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Abstract
Purpose In exposure–response analyses of oral targeted anticancer agents, longitudinal plasma trough concentrations are 
often aggregated into a single value even though plasma trough concentrations can vary over time due to dose adaptations, 
for example. The aim of this study was to compare joint models to conventional exposure–response analyses methods with 
the application of alectinib as proof-of-concept.
Methods Joint models combine longitudinal pharmacokinetic data and progression-free survival data to infer the dependency 
and association between the two datatypes. The results from the best joint model and the standard and time-dependent cox 
proportional hazards models were compared. To normalize the data, alectinib trough concentrations were normalized using 
a sigmoidal transformation to transformed trough concentrations (TTC) before entering the models.
Results No statistically significant exposure–response relationship was observed in the different Cox models. In contrast, the 
joint model with the current value of TTC in combination with the average TTC over time did show an exposure–response 
relationship for alectinib. A one unit increase in the average TTC corresponded to an 11% reduction in progression (HR, 
0.891; 95% confidence interval, 0.805–0.988).
Conclusion Joint models are able to give insights in the association structure between plasma trough concentrations and 
survival outcomes that would otherwise not be possible using Cox models. Therefore, joint models should be used more 
often in exposure–response analyses of oral targeted anticancer agents.

Keywords Exposure response · Mixed effects models · Survival analysis · Alectinib

Introduction

Personalized medicine is defined as tailoring the therapy for 
each specific patient to optimize treatment response [1]. One 
of the tools that can be used to personalize cancer treatment 
with oral targeted therapy is therapeutic drug monitoring 

(TDM), in which drug plasma concentrations are measured 
and interpreted to improve treatment by dose adaptations, 
for example. This is mainly useful for oral targeted therapy 
exhibiting an exposure–response relationship.

Two exposure–response analyses of alectinib have been 
performed, which showed inconsistent results, as one of 
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the studies found a positive exposure–response relationship 
and the other did not [2, 3]. In research that investigates 
whether oral targeted therapies exhibit an exposure–response 
relationship, plasma trough concentrations at steady state 
are often used as the pharmacokinetic variable correlated 
to clinical outcomes. In these studies, longitudinal plasma 
trough concentrations are often aggregated into a single 
mean or median value [3–6]. However, pharmacokinetic 
measurements can vary over time due to factors such as 
dose modifications, compliance and drug-drug interactions 
[7]. Therefore, it is of interest to analyse the variability of 
plasma trough concentrations over time between and within 
individuals and to determine how these changes influence 
clinical outcomes. Especially in the case of metastasized dis-
ease, it is biologically plausible that continuous suppression 
of the signalling pathway is crucial for optimal effectiveness.

One of the approaches that can be used to investigate 
the influence of varying pharmacokinetic measurements 
over time on survival outcomes are joint models [8–11]. In 
joint models, longitudinal data and time-to-event data are 
combined so that one can infer the dependency and associa-
tion between the longitudinal plasma trough concentrations 
and survival outcomes. This approach can better assess the 
effect of the treatment, in which changes in plasma trough 
concentrations over time due to dose adaptations can be 
taken into account, for example [12]. Therefore, the aim 
of this study was to compare joint models to conventional 
exposure–response analyses methods with the application 
of alectinib in patients with non-small-cell lung cancer as 
proof-of-concept.

Methods

This study was conducted at the Netherlands Cancer Insti-
tute-Antoni van Leeuwenhoek hospital (NKI-AvL), Amster-
dam, The Netherlands. Patients were included in this study 
if they were treated with alectinib, if they started treatment 
between February 2017 and December 2021, and if phar-
macokinetic data were available. At the NKI-AvL, plasma 
samples of patients receiving alectinib were collected during 
routine follow-up visits to the outpatient clinic as part of the 
standard of care. In the majority of the cases, the collected 
plasma samples could not be considered to be trough con-
centrations, as this is often not feasible to arrange in clinical 
practice. Therefore, date and time of the last drug intake and 
plasma sampling were used to calculate trough concentra-
tions of alectinib using log-linear extrapolation in which a 
plasma elimination half-life of 32 h was used [13]. Plasma 
concentrations were measured by validated liquid chroma-
tography with tandem mass spectrometry detection [14].

Patient characteristics and survival outcomes were 
extracted from the electronic medical records, whereas data 

on plasma samples were extracted from the laboratory data-
base. The conduct of this study was approved by the Inves-
tigational Review Board of the NKI-AvL and the need for 
written informed consent was waived.

Longitudinal outcome and survival outcome

Alectinib plasma trough concentrations were transformed to 
normalize the data as this is one of the assumptions of linear 
mixed effects models [15]. In addition, exposure–response 
relationships are usually described by the sigmoid  Emax 
model, in which a certain drug exposure corresponds non-
linearly to a certain drug effect. In these type of models, 
the response reaches a plateau above a certain exposure, as 
one can imagine that an alectinib trough concentration of 
1000 ng/mL does not result in double the response compared 
to an alectinib trough concentration of 500 ng/mL. Alectinib 
plasma trough concentrations were normalized by transfor-
mation into transformed trough concentrations (TTC) using 
this equation:

Ctrough is the alectinib trough concentration, EC50 is the 
alectinib trough concentration that represents the center of 
the sigmoid curve, and γ is curve-fitting parameter, describ-
ing the steepness of the concentration-effect relationship. 
The EC50 was set at 600 ng/mL, which is slightly above the 
target trough concentration of 435 ng/mL used in other stud-
ies [16]. Above 600 ng/mL, the TTC increases less than pro-
portional with the trough concentration compared to trough 
concentrations under 600 ng/mL. Lastly, γ was empirically 
fixed to ensure that the resulting TTC approximately follows 
a normal distribution. The factor 100 in the formula ensures 
that the TTC takes values between 0 and 100, enhancing the 
interpretability of the results of the Cox models and joint 
models. The resulting sigmoid curve describing the relation-
ship between the alectinib trough concentration and TTC is 
shown in the supplementary materials.

The survival outcome was progression-free survival 
(PFS), which was defined as the time from treatment initia-
tion until the first signs of disease progression by either radi-
ology or clinical signs, or death by any cause in the absence 
of progression. PFS was estimated using the Kaplan–Meier 
method and the median follow-up time was estimated with 
the reverse Kaplan–Meier method [17].

Covariates

Variables taking into account were weight, sex, previous 
number of treatment lines, the use of previous ALK inhibi-
tors (e.g. crizotinib and ceritinib), ECOG performance status 

TTC =
Ctrough�

EC50� + Ctrough�
× 100
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and the presence of brain metastases at baseline and alec-
tinib dose at time of plasma sampling. Except for weight, all 
covariates were used as categorical variables with no order.

Joint model

Joint models consist of two sub-models that are then joined 
together: a linear mixed effects model and a Cox propor-
tional hazards model.

The linear mixed effects model was used to fit the lon-
gitudinal data, in which covariates at baseline and time of 
plasma sampling were tested on their association with the 
TTC of alectinib as longitudinal outcome measurements. 
Subject level random effects for both the intercept and slope 
were added to cluster the outcome measurements within 
subjects together, as the linear mixed effects model assume 
variability in measurements within subjects to be smaller 
than variability in measurements between different subjects 
[15]. A Cox proportional hazards model was used to fit the 
second sub-model using the time-to-event data. Using this 
sub-model, the association between baseline covariates and 
PFS were estimated [12, 18].

Lastly, the joint model was fitted using the two sub-
models to estimate the association between the longitudinal 
TTC of alectinib and PFS. In the joint model, the complete 
trajectory of the TTC is estimated for each individual patient 
using the included covariates in the first sub-model and the 
actual TTC measurements. This trajectory of the TTC is then 
associated with the hazard, i.e. the risk of experiencing an 
event at a specific time point, in the second sub-model. Via 
this hazard, the association between the longitudinal meas-
urements of TTC and PFS were determined.

Joint models with different functional forms were tested 
[18]. These functional forms describe the association struc-
ture between the historic trajectory of the TTC of alectinib 
and the hazard for progression. The basic association struc-
ture is to relate the estimated TTC at the time of the most 
recent measurement, directly to PFS, in which all historic 
TTCs are used to estimate the current TTC. Using other 
functional forms, it is possible to associate the average TTC 
of alectinib, which is the area under the historical TTC tra-
jectory divided by the time, with PFS. In addition, it is pos-
sible to combine different association structures together in 
one joint model. In this study, joint models with the cur-
rent value, the average exposure and the combination of 
these two functional forms were tested. In case functional 
forms are combined, separate hazard ratios are estimated for 
each functional form. Another functional form is the time-
dependent slope of the TTC of alectinib, i.e. how fast the 
TTC decreases or increases at the time of most recent meas-
urement. Joint models using the time-dependent slope as 
association structure were not performed in this study as this 
approach does not reflect the mechanism of action of oral 

targeted anticancer agents and is more suited for biomark-
ers. The Watanabe-Akaike information criterion (WAIC) 
was used to select the best model, in which smaller values 
are preferred as this indicates better models. Joint models 
were fitted using the JMbayes2 package in R version 4.3.1 
(R Foundation for Statistical Computing, Vienna, Austria). 
In order to assess the dependence of our results on the pre-
cise form of the sigmoid curve used to transform the trough 
concentrations, a sensitivity analysis was performed for the 
joint model with the best association structure, in which the 
EC50 was set at 500 and 700 ng/mL and the γ was set at 2.

Cox proportional hazards models

In addition to the joint models, basic Cox proportional haz-
ards models were fitted on the same dataset using the median 
TTC for each patient as a numerical variable and as a cat-
egorical variable. In the model with TTC as a categorical 
variable, patients were divided into two groups describing 
whether the median exposure of each patient was adequate 
or inadequate (reference group) based on the target trough 
concentration of 435 ng/mL. Similarly, the corresponding 
time-dependent Cox proportional hazards models were also 
fitted, as this is the traditional approach to study the associa-
tion between repeated measurements and the occurrence of 
an event over time. For the time-dependent Cox proportional 
hazards models, the time-dependent variable was assumed 
constant in the time period after the measurement, i.e. the 
last value was carried forward. The backward elimination 
procedure was used to determine which covariates are kept 
in the Cox proportional hazards models. A p-value <0.05 
was considered statistically significant.

Results

A total of 100 patients were included with 569 repeated 
measurements. The median follow-up time was 32.4 months 
(interquartile range of 22.6–44.3 months) and at the time of 
data cut off, 46 patients had progressed on alectinib treat-
ment. The median number of alectinib plasma samples per 
patient was 5, with a range from 1 to 17 measurements. 
Patient characteristics are depicted in Table 1. The longitu-
dinal trajectories of the alectinib trough concentrations are 
depicted in the supplementary materials. The Kaplan–Meier 
curves for patients with adequate (≥435 ng/mL) and inade-
quate (<435 ng/mL) median exposure are depicted in Fig. 1. 
Median PFS for patients with adequate and inadequate 
median exposure were 34.9 months (95% confidence inter-
val (CI), 27.4–NA) and 20.6 months (95% CI, 12.7–NA), 
respectively.

The results of the different Cox models and joint models 
are presented in Table 2. The full results from the different 
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joint models are shown in the supplementary materials. All 
models were adjusted for prior ALK inhibitor use only as 
including more baseline covariates did not significantly 
improve the Cox models. In the basic Cox proportional haz-
ards model, adequate median exposure seemed to be asso-
ciated with a decreased risk of progression, with a hazard 
ratio (HR) of 0.645, although not statistically significant. 
Median TTC as a continuous variable in the basic Cox pro-
portional hazards model did not seem to be associated with a 
decreased risk of progression. Similar results were observed 
for the time-dependent Cox proportional hazards models.

The final longitudinal sub-model included time and 
alectinib dose at time of plasma sampling as fixed effects 
and a subject level random intercept and random slope for 
time. Previous use of ALK inhibitors was the only variable 
included in the survival sub-model. The model with both 
the current value and average exposure was favored as it 
showed the smallest WAIC value. This joint model found 
a significant association between the average TTC of alec-
tinib and the risk of progression. A one unit increase in the 
average TTC corresponded to an 11% reduction in the risk 
of progression at a given time point (HR, 0.891; 95% CI, 
0.805–0.988). Transformed back to trough concentrations, 
one unit increase in TTC equals the difference between 
a trough concentration of 350 and 361 ng/mL (Fig. 2) or 
the difference between a trough concentration of 600 and 
617 ng/mL. The results of the sensitivity analyses were con-
sistent with the main analysis (Table S1).

Discussion

In this proof-of-concept study, we explored whether joint 
models are better to study exposure–response relationships 
of alectinib in patients with non-small-cell lung cancer 
compared to Cox models. Analyzing the same data using 
joint models and Cox models with or without extensions led 
to different conclusions. No statistically significant expo-
sure–response relationship was observed in the different Cox 
models. In contrast, the joint model with the current value 
in combination with the average TTC of alectinib did show 
a significant exposure–response relationship.

When comparing the basic Cox model with the time-
dependent Cox model, no major differences were observed 
between the models. In time-dependent Cox models, the last 
longitudinal measurement is carried forward and assumed to 
be constant until the new longitudinal measurement. How-
ever, this is not representative for pharmacokinetic data that 
is subjected to biological variation. This possibly explains 
why the time-dependent Cox models did not perform better 
than the basic Cox models [10, 12].

In contrast to time-dependent Cox models, joint models 
are more suitable to use in the analysis of longitudinal phar-
macokinetic data and are also able to estimate the complete 
trajectory of longitudinal measurements. Previous studies 
have shown that time-dependent Cox models tend to under-
estimate the true association between longitudinal markers 
and time-to-event outcomes due to measurement errors and 
that joint models produce more unbiased estimates [8, 19]. 
In addition, joint models are able to give insights in the 
association structure between the longitudinal pharmacoki-
netic data and time-to-event data as the use of the current 
value may not always be the best structure to describe the 

Table 1  Patient characteristics

ALK TKI anaplastic lymphoma kinase tyrosine kinase inhibitor (e.g. 
crizotinib and ceritinib), ECOG  PS Eastern Cooperative Oncology 
Group performance status, SD standard deviation

Patients
N = 100

Age, years
  Mean (SD) 58 (13)

Male sex 47
ECOG PS at start treatment

  0 41
  1 49
  2 7
  3 3

Number of previous treatment lines
  0 57
  1 27
  2 10
  3 6

Prior ALK TKI use
  Yes 40
  No 60

|
| | ||

|| | | | || | || |
|| | || | || || | | | | | || | | | |

|

|
|

|
| |

| ||
| | | | |

p = 0.11
Log−rank
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Fig. 1  Kaplan–Meier curve for progression-free survival (PFS)
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exposure–response relationship, which was also the case in 
our study [9].

In studies exploring exposure–response relationships of 
oral targeted anticancer drugs outside trial settings, trough 
concentrations are the most commonly used pharmacoki-
netic parameter as obtaining the area under the plasma 
concentration–time curve in standard clinical practice 
is less feasible. Previously, Groenland et al. observed a 
prolonged PFS in patients with median trough concen-
trations above the target trough concentration of 435 ng/
mL, whereas no relationship was observed between the 
trough concentration of alectinib and its active metabolite 
and overall survival in the study of Morcos et al. [2, 3]. 
The normal multivariable Cox model in our study did not 

show a statistically significant difference between patients 
with median trough concentrations above 435 ng/mL com-
pared to patients with median trough concentrations under 
435 ng/mL. This is probably explained by the immaturity 
of the data in our study as alectinib moved from second-
line to first-line treatment leading to longer PFS for which 
a longer follow-up is needed to obtain mature data. In 
contrast to the Cox models in our study, the joint model 
with the current value and average exposure showed a 
significant correlation between an increased average alec-
tinib exposure and longer PFS despite the immaturity of 
the data. This shows that joint models are able to give 
insight in the underlying nature of association between 

Table 2  Hazard ratios and 
95% confidence intervals 
(CI) for median transformed 
trough concentration (TTC) as 
categorical* and continuous 
variable for the standard 
Cox model, current TTC as 
categorical and continuous 
variable for the time-dependent 
Cox model and the joint model 
with different association 
structures

All models were adjusted for prior ALK tyrosine kinase inhibitor (ALKi) use. *adequate compared to inad-
equate based on the target trough concentration of 435  ng/mL. LPML Log pseudo-marginal likelihood, 
WAIC Watanabe-Akaike information criterion

HR 95% CI P value WAIC LPML

Cox proportional hazards model
  Categorical (TTC)+
  Prior ALKi use: yes

0.645 0.353–1.180 0.155
2.229 1.228–4.045 0.008

  Continuous (TTC)+
  Prior ALKi use: yes

0.996 0.973–1.019 0.714
2.284 1.260–4.139 0.007

Cox proportional hazards model with time-dependent variable
  Categorical (TTC)+
  Prior ALKi use: yes

0.739 0.417–1.309 0.299
2.392 1.338–4.276 0.003

  Continuous (TTC)+
  Prior ALKi use: yes

0.995 0.975–1.016 0.666
2.432 1.360–4.349 0.002

Joint models with different association structures
  Current value (TTC)+
  Prior ALKi use: yes

0.983 0.954–1.012 0.268 4817.6 −2412.7
2.322 1.129–4.925 0.021

  Average exposure (TTC)+
  Prior ALKi use: yes

0.978 0.946–1.008 0.150 4863.5 −2495.4
2.338 1.099–5.089 0.028

  Current value (TTC)+
  Average exposure (TTC)
  Prior ALKi use: yes

1.094 0.991–1.202 0.078 4813.3 −2408.5
0.891 0.805–0.988 0.023
2.225 1.046–4.853 0.033

Fig. 2  Example for the interpre-
tation of the joint model with 
current value and average expo-
sure as association structure. 
Both patients have the same 
current value (represented by 
the dot), but a different average 
exposure. Patient 2 has an 11% 
reduced risk at progression 
compared to patient 1 at time t. 
AUC, area under the curve
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pharmacokinetic data and PFS for which conventional 
methods to study exposure–response relationships are 
less suited.

Besides the advantages of using joint models, there are 
also some limitations in our study that need to be pointed 
out. In this study, we estimated trough concentrations 
using log-linear extrapolation. Trough concentrations 
could also be estimated using population pharmacokinetic 
models, in which interpatient variability is also taken into 
account. However, as alectinib is dosed twice daily and 
has a long half-life of 32 h, the relative difference between 
the peak and trough concentration at steady-state is very 
small [13]. Therefore, in this specific case, the difference 
between log-linear extrapolation and population pharma-
cokinetic-derived exposure metrics will not be relevantly 
different. In addition, to normalize the longitudinal phar-
macokinetic data, trough concentrations were transformed 
into TTCs using a sigmoid transformation. Although this 
is a well-known method, it has to be emphasized that the 
chosen values for the EC50 and the curve-fitting param-
eter should not be interpreted as the actual relationship 
between drug exposure and effect as the main goal was to 
normalize the data. Furthermore, the variability in trough 
concentrations within patients is assumed to be random in 
the linear mixed effects sub-model, which is not necessar-
ily the case if patients are nonadherent to their medication, 
for example. As we did not have data regarding medica-
tion adherence or other variables that may contribute to 
the variability in trough concentrations, these could not 
be taken into consideration, unfortunately. Data about the 
moment of alectinib dose adjustments was available, but 
could not be implemented in the joint model. Ideally, the 
availability of data on the complete dosing and drug con-
centration history would result in better estimation of drug 
effects in which it would also be possible to join non-linear 
mixed effects models to survival models. Lastly, the joint 
model with the current value and the average exposure 
was the best model, in which the model assumes that all 
pharmacokinetic measurements are of equal importance up 
to the last measurement time point. This may not be a very 
reasonable assumption, as recent pharmacokinetic meas-
urements are probably more relevant in regard of survival 
outcomes. Therefore, it would be of interest to explore this 
type of association structure, in which pharmacokinetic 
measurements closer to the event are expected to be of 
more importance. However, this is not possible yet with 
the current version of the JMbayes2 package. In addition 
to the different association structures of joint models, it is 
also possible to build a joint model with multiple longitu-
dinal variables. Therefore, this approach may be suitable 
to study the relationship between drug concentrations, bio-
markers and survival outcomes, which in turn can be used 
to make individual predictions [18].

In conclusion, joint models are able to give insights in the 
association structure of the pharmacokinetic measurements 
and survival outcomes that would otherwise not be possible 
using Cox models. This was also the case in this proof-of-
concept study with alectinib, in which an increased average 
alectinib exposure was correlated with a prolonged PFS even 
though the data were relatively immature. Therefore, joint 
models should be used more often in exposure–response 
analyses of oral targeted anticancer agents.
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