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Abstract

Cells are exposed to a variety of mechanical cues, including
forces from their local environment and physical properties of
the tissue. These mechanical cues regulate a vast number of
cellular processes, relying on a repertoire of mechanosensors
that transduce forces into biochemical pathways through
mechanotransduction. Forces can act on different parts of the
cell, carry information regarding magnitude and direction, and
have distinct temporal profiles. Thus, the specific cellular
response to mechanical forces is dependent on the ability of
cells to sense and transduce these physical parameters. In this
review, we will highlight recent findings that provide insights
into the mechanisms by which different mechanosensors
decode mechanical cues and how their coordinated response
determines the cellular outcomes.
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Introduction

Every aspect of physiology has a component that directly
relies on the ability of cells to sense and respond to
mechanical cues. These cues include forces experienced
by cells from their surroundings such as neighboring
cells, blood flow or pressure generated in confined
interstitial spaces (Figure 1a). In addition, cells use their
own force-generating apparatus to probe the mechanical
properties of the local tissue. Any of these forces can

elicit a diversity of cellular responses, relying on
common principles of ‘mechanotransduction’ in which
cells convert mechanical information to distinct intra-
cellular biochemical pathways. While the list of cellular
and tissue-scale processes regulated through mechano-
transduction has continued to expand, it is also
becoming clear that forces can induce specific responses
dependent on the cell type, on cellular context, or on
how they are sensed by the cell. To achieve both di-
versity and specificity in responses, mechanical cues
must function similar to biochemical signals, where
variations in ligand identity and concentrations recog-
nized by a repertoire of receptors regulate the vast
number of cellular functions. Complexity of the cellular
response thus arises from the depth of information
embedded in the physical parameters of mechanical
forces, such as their magnitude, direction and temporal
dynamics, and the ability of cells to extract that infor-
mation. In this review, we will discuss recent findings
that show how force-transducing molecules are able to
sense and respond distinctly to these different physical
parameters and how these molecular responses are in-
tegrated to determine the cellular outcome.

General principles of molecular
mechanotransduction

Forces exerted on cells, and applied by cells on the
extracellular environment, result in stresses and de-
formations that are sensed by a group of specialized
molecules called mechanosensors. These mechano-
sensors undergo a force-dependent conformational
change, which alters the biochemical function of the
protein. Forces from the cellular surroundings are typi-
cally first experienced at the cell surface, where the
force-generating cytoskeleton also exerts stresses when
encountering different mechanical environments. The
adhesion complexes at which cells are anchored to the
surrounding tissue (through focal adhesions [FAs]) and
to other cells (through adherens junctions, [AJs]) have
therefore emerged as central nodes in transducing forces
[1,2] (Figure 1b). However, cells possess a much broader
ensemble of mechanosensors, including several struc-
turally distinct families of force-sensitive ion channels
[3] and receptors for biochemical ligands that directly
respond to force (e.g. notch [4] and plexin [5]). More-
over, forces at the cell periphery are transmitted by the
cytoskeleton to other cellular sites such as the nucleus
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Principles of mechanotransduction. a. Different types of mechanical forces to which cells are exposed and forces exerted by cells on their substrate
that can have different mechanical properties. b. The repertoire of mechanosensor proteins and protein assemblies in cells, for which the types of
mechanotransduction mechanisms (see Figure 1c) that have thus far been demonstrated, is indicated (and putative mechanotransduction mechanisms in
dotted lines). Focal adhesions and adherens junctions both consist of multiple mechanosensor proteins with distinct mechanotransduction mechanisms
(indicated in the insets). Although only adherens junctions are shown, other cell-cell adhesions complexes (desmosomes, tight junctions) may similarly
transduce forces. The nuclear envelope contains several proteins and protein assemblies that respond to membrane tension (i.e. nuclear pore complex)
or which are phosphorylated in a force-dependent manner (i.e. emerin, lamin), although it remains to be determined whether these are mechanosensors
themselves. Although the gating function of force-sensitive ion channels is regulated by force-induced changes in membrane tension, several ion
channels are also directly regulated by forces transmitted through the associated actin cytoskeleton [14]. ¢. Distinct mechanisms of mechanotransduction

used by different mechanosensors, with examples of each indicated below.

[6], which also contain mechanosensitive components
and contribute to the cellular response to external and
intrinsic forces (Figure 1b).

Mechanosensors act through a set of shared mechanisms
by which the force-induced conformational changes
affect either molecular interactions or protein activity
(see Figure 1c¢). Forces can directly strengthen protein—
protein interaction of mechanosensors by increasing the
bond life time (catch bond), as opposed to most
protein—protein interactions, where the lifetime de-
creases with force (slip bond) [7]. Moreover, forces can
modulate interactions through protein unfolding or
unmasking that can either reveal cryptic binding sites
(CBSs) [8,9] or disrupt binding motifs [10]. The nature
of the cryptic site varies in different mechanosensors,
and forces can also expose proteolytic sites [11,12] or
motifs for post-translational modifications [13]. Several
membrane-associated mechanosensors are regulated by
force-induced changes in membrane tension, for
instance controlling the gating function of mechano-
sensitive ion channels [14]. Finally, forces from the
cytoskeleton can also stabilize specific structural

conformations of mechanosensors such as integrins [15].
Mechanosensors often form larger multimolecular clus-
ters with combinations of mechanosensors regulated
through different mechanisms, of which FAs and AJs are
prototypical examples (Figure 1b).

Mechanosensors do not act as simple on-off switches,
but their response depends on various properties of the
forces. Forces can act on different parts of the cell, but
can also have different range of magnitudes, directions,
and temporal profiles, all of which can result in a
unique response and distinct biological outcomes. The
specific mechanisms of force transduction in individual
mechanosensors, as well as their organization within
the cell, will determine the ability to discriminate be-
tween these different parameters, as outlined in the
next sections.

Decoding magnitude of forces

Cellular responses to mechanical cues such as flow,
extracellular matrix (ECM) rigidity, and tissue strain are
dependent on the magnitude of forces associated with
these cues. The range of force magnitudes that cells
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sense, and the sensitivities of different mechanosensors
over that range, determines how cells respond to the
mechanical cue. Although the molecular mechanisms of
sensitivity to force magnitude are still not completely
understood, several mechanisms by which cells are able
to extract this information have been uncovered.

One molecular explanation of sensitivity to force mag-
nitudes is mechanosensors having a threshold force of
activation, for instance the force required for CBS
exposure or the force range where catch bonds are
formed. This sensitivity may be further fine-tuned by
the presence of stable intermediate states of the force-
dependent conformations of mechanosensors. Single-

Figure 2

molecule force spectroscopy of catch bonds has shown at
least 3 states (weak, intermediate, and strongly bound)
at a range of force magnitudes for integrin—fibronectin
[16], vinculin—F-actin [17], and VWF—GPIb [18].
However, it remains to be determined if these states
exist in cells and if they are associated with distinct
levels of biochemical output. Intermediate states can
similarly be present in mechanosensors containing
multiple force-sensitive domains that unfold at different
force magnitude (Figure 2a). This has been demon-
strated for the CBSs in the different rod domains of
talin, with the R3 domain unfolding at 5 pN force and
the remaining domains at 10—25 pN [19]. As these rod
domains have distinct binding partners, this can
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Mechanisms for decoding different force magnitudes. a. Molecular scale: A single mechanosensor with multiple mechanosensory domains (e.g.
multiple cryptic binding sites [CBSs] as shown) can lead to magnitude sensitivity. Low forces (middle panel) may result in unfolding of a single CBS,
whereas a higher magnitude (bottom panel) results in unfolding of all the CBSs. Differences in the number and/or type of unfolded CBS can lead to an
amplified or an altered downstream response. Talin is an example of such a mechanosensor. b. Multimolecular scale: Magnitude sensing can occur
because of serial linkage between different mechanosensors such as in focal adhesions. At low ECM stiffness (left panel), on initial integrin—-ECM
binding, slow loading rate results in dissociation of the integrin—ECM catch bond before force transmission and unfolding of the talin molecule. At higher
ECM rigidity (right panel), optimal loading rate results in stabilized integrin—ECM linkage and transmission of forces to talin and its unfolding leading to a
subsequent downstream cellular response. ¢. Cell and tissue scale: Magnitude sensing can arise on a cellular scale by distinct mechanosensors
responding to different magnitudes of force, as shown for the amplitude-dependent response of cells to uniaxial stretch. Epidermal cells exposed to 5%
cyclic stretch show deformation of the nucleus, which induces Piezo1-mediated calcium release from the endoplasmic reticulum and changes in het-
erochromatin resulting in nuclear softening. Forty percent cyclic stretch results in a similar initial Piezo1-mediated response and leads to the subsequent
cadherin-dependent supracellular alignment of the epithelial layer and the actin cytoskeleton, both contributing to nuclear protection to mechanical
stresses.
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potentiate diversity in mechanotransduction pathways
dependent on the level of forces.

In addition to the force magnitude—dependent regula-
tion of individual mechanosensors, magnitude sensi-
tivity originates from molecular assemblies containing
multiple mechanosensors with different thresholds of
activation. This has been shown for ECM stiffness—
dependent mechanotransduction by FAs, which re-
quires simultaneous engagement of the integrin—
fibronectin catch bond and the unfolding of talin
(Figure 2b). As both events only occur within a selective
force range, this confers sensitivity to the level of stiff-
ness [20,21]. Magnitude sensing may not only rely on
cooperativity between mechanosensors within these
molecular assemblies but could also involve their
mutually exclusive function. For instance, tensile forces
can strengthen the link between actin and B-catenin/a-
catenin at cadherin adhesions [22], but also induce the
release of B-catenin from cadherin to allow its tran-
scriptional function [23], which potentially can be
explained by distinct force thresholds. Magnitude
sensing can similarly arise on a cellular scale, from
distinct types of mechanosensors localized distal from
cach other becoming activated at different force mag-
nitudes. This is, for instance, implicated in the different
mechanisms of nuclear stress protection dependent on
strain magnitude, with low strain levels inducing Piezo-
mediated nuclear softening and high strain levels also
resulting in alignment of cells and their actin cytoskel-
eton in a cadherin-dependent manner (Figure 2¢) [24].

Specific sensitivities of different mechanosensors
allow for assembly of circuits in which the cellular
sensitivity to mechanical cues can be modulated. For
instance, different integrin subtype and ligands [25],
different members of the same mechanosensor family
(e.g. talin-1 and talin-2 [26]), or splice variants of the
same mechanosensor (e.g. of Piezo-1 [27]) can respond
to different levels of force. Moreover, the mechanical
state of the cell itself (i.e. actomyosin contractility and
cellular stiffness) will impact how cells respond to
external mechanical cues, by affecting membrane
deformability or applying pre-stress on mechanosensors
that lowers their threshold for ectopic forces. These
mechanisms further contribute to the complexity in
regulation of the dynamic range and sensitivity of
cells and the diversity in cellular responses to changes in
force magnitudes.

Decoding directions of forces

As forces are vector quantities that not only have a
magnitude but also have a direction, they intrinsically
provide directional information unlike biochemical sig-
nals that require a gradient. Directionality, which for
instance originates from direction of blood flow or tissue
strain, can result in anisotropic cellular responses and

thereby establish polarized cellular outcomes. As such,
directional tension in epithelia results in the alignment
of cell divisions and collective migration along the ten-
sion axis through mechanotransduction at AJs [28,29].
Similarly, most cell types orient themselves perpendic-
ular to the direction of uniaxial stretch, relying on the
anisotropic mechanoresponse and disassembly of FAs
[30]. The regulation of A] dynamics may also depend on
the force direction, as forces distributed perpendicular
to cell—cell contacts stabilize AJs, whereas parallel shear
forces have been shown to result in their disassembly
[31].

In addition to establishing polarized cell behaviors upon
directional forces, individual mechanosensors can elicit
different responses dependent on the orientation of
forces applied on it. Piezol senses both tensile and
compressive forces in epithelia that can induce cell di-
vision and extrusion, respectively [32]. Interestingly,
Piezol shows different sensitivities to these opposing
forces [33], although distinct responses may also involve
different cellular pools of Piezol and/or the effect of
calcium influx in compressed versus stretched cells
[32]. Several mechanotransduction pathways have
further been shown to be selectively activated only
when forces are exerted in a specific orientation. For
instance, signaling through the mechanosensitive TCR/
MHC complex in T-cells occurs efficiently only when
forces are applied parallel to the binding interface [34].
Along the same lines, only unidirectional shear forces on
endothelial cells activate integrins and force-sensitive
calcium channels to trigger an athero-protective
response [35—37].

The mechanisms by which mechanosensors convert
directional information into direction-specific cellular
responses still remain poorly understood. This may rely
on the organization of mechanosensors in the cell being
anisotropic and/or their mechanical activation (e.g. catch
bond or CBS unfolding) occurring most efficiently when
forces are applied in a particular geometry. Indeed, sta-
bilization of the connection between actin filaments and
adhesion complexes was recently proposed to be
dependent on the direction of actomyosin-generated
forces. The catch bond interaction between vinculin
and actin preferentially occurs when forces are directed
to the minus end of actin [17], and similar directional
asymmetry may underlie o-catenin/actin binding [38].
Furthermore, the interaction between vinculin and its
CBS in talin, and other force-dependent interactions, is
more stable when tensile forces are applied parallel
instead of perpendicular to the binding interface [39].
This geometry dependence of the force-mediated sta-
bilization of actin interactions with cell adhesions biases
the organization of the actin filaments. Similarly, the
activation of mechanosensors by external forces may rely
on their own geometry and orientation relative to the
force vector. This organization of mechanosensors is
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likely anisotropic, and therefore, only a fraction of mol-
ecules may sufficiently align with the direction of force
to become activated, whereas unaligned mechano-
sensors may be irresponsive or respond less (Figure 3).
Importantly, anisotropic forces can also become
isotropically redistributed across the cell via trans-
mission to the cytoskeletal network [40], and as such,
the anisotropy of the cytoskeleton will likely aid in the
polarized cellular response to directional cues.

Decoding dynamics of forces

Forces acting on cells can be short-lived, lasting on the
order of seconds, such as acute strain, or hours and days,
such as morphogenetic movements or a remodeled
ECM. Similarly, the cellular mechanoresponse to these
cues occurs at various time scales, as reviewed in [41]. In
addition to variable durations, forces can oscillate over
time, for instance due to pulsatile stretching of arterial
walls or ‘tugging’ cell-ECM interactions [42]. These
oscillatory forces result in distinct cellular outcomes
compared with static forces, such as selective activation
of signaling pathways and cellular reorganization by
cyclical stretch or hydrostatic pressure [40,43—45].
Moreover, cells can respond distinctly to different fre-
quencies of force oscillations, which has for instance
been shown to affect the level of cellular alignment to
axial strain [46].

Oscillation-dependent responses can be explained by
the activation of mechanosensors being dependent on
the temporal dynamics of the force. For instance,
cyclical forces can increase the bond lifetime of catch
bonds compared to static forces by favoring the tran-
sition to a strongly bound state, as has been experi-
mentally demonstrated for the a5B1-FN catch bond
[47]. Recent findings further demonstrate that
mechanosensors can act as bandpass filters, as their
transduction efficiencies vary with stimulus frequency.
This has been demonstrated for Piezo, which is rapidly
inactivated after its force-dependent opening. As a result,
the amplitude of Piezo activity can be altered by repeti-
tive forces, which has been shown to be dependent on
the stimulation frequency [48]. Recently, the unfolding—
refolding events of talin were shown to synchronize with
oscillatory forces, but this only occurs at specific fre-
quencies [49]. Although the functional significance and
underlying structural explanation of these mechanisms
remain to be elucidated, these studies indicate that
different mechanosensors can interpret and selectively
transduce frequency-dependent mechanical information.

The loading rate, or the speed at which forces are
applied, is also a critical determinant of the cellular
response. Strain rates, for instance, vary between
different tissues, being high in rapidly extending tis-
sues such as the lung during air inhalation and low
during morphogenetic movements. The rate of forces

exerted by cells themselves depends on the visco-
elastic properties of the ECM, which can lead to
distinct levels of adhesion strengthening and cell
spreading [21,50]. Similarly, the ability of cell—cell
adhesions to withstand mechanical stress through in-
duction of actin remodeling occurs in a strain rate—
dependent manner [51]. These differences in loading
rate may directly impact transduction efficiencies of
mechanosensors, as unfolding of cryptic sites and
binding kinetics of formed interactions of several
mechanosensors are dependent on loading rate [52].

Finally, sensing of temporal dynamics of forces depends
on the timescale at which the forces change, relative to
the timescale of activation and inactivation of mecha-
nosensors as well as their turnover rate. A mismatch in

Figure 3
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Anisotropic mechanical cues acting differentially on mechano-
sensitive complexes across a cell. Cells are exposed to anisotropic
forces such as uniaxial strain (Fex). In this example, focal adhesions in a
cell span a range of orientations across the cell, and thus, the angle
between different adhesions and external strain also varies. Within a
single focal adhesion, forces generated from the acto-myosin contrac-
tility and resistance from the ECM result in anisotropic internal tension or
force (Fint), which also results in anisotropic organization of different
molecular components. The net resulting force acting across a focal
adhesion and all of its components is thus dependent on its orientation
with respect to the external force and the magnitudes of internal and
external forces. In the two example focal adhesions shown, an adhesion
perpendicular to the direction of strain (bottom, left) will have a different
resultant force acting across all its molecular components (integrin—
ECM, talin—vinculin, vinculin—actin) compared with a focal adhesion
parallel to the direction of strain (bottom, right). These differences across
a cell or even tissues can result in differences in activation of the different
mechanosensory components and have downstream effects on adhe-
sion fate (assembly versus disassembly), signaling, and cell and

tissue scale outcomes.
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these timescales would result in cells losing the tem-
poral information of forces acting on it, thus leading to a
different response.

Interplay between different
mechanosensors and with biochemical
signals

Although different mechanosensors can elicit diverse
responses, they frequently impinge on the same cellular
processes and can coordinate the response. For
instance, mechanotransduction through integrins,
cadherin adhesions, and Piezo control progression
through multiple phases of the cell cycle [32,53—56].
Similarly, Piezo-mediated nuclear softening and E-
cadherin—dependent cellular realignment together co-
ordinate nuclear protection against mechanical stresses
[24]. Multiple mechanosensors also act on the same
signaling pathway, as extensively shown for the regula-
tion of the Hippo pathway (reviewed in [57]). Analo-
gously, B-catenin—mediated transcription is
mechanically activated by its phosphorylation at
cadherin adhesions [23], as well as by integrin-mediated
inhibition of the destruction complex [58]. Through
these interconnectivities, mechanical cues acting on
distinct mechanosensors may not only elicit similar
biological responses but also enable different mecha-
nosensors to act together and ensure robustness (or
diversification) of the response.

Coordination not only arises through interplay at the
level of downstream mechanotransduction pathways,
but mechanosensors also influence how forces are
distributed on and transduced by one another. This has
been extensively studied for FAs and AJs, between
which force distribution is balanced by their connection
through the actin cytoskeleton (reviewed in [59]). As
such, increased matrix stiffness sensed by integrins also
results in elevated tensile forces at AJs [60], and vice
versa, AJs modulate traction forces exerted by integrins
[61—64]. More recently, Piezo was shown to associate
with FAs and to be activated at sites of traction forces
[65,66]. Conversely, Piezo contributes to the generation
of traction forces by FAs and their sensitivity to sub-
strate stiffness [66,67]. Many other examples of inter-
play by which individual mechanosensors, both locally
(at the same complex) or distally (across complexes, e.g.
adhesions and nucleus), impact each other’s regulation
and function have been uncovered [5,68—71], which
constitute the complexity of the cellular response to
mechanical cues.

Besides cross talk between different mechano-
transduction machineries, the cellular response to me-
chanical forces relies on their interplay with biochemical
cues (e.g. growth factors). As mechanotransduction en-
tails conversion of forces into an intracellular biochem-
ical response, forces will impinge on similar pathways

and cellular processes regulated by these growth factor
signals. Moreover, forces can regulate the very same
receptors activated by biochemical ligands, in which
they control receptor activity either at the level of
binding of the receptor ligand itself (e.g. for EGFR [72],
and TGFB-R [73], in a ligand-independent manner
[plexin D1 [5]]) or potentially both (e.g. notch [68,69]).
Mechanical and biochemical cues may hereby synergis-
tically trigger downstream signaling pathways. In
contrast, some receptors show selective downstream
signaling in response to mechanical activation [68] or
trigger distinct signaling pathways when activated either
by mechanical cues or its biochemical ligand [5].

Importantly, the biochemical response induced by
mechanosensors can modulate the original mechanical
cue. This biochemical feedback can be established by
attenuating the level of force on individual mechano-
sensor molecules (e.g. by inducing FA growth) or by
triggering a cellular response that dissipates the original
forces (e.g. by inducing proliferation and consequently
reducing tensile forces). Adding to this complexity,
biochemical pathways can impinge on the cellular force-
generating machinery. This can attenuate cellular
sensitivity to mechanical cues [74], and also propagate
mechanical forces across the tissue as recently shown via
the reciprocal regulation of ERK activity and tensile
forces between neighboring cells [75].

Conclusions and future perspectives

Cells are exposed to a variety of mechanical forces that
they sense and transduce through their repertoire of
mechanosensors. The cellular responses to these forces
depend on the magnitude, direction, and temporal dy-
namics of the acting forces. We are beginning to un-
derstand how cells extract this spatiotemporal
information, through distinct sensitivities of the
mechanosensors and their underlying transduction
mechanisms to these different force parameters.
Although these mechanisms are better established for
some mechanosensors, they remain to be elucidated for
many of the recently discovered ones. To transmit me-
chanical information, mechanosensors do not function in
isolation, and it is now emerging that different mecha-
nosensors across the cell are integrated and form mo-
lecular circuits that coordinate the cellular responses to
mechanical cues. The cytoskeleton not only serves as a
key integrator of these molecular circuits but also serves
as a mesoscale mechanosensor with its own layer of
regulation and dynamics. These interconnectivities
underscore the need for system-level approaches to
investigate mechanotransduction both at the cellular
and tissue level, including the cross talks between
mechanotransduction pathways and the interplay with
biochemical signals. These approaches together with
recent advances in technologies, which allow for precise
control over different force parameters and visualization
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of forces and their responses in complex tissues, will
lead to a better understanding of mechanotransduction
across different scales and tissues.
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