is a complex exposure that should be characterized as a mixture, with differ-
ent components and constituents possibly operating through either similar or different 
biologic pathways in the human body (Austin et al., 2012; Gass et al., 2014; Pearce et 
al., 2014, 2015; Winquist et al., 2014; Zanobetti et al., 2014). Extensive work has been 
devoted to the development of high-resolution concentration surfaces of the different 
components and constituents of the complex ambient air pollution exposure (Bellavia et 
al., 2021; Carrico et al., 2015; Greifer, 2017; Hirano & Imbens, 2005; Imai & Dyk, 2004; 
Lampa et al., 2014; Rosenbaum & Rubin, 1983; Williams & Crespi, 2020). Epidemiolog-
ic studies, however, are mostly evaluating air pollution components one by one, and 
switching the focus to air pollution as an environmental mixture has been advocated 
(Dominici et al., 2010b). Second, to improve our understanding of the mechanisms 
through which air pollution operates and to allow the development of more stringent 
public health regulations and interventions, it is important to determine to which ex-
tent these associations reflect causal relationships (HEI Health Effect Institute. Strategic 
Plan for Understanding the Health Effects of Air Pollution. 2020–2025. Fist Draft May 
2019. Available Online: Https://Www.Healtheffects.Org/Sites/Default/Files/First-Draft-
HEI-StrategicPlan2020-2025.Pdf, 2019). Methods to address causality in observational 
studies are widely available (Rothman & Greenland, 2005; Vandenbroucke et al., 2016), 
and several reports have discussed the application of these techniques in air pollution 
epidemiology (Carone et al., 2020; Dominici & Zigler, 2017). It is also desirable that such 
causal modeling approaches will account for the complex nature of air pollution as a 
mixture (Carone et al., 2020; Dominici & Zigler, 2017).
To the best of our knowledge, this study was one of the first attempts to assess the 
causal effects of a mixture of air pollutants in a large population-based study. Our results 
confirm previous findings observed in this and other cohorts, showing a positive linear 
association between pollution components such as PM2.5 and PM10 and overall mortality. 
In addition, by jointly evaluating several components in the same statistical framework, 
we observed that PM2.5 seems to be the strongest predictor of overall mortality, and that 
interactive mechanisms were not influential in our cohort. The possible mechanisms 
through which PM2.5 operates are increased systemic inflammation and oxidative stress, 
increased blood pressure, and reduced lung function, thus resulting in a greater risk of 
cardiovascular and respiratory morbidity (Shi et al., 2016). Results are consistent across 
the different methods applied, with the largest effect on overall mortality obtained for 
PM2.5 using the multivariate generalized propensity score. This method possibly pro-
vides, on theoretical grounds, more robust estimates compared to both the univariable 
and multivariable logistic regression, and the univariate generalized propensity score. 
However, due to the lack of studies that have previously applied this extension of the 
propensity score in epidemiologic settings, and therefore the inability to directly com-
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pare our findings with those obtained in other cohorts, this result must be interpreted 
with caution. The 2019 Integrated Science Assessment (ISA) released by US Environ-
mental Protection Agency (EPA) rated the association between PM2.5 and natural-cause 
mortality as suggestive (EPA, n.d.), contrary to PM10 which was already fully recognized 
as harmful to human health. Our results, by distinguishing the roles of PM10 and PM2.5, 

and showing the prominent role of the latter in our study population, provide relevant 
results that can inform future public health policies. 
This study has several strengths. First, it is one of the first studies to evaluate the causal 
effects of air pollution while jointly evaluating several pollutants components as an en-
vironmental mixture. Specifically, we used a recent extension of the generalized propen-
sity score, the multivariate generalized propensity score approach, that, to our knowl-
edge, has never been used before in environmental epidemiology. While making the 
assumption that all evaluated exposures are normally distributed, the multivariate score 
improves on several aspects as compared to other approaches. First, the propensity 
score is a balancing score, which means that conditioning on propensity score via regres-
sion adjustment implies that individuals within the same strata of the propensity score 
should be identical in terms of their observable characteristics, regardless of their level 
of treatment (Hirano & Imbens, 2005; Imai & Dyk, 2004). Thanks to the balancing prop-
erty, the propensity score thus removes sources of potential confounding and returns 
valid estimates by balancing covariates to predict the probability of exposure (Rosen-
baum & Rubin, 1983). Second, the multivariate generalized propensity score approach 
has the ability of simultaneously estimating propensity score weights for each expo-
sure, thus achieving superior balance compared to univariate alternatives. In addition, 
through the multivariate score it is possible to specify multiple sets of confounders for 
each exposure of interest reflecting many real-world settings in which the confounders 
may actually differ across exposure variables. Finally, the option to trim extreme weights 
at a particular percentile, and the wide number of metrics that can be used to select 
and compare different propensity score approaches, make the multivariate generalized 
propensity score a method well suited to get more robust estimates on the joint effect of 
multiple continuous exposures on health outcomes, confirming and possibly strengthen-
ing results obtained with more traditional methods. We recommend that future studies 
validate our results in other cohorts with this or alternative causal modeling techniques. 
Second, we used a pluralistic approach integrating several statistical methods for causal 
inference and environmental mixtures (Vandenbroucke et al., 2016). To identify rele-
vant predictors within the air pollution mixture we used two statistical methods, namely 
weighted quantile sum and boosted regression tree, that allow ranking the importance 
of exposures in the overall mixture–outcome association, thus informing which regres-
sion results might be biased due to the high correlation. In this study, multiple regression 
results were influenced by (multi)collinearity due to the high correlation structure, par-
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ticularly PM2.5absorbance which was shown to be mostly irrelevant in the mixture–out-
come association once the high correlation was accounted for. Third, we used data from 
a large population of Dutch individuals with a prospective design, and a high-resolution 
assessment of air pollution components, all elements that further enhance the robust-
ness of our results and the causal interpretation of these findings. 
A limitation of this study is the relatively short duration of follow-up that did not allow us 
to thoroughly evaluate how effects of air pollution may change over time. Future studies 
with longer follow-up should replicate these analyses and evaluate overall mortality as a 
time-to-event outcome for those statistical techniques where this extension is available. 
Moreover, no information was available on air pollution levels other than those mod-
eled at the participants’ home address, thus precluding the possibility to quantify the 
exposure in places where participants could have spent some of their time during the 
day or when moving from one place to another. Furthermore, information on emigration 
time was not available for the majority of participants who had emigrated during the 
follow-up. As such, these individuals had to be excluded from the analysis. In addition, 
despite several socio-demographic covariates that were available and could be investi-
gated as potential confounders of the associations, we cannot exclude the presence of 
residual confounding due to variables that were not available in this study. Exposures 
were derived using land-use regression models, which might introduce more complexity 
due to the use of shared predictors that may lead to stronger correlations between ex-
posures than those existing in the real world (Szpiro & Paciorek, 2013). In large cohorts 
as the one we considered in our study, it is usually difficult or impossible to directly 
measure the different pollutants for each participant due to logistics complexity and the 
high costs associated, and therefore it is common to rely on exposure modeling. This is 
also suggested by WHO which indicates that exposure modeling is a logical or empirical 
construct which allows estimation of individual or population exposure parameters from 
available input data (World Health Organization. Regional Office for Europe, 2000). Fi-
nally, in this first attempt to evaluate the causal effects of air pollution mixture we only 
focused on five major components of air pollution that had been assessed in this cohort. 
Future studies within LIFEWORK should consider finer pollution characterization, once 
this is available, by integrating additional components into the models, such as ultraf-
ine particles, black carbon, as well as PM elemental constituents. Also, future studies 
could further expand analyses to include additional environmental risk factors (water 
pollution, noise, electromagnetic fields) and relevant conditions, such as lung cancer or 
respiratory diseases, making use of the statistical methods we proposed in our study to 
account for complex interrelations between risk factors in real-life settings. These results 
should also advise quantitative researchers to study and develop novel methods that 
could improve our understanding of the causal effects of complex mixtures of environ-
mental pollutants.
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Conclusions

In conclusion, this study strengthened the causal interpretation of air pollution effects 
on mortality while also accounting for the complex nature of the exposure as an envi-
ronmental mixture. We encourage air pollution researchers to further study the causal 
effects of air pollution mixtures to continue improving our scientific knowledge on the 
relationship between air pollution and health outcomes, and to facilitate governmental 
bodies to better target regulations thanks to the identification of the strongest contribu-
tor(s) to overall mortality from a complex mixture.
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Table 1. Baseline characteristics of the LIFEWORK participants and estimated annual pollutant exposuresa at 
subject recruitment, overall and by levels of pollution exposureb.

Low exposure Moderate ex-
posure High exposure Overall

(N=34,018) (N=37,853) (N=15,011) (N=86,882)

No. of participants (%)        

Amigo 22 15 10 17

EPIC 9 16 28 15

Nightingale 69 69 62 68

Age (years)        

Mean (SD) 48.8 (11.6) 50.5 (12.9) 52.2 (14.3) 50.2 (12.7)

Sex (%)        

Male 12 9 9 11

Female 88 91 91 89
Highest level of
education attainedc (%)      

Low 11 14 18 14

Intermediate 48 43 35 44

High 41 43 47 42

Missing 0.2 0.2 0.3 0.2

Smoking status (%)        

Never 48 47 44 46

Former 40 40 40 40

Current 11 12 14 13

Missing 0.6 1.0 1.7 1.0

Body mass index (kg/m2)        

Mean (SD) 25.2 (4.16) 25.3 (4.30) 25.2 (4.41) 25.3 (4.26)

Missing (%) 0.4 0.6 0.9 0.6
CVD diagnosis at baseline 
(%)        

Negative 93 93 90 92

Positive 7 7 10 8
COPD diagnosis at base-
line (%)

Negative 98 97 96 97

Positive 2 3 4 3
Cancer diagnosis at base-
line (%)

Negative 98 97 95 97

Positive 2 3 5 3

Monthly income estimated        

Mean (SD) 2,590 (764) 2,800 (890) 2,870 (1,000) 2,730 (873)

Missing (%) 5.1 3.4 3.3 4.0
Normalized difference
vegetation index      
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Mean (SD) 0.571 (0.0844) 0.503 (0.0796) 0.448 (0.0864) 0.520 (0.0943)

Missing (%) 2.6 1.2 0.9 1.7

NO2 (µg/m3)        

Mean (SD) 17.7 (2.55) 24.9 (2.25) 33.7 (4.30) 23.6 (6.34)

PM2.5 (µg/m3)        

Mean (SD) 16.3 (0.721) 16.7 (0.559) 17.0 (0.707) 16.6 (0.704)
PM2.5 absorbance
(10−5 m−1)        

Mean (SD) 1.09 (0.132) 1.29 (0.125) 1.57 (0.227) 1.26 (0.225)

PM10 (µg/m3)        

Mean (SD) 24.1 (0.381) 24.7 (0.643) 26.4 (1.42) 24.8 (1.12)
Oxidative Potential (nmol 
DTT/min/m3)        

Mean (SD) 1.06 (0.208) 1.22 (0.165) 1.32 (0.119) 1.17 (0.202)
aAir pollution levels were estimated at baseline based on annual average concentrations measured between October 2008 and April 2011 (NO2, 
PM2.5, PM2.5 absorbance, PM10) and between February 2009 and February 2010 (Oxidative Potential).
bLow, medium, and high levels of exposures derived with cluster analysis.
cLow: primary school, lower vocational training or lower secondary education; intermediate: intermediate vocational education or intermediate/
higher secondary education; high: higher vocational education or university degree.
dHousehold income was estimated based on participants’ baseline postal code. Each postal code was linked to income data from Statistics Neth-
erlands for December 2012.
CVD=cardiovascular disease; COPD=chronic obstructive pulmonary disease; SD=standard deviation.
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Multivariable model with minimal adjustmenta  
Constituent OR 95%CI VIF
NO2 0.98 (0.82;1.18) 5.11
PM2.5 1.17 (0.99;1.37) 4.03
PM2.5 absorbance 0.74 (0.55;0.98) 18.60
PM10 1.21 (1.03;1.42) 7.22
Oxidative Potential 1.07 (0.96;1.19) 1.58

Table 2. Odds Ratios of overall mortality per interquartile range width increase in mean air pollution exposure, 
evaluated with a multivariable logistic regression model.

aAge, sex, BMI, smoking, CVD diagnosis.
BMI=body mass index; CVD=cardiovascular disease; OR=odds ratio; CI=confidence interval; VIF=variance inflation factor.



143

Chapter 4

  GPS   mvGPS
Constituent OR 95%CI   OR 95%CI
NO2 1.10 (1.01;1.19) 1.13 (0.97;1.31)
PM2.5 1.11 (1.03;1.20) 1.18 (1.08;1.29)
PM10 1.08 (1.02;1.15) 1.02 (0.91;1.14)
Oxidative Potential 1.09 (1.00;1.19) 0.97 (0.89;1.06)

Table 3. Odds Ratios of overall mortality per interquartile range width increase in mean air pollution exposure, 
evaluated with univariate and multivariate generalized propensity scorea models b.

aTrimming 0.99. 
bPS based on age, sex, BMI, smoking, CVD diagnosis.
BMI=body mass index; CVD=cardiovascular disease; OR=odds ratio; CI=confidence interval; GPS=generalized propensity score; mvGPS=multivariate 
generalized propensity score.
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Figure 1. Spearman rank correlation coefficients and correlation plot of air pollution constituents at baseline 
(2008-2011). Darker colors and larger circles indicate higher positive correlation levels.



145

Chapter 4

SUPPLEMENTARY MATERIAL

Title: A multi-pollutant approach to estimating causal effects of air pollution mixtures on 
overall mortality in a large, prospective cohort

Authors: Eugenio Traini1, Anke Huss1, Lützen Portengen1, Matti Rookus2, W.M. Monique 
Verschuren3,4, Roel Vermeulen1, Andrea Bellavia1,5

1Utrecht University, Institute for Risk Assessment Sciences, Utrecht, the Netherlands.
2Department of Epidemiology, Netherlands Cancer Institute (NKI), Amsterdam, the 
Netherlands.
3Centre for Nutrition, Prevention and Health Services, National Institute for Public Health 
and the Environment, Bilthoven, the Netherlands.
4Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 
Utrecht University, Utrecht, the Netherlands.
5Department of Environmental Health, Harvard T.H. Chan School of Public Health, Bos-
ton, MA, United States.



146

Chapter 4

Table of contents

Supplementary Table 1. Distribution of the estimated annual pollutant exposures at 
baseline in LIFEWORK.
Supplementary Table 2. Odds Ratios of overall mortality per interquartile range width 
increase in mean air pollution exposure, evaluated with univariable and multivariable 
logistic regression models.
Supplementary Table 3. Odds Ratios of overall mortality per interquartile range width 
increase in mean air pollution exposure, evaluated with a multivariable logistic regres-
sion model using multiple imputation by chained equations for missing values in the 
exposures.
Supplementary Table 4. Odds Ratios of overall mortality per interquartile range width 
increase in mean air pollution exposure in a subset of constituents, evaluated with a 
multivariable logistic regression model.
Supplementary Table 5. Hazard Ratios of overall mortality per interquartile range width 
increase in mean air pollution exposure, evaluated with a Cox proportional hazards re-
gression model.
Supplementary Table 6. Odds Ratios of overall mortality per interquartile range width 
increase in mean air pollution exposure, evaluated with univariate and multivariate gen-
eralized propensity score modelsa with varying trimming thresholds.
Supplementary Figure 1. Relevance of 2-way interactions (H-statistics) in the overall 
mixture effect in predicting overall mortality, estimated with boosted regression tree.
Supplementary Figure 2. Relative importance of mixture components in the overall ef-
fect of air pollution on overall mortality, estimated with weighted quantile sum.
Supplementary Figure 3. Association between the mixture and overall mortality, esti-
mated with weighted quantile sum.



147

Chapter 4

Minimum 25th 
Percentile Median Mean 75th 

percentile Maximum

NO2 (µg/m3) 8.87 19.07 22.92 23.59 27.34 88.72

PM2.5 (µg/m3) 14.86 16.17 16.56 16.58 17.04 21.33

PM2.5 absorbance
(10−5 m−1) 0.85 1.12 1.23 1.26 1.37 3.16

PM10 (µg/m3) 23.73 23.96 24.44 24.77 25.15 34.54

Oxidative Potential 
(nmol DTT/min/m3) 0.48 1.04 1.19 1.17 1.31 2.09

Supplementary Table 1. Distribution of the estimated annual pollutant exposures at baseline in LIFEWORK.
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  Univariable models with 
minimal adjustmenta   Multivariable model with full adjustmentb 

Constituent OR 95%CI   OR 95%CI VIF

NO2 0.98 (0.90;1.07) 0.93 (0.77;1.13) 5.30

PM2.5 1.04 (0.95;1.12) 1.12 (0.95;1.32) 4.04

PM2.5 absorbance 1.00 (0.93;1.07) 0.80 (0.59;1.08) 18.59

PM10 1.01 (0.95;1.08) 1.17 (0.99;1.38) 7.21

Oxidative Potential 1.03 (0.94;1.12) 1.04 (0.93;1.17) 1.85
aAge, sex, BMI, smoking, CVD diagnosis.
bAge, sex, BMI, smoking, CVD diagnosis, COPD diagnosis, cancer diagnosis, education, income,  normalized difference vegetation index.
BMI=body mass index; CVD=cardiovascular disease; COPD=chronic obstructive pulmonary disease; OR=odds ratio; CI=confidence interval; VIF=-
variance inflation factor.

Supplementary Table 2. Odds Ratios of overall mortality per interquartile range width increase in mean air 
pollution exposure, evaluated with univariable and multivariable logistic regression models.
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Multivariable model with minimal adjustmenta

Constituent OR 95%CI VIF

NO2 0.98 (0.82;1.17) 5.11
PM2.5 1.17 (0.99;1.37) 4.03

PM2.5 absorbance 0.74 (0.55;0.98) 18.61

PM10 1.21 (1.04;1.42) 7.23

Oxidative Potential 1.07 (0.96;1.19) 1.58
aAge, sex, BMI, smoking, CVD diagnosis.
BMI=body mass index; CVD=cardiovascular disease; OR=odds ratio; CI=confidence interval; VIF=variance inflation factor.

Supplementary Table 3. Odds Ratios of overall mortality per interquartile range width increase in mean air 
pollution exposure, evaluated with a multivariable logistic regression model using multiple imputation by 
chained equations for missing values in the exposures.
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Multivariable model with minimal adjustmenta

Constituent OR 95%CI VIF

NO2 0.91 (0.79;1.04) 2.85

PM2.5 1.03 (0.94;1.14) 1.37

PM10 1.06 (0.95;1.17) 3.10
aAge, sex, BMI, smoking, CVD diagnosis.
BMI=body mass index; CVD=cardiovascular disease; OR=odds ratio; CI=confidence interval; VIF=variance inflation factor.

Supplementary Table 4. Odds Ratios of overall mortality per interquartile range width increase in mean air 
pollution exposure in a subset of constituents, evaluated with a multivariable logistic regression model.
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Cox model with minimal adjustmenta

Constituent HR 95%CI

NO2 1.00 (0.83;1.20)
PM2.5 1.19 (1.02;1.39)

PM2.5 absorbance 0.73 (0.55;0.96)

PM10 1.22 (1.05;1.43)

Oxidative Potential 1.07 (0.97;1.19)

aAge, sex, BMI, smoking, CVD diagnosis.
BMI=body mass index; CVD=cardiovascular disease; HR=hazard ratio; CI=confidence interval.

Supplementary Table 5. Hazard Ratios of overall mortality per interquartile range width increase in mean 
air pollution exposure, evaluated with a Cox proportional hazards regression model.
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  GPS   mvGPS
Constituent OR 95%CI OR 95%CI
Trimming=0.97          
NO2 1.12 (1.03;1.21) 1.16 (0.99;1.36)
PM2.5 1.13 (1.04;1.21) 1.08 (0.99;1.19)
PM10 1.10 (1.04;1.17) 1.01 (0.90;1.14)
Oxidative Potential 1.10 (1.01;1.20) 1.01 (0.92;1.11)

Trimming=0.95          
NO2 1.13 (1.04;1.22) 1.16 (0.99;1.36)
PM2.5 1.13 (1.05;1.22) 1.08 (0.98;1.18)
PM10 1.11 (1.05;1.18) 1.00 (0.88;1.13)
Oxidative Potential 1.11 (1.02;1.21)   1.00 (0.90;1.10)

Supplementary Table 6. Odds Ratios of overall mortality per interquartile range width increase in mean air 
pollution exposure, evaluated with univariate and multivariate generalized propensity score modelsa with 
varying trimming thresholds.

aPS based on Age, sex, BMI, smoking, CVD diagnosis.
BMI=body mass index; CVD=cardiovascular disease; OR=odds ratio; CI=confidence interval; GPS=generalized propensity score; mvGPS=multivariate 
generalized propensity score
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Supplementary Figure 1. Relevance of 2-way interactions (H-statistics) in the overall mixture effect in predicting 
overall mortality, estimated with boosted regression tree.
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Supplementary Figure 2. Relative importance of mixture components in the overall effect of air pollution on 
overall mortality, estimated with weighted quantile sum.
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Supplementary Figure 3. Association between the mixture and overall mortality, estimated with weighted 
quantile sum.
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Abstract

Objective: Headache is one of the most prevalent and disabling health conditions glob-
ally. We prospectively explored the urban exposome in relation to weekly occurrence 
of headache episodes using data from the Dutch population-based Occupational and 
Environmental Health Cohort Study (AMIGO).
Material and Methods: Participants (N=7,339) completed baseline and follow-up ques-
tionnaires in 2011 and 2015, reporting headache frequency. Information on the urban 
exposome covered 80 exposures across 10 domains, such as air pollution, electromag-
netic fields, and lifestyle and socio-demographic characteristics. We first identified all 
relevant exposures using the Boruta algorithm and then, for each exposure separately, 
we estimated the average treatment effect (ATE) and related standard error (SE) by train-
ing causal forests adjusted for age, depression diagnosis, painkiller use, general health 
indicator, sleep disturbance index and weekly occurrence of headache episodes at base-
line.
Results: Occurrence of weekly headache was 12.5% at baseline and 11.1% at follow-up. 
Boruta selected five air pollutants (NO2, NOX, PM10, silicon in PM10, iron in PM2.5) and 
one urban temperature measure (heat island effect) as factors contributing to the oc-
currence of weekly headache episodes at follow-up. The estimated causal effect of each 
exposure on weekly headache indicated positive associations. NO2 showed the largest 
effect (ATE=0.007 per interquartile range (IQR) increase; SE=0.004), followed by PM10 
(ATE=0.006 per IQR increase; SE=0.004), heat island effect (ATE=0.006 per one-degree 
Celsius increase; SE=0.007), NOx (ATE=0.004 per IQR increase; SE=0.004), iron in PM2.5 
(ATE=0.003 per IQR increase; SE=0.004), and silicon in PM10 (ATE=0.003 per IQR increase; 
SE=0.004).
Conclusion: Our results suggested that exposure to air pollution and heat island effects 
contributed to the reporting of weekly headache episodes in the study population.



159

Chapter 5

Introduction

Headache disorders, characterized by their diverse intensity and frequency, represent 
one of the most prevalent and incapacitating health conditions globally (GBD 2016 
Headache Collaborators, 2018; Steiner & World Headache Alliance, 2004).
While genetic factors have been acknowledged to play a role in the onset of headaches 
(Di Lorenzo et al., 2015; Russell et al., 2006), emerging research emphasizes the substan-
tial impact of lifestyle and behavioral characteristics as well as environmental factors 
on the initiation and persistence of headaches (Friedman & De Ver Dye, 2009; Molarius 
et al., 2008; Ulrich et al., 2004). As such, no single factor can be considered the sole 
trigger of headaches in the population; rather, their occurrence is likely the result of a 
combination of various factors including, among others, stress, lack of sleep, diet, an-
algesic overuse, environmental stressors, and urban temperature (Ashina et al., 2023; 
Holzhammer & Wöber, 2006; M. Lee et al., 2018; Nash & Thebarge, 2006; Nikiforow & 
Hokkanen, 1978; Prince et al., 2004; Rains & Poceta, 2012; Raucci et al., 2021; Winter et 
al., 2011). For instance, exposure to high levels of air pollution has been associated with 
an increased risk of hospitalization for headache (Dales et al., 2009). Similarly, exposure 
to specific chemicals, such as metals, has been suggested to increase headache suscep-
tibility (Donma & Donma, 2002).
As we explore the impact of lifestyle factors, behavioral characteristics, and environ-
mental stressors on headaches, it becomes evident that their intricate dynamics require 
a comprehensive understanding to inform targeted interventions and personalized ap-
proaches to headache management that cannot be achieved by considering each factor 
separately. The exposome is defined as the totality of exposures that individuals en-
counter over their lifetimes and the biological reactions that these stressors produce 
(Vermeulen et al., 2020; Wild, 2005). As such, the urban exposome denotes a complex 
interplay between the built, social, chemical, food, and lifestyle aspects of the environ-
ment where people live. This interaction is characterized by persistent spatial and tem-
poral variations in both quantitative and qualitative measures associated with different 
aspects of residential surroundings, and, as a consequence, these fluctuations may im-
pact the well-being and health of individuals (Andrianou & Makris, 2018).
To the best of our knowledge, the relationship between urban exposome and headache 
has not yet been explored. In this study, we aimed to prospectively evaluate factors re-
lated to reporting of weekly headache episodes, in a large study population relying on 
the exposome framework. We conducted an exploratory analysis using data from the 
urban exposome of the Dutch population-based Occupational and Environmental Health 
Cohort Study (AMIGO), which represents a rich dataset comprising detailed individu-
al-level information on various determinants (e.g. chemical, biological, physical), lifestyle 
factors, and health conditions for over 14,000 participants.
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Methods

Study design and participants

We used data from the population-based Occupational and Environmental Health Co-
hort Study (AMIGO) in the Netherlands, established in 2011/2012 to investigate envi-
ronmental and occupational determinants of diseases and symptoms in the Dutch adult 
population. The rationale, study design, and participant recruitment in AMIGO were 
described in detail previously (Slottje et al., 2014). In short, AMIGO participants were 
recruited from the general population in the Netherlands through the Primary Care Da-
tabase of the Netherlands Institute for Health Services Research (NIVEL), which consists 
of routinely recorded data from health care providers to monitor health and utilization 
of health services in the Dutch population (Nivel Primary Care Database | Nivel, 2022). 
The baseline sample includes 14,829 adults (16% of those invited), aged 31–65 years, 
who filled in an online questionnaire in 2011/2012 and at follow-up in 2015 (n=7,905; 
response rate 54%). After the exclusion of participants with missing information on 
headache frequency at baseline and/or follow-up (n=566), the study population includ-
ed 7,339 participants who completed baseline and follow-up questionnaires. All cohort 
members participated voluntarily and gave informed consent prior to their inclusion.

Exposure factors

The urban exposome of AMIGO was described by Ohanyan et al. previously (Ohanyan, 
Portengen, Huss, et al., 2022). In short, the urban exposome relied on satellite data, 
monitoring stations, population registry-based data, and geospatial models to estimate 
participants’ exposures at their place of residence at baseline (Martens et al., 2018). In 
this study, 88 exposures across 10 domains were considered encompassing air pollution 
(19 factors), quality of drinking water (29 factors), urbanicity and built environment (13 
factors), green space density (2 factors), outdoor light at night (1 factor), urban tempera-
ture (2 factors), road traffic noise (1 factor), radiofrequency electromagnetic fields (2 
factors), socio-demographic characteristics of the neighborhood (17 factors), technology 
use (2 factors). The list of exposure factors included in this study is provided in Supple-
mentary Table 1.

Headache

Frequency of headache was self-reported at baseline and follow-up. As primary out-
come, we defined the occurrence of weekly headache episodes (referred to as “weekly 
headache” for brevity, with response categories “yes”, “no”) according to the question: 
“How often do you get headache at the moment?” - response categories: “almost every 
day”, ”5 or 6 days a week”, “3–4 days a week”, “once or twice a week” “1–2 days per 
month”, “less often”.
As secondary outcome, we included the occurrence of severe weekly headache episodes 
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(response categories “yes”, “no”). The Headache Impact Test (HIT-6) score with a cut-off 
of 56 points was used to define weekly occurrence of severe headache episodes. The 
HIT-6 is a tool used to measure the impact headaches have on one’s ability to function in 
various aspects of daily life, including work, school, home, and social contexts. The score, 
ranging from 36 to 78 points, provides a measure of the degree to which headaches af-
fect daily life and functioning, with higher scores indicating a more significant impact on 
the participant’s overall life (Kosinski et al., 2003).

Covariates

We assessed the following covariates of the associations between the urban exposome 
and weekly headache: sex, age, highest level of education attained (elementary, sec-
ondary and higher), occupation (employed, unemployed), country of origin (the Neth-
erlands, other), body mass index (BMI) group (normal or underweight, overweight or 
obese), alcohol consumption (never, former, current), smoking status (never, former, 
current), sleep disturbance index (Spritzer & Hays, 2003), general health indicator (good, 
poor), depression diagnosis (yes, no), painkiller use (yes, no).

Pre-processing of the urban exposome and descriptive statistics

We followed the same approach outlined by Ohanyan et al. to pre-process the urban 
exposome data in AMIGO (Ohanyan, Portengen, Kaplani, et al., 2022). In short, we ex-
cluded exposures that exhibited extremely low variability (9 exposures) or very strong 
correlations with other exposures (7 exposures). In the latter scenario, where two (or 
more) exposures showed a Spearman rank correlation coefficient ≥ 0.95, only one of the 
correlated variables was incorporated into the analysis and treated as a proxy for the 
other variable(s) (Supplementary Table 2).
Missing values were imputed for exposures and covariates only, and all exposures, 
covariates, and the study outcome were used as predictors. Thirty imputed datasets 
were generated through Multivariate Imputation via Chained Equations (MICE) and the 
imputed values were averaged across the generated datasets, given the considerable 
computational costs and the absence of a recognized approach to combine results from 
multiple imputed sets associated with the methods applied in this study.
To mitigate the potential impact of non-normal distribution of the exposures on the im-
putation process, we applied transformations (logarithmic or square root) to normalize 
the exposures before incorporating them into MICE, and then back-transformed them 
after the imputation (Buuren & Groothuis-Oudshoorn, 2011; White et al., 2011).
Descriptive statistics of the study population were evaluated with regard to the covari-
ates included in the study. We performed a correlation analysis of the urban exposome 
by visualizing the inter- and intra-group correlations across the 10 domains using the 
circos and matrix of correlations, respectively (Hernandez-Ferrer et al., 2022).
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Statistical analysis

To evaluate the association between the urban exposome at baseline and weekly occur-
rence of headache episodes at follow-up, we first performed feature selection using the 
Boruta algorithm to screen our dataset and identify relevant exposures for the outcome 
being investigated (Kursa & Rudnicki, 2010).
Boruta represents a powerful approach for the analysis of high-dimensional datasets 
that has recently gained popularity particularly in the context of microbiome and omics 
research (Degenhardt et al., 2017). This method is designed to identify relevant variables 
and is able to capture interactions and nonlinear associations in complex-dimensional 
scenarios. Boruta aims to identify all attributes that contribute to some extent to the 
classification problem based on the so-called all-relevant problem approach. This meth-
odology stands in contrast to the minimal-optimal problem approach, which focuses on 
finding the smallest and non-redundant subset of features essential for optimal perfor-
mance given a specific dataset (Nilsson et al., 2007).
Boruta works as a wrapper algorithm around random forest and operates by comparing 
the importance of each variable against that of shadow variables, which are random-
ly permuted versions of the original variables (Breiman, 2001; Liaw & Wiener, 2002). 
By conducting a series of random forest iterations, Boruta assigns importance scores 
to each variable, considering both the actual features and their shadow counterparts. 
Variables that consistently outperform their shadow versions are retained as important, 
while those that do not are deemed unimportant.
To address class imbalance, we applied the Boruta algorithm repeatedly (250 iterations 
using 1000 trees at each iteration) and downsampled 85% of the minority group size 
without replacement in both groups comprising participants with and without weekly 
headaches at follow-up in order to obtain 250 different balanced datasets (More & Rana, 
2017).
Finally, we retained the features that were labelled as “important” by Boruta in at least 
80% of the 250 iterations, emphasizing their stability in the selection process, and calcu-
lated variable importance by averaging the importance of the selected features across 
iterations.
To evaluate the generalizability of our results, we trained a random forest model on the 
features selected by Boruta. This evaluation was conducted on an a priori sampled in-
dependent test set, comprising 20% of the original dataset. The corresponding Receiver 
Operating Characteristics (ROC) curve and Area-Under-the-Curve (AUC), along with a 
95% confidence interval (95% CI), were estimated using 1000 bootstrap replicates.
To visualize the relationship between the response and predictors, and represent the 
average contribution of a feature value to the prediction (Molnar, 2020), we computed 
Shapley values by training a random forest model on the features identified by Boruta 
using the original dataset.
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We estimated the causal effect of each exposure identified by Boruta on weekly occur-
rence of headache episodes by training causal forests. Causal forests represent an exten-
sion of random forests to estimate the average treatment effect (ATE) and corresponding 
standard error (SE) under the assumption of absence of confounding (i.e. the treatment 
assignment is independent of the potential outcome conditional on the confounders) al-
lowing for covariate adjustment. The ATE represents the average of the difference in po-
tential outcomes in a sample where everyone is treated versus the same sample where 
everyone is untreated (Jawadekar et al., 2023).
Specifically, when the treatment is continuous, we effectively estimate an average partial 
effect, which quantifies the change in the expected outcome due to a one-unit change 
in the treatment, given unconfoundedness. To ensure clarity and consistency in the lan-
guage used, we will refer to treatment as exposure in the rest of the paper.
Briefly, the algorithm splits the data in order to maximize the difference across splits in 
the relationship between an outcome and an exposure variable uncovering variations 
in exposure effects across the sample. Causal forests resemble a randomized controlled 
trial and estimate exposure propensity weights to create a balanced covariate distribu-
tion between the exposed and control groups. It is important to note that, while causal 
forests identify heterogeneity in causal effects, they do not, per se, establish causation 
(Athey et al., 2018).
In detail, for each exposure selected by Boruta, we estimated causal forests adjusted for 
a set of covariates. In estimating causal forests, we used default parameters as they were 
shown to perform reasonably well with random forests (Athey & Wager, 2019).
To assess the fit of the causal forest, we first examined the distribution of the estimated 
exposure propensity weights to identify potential extreme values. Second, we explored 
heterogeneity by grouping observations according to whether their out-of-bag condi-
tional average treatment effect (CATE) estimates (i.e. predictions) were above (“high” 
region) or below (“low” region) the median CATE estimate. Following this grouping, we 
calculated the difference in causal effects between regions along with the 95% confi-
dence interval (95% CI) to gain insights about the overall strength of heterogeneity in the 
study population (Athey & Wager, 2019).
As secondary analyses, considering the transient nature of headaches in the population 
and our predefined interest in assessing whether exposure effects on weekly headaches 
at follow-up could be mediated by their occurrence at baseline, we trained addition-
al causal forests. Specifically, we estimated the CATE representing the average of the 
difference in potential outcomes in a specific stratum of the population (here defined 
by presence/absence of weekly headache at baseline), where everyone in that stra-
tum is exposed versus a scenario where everyone in the same stratum is unexposed 
(Jawadekar et al., 2023). Finally, to test the null hypothesis of no heterogeneity between 
the CATEs estimated for the two groups of weekly headache at baseline, we applied 
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Student’s t-test (Athey & Wager, 2019).
We conducted the following sensitivity analyses: first, we estimated causal forests with 
mutual adjustment under the assumption that the exposures may act as confounding 
factors for each other and are therefore not independent entities. This approach in-
volved systematically estimating the causal effect of each exposure separately on weekly 
headache while simultaneously incorporating the remaining exposures into the adjust-
ment set. This iterative process was repeated for each exposure identified by Boruta.
Second, we performed the Boruta feature selection by excluding possible mediators of 
the association between the urban exposome and weekly headache, namely weekly 
headache at baseline, general health indicator, sleep disturbance index, and self-report-
ed painkiller use. Third, we replicated the feature selection by adding the perception 
of environmental factors, such as air pollutants and RF-EMFs, to the list of exposures 
assessed by Boruta, which may help to disentangle the relationship between actual ex-
posures, their perceptions, and the onset of headache symptoms.
Fourth, we reproduced the Boruta feature selection by excluding participants reporting 
weekly headache at baseline to assess consistency of determinants of newly reported 
headaches.
Lastly, based on the results of the sensitivity analyses on Boruta, additional causal for-
ests were trained accordingly.
The analyses were performed with the R statistical software, version 4.0.4, using the 
packages mice, rexposome, Boruta, ranger, and grf . Computing code related to all anal-
yses presented is publicly available at https://github.com/eugeniotraini/headache_ex-
posome.

Results

In AMIGO, the occurrence of weekly headache episodes at baseline and follow-up 
showed similar proportions (12.5% and 11.1%, respectively). However, out of the 814 
participants reporting weekly headache at follow-up, only 55% reported such headaches 
at baseline. At the beginning of the study, 5.4% of participants reported experiencing 
severe headaches weekly, which decreased to 2% at follow-up.
Baseline characteristics of the study population are presented in Table 1. Over half of 
the participants in AMIGO were women and mean age was 52 years old at the time of 
recruitment. Approximately 44% of the participants had attained a high level of educa-
tion, while 70% were employed. Nearly all participants, specifically 96%, indicated the 
Netherlands as their country of origin. Around half of the study population (48.7%) was 
classified as overweight or obese, and the proportion of alcohol users and smokers was 
88.9% and 12.3%, respectively.
Overall, individuals in the AMIGO study reported a good state of health (85%), low 
prevalence of painkiller use (6.6%), and an average sleep disturbance index of 26.5 (on 
a scale from 0 to 100 with higher scores indicating more sleep disturbances or lower 
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sleep quality). No relevant differences in the distribution of baseline characteristics of 
the study participants were observed when including those who did not complete the 
follow-up questionnaire (Supplementary Table 3). The proportion of missing values in 
the exposures was below 10% with the highest occurrence observed for the percentage 
of inhabitants with non-western origins in the neighbourhood (9.7%) (Supplementary 
Table 4).
The matrix of correlation plot shows that the strongest intra-group correlations were 
observed between air pollutants, urbanicity and built environmental variables, RF-EMFs, 
and socio-demographic area-level factors (Figure 1). Drinking water components had the 
lowest intra-group correlations. The circos of correlation plot showed that green space 
density exhibited a negative inter-family correlation with air pollutants (Supplementary 
Figure 1).
Results of the Boruta feature selection showed that five air pollutants (NO2, NOX, PM10, 
Silicon in PM10, Iron in PM2.5), one urban temperature measure (heat island effect), five 
a priori defined covariates (age, depression diagnosis, painkiller use, general health indi-
cator, sleep disturbance index), and weekly headache at baseline significantly influenced 
the reporting of weekly headache at follow-up.
Among those, weekly headache at baseline appeared to be the most important variable, 
followed by the remaining covariates (with age being the least significant among all se-
lected features). The exposures, listed in descending order of importance, were NO2, 
Silicon in PM10, NOX, Iron in PM2.5, PM10, and the heat island effect. Spearman correlation 
coefficients showed very strong correlations between the exposures selected by Boruta 
(Figure 2).
The Shapley plots did not show strong associations between the selected environmen-
tal exposures (air pollutants and urban temperature measure) and weekly headache, 
and, on average, the contributions of individual features to the predicted outcome were 
modest (Figure 3).
Being diagnosed with depression, using painkillers, reporting poor general health, ex-
periencing weekly headaches at baseline, being older, and having difficulty sleeping all 
showed a substantial impact on reporting weekly headache at follow-up (Supplementary 
Figure 2).
The ROC analysis of the random forest model including the features selected by Boruta 
produced an AUC of 0.82 (95% CI: 0.75–0.88), indicating good discriminatory power in 
distinguishing individuals with and without weekly headache at follow-up in the inde-
pendent test set.
Results from causal forests adjusted for age, depression diagnosis, painkiller use, general 
health indicator, sleep disturbance index, and weekly headache at baseline are present-
ed in Table 2 and showed positive associations between each exposure at baseline and 
weekly headache at follow-up. In detail, NO2 showed the largest effect with an ATE of 
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0.007 (SE=0.004) per interquartile range (IQR) increase, followed by PM10 (ATE=0.006 
(SE=0.004) per IQR increase), heat island effect (ATE=0.006 (SE=0.007) per 1 C◦ increase), 
NOx (ATE=0.004 (SE=0.004) per IQR increase), Iron in PM2.5 (ATE=0.003 (SE=0.004) per 
IQR increase), and Silicon in PM10 (ATE=0.003 (SE=0.004) per IQR increase). Of note, 
concerning the highly correlated exposures identified during the pre-processing of the 
urban exposome, the use of causal forests with Copper in PM2.5 serving as a proxy for 
Iron in PM2.5, yielded results consistent with the main findings (Supplementary Table 5).
After conducting a visual inspection of the distribution of estimated propensity weights, 
no extreme values were identified (Supplementary Figure 3). The assessment of hetero-
geneity in causal forests revealed some variation between the regions defined by “high” 
and “low” CATE estimates, though the strength of heterogeneity appeared to be modest 
(Supplementary Table 6).
The estimated causal effects conditional on weekly headache at baseline showed dis-
tinct patterns between participants who reported symptoms at baseline and those who 
did not. Specifically, as shown in Table 3, the CATE for participants without weekly head-
ache at baseline was null or negative, whereas the effect observed in those who report-
ed headache at baseline was positive. In detail, the CATE of NO2 among participants 
who had weekly headache at baseline was 0.068 (SE=0.027), whereas for those without 
symptoms was -0.003 (SE=0.004). Similar patterns were displayed for all remaining ex-
posures: the heat island effect showed an effect of 0.058 (SE=0.042) for those who re-
ported weekly headache at baseline, while the effect was null (CATE=0.000 (SE=0.006)) 
for those without weekly headache at baseline. Likewise, PM10 showed an effect of 0.054 
(SE=0.027) and 0.000 (SE=0.004) in those with and without weekly headache at base-
line, respectively. Positive yet weaker effects were observed among participants who 
reported weekly headache at baseline for Silicon in PM10 (CATE=0.043 (SE=0.027)), NOx 
(CATE=0.035 (SE=0.022)), and Iron in PM2.5 (CATE=0.013 (SE=0.026)). We rejected the 
null hypothesis of no heterogeneity between the CATEs estimated for the two groups of 
weekly headache at baseline for all exposures (Table 3).
Interestingly, causal forests spent, on average, 23% of their splits on weekly headache at 
baseline, making it the most important variable among those included in the algorithm.
Supplementary Table 6 displays the results of the mutually adjusted causal forests, 
where the exposures selected by Boruta were added to the adjustment set.
The mutually adjusted estimates showed reduced precision and some experienced a 
change in the direction of the effect. In detail, we estimated an ATE of 0.058 (SE=0.022) 
for an increase in IQR in NO2, followed by NOx (ATE=0.011 (SE=0.018)), and PM10 
(ATE=0.002 (SE=0.014)).
In contrast to the main results, the ATEs for Iron in PM2.5, Silicon in PM10, and heat is-
land effect were negative (ATE=-0.016 (SE=0.010); ATE=-0.045 (SE=0.051); ATE=-0.019 
(SE=0.017), respectively) (Supplementary Table 7).
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No extreme values were identified in the distribution of exposure propensity weights 
(Supplementary Figure 4), and the comparison between the regions characterized as 
“high” and “low” CATE estimates aligned with the main results, indicating the presence 
of some heterogeneity in the dataset (Supplementary Table 8).
Results from the sensitivity analyses using Boruta were in line with the main findings: 
specifically, by excluding the possible mediators of the association between the urban 
exposome and weekly headache at follow-up (weekly headache at baseline, general 
health indicator, sleep disturbance index, and self-reported painkiller use), Boruta re-
tained, in order of decreasing variable importance, depression diagnosis, NO2, NOx, Iron 
in PM2.5, and Silicon in PM10. After including the perception of environmental exposures, 
Boruta selected two air pollutants, namely PMcoarse and Potassium in PM10, and road traf-
fic noise, in addition to the features already identified in the main analysis.
Based on these results, we trained additional causal forests including PMcoarse, Potassium 
in PM10, and road traffic noise as exposures, and age, depression diagnosis, and weekly 
headache at baseline as adjustment factors. The causal effect associated with PMcoarse, 
Potassium in PM10, and road traffic noise on the reporting of weekly headache was 0.005 
(SE=0.004), 0.002 (SE=0.004), 0.008 (SE=0.007), respectively (Supplementary Table 9). 
After excluding participants with weekly headache at baseline, Boruta only selected de-
pression diagnosis and sleep disturbance index but none of the exposures.
Finally, regarding severe weekly headaches, it was found that five predetermined co-
variates (age, depression diagnosis, painkiller use, general health indicator, sleep dis-
turbance index) and the presence of severe weekly headache at baseline influenced 
reporting at follow-up. However, none of the environmental exposures were identified 
by Boruta as contributing factors.

Discussion

In this study, we prospectively explored the urban exposome with the aim to identify 
factors associated with reporting of weekly headache episodes by analyzing data from a 
large cohort of individuals sampled within the Dutch general population.
We applied Boruta, a feature selection algorithm designed to identify relevant variables 
in complex highly dimensional settings, and causal forests, a statistical method for es-
timating causal effects of exposures under the assumption of absence of confounding.
Our results consistently showed that, out of 88 factors characterizing the urban expo-
some, air pollutants and urban temperature measures appeared to contribute most to 
the reporting of weekly headache at follow-up.
In particular, exposure to NO2 at baseline was the most important environmental factor 
identified by Boruta in relation to reporting of weekly headache at follow-up, followed 
by Silicon in PM10, NOX, Iron in PM2.5, PM10, and the heat island effect. Finally, causal 
forests estimated the largest effect on the reporting of weekly headache at follow-up 
for NO2, PM10, and the heat island effect. While the magnitude of these estimates may 
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be modest, even minor associations can carry important implications when considering 
the widespread exposure to air pollution and the higher temperatures in urban areas on 
population health.
Previous research showed that exposure to air pollution may act as trigger in the onset 
of headaches in the population (Nattero & Enrico, 1996; Szyszkowicz, 2008; Vodonos et 
al., 2015). The mechanism by which this occurs, however, is not fully understood. Air 
pollutants can impact the nervous system by entering through the olfactory and lower 
respiratory tracts. This process involves the direct initiation of inflammatory processes 
and the release of cytokines, allowing them to reach the central nervous system, trig-
gering symptoms (Block & Calderón-Garcidueñas, 2009). Previous studies conducted in 
large urban areas in Canada and China suggested that particularly short-term exposure 
to NO2 was associated to an increase in the number of emergency department visits for 
headaches (Szyszkowicz, 2008; Xu et al., 2023). A study conducted in the urban area of 
Turin in Italy, exploring the relationship between exposure to air pollutants and meteo-
rological factors in relation to headaches, found that simultaneous exposure to carbon 
monoxide (CO) and NO2 increased incidence of headache attacks along with wind ve-
locity which was linked to frequency and severity of episodes (Nattero & Enrico, 1996).
It is noteworthy that, despite extensive research indicating positive associations be-
tween migraines and air pollution exposure, and particularly NO2 (Elser et al., 2021; H. 
Lee et al., 2018; Portt et al., 2023), exploration of headaches is still limited. In this regard, 
our study highlights the link between exposure to air pollution and the occurrence of 
headaches, suggesting that measures aimed at decreasing emissions could be beneficial 
to reduce the impact of pollutants on symptoms. Furthermore, Iron in PM2.5 and Silicon 
in PM10 were linked to reporting of headaches in our study population, although their 
impact appeared to be less prominent compared to NO2, PM10, and NOx. To the best of 
our knowledge, this is the first study to identify specific fine particulate components in 
relation to headache, and future research should investigate these associations further 
to elucidate the contribution of individual components, both independently and in com-
bination, to headache occurrence.
Our results showed that the heat island effect, that is the temperature difference be-
tween an urban area and the rural surrounding, was causally related with more frequent 
weekly headache at follow-up. Previously, the increase in temperature, particularly in 
densely urban areas and especially during summer heat waves, has been linked to im-
mediate body reactions such as heavy sweating, dehydration, skin rashes, and head-
aches, among others (Aghamohammadi et al., 2021; Arifwidodo & Chandrasiri, 2020; 
O’Malley et al., 2015; Tong et al., 2021).
In the urban exposome, we used satellite pictures to estimate the surface temperature 
on a hot day as urban heat island effect is best assessed during heatwaves. Therefore, 
the effect that we observed in AMIGO could be partially explained by some residual ur-
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banicity effect, which may include air pollutants and green space density.
Given the strong interplay between air pollutants and other environmental determinants 
assessed in the urban exposome, such as road traffic noise and urban temperature, the 
effect that we found may have, independently or in conjunction with air pollution expo-
sure, exacerbated the reporting of headache.
In our cohort, about half of the participants who indicated to suffer from headache at 
baseline did not report the same at follow-up, meaning that headache represents a tran-
sient condition in the study population. To explore how the exposures may affect differ-
ent subgroups of participants, specifically those with and without symptoms at the base-
line, and therefore improve our understanding of the potential underlying mechanisms 
that triggered the symptoms, we estimated causal effects conditional on weekly head-
ache at baseline. Interestingly, the estimated effects appeared to be mediated by weekly 
headache symptoms at baseline. Moreover, baseline weekly headache emerged as the 
most important variable in the causal forests. These suggest the potential existence of a 
vulnerable subpopulation, represented by those reporting symptoms at baseline, that is 
more susceptible and therefore at a higher risk of adverse health outcomes if exposed to 
air pollution and heat island effect.
In our study, we identified a subset of exposures from the urban exposome which con-
tributed to the occurrence of headache in the population, and estimated the magnitude 
of their effect under the assumption of absence of confounding using a combination of 
state-of-the-art statistical methods that, in part, were previously identified as valid tools 
to address the complexity of the exposome (Maitre et al., 2022; Ohanyan, Portengen, 
Huss, et al., 2022).
Results from the main analyses indicated that each exposure at baseline identified by 
Boruta was positively associated with reporting of headache at follow-up. In the mu-
tually adjusted models, the estimates of the causal effects showed some increase for 
NO2 and NOx but with reduced precision, and the direction of the effects was not always 
consistent with the main results. Spearman correlation coefficients showed very strong 
correlations (ranging from 0.60 to 0.89) between the exposures selected by Boruta and 
included in the causal forests.
In methods that rely on propensity scores to balance covariates between exposed and 
unexposed, such as causal forests, many issues that arise with traditional regression 
modelling, such as multicollinearity, should no longer be a threat to validity (Arbour et 
al., 2014; McMurry et al., 2015).
Based on our results, multicollinearity clearly affected the precision of effect estimates 
produced by causal forests, given the larger standard error associated with the estimates 
in the mutually adjusted models.
Furthermore, the balancing property of propensity scores which assumes that, condi-
tional on the propensity score, the distribution of observed covariates is expected to be 
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similar between the treated and untreated groups, is only true if the propensity scores 
are relatively well-behaved and no extreme values are present (B. K. Lee et al., 2011). 
However, following an inspection of the distribution of exposure propensities, this did 
not appear to be the situation in our analysis.
Our study has strengths: first, to our knowledge, this is the first study conducted within 
the exposome framework to explore the association between the urban exposome and 
headache. Given the high prevalence of individuals reporting recurrent or chronic head-
aches in the population, our study provides important insights into the relationship be-
tween environmental stressors that are ubiquitous in urban areas and the occurrence of 
headache symptoms. Our results aim to support the formulation of more tailored public 
health interventions targeting air quality improvement and a healthier urban environ-
ment in order to reduce the burden of headache in the population.
Second, we used data from a large prospective cohort of Dutch individuals, and detailed 
information about individual-level exposures, including perceived exposures, and neigh-
borhood characteristics, all elements that strengthen the robustness and facilitate the 
causal interpretation of our results. With regard to generalizability of the data, com-
pared to the general Dutch population, AMIGO participants consisted of more females 
and older subjects, although no indications of systematic health-related participation 
bias based on morbidity and associated lifestyle information such as smoking and medi-
cation use was found (Slottje et al., 2014).
Third, we used a combination of cutting-edge statistical techniques, that is Boruta and 
causal forests, to explore the urban exposome in relation to headache. In particular, 
causal forests and random forest, upon which Boruta is built, were previously identified 
as valuable tools to study the complexity characterizing exposome research and show 
good interpretability of the results (Maitre et al., 2022). Furthermore, training Boruta in 
iterations, despite being time consuming and computationally intensive, helped mitigate 
the effects of class imbalance present in our dataset, and ensured stability as well as gen-
eralizability of our results. In conclusion, we showed that the combination of statistical 
methods used in this study represents a robust approach to identify influential predic-
tors, particularly in highly dimensional settings, and generate accurate machine learning 
models to estimate causal effects (Athey & Wager, 2019; Degenhardt et al., 2017; Kursa 
& Rudnicki, 2010). 
Our study has some limitations: first, weekly headache was self-reported by the partici-
pants, which may be prone to recall bias or over/under reporting of symptoms. However, 
we assessed weekly headache using the validated HIT-6 questionnaire, which is consid-
ered a reliable and valid tool for discriminating headache impact in daily life, and it is 
employed as a screening tool in clinical practice (Kosinski et al., 2003). Furthermore, we 
evaluated severity of weekly headaches as secondary outcome to further strengthen our 
findings, although results of this analysis did not lead to the identification of any specific 
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environmental exposures associated to the outcome, likely due to diminished statistical 
power and even more problematic class imbalance compared to the primary endpoint.
Second, information on weekly headache was available at baseline and follow-up, and 
no information was available in between. As a result, the outcome assessment may not 
precisely capture symptoms occurring between these two time points, especially for a 
transient condition like headache. In future studies, it would be beneficial to confirm 
the associations that we found between air pollutants and the urban temperature and 
headache exploring the dynamics of these associations over time.
Third, the exposures included in the urban exposome of AMIGO, such as the air pol-
lutants, were modeled at the home address of the participants. As a consequence, it 
was impossible to quantify the exposure levels in places where participants could have 
spent some of their time during the day or when, for example, commuting between 
work and home. In fact, in cohorts such as AMIGO, directly measuring exposure levels 
for the single participant proves impractical due to the large sample size and the high 
costs associated. As a result, it is common to rely on exposure modeling, such as land-
use regression models to estimate air pollution levels, which might introduce additional 
complexity due to the use of shared predictors that may lead to stronger correlations 
between exposures than those existing in the real world (Szpiro & Paciorek, 2013). In ad-
dition, in our study we did not directly evaluate residential self-selection bias, where the 
decision to relocate is influenced by various factors such as age, ethnicity, professional or 
life choices, and socioeconomic status. This dynamic may ultimately result in changes in 
environmental exposures across different life stages (Saucy et al., 2023). Given the com-
plex interplay of these factors with the exposures assessed in AMIGO, we cannot rule out 
the possibility of residual bias in our dataset originating from residential self-selection.
Finally, despite recent developments in causal inference methods for multiple exposures 
(Williams & Crespi, 2020), we acknowledge a substantial gap in statistical methods for 
estimating the effect of multiple exposures, particularly in situations where these are 
represented by a combination of continuous and categorical exposures, as is common in 
the context of the urban exposome, and high correlation levels between exposures are 
present. Nevertheless, the approach followed in this study allowed us to identify a group 
of exposures involved in the exposome-outcome association and estimate the direct ef-
fect of single exposures on reporting of headache controlling for potential confounding 
variables to obtain more accurate estimates of causal effects.

Conclusions

Our study indicated that the exposure to environmental stressors, in particular air pol-
lutants and urban heat island effects, contributed to reporting of weekly headache epi-
sodes in our population. Given the high global burden associated with headache, under-
standing the role of environmental factors becomes imperative not only for advancing 
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our comprehension of the mechanisms generating symptoms but also for formulating 
effective preventing strategies. 
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Sex, n (%)
Male 3499 (47.7)
Female 3840 (52.3)

Age (years)
Mean (SD) 52.3 (9.00)

Highest level of education attained, n (%)
High 3215 (43.8)
Low 4122 (56.2)
Missing 2 (0.0)

Occupation, n (%)
Employed 5161 (70.3)
Unemployed 2178 (29.7)

Country of origin, n (%)
The Netherlands 7048 (96.0)
Other 291 (4.0)

BMI group, n (%)
    Normal or underweight 3763 (51.3)
    Overweight or obese 3576 (48.7)
Alcohol consumption, n (%)

No 813 (11.1)
Yes 6524 (88.9)
Missing 2 (0.0)

Smoking status, n (%)
No 6437 (87.7)
Yes 900 (12.3)
Missing 2 (0.0)

Sleep disturbance index
Mean (SD) 26.5 (18.6)
Missing 23 (0.3%)

General health indicator, n (%)
   Poor 1098 (15.0)
   Good 6239 (85.0)
   Missing 2 (0.0)
Depression diagnosis, n (%)

No 6587 (89.8)
Yes 752 (10.2)

Painkiller use, n (%)
No 6773 (92.3)
Yes 484 (6.6)
Missing 82 (1.1)

Weekly headachea, n (%)
No 6425 (87.5)
Yes 914 (12.5)

Severe weekly headachea, n (%)
No 6940 (94.6)
Yes 399 (5.4)

aAt baseline.

Table 1. Characteristics of the participants at baseline (N=7339).



180

Chapter 5

Exposure ATEa (SE)

NO2 (µg/m3) 0.007 (0.004)

PM10 (µg/m3) 0.006 (0.004)

Heat island effect (C◦) 0.006 (0.007)

NOx (µg/m3) 0.004 (0.004)

Iron in PM2.5 (ng/m3) 0.003 (0.004)

Silicon in PM10 (ng/m3) 0.003 (0.004)

aResults for air pollutants indicate changes per interquartile range (IQR) increase in mean air pollution exposure.

Table 2. Average treatment effects (ATEs) and related standard errors (SEs) estimated with causal forests for 
each exposure separately, adjusted for age, depression diagnosis, painkiller use, general health indicator, sleep 
disturbance index and weekly headache at baseline.
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Exposure

CATEa (SE) in the subsample 
of participants with weekly 

headache
at baseline

CATEa (SE) in the subsample 
of participants without 

weekly headache at 
baseline

t-valueb

NO2 (µg/m3) 0.068 (0.027) -0.003 (0.004) 7.151***

PM10 (µg/m3) 0.054 (0.027) 0.000 (0.004) 6.761***

Heat island effect (C◦) 0.058 (0.042) 0.000 (0.006) 7.645***

NOx (µg/m3) 0.035 (0.022) -0.004 (0.004) 4.471***

Iron in PM2.5 (ng/m3) 0.013 (0.026) -0.001 (0.004) 6.209***

Silicon in PM10 (ng/m3) 0.043 (0.027) -0.003 (0.004) 3.916***

aResults for air pollutants indicate changes per interquartile range (IQR) increase in mean air pollution exposure.
bNull hypothesis of no heterogeneity.
*** p<0.001, ** p<0.01, * p<0.05

Table 3. Conditional average treatment effects (CATEs) on weekly headache at baseline and related standard 
errors (SEs) estimated with causal forests for each exposure separately, adjusted for age, depression diagnosis, 
painkiller use, general health indicator, and sleep disturbance index.
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Figure 1. Matrix of correlation plot showing the intra-family correlations between exposures at baseline.
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Figure 2. Spearman rank correlation coefficients and correlation plot of the exposures selected by Boruta. 
Darker colours and larger circles indicate higher positive correlation levels.
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Figure 3. Shapley plot illustrations of the exposures selected by Boruta.
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with mutual adjustment for the remaining exposures.
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Highly correlated exposures
(with Spearman rank correlation coefficient ≥ 0.95)

Retained exposure as a proxy for 
others

Vanadium in PM2.5 (ng/m3)

Nickel in PM10 (ng/m3)
Vanadium in PM10 (ng/m3)

Nickel in PM2.5 (ng/m3)

Nickel in PM10 (ng/m3)

Zinc in PM10 (ng/m3)

Potassium in PM2.5 (ng/m3)Zinc in PM2.5 (ng/m3)

Potassium in PM2.5 (ng/m3)

Copper in PM2.5 (ng/m3)
Iron in PM2.5 (ng/m3)

Iron in PM2.5 (ng/m3)

Smell of drinking water
Smell of drinking water

Taste of drinking water

Supplementary Table 2. Highly correlated exposures and corresponding retained exposure as a proxy for 
others.
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Sex, n (%)
Male 6561 (44.2)
Female 8268 (55.8)

Age (years)
Mean (SD) 50.6 (9.37)

Highest level of education attained, n (%)
High 4531 (30.6)
Low 10217 (68.9)
Missing 81 (0.5)

Occupation, n (%)
Employed 10641 (71.8)
Unemployed 4167 (28.2)

Country of origin, n (%)
The Netherlands 14127 (95.3)
Other 702 (4.7)

BMI group, n (%)
    Normal or underweight 7955 (55.7)
    Overweight or obese 6748 (43.5)
    Missing 126 (0.8)
Alcohol consumption, n (%)

No 1936 (13.1)
Yes 12793 (86.3)
Missing 100 (0.6)

Smoking status, n (%)
No 12484 (84.2)
Yes 2322 (15.7)
Missing 23 (0.1)

Sleep disturbance index
Mean (SD) 26.8 (19.2)
Missing 230 (1.6%)

General health indicator, n (%)
   Poor 2449 (16.5)
   Good 12260 (82.7)
   Missing 120 (0.8)
Depression diagnosis, n (%)

No 12804 (86.3)
Yes 1555 (10.5)
Missing 470 (3.2)

Painkiller use, n (%)
No 13305 (89.7)
Yes 1022 (6.9)
Missing 502 (3.4)

Weekly headachea, n (%)
No 12607 (85.0)
Yes 2069 (14.0)
Missing 153 (1.0)

Severe weekly headachea, n (%)
No 13629 (91.9)
Yes 1009 (6.8)
Missing 191 (1.3)

aAt baseline.

Supplementary Table 3. Characteristics of the participants who completed the baseline questionnaire 
(irrespective of their subsequent completion of the follow-up questionnaire) (N=14829).
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Supplementary Table 4. Description of the exposures considered in this study.
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(µg/m
(µg/m

absorbance (µg/m
(µg/m
(µg/m

PM coarse (µg/m

Aluminium (µg/l)

Iron (µg/l)
Copper (µg/l)

acid (Pesticide) (µg/l)
0 (µg/l): 7074 (96.4%)
>0 (µg/l): 251 (3.4%)

Arsen (µg/l)
0 (µg/l): 6303 (85.9%)
>0 (µg/l): 1022 (13.9%)

Bentazon (herbicide)(µg/l)
0 (µg/l): 6528 (88.9%)
>0 (µ

Bromat (µg/l)
0 (µg/l): 6355 (86.6%)
>0 (µg/l): 970 (13.2%)

Chrome (µg/l)
0 (µg/l): 6888 (93.9%)
>0 (µg/l): 437 (6.0%)

Diprogulic acid (µg/l)
0 (µg/l): 6417 (87.4%)
>0 (µg/l): 908 (12.4%)

Lead (µg/l)
0 (µ
>0 (µg/l): 128 (1.7%)

Mangan (µg/l)
0 (µg/l): 7189 (98.0%)
>0 (µg/l): 136 (1.9%)

(µg/l)
0 (µg/l): 7195 (98.0%)
>0 (µg/l): 130 (1.8%)

Nitrite (µg/l)

Trihalomethanes (µg/l)
0 (µ
>0 (µg/l): 916 (12.5%)
0 (µg/l): 7155 (97.5%)
>0 (µg/l): 170 (2.3%)
0 (µg/l): 6997 (95.3%)
>0 (µg/l): 328 (4.5%)
0 (µ
>0 (µg/l): 121 (1.6%)
0 (µg/l): 7066 (96.3%)
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Iron (µg/l)
Copper (µg/l)

acid (Pesticide) (µg/l)
0 (µg/l): 7074 (96.4%)
>0 (µg/l): 251 (3.4%)

Arsen (µg/l)
0 (µg/l): 6303 (85.9%)
>0 (µg/l): 1022 (13.9%)

Bentazon (herbicide)(µg/l)
0 (µg/l): 6528 (88.9%)
>0 (µ

Bromat (µg/l)
0 (µg/l): 6355 (86.6%)
>0 (µg/l): 970 (13.2%)

Chrome (µg/l)
0 (µg/l): 6888 (93.9%)
>0 (µg/l): 437 (6.0%)

Diprogulic acid (µg/l)
0 (µg/l): 6417 (87.4%)
>0 (µg/l): 908 (12.4%)

Lead (µg/l)
0 (µ
>0 (µg/l): 128 (1.7%)

Mangan (µg/l)
0 (µg/l): 7189 (98.0%)
>0 (µg/l): 136 (1.9%)

(µg/l)
0 (µg/l): 7195 (98.0%)
>0 (µg/l): 130 (1.8%)

Nitrite (µg/l)

Trihalomethanes (µg/l)
0 (µ
>0 (µg/l): 916 (12.5%)
0 (µg/l): 7155 (97.5%)
>0 (µg/l): 170 (2.3%)
0 (µg/l): 6997 (95.3%)
>0 (µg/l): 328 (4.5%)
0 (µ
>0 (µg/l): 121 (1.6%)
0 (µg/l): 7066 (96.3%)
>0 (µg/l): 259 (3.5%)
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Exposure ATEa (SE)
NO2 (µg/m3) 0.007 (0.004)
PM10 (µg/m3) 0.006 (0.004)
Heat island effect (C◦) 0.006 (0.007)
NOx (µg/m3) 0.004 (0.004)
Copper in PM2.5 (ng/m3) 0.002 (0.004)
Silicon in PM10 (ng/m3) 0.003 (0.004)

aResults for air pollutants indicate changes per interquartile range (IQR) increase in mean air pollution exposure.

Supplementary Table 5. Average treatment effects (ATEs) and related standard errors (SEs) estimated with 
causal forests for each exposure separately, adjusted for age, depression diagnosis, painkiller use, general 
health indicator, sleep disturbance index and weekly headache at baseline. Causal forests including Copper in 
PM2.5 as a proxy for Iron in PM2.5.
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Exposure “High” region
CATE (SE)

“Low” region
CATE (SE)

Difference in CATEs (95% 
CI)

NO2 (µg/m3) 0.013 (0.007) 0.003 (0.005) 0.010 (-0.007 – 0.027)

PM10 (µg/m3) 0.003 (0.005) 0.007 (0.005) -0.004 (-0.018 – 0.010)

Heat island effect (C◦) 0.007 (0.011) 0.006 (0.008) 0.001 (-0.025 – 0.027)

NOx (µg/m3) 0.006 (0.005) 0.001 (0.004) 0.005 (-0.008 – 0.018)

Iron in PM2.5 (ng/m3) -0.003 (0.007) 0.007 (0.005) -0.010 (-0.026 – 0.006)

Silicon in PM10 (ng/m3) 0.003 (0.006) 0.002 (0.005) 0.001 (-0.015 – 0.017)

Supplementary Table 6. Comparison of “high” and “low” out-of-bag CATE regions: causal forests estimated on 
each exposure separately, adjusted for age, depression diagnosis, painkiller use, general health indicator, sleep 
disturbance index and weekly headache at baseline.
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Exposure ATEa (SE)
NO2 (µg/m3) 0.058 (0.022)
PM10 (µg/m3) 0.002 (0.014)
Heat island effect (C◦) -0.019 (0.017)
NOx (µg/m3) 0.011 (0.018)
Iron in PM2.5 (ng/m3) -0.016 (0.010)
Silicon in PM10 (ng/m3) -0.045 (0.051)

aResults for air pollutants indicate changes per interquartile range (IQR) increase in mean air pollution exposure.

Supplementary Table 7. Average treatment effects (ATEs) and related standard errors (SEs) estimated with 
causal forests for each exposure separately, adjusted for age, depression diagnosis, painkiller use, general 
health indicator, sleep disturbance index and weekly headache at baseline, with mutual adjustment for the 
remaining exposures.
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Supplementary Table 8. Comparison of “high” and “low” out-of-bag CATE regions: causal forests estimated on 
each exposure separately, adjusted for age, depression diagnosis, painkiller use, general health indicator, sleep 
disturbance index and weekly headache at baseline, with mutual adjustment for the remaining exposures.

Exposure “High” region
CATE (SE)

“Low” region
CATE (SE)

Difference in CATEs (95% 
CI)

NO2 (µg/m3) 0.083 (0.031) 0.001 (0.015) 0.082 (0.015 – 0.149)

PM10 (µg/m3) 0.017 (0.012) 0.014 (0.017) 0.002 (-0.039 – 0.043)

Heat island effect (C◦) 0.000 (0.022) -0.038 (0.026) 0.038 (-0.029 – 0.105)

NOx (µg/m3) -0.008 (0.012) -0.015 (0.015) 0.007 (-0.031 – 0.038)

Iron in PM2.5 (ng/m3) -0.012 (0.012) 0.003 (0.012) -0.015 (-0.049 – 0.034)

Silicon in PM10 (ng/m3) -0.041 (0.086) -0.050 (0.055) 0.009 (-0.191 – 0.209)
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Supplementary Table 9. Average treatment effects (ATEs) and related standard errors (SEs) estimated with 
causal forests for each exposure separately, adjusted for age, depression diagnosis, painkiller use, general 
health indicator, sleep disturbance index and weekly headache at baseline.

Exposure ATEa (SE)

NO2 (µg/m3) 0.007 (0.004)

PM10 (µg/m3) 0.006 (0.004)

Heat island effect (C◦) 0.006 (0.007)

NOx (µg/m3) 0.004 (0.004)

Iron in PM2.5 (ng/m3) 0.003 (0.004)

Silicon in PM10 (ng/m3) 0.003 (0.004)

PMcoarse (µg/m3) 0.005 (0.004)

Potassium in PM10 (ng/m3) 0.002 (0.004)

Road traffic noise (dB) 0.008 (0.007)
aResults for air pollutants indicate changes per interquartile range (IQR) increase in mean air pollution exposure.
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Supplementary Figure 1. The circos of correlation plot showing inter-family correlations between exposures 
and their domains at baseline.
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Supplementary Figure 2. Shapley plot illustrations of the covariates selected by Boruta.
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Supplementary Figure 3. Distribution of exposure propensity weights with causal forests trained for each 
exposure separately, adjusted for age, depression diagnosis, painkiller use, general health indicator, sleep 
disturbance index and weekly headache at baseline.

Supplementary Figure 3. Distribution of exposure propensity weights with causal forests 

trained for each exposure separately, adjusted for age, depression diagnosis, painkiller use, 

general health indicator, sleep disturbance index and weekly headache at baseline. 
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Supplementary Figure 4. Distribution of exposure propensity weights with causal forests trained for each 
exposure separately, adjusted for age, depression diagnosis, painkiller use, general health indicator, sleep 
disturbance index and weekly headache at baseline, with mutual adjustment for the remaining exposures.

Supplementary Figure 4. Distribution of exposure propensity weights with causal forests 

trained for each exposure separately, adjusted for age, depression diagnosis, painkiller use, 

general health indicator, sleep disturbance index and weekly headache at baseline, with 

mutual adjustment for the remaining exposures. 
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A prospective exploration of the urban exposome in relation to headache in the Dutch 
population-based Occupational and Environmental Health Cohort Study (AMIGO)

Painkiller use in the AMIGO questionnaire.

Have you used the following (prescribed) medications in the past 12 months?    
(response categories: yes, no)

•	 painkiller(s)
(if painkiller(s) was selected => answer next questions).

How often in the past 12 months have you taken the following painkillers? (re-
sponse categories: at least 1/day, at least 1/week, at least 1/month, rarely, never).

a.	 Paracetamol (e.g. Paracetamol, Chefarine, Citrosan, Finimal, Panadol 
Plus, Femerital, Saridon).

b.	 Ibuprofen (e.g. Advil, Brufen, Nurofen, Sarixell, Spidifen).
c.	 Acetylsalicylic acid (e.g. Aspirin, Aspro, Aspegic, Alka-Seltzer).
d.	 Other painkillers (e.g. Codeine).

1.

2.
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Chapter 6: General Discussion
The main objective of this thesis was to propose informative approaches for the analysis 
of environmental factors commonly encountered in everyday life in relation to health 
outcomes, using data from prospective studies across different scenarios. These ap-
proaches aimed to provide valuable insights and understanding of exposure-outcome 
relationships, including potential mechanisms of action and underlying causal pathways, 
to prevent health effects. This was accomplished through careful evaluation of pre-ana-
lytical aspects of the study concerning design and hypotheses, optimisation of available 
data, identification of the most appropriate analytical methods, and critical interpreta-
tion of the results. For this purpose, data from large prospective epidemiological studies 
were analysed using a combination of statistical and machine learning techniques, which 
include multi-state Markov models, weighted quantile sum regression and boosted re-
gression tree models, Boruta and causal forests, and extensions of regression techniques 
within the causal inference framework such as the generalised propensity score for sin-
gle exposures and its multivariate version.
In Chapter 6, I first present the main findings of this thesis’s studies. Following this sum-
mary, I navigate through the approaches proposed to identify underlying mechanisms of 
action and address the most relevant challenges encountered across the studies, high-
lighting the advantages and limitations of the different methods, and providing policy 
implications and possible directions for future research.

Main findings

In Chapter 2, we explored two potential exposure-outcome pathways concerning mo-
bile phone use and headaches, using pooled data from the Dutch and UK cohorts of 
COSMOS (N=78,437). Results from multivariable logistic regression models showed that 
baseline mobile phone use for calling and texting was associated with headaches at fol-
low-up. Interestingly, in the mutually adjusted model for both call-time and texting, we 
observed considerably attenuated risk estimates for call-time. In contrast, associations 
with texting were still strong and robust to adjustment, with a clear exposure-outcome 
relationship. These results suggested that, due to the negligible exposure to RF-EMFs 
from texting, mechanisms other than RF-EMFs were responsible for the increased risk of 
headache that we found among mobile phone users. These mechanisms likely reflected 
lifestyle, other exposures, or behavioural factors associated with mobile phone use.

In Chapter 3, we explored the temporal dynamics of attribution of health complaints to 
RF-EMFs (IEI-RF) in the subcohort of AMIGO (N=892). Specifically, we assessed factors 
related to developing, maintaining, or discarding IEI-RF over the course of 10 years by 
modelling the process in which participants move through a series of states of IEI-RF 
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with multi-state Markov models. Furthermore, we applied logistic regression to prospec-
tively explore predictors of electromagnetic hypersensitivity without the condition of 
attributing health complaints to RF-EMF exposure (EHS). Results showed that prevalence 
of IEI-RF was generally low and remained stable over time. Interestingly, over 10 years of 
follow-up, we observed a high probability of no longer attributing symptoms to RF-EMF 
exposure, which suggested that IEI-RF may be a more transient condition than previous-
ly assumed. Finally, RF-EMF perceptions, non-specific symptom reporting, and sleep dis-
turbances at baseline were predictive of the notion of being EHS at 10 years follow-up, 
regardless of whether reporting health complaints attributed to RF-EMF exposure.

In Chapter 4, we adopted a pluralistic approach to prospectively explore the relation-
ship between a mixture of air pollutants and overall mortality in LIFEWORK (N=86,882). 
Through the use of methods designed for the analysis of high-dimensional exposure 
data, namely weighted quantile sum (WQS) regression and boosted regression trees 
(BRT), we identified the most relevant components within the mixture in relation to the 
outcome, accounting for the strong correlations, interactions and nonlinearities. Based 
on these results, we estimated a multivariate generalised propensity score model to 
jointly estimate the causal effects of the pollutants on overall mortality. Results showed 
that, by using novel methods for causal inference and mixture modelling in a large pro-
spective cohort, we could strengthen the causal interpretation of air pollution effects on 
mortality, identifying the most relevant contributors and emphasising the primary role 
of PM2.5 within the pollutant mixture.

In Chapter 5, we prospectively explored the urban exposome of AMIGO (N=7,339) in 
relation to headaches by using a combination of machine learning techniques designed 
to reduce complexities in high-dimensional settings and estimate causal effects. Specif-
ically, we first applied Boruta to identify relevant exposures in the exposome-outcome 
association, and then estimated causal forest to quantify the effect of these exposures 
on the occurrence of headache. Boruta selected five air pollutants (NO2, NOX, PM10, sil-
icon in PM10, iron in PM2.5) and one urban temperature measure (heat island effect) as 
factors contributing to the reporting of weekly headache at follow-up. The estimated 
causal effect of each exposure on weekly headache indicated positive associations for 
all exposures, with NO2 displaying the largest effect. Of note, accounting for confound-
ing by co-exposure resulted in less precise effect estimates. In conclusion, these results 
highlighted the relevance of air pollution exposure and heat island effects in reporting 
weekly headaches in AMIGO.

Unraveling the mechanisms of action of environmental exposures on health necessi-
tates a comprehensive approach
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Despite the ubiquitous nature of air pollution and RF-EMFs in the environment, they 
have very distinct features that require different approaches to understand their mode 
of action.
While the mechanisms underlying the health effects of air pollution are relative-
ly well-understood, and they involve inflammation, oxidative stress, and systemic re-
sponses triggered by exposure to particulate matter and gaseous pollutants (Block & 
Calderón-Garcidueñas, 2009; Brunekreef & Holgate, 2002; Leikauf et al., 2020; Miller, 
2020), those concerning RF-EMF exposure, particularly at the low levels of exposure nor-
mally encountered in the population, remain more uncertain. The accepted mechanism 
of action of RF-EMF exposure to date includes a thermal effect from absorbed energy 
(D’Andrea et al., 2007). Furthermore, oxidative stress is proposed as a potential biologi-
cal response to RF-EMFs in a number of experimental studies, such as those investigating 
the effects on nervous and reproductive systems (Henschenmacher et al., 2022; Kamali 
et al., 2018; Tkalec et al., 2007; Yüksel et al., 2016), although it remains unclear whether 
oxidative stress may result in harmful health effects at the generally low exposure levels 
that are experienced by the general population. On the other hand, epidemiological 
studies exploring the health effects associated with long-term RF-EMF exposure from 
the use of mobile phones struggle to provide definitive evidence about potential mech-
anisms involved (Boileau et al., 2020; Feychting et al., 2024; INTERPHONE Study Group, 
2010; Schüz et al., 2006; Swerdlow et al., 2011; Tettamanti et al., 2020).

In studies investigating health outcomes such as headache and migraine, the identifi-
cation of mechanisms of action becomes even more challenging due to the transient 
nature of the symptoms (Auvinen et al., 2019; Frei et al., 2012; Martens et al., 2018; 
Schüz et al., 2009; Szyjkowska et al., 2014; Wang et al., 2017). Results from these stud-
ies can be difficult to interpret as no clear distinction is traditionally made, within each 
study, between aspects of electronic device use directly related to RF-EMF exposure 
and other features associated with negligible RF-EMF exposure, which still represent 
potential risk factors for headache symptoms in the population. In this regard, growing 
evidence is supporting the hypothesis of a link between headaches and certain aspects 
of electronic device use, such as screen time or texting (Langdon et al., 2024; Lund et 
al., 2022; Montagni et al., 2016; Tsantili et al., 2022). Therefore, to elucidate potential 
mechanisms of action, it would be advantageous to explore exposure constructs that aid 
in disentangling the relationship between exposure and outcome.

Following these considerations, two potential adverse exposure-outcome pathways in 
the association between mobile phone use and headaches can be identified (Chapter 2). 
The first route relates to RF-EMF exposure, with the duration of voice calling on a mobile 
phone considered as a proxy for the exposure to the head of the participants.
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This is a common approach used to quantify RF-EMF exposure in epidemiological studies 
exploring the health effects from long-term use of mobile phones (Auvinen et al., 2019; 
Schüz et al., 2009), given that the actual measurement of RF-EMFs in large populations 
proves impractical due to time and costs that such implementation would require. In this 
regard, efforts are underway to develop mobile phone applications able to accurately 
measure personal absorbed RF-EMF doses to map participants’ exposure in large epi-
demiological studies (Exposure To electromAgnetic fIelds and plaNetary Health | ETAIN 
Project | Fact Sheet | HORIZON, 2022).

The second route pertains to distinct aspects of mobile phone use with negligible RF-
EMF exposure, such as sending text messages. In Chapter 2, results from the single-ex-
posure models including voice calling and texting as exposures of interest, respectively, 
showed an increase in the risk of reporting headache with increasing call-time and fre-
quency of text messages, with clear exposure-outcome relationships. The two-exposure 
model with mutual adjustment for both call-time and texting produced considerably 
attenuated risk estimates for call-time, while associations with texting were still strong 
and robust to adjustment, with a clear increase in reporting headache with increasing 
texting, which was no longer observed for call-time.
This approach demonstrates that, by using distinct exposure metrics as proxy for RF-EMF 
exposure and other usage with negligible RF-EMF exposure, it was possible to shed light 
on pertinent questions regarding the underlying mechanisms of action of mobile phone 
use in relation to headache reporting, and disentangle the exposure-outcome associa-
tion by excluding the RF-EMF route. In particular, our findings point towards the fact that 
RF-EMF exposure has no effect on the reporting of headaches and suggest that factors 
other than RF-EMFs may be involved (Chapter 2).
Regarding the exact mechanisms at play, be it texting, screen time, or other factors re-
lated to the usage, it is difficult to draw definitive conclusions. In this scenario, unmea-
sured factors, such as lifestyle, other exposures, or behavioural aspects related to mobile 
phone use that were not directly evaluated in the study could potentially mediate the 
effect of texting that was observed on the occurrence of headache. Therefore, to deter-
mine the exact mechanisms triggering headache among mobile phone users, further 
analyses (e.g. mediation analysis) should be conducted to quantify the impact of these 
factors along with texting on reporting symptoms.

For exposures such as RF-EMFs, a major challenge in the identification of potential 
mechanisms of action is represented by the exposure itself, which naturally undergoes 
frequent changes over time. This scenario becomes even more challenging when the 
study outcome is also highly transient. In this specific context, the underlying causes of 
action must be explored while addressing the temporal variability of both exposure and 
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outcome.
As case study, we explored the temporal dynamics of attribution of health complaints to 
RF-EMF exposure (IEI-RF) using longitudinal data from the subcohort of AMIGO (Chapter 
3).
There are several challenges that researchers encounter when studying IEI-RF, which 
are introduced in Chapter 1. Among those, the uncertainty in the underlying mecha-
nisms of action of IEI-RF is one of the most prominent. Previous studies, in fact, were 
not able to ascertain these mechanisms, and current evidence is limited regarding the 
potential pathways, although psychosocial factors were identified as potential triggers 
for the condition (Baliatsas et al., 2009; Dieudonné, 2016; Martens et al., 2018; Stein & 
Udasin, 2020).
Multi-state Markov models represent a flexible tool for exploring and determining the 
most plausible pathway among those identified in previous studies (Dieudonné, 2016, 
2020; Martens et al., 2017). A multi-state Markov model is a continuous time stochastic 
process suitable to model the process in which participants move through a series of 
states of IEI-RF, defined as presence or absence of symptoms attributed to RF-EMFs. 
Multi-state Markov models are traditionally employed in studies estimating rates of 
transition between stages of disease progression, including the average duration spent 
in a particular state (“sojourn time”), and rely on the assumption that future evolution 
only depends on the current state (Kalbfleisch & Lawless, 1985). Besides applications in 
healthcare and epidemiology, multi-state Markov models are frequently applied across 
various domains, including economics, finance, and social sciences (Chamboko & Bravo, 
2020; Hougaard, 1999).

In Chapter 3, we followed this approach to evaluate the dynamics of IEI-RF at three time 
points over the course of 10 years. Here, multi-state Markov models were estimated 
with IEI-RF included as dependent variable, and perception of RF-EMF exposure and risk, 
self-reported non-specific symptoms, and sleep disturbances as time-dependent covari-
ates. Incorporating covariate data assessed at the same time points as the dependent 
variable is essential for capturing potential time-variant effects and understanding these 
factors’ role on transition rates of IEI-RF. By using this approach, we accounted for sever-
al factors in estimating the instantaneous risk of transitioning from one state into anoth-
er of IEI-RF that, in previous studies, were identified as potential risk factors for IEI-RF.
Results suggested that individuals in AMIGO were likely to attribute symptoms to RF-
EMF exposure, possibly to help explain a health issue they may be experiencing, for 
which no diagnosis was made, and therefore alleviate the uncertainty regarding the un-
derlying cause.
This conclusion was driven by important considerations regarding the remaining two 
potential pathways, which followed directly the interpretation of results of the multi-
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state Markov models: first, the biological pathway indicates RF-EMF exposure causes 
symptoms. Without direct exposure measurements over time, exploring this pathway 
is limited. Previous research shows personal exposure is mainly influenced by device 
use, especially phone calls (van Wel et al., 2021). Reduction in exposure should align 
with behaviour changes, yet those no longer attributing symptoms to RF-EMF exposure 
tended to report higher exposure perception later on, which is unexpected. Second, the 
cognitive pathway suggests that perceived exposure and risk trigger a nocebo response 
leading to symptoms. In Chapter 3, we showed that higher perceived risk and exposure 
were associated with symptom attribution, indicating the relevance of nocebo effects. 
However, participants reporting symptoms at earlier time points but not later ones tend-
ed to increase exposure and risk perception, contradicting the cognitive hypothesis. This 
suggests symptoms induced by nocebo effects may not persist in our study population.

The following considerations contributed to gaining valuable insights into the time course 
of symptoms attributed to RF-EMFs and identifying the most plausible mechanism of 
action: first, the specific study design, which involved collecting data on perceived expo-
sure and risk, as well as the attribution of health complaints to RF-EMF exposure over a 
span of more than two time points throughout a period of 10 years, was a key factor to 
address temporal variation of IEI-RF.
Second, a clear distinction has to be made between IEI-RF and EHS. This is not always the 
case in previous studies, where IEI-RF and EHS are often defined using heterogeneous 
criteria which may further increase uncertainty in identifying the underlying mecha-
nisms (Baliatsas et al., 2012). An accurate definition of IEI-RF and EHS is essential to 
effectively capture participants who attributed symptoms to the exposure. This group of 
participants would benefit the most from interventions aimed at alleviating their symp-
toms, therefore their identification is crucial.
Third, by applying multi-state Markov models, we estimated the chance of transitioning 
between the two states of IEI-RF. This revealed the transient nature of this condition and 
identified important contributors influencing the dynamics, ultimately leading to the ex-
clusion of the implausible pathways among those previously hypothesised.

In conclusion, the approach outlined in Chapter 3 represents a valid strategy to explore 
underlying mechanisms of action in scenarios where both exposures and outcomes are 
difficult to assess and subject to fluctuations over time. While our study possibly rep-
resents the most extensive exploration of IEI-RF dynamics over a long time period includ-
ing a relatively large study population, it is important to note that the low prevalence of 
IEI-RF in the subcohort of AMIGO hindered our ability to estimate multi-state Markov 
models with mutual adjustment for potential confounders in the exposure-outcome as-
sociation. 
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This approach is therefore recommended in scenarios where longitudinal data on expo-
sures and outcomes is available across multiple time points for a relatively large study 
populations. Furthermore, to avoid sparse data bias, the outcome should not represent 
a rare condition in the population. This is necessary to successfully estimate multi-state 
Markov models while accounting for potential confounding in the exposure-outcome 
association over time.

Of note, in situations where the states of the Markov process are “hidden” and there-
fore not directly observed, a possible approach is provided by Hidden Markov models 
(HMMs). A HMM is a statistical model used to describe the evolution of observable 
events that depend on underlying states, which are not directly observable. In particu-
lar, a HMM consists of a two-dimensional stochastic process where the observed data 
are determined by a probability distribution conditionally on the latent states (Jackson, 
2011). While these models (and their extensions) have historically found their place in 
computational biology and bioinformatics (McClintock et al., 2020; Yoon, 2009) as well 
as speech and signal processing (Juang & Rabiner, 1991), they also find potential for ap-
plications in (environmental) epidemiology, typically to model the progression of chronic 
diseases (Chadeau-Hyam et al., 2014; Powell et al., 2019).

For certain exposures, such as air pollution, the mechanisms of action are relatively 
well-understood. However, by identifying the main contributors within a mixture of air 
pollutants in relation to an outcome, it is possible to further explore underlying path-
ways. In this context, the most urgent research questions for policy action pertain to 
the overall mixture effect and the identification of the components within the mixture 
showing the largest impact on the outcome while taking into account the co-occurrence 
of the exposures.
A possible approach to tackle these questions is presented in the study exploring the 
relationship between a mixture of air pollutants and overall mortality which, by empha-
sising the primary role of PM2.5 within the pollutant mixture, provides valuable insights 
into the underlying mechanisms of action (Chapter 4).

At a more general level, an initial step in the identification of potential mechanisms of 
action is provided by the case study described in Chapter 5. Here, the aim is to detect 
relevant exposures implicated in the exposure-outcome associations in the context of 
exposome-wide analyses. This involves screening the high-dimensional dataset charac-
terising the urban exposome to first reduce the complexity by selecting the relevant 
variables for the outcome, and ultimately estimating their causal effects to quantify their 
impact on health. Knowledge about the exposures implicated in the reporting of head-
ache provides important insights into potential mechanisms of actions to be targeted in 



222

Chapter 6

future studies (Chapter 5).

These considerations about study design, hypothesis framework, statistical methods, 
and critical interpretation of the results are closely interconnected and thoroughly con-
tribute to understanding mechanisms of action in studies investigating the health effects 
of environmental exposures. The most relevant challenges related to the analysis of this 
data are discussed in the following paragraphs.

Optimising available exposure data is a critical step towards the effective conduct of 
epidemiological studies and interpretation of their results

An important aspect contributing to the effective conduct of an epidemiological study 
involves optimising available exposure data to enhance its informativeness for specific 
purposes. Depending on the study, this step may involve generating multiple metrics for 
the exposure of interest to be used in sensitivity analyses to assess the robustness of 
the results and facilitate their interpretation, particularly in scenarios where the mech-
anisms of action are uncertain. Another critical step involves pre-processing exposure 
data to conduct an initial description of the exposures and their characteristics, which 
includes, e.g., detecting underlying data structures and correlations, determining the 
best approach for handling missing values, and more.

In the context of RF-EMF exposure, the cohort study of mobile phone use and health 
(COSMOS) collects various self-reported information regarding the use of mobile phones 
and other wireless devices, including the proportion of time the participants use hands-
free devices (Schüz et al., 2011). This information enables to adjust call-time according 
to the proportion of hands-free use reported by the participant to better approximate 
the true RF-EMF exposure to the head (Goedhart et al., 2015).
Depending on the available exposure data, multiple exposure metrics related to RF-EMFs 
can be obtained and used in sensitivity analyses to assess the robustness of the results 
of a particular study. This is the case for the strategy followed in Chapter 2. In particu-
lar, regarding RF-EMF exposure, we relied on self-reported duration of voice calling as 
reported by participants and voice-call duration obtained from network operators, in ad-
dition to regression calibrated values. These were estimated for each participant in the 
cohort as a combination of operator-recorded and self-reported call-time to improve the 
estimation of the exposure by reducing recall bias (Reedijk et al., 2023). Regression cal-
ibration methods are widely applied across several exposure domains to produce more 
insightful exposure-outcome relationships while accounting for exposure measurement 
error and misclassification (Bennett et al., 2017; Reedijk et al., 2023; Spiegelman, 2013).

To achieve an integrated radiofrequency electromagnetic fields (RF-EMF) dose assess-
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ment in epidemiological studies and represent as much as possible the exposure levels 
encountered by individuals in their daily life, it is advisable to consider integrative ap-
proaches to quantify the exposure from the use of different electronic devices.
This is the case of the integrated exposure model (IEM), which represents a flexible tool 
to estimate weekly doses of RF-EMFs (measured in mJ/kg/week) in large epidemiologi-
cal studies (van Wel et al., 2021). The IEM considers source-specific attributes, including 
output power and distance, personal characteristics such as height and weight of the 
user, and ultimately various usage patterns. Several sources of exposure can be included 
in the IEM, and the dose, depending on the emitting sources, can be calculated by tar-
geting specific body organs or tissues (Cabré-Riera et al., 2022). Call duration on mobile 
and cordless phones was included as input data for the IEM in Chapter 2, as they were 
previously identified as main contributors to the target organ for headache, that is the 
brain (Cabré-Riera et al., 2022; van Wel et al., 2021).
Based on these considerations and through the optimisation of the available exposure 
data in COSMOS, we produced a comprehensive set of exposure metrics as a proxy for 
RF-EMF exposure, which were then used to further strengthen the main findings and 
their interpretation (Chapter 2).

Another aspect relevant to the effective conduct of the study, that may be overlooked, 
is the preliminary processing of exposure data. This step aims at optimising the avail-
able information before moving to the modelling of exposure-outcome relationships. 
Depending on the complexity of exposure data, this process does not come without 
challenges. Particularly in the context of exposome-wide analyses, pre-processing of 
exposure data represents an arduous and time-consuming yet essential aspect of the 
study, that aims to facilitate the subsequent analyses and interpretation of findings. This 
procedure encompasses various stages, typically including evaluating the skewness of 
exposures to meet the assumptions of statistical analyses and the use of different scales, 
exploring patterns (also related to existing correlations and missing data), aggregating 
exposures and calculating scores, and defining optimal buffers for neighbourhood-level 
exposures, among others.

Environmental exposure data often show non-negative values and right-skewness, 
which may require, e.g., log-transforming the exposures to approximate the normal dis-
tribution of their residuals. In the case of a substantial number of zeros on specific ex-
posures, it is important to determine whether they correspond to absence of exposure 
to a particular chemical or undetected values, in which case the zeros may be replaced 
by predefined constant values. Alternatively, methods to deal with zero-inflated expo-
sures (i.e. skewed variables with many zeros) can be applied (Lambert, 1992; K. H. Lee 
et al., 2023). Regarding how to handle missing values, multiple strategies are available 



224

Chapter 6

to explore the underlying patters (Harrison E, Drake T, Pius R (2023). Finalfit: Quickly 
Create Elegant Regression Results Tables and Plots When Modelling. R Package Version 
1.0.7, 2023; Tierney & Cook, 2023). In the studies included in this thesis, multivariate 
imputation by chained equations (MICE) was frequently used to impute missing covari-
ates or exposures, or both (Chapter 2, Chapter 4, Chapter 5) (Azur et al., 2011; Buuren 
& Groothuis-Oudshoorn, 2011). However, MICE users should be aware that, given the 
absence of accepted approaches to combine results from multiple imputed datasets fol-
lowing the imputation when using advanced statistical and machine learning methods, 
alternative strategies to Rubin’s rule must be considered. These may include averaging 
imputed values across generated datasets (Chapter 5) or selecting the first or last imput-
ed dataset, among others, although the existing literature offers no clear indications or 
preferred approaches for handling missing data in the high-dimensional settings typical 
of exposome research.

As part of the pre-processing of exposure data, especially in complex exposome research 
scenarios, it is recommended to conduct an exploration of the exposure data, which 
may include an initial screening of the exposures to detect particular data structures, 
visualise the variability present in the dataset, and identify potential extreme values or 
influential data points. This exploration involves the use of unsupervised techniques, 
such as principal component analysis, network and cluster analysis, to identify under-
lying patterns in the data without referring to the outcome of interest. An example is 
provided in Chapter 4, where K-means clustering is employed to classify participants into 
three clusters of air pollution exposure (low, moderate, high), ensuring that participants 
within the same group are as similar as possible. The results from this classification can 
be used to identify subgroups of individuals and compare participants between groups 
with respect to their characteristics.
Regarding the identification and management of outliers, winsorising and trimming of-
fer two distinct solutions to mitigate the impact of potential extreme values (Ramsey & 
Ramsey, 2007; Rivest, 1994). Winsorising adjusts values beyond specified percentiles 
to match those percentiles, while trimming removes a percentage of the highest and 
lowest extreme values from a dataset. In either case, sensitivity analyses should be con-
ducted to assess the robustness of results to different cutoff levels (B. K. Lee et al., 2011).
Of note, trimming is often used in propensity score analysis to reduce the impact of rela-
tively small and large weights on effect estimation, applied at both the upper and lower 
percentiles (i.e. symmetric trimming) of the weights’ distribution (Chapter 4).

Another useful exploratory analysis involves obtaining pairwise correlation coefficients 
between all exposures in the dataset (correlation analysis). This step aims to identify 
high correlation structures, which should be addressed to prevent issues related to 
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(multi)collinearity or avoid exposure information redundancy in the subsequent statis-
tical analyses. Using the R package rexposome is encouraged (Hernandez-Ferrer et al., 
2022) to efficiently calculate correlation coefficients considering each exposure pair’s 
nature, and facilitate visualisation of the correlation within the exposure data through 
circos and matrix plots as shown in Chapter 5.

A pluralistic approach is warranted to assess the overall health effect of 
multiple simultaneous and/or correlated exposures

In the analysis of environmental factors, one frequently comes across scenarios where 
multiple exposures occur simultaneously and, in many cases, these exposures show 
strong correlations (Carrico et al., 2015; García-García et al., 2021; Leal et al., 2012). 
Throughout this thesis, I often found myself facing this challenge.
In this section, I reflect on the approaches proposed across the different chapters to 
tackle the analysis of multiple exposures occurring simultaneously and, when necessary, 
I recommend strategies to address (multi)collinearity. Within the regression framework, 
(multi)collinearity arises when two or more exposures are highly correlated (i.e. the ab-
solute magnitude of the observed correlation coefficient is 0.90 or more (Schober et al., 
2018)), and the correlation structure affects the precision of the estimates and related 
standard errors, making it challenging to disentangle the individual effects of each ex-
posure.

In the context of RF-EMFs, a possible solution to address the analysis of multiple ex-
posures occurring simultaneously is represented by the use of an integrated approach 
(Chapter 2). Specifically, the integrated exposure model (IEM) incorporates multiple ex-
posure sources into one single dose, which otherwise would need to be included in the 
same model as mutually adjusted exposures (co-exposures), with potential issues arising 
from strong correlations. 
The IEM is designed to accommodate numerous other sources of RF-EMF exposure 
which, depending on the available exposure data, may include tablets, laptops, smart-
watches, Wi-Fi routers, and far-field exposure, among others (van Wel et al., 2021).
However, when it comes to the assessment of voice calling and texting, a different sce-
nario emerges as texting produces negligible amount of RF-EMF exposure resulting in 
a null dose from the IEM. As a result, the approach proposed in Chapter 2 consisted of 
including voice calling and texting in the same statistical model as co-occurring expo-
sures, and this exposure construct is justified given that the correlation between the two 
is moderate. 
In this respect, by comparing the confidence intervals of the estimates produced by lo-
gistic regression for the single-exposure models and those from the mutually adjusted 
model, we observed that the confidence interval widths of the estimates in the mutually 



226

Chapter 6

adjusted model did not increase compared to those from the single-exposure models. 
Results from the single and two-exposure models were comparable in terms of precision 
of their estimates, thus suggesting that in this scenario the moderate correlation did not 
affect the final results of the mutually adjusted model. In this regard, it is important to 
note that the strong correlation between exposures does not always imply that the re-
gression estimates will be inflated and the standard errors biased (Bellavia et al., 2019). 

A different scenario arises when it comes to the analysis of a mixture of air pollutants 
and overall mortality (Chapter 4). In studies concerning air pollution exposure, highly 
correlated pollutants are often encountered within the mixture, and traditional regres-
sion methods can fail to produce reliable results. As a consequence, researchers in en-
vironmental epidemiology have traditionally considered one exposure at a time, or at 
most two exposures, in their models to reduce complexity and better isolate the effects 
of individual pollutants on health outcomes (Dominici et al., 2010; Levy et al., 2014; 
Winquist et al., 2014).
However, in such scenarios, assessing the individual contributions of each component 
within the mixture separately, without accounting for other correlated exposures, could 
result in biased estimates (Correia & Williams, 2019). Therefore, evaluating the overall 
effect of multiple exposures becomes necessary, and pluralistic approaches are warrant-
ed (Dominici et al., 2010; Taylor et al., 2016; Vandenbroucke et al., 2016).

To assess the overall mixture effect and identify the main contributors within the mix-
ture while accounting for the strong correlations, an approach is proposed in Chapter 4, 
which I briefly outline below.
First, following an inspection of the correlation coefficients calculated between the com-
ponents of the mixture, the impact of multicollinearity of multiple regression estimates 
can be assessed by calculating variance inflation factors (VIFs).
The VIF is a common measure employed in regression analysis to identify coefficients 
affected by strong correlations between exposures and other independent variables in 
the model. As a rule of thumb, a VIF exceeding 10 indicates severe collinearity necessi-
tating correction, which typically results in the exclusion of the problematic exposure(s) 
(Variance Inflation Factor - an Overview | ScienceDirect Topics, n.d.).
Second, by using a combination of methods, extracting meaningful information from 
the mixture becomes feasible by accounting for multicollinearity (Carrico et al., 2015; 
Lampa et al., 2014). Specifically, the approach described in Chapter 4 in the context of 
air pollution exposure consists in applying boosted regression trees (BRT) and weighted 
quantile sum (WQS) regression to gain insights about the mixture-outcome relationship, 
including interactions and nonlinearities.
BRT is an ensemble method based on decision tree algorithms and boosting methods 
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designed to estimate exposure variables’ relative influence (or contribution) on a given 
outcome. In particular, BRT relies on regression trees to establish a relationship between 
a response variable and its predictors through recursive binary splits, and boosting to 
adaptively combine multiple models to enhance predictive performance.
An important strength of BRT models lies in their ability to identify two-way or higher-or-
der interactions while relaxing assumptions of unidirectionality and linearity by using 
H-statistics which, for any pair of exposures, calculate the fraction of variance not cap-
tured by the sum of the two fitted response functions (Elith et al., 2008; Lampa et al., 
2014).
On the other hand, WQS regression is designed to assess the overall mixture effect by 
building a single index estimated as a weighted linear combination of the exposures, 
which is robust to multicollinearity and can accommodate confounders. The weighted 
index can be interpreted as the joint effect of the mixture on the outcome.
In addition, WQS regression directly provides an estimate of the relative percent con-
tribution of each exposure within the mixture to facilitate the identification of the most 
relevant contributor(s) (Carrico et al., 2015).
It is important to note that WQS regression makes an important assumption regarding 
unidirectionality (either positive or negative) of the effect of all exposures within the 
mixture on the outcome to avoid the reversal paradox (Tu et al., 2008), and therefore 
it should be applied only in situations where potential mechanisms of action have been 
identified and the effect direction of the exposures is known (Stafoggia et al., 2017). In 
this regard, it is worth mentioning the Bayesian extension of WQS regression (BWQS), 
which relaxes the unidirectional assumption (Colicino et al., 2020), and the grouped 
WQS (GWQS) regression, which overcomes the single-index limitation of WQS regres-
sion by allowing the estimation (in terms of magnitude and direction of association) of a 
weighted index for each considered exposure group (Wheeler & Czarnota, 2016).

In the specific scenario described in Chapter 4, the VIF screening raised concerns re-
garding one air pollutant (PM2.5 absorbance) within the mixture, and based on results from 
BRT and WQS indicating the lowest relative contribution for PM2.5 absorbance, the latter was 
excluded from the analysis to limit the impact of multicollinearity on the subsequent 
analyses. Furthermore, WQS and BRT suggested that all components contributed to a 
positive linear association with overall mortality, with PM2.5 identified as the most rele-
vant contributor in the mixture-outcome association. 

Previous studies relied on other strategies to evaluate the association between envi-
ronmental mixtures and health outcomes, primarily using pensalised methods. These 
methods extend standard Ordinary Least Squares (OLS) by adding a penalty to the loss 
function, reducing collinearity’s impact.
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It is important to note that penalised approaches address slightly different questions 
from those explored in Chapter 4, as they operate a variable selection by shrinking co-
efficients towards zero, rather than assessing the overall mixture effect. Furthermore, 
for highly correlated data, shrinkage methods such as Elastic Net and LASSO may suffer 
from grouping effect (i.e., sets of predictors that are correlated may be either entirely 
included or excluded arbitrarily during the process of variable selection) and arbitrary 
selection of exposures (i.e., collinear features may be automatically removed to reduce 
redundancy within the dataset), which could hamper the interpretation of findings in 
studies exploring the health effects of environmental mixtures, resulting in misleading 
conclusions (Carrico et al., 2015; Zou & Hastie, 2005). Additionally, interpreting LASSO 
estimates is not straightforward because standard errors and confidence intervals are 
not provided, and researchers often have to rely on conventional regression or bootstrap 
techniques to address the uncertainty of parameter estimation (Tibshirani, 1996). Con-
sequently, in contexts such as the one described in Chapter 4, penalised methods may 
be less preferable than methods designed to assess the overall exposure effect, e.g., 
WQS (Czarnota et al., 2015).
In this regard, it is worthy to mention that a novel implementation of WQS, namely 
the random subset extension of WQS (WQSRS), provides robust parameter estimation in 
high-dimensional mixtures, also in scenarios characterised by a high correlation struc-
ture among the mixture components (Curtin et al., 2021).
Of note, an alternative to LASSO in complex-dimensional settings is provided by Horse-
shoe regression where the shrinkage prior distribution, whose shape gives the name to 
this method, is particularly effective in situations where the dataset is characterised by 
a large number of irrelevant variables and a few significant ones (Piironen & Vehtari, 
2017).

In conclusion, by using a combination of methods developed to address complexity in 
mixture modelling, we accounted for the high correlation structure characterising an 
environmental mixture of air pollutants, which traditionally poses great challenges in 
epidemiological studies due to the risk of obtaining unstable and biased parameter and 
standard error estimates. Furthermore, this approach allowed to identify the so-called 
“bad actors” in the mixture-outcome association, where traditional regression methods 
would have struggled.

In other scenarios, due to the high-dimensional nature of exposure data occurring si-
multaneously, the increased level of complexity necessitates innovative approaches that 
cannot be solely based on mixture modelling but requires an additional step. This is the 
case of exposome-wide analyses.
In this context, the approach described in Chapter 5 can be followed: first, to reduce 
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the general level of complexity characterising the exposure data, it is recommended to 
apply, e.g., a feature selection algorithm to identify relevant exposures in relation to the 
outcome being investigated (Bellavia, 2023). Second, once a set of exposures has been 
determined, it is suggested to evaluate the correlation levels among the exposures se-
lected, and depending on those, decide on the most appropriate strategy to pursue next.
In this regard, it is worth noting that all-relevant feature selection methods (that is, 
methods that aim to identify all features containing information useful for prediction, 
rather than selecting a potentially smaller subset of features that minimises the error for 
a particular classifier) typically result in the inclusion of redundant features and, conse-
quently, exhibit some levels of correlation. In such a scenario, multicollinearity requires 
attention and the approach outlined in the context of air pollution mixture may provide 
a possible strategy to characterise the exposures and overcome issues related to strong 
correlations.
In the next section, I reflect on possible approaches that can be adopted to estimate 
causal effects, and more generally assess causal relationships, in the context of multiple 
exposures occurring simultaneously. 

Considerations regarding hypothesis framework, exposure-outcome path-
ways, and study design are crucial for transitioning from association to 
causation with greater confidence

Throughout this thesis, I consistently questioned whether the observed associations 
could be considered causally related. In this section, I reflect on this critical aspect of my 
research. First of all, do we need causal methods to draw causal inferences? Based on 
the results of this thesis, I would argue that, depending on the specific scenario, this is 
not a strict requirement.

The use of an appropriate analytical approach in its broader sense (thus not only limited 
to “causal methods”) is essential, but it should be complemented with other equally im-
portant elements of the research. These certainly include pre-analytical considerations 
about hypothesis framework, potential exposure-outcome pathways, and a robust study 
design.
Furthermore, other aspects that should be clearly defined in epidemiological studies 
to allow the transition from association to causation include a clear specification of the 
exposure levels being compared in the study and the identification of an adequate com-
parison group (Dominici & Zigler, 2017).

A valuable tool available to researchers in epidemiology to visualise causal relationships 
is the directed acyclic graph (DAG), which we often incorporated into the analysis plans 
prior to commencing the actual studies comprising this thesis.
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DAGs play an important role in identifying potential sources of bias and potential causal 
pathways between variables (Tennant et al., 2021), and have proven to be valuable in 
addressing problems such as confounding by co-exposure in the context of mixture mod-
eling (Webster & Weisskopf, 2020).
However, it should be noted that, due to the high dimension of exposure data charac-
terising exposome studies, the use of DAGs in such a scenario can quickly become high-
ly challenging. In this context, alternative methods should be pursued, such as causal 
discovery, a promising technique to derive a causal model starting from available data 
when no prior knowledge about potential causal relationships is available (Zanga et al., 
2022).

One of the criteria to establish causality with greater confidence in epidemiological stud-
ies is to assess whether the cause precedes the effect (Nowinski et al., 2022). In this 
regard, in cohort studies, participants’ exposure status is determined at the beginning 
of the study (baseline), while the health outcomes are exhibited during the follow-up.
This distinctive characteristic, referred to as temporality according to the Bradford Hill 
criteria for causation (Hill, 1965), is a key element in evaluating causality, shared among 
all studies included in this thesis.
Other important elements to consider when assessing whether the observed associ-
ation could reflect causality are the strength of the association and the evaluation of 
the exposure-response relationship (Chapter 2). In addition, to further strengthen the 
conclusions about potential causal relationships, it is recommended to evaluate whether 
removing a cause decreases the risk of the effect. This approach was shown in Chapter 
2, where the risk of reporting headaches among participants in the COSMOS cohort was 
compared based on whether their RF-EMF exposure to the head was calculated with 
or without adjustment for the use of hands-free devices. This approach enabled us to 
argue against the existence of an effect of exposure to RF-EMFs, as no risk reduction 
was observed among users when considering the hands-free adjusted exposure metric. 
Furthermore, sensitivity analyses using different exposure metrics are recommended to 
assess whether results lead to the same conclusions (Chapter 2).

In other scenarios, such as when the exposure and outcome are subject to considerable 
fluctuations over time and the underlying mechanisms of action are uncertain, it is nec-
essary to adopt a different approach (Chapter 3).
Here, temporality extends beyond evaluating exposure and outcome at only two time 
points. Participants require follow-up at multiple time points to be able to assess chang-
es in exposure and outcome over time. Therefore, in this specific scenario, identifying 
potential causal relationships relies on careful considerations about the study design and 
the use of appropriate statistical techniques that allow to model the transition between 
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different states while considering the temporal progression.
With a certain level of confidence, these elements allowed us to exclude the biological 
and cognitive pathways and identify the most plausible underlying causal route for the 
time course of IEI-RF in the attributive hypothesis (Chapter 3).

Identification of a set of exposures relevant for the outcome and causal effect quanti-
fication in the analysis of complex-dimensional data

In the context of environmental exposures occurring simultaneously, which reflects what 
happens in real-world settings, the following approach can be pursued: first, to reduce 
the level of complexity within exposure data (i.e. to reduce the number of exposures for 
which there is an interest in estimating the causal effect), supervised variable selection 
techniques can be used to identify the exposures that are involved in the association 
with the outcome. In this regard, several options are available (which traditionally fall 
into three methodological categories: filter, wrapper, embedded), each with its advan-
tages and limitations (Hancock et al., 2024; Jović et al., 2015; Uddin et al., 2019). Exam-
ples include information gain based on entropy calculation, recursive feature elimina-
tion and forward/backward selection, regularisation and random forest importance, and 
more. Additionally, variable selection methods have been extended to include hybrid, 
ensemble, and integrative approaches (Pudjihartono et al., 2022).
It is worth noting that, depending on the research question, a specific group of expo-
sures sharing a common mode of action (i.e. environmental mixture) may have already 
been identified (Chapter 4).

In Chapter 5, a case study is provided in the context of the urban exposome of AMIGO 
in relation to reporting headache. Following the outlined approach, Boruta was used to 
identify the features relevant to the outcome. Boruta represents a powerful machine 
learning algorithm for the analysis of high-dimensional datasets designed to identify 
pertinent variables of complex-dimensional scenarios by taking into account interactions 
and nonlinear associations (Degenhardt et al., 2017; Kursa & Rudnicki, 2010).

To account for class imbalance due to low prevalence of headache in the study popu-
lation, the approach proposed in Chapter 5 consisted in running the Boruta algorithm 
repeatedly (here, 250 times), and randomly sampling 85% of the minority group size (i.e. 
number of participants reporting headache at follow-up) without replacement in both 
majority and minority groups (i.e. participants without and with headache at follow-up, 
respectively) to obtain 250 balanced datasets (More & Rana, 2017). To determine which 
exposures in the dataset are most relevant for explaining the outcome, the features 
labelled as “important” by Boruta in at least 80% of the 250 iterations were selected.
A distinctive characteristic of feature selection methods such as Boruta is the aim to find 
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all features carrying information usable for prediction, following the so-called all-rele-
vant feature selection strategy. In this regard, it is reasonable to expect that all-relevant 
methods result in the inclusion of features that may be redundant and display some 
level of correlation between the selected variables. In this scenario, multicollinearity 
should be addressed and the approaches described in the previous sections provide 
possible directions.

Once the relevant exposures in relation to the outcome of interest have been deter-
mined, the attention can shift towards estimating their effects to improve the causal 
understanding of the associations. However, how can the most appropriate statistical 
approach be determined in this context?
As previously argued, using causal methods is not per se a requirement and, most im-
portantly, it does not imply that the observed effect is necessarily causally related to the 
exposure (Dominici & Zigler, 2017). However, in studies evaluating the health effects of 
mixtures, and even more in the context of exposome-wide analyses characterised by 
high-dimensional exposure data, sophisticated methods should be warranted to take 
into account the co-occurrence of exposures (Maitre et al., 2022).

To explore the health effects of environmental mixtures, we start from a simplified ex-
posure-outcome scenario which involves a preselected set of exposures (air pollutants) 
and a well-defined, non-transient, outcome (mortality) (Chapter 4).
Once the mixture has been characterised (e.g., using the methods described earlier, e.g. 
WQS, BRT), the next step involves the estimation of the joint effect, that is the effect 
of each component within the mixture on the outcome while taking into account the 
simultaneous occurrence of the exposures (i.e. co-exposure), which reflects real-world 
exposure conditions. In this regard, multiple approaches can be pursued, and research-
ers should be aware that clear indications on the preferred course of action have not yet 
been established.

Williams and Crespi propose a versatile approach as an extension of the generalised 
propensity score (GPS), which allows estimation of an exposure-response surface that 
reflects the joint distribution of multiple continuous exposures in relation to an outcome 
(Williams & Crespi, 2020).
Specifically, the multivariate GPS method (mvGPS) generates stabilised inverse proba-
bility of treatment weights (IPTWs) assuming a multivariate normal distribution for the 
simultaneous exposures. An advantage of these weights is their ability to balance con-
founders and provide unbiased exposure–response estimates (Robins et al., 2000). 
As argued by Dominici and Zigler, the evidence of causality should be assessed based on 
how closely the study resembles a randomised experiment and how deviations could 
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bias the obtained results (Dominici & Zigler, 2017). Propensity score-based techniques 
align with this direction as they aim to remove potential confounding between exposure 
and outcome returning valid estimates of the treatment effect that prove to be extreme-
ly valuable in estimating the causal effect of multiple continuous exposures in the con-
text of observational and non-randomised studies.
Furthermore, the estimation of mvGPS weights has proved to be effective at reducing 
the impact of correlation between exposures and confounders, also in situations where 
high marginal exposure correlations are present (Williams & Crespi, 2020).
In such circumstances, the mvGPS weights should be checked and trimmed accordingly 
to exclude extreme weights’ influence (B. K. Lee et al., 2011; Williams & Crespi, 2020). 
However, before relying on weight trimming to optimise propensity score weighting, 
the focus should be rather placed on improving propensity score model specification 
regarding, e.g., selection of variables, nonlinearities and interactions (Brookhart et al., 
2006; B. K. Lee et al., 2011).

In our specific scenario, no extreme weights were identified in the distribution of pro-
pensity scores, and results obtained using different levels of trimming were consistent 
(Chapter 4). These findings further support the ability of mvGPS to deal with strong cor-
relations, which often characterise environmental mixtures.
Of note, the current version of mvGPS is particularly appealing for its application in ep-
idemiological studies given the possibility to specify multiple sets of confounders for 
each exposure of interest reflecting many real-world settings in which the confounders 
may actually differ across exposure variables (Williams & Crespi, 2020).
However, researchers should be aware that mvGPS is designed to handle continuous 
exposures under the assumption of normal distribution. This assumption, particularly 
in relation to environmental exposures, is often not valid thus representing a limitation 
of this method. Furthermore, more research should be conducted to assess the ability 
of mvGPS to achieve adequate balance in scenarios where more than two continuous 
exposures are evaluated. In this regard, the existing knowledge is insufficient and the 
recommendation to use data reduction or variable selection techniques to transform a 
high-dimensional problem to a scenario where a lower number of exposures are being 
considered applies, which again brings us back to a simplistic scenario that does not 
align with real-world complexities (Williams & Crespi, 2020).

A distinct approach is proposed in Chapter 5 to account for the co-occurrence of mul-
tiple exposures in the context of exposome-wide analysis. Here, the aim is to estimate 
the causal effect of each exposure separately adjusting for confounding by co-exposure.
This approach develops within the potential outcomes (or counterfactual) framework. 
It consists in training causal forests to estimate the average treatment effect (ATE) and 
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corresponding standard error for each one of the exposures resulting from the feature 
selection process, under the assumption of unconfoundedness (Rosenbaum & Rubin, 
1983).
Causal forests represent an extension of Breiman’s random forests for the estimation 
of causal effects and can accommodate both continuous and binary exposures. Their 
distinctive characteristic is the estimation of propensity scores, which establishes condi-
tions for robustness against confounding. As a result, causal forests estimate ATE under 
the assumption of absence of confounding (i.e. the treatment assignment is indepen-
dent of the potential outcome conditional on the confounders) (Athey & Wager, 2019). 
Specifically, the ATE represents the average difference in potential outcomes in a sample 
where everyone is treated versus the same sample where everyone is untreated.
In scenarios where the treatment is continuous, causal forests effectively estimate an 
average partial effect, which quantifies the change in the expected outcome due to a 
one-unit change in the treatment, given unconfoundedness (Athey & Wager, 2019).
Furthermore, causal forests are particularly well-suited in scenarios where the treat-
ment effect varies across different subgroups of the population. In this regard, an inter-
esting feature of the algorithm is the estimation of conditional average treatment ef-
fects (CATEs). These represent the average difference in potential outcomes in a specific 
stratum of the population, where everyone in that stratum is exposed versus a scenario 
where everyone in the same stratum is unexposed (Jawadekar et al., 2023).
Interestingly, the estimation of CATEs with regard to the presence of headaches at base-
line allowed us to identify a vulnerable subpopulation more susceptible to the effects of 
air pollution exposure and heat island effects with a higher risk of reporting headaches 
at follow-up compared to participants free of headaches at the onset of the study (Chap-
ter 5). 

In the specific scenario described in Chapter 5, the estimated effects of each one of the 
exposures selected by Boruta with adjustment for confounding by co-exposure resulted 
in less precise effect estimates compared to the models without adjustment. Despite the 
efforts to address the extremely problematic correlation levels between the exposures 
in our study, these findings suggest that, in situations where strong correlations occur, 
the covariate balancing propensity score method implemented in causal forests may fail 
to achieve the covariate balancing property, and different approaches to estimate pro-
pensity scores in such a situation should be explored.

Despite both causal forests and mvGPS being developed as part of causal framework 
to estimate causal effects in observational studies, there is a substantial difference in 
the rationale behind the use of the two approaches in this thesis: while mvGPS jointly 
estimate the effect of multiple continuous exposures on the outcome, causal forests 
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estimate the independent effect of each exposure on the outcome accounting for con-
founding by co-exposure. In other words, in the forests we consider the possibility that 
exposures other than the exposure for which the causal effect is being estimated may 
act as confounders, potentially leading to inappropriate conclusions about causality if 
not accounted for.
This aspect appears relevant particularly in exposome studies where, due to the high 
complexity of exposure data, the (temporal) relationships between variables at baseline 
(either exposures or potential confounders) are not clearly defined.
In this regard, a substantial inconsistency in defining confounders in exposome research 
should be acknowledged, and whether factors related to social determinants of health 
such as gender, education, ethnicity, income should be considered exposures or con-
founders to avoid spurious results (Neufcourt et al., 2022). Concerning this, it should 
be noted that the approach adopted in Chapter 5 is in principle “agnostic”, meaning 
that all the environmental exposures, individual-level (social) determinants of health, 
and neighbourhood-level factors are regarded as exposures in Boruta, with no specific 
assumptions made regarding temporal or causal relationships between them.

There are policy implications that can be derived from the studies conducted as part 
of this work

With regard to RF-EMF exposure and associated health effects, it should be acknowl-
edged that, based on findings from Chapter 2, RF-EMF exposure from mobile phone 
use is unlikely to be the cause of headaches and migraines that were observed among 
mobile phone users. As a result, no need arises for implementing regulations to limit 
exposure to RF-EMFs compared to those already in place.
While this finding is certainly reassuring, symptoms reported by participants are real 
and disabling, and as such, they deserve attention. Consequently, given the significant 
burden of headaches in the population and the widespread mobile phone use, further 
investigation into other aspects of mobile phone use than RF-EMF exposure, such as re-
curring patterns of behaviour among users and other factors that could have mediated 
the effect that we observed for texting, is warranted to prevent health effects.

Findings from the study discussed in Chapter 3 investigating the time course of attribu-
tion of health complaints to RF-EMFs lend support to the attributive hypothesis. This 
hypothesis suggests that individuals may attribute symptoms to RF-EMF exposure to 
elucidate a health issue and alleviate uncertainty about its underlying cause, or offer 
an explanation for a missed diagnosis. Unlike the biological and cognitive hypotheses, 
which would advocate, respectively, for revising regulations to limit RF-EMF exposure 
and for improving public communication on RF-EMF topics, the attributive hypothesis 
does not inherently call for any specific policy actions given that the mechanism seems 
to elude the control of both scientific community and institutions.
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The investigation of air pollution exposure and its associated health effects presented 
in Chapter 4 highlights the prominent role of PM2.5 as primary contributor within the 
mixture. In this regard, current policies often address single pollutants separately. How-
ever, a thorough understanding of causality, achieved by considering the co-occurrence 
of multiple pollutants, might prompt the development of more targeted regulatory ap-
proaches. Therefore, the strategy adopted in our analysis provides a more comprehen-
sive approach to the study of causal mechanisms associated with air pollution exposure. 
As such, it can serve as an example for future research beyond air pollution aiming at un-
derstanding the intricate interplay between environmental exposures and human health 
by considering the health effects of environmental mixtures rather than relying on a 
“one-at-a-time chemical approach”.

Chapter 5 shows a possible strategy to tackle complexity in exposome-wide analyses 
following a two-stage approach: identifying a set of exposures relevant for the outcome 
and then quantifying their causal effect. Our findings suggest that air pollution and ur-
ban temperature measures are implicated in reporting headaches in the population. As 
such, these insights serve as a first screening to understand what factors are implicated 
in the reporting of symptoms in the population. No direct policy implications can be 
derived from this exercise. However, by shedding light on the potential adverse effects 
of the urban environment on health, we emphasise the necessity of a comprehensive 
assessment of common urban stressors to prevent health issues.

Concluding remarks

Assessing the health impact of environmental exposures poses several challenges, rang-
ing from methodological aspects related to study design, data collection, and statisti-
cal methods to practical considerations such as resource limitations and logistical con-
straints.
The aim of the thesis was to propose and reflect on approaches for improving the iden-
tification and interpretation of underlying mechanisms of action for environmental ex-
posures commonly encountered in everyday life and facilitating the establishment of 
causal relationships. Throughout the thesis, I showed that different approaches can be 
used to tackle complexity and derive conclusions across a range of scenarios. The com-
mon factor among these approaches was the use of data from large prospective epide-
miological studies.

Some major challenges have been addressed in this thesis. These concern the identifi-
cation of underlying mechanisms of actions, particularly concerning RF-EMF and air pol-
lution exposure. Furthermore, aspects related to optimising available exposure data to 
efficiently analyse and interpret exposure-outcome associations, including pre-process-
ing to reduce complexity in (high-dimensional) exposure data, were discussed. Finally, 



237

Chapter 6

strategies to tackle multiple exposures occurring simultaneously and issues related to 
multicollinearity in the context of co-occurring exposures were presented, along with 
approaches to estimate causal effects across different scenarios of complexity.

In scenarios where the mechanisms of action are uncertain, it is essential to define a 
hypothesis framework regarding the pathways potentially involved in the exposure-out-
come association and make considerations about pre-analytical aspects of the study 
with particular attention to its design. This approach is recommended to reduce the 
likelihood of unexpected findings and make interpreting results more straightforward. In 
other scenarios, where complexity is further enhanced by the presence of, e.g., strong 
correlations and high-dimensional exposure data, it is recommended to first reduce 
complexity and then estimate the causal effects.

The findings of this thesis shed light on various areas necessitating further investiga-
tion. Understanding how RF-EMF exposure may affect health requires a comprehensive 
approach and, in future studies, employing an integrative model that considers various 
RF-EMF sources individuals encounter daily is essential. Nevertheless, this approach 
may require continuous updates to keep up with rapid technological advancements and 
changes in exposure-related user behaviours.
When analysing environmental exposures occurring simultaneously, it is crucial to shift 
from the traditional “one-at-a-time exposure approach” to evaluating the entire mix-
ture to understand the joint impact of its components, thus reflecting real-world con-
ditions. Strong correlations, interactions, and nonlinearities among these components 
introduce several methodological challenges that must be overcome to ensure accurate 
and reliable conclusions. Furthermore, future studies should prioritise incorporating the 
time-varying nature of exposures and mixtures when evaluating individual risk factors 
over a lifetime, as these may have different impacts at different stage of individuals’ 
lives.
Finally, more research should be conducted on estimating causal effects in the context 
of high-dimensional mediation analysis to account for multiple mediators and on better 
defining how confounders should be identified and addressed in complex-dimensional 
settings typical of, e.g., exposome-wide studies. All of these factors highlight the need 
for further research to develop innovative analytical methods, or adapt existing ones, to 
effectively answer current and future research questions.

In conclusion, based on the results presented in this thesis, a comprehensive and plu-
ralistic approach to tackle real-world complexity is warranted and, most importantly, no 
one-size-fits-all strategy can be identified in epidemiological research. While there may 
not be a perfect method to proceed, curiosity and a willingness to explore alternative 
methods are crucial in advancing the understanding of complex phenomena such as 
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those characterising the health impact of environmental exposures.
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Appendices

Summary
Throughout their life, individuals are exposed to numerous environmental factors that 
may affect their health and well-being. Among those, air pollution and radiofrequency 
electromagnetic fields (RF-EMFs) represent common exposures that are widespread in 
the environment. 

The main objective of this thesis was to propose informative approaches for the analysis 
of environmental factors commonly encountered in everyday life in relation to health 
outcomes, using data from prospective studies. These approaches aimed to provide 
valuable insights into exposure-outcome associations, including potential mechanisms 
of action and underlying causal pathways, in order to prevent harmful health effects. 
For this purpose, data from large prospective epidemiological studies were analysed us-
ing a combination of advanced statistical techniques and machine learning methods, 
including multi-state Markov models, weighted quantile sum regression and boosted 
regression tree models, Boruta and causal forests, and extensions of regression tech-
niques based on propensity score estimation, such as the generalised propensity score 
for single exposures and its multivariate version.

This thesis had the following specific aims:

i.	 To extract meaningful insights and draw conclusions regarding exposure-outcome 
associations in scenarios where the mechanisms of action are uncertain and/or 
difficult to determine, by exploring different potential pathways while optimising 
available exposure data;

ii.	 To explore the temporal dynamics of health outcomes characterised by consider-
able fluctuations over time, by analysing data across multiple time points, account-
ing for time-dependent risk factors;

iii.	 To explore an environmental mixture and determine the causal effect of its compo-
nents on health, within a simplified exposure-outcome scenario involving a prese-
lected set of exposures and mortality as endpoint;

iv.	 To identify a relevant set of exposures and estimate their causal effects in studies 
assessing the impact of multiple exposures occurring simultaneously on health, in 
an exposure-outcome scenario characterised by high-dimensional exposure data 
typical of exposome-wide studies.
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To achieve the objectives of the thesis, data from the cohort study of mobile phone use 
and health (COSMOS), LIFEWORK, and the Dutch occupational and environmental health 
cohort study (AMIGO) were analysed.
COSMOS (n=~250,000) is an international prospective cohort study comprising data col-
lected across six European countries (Denmark, Finland, Sweden, the Netherlands, the 
UK, and France) established to investigate potential health effects from long-term use of 
mobile phones and other wireless technologies.
LIFEWORK (n=~90,000) is a large federated prospective cohort in the Netherlands rep-
resenting the Dutch contribution to COSMOS. The aim of LIFEWORK is to quantify the 
health effects of numerous occupational and environmental exposures, with a specific 
focus on assessing RF-EMF exposure from mobile phones and other wireless devices.
AMIGO (n=~14,000) is the Dutch occupational and environmental health cohort study, 
and represents one of the subcohorts included in LIFEWORK. In AMIGO, we investigate 
occupational and environmental determinants of diseases and well-being, including RF-
EMF exposure, relying on a multidisciplinary and life course approach.

In Chapter 2, pooled data from the Dutch and UK cohorts of COSMOS (N=78,437) were 
analysed to explore two potential exposure-outcome pathways in relation to mobile 
phone use and the occurrence of headaches. Results from multivariable logistic regres-
sion models showed that mobile phone use for calling and texting at baseline was asso-
ciated with headaches at follow-up. In the mutually adjusted model for both call-time 
and texting, we observed considerably attenuated risk estimates for call-time, while 
associations with texting were still strong and robust to adjustment, with a clear expo-
sure-outcome relationship. These results suggested that, due to the negligible exposure 
to RF-EMFs from texting, mechanisms other than RF-EMFs (e.g., lifestyle, other expo-
sures, or behavioural factors associated with mobile phone use) were responsible for 
the increased risk of headache that we observed among mobile phone users. Given the 
significant burden of headaches in the population and the widespread mobile phone 
use, further investigation into other aspects of mobile phone use than RF-EMF exposure 
is warranted to prevent health effects.

In Chapter 3, we explored the temporal dynamics of attribution of health complaints 
to RF-EMFs (IEI-RF) in the subcohort of AMIGO (N=892). We assessed factors related to 
developing, maintaining, or discarding IEI-RF over the course of 10 years by modelling 
the process in which participants move through a series of states of IEI-RF with multi-
state Markov models. Furthermore, we applied logistic regression to prospectively ex-
plore predictors of electromagnetic hypersensitivity without the condition of attributing 
health complaints to RF-EMF exposure (EHS). Results showed that prevalence of IEI-RF 
was generally low and remained stable over time. Interestingly, over 10 years of fol-
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low-up, we observed a high probability of not attributing symptoms to RF-EMF exposure 
anymore, which suggested that IEI-RF may be a more transient condition than previously 
assumed. Finally, RF-EMF perceptions, non-specific symptom reporting, and sleep dis-
turbances at baseline were predictive of the notion of being EHS at 10 years follow-up, 
regardless of whether reporting health complaints attributed to RF-EMF exposure.

In Chapter 4, we relied on a pluralistic approach to prospectively explore the relation-
ship between a mixture of air pollutants (PM2.5, PM10, NO2, PM2.5 absorbance, and oxidative 
potential) and mortality in LIFEWORK (N=86,882). We applied weighted quantile sum 
(WQS) regression and boosted regression trees (BRT) to identify the most relevant com-
ponents within the mixture in relation to the outcome accounting for the strong correla-
tions. Based on these results, we estimated a multivariate generalized propensity score 
(mvGPS) model to jointly estimate the causal effects of the pollutants on overall mortal-
ity. Results from WQS regression and BRT indicated that all components of the mixture 
contributed to a positive linear association with the outcome, with PM2.5 identified as the 
most relevant contributor. Finally, results from the mvGPS model further highlighted the 
primary role of PM2.5 within the mixture, strengthening the causal interpretation of air 
pollution effects on mortality. The strategy adopted in this study can serve as an example 
for future research beyond air pollution aiming at understanding the intricate interplay 
between environmental exposures and human health by considering the health effects 
of environmental mixtures rather than relying on a “one-at-a-time chemical approach”.

In Chapter 5, we prospectively explored the urban component of the exposome of AMI-
GO (N=7,339) in relation to headaches by using a combination of machine learning tech-
niques. We followed a two-stage approach where we first applied Boruta to identify 
relevant exposures in the exposome-outcome association, and then estimated causal 
forest to quantify the causal effect of these exposures on the occurrence of headache. 
Boruta selected five air pollutants (NO2, NOX, PM10, silicon in PM10, iron in PM2.5) and one 
urban temperature measure (heat island effect) as factors contributing to the report-
ing of weekly headache at follow-up. The estimated causal effect of each exposure on 
weekly headache indicated positive associations for all exposures, with NO2 displaying 
the largest effect. These results highlight the relevance of air pollution exposure and 
heat island effects in contributing to the reporting of weekly headache in AMIGO, and 
emphasise the necessity of a comprehensive assessment of common urban stressors to 
prevent health issues.

In Chapter 6, I presented the main findings of the studies comprising this thesis. Follow-
ing this summary, I discussed the approaches proposed to identify underlying mecha-
nisms of action and addressed the most relevant challenges encountered in the different 
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studies, highlighting advantages and limitations of the methods used, and providing pol-
icy implications and possible directions for future research.

Samenvatting
Gedurende hun leven worden individuen blootgesteld aan tal van omgevingsfactoren 
die hun gezondheid en welzijn kunnen beïnvloeden. Onder andere luchtverontreinig-
ing en radiofrequente elektromagnetische velden (RF-EMV) vormen veelvoorkomende 
blootstellingen die wijdverspreid zijn in de omgeving.

Het hoofddoel van dit proefschrift was het voorstellen van informatieve benaderingen 
voor de analyse van omgevingsfactoren die vaak voorkomen in het dagelijks leven in 
relatie tot gezondheidsuitkomsten, met behulp van gegevens uit prospectieve studies.
Deze benaderingen waren gericht op het verschaffen van waardevolle inzichten in de 
blootstelling-uitkomst associaties, inclusief potentiële werkingsmechanismes en onder-
liggende causale verbanden, om schadelijke gezondheidseffecten te voorkomen.
Met dit doeleind zijn data van grote prospectieve epidemiologische studies geanalyseerd 
met behulp van een combinatie van geavanceerde statische technieken en “machine 
learning” methodes, waaronder “multi-state Markov” modellen, “weighted quantile 
sum” (WQS) regressie en “boosted regression tree” (BRT) modellen, Boruta en “caus-
al forests”, en uitbreidingen van regressietechnieken gebaseerd op “propensity score” 
schatting, zoals de “multivariate generalised propensity score” (mvGPS) voor enkele 
blootstellingen en de multivariate versie daarvan.

Dit proefschrift had de volgende specifieke doelstellingen:
i.	 Het verkrijgen van betekenisvolle inzichten en conclusies trekken over bloot-

stelling-uitkomst associaties in scenario’s waar de werkingsmechanismen onze-
ker en/of moeilijk te bepalen zijn, door verschillende mogelijke mechanismen te 
verkennen terwijl de beschikbare blootstellingsdata geoptimaliseerd worden;

ii.	 Het verkennen van de temporele dynamiek van gezondheidsuitkomsten geken-
merkt door aanzienlijke fluctuaties over de tijd, door data over meerdere tijdspunt-
en te analyseren en tijdsafhankelijke risicofactoren in acht te nemen;

iii.	 Het verkennen van een mengsel van omgevingsfactoren en het vaststellen van cau-
sale effecten van de componenten op de gezondheid, binnen een vereenvoudigd 
blootstelling-uitkomst scenario met een voorgeselecteerde set blootstellingen en 
sterfte als eindpunt;

iv.	 Het identificeren van een relevante set blootstellingen en het schatten van hun 
causale effecten in studies die de impact van meerdere gelijktijdig voorkomende 
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blootstellingen op de gezondheid evalueren, in een blootstelling-uitkomst scenar-
io gekenmerkt door hoog-dimensionale blootstellingsdata die typisch zijn voor ex-
posoom-brede studies.

Om de doelstellingen van het proefschrift te bereiken zijn data geanalyseerd van de co-
hortstudie naar mobiele telefoongebruik en gezondheid (COSMOS), LIFEWORK, en het 
Nederlandse Arbeid, Milieu en Gezondheid Onderzoek (AMIGO).
 
COSMOS (n=~250,000) is een internationale prospectieve cohortstudie met gegevens 
verzameld in zes Europese landen (Denemarken, Finland, Zweden, Nederland, het 
Verenigd Koninkrijk, en Frankrijk)die is opgezet om mogelijke gezondheidseffecten van 
langdurig mobiele telefoongebruik en andere draadloze technologieën te onderzoeken.
LIFEWORK (n=~90,000) is een groot gefedereerd prospectief cohort in Nederland dat 
de Nederlandse bijdrage aan COSMOS vertegenwoordigt. Het doel van LIFEWORK is 
het kwantificeren van gezondheidseffecten van talrijke beroeps- en omgevingsbloot-
stellingen, met een specifieke focus op het evalueren van RF-EMV blootstelling door 
mobiele telefoons en andere draadloze apparaten.
AMIGO (n=~14,000) is de Nederlandse cohortstudie naar arbeid, milieu en gezondheid, 
en vormt één van de subcohorten die zijn opgenomen in LIFEWORK. In AMIGO worden 
beroeps- en omgevingsdeterminanten van ziekten en welzijn onderzocht, inclusief RF-
EMV blootstelling, met behulp van een multidisciplinaire en levensloopbenadering. 

In hoofdstuk 2 werden gepoolde gegevens van de Nederlandse en Britse cohorten van 
COSMOS (N=78,437) geanalyseerd om twee potentiële blootstelling-uitkomst mecha-
nismen in relatie tot mobiele telefoongebruik en het optreden van hoofdpijn te verken-
nen. Resultaten van de multivariabele logistische regressiemodellen lieten zien dat het 
gebruik van mobiele telefoons voor bellen en sms’en op baseline was geassocieerd met 
hoofdpijn bij follow-up.
In het wederzijds gecorrigeerde model voor zowel beltijd als sms’en werden aanzienli-
jk verzwakte risicoschattingen voor beltijd geobserveerd, terwijl associaties met sms’en 
sterk bleven en robuust voor correctie, met een duidelijke blootstelling-uitkomst relat-
ie. Deze resultaten suggereerden dat, vanwege de verwaarloosbare blootstelling aan 
RF-EMV door sms’en, andere mechanismen dan RF-EMV (bijvoorbeeld leefstijl, andere 
bloostellingen, of gedragsfactoren geassocieerd met mobiele telefoongebruik) verant-
woordelijk waren voor het verhoogde risico op hoofdpijn dat we observeerden onder 
mobiele telefoongebruikers. Gezien de significante ziektelast van hoofdpijn in de bevolk-
ing en het wijdverbreide gebruik van mobiele telefoons is verder onderzoek naar andere 
aspecten van mobiele telefoongebruik dan RF-EMV blootstelling gerechtvaardigd om 
gezondheidseffecten te voorkomen. 
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In hoofdstuk 3 hebben we de temporele dynamiek van de toeschrijving van gezond-
heidsklachten aan RF-EMV (IEI-RF) in het AMIGO subcohort (N=892) onderzocht. We 
beoordeelden factoren gerelateerd aan het ontwikkelen, behouden, of loslaten van IEI-
RF gedurende 10 jaar door met “multi-state Markov” modellen het proces te modeller-
en waarin deelnemers door een reeks staten van IEI-RF bewegen. Verder hebben we 
logistische regressie toegepast om prospectief voorspellers van elektrohypersensitivite-
it zonder het toeschrijven van gezondheidsklachten aan RF-EMV blootstelling (EHS) te 
verkennen.
De resultaten toonden aan dat de prevalentie van IEI-RF over het algemeen laag was en 
stabiel bleef over de tijd. Interessant genoeg observeerden we over 10 jaar follow-up 
een hoge waarschijnlijkheid om de symptomen niet meer aan RF-EMV blootstelling toe 
te schrijven, wat suggereerde dat IEI-RF een meer voorbijgaande aandoening is dan 
voorheen werd aangenomen. Ten slotte bleken RF-EMV percepties, het rapporteren van 
niet-specifieke symptomen, en slaapverstoringen op baseline voorspellend te zijn voor 
EHS na 10 jaar follow-up, ongeacht of gezondheidsklachten werden gerapporteerd die 
werden toegeschreven aan RF-EMV blootstelling. 

In hoofdstuk 4 hebben we een pluralistische benadering toegepast om de relatie tussen 
een mengsel van luchtverontreinigende stoffen (PM2.5, PM10, NO2, PM2.5 absorptie, en 
oxidatief potentieel) en sterfte prospectief te verkennen in LIFEWORK (N=86,882). We 
hebben “weighted quantile sum” (WQS) regressie en “boosted regression trees” (BRT) 
toegepast om de meest relevante componenten binnen het mengsel in relatie tot de 
uitkomst te identificeren, rekening houdend met de sterke correlaties. Op basis van deze 
resultaten hebben we een “multivariate generalized propensity score” (mvGPS) geschat 
om gezamenlijk de causale effecten van de verontreinigende stoffen op algehele sterfte 
te schatten. Resultaten van de WQS regressie en BRT duidden aan dat alle componenten 
van het mengsel bijdroegen aan een positieve lineaire associatie met de uitkomst, waa-
rbij PM2.5 werd geïdentificeerd als meest relevante component. Ten slotte benadrukten 
de resultaten van het mvGPS model de primaire rol van PM2.5 binnen het mengsel, wat 
de causale interpretatie van luchtverontreinigingseffecten op sterfte versterkte. De in 
deze studie toegepaste strategie kan als voorbeeld dienen voor toekomstig onderzoek, 
ook buiten luchtverontreiniging, om de ingewikkelde wisselwerking tussen omgevings-
blootstellingen en gezondheid te begrijpen door de gezondheidseffecten van een meng-
sel van omgevingsfactoren in acht te nemen in plaats van te vertrouwen op een “één-
voor-één benadering” voor chemische stoffen. 

In hoofdstuk 5 onderzochten we prospectief de stedelijke component van het exposoom 
van AMIGO (N=7,339) in relatie tot hoofdpijn met gebruik van een combinatie van “ma-
chine learning” technieken. We hebben een tweestappenbenadering gevolgd waarbij 
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we eerst Boruta hebben toegepast om de relevante blootstellingen in de exposoom-uit-
komst associatie te identificeren, waarna we “estimated causal forest” hebben gebruikt 
voor het kwantificeren van het causale effect van deze blootstellingen op het optreden 
van hoofdpijn.
Boruta selecteerde vijf luchtverontreinigende stoffen (NO2, NOX, PM10, silicium in PM10, 
ijzer in PM2.5) en één maat voor stedelijke temperatuur (hitte-eiland effect) als factoren 
die bijdragen aan het rapporteren wekelijkse hoofdpijn bij follow-up. Het geschatte cau-
sale effect van elke blootstelling op wekelijkse hoofdpijn toonde positieve associaties 
voor alle blootstellingen, waarbij NO2 het grootste effect vertoonde. Deze resultaten 
benadrukken de relevantie van bloostelling aan luchtverontreiniging en hitte-eiland 
effecten in de bijdrage aan het rapporteren van wekelijkse hoofdpijn in AMIGO en de 
noodzaak van een uitgebreide evaluatie van veelvoorkomende stedelijke stressoren om 
gezondheidsproblemen te voorkomen. 

In hoofdstuk 6 heb ik de hoofdbevindingen van de in dit proefschrift opgenomen stud-
ies gepresenteerd. Na deze samenvatting besprak ik de voorgestelde benaderingen om 
onderliggende werkingsmechanismen te identificeren en ging ik in op de meest rele-
vante uitdagingen die zijn aangetroffen in de verschillende studies, met nadruk op de 
voordelen en beperkingen van de gebruikte methoden, en verschafte ik beleidsimpli-
caties en mogelijke toekomstige onderzoeksrichtingen.
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