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Chapter 1

Introduction

Text data have found increasing interest in recent years because of the ubiquity of
text data on the Web, social media, digital library, and others (Aggarwal, 2018). Some
important applications of text data include searching the Web, filtering spam emails,
and recommending articles or movies. Two main areas to study the applications of
text data are text mining (also called machine learning from text) and natural lan-
guage processing (NLP).

Text mining and NLP often have overlap of the tasks, methods, and goals, and
the concepts are sometimes used interchangeably (Bagheri, 2021). On the one hand,
text mining refers to the discovery by computer of new, previously unknown in-
formation, by automatically extracting information from different written resources
(Hearst, 1999). On the other hand, NLP is any computer-based algorithm that han-
dles, augments, and transforms natural language so that it can be represented for
computation (Yim, Yetisgen, Harris, & Kwan, 2016).

This dissertation focuses on the comparison of popular techniques in text mining
and NLP, and popular techniques in statistics. We explore whether a popular tech-
nique in statistics is also a good method in text mining and NLP, thus facilitating the
development of text mining and NLP. Specifically, we compare the popular statisti-
cal technique correspondence analysis (CA) (Greenacre, 1984) with several popular
text mining and NLP techniques, in particular with latent semantic analysis (LSA)
(Dumais, Furnas, Landauer, Deerwester, & Harshman, 1988), PPMI-SVD (Levy &
Goldberg, 2014), GloVe (Pennington, Socher, & Manning, 2014), and SGNS (Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013).

In text mining and NLP applications, a vector representation of text data is the key
in designing an effective machine learning algorithm (Aggarwal, 2018; Le & Mikolov,
2014). For example, the nearest-neighbour algorithm for text categorization or the K-
means algorithm for text clustering typically requires the text input to be represented
as a vector. A commonly used vector representation for text data is the bag-of-words.
In this case, the order of words is not considered. Many text document collections
(such as web pages) are converted into document-term matrices, such that each docu-
ment is represented by a row of the matrix. Terms (such as words) in the documents
are represented by the columns of the matrix.

Document-term matrices are used in a large number of potentially important ap-
plications (Turney & Pantel, 2010; Aggarwal, 2018), including returning related infor-
mation for a given query, classifying spam and non-spam emails, and finding a short
answer to a question. In some applications, such as finding frequently co-occurring
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1. Introduction

groups of k words, a binary representation is sufficient where a cell is 1 if a word is
present in a document, otherwise 0. However, a binary representation loses a lot of in-
formation because it does not contain the frequencies of terms. The frequency-based
representation is more popular, where a cell contains information about the number
of times a term occurs in a document.

In a document-term matrix, the representation of the document is often high-
dimensional, sparse, and non-negative (Aggarwal, 2018). This is because the dimen-
sionality depends on the number of words from all documents, which is typical large.
Furthermore, a document contains a limited number of words. Consider the follow-
ing document corpus with three documents and a vocabulary of eleven words that
illustrates how to create a document-term matrix (Albright, 2004):

• d1: error invalid message file format,

• d2: error unable to open message file using message path,

• d3: error unable to format variable.

A document-term matrix is created for the above three documents as follows:

error invalid message file format unable to open using path variable
d1 1 1 1 1 1 0 0 0 0 0 0
d2 1 0 2 1 0 1 1 1 1 1 0
d3 1 0 0 0 1 1 1 0 0 0 1

Table 1.1: Document-term matrix

In each cell the count represents the number of times a particular word is used in
a particular document. For example, for document 2, message occurs twice, so the
entry (d2, message) is 2, invalid does not occur in document 2, so the entry (d2, invalid)
is 0. Thus each document is represented as a vector of 11 values. For instance, d2
is represented as [1,0,2,1,0,1,1,1,1,1,0]. Similarly, each word is represented as a
column of the matrix. For example, message is represented as [1,2,0].

An alternative way to represent words is to use a word-context matrix (Turney &
Pantel, 2010; Aggarwal, 2018; Jurafsky & Martin, 2023). In a word-context matrix,
rows are labelled by a set of words and columns by the contexts of these words, in
which the contexts are given by words, phrases, or others. Each word is usually rep-
resented as a row of the matrix. The word-context matrix follows the distributional
hypothesis in linguistics which is that words that occur in similar contexts tend to
have similar meanings (Harris, 1954). Word-context matrices have many potentially
important applications (Billhardt, Borrajo, & Maojo, 2002; Turney & Pantel, 2010;
Hossain, Zahin Mauni, & Rab, 2022), including discovering different senses of poly-
semous words, automating thesaurus generation, and other downstream text mining
and NLP tasks such as information retrieval and text categorization.

In a word-context matrix, a count in a cell can be the number of times the row
(target) word and column (context) word co-occur in some context in a text. The
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1.1. Techniques in text mining and natural language processing

context generally refers to a window around a row word. For example, if the context
is represented by 2 words to the left of a row word and 2 words to the right, a cell
represents the numbers of times the column word occurs in such a ±2 word window
around the row word. Consider the following text with a vocabulary of five words as
an illustration of how to create a word-context matrix:

• a sunny day is a happy day

We use a window of size 2, i.e., 2 words to each side of a row word as its context words.
The word-context matrix for the above text is

a sunny day is happy
a 0 1 3 1 1

sunny 1 0 1 1 0
day 3 1 0 1 1
is 1 1 1 0 1

happy 1 0 1 1 0

Table 1.2: Word-context matrix

For example, for a row word a, the texts in its ±2 word window are

• sunny day

• day is

• happy day

We count the context words around a, and find that the entry (a, a) is 0, the entry (a,
sunny) is 1, the entry (a, day) is 3, and so on. Each row word is represented as a vector
of 5 values. Like a document-term matrix, a word-context matrix is high-dimensional,
sparse, and non-negative.

This dissertation focuses on the document-term matrix and word-context matrix
because these two matrices form the key building blocks for many text applications.
The rest of this introductory chapter is organized as follows. In the next section,
we will discuss popular techniques in text mining and NLP that are relevant for the
analysis of document-term and word-context matrices. Section 1.2 introduces corre-
spondence analysis. The questions we will study are given in Section 1.3. Section 1.4
introduces the contribution and outline of this dissertation. Section 1.5 presents pos-
sible future research.

1.1 Techniques in text mining and natural language
processing

Document-term and word-context matrices are sparse and high-dimensional
(Aggarwal, 2018). The process of creating low-dimensional representations of texts,
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1. Introduction

that reflect the information in the original matrix as good as possible, is referred to as
dimensionality reduction. Dimensionality reduction is associated with the represen-
tation of text data and thus forms the key building block for other text applications
such as clustering, categorization, and information retrieval.

In the machine learning literature, little to no attention has been paid to corre-
spondence analysis (CA). Other popular dimensionality reduction methods receive
more attention, like latent semantic analysis (LSA) (Aggarwal, 2018). LSA uses the
singular value decomposition (SVD). SVD is also used in the calculation of the CA
solution. Since CA also seems appropriate for the analysis of texts, the question arises
whether CA performs well in analyzing texts compared with tools from text mining
and NLP. So, in this dissertation, it is investigated whether CA is a good dimensional-
ity reduction technique in text mining and NLP.

This section mainly introduces four popular techniques in text mining and NLP
that are relevant for the analysis of document-term and word-context matrices. These
four techniques involve two SVD type techniques: LSA and PPMI-SVD, and two gra-
dient algorithm type techniques: GloVe and SGNS. More in-depth discussions of LSA
are in the Chapter 2 and of PPMI-SVD, GloVe, and SGNS are in the Chapter 4.

1.1.1 Latent semantic analysis

LSA is a dimensionality reduction method used in the context of the document-term
matrix (Aggarwal, 2018). Most text mining and NLP applications require the com-
putation of similarities between pairs of documents, i.e., between the rows of the
document-term matrix. When calculating similarities between documents, the length
of a document may have undesirable effects, as a larger length of a document makes
all the frequencies for that document larger. For example, when Euclidean distances
are used for distance computation, the distance between two long documents tends to
be very large, whereas the distance between two short documents tends to be much
smaller. This is undesirable because the similarities between documents are severely
affected by the lengths of the documents, whereas one is more interested in the dis-
tribution of counts per document. Moreover, not all words have equal importance.
Low-frequency words are often more discriminative than high-frequency words. For
example, the word “the” tends to occur in each document, which tends to be less dis-
criminative than the word “good” occurring in less documents.

Weighting can be used to prevent differential lengths of documents from having
differential effects on the representation, or be used to impose certain preconceptions
of which terms are more important (Deerwester, Dumais, Furnas, Landauer, & Harsh-
man, 1990). TF-IDF is a commonly used weighting scheme (Dumais, 1991; Aggarwal,
2018; Jurafsky & Martin, 2023). TF-IDF is intended to reflect how important a term
is to a document in the entire collection. TF stands for the term frequency in a doc-
ument. It can refer to elements of the raw document-term matrix. IDF stands for
inverse document frequency. The inverse document frequency of a term is a decreas-
ing function of the number of documents in which it occurs. This means that a term
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1.1. Techniques in text mining and natural language processing

that occurs in less documents receives more weight.
In most text mining and NLP applications, the focus is on whether two documents

have similar meaning by calculating the similarity between the two documents. How-
ever, in a document-term matrix, individual words provide incomplete and unreliable
evidence about the meaning of a document partly because of synonymy and poly-
semy (Dumais et al., 1988; Deerwester et al., 1990). Synonymy refers to equivalence
in meaning of different words. For example, large and huge are almost synonymous
but are handled as completely different words (two columns in the document-term
matrix) in the similarity computations of documents. Polysemy refers to the fact that
words can have more than one distinct meaning. For instance, mouse can refer to a
computer device or to an animal but will be handled as the same word (one column
in the document-term matrix) in the similarity computation of documents.

LSA tries to overcome the issues of synonymy and polysemy (Dumais et al., 1988;
Deerwester et al., 1990; Aggarwal, 2018). In LSA, individual terms are replaced with
derived latent semantic factors. The particular technique used is singular value de-
composition (SVD). By SVD, a document-term matrix is decomposed into a set of
orthogonal factors. Thus, by a smaller number of these orthogonal factors, low-
dimensional representations of documents and terms are obtained.

SVD approximates a matrix by the product of three smaller matrices which pro-
vides the optimal approximation of the original matrix in a least-squares sense. The
idea is that the product of these three smaller matrices captures the major associa-
tion structure in the matrix and throws out noise (Dumais et al., 1988; Deerwester et
al., 1990; Dumais, 1991; Aggarwal, 2018). SVD tries to pull out the latent semantic
concepts in the data, and each document is represented as a low-dimensional, dense
vector by a combinations of latent semantic concepts. The reduced representation is
often able to improve semantic similarity. As a result, text mining and NLP applica-
tions can be improved by the reduced representation.

LSA combined with TF-IDF is popular. There are three steps to obtain the low-
dimensional representations for documents and terms using the LSA with TF-IDF:

• Step 1: create the TF-IDF matrix;

• Step 2: compute the SVD of the matrix;

• Step 3: derive low-dimensional representations to obtain the coordinates of doc-
uments and terms.

The obtained low-dimensional representation of documents is often used in various
text mining and NLP tasks.

1.1.2 Singular value decomposition of the positive pointwise mu-
tual information matrix

While TF-IDF is a commonly used weighting scheme to study the similarity between
documents in a document-term matrix, PPMI is a commonly used weighting scheme
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1. Introduction

for a word-context matrix (Jurafsky & Martin, 2023). PPMI stands for positive PMI
(pointwise mutual information). PMI is an information-theoretic association measure
which measures the association between a row word and a column word (Church &
Hanks, 1990; Bullinaria & Levy, 2007; Turney & Pantel, 2010; Levy & Goldberg, 2014;
Levy, Goldberg, & Dagan, 2015; Jurafsky & Martin, 2023). PMI is the log of the ratio
of joint proportion of the row word and column word, and the product of marginal
proportion of the row word and marginal proportion of the column word. Thus the
joint proportion is divided by the proportion under statistical independence of rows
and columns. The log transformation ensures that PMI values can in principle range
from negative to positive infinity.

In the PMI matrix, if a row word and a column word co-occur very often compared
to what is expected under independence, i.e., having a genuine association, their PMI
value will be positive. If a row word and a column word co-occur exactly as often as
under independence, i.e., having no relationship, then their PMI value is 0. If a row
word and a column word co-occur rarely, then the PMI value is negative. The raw
word-context matrix contains a large number of zeros. The log of 0 is undefined and
in this situation, it is customary to set the PMI value to 0.

It is worth noting that the elements in the PMI matrix are not monotonic transfor-
mations of observed counts divided by counts under independence (Levy & Goldberg,
2014). This is because word-context pairs that co-occur rarely are negative, but word-
context pairs that never co-occur (i.e., the values in the raw word-context matrix being
0) are set to 0. An alternative is the PPMI matrix. In the PPMI matrix all negative val-
ues are set to 0. In most applications, one makes use of the PPMI matrix instead of the
PMI matrix (Salle, Villavicencio, & Idiart, 2016). Systematic comparisons of various
word-context association metrics show that PPMI provides the best results overall in
semantic similarity tasks (Bullinaria & Levy, 2007).

A common approach is to factorize the PPMI matrix using SVD (Bullinaria & Levy,
2012; Levy & Goldberg, 2014; Levy et al., 2015; Jurafsky & Martin, 2023), which
we call PPMI-SVD, and thus, the low-dimensional representations of row words and
column words are obtained by orthogonal factors of the SVD of the PPMI matrix.
There are three steps to obtain the low-dimensional representations for row words
and column words using PPMI-SVD:

• Step 1: create the PPMI matrix;

• Step 2: compute the SVD of the matrix;

• Step 3: derive low-dimensional representations to obtain the coordinates of row
words and column words.

The obtained low-dimensional representations of row words are often used in various
text mining and NLP tasks.
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1.1. Techniques in text mining and natural language processing

1.1.3 Global vectors for word representation

LSA and PPMI-SVD are techniques that can be used to obtain word representations
via SVD. The resulting vector representations have the property of orthogonality. Two
other popular techniques that can be used to obtain word representations relevant for
the analysis of a word-context matrix are GloVe (the abbreviation for “global vectors
for word representation”) and SGNS (the abbreviation for “skip-gram with negative
sampling”). GloVe and SGNS involve a gradient algorithm instead of SVD. Like SVD,
gradient descent is a well-known optimization algorithm in text mining and NLP.
Gradient descent obtains the values of parameters by minimizing the errors of an
objective function, and the parameters are obtained along with the direction of the
opposite gradient (Cauchy, 1847).

PPMI-SVD via SVD provides the optimal approximation of the PPMI in a least-
squares sense and the resulting low-dimensional representations have the orthogonal
property. In contrast, GloVe provides low-dimensional representations for words by
an adaptive gradient algorithm which minimizes a weighted least-squares function
(Pennington et al., 2014). GloVe has no orthogonal constraints on low-dimensional
representations of row words and column words. The vector representations of row
(target) words by GloVe can be useful in various text mining and NLP tasks (Levy et
al., 2015).

In the weighted objective function of GloVe (Pennington et al., 2014), the matrix
entries use a logarithmic function, and the error of the objective function correspond-
ing to an entry is weighted as a function of the matrix entry with a maximum thresh-
old. The use of a logarithmic function on the matrix entries and a maximum threshold
on the error weight reduces the effect of words with very high frequencies. In the raw
word-context matrix, the frequencies vary a lot, which may cause word representa-
tions to be dominated by huge values (Aggarwal, 2018). The results from Shi and Liu
(2014) and Shazeer, Doherty, Evans, and Waterson (2016) indicate that GloVe factor-
izes a PMI matrix shifted by a fixed constant.

1.1.4 Skip-gram with negative sampling

SGNS stands for skip-gram with negative sampling of word2vec embeddings
(Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, et al., 2013). The
algorithms used in SGNS are stochastic gradient descent and backpropagation
(Rumelhart, Hinton, & Williams, 1986; Rong, 2014). Levy and Goldberg (2014)
showed that SGNS implicitly factorizes a PMI matrix shifted by log n, where n is the
number of negative samples. The vector representations of target words by SGNS are
often useful in various text mining and NLP tasks.

The three techniques PPMI-SVD, GloVe, and SGNS, that are relevant for the anal-
ysis of a word-context matrix, are all related to the PMI matrix. In the Chapter 4, we
show a popular statistical tool CA, which we introduce next, is also related to the PMI
matrix.
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1. Introduction

1.2 Correspondence analysis

A popular statistical technique to analyze contingency tables not often used in text
mining and NLP is correspondence analysis (CA). CA provides a graphical dis-
play to visualize the association between two categorical variables (Greenacre, 1984;
Greenacre & Hastie, 1987; Greenacre, 2017). From the plot, we obtain an understand-
ing of how categories from the same variable or from different variables are related
to each other (Beh & Lombardo, 2021). CA has received considerable attention in a
variety of areas such as ecology (Greenacre, 2013) and marketing (Pitt, Bal, & Plang-
ger, 2020). In the applications of CA, one tends to study contingency tables of two
categorical variables by a two-dimensional plot rather than by criteria, such as the
performance accuracy of a text classifier, in machine learning.

CA is highly flexible. It has no requirement for the matrix except that the entries of
the matrix need to be non-negative. Like LSA and PPMI-SVD, CA is a dimensionality
reduction technique that uses SVD to decompose the matrix of standardized residuals,
which is obtained by double centering and rescaling the initial data matrix. There are
three steps to obtain the representations of categories using the CA:

• Step 1: make the matrix of standardized residuals;

• Step 2: compute the SVD of the matrix;

• Step 3: derive low-dimensional representations to obtain the coordinates of row
and column categories.

The obtained first two-dimensional representations for row categories and column
categories are often used to make a two-dimensional plot. In this PhD dissertation,
CA is used both for the analysis of the document-term matrix and the word-context
matrix. More in-depth discussions of CA are in the Chapters 2, 4, and 5.

1.3 Research question

Document-term and word-context matrices are non-negative and can therefore be an-
alyzed using CA. CA is used in text mining and NLP (Hou & Huang, 2020; Arenas-
Márquez, Martinez-Torres, & Toral, 2021), but is not as popular in this area as LSA,
PPMI-SVD, GloVe, and SGNS. Unlike LSA, PPMI-SVD, GloVe, and SGNS, where the
derived vector representations are building blocks for a variety of text mining and
NLP tasks, CA is often used to make a two-dimensional graphical display.

This restricts the popularity of CA in text mining and NLP to some extent. This
raises the main research question of this dissertation:

In text mining and NLP, how does the performance of CA compare with the perfor-
mance of LSA, PPMI-SVD, GloVe, and SGNS?
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1.4. Contribution and outline of this dissertation

We compare CA with LSA, PPMI-SVD, GloVe, and SGNS from a theoretical and an
empirical point of view. In empirical comparisons, we use the criteria often employed
in machine learning, such as, the performance accuracy, to compare them. Specifi-
cally, we compare CA and LSA in text categorization and authorship attribution by
computing the accuracy and in information retrieval by calculating the MAP (mean
average precision). We compare CA with PPMI-SVD, GloVe, and SGNS in word simi-
larity tasks by computing Spearman’s correlation coefficient.

1.4 Contribution and outline of this dissertation

This dissertation consists of four main studies. The chapters can be summarized as
follows.

Chapter 2 theoretically compares CA and LSA of a document-term matrix. In ad-
dition, the performance of CA is compared to the performance of different versions
of LSA in the context of text categorization and authorship attribution. The crite-
rion used to make comparisons is mainly a measure for accuracy. From a theoretical
point of view it appears that CA has more attractive properties than LSA. For exam-
ple, in LSA, the effect of the margins as well as the dependence between documents
and terms is part of the matrix that is analyzed, while CA eliminates the effect of the
margins and thus the solution only displays the dependence. The results for four em-
pirical datasets show that CA can obtain higher accuracies on text categorization and
authorship attribution than the different versions of LSA.

Chapter 3 also studies the performance of CA and LSA in the context of document-
term matrices. CA and LSA are empirically compared in information retrieval by cal-
culating the MAP (mean average precision). An attempt is made to improve CA by
applying the two kinds of weighting, that are also used in LSA. These are weighting
schemes for the elements of the document-term matrix and the adjustment of the sin-
gular value weighting exponent. The results for four empirical datasets show that
CA always performs better than LSA. Weighting the elements of the raw data matrix
can improve CA; however, it is data dependent and the improvement is small. Ad-
justing the singular value weighting exponent often improves the performance of CA;
however, the extent of the improvement depends on the dataset and the number of
dimensions.

Chapter 4 compares CA with PPMI-SVD, GloVe, and SGNS. Theoretically, like
PPMI-SVD, GloVe, and SGNS, we are able to link CA to the factorization of the PMI
matrix. An attempt is made to improve CA by making use of weighting schemes for
the elements of the word-context matrix. An empirical comparison on word similarity
tasks shows that the overall results for CA with the two weighting schemes are slightly
better than those of PPMI-SVD, GloVe, and SGNS.

It is well known that CA is susceptible to outliers (Greenacre, 2013, 2017;
Choulakian, 2020). In the last chapter of this dissertation, that is, Chapter 5, the
so-called reconstitution algorithm is introduced to cope with outlying cells. This al-
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gorithm can reduce the contribution of the outlying cells in CA. The reconstitution
algorithm is compared with two alternative methods for handling outliers, the sup-
plementary points method and MacroPCA. It is shown that the proposed strategy
works well.

1.5 Future research

In statistics, and in text mining and NLP, similar techniques with different names
may have different levels of development in these areas. A technique in one area may
bring a new perspective to another area. This dissertation focuses on a comparison
between the popular statistical technique CA and four popular text mining and NLP
techniques: LSA, PPMI-SVD, GloVe, and SGNS. Extension to a comparison with other
popular statistical techniques (such as latent class analysis) and popular text mining
and NLP techniques (such as non-negative matrix factorization and probabilistic LSA)
would be an interesting sequel.

The vector representations of documents or words from LSA, PPMI-SVD, GloVe,
and SGNS are building blocks for text mining and NLP tasks. CA has a promising
performance in text mining and NLP compared with LSA, PPMI-SVD, GloVe, and
SGNS. We hope that the text mining and NLP applications can benefit from the low-
dimensional representations of documents or words learned by CA. Thus, the derived
vector representations for documents and words by CA as building blocks in various
text mining and NLP tasks are interesting future study topics.

Finally, in what follows, we propose several other future study topics.

• In order to improve CA, we try different weighting schemes for a document-
term matrix and for a word-context matrix in Chapter 3 and 4, respectively. For
a word-context matrix, we use square-root and root-root weighting schemes and
these two weighting schemes have positive effects on the performance of CA. It
is worth studying what the effects of these two weighting schemes are on the
performance of CA applied to a document-term matrix.

• In Chapter 4, a square-root and a root-root transformation are applied to a word-
context matrix. It is interesting to generalize this power transformation of the
elements of the matrix, such as applying 2/3 to the elements.

Summarizing, we have shown that CA is a technique that matches or outperforms
techniques that are now commonly used in computing science. We think that the
performance of CA in the studies of this dissertation shows that CA deserves more
attention in this field.
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Chapter 2

A comparison of latent semantic
analysis and correspondence analysis

of document-term matrices

Abstract

Latent semantic analysis (LSA) and correspondence analysis (CA) are two
techniques that use a singular value decomposition (SVD) for dimensionality
reduction. LSA has been extensively used to obtain low-dimensional represen-
tations that capture relationships among documents and terms. In this article,
we present a theoretical analysis and comparison of the two techniques in the
context of document-term matrices. We show that CA has some attractive prop-
erties as compared to LSA, for instance that effects of margins, that is, sums
of row elements and column elements, arising from differing document-lengths
and term-frequencies are effectively eliminated, so that the CA solution is opti-
mally suited to focus on relationships among documents and terms. A unifying
framework is proposed that includes both CA and LSA as special cases. We em-
pirically compare CA to various LSA based methods on text categorization in
English and authorship attribution on historical Dutch texts, and find that CA
performs significantly better. We also apply CA to a long-standing question re-
garding the authorship of the Dutch national anthem Wilhelmus and provide
further support that it can be attributed to the author Datheen, among several
contenders.

This chapter is published in Natural Language Engineering as: Qi, Q., Hessen, D. J., Deoskar, T., &
Van der Heijden, P. G. M. (2023). A comparison of latent semantic analysis and correspondence analysis
of document-term matrices. Natural Language Engineering, 1-31. DOI: 10.1017/S1351324923000244.
Author contributions: PvdH provided the idea. QQ worked out the idea, set up the experiments,
and carried them out. TD provided expertise in suitable evaluation methods and literature in natural
language processing. QQ, DH, TD, and PvdH discussed and edited the text. The code used in this
study can be found at https://github.com/qianqianqi28/calsa-tc.
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2. A comparison of latent semantic analysis and correspondence analysis of
document-term matrices

2.1 Introduction

Latent semantic analysis (LSA) is a method used in computational linguistics that
uses singular value decomposition (SVD) for dimensionality reduction in order to ex-
tract usage-based representations of words from textual corpora (Landauer & Dumais,
1997; Jiao & Zhang, 2021). We focus here on LSA of document-term matrices; the
rows of the document-term matrix correspond to the documents and the columns to
the terms, and the elements are frequencies, that is, the number of occurrences of each
term in each document. Documents may have different lengths and margins of docu-
ments refer to the marginal frequencies of documents, namely the sum of each row of
the document-term matrix; also, terms may be more or less often used and margins of
terms refer to the marginal frequencies of terms, namely the sum of each column of
the document-term matrix.

Among many other tasks (Di Gangi, Bosco, & Pilato, 2019; Tseng, Chen, Chang,
& Sung, 2019; Phillips et al., 2021; Hassani, Iranmanesh, & Mansouri, 2021; Ren &
Coutanche, 2021; Gupta & Patel, 2021; Kalmukov, 2022), LSA has been used exten-
sively for information retrieval (W. Zhang, Yoshida, & Tang, 2011; Patil, 2022), by
using associations between documents and terms (Dumais et al., 1988; Deerwester et
al., 1990; Dumais, 1991). The exact factorization achieved via SVD has been shown to
achieve solutions comparable in some ways to those obtained by modern neural net-
work based techniques (Levy & Goldberg, 2014; Levy et al., 2015), commonly used to
obtain dense word representations from textual corpora (Jurafsky & Martin, 2023).

Correspondence analysis (CA) is a popular method for the analysis of contingency
tables (Greenacre, 1984, 2017; Hou & Huang, 2020; Van Dam et al., 2021). It provides
a graphical display of dependence between rows and columns of a two-way contin-
gency table (Greenacre & Hastie, 1987). Like LSA, CA is a dimensionality reduction
method. The methods have much in common as both use SVD. In both cases, after
dimensionality reduction, many text mining tasks, such as text clustering, may be
performed in the reduced dimensional space rather than in the higher dimensional
space provided by the raw document-term matrix.

While a few empirical comparisons of LSA and CA, with mixed results, can be
found in the literature, a comprehensive theoretical comparison is lacking. For exam-
ple, Morin (1999) compared the two methods in the automatic exploration of themes
in texts. Séguéla and Saporta (2011) compared the performance of CA and LSA with
several weighting functions in a document clustering task, and found that CA gave
better results. On the other hand, Séguéla and Saporta (2013) compared the perfor-
mance of CA and LSA with TF-IDF on a recommender system, but found that CA
performs less well.

The present article presents a theoretical comparison of the two techniques, and
places them in a unifying framework. We show that CA has some favorable proper-
ties over LSA, such as a clear interpretation of the distances between documents and
between terms of the original matrix, and a clear relation to statistical independence
of documents and terms. Also, CA can eliminate the margins of documents and terms

12



2.2. Latent semantic analysis

simultaneously. Second, we empirically evaluate and compare the two techniques, by
applying them to text categorization and authorship attribution in two languages. For
text categorization, we use the BBCNews, BBCSport, and 20 Newsgroups datasets in
English. In authorship attribution, we evaluate the two techniques on a large set of
historical Dutch texts written by six well-known Dutch authors of the sixteenth cen-
tury. Here, we additionally use CA to determine the unknown authorship of Wilhel-
mus, the national anthem of the Netherlands, whose authorship is controversial: CA
attributes Wilhelmus to the author Datheen, out of the six contemporary contenders.
To the best of our knowledge, this is the first application of CA to the Wilhelmus. In
both cases, we find that CA performs better.

The rest of the article is organized as follows. Section 2.2 and Section 2.3 elab-
orate on the techniques LSA and CA in turn. A unifying framework is proposed in
Section 2.4. In Section 2.5, we compare LSA and CA in text categorization using the
BBCNews, BBCSport, and 20 Newsgroups datasets. Section 2.6 evaluates the perfor-
mance of LSA and CA for authorship attribution of documents where the author is
known, and uses CA to study the authorship of the Wilhelmus, whose author is un-
known. The article ends with a conclusion.

2.2 Latent semantic analysis

LSA has been extensively used for improving information retrieval by using the asso-
ciations between documents and terms (Dumais et al., 1988; Deerwester et al., 1990),
among many other tasks. Since individual terms provide incomplete and unreliable
evidence about the meaning of a document, in part due to synonymy and polysemy,
individual terms are replaced with derived underlying (latent) semantic factors. Al-
though LSA is a very well-known technique, we first present a detailed analysis of
the mathematics involved in LSA here as this is usually not found in the literature,
and in a later section, it will help in making the comparison between LSA and CA
explicit. We start with LSA of the raw document-term matrix and then discuss LSA
of weighted matrices. The weighted matrices we study here include (i) a matrix with
row-normalized elements with L1, that is, for each row the elements are divided by
the row sum (the L1 norm), so that the sum of the elements of each row is 1; (ii) a
matrix with row-normalized elements with L2, that is, for each row the elements are
divided by the square root of sum of squares of these elements (the L2 norm), so that
the sum of squares of the elements of each row is 1; and (iii) a matrix that is trans-
formed by term frequency-inverse document frequency (TF-IDF).

The discussion is illustrated using a toy dataset, with the aim to present a clear
view of the properties of the dataset captured by LSA and CA; see Table 2.1. The
toy dataset has 6 rows, the documents, and 6 columns, the terms, with the frequency
of occurrence of terms in each document in the cells (Aggarwal, 2018). Based on
term-frequencies in each document, the first three documents can be considered to
primarily refer to cats, the last two primarily to cars, and the fourth document to both.
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The fourth term, jaguar, is polysemous because it can refer to either a cat or a car. We
will see below how the LSA approaches, and later CA, represent these properties in
the data.

Table 2.1: A document-term matrix F : size 6×6

lion tiger cheetah jaguar porsche ferrari
doc1 2 2 1 2 0 0
doc2 2 3 3 3 0 0
doc3 1 1 1 1 0 0
doc4 2 2 2 3 1 1
doc5 0 0 0 1 1 1
doc6 0 0 0 2 1 2

2.2.1 LSA of raw document-term matrix

LSA is an application of the mathematical tool SVD, and can take many forms, de-
pending on the matrix analyzed. We start our discussion of LSA with the SVD of a
raw document-term matrix F , having size m × n, with elements fij , i = 1, ...,m and
j = 1, ...,n (Berry, Dumais, & O’Brien, 1995; Deisenroth, Faisal, & Ong, 2020). Without
loss of generality we assume that n ≥m and F has full rank.

SVD can be used to decompose F into a product of three matrices: U f , Σf , and V f ,
namely

F = U f Σf (V f )T (2.1)

Here U f is a m ×m matrix with orthonormal columns called left singular vectors so
that (U f )TU f = I , V f is a n×m matrix with orthonormal columns called right singular
vectors so that (V f )TV f = I , and Σf is a m ×m diagonal matrix with singular values
on the diagonal in descending order.

We denote the first k columns of U f as the m× k matrix U
f
k , the first k columns of

V f as the n×k matrix V
f
k , and the k largest singular values on the diagonal of Σf as the

k × k matrix Σ
f
k (k ≤m). Then U

f
k Σ

f
k (V f

k )T provides the optimal rank-k approximation

of F in a least-squares sense. That is, X = U
f
k Σ

f
k (V f

k )T minimizes Equation (2.2) among
all matrices X of rank k:

||F −X ||2F =
∑
i

∑
j

(fij − xij)2 (2.2)

The idea is that the matrix U
f
k Σ

f
k (V f

k )T captures the major associational structure in
the matrix and throws out noise (Dumais et al., 1988; Dumais, 1991). The total sum
of squared singular values is equal to tr((Σf )2), where tr is the sum of elements on the
main diagonal of a square matrix. The proportion of the total sum of squared singular
values explained by the rank k approximation is tr((Σf

k )2)/tr((Σf )2).
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SVD can also be interpreted geometrically. As F is of size m × n, each row of F
can be represented as a point in an n-dimensional space with the row elements as co-
ordinates, and each column can be represented as a point in an m-dimensional space
with the column elements as coordinates. In a rank-k approximation, where k < (m,n),
each of the original m documents and n terms is approximated by only k coordinates.
Thus SVD projects the sum of squared Euclidean distances from these row (column)
points to the origin in the n (m)-dimensional space as much as possible to a lower, a k-
dimensional space. The Euclidean distances between the rows of F are approximated
by the Euclidean distances between the rows of U f

k Σ
f
k from below, and the Euclidean

distances between the rows of F T are approximated by the Euclidean distances be-
tween the rows of V f

k Σ
f
k from below.

The choice of k is crucial in many applications (Albright, 2004). A lower rank
approximation cannot always express prominent relationships in text, whereas the
higher rank approximation may add useless noise. How to choose k is an open issue
(Deerwester et al., 1990). In practice, the value of k is selected such that a certain
criterion is satisfied, for example, the proportion of explained total sum of squared
singular values is at least a pre-specified proportion. Also, the use of a scree plot,
showing the decline in subsequent squared singular values, can be considered.

As F is a non-negative matrix, the first column vectors in U and V have the special
property that the elements of the vectors depart in the same direction from the origin
(Perron, 1907; Frobenius, 1912; Hu et al., 2003). We give an intuitive geometric ex-
planation for the m rows of F . Each row is a vector in the non-negative n-dimensional
subspace of Rn. As a result, the first singular vector, being in the middle of the m vec-
tors, is also in the non-negative n-dimensional subspace of Rn. As each vector is the
non-negative subspace, the angle between each vector with the first singular vector is
between 0 and 90 degrees, and therefore the projection of each of the m vectors on the
first singular vector, corresponding to the elements of U1Σ1, is non-negative (or each
is non-positive, as we will discuss now). The same holds for the columns of F and the
first singular vector V1. The reason that the elements of U1 and V1 are all either non-
negative or non-positive is that U

f
1 Σ

f
1(V f

1 )T = −U f
1 Σ

f
1(−V f

1 )T , as the singular values
are defined to be non-negative. As the lengths of the row vectors in n-dimensional
space to the origin are influenced by the sizes of the documents (i.e. the marginal fre-
quencies), larger documents have larger projections on the first singular vector, and
the first dimension mainly displays differences in the sizes of the margins.

As it turns out, the raw document-term matrix F in Table 2.1 does not have full
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rank; its rank is 5. The SVD of F in Table 2.1 is

F = U f Σf (V f )T

=



−0.411 0.175 0.825 0.252 −0.239
−0.646 0.314 −0.562 0.301 −0.279
−0.232 0.127 0.034 −0.099 0.503
−0.562 −0.203 0.044 −0.603 0.333
−0.099 −0.456 −0.024 −0.404 −0.672
−0.186 −0.778 −0.034 0.556 0.223




8.425 0 0 0 0

0 3.261 0 0 0
0 0 0.988 0 0
0 0 0 0.574 0
0 0 0 0 0.272




−0.412 0.214 0.655 −0.344 0.486
−0.488 0.311 0.087 0.180 −0.540
−0.440 0.257 −0.748 −0.259 0.339
−0.611 −0.369 0.039 0.366 −0.148
−0.101 −0.441 −0.014 −0.783 −0.426
−0.123 −0.679 −0.048 0.186 0.392



T

(2.3)
For the raw matrix, LSA-RAW in Table 2.2 shows the singular values, the squares

of the singular values, and the proportions of explained total sum of squared singu-
lar values (denoted as PSSSV). Together, the first two dimensions account for 0.855 +
0.128 = 0.983 of the total sum of squared singular values. Therefore, the documents
and the terms can be approximated adequately in a two-dimensional representation
using U

f
2 Σ

f
2 and V

f
2 Σ

f
2 as coordinates. As the Euclidean distances between the doc-

uments and between the terms in the two-dimensional representation, i.e., between
the rows of U

f
2 Σ

f
2 and the rows of V

f
2 Σ

f
2 , approximate the Euclidean distances be-

tween rows and between columns of the original matrix F , such a two-dimensional
representation simplifies the interpretation of the matrix considerably.

On the other hand, it is somewhat more difficult to examine the relation be-
tween a document and a term. The reason is that, by choosing a Euclidean distance-
representation both for the documents and for terms, the singular values are used
twice in the coordinates U

f
2 Σ

f
2 and V

f
2 Σ

f
2 , and the inner product of coordinates of a

document and coordinates of a term does not approximate the corresponding value
in F . Directions from the origin can be interpreted, though, as the double use of the
singular values only leads to relatively reduced coordinates on the second dimension
in comparison to the coordinates on the first dimension.

The two-dimensional representation of LSA-RAW is shown in Figure 2.1a. In Fig-
ure 2.1a Euclidean distances between documents, and between terms, reveal the sim-
ilarity of documents, and terms, respectively. For example, documents 5 and 6 are
close, and similar in the sense that their Euclidean distance is small. For these two
documents the Euclidean distance in the matrix F is 1.414, and in the first two di-
mensions it is 1.279, so the first two dimensions provide an adequate representation
of their similarity. The value 1.279 is much smaller than the Euclidean distances be-
tween Documents 5 and 1 (3.338), 5 and 2 (5.248), 5 and 3 (2.205), 5 and 4 (3.988) as
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LSA−TFIDF
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Figure 2.1: A two-dimensional plot of documents and terms (a) for raw matrix F ; (b) for row-
normalized data F L1; (c) for row-normalized data F L2; (d) for matrix FTF-IDF.
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Table 2.2: The singular values, the squares of singular values, and the proportion of explained total
sum of squared singular values (PSSSV) for each dimension of LSA of F , of F L1, of F L2, and of FTF-IDF.

methods items dim1 dim2 dim3 dim4 dim5

LSA-RAW
singular value 8.425 3.261 0.988 0.574 0.272
square of singular value 70.985 10.635 0.976 0.330 0.074
PSSSV 0.855 0.128 0.012 0.004 0.001

LSA-NROWL1
singular value 1.070 0.692 0.123 0.114 0.046
square of singular value 1.146 0.479 0.015 0.013 0.002
PSSSV 0.692 0.289 0.009 0.008 0.001

LSA-NROWL2
singular value 2.095 1.228 0.239 0.198 0.092
square of singular value 4.388 1.507 0.057 0.039 0.009
PSSSV 0.731 0.251 0.009 0.007 0.001

LSA-TFIDF
singular value 11.878 5.898 1.565 1.017 0.449
square of singular value 141.088 34.782 2.451 1.034 0.202
PSSSV 0.786 0.194 0.014 0.006 0.001

well as the Euclidean distances between Documents 6 and 1 (3.638), 6 and 2 (5.262),
6 and 3 (2.975), 6 and 4 (3.681). On the first dimension all documents and terms
have a negative coordinate (see above). There is an order of 5, 6, 3, 1, 4, and 2 on the
first dimension. This order is related to the row margins of Table 2.1, where 2 and 4
have the highest frequencies and therefore are further away from the origin. Overall,
the two-dimensional representation of the documents reveals a mix of the sizes of the
documents, the row margins Σjfij , and the relative use of the terms by the documents,
i.e., for row i this is the vector of elements fij /Σjfij , also known as the row profile for
row i. This mix makes the graphic representation difficult to interpret. Similarly,
porsche and ferrari are lower left but close to the origin, tiger, cheetah, and lion are up-
per left and further away from the origin, and jaguar is far away at the lower left. Also
there is a mix of the sizes of the terms, i.e., for column j this is column margin Σifij ,
and the relative use of the documents by the terms, i.e., for column j this is the vector
of elements fij /Σifij , also known as the column profile for column j. The terms porsche
and ferrari are related to documents 5 and 6 as they have the same position w.r.t. the
origin, and similarly for tiger, cheetah, and lion to documents 1, 2, and 3, and jaguar to
document 4.

Although the first dimension accounts for 85.5 per cent of the total sum of squared
singular values, it provides little information about the relations among documents
and terms. In particular, from Table 2.1 we expect that documents 1 to 3 are similar,
documents 5 and 6 are similar, and document 4 is in-between; term jaguar is between
cat terms (tiger, cheetah, and lion) and car terms (porsche and ferrari), but we cannot
see that from the first dimension. This is because the margins of Table 2.1 play a
dominant role in the first dimension.
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2.2.2 LSA of weighted document-term matrix

Weighting can be used to prevent differential lengths of documents from having dif-
ferential effects on the representation, or be used to impose certain preconceptions
of which terms are more important (Deerwester et al., 1990). The frequencies fij in
the raw document-term matrix F can be transformed with the aim to provide a better
approximation of the interrelations between documents and terms (Nakov, Popova,
& Mateev, 2001). The weight wij for term j in document i is normally expressed
as a product of three components (Salton & Buckley, 1988; Kolda & O’leary, 1998;
Ab Samat, Murad, Abdullah, & Atan, 2008)

wij = L(i, j)×G(j)×N (i) (2.4)

where the local weighting L(i, j) is the weight of term j in document i, the global
weighting G(j) is the weight of the term j in the entire document set, and N (i) is the
normalization component for document i.

When L(i, j) = f (i, j), G(j) = 1, and N (i) = 1, the weighted F is equal to F . In matrix
notation, Equation (2.4) can be expressed as W = NLG, where N is a diagonal matrix
with diagonal elements N (i) and G is a diagonal matrix with diagonal elements G(j).
Notice that pre- or post-multiplying by a diagonal matrix leaves the rank of the matrix
L intact.

We examine two common ways to weight fij . One is row normalization (Salton &
Buckley, 1988; Ab Samat et al., 2008) with L1 and L2. The other is TF-IDF (Dumais,
1991).

2.2.2.1 SVD of matrix with row-normalized elements with L1

In row-normalized weighting with L1, we use Equation (2.4) with L(i, j) = fij , G(j) = 1,
and N (i) = 1/

∑n
j=1 fij , and apply an SVD to this transformed matrix that we denote as

F L1, which consists of the row profiles of F . See Table 2.3. The last row, the average
row profile, is the row profile of the column margins of Table 2.1.

Table 2.3: Row profiles of F

lion tiger cheetah jaguar porsche ferrari total
doc1 0.286 0.286 0.143 0.286 0.000 0.000 1.000
doc2 0.182 0.273 0.273 0.273 0.000 0.000 1.000
doc3 0.250 0.250 0.250 0.250 0.000 0.000 1.000
doc4 0.182 0.182 0.182 0.273 0.091 0.091 1.000
doc5 0.000 0.000 0.000 0.333 0.333 0.333 1.000
doc6 0.000 0.000 0.000 0.400 0.200 0.400 1.000

average row profile 0.171 0.195 0.171 0.293 0.073 0.098 1.000

We perform LSA of F L1 and find Table 2.2, part LSA-NROWL1. This shows that a
rank 2 matrix approximates the data well as 0.692 + 0.289 = 0.981 of the total sum of
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squared singular values is explained by these two dimensions. The first two columns
of LSA of F L1 can be used to approximate F L1, see Equation (2.5).

F L1 ≈ U L1
2 ΣL1

2 (V L1
2 )T

=



−0.423 0.327
−0.415 0.332
−0.408 0.349
−0.401 0.097
−0.384 −0.575
−0.417 −0.567


[

1.070 0
0 0.692

]


−0.347 0.374
−0.382 0.417
−0.326 0.350
−0.692 −0.174
−0.232 −0.428
−0.310 −0.592



T

(2.5)

Documents and terms can be projected on a two dimensional space using U L1
2 ΣL1

2
and V L1

2 ΣL1
2 as coordinates, see Figure 2.1b. In this representation documents 1, 2,

and 3 are quite close, and so are 5 and 6. Also, the terms ferrari and porsche are close
and related to 5 and 6, tiger, lion, and cheetah are close and related to 1, 2, and 3.

Although the first dimension accounts for 69.2 per cent of the total sum of squared
singular values, this dimension does not provide information about different use of
terms by the documents as all documents have a similar coordinate. This is caused
by the same marginal value 1 for each of the documents in F L1, which leads to almost
the same distance from the origin. Also, we would expect jaguar to be in between
cat terms (tiger, cheetah, and lion) and car terms (porsche and ferrari), but on the first
dimension it appears as a separate, third group. This is caused by the high values in
its column in F L1, which lead to a larger distance from the origin.

2.2.2.2 SVD of matrix with row-normalized elements with L2

In row-normalized weighting with L2, we use Equation (2.4) with L(i, j) = fij , G(j) = 1,

and N (i) = 1/
√∑n

j=1 f
2
ij . The transformed matrix, denoted as F L2, is shown in Ta-

ble 2.4. We then perform LSA on Table 2.4. Table 2.2, part LSA-NROWL2, indicates
that a rank 2 matrix approximates the data well, as the sum of the PSSSV of the first
two dimensions 0.731 + 0.251 = 0.982 contributes to 98.2 per cent of the total sum of
squared singular values. The first two columns of LSA of F L2 can be used to approxi-
mate F L2, see Equation (2.6).

F L2 ≈ U L2
2 ΣL2

2 (V L2
2 )T

=



−0.443 0.259
−0.445 0.271
−0.444 0.295
−0.476 0.017
−0.293 −0.635
−0.310 −0.608


[

2.095 0
0 1.228

]


−0.394 0.323
−0.432 0.362
−0.374 0.304
−0.659 −0.263
−0.178 −0.460
−0.227 −0.625



T

(2.6)
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2.2. Latent semantic analysis

Table 2.4: A row-normalized document-term matrix F L2

lion tiger cheetah jaguar porsche ferrari
doc1 0.555 0.555 0.277 0.555 0.000 0.000
doc2 0.359 0.539 0.539 0.539 0.000 0.000
doc3 0.500 0.500 0.500 0.500 0.000 0.000
doc4 0.417 0.417 0.417 0.626 0.209 0.209
doc5 0.000 0.000 0.000 0.577 0.577 0.577
doc6 0.000 0.000 0.000 0.667 0.333 0.667

Documents and terms can be projected on a two dimensional space using U L2
2 ΣL2

2
and V L2

2 ΣL2
2 as coordinates, see Figure 2.1c. In this representation documents 1, 2,

and 3 are quite close, and so are 5 and 6. Also, the terms ferrari and porsche are close
and related to 5 and 6, tiger, lion, and cheetah are close and related to 1, 2, and 3.

Although the first dimension accounts for 73.1 per cent of the total sum of squared
singular values, and so, a major portion of the information in the matrix, we do not
find the important aspect in the data that document 4 should be in between docu-
ments 1-3 on the one hand and documents 5-6 on the other hand on this dimension.
This is caused by the high values in the row for doc4 in Table 2.4, which lead to a
larger distance from the origin than the other documents have. Also, we would expect
jaguar to be in between cat terms (tiger, cheetah, and lion) and car terms (porsche and
ferrari), but on the first dimension it appears as a separate, third group. This is caused
by the high values in its column in Table 2.4, which lead to a larger distance from the
origin.

2.2.2.3 SVD of the term frequency-inverse document frequency matrix

TF-IDF is one commonly used transformation of text data. We use Equation (2.4) with
L(i, j) = fij , G(j) = 1 + log(ndocs

dfj
), and N (i) = 1, one form of TF-IDF, where ndocs is the

number of documents in the set and dfj is the number of documents where term j
appears, and then apply an SVD to this transformed matrix that we denote as FTF-IDF,
see Table 2.5. As is common in the literature, here we choose 2 as the base of the
logarithmic function.

Table 2.5: A document-term matrix FTF-IDF

lion tiger cheetah jaguar porsche ferrari
doc1 3.170 3.170 1.585 2 0 0
doc2 3.170 4.755 4.755 3 0 0
doc3 1.585 1.585 1.585 1 0 0
doc4 3.170 3.170 3.170 3 2 2
doc5 0.000 0.000 0.000 1 2 2
doc6 0.000 0.000 0.000 2 2 4
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We perform LSA of Table 2.5 and find Table 2.2, part LSA-TFIDF. This shows that
a rank 2 matrix approximates the data well as 0.786 + 0.194 = 0.980 of the total sum
of squared singular values is explained by these two dimensions. The matrix FTF-IDF

in Table 2.5 is approximated in the first two dimensions as follows:

FTF-IDF ≈ U TF-IDF
2 ΣTF-IDF

2 (V TF-IDF
2 )T

=



−0.411 0.175
−0.654 0.296
−0.239 0.112
−0.563 −0.245
−0.086 −0.469
−0.148 −0.768


[

11.878 0
0 5.898

]


−0.466 0.151
−0.554 0.231
−0.499 0.184
−0.429 −0.236
−0.134 −0.502
−0.159 −0.763



T

(2.7)

Figure 2.1d is a two-dimensional plot of the documents and terms using
U TF-IDF

2 ΣTF-IDF
2 and V TF-IDF

2 ΣTF-IDF
2 as coordinates for the 6×6 sample document-term

matrix FTF-IDF. The configuration of documents in Figure 2.1d is very similar to that
in Figure 2.1a. The configuration of terms in Figure 2.1d is different from that of
terms in Figure 2.1a. In Figure 2.1d, there is an order of porsche, ferrari, jaguar, lion,
cheetah, and tiger on the first dimension, whereas in Figure 2.1a, there is an order of
porsche, ferrari, lion, cheetah, tiger, and jaguar on the first dimension. Compared with
Figure 2.1a, the first dimension of Figure 2.1d shows that jaguar is in between cat
terms (tiger, cheetah, and lion) and car terms (porsche and ferrari).

2.2.2.4 Out-of-sample documents

Representing out-of-sample documents in the k-dimensional subspace of LSA is im-
portant for many applications. Suppose an out-of-sample document d is a row vector.
To represent d in lower dimensional space, first the out-of-sample document d can
be transformed in the same way as the original documents (Dumais, 1991). Trans-
formations for the above four applications of LSA are d

f
w = d, dL1

w = d/
∑n

j=1dj , d
L2
w =

d/
√∑n

j=1d
2
j , and dTF-IDF

w = [d1G(1), · · · ,dnG(n)]. The coordinates of the out-of-sample

document d in LSA-RAW, LSA-NROWL1, LSA-NROWL2, and LSA-TFIDF are then cal-
culated by d

f
wV f , dL1

w V L1, dL2
w V L2, and dTF-IDF

w V TF-IDF, respectively (Aggarwal, 2018).

2.2.3 Conclusions regarding LSA of different matrices

In the raw document-term matrix the relationships among the documents and terms
is blurred by differences in margins arising from differing document-lengths and
marginal term-frequencies. Thus LSA of the raw matrix leads to a mix of margins,
and relationships among documents and terms. In order to provide a better approx-
imation of the interrelations between documents and terms, weighting schemes were
used.

22



2.3. Correspondence analysis

Normalizations of the documents have a beneficial effect. Yet, the properties of the
frequencies that are evident from Table 2.1 where we expect, for example, that jaguar
lies in between porsche and ferrari on the one hand and tiger, cheetah, and lion on the
other hand, are not fully represented on the first dimension. This is due to the fact
that the column margins of Tables 2.3 and 2.4 still play a role on the first dimension.
The TF-IDF transformation also has a positive effect. Yet LSA is not successful. For
example, we expect that documents 1 to 3 are similar, 5 and 6 are similar, and docu-
ment 4 is in-between, but this order is not found in the first dimension. This is due to
the fact that the row margins of Table 2.5 still play a role on the first dimension.

Generally, solutions of LSA have the drawback that they include the effect of the
margins as well as the dependence. In the first dimension these margins play a dom-
inant role as all points depart in the same direction from the origin. We can try to
repair this property of LSA, by applying transformations of the rows and columns of
Table 2.1 simultaneously. However, the transformations appear ad hoc. Instead we
present in the next section a different technique, which better fits the properties of
the data: CA.

2.3 Correspondence analysis

CA provides a low-dimensional representation of the interaction or dependence be-
tween the rows and columns of the contingency table (Greenacre & Hastie, 1987),
which can be used to reveal the structure in the data (Hayashi, 1992). CA has been
proposed multiple times, apparently independently, emphasizing different proper-
ties of the technique (Gifi, 1990). Some important contributions are provided in the
Japanese literature, by Hayashi (1956, 1992), who emphasizes the property of CA
that it maximizes the correlation coefficient between the row and column variable by
assigning numerical scores to these variables; in the French literature, by Benzécri
(1973), who emphasizes a distance interpretation, where Greenacre (1984) expressed
Benzécri’s work in a more convenient mathematical notation; and in the Dutch liter-
ature, by Gifi (1990) and Michailidis and De Leeuw (1998), who emphasize optimal
scaling properties. We present CA here mainly from the French perspective.

The aim of CA as developed by Benzécri is to find a representation of the rows
(columns) of frequency matrix F in such a way that Euclidean distances between the
rows (columns) in the representation correspond to so-called χ2-distances between
rows (columns) of F (Gifi, 1990). We work with P with elements pij = fij /f++, where
f++ is the sum of all elements of F . In the χ2-distance profiles play an important role.
The squared χ2-distance between the kth row profile with elements pkj /rk and the lth
row profile with elements plj /rl is

δ2
kl =

∑
j

(
pkj /rk − plj /rl

)2

cj
(2.8)
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where ri (also called the average column profile) and cj (the average row profile) are
the row and column sums of P respectively. Thus the difference between the jth ele-
ments of the two profiles is weighted by column margin (i.e. the last row of Table 2.3),
cj , so that this difference plays a relatively more important role in the χ2-distance if it
stems from a column having a small value cj .

A representation where Euclidean distances between the rows of the matrix are
equal to χ2-distances is found as follows. In matrix notation, the matrix whose Eu-
clidean distances between the rows are equal to χ2-distances between rows of F is

equal to D−1
r P D

− 1
2

c , where Dr is a diagonal matrix with ri as diagonal elements and Dc
is a diagonal matrix with cj as diagonal elements. Suppose we take the SVD of

D
− 1

2
r P D

− 1
2

c = U spΣsp(V sp)T (2.9)

Here D
− 1

2
r P D

− 1
2

c is a matrix with standardized proportions, hence the superscripts sp
on the right hand side of the equation. Then, if we pre-multiply both sides of Equa-

tion (2.9) with D
− 1

2
r , we get

D−1
r P D

− 1
2

c = D
− 1

2
r U spΣsp(V sp)T (2.10)

Thus a representation using the rows of D
− 1

2
r U spΣsp as row coordinates leads to Eu-

clidean distances between these row points being equal to χ2-distances between rows
of F . Similar to Equation (2.8) we can also define χ2-distances between the columns of

F , and in matrix notation this leads to the matrix D
− 1

2
r P D−1

c . Then, in a similar way as
for the χ2-distances for the rows, Equation (2.9) can be used as an intermediate step
to go to a solution for the columns. Post-multiplying the left and right hand sides in

Equation (2.9) by D
− 1

2
c provides us with the coordinates for a representation where Eu-

clidean distances between the column points (the rows of D
− 1

2
c V spΣsp as coordinates

for these columns) are equal to χ2-distances between the columns of F . Notice that
Equation (2.9) plays the dual role of an intermediate step in going to a solution both
for the rows and the columns.

The matrices D
− 1

2
r U spΣsp and D

− 1
2

c V spΣsp have a first column being equal to 1, a
so-called artificial dimension. This artificial dimension reflects the fact that the row
margins of the matrix D−1

r P with the row profiles of Table 2.1 are 1 and the column
margins of the matrix P D−1

c with the column profiles of Table 2.1 are 1. This artificial

dimension is eliminated by not taking the SVD of D
− 1

2
r P D

− 1
2

c but of D
− 1

2
r (P − E)D

− 1
2

c ,
where the elements of E are defined as the product of the margins ri and cj . Due to

subtracting E from P , the rank of D
− 1

2
r (P −E)D

− 1
2

c is m−1, which is 1 less than the rank

of F . Notice that the elements of D
− 1

2
r (P −E)D

− 1
2

c are standardized residuals under the
independence model, and the sum of squares of these elements yields the so-called
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2.3. Correspondence analysis

total inertia, which is equal to the Pearson χ2 statistic divided by sample size f++. By
taking the SVD of the matrix of standardized residuals, we get

D
− 1

2
r (P −E)D

− 1
2

c = U srΣsr(V sr)T (2.11)

and
D−1

r (P −E)D−1
c = Φ srΣsr(Γ sr)T (2.12)

where Φ sr = D
− 1

2
r U sr and Γ sr = D

− 1
2

c V sr . We use the abbreviation sr for the matrices
on the right hand side of Equation (2.11) to refer to the matrix of standardized resid-
uals on the left hand side of the equation. CA simultaneously provides a geometric
representation of row profiles and column profiles of Table 2.1, where the effects of
row margins and column margins of Table 2.1 are eliminated. Φ sr and Γ sr are called
standard coordinates of rows and columns, respectively. They have the property that
their weighted average is 0 and weighted sum of squares is 1:

1TDrΦ
sr = 0T = 1TDcΓ

sr (2.13)

and
(Φ sr)TDrΦ

sr = I = (Γ sr)TDcΓ
sr (2.14)

Equation (2.13) reflects the fact that the row and column margins of P −E vanish (Van
der Heijden, De Falguerolles, & De Leeuw, 1989).

We can make graphic displays using Φ sr
k Σ

sr
k and Γ sr

k Σ
sr
k as coordinates, which has

the advantage that Euclidean distances between the points approximate χ2-distances
both for the rows of F and for the columns of F , but it has the drawback that Σsr

k
is used twice. We can also make graphic displays using Φ sr

k Σ
sr
k and Γ sr

k , or Φ sr
k and

Γ sr
k Σ

sr
k . Thus, from Equation (2.12), this has the advantage that the inner product

of the coordinates of a document and the coordinates of a term approximates the
corresponding value in D−1

r (P −E)D−1
c .

If we choose Φ srΣsr for the row points and Γ sr for the column points, then CA has
the property that the row points are in weighted average of the column points, where
the weights are the row profile values. Actually, Γ sr can be seen as coordinates for
the extreme row profiles projected onto the subspace. The extreme row profiles are
totally concentrated into one of the terms. For example, [0,0,1,0,0,0] represents the
row profile of a document that is totally concentrated into cheetah. At the same time, if
we choose Φ sr for the row points and Γ srΣsr for the column points, column points are
in weighted average of row points, where the weights are the column profile values. In
a similar way as for the rows, Φ sr provide coordinates for the extreme column profiles
projected onto the subspace. The relationship between these row points and column
points can be shown by rewriting Equation (2.11) and using Equation (2.13) as

D−1
r P Γ sr = Φ srΣsr (2.15)

and
D−1

c P TΦ sr = Γ srΣsr (2.16)
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These equations are called the transition formulas. In fact, using transition formulas
is one of the ways in which the solution of CA can be obtained: starting from arbitrary
values for the columns, one first centers and standardizes the column coordinates so
that the weighted sum is 0 and the weighted sums of squares is 1, next places the rows
in the weighted average of the columns, then places the columns in the weighted av-
erage of the rows, and so on, until convergence. This is known as reciprocal averaging
(M. O. Hill, 1973, 1974). Using the transition formula (2.15), the coordinates of the
out-of-sample document d is (d/

∑n
j=1dj)Γ

sr (Greenacre, 2017).
The origin in the graphic representation for the rows stands for the average row

profile, which can be seen as follows. Let D−1
r P D

− 1
2

c be the matrix where Euclidean
distances between the rows are χ2-distances between rows of F . Assume we plot the
rows of this matrix using the n elements of each row as coordinates. Then, eliminating

the artificial dimension in D−1
r P D

− 1
2

c leads to the subtraction of the average row profile
from each row, as D−1

r E is a matrix with the average row profile in each row. In other
words, the cloud of row points is translated to the origin, with the average row pro-
file being exactly in the origin (compare Equation (2.13): 0T = 1TDcΓ

sr). When two
row points are departing in the same way from the origin, they depart in the same
way from the average profile, and when two row points are on opposite sides of the
origin, they depart in opposite ways from the average profile. If the documents and
terms are statistically independent, then pij /ri = cj , and all document profiles would
lie in the origin. Thus comparing row profiles with the origin is a way to study the de-
parture from independence and to study the relations between documents and terms.
Similarly, the origin in the graphic representation for the columns stands for average
column profile.

We now analyze the example discussed in the LSA section. There are three steps

to obtain the CA solution. Step 1: make the matrix D
− 1

2
r (P − E)D

− 1
2

c of standardized

residuals; Step 2: compute the SVD of the matrix; Step 3: derive Φ sr = D
− 1

2
r U sr and

Γ sr = D
− 1

2
c V sr , and post-multiply Φ sr and Γ sr by Σsr to obtain the coordinates. Ta-

ble 2.6 shows the matrix D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals (in lower-case no-
tation, the elements of the matrix are (pij − eij)/

√
eij).

Table 2.6: The matrix D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals

lion tiger cheetah jaguar porsche ferrari
doc1 0.115 0.085 -0.028 -0.005 -0.112 -0.129
doc2 0.014 0.091 0.128 -0.019 -0.140 -0.162
doc3 0.060 0.039 0.060 -0.025 -0.084 -0.098
doc4 0.014 -0.016 0.014 -0.019 0.034 -0.011
doc5 -0.112 -0.119 -0.112 0.020 0.260 0.204
doc6 -0.144 -0.154 -0.144 0.069 0.164 0.338
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2.3. Correspondence analysis

Table 2.7: The singular values, the inertia, and the proportions of explained total inertia for each
dimension of CA.

dim1 dim2 dim3 dim4
singular value 0.689 0.131 0.124 0.044

inertia 0.475 0.017 0.015 0.002
the proportion of inertia 0.932 0.034 0.030 0.004

We perform an SVD of D
− 1

2
r (P −E)D

− 1
2

c in Table 2.6 and find Table 2.7. Due to sub-
tracting E from P , the rank of the matrix in Table 2.6 is 4, which is 1 less than that
in Table 2.1. The proportion of the total inertia explained by only the first dimen-

sion accounts for 0.932 of the total inertia. The matrix D
− 1

2
r (P −E)D

− 1
2

c in Table 2.6 is
approximated in the first two dimensions as follows:

D
− 1

2
r (P −E)D

− 1
2

c ≈ U sr
2 Σsr

2 (V sr
2 )T

=



−0.286 0.789
−0.368 −0.517
−0.231 −0.025

0.007 −0.138
0.547 −0.206
0.656 0.220


[
0.689 0

0 0.131

]


−0.301 0.544
−0.338 0.090
−0.303 −0.761

0.102 0.152
0.512 −0.275
0.656 0.136



T

(2.17)

Figure 2.2a is the map with a symmetric role for the rows and the columns, having
Φ sr

2 Σsr
2 and Γ sr

2 Σsr
2 as coordinates. The larger the deviations from document (term)

points to the origin are, the larger the dependence between documents and terms.
Looking only at the first dimension and document profiles’ positions, we can see that
the groups furthest apart are documents 1-3 on the left-hand side, opposed to doc-
uments 5-6 on the right-hand side. They differ in opposite ways from the average
row profile that lies in the origin. For the term points on the first dimension, the cat
terms (tiger, cheetah, and lion) lie on the left, and car terms (porsche and ferrari) on the
right. They differ in opposite ways from the average column profile. Importantly, CA
clearly displays the properties we see in the data matrix, as document 4 lies between
documents 1-3 and documents 5-6, and the term jaguar lies between cat terms and car
terms, unlike all four of the LSA-based analyses presented in Figure 2.1.

Figure 2.2b is the asymmetric map with documents in the weighted average of
the terms (Φ sr

2 Σsr
2 and Γ sr

2 as coordinates, notice that the position of the documents is
identical as in Figure 2.2a). From this graphic display we can study the position of
the documents as they are in the weighted average of the terms, using the row profile
elements as weights. For example, document 1 is closer to lion and tiger than to porsche
and ferrari, because it has higher profile values than average values on terms lion and
tiger (both 0.286 in comparison with the average profile values 0.171 and 0.195) and
lower profile values on the terms porsche and ferrari (both 0.000 in comparison to
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Dimension 1: 0.475 (93.2%)
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Figure 2.2: The data of Table 2.1 using CA for (a) symmetric map; (b) asymmetric map.

0.073 and 0.098), see Table 2.3. Thus document 1 is pulled into the direction of lion
and tiger.

2.3.1 Conclusions regarding CA

In CA, an SVD is applied to the matrix D
− 1

2
r (P − E)D

− 1
2

c of standardized residuals.
Due to E, in CA the effect of the margins is eliminated—a solution only displays the
relationships among documents and terms. In CA all points are scattered around the
origin and the origin represents the profile of the row and column margins of F .

In comparison, LSA also tries to capture the relationships among documents and
terms, which is not easy. The reason is that these relations are blurred by the effect of
the margins that are also displayed in the LSA solution. CA does not have this prop-
erty. Therefore it appears that CA is a better tool for information retrieval, natural
language processing, and text mining.

2.4 A unifying framework

Here we present a unifying framework that integrates LSA and CA. This section also
serves the purpose of showing their similarities and their differences.

To first summarize LSA (see section 2.2.2 for details), a matrix is weighted, and the
weighted matrix is decomposed. Assume we start off with the document-term matrix
F , the row weights of F are collected in the diagonal matrix N , the column weights
in the diagonal matrix G, and there may be local weighting of the elements fij of F
leading to a locally weighted matrix L. Thus the weighted matrix W can be written as
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2.4. A unifying framework

the matrix product
W = NLG (2.18)

Subsequently, in LSA the matrix W is decomposed using SVD into a product of
three matrices: the matrix U with orthonormal columns, the diagonal matrix Σ with
singular values in descending order, and the matrix V with orthonormal columns,
namely

W = UΣV T (2.19)

with
U TU = I = V TV (2.20)

Graphic representations are usually made using UΣ as coordinates for the rows and
V Σ for the columns.

In contrast, in CA we take the SVD of the matrix of standardized residuals. Let
P be the matrix with proportions pij = fij /f++, where f++ is the sum of all elements
of F ; let E be the matrix with expected proportions under independence eij = ricj ,
where ri and cj are the row and column sums of P respectively; let Dr and Dc be
diagonal matrices with row and column sums ri and cj respectively. Thus the matrix

of standardized residuals is D
− 1

2
r (P −E)D

− 1
2

c . If we take the SVD of this matrix we get
(2.11),

D
− 1

2
r (P −E)D

− 1
2

c = UΣV T (2.21)

In CA the matrices U and V are further adjusted by

Φ = D
− 1

2
r U ,Γ = D

− 1
2

c V (2.22)

so that we can write
D−1

r (P −E)D−1
c = ΦΣΓ T (2.23)

with
ΦTDrΦ = I = Γ TDcΓ (2.24)

Graphic representations are usually made using ΦΣ and Γ Σ as coordinates for the
rows and columns respectively.

This brings us to the point where we can formulate a unifying framework. We
distinguish the matrix to be analyzed and the decomposition of this matrix. For the
matrix to be analyzed the weighted matrix defined in (2.18) can be used by LSA as
well as by CA. Equation (2.18) is sufficiently general for LSA. For CA, using (2.21), we

set N = D
− 1

2
r , L = P −E, and G = D

− 1
2

c . This shows that the matrix decomposed in CA
in (2.21) can be formulated in the LSA framework in (2.18).

The decomposition used in LSA leads to matrices U with orthonormal columns
and V with orthonormal columns used for coordinates, see (2.20), whereas in CA the
decomposition leads to matrices Φ with weighted orthonormal columns and Γ with
weighted orthonormal columns, see (2.24). If we rewrite (2.20) as U T IU = I = V T IV ,
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we see this is a difference between using an identity metric I and a metric defined by
the margins that are collected in Dr and in Dc. The influence of this metric used in CA
is most clearly visible in the definition of the chi-squared distances (2.8), that makes
that, for example, for row profiles i and i′, equally large differences between columns
j and j ′ are weighted by the margins of j and j ′ in such a way that a column with a
smaller margin takes a larger part in the chi-squared distance between i and i′.

2.5 Text categorization

LSA is widely used in text categorization (W. Zhang et al., 2011; Elghazel, Aussem,
Gharroudi, & Saadaoui, 2016; Dzisevič & Šešok, 2019; Phillips et al., 2021). However,
to our best knowledge, few papers on text categorization use CA, even though CA is
similar to LSA. In this section, we compare the performance of LSA and CA in text
categorization of three English datasets: BBCNews, BBCSport, and 20 Newsgroups.
These datasets have recently been studied in the evaluation of text categorization, for
example, Barman and Chowdhury (2020).

2.5.1 Datasets and methods

The BBCNews dataset (Greene & Cunningham, 2006) consists of 2,225 documents
that are divided into five categories: “Business” (510 documents), “Entertainment”
(386), “Politics” (417), “Sport” (511), and “Technology” (401). The BBCSport dataset
(Greene & Cunningham, 2006) consists of 737 documents that are divided into five
categories: “athletics” (101), “cricket” (124), “football” (265), “rugby” (147), and
“tennis” (100). The 20 Newsgroups dataset, i.e. the 20news-bydata version (Rennie,
2005), consists of 18,846 documents that are divided into 20 categories. The dataset
is sorted into a training (60 per cent) and a test set (40 per cent). We use a sub-
set of these documents. Specifically, we choose 2,963 documents from three cate-
gories: “comp.graphics” (584 documents for training set and 389 documents for test
set), “rec.sport.hockey” (600 and 399), and “sci.crypt” (595 and 396). The reason we
choose a subset (three categories) of 20 Newsgroups is that we want to explore text
categorization for datasets with a different but similar number of categories: six (for
Wilhelmus dataset in Section 2.6), five (for BBCNews), five (for BBCSport), and three
(for a subset of 20 Newsgroups).

To pre-process these datasets we project all characters to lower case, remove punc-
tuation marks, numbers, and stop words, and apply lemmatization. Subsequently,
terms with frequencies lower than 10 are ignored. In addition, following Silge and
Robinson (2017), we remove unwanted parts of the 20 Newsgroups dataset such as
headers (including fields like “From:” or “Reply-To:” that describe the message), be-
cause these are mostly irrelevant for text categorization.

We use two approaches to compare LSA and CA. One is visualization, where we
use LSA and CA to visualize documents by projecting them onto two dimensions. The
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other is to use distance measures to quantitatively evaluate and compare performance
in text categorization. We use four different methods based on Euclidean distance for
measuring the distance from a document to a set of documents (Guthrie, 2008; Kop-
pel & Seidman, 2013; Kestemont, Stover, Koppel, Karsdorp, & Daelemans, 2016). We
choose the Euclidean distance because it plays a central role in the geometric inter-
pretation of LSA and CA (see section 2.2 and 2.3).

Centroid Euclidean distance between the document and the centroid of the set of
documents. The centroid for a set of documents is calculated by averaging the
coordinates across all these documents.

In the other three methods we first calculate the Euclidean distance between the doc-
ument and every document of the set of documents.

Average average of these Euclidean distances

Single the minimum Euclidean distance among the Euclidean distances

Complete the maximum Euclidean distance among the Euclidean distances.

These four methods are similar to the procedures of measuring the distance between
clusters in hierarchical clustering analysis, using the centroid, average, single, and
complete linkage method respectively (Jarman, 2020).

In line with the foregoing sections, we denote the raw document-term matrix by
F . In the case of LSA we examine four versions: LSA of F (LSA-RAW), LSA of the row-
normalized matrices F L1 (LSA-NROWL1) and F L2 (LSA-NROWL2), and LSA of the
TF-IDF matrix FTF-IDF (LSA-TFIDF). In addition, we also compare performance with
the raw document-term matrix, denoted as RAW, where no dimensionality reduction
has taken place.

2.5.2 Visualization

The 2,225 documents of the BBCNews dataset lead to a document-term matrix of size
2,225 × 5,050. Figure 2.3 shows the results of an analysis of this document-term ma-
trix by the four LSA methods (LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF)
and CA. On this dataset, we find that, although the percentage of the total sum of
squared singular values in the first two dimensions for CA is lower than the four
LSA methods, the four LSA methods do not separate the classes well but CA does a
reasonably good job. This is because the margins play an important role in the first
two dimensions for the four LSA methods and the relations between documents are
blurred by these margins.

The 737 documents of BBCSport dataset lead to a document-term matrix of size
737 × 2,071. Figure 2.4 shows the results of an analysis of this document-term matrix.
Again, we find that the LSA methods do not separate the classes well, but CA does a
reasonably good job.
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The 2,963 documents of 20 Newsgroups dataset lead to a document-term matrix of
size 2,927 × 2,834.1 Figure 2.5 shows the results of an analysis of this document-term
matrix. On this dataset, we find that CA is doing a reasonably good job, and so do
LSA-NROWL1 and LSA-NROWL2.

2.5.3 Distance measures

For the 20 Newsgroups dataset, there is a training and a test set, and we assess the
accuracy as a measure for the correct classification of the documents of the test set.
For the 20 Newsgroups data set there are four steps. First, we apply all four varieties
of LSA and CA to all documents of the training set. The documents of the test set
are projected into the reduced dimensional space, see Section 2.2.2.4 and Section 2.3.
Second, using the centroid, average, single, and complete method, for each document
of the test set, the distance between the document and a set of documents for each
of three categories (“comp.graphics”, “rec.sport.hockey”, “sci.crypt”) in the training
set is computed. The predicted category for the document is the category with the
smallest distance. Third, we compare the predicted category with the true category of
the document. Finally, the accuracy is the proportion of correct classifications of all
documents of the test set. For BBCNews and BBCSport datasets, in order to evaluate
LSA methods and CA, we use five-fold cross validation (Gareth, Daniela, Trevor, &
Robert, 2021). That is, the dataset is randomly divided into five folds. The four folds
(80 per cent of the dataset) are used as training set and the remaining one fold (20 per
cent of the dataset) is as validation set. The accuracy of each fold is obtained as in the
20 Newsgroups dataset. Then the accuracy is averaged across five folds.

For each form of LSA and for CA, there is an accuracy for each number of dimen-
sions (for five-fold cross validation, the accuracy is averaged across five folds). The
maximum accuracy is the maximum value across these accuracies. Table 2.8 shows
the maximum accuracy for LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF, and
CA for the four distance measures2, along with the minimum optimal dimension k
where this maximum accuracy is reached 3. First, if we ignore the complete distance
method, considering that it has low accuracy overall, CA yields the maximum accu-
racy compared to the RAW method (i.e. without dimensionality reduction) as well as
all four LSA methods for each combination of dataset and other distance measurement
method, except for the BBCSport dataset with the average method, where CA has the
second largest accuracy. Second, for each dataset CA is doing best overall. Specifically,
CA with the centroid, the single, and the centroid distance method provides the best
accuracy for BBCNews, BBCSport, and 20 Newsgroups datasets, respectively.

In order to further explore different dimensionality reduction methods under opti-

1After preprocessing, 36 documents out of 2,963 became empty documents and were removed.
2For BBCSport dataset, we explore the number of all dimensions of dimensionality reduction meth-

ods. For BBCNews and 20 Newsgroups datasets, we vary the number of dimension k from 1 to 450.
3There is not one single optimal number of dimensions that provides the maximum accuracy; for

reasons of space, we show only the lowest in Tables 2.8, 2.9.
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Figure 2.3: The first two dimensions for each document of BBCNews dataset by (a) LSA-RAW; (b) LSA-
NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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Figure 2.4: The first two dimensions for each document of BBCSport dataset by (a) LSA-RAW; (b) LSA-
NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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Figure 2.5: The first two dimensions for each document of 20 Newsgroups dataset by (a) LSA-RAW; (b)
LSA-NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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mal distance measurement method which provides highest accuracy, Figure 2.6 shows
the accuracy as a function of the numbers of dimensions under centroid, single, and
centroid methods for BBCNews, BBCSport, and 20 Newsgroups datasets, respectively.
CA in combination with the optimal distance measurement method performs better
than the other methods over a large range, especially for BBCNews dataset, almost
irrespective of dimension.

Table 2.8: The minimum optimal dimensionality k and the accuracy (Acc) in k for LSA-RAW, LSA-
NROWL1, LSA-NROWL2, LSA-TFIDF, and CA, and the Acc for RAW using different distance measure-
ment methods with the BBCNews, BBCSport, and 20 Newsgroups datasets.

Datasets Methods
Centroid Average Single Complete
k Acc k Acc k Acc k Acc

BBCNews

RAW 0.921 0.339 0.791 0.229
LSA-RAW 401 0.921 7 0.714 24 0.942 1 0.237

LSA-NROWL1 339 0.947 5 0.898 30 0.948 5 0.723
LSA-NROWL2 385 0.950 23 0.930 450 0.951 5 0.829

LSA-TFIDF 381 0.942 13 0.725 32 0.953 13 0.253
CA 318 0.970 5 0.943 22 0.961 4 0.647

BBCSport

RAW 0.917 0.418 0.852 0.193
LSA-RAW 72 0.919 9 0.843 33 0.930 9 0.332

LSA-NROWL1 275 0.950 10 0.928 129 0.946 5 0.613
LSA-NROWL2 96 0.952 103 0.950 175 0.955 5 0.873

LSA-TFIDF 486 0.931 9 0.806 20 0.970 7 0.241
CA 565 0.978 24 0.936 35 0.982 4 0.420

20
Newsgroups

RAW 0.647 0.330 0.688 0.328
LSA-RAW 214 0.648 9 0.409 26 0.847 2 0.342

LSA-NROWL1 358 0.897 4 0.847 306 0.852 83 0.412
LSA-NROWL2 357 0.857 54 0.885 6 0.858 3 0.735

LSA-TFIDF 201 0.617 1 0.347 70 0.863 1 0.340
CA 84 0.908 7 0.888 27 0.902 11 0.465

2.6 Authorship attribution

In this section we examine the performance of LSA and CA on a dataset originally set
up for authorship attribution. We first use the dataset to see how well LSA and CA
are able to assign documents with a known author to the correct author. Second, we
assign a document with unknown author to one of the known authors.

Authorship attribution is the process of identifying the authorship of a document;
its applications include plagiarism detection and resolving of authorship disputes
(Bozkurt, Baghoglu, & Uyar, 2007), and are particularly relevant for historical texts,
where other historical records are not sufficient to determine authorship. Both LSA
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Figure 2.6: Accuracy as a function of dimension for CA, LSA-RAW, LSA-NROWL1, LSA-NROWL2,
LSA-TFIDF, and RAW
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and CA have been used for authorship attribution before. For example, Soboroff,
Nicholas, Kukla, and Ebert (1997) applied LSA with n-grams as terms to visualize au-
thorship among biblical Hebrew texts. McCarthy, Lewis, Dufty, and McNamara (2006)
applied LSA to lexical features to automatically detect semantic similarities between
words (Stamatatos, 2009). Satyam, Dawn, and Saha (2014) used LSA on a charac-
ter n-gram based representation to build a similarity measure between a questioned
document and known documents. Mealand (1995) studied the Gospel of Luke using
a visualization provided by CA. Mealand (1997) also measured genre differences in
Mark by CA. Mannion and Dixon (2004) applied CA to study authorship attribution
of the case of Oliver Goldsmith by visualization.

The Wilhelmus is the national anthem of the Netherlands and its authorship is un-
known and much debated. There is a substantive amount of qualitative research at-
tempting to determine the authorship of the Wilhelmus, with quantitative or statistical
methods being used relatively recently. To the best of our knowledge, the authorship
of the Wilhelmus was first studied by statistical methods and computational means in
Winkel (2015), whose results on authorship attribution were inconclusive. After that,
Kestemont, Stronks, De Bruin, and Winkel (2017a, 2017b) studied the question using
principal component analysis and the General Imposters (GI) method, attributing the
Wilhelmus to the writer Datheen. Vargas Quiros (2017) used the data of Kestemont
et al. (2017a, 2017b), and applied the KRIMP compression algorithm (Van Leeuwen,
Vreeken, & Siebes, 2006) and Kullback-Leibler Divergence — they tended to agree
with Kestemont et al. (2017a, 2017b), even though the KRIMP attributed the Wilhel-
mus to another author when a different feature selection method was used. Thus, the
results were inconclusive, with a tendency to prefer Datheen. Our paper provides
further evidence in favor of attributing the authorship to Datheen.

2.6.1 Data and methods

We use a total of 186 documents by six writers, consisting of 35 documents written
by Datheen, 46 by Marnix, 23 by Heere, 35 by Haecht, 33 by Fruytiers, and 14 by
Coornhert. These documents contain tag-lemma pairs as terms, obtained through
part-of-speech tagging and lemmatizing of the texts, and are made publicly available
by Kestemont et al. (2016, 2017a, 2017b). The average marginal frequencies range
from 406 for documents by Fruytiers to 545 for documents by Haecht. See Kestemont
(2017) for more details regarding the dataset. Similar to Section 2.5, in this section we
also use visualization and distance measures to compare LSA and CA.
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2.6.2 Visualization

We first examine all documents of two authors Marnix and Datheen4, using the 300
most frequent tag-lemma pairs. These form a document-term matrix of size 81× 300.
Figure 2.7 shows the results of analyzing this document-term matrix using the four
LSA methods (LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF), and CA. The
Wilhelmus document is not included in the data matrix but it is projected into the
solutions for illustrative purposes by W, in red, see Section 2.2.2.4 and Section 2.3. As
seen in Figure 2.7, all four varieties of LSA fail to show a clear separation, while CA
separates documents by the two authors clearly, even though the first 2 dimensions for
CA account for a much smaller percentage of the total sum of squared singular values
than the first 2 dimensions for the four LSA methods. This is because the margins
play an important role in the first two dimensions for the four LSA methods and the
relations between documents are blurred by these margins. We also see that in CA the
Wilhelmus is clearly attributed to Datheen.

Given the effectiveness of CA and the attribution of the Wilhelmus to Datheen in
the above analysis, we now show visualizations of CA for documents by Datheen and
four other authors in turn (Figure 2.8). For three out of four authors, there is a clear
separation between that author and Datheen. In the case Haecht however (sub-figure
(b)), there is no clear separation from Datheen. In all three cases where there is a clear
separation, Wilhelmus is attributed to Datheen, as before.

Finally, we apply all four varieties of LSA and CA to all documents of the six
authors, which form a document-term matrix of size 186 × 300. Figure 2.9 shows
the results of the analysis of this matrix by LSA-RAW, LSA-NROWL1, LSA-NROWL2,
LSA-TFIDF, and CA. The Wilhelmus is projected into the solutions afterwards. Again
we find that, although the percentage of the total sum of squared singular values in
the first two dimensions for CA is lower than the four LSA methods, CA separates
the documents quite well compared with the four LSA methods. For instance, doc-
uments written by Marnix are effectively separated from the documents written by
other authors. The documents of the other authors also seem to form much more
distinguishable clusters, as compared to LSA, except for Datheen and Haecht.

2.6.3 Distance measures

To evaluate LSA methods and CA, we use leave-one-out cross-validation (LOOCV)
(Gareth et al., 2021) with the 186 documents of six authors. Using LOOCV, each time
we discern the following four steps. At the first step, a single document of the 186
documents is used as the validation set and the remaining 185 documents make up
the training set. The 185 documents of training set form a document-term matrix
with 185 rows and 300 columns. At step two, we perform LSA-RAW, LSA-NROWL1,

4We chose these two authors specifically, out of our dataset, as they are the two main contenders for
the authorship of Wilhelmus – Marnix has been the most popular candidate from qualitative analysis,
and since the work of Kestemont et al. (2017a, 2017b) Datheen is also a serious candidate.
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Figure 2.7: The first two dimensions for each document of author Datheen and author Marnix, and the
Wilhelmus (in red) by (a) LSA-RAW; (b) LSA-NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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Figure 2.8: The first two dimensions for each document of author Datheen and another author, and the
Wilhelmus (in red) using CA: (a) Heere; (b) Haecht; (c) Fruytiers; (d) Coornhert.
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Figure 2.9: The first two dimensions for each document of six authors, and the Wilhelmus (in red) by
(a) LSA-RAW; (b) LSA-NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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LSA-NROWL2, LSA-TFIDF, and CA on this document-term matrix to obtain the coor-
dinates of the 185 documents. The single document of validation set is projected into
the solutions, see Section 2.2.2.4 and Section 2.3. At step three, using the centroid,
average, single, and complete method, the distance is computed between the single
document and the six author groups of documents. For this single document, the pre-
dicted author of the document is the author with the smallest distance. At the final
step, we compare the predicted author with the true author of the single document.
We repeat this 186 times, once for each single document. The accuracy is calculated
by the ratio: number of times an author is correctly predicted divided by 186.

Table 2.9: The minimum optimal dimensionality k and the accuracy in k for LSA-RAW, LSA-NROWL1,
LSA-NROWL2, LSA-TFIDF, and CA, and the accuracy for RAW using different distance measurement
methods with Wilhelmus dataset.

Methods
Centroid Average Single Complete

k Accuracy k Accuracy k Accuracy k Accuracy
RAW 0.720 0.522 0.672 0.177

LSA-RAW 51 0.720 70 0.554 14 0.720 1 0.296
LSA-NROWL1 93 0.731 116 0.645 22 0.710 75 0.226
LSA-NROWL2 59 0.742 41 0.699 21 0.715 77 0.301

LSA-TFIDF 84 0.720 90 0.538 23 0.731 1 0.231
CA 151 0.930 12 0.790 19 0.785 95 0.452

Table 2.9 shows the maximum accuracy for LSA-RAW, LSA-NROWL1, LSA-
NROWL2, LSA-TFIDF, and CA for the four distance measures 5, along with the min-
imum optimal dimension k. First, CA yields the maximum accuracy for all distance
measurement methods as compared to the RAW method as well as all four LSA meth-
ods. Second, CA with the centroid method provides the highest accuracy.

In order to further explore the centroid method, Figure 2.10 shows the accuracy
with different numbers of dimensions for LSA-RAW, LSA-NROWL1, LSA-NROWL2,
LSA-TFIDF, and CA. Figure 2.10a displays all dimensions on the horizontal axis, and
Figure 2.10b focuses on the first 10 dimensions. CA in combination with the centroid
method performs better than the other methods almost irrespective of dimension, ex-
cept for the very first ones. Also, the accuracy of CA in combination with the centroid
method is very high over a large range.

2.6.4 Authorship attribution of the Wilhelmus

Since CA in combination with the centroid method appears to be the best overall, we
use them to determine the authorship of the Wilhelmus. In the 34 optimal dimensions
(dimensions 151-184), we find that the Wilhelmus is attributed to the author Datheen,
while Haecht is the second most likely candidate. The distance of the Wilhelmus to the

5For Wilhelmus dataset, we explore the number of all dimensions of dimensionality reduction meth-
ods
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Figure 2.10: Accuracy versus the number of dimensions (centroid method) for CA, RAW, LSA-RAW,
LSA-NROWL1, LSA-NROWL2, and LSA-TFIDF with Wilhelmus dataset.

centroid of documents of Datheen averaged across 34 optimal dimensions is 0.825, to
Haecht 0.880, to Marnix 0.939, to Heere 1.015, to Fruytiers 1.064, and to Coornhert
1.253. Thus, CA attributes Wilhelmus to Datheen, and provides more weight using an
independent statistical technique, to prior results by Kestemont et al. (2017a, 2017b)
in resolving this debate.

2.7 Conclusion

LSA and CA both allow for dimensionality reduction by the SVD of a matrix; however,
the actual matrix analyzed by LSA and CA is different, and therefore LSA and CA cap-
ture different kinds of information. In LSA we apply an SVD to F , or to a weighted F .

In CA, an SVD is applied to the matrix D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals. The

elements in D
− 1

2
r (P − E)D

− 1
2

c display the departure from the margins, that is, depar-
ture from the expected frequencies under independence collected in E. Due to E, in
CA the effect of the margins is eliminated — a solution only displays the dependence
between documents and terms. Concluding, in LSA, the effect of the margins as well
as the dependence is part of the matrix that is analyzed and these margins usually
play a dominant role in the first dimension of the LSA solution as usually on the first
dimension all points depart in the same direction from the origin. On the other hand,
in CA all points are scattered around the origin and the origin represents the profile
of the row and column margins of F .

In summary, although LSA allows a study of the relations between documents, be-
tween terms, and between documents and terms, this study is not easy. The reason
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is that these relations are blurred by the effect of the margins that are also displayed
in the LSA solution. CA does not have this property. Therefore it appears that CA is
a better tool for studying the relations between documents, between terms, and be-
tween documents and terms. Also, discussed in Section 2.3, CA has many nice prop-
erties like providing a geometric display where the Euclidean distances approximate
the χ2-distances between the rows and between the columns of the matrix, and the re-
lation to the Pearson χ2 statistic. Overall, from a theoretical point of view it appears
that CA has more attractive properties than LSA. Empirically, we evaluated and com-
pared the two methods on text categorization in English and authorship attribution
in Dutch, and found that CA can both separate documents better visually, and obtain
higher accuracies on text categorization and authorship attribution as compared to
LSA techniques.

A document-term matrix is similar to a word-context matrix, commonly used to
represent word meanings, in the sense that it is also a matrix of counts. However, in
the context of word-context matrices the ways in which the counts are transformed
are usually different from the way they are transformed for document-term matrices,
and therefore, due to space limitations, we defer a comparison of CA and LSA of
word-context matrices to future work. In the future, it is also interesting to compare
word embeddings learned by LSA based methods and CA to more recent static word
embedding approaches such as Word2Vec and GloVe, or even contextualized word
embeddings models like BERT. And it is interesting to compare LSA based methods
and CA on recent classifiers, such as neural network models.
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Chapter 3

Improving information retrieval
through correspondence analysis
instead of latent semantic analysis

Abstract

The initial dimensions extracted by latent semantic analysis (LSA) of a
document-term matrix have been shown to mainly display marginal effects,
which are irrelevant for information retrieval. To improve the performance of
LSA, usually the elements of the raw document-term matrix are weighted and
the weighting exponent of singular values can be adjusted. An alternative infor-
mation retrieval technique that ignores the marginal effects is correspondence
analysis (CA). In this paper, the information retrieval performance of LSA and
CA is empirically compared. Moreover, it is explored whether the two weight-
ings also improve the performance of CA. The results for four empirical datasets
show that CA always performs better than LSA. Weighting the elements of the
raw data matrix can improve CA; however, it is data dependent and the improve-
ment is small. Adjusting the singular value weighting exponent often improves
the performance of CA; however, the extent of the improvement depends on the
dataset and the number of dimensions.

This chapter is published in Journal of Intelligent Information Systems as: Qi, Q., Hessen, D. J.,
& Van der Heijden, P. G. M. (2024). Improving information retrieval through correspondence analysis
instead of latent semantic analysis. Journal of Intelligent Information Systems 62, 209–230. https://
doi.org/10.1007/s10844-023-00815-y. Author contributions: QQ posed the problem and set up the
experiments. QQ, DH, and PvdH discussed and edited the text. The code used in this study can be
found at https://github.com/qianqianqi28/calsa-ir.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis

3.1 Introduction

In information retrieval, the similarity between a given user query and each document
in a document-term matrix is calculated and documents with high similarity are re-
turned (Kolda & O’leary, 1998; W. Zhang et al., 2011; Al-Qahtani, Amira, & Ramzan,
2015; J. Guo et al., 2022). Latent semantic analysis (LSA) has been used as a common
baseline for information retrieval (Parali, Zontul, & Ertuğrul, 2019; Duan, Gao, Ni, &
Wang, 2021; Chang, Lee, Wu, Liu, & Liu, 2021). Compared to Word2Vec (Skip-Gram
model) LSA showed a better performance in extracting relevant semantic patterns in
dream reports (Altszyler, Sigman, Ribeiro, & Slezak, 2016). LSA also outperformed
neural network methods (such as ELMo word embeddings) in text classification tasks
for educational data (Phillips et al., 2021).

New methods that rely on LSA have been proposed (Azmi, Al-Jouie, & Hussain,
2019; Gupta & Patel, 2021; Hassani et al., 2021; Suleman & Korkontzelos, 2021; Ho-
rasan, 2022; Patil, 2022). For example, Gupta and Patel (2021) proposed an algorithm
for text summarization that uses LSA, TF-IDF keyword extractor, and BERT encoder
model. The algorithm performed better than latent Dirichlet allocation. Horasan
(2022) proposed a collaborative filtering-based recommendation system using LSA
and achieved good performance. Patil (2022) developed a new promising procedure
for information retrieval using LSA and TF-IDF.

Weighting the elements of the raw document-term matrix is a common and ef-
fective method to improve the performance of LSA (Dumais, 1991; Horasan, Erbay,
Varçın, & Deniz, 2019; Bacciu et al., 2019). LSA usually involves the SVD of a raw
or pre-processed document-term matrix. In addition, Caron (2001) proposed chang-
ing the weighting exponent of the singular values in LSA to improve information re-
trieval. His results showed that adjusting the weighting exponent of singular values
improves the performance of information retrieval. Since Caron (2001), singular value
weighting exponents have been studied and applied in word embeddings generated
from word-context matrices (Bullinaria & Levy, 2012; Österlund, Ödling, & Sahlgren,
2015; Drozd, Gladkova, & Matsuoka, 2016; Yin & Shen, 2018). Other variants that
change the singular value weighting exponent have been studied in word embeddings
created by Word2Vec and GloVe (Mu & Viswanath, 2018; Liu, Ungar, & Sedoc, 2019).

The larger the weighting exponent of the singular values, the higher is the empha-
sis given to the initial dimensions. According to the experimental results of Caron
(2001), giving more emphasis to initial dimensions can often improve the perfor-
mance of information retrieval on standard test datasets, whereas giving more empha-
sis to initial dimensions can decrease the performance on question/answer matching.
Papers about word embeddings tend to reduce the contribution of initial dimensions
to improve performance (Bullinaria & Levy, 2012; Österlund et al., 2015; Drozd et al.,
2016; Yin & Shen, 2018; Mu & Viswanath, 2018; Liu et al., 2019), although the opti-
mal value of the singular value weighting exponent is task dependent (Österlund et
al., 2015). Bullinaria and Levy (2012) reported that assigning less weight to initial di-
mensions leads to improved performance for TOEFL, distance comparison, semantic
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categorization, and clustering purity tasks on a word-context matrix created from the
ukWaC corpus (Baroni, Bernardini, Ferraresi, & Zanchetta, 2009). They argued that
the general pattern appears to be that the initial dimensions tend not to contribute
the most useful information about semantics and have a large “noise” component that
is best removed or reduced.

Capturing associations between documents and terms appears necessary for the
success of LSA in computing science; however, the solution of LSA is a mix of the asso-
ciations between documents and terms, and marginal effects arising from the lengths
of documents and marginal frequencies of terms (Qi, Hessen, Deoskar, & Van der
Heijden, 2023). Hu et al. (2003) and Qi et al. (2023) showed that margins play an
important role in the first dimensions extracted by LSA.

Correspondence analysis (CA) is another information retrieval technique that uses
SVD (Greenacre, 1984; Morin, 2004; Greenacre, 2017; Beh & Lombardo, 2021). In
computing science, CA has not been explored as much as LSA. CA is usually used to
make two-dimensional graphical displays (Hou & Huang, 2020; Arenas-Márquez et
al., 2021; Van Dam et al., 2021). For example, Arenas-Márquez et al. (2021) depicted a
biplot using CA to show that the document encoding of convolutional neural encoder
can emphasize the dissimilarity between documents belonging to different classes.
Unlike LSA, CA ignores the information on marginal frequency differences between
documents and between terms from the solution by preprocessing the data, and it only
focuses on the relationships between documents and terms (Qi et al., 2023). Thus, CA
seems more suitable for information retrieval.

Séguéla and Saporta (2011) and Qi et al. (2023) experimentally compared LSA and
CA for text clustering and text categorization, respectively, and they found that CA
performed better than LSA. Although LSA was originally proposed for information
retrieval, an empirical comparison between LSA and CA continues to remain lacking
in this field. In this paper, therefore, three English datasets and one Dutch dataset are
used to compare the performance of LSA and CA in information retrieval.

Whereas LSA owes its popularity to its applicability to different matrices, in CA,
it is unusual to weight the elements of the raw document-term matrix. Processing
the raw document-term matrix is an integral part of CA (Greenacre, 1984, 2017; Beh
& Lombardo, 2021). CA is based on the SVD of the matrix of standardized residu-
als. Here, however, we study the CA of document-term matrices whose entries are
weighted to see if this has an impact on the performance of CA. In addition, based
on the success of adjusting the weighting exponent of singular values in LSA, we will
explore whether this is also successful in CA.

In summary, this work makes three contributions. First, to compare LSA and CA in
information retrieval. Second, to explore whether weightings, including the weight-
ing of the elements of the raw document-term matrix and the adjusting of the singular
value weighting exponent, can improve the performance of CA. Third, to study what
the initial dimensions of LSA correspond to and whether CA is effective in ignor-
ing the useless information in the raw or pre-processed document-term matrix that
contributes a large part of the initial dimensions extracted by LSA. We extensively
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compare the performances of LSA and CA applied to four datasets using Euclidean
distance, dot similarity, and cosine similarity.

The paper is organized as follows. In Section 3.2, LSA and CA are described in
brief. Section 3.3 presents the methodology used in this paper. The results for Eu-
clidean distance are presented in Section 3.4, and the results for dot similarity and
cosine similarity are presented in Section 3.5. Finally, Section 3.6 concludes and dis-
cusses the results.

3.2 LSA and CA

In this section, we briefly describe LSA and CA. We refer the readers to Qi et al. (2023)
for a more detailed presentation of the methods.

3.2.1 LSA

Consider a raw document-term matrix F = [fij] with m rows (i = 1, ...,m) and n
columns (j = 1, ...,n), where the rows represent documents and the columns represent
terms. Weighting might be used to prevent the differential lengths of documents from
considerably affecting the representation, or to impose certain preconceptions about
which terms are more important (Deerwester et al., 1990). The weighted element aij
for term j in document i is

aij = L(i, j)×G(j)×N (i), (3.1)

where the local weighting term L(i, j) is the weight of term j in document i, G(j) is
the global weight of term j in the entire set of documents, and N (i) is the weighting
component for document i. The popular TF-IDF can be written in the form L(i, j) =
fij ,G(j) = 1+log2(ndocs/dfj),N (i) = 1, where ndocs is the number of documents in the
set and dfj is the number of documents where term j appears (Dumais, 1991). The
SVD of A = [aij] is

A = UΣV T (3.2)

where U TU = I, V TV = I, and Σ is a diagonal matrix with singular values on the diag-
onal in the descending order. We denote matrices that contain the first k columns of U ,
first k columns of V , and k largest singular values of Σ by Uk, Vk, and Σk, respectively.
Then, UkΣk(Vk)T provides the optimal rank-k approximation of A in a least-squares
sense, which shows that SVD can be used for data reduction. In LSA, the rows of
UkΣk and VkΣk provide the coordinates of row and column points, respectively. Eu-
clidean distances between the rows of UkΣk (VkΣk) approximate those between the
rows (columns) of A.

Representing out-of-sample documents or queries in the k-dimensional subspace
of LSA is important for many applications including information retrieval. Suppose
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that the new weighted document is a row vector d. Since V TV = I and U TU = I, we
have

AVk = UkΣk (3.3)

and
ATUk = VkΣk (3.4)

Therefore, using Equation (3.3), the coordinates of the out-of-sample document d in
the k-dimensional subspace of LSA is dVk. Similarly, using Equation (3.4), the coor-
dinates of the out-of-sample term t (represented as row vector) in the k-dimensional
subspace of LSA is tUk.

As in Qi et al. (2023), we first use a small dataset to illustrate LSA. This small
dataset is introduced in Aggarwal (2018) (see Table 3.1), and it contains 6 documents.
For each document, we are interested in the frequency of occurrence of six terms. The
first three documents primarily refer to cats, the last two primarily to cars, and the
fourth to both. The fourth term, jaguar, is polysemous because it can refer to either a
cat or a car.

Table 3.1: A document-term matrix F : size 6×6

lion tiger cheetah jaguar porsche ferrari
doc1 2 2 1 2 0 0
doc2 2 3 3 3 0 0
doc3 1 1 1 1 0 0
doc4 2 2 2 3 1 1
doc5 0 0 0 1 1 1
doc6 0 0 0 2 1 2

In the LSA of the raw document-term matrix (LSA-RAW), the rows and columns
of F are not weighted, and therefore, we can replace A in Equation (3.2) by F . The
coordinates of the documents and of the terms for LSA-RAW in the first two dimen-
sions are U2Σ2 and V2Σ2, respectively. Figure 3.1a shows the two-dimensional plot
of the documents and terms. Cat terms (lion, cheetah, and tiger) are close together;
car terms (porsche and ferrari) are close together; car documents (5 and 6) are close
together. However, the cat documents (1, 2, and 3) are not close together, neither is
document 4 in between cat documents and car documents, and neither is jaguar in
between cat terms and car terms. This can be attributed to the fact that LSA displays
both the relationships between documents and terms and the sizes of the documents
and terms: for the latter, jaguar, for example, is used most often in the documents and
is furthest away from the origin.
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Figure 3.1: A two-dimensional plot of documents and terms for (a) LSA-RAW, (b) CA (Qi et al., 2023).

3.2.2 CA

In CA, an SVD is applied to the matrix of standarized residuals given by Greenacre
(2017)

S = D
− 1

2
r (P−E)D

− 1
2

c (3.5)

where P = [pij] is the matrix of joint observed proportions with pij = fij /
∑

i
∑

j fij , Dr
is a diagonal matrix with ri =

∑
j pij (i = 1,2, · · · ,m) on the diagonal, Dc is a diagonal

matrix with cj =
∑

i pij (j = 1,2, · · · ,n) on the diagonal, and E = [ricj] is the matrix of
expected proportions under the statistical independence of the documents and the

terms. The elements of D
− 1

2
r (P−E)D

− 1
2

c are standardized residuals under the statistical
independence model. The sum of squares of these elements yields the total inertia,
i.e., the Pearson χ2 statistic divided by sample size

∑
i
∑

j fij . By taking the SVD of the
matrix of standardized residuals, we get

D
− 1

2
r (P−E)D

− 1
2

c = UΣVT (3.6)

In CA, the rows of ΦkΣk and Γ kΣk provide the coordinates of row and column points,

respectively, where Φk = D
− 1

2
r Uk and Γ k = D

− 1
2

c Vk. The weighted sum of the coordi-
nates is 0:

∑
i riφik = 0 =

∑
j cjγjk. Euclidean distances between the rows of ΦkΣk

(Γ kΣk) approximate χ2-distances between the rows (columns) of F, where the squared
χ2-distance between rows k and l is

δ2
kl =

∑
j

(
pkj /rk − plj /rl

)2

cj
(3.7)
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In Equation (3.7), the rows are transformed into vectors of conditional proportions
adding up to 1 for each row, such as the kth row: pkj /rk, j = 1,2, · · · ,n, and the dif-
ferences between the column elements for column j in the transformed rows are cor-
rected for cj , which represents the size of column j.

The transition formulas are

D−1
r PΓ k = ΦkΣk (3.8)

and
D−1

c PTΦk = Γ kΣk (3.9)

Equation (3.8) shows that the row points are in the weighted averages of the column
points when rows of D−1

r P are used as weights, and Equation (3.9) shows that the
column points are in the weighted averages of the row points simultaneously.

According to Equation (3.8), a new document d, represented by a row vector, can
be projected onto the k-dimensional subspace by placing it in the weighted average of
the column points using (d/

∑n
j=1dj)Γ k. This can be similarly done for a new term t.

For the CA of Table 3.1, the coordinates of the documents and terms for CA in
the first two dimensions are Φ2Σ2 and Γ 2Σ2, respectively. Figure 3.1b shows a two-
dimensional plot of the documents and terms. Cat terms (lion, cheetah, and tiger) are
close together; car terms (porsche and ferrari) are close together; jaguar is in between
cat and car terms; car documents (5 and 6) are close together, cat documents (1, 2, and
3) are close together; and document 4 is in between cat and car documents. All data
properties are found in Figure 3.1b. A comparison of Figures 3.1b and 3.1a suggests
that CA provides a clearer visualization of the important aspects of the data than
LSA. This is because the coordinates of each dimension are orthogonal to the margins
due to

∑
i riφik = 0 =

∑
j cjγjk, and CA focuses only on the relationship between the

documents and the terms.

3.3 Methodology

In this section, we introduce the CA of a document-term matrix whose entries are
weighted. We also discuss how the influence of the initial dimensions can be studied.
Subsequently, we describe the study design, datasets, and evaluation methods used.

3.3.1 CA of a document-term matrix of weighted frequencies

Weighting the entries of the raw document-term matrix is an effective method for
improving the performance of LSA, and this motivates us to study the weighting of
the elements of the input matrix of CA. So, we try to improve the performance of CA
by using the same weighting methods as in LSA.

The processing of the raw data matrix by D
− 1

2
r (P − E)D

− 1
2

c (see Equation (3.5)) is
considered an integral part of CA. This processing step effectively eliminates the mar-
gins, which allows CA to focus on the relationships between documents and terms.
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The weighting of the entries of the raw document-term matrix in Equation (3.1), such
as by TF-IDF, can be used to assign higher values to terms with more indicative of the
meaning of documents. Thus, the weighting of the entries of the raw document-term
matrix may also be an effective method for improving the performance of CA.

To perform the CA of a document-term matrix of weighted frequencies, we first
use Equation (3.1) to obtain a document-term matrix A of weighted frequencies, and
then, we perform CA on this matrix A instead of F.

3.3.2 Changing the contributions of the initial dimensions in SVD

Caron (2001) proposed adjusting the relative strengths of vector components in LSA
using UkΣ

α
k or VkΣ

α
k as coordinates instead of UkΣk or VkΣk, where α is the singular

value weighting exponent that adjusts the importance of the dimensions. The weight-
ing exponent α determines how components are weighted relative to the standard
α = 1 case described in Section 3.2.1. In comparison to α = 1, α < 1 gives less empha-
sis to initial dimensions, and α > 1, more emphasis.

Bullinaria and Levy (2012) used both weighting exponent α < 1 and the exclusion
of initial dimensions, which led to performance improvements of a similar degree.
They argued that the general pattern appears to be that the dimensions with the high-
est singular values tend not to contribute the most useful information about semantics
and have a large “noise” component that is best removed or reduced. However, it is
unclear what the initial dimensions actually correspond to. Given this context, we
change the contributions of the initial dimensions extracted by both LSA and CA and
compare their performances. We explore whether the performance of CA can be im-
proved by adjusting the singular value weighting exponent using ΦkΣ

α
k or Γ kΣ

α
k as

coordinates instead of ΦkΣk or Γ kΣk. That is, we try to improve the performance of
CA by using the method (adjusting the singular weighting exponent) used in LSA.

We use Table 3.1 to illustrate the impact of α on singular values and coordinates.
We use α = 0.5, α = 1, and α = 1.5. In the literature, we regularly encounter α = 0.5
because it relates to

F = UΣV T =
(
UΣ1/2

)(
Σ1/2V T

)
(3.10)

which can then be used for making biplots (Gabriel, 1971) using coordinate pairs
U2Σ

1/2
2 and V2Σ

1/2
2 . In practice, one often sees the use of the coordinate pair U2Σ2

and V2Σ2; however, this is not a biplot representation as Σ2 is used twice. In a biplot,
if the row points are U2Σ

a
2, then the column points are V2Σ

1−a
2 , i.e., any entry of the

matrix is approximated by the inner product of the corresponding row and column
vectors. Hereafter, we do not make a biplot; instead, we make a symmetric plot where
documents and terms have the same value of α because symmetric coordinates are
usually used in experiments (Dumais et al., 1988; Deerwester et al., 1990; Berry et al.,
1995; Levy et al., 2015).

Table 3.2 lists the singular values to the power α: σα, the squared singular values
to the power α: σ2α, and proportions σ2α/

∑
σ σ

2α, where we refer to the total sum of
squared singular values to the power of α,

∑
σ σ

2α, as α–inertia. These proportions
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show how the sum of the Euclidean distances of all components to the origin is dis-
tributed over the components. The greater α is, the more emphasis is given to the
initial components and less emphasis to the latter ones. The first dimension accounts
for 0.623, 0.855, and 0.943 of α-inertia, while the fifth dimension accounts for 0.020,
0.001, and 0.000, with α being 0.5, 1, and 1.5, respectively. The standard LSA solution
has α = 1.

Table 3.2: The σα , σ2α , and the proportion of explained α-inertia σ2α/
∑

σ σ
2α for each dimension of

LSA-RAW.

dim1 dim2 dim3 dim4 dim5
σ0.5 2.903 1.806 0.994 0.758 0.522
σ1 8.425 3.261 0.988 0.574 0.272
σ1/

∑
σ σ

1 0.623 0.241 0.073 0.042 0.020
σ1 8.425 3.261 0.988 0.574 0.272
σ2 70.985 10.635 0.976 0.330 0.074
σ2/

∑
σ σ

2 0.855 0.128 0.012 0.004 0.001
σ1.5 24.455 5.889 0.982 0.435 0.142
σ3 598.063 34.684 0.964 0.189 0.020
σ3/

∑
σ σ

3 0.943 0.055 0.002 0.000 0.000

Figure 3.2 shows the two-dimensional plots of documents and terms for LSA-RAW
with α = 0.5,1.5. The standard coordinates with α = 1 was shown in Figure 3.1a. As
α increases, the Euclidean distances between row points (column points) on the first
dimension increase relative to the second dimension.
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Figure 3.2: A two-dimensional plot of documents and terms for LSA-RAW with (a) α = 0.5 and (b)
α = 1.5.

55



3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis

3.3.3 Design

We compare the performances of LSA and CA for information retrieval, where two
kinds of weightings are studied in LSA: the elements of the raw document-term matrix
are weighted and the weighting exponent α is varied. We also explore the impact of
these weightings in CA. We vary the number of dimension k from 1, 2, · · · , 20, 22, · · · ,
50, 60, · · · to 100 and the value of α from -6, -5.5, · · · , -2, -1.8, · · · , 4, 4.5, · · · to 8; we
explore all 40× 47 = 1,880 combinations of parameter values.

In the study of weighting the elements of the raw document-term matrix, we per-
form the LSA and CA of

• raw matrix F, denoted by RAW,

• L1 row-normalized matrix FL1 with L(i, j) = fij , G(j) = 1, and N (i) = 1/
∑n

j=1 fij ,
NROWL1,

• L2 row-normalized matrix FL2 with L(i, j) = fij , G(j) = 1, and N (i) = 1/
√∑n

j=1 f
2
ij ,

NROWL2, and

• TF-IDF matrix FTF-IDF described in Section 3.2.1, TFIDF.

We refer to the combination of the CA and TF-IDF matrix as CA-TFIDF. Simi-
larly, we obtain LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF, CA-RAW, CA-
NROWL1, and CA-NROWL2. For performance comparison, RAW is used for term
matchings without dimensionality reduction.

3.3.4 Datasets

LSA and CA are compared using three English datasets and one Dutch dataset. The
three English datasets are the BBCSport (Greene & Cunningham, 2006), BBCNews
(Greene & Cunningham, 2006), and 20 Newsgroups datasets (20-news-18846 bydata
version) (Rennie, 2005). The Dutch dataset is the Wilhelmus dataset (Kestemont,
2017). The three English datasets have recently been used in information retrieval
studies (Bounabi, Moutaouakil, & Satori, 2019; Bianco, Duarte, & Gonçalves, 2023).
The Wilhelmus dataset is produced for studying authorship attribution of the song
Wilhelmus, which is the national anthem of the Netherlands. The author of the song
is unknown.

Some statistics of the four datasets used are presented in Table 3.3. The BBC-
News dataset includes 2,225 documents that fall into one of five categories. The BBC-
Sport dataset includes 737 documents that fall into one of five categories. The 20
Newsgroups dataset includes 18,846 documents that fall into one of 20 categories.
This dataset is sorted into a training (60%) and a test (40%) set. We use a subset of
this dataset to evaluate information retrieval. We randomly choose 600 documents
from the training set of four categories (comp.graphics, rec.sport.hockey, sci.crypt,
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Table 3.3: Characteristics of datasets.

Categories Data
business 510
entertainment 386
politics 417
sport 511
technology 401

(a) BBCNews dataset.

Categories Data
athletics 101
cricket 124
football 265
rugby 147
tennis 100

(b) BBCSport dataset.

Categories Training data Test data
comp.graphics 141 100
rec.sport.hockey 164 99
sci.crypt 161 106
talk.politics.guns 134 95

(c) 20 Newsgroups dataset.

Categories Data
datheen 35
marnix 46
heere 23
haecht 35
fruytiers 33
coornhert 14

(d) Wilhelmus dataset.

and talk.politics.guns) and 400 documents from the test set of these four categories.
The Wilhelmus dataset includes 186 documents divided into six categories.

To pre-process the three English datasets, we change all characters to lower case,
remove punctuation marks, numbers, and stop words, and apply lemmatization. Sub-
sequently, terms with frequencies lower than 10 are ignored. In addition, we remove
unwanted parts of the 20 Newsgroups dataset, such as the header (including fields like
“From:” and “Reply-To:” followed by email address), because these are almost irrele-
vant for information retrieval. The Dutch Wilhelmus dataset is already pre-processed
into tag-lemma pairs. Following Kestemont (2017) and Qi et al. (2023), in Wilhelmus
dataset, we use the 300 most frequent tag-lemma pairs.

Since the Wilhelmus and BBCSport datasets have a relatively low number of docu-
ments, we use leave-one-out cross-validation (LOOCV) for the Wilhelmus dataset and
five-fold cross-validation for the BBCSport dataset to evaluate LSA and CA (Gareth et
al., 2021). The BBCNews dataset is randomly divided into training (80%) and valida-
tion (20%) sets.

In the information retrieval part of the study, each document in the validation set
is used as a query, where the category of the document is known. The documents in
the training set that fall in the same category as the query are the relevant documents
for this query.

3.3.5 Evaluation

We compare the MAP of each of the four versions of LSA and CA to explore the perfor-
mance of these methods in information retrieval under changes in the contributions
of initial dimensions (Kolda & O’leary, 1998). The MAP is calculated as follows:
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• The similarity is assessed between a query vector and each document vector of
a document collection. We use three similarity metrics: Euclidean distance, dot
similarity, and cosine similarity. As Euclidean distance is a key motivation for
CA, we report results on Euclidean distance, and only report partial results for
dot and cosine similarity in the main paper and the other results in the supple-
mentary materials.

• For Euclidean distance, the documents are ranked in an increasing order based
on their similarity with the query vector (for dot and cosine similarity, the rank-
ing is in the decreasing order); therefore, the first document has the highest
similarity.

• Precision-recall points are derived from the ordered list of documents. For a
given query, Table 3.4 defines four types of documents in the ordered list based
on whether a document is relevant and retrieved:

C = the set of relevant documents from the ordered list, i.e., documents that fall
in the same category as the query

D = the set of retrieved documents from the ordered list., i.e., when 10 docu-
ments are returned, the set of retrieved documents consists of the first 10 docu-
ments in the ordered list.

Table 3.4: Retrieved and relevant documents.

Relevant Non-Relevant
Retrieved C ∩ D C ∩ D
Not Retrieved C ∩ D C ∩ D

Let |.| denote the number of documents in a set. Then, precision and recall are
defined as

precision =
|C∩D|
|D|

(3.11)

and

recall =
|C∩D|
|C|

. (3.12)

Thus, precision is defined as the ratio of the number of relevant documents re-
trieved over the total number of retrieved documents, and recall is defined as
the ratio of the number of relevant documents retrieved over the total number
of relevant documents. For a given query, the set C is fixed. The set D is not
fixed; if we return the first i documents, then D consists of the first i documents
in the ordered list. Thus, for a given i, we can obtain a precision (see Equa-
tion (3.11)) and recall (see Equation (3.12)) pair. We run values of i from 1 to
l (the number of documents in the ordered list), and obtain l precision-recall
pairs.
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• Then, 11 pseudo-precisions are calculated under 11 recalls (0, 0.1, · · · , 1.0),
where a pseudo-precision at recall x is the maximum precision from recall x to
recall 1. For example, pseudo-precision at recall 0.2 is the maximum precision
from recall 0.2 to recall 1.

• The average precision for the query is obtained by averaging the 11 pseudo-
precisions.

• The MAP is the mean across all queries.

Greater MAP values indicate a better performance.

3.4 Results for Euclidean distance

3.4.1 Comparing LSA and CA for information retrieval

3.4.1.1 MAP as a function of the number of dimensions for the four versions of
LSA with the standard weighting exponent α = 1 and for CA

We first investigate the performance of LSA and CA in terms of MAP, in their standard
use, i.e., without varying the weighting exponent α, i.e., α = 1. Term matching without
the preliminary use of LSA and CA, i.e., directly on the document-term matrix, is
denoted by RAW. We expect that, in line with Qi et al. (2023), the performance of LSA
and CA will be better than that of RAW, and the performance of CA will be better
than that of the four versions of LSA.

Figure 3.3 shows MAP as a function of the number of dimensions k for different
weighting schemes of LSA, and for CA. We display only the first 20 dimensions, as all
lines usually decrease after dimension 20. Figures with dimensionality up to 100 can
be found in the supplementary materials. For the four versions of LSA, and for CA,
Table 3.5 presents the dimension number for which the optimal MAP is reached, as
well as the MAP values, in each of the four datasets. We conclude the following from
Figure 3.3 and Table 3.5:

• Both LSA and CA result in better MAP than RAW, which results in a straight line
when the full dimensional matrix is used.

• For both LSA and CA, performance is a function of the number of dimensions
k. Overall, MAP rises as a function of k to reach a peak, and then, it goes down.
For CA, the peak is reached at k = 4. In CA, the information used to calculate
MAP increases in the first four dimensions in comparison to the noise. In the
components of k ≥ 5, the noise dominates the useful information, which results
in the MAP going down from this point.

• CA results in a considerably better MAP than the four versions of LSA: LSA-
RAW, LSA-NROWL1, LSA-NROWL2, and LSA-TFIDF, which is in line with Qi et
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al. (2023), who showed that the performance of CA is better than that of LSA for
document-term matrices. This is because of the differential treatment of margins
in LSA and CA. The margins provide irrelevant information for making queries.
In CA, the margins are removed, and therefore, the relative amount of informa-
tion in comparison to the noise, which we informally refer to as the information
- noise ratio, is considerably larger in CA than in LSA. This explains the better
MAP in CA.

• The peaks for the four versions of LSA are usually found at higher dimensional-
ity k than the peaks for CA. This is because margins are noise for queries when
we fix α = 1; in LSA, this noise plays an important role in the first few dimen-
sions. Hence, this earlier peak in CA is also explained by its better information
- noise ratio.

• The four LSA methods are not equally effective. In all four datasets, the per-
formance of LSA can be significantly improved using weighting schemes. The
improvements over LSA-RAW are data dependent. On average, across the four
datasets, LSA-NROWL2 is the best, but for the Wilhelmus dataset, LSA-NROWL1
and LSA-NROWL2 result in a somewhat worse MAP than that with LSA-RAW.

Table 3.5: MAP with the optimal number of dimensions k. Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
k MAP k MAP k MAP k MAP

RAW 0.358 0.394 0.339 0.489
LSA-RAW 6 0.652 9 0.625 12 0.510 24 0.492
LSA-NROWL1 5 0.733 6 0.721 10 0.565 16 0.470
LSA-NROWL2 5 0.738 5 0.748 4 0.636 13 0.482
LSA-TFIDF 10 0.669 9 0.668 12 0.512 19 0.521
CA 4 0.829 4 0.785 4 0.722 6 0.599

3.4.1.2 MAP as a function of the weighting exponent α for LSA compared with
MAP for CA under varying numbers of dimensions

In Section 3.4.1.1, we found that CA outperforms the four versions of LSA in terms of
MAP, where LSA had the usual weighting exponent α = 1. In this section, we study
whether the performance of LSA-RAW improves when we vary α.

Figure 3.4 shows MAP as a function of α for LSA-RAW with the number of dimen-
sions k = 4,6,9,12,and 24. For comparison, we also report the MAP values for CA
found in Section 3.4.1.1 under these dimensions. We choose these values of k because
these dimensions are optimal for LSA-RAW and CA in Table 3.5. Table 3.6 shows the
optimal α and corresponding MAP, which is a condensed version of Figure 3.4. We
conclude the following from Figure 3.4 and Table 3.6:
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Figure 3.3: MAP as a function of the number of dimensions k under standard coordinates.
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• Although the performance of LSA-RAW improves by varying α, CA still outper-
forms LSA-RAW.

• For LSA-RAW, the overall MAP first increases and then decreases as a function
of α. This means that varying α can potentially improve the performance of
LSA-RAW.

• The increase in MAP is minor. Consider, for example, the BBCNews dataset.
In Section 3.4.1.1, we found that the MAP was optimal with a value of 0.652
for α = 1, when k = 6. Table 3.6 shows that for α = 0.2, the MAP increases to
0.658. Apparently, for 6 dimensions, when α = 0.2, the information - noise ra-
tio is optimal in terms of MAP. For α = 0.2, the distances on later dimensions
(of the 6 dimensions) are increased and those on initial dimensions are reduced.
This means that, with α = 0.2, the impact of the initial dimensions affected most
by the margins is reduced. This is consistent with the results of Bullinaria and
Levy (2012), which indicates that reducing the initial dimensions improves per-
formance.

• Moreover, the optimal α for LSA-RAW is data dependent and generally increases
with k. This replicates results of Caron (2001). As the number of dimensions
varies, the change in the optimal α is the result of the information - noise ratio
for the specific number of dimensions studied. For example, for the BBCNews
dataset, the optimal number of dimensions is 6; for larger numbers of dimen-
sions, the optimal α increases. An increasing α indicates that distances at earlier
dimensions are more important for information retrieval, and therefore, the role
of the later dimensions is played down.

Table 3.6: MAP with the optimal weighting exponent α for LSA-RAW and MAP for CA under k =
4,6,9,12,and 24. Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
α MAP α MAP α MAP α MAP

LSA-RAW (k = 4) -1.4 0.606 -1.4 0.552 0.8 0.436 0.2 0.424
LSA-RAW (k = 6) 0.2 0.658 -0.2 0.642 0.8 0.501 0.4 0.444
LSA-RAW (k = 9) 1 0.641 0.4 0.634 1.2 0.501 0.4 0.488
LSA-RAW (k = 12) 1.4 0.627 1 0.601 1.4 0.513 0.4 0.500
LSA-RAW (k = 24) 1.8 0.597 1.4 0.561 1.8 0.503 0.8 0.496
CA (k = 4) 0.829 0.785 0.722 0.566
CA (k = 6) 0.793 0.780 0.721 0.599
CA (k = 9) 0.717 0.755 0.690 0.591
CA (k = 12) 0.682 0.720 0.670 0.588
CA (k = 24) 0.603 0.611 0.548 0.563
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Figure 3.4: MAP as a function of α for LSA-RAW and MAP for CA under varying k.
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3.4.2 Adjusting CA using weighting

3.4.2.1 Weighting the elements of the raw document-term matrix for CA

Weighting the elements of the raw document-term matrix is an effective way to im-
prove the performance of LSA for information retrieval. Here, we explore whether this
holds for CA. Similar to Figure 3.3, Figure 3.5 shows MAP as a function of k for differ-
ent weighting schemes of CA. CA in Figure 3.3 is referred to as CA-RAW in Figure 3.5;
for CA/CA-RAW, the results in these two figures are identical. For the four versions
of CA, Table 3.7 shows the dimensionality for which the optimal MAP is reached, as
well as the MAP value. We conclude the following from Figure 3.5 and Table 3.7:

• Overall, the weighting of the elements of the raw matrix sometimes improves
the performance of CA, but these improvements over CA-RAW are small and
data dependent.

• Comparing Table 3.5 with Table 3.7, the performance of CA-NROWL1 is better
than that of LSA-NROWL1, the performance of CA-NROWL2 is better than that
of LSA-NROWL2, and the performance of CA-TFIDF is better than that of LSA-
TFIDF.

Relative to LSA, it is harder to improve the performance of CA in information re-
trieval by weighting the elements of the raw matrix because (1) the MAP of CA-RAW
is already relatively high, and (2) CA-RAW has weighted the elements of the raw
document-term matrix as it is an integral part of this technique (Equation (3.5)).

Table 3.7: MAP with the optimal number of dimensions k for the four versions of CA. Bold values are
best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
k MAP k MAP k MAP k MAP

CA-RAW 4 0.829 4 0.785 4 0.722 6 0.599
CA-NROWL1 4 0.821 4 0.800 7 0.631 6 0.603
CA-NROWL2 5 0.818 5 0.802 6 0.695 6 0.604
CA-TFIDF 6 0.786 5 0.800 4 0.704 5 0.618

3.4.2.2 MAP as a function of the weighting exponent α for CA

In this section, we introduce CA with weighting exponent α. Similar to Figure 3.4,
Figure 3.6 shows MAP as a function of α in CA-RAW for the number of dimensions
k = 4,6,9,12,and 24. Table 3.8 shows the optimal α and the corresponding MAP,
which is a condensed version of Figure 3.6. We conclude the following from Figure 3.6
and Table 3.8:

• For CA, the overall MAP first increases and then decreases as a function of α.
This means that varying α can potentially improve the performance of CA.

64



3.4. Results for Euclidean distance

0
.5

5
0
.6

0
0
.6

5
0
.7

0
0
.7

5
0
.8

0

k

M
A

P
 (

E
u

c
lid

e
a

n
)

1 10 20

CA−RAW

CA−NROWL1

CA−NROWL2

CA−TFIDF

(a) α = 1 (BBCNews)

0
.5

0
0
.5

5
0
.6

0
0
.6

5
0
.7

0
0
.7

5
0
.8

0

k

M
A

P
 (

E
u

c
lid

e
a

n
)

1 10 20

CA−RAW

CA−NROWL1

CA−NROWL2

CA−TFIDF

(b) α = 1 (BBCSport)

0
.4

0
.5

0
.6

0
.7

k

M
A

P
 (

E
u

c
lid

e
a

n
)

1 10 20

CA−RAW

CA−NROWL1

CA−NROWL2

CA−TFIDF

(c) α = 1 (20 Newsgroups)

0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0
0
.5

5
0
.6

0

k

M
A

P
 (

E
u

c
lid

e
a

n
)

1 10 20

CA−RAW

CA−NROWL1

CA−NROWL2

CA−TFIDF

(d) α = 1 (Wilhelmus)

Figure 3.5: MAP as a function of the number of dimensions k for the four versions of CA under standard
coordinates.
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• The increase in MAP by adjusting α is data and dimension dependent.

• If we compare the maxima in Table 3.6 with those in Table 3.8 , there is hardly a
noticeable increase.

Now, we check the optimal α like Bullinaria and Levy (2012) did. Comparing Ta-
ble 3.8 with part LSA-RAW of Table 3.6, the optimal α for CA-RAW is almost always
larger than LSA-RAW and is almost always larger than 1. That is, CA-RAW needs
a larger α than LSA-RAW to obtain its maximum MAP. Thus, compared to LSA, CA
improves by placing more emphasis on its initial dimensions. The important differ-
ence between LSA and CA is that LSA involves margins, and CA does not. Therefore,
we infer that margins in LSA considerably contribute to the initial dimensions; how-
ever, they are irrelevant (“noise”) for information retrieval. On the other hand, CA
effectively eliminates this irrelevant information.

We study MAP as a function of α under the optimal number of dimensions. The
details including tables and figures are in the supplementary materials. Again, CA
performs better than LSA. Adjusting α can potentially improve the performance of
LSA and CA. Although the optimal α under the optimal number of dimensions is
data dependent, the optimal α of CA is usually considerably larger than that of LSA.

Table 3.8: MAP with the optimal α for CA-RAW under k = 4,6,9,12,and 24. Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
α MAP α MAP α MAP α MAP

CA-RAW (k = 4) 2 0.829 3.6 0.790 4 0.726 -1 0.585
CA-RAW (k = 6) 4.5 0.814 5 0.798 4.5 0.730 0.4 0.603
CA-RAW (k = 9) 6.5 0.802 6 0.797 5.5 0.726 1 0.591
CA-RAW (k = 12) 7 0.797 6.5 0.794 6 0.723 1.2 0.588
CA-RAW (k = 24) 8 0.788 7.5 0.791 7 0.715 1.6 0.579

3.5 Results for dot similarity and cosine similarity

In Section 3.4, we presented the results where Euclidean distance was used as a mea-
sure of similarity. Here, for comparison, we provide results for dot similarity and
cosine similarity. Tables and figures for dot similarity and cosine similarity are pre-
sented in the supplementary materials.

The results for both dot similarity and cosine similarity lead to conclusions that
match those for Euclidean distance. However, cosine similarity leads to a better per-
formance in terms of MAP than Euclidean distance and dot similarity. We displayed
the results for Euclidean distance in Section 3.4 because (1) it is more easily inter-
pretable in the context of adjusting weighting exponent α: as α increases, Euclidean
distances between row points (column points) on initial dimensions increase relative
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Figure 3.6: MAP as a function of α for CA-RAW under various values of k.
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to the later dimensions; and (2) in the literature, the Euclidean distance is the pre-
ferred way to interpret CA (in fact, we have never seen an interpretation of CA in
terms of cosine or dot similarity).

3.6 Conclusion and discussion

Both LSA and CA make use of SVD. The main difference between LSA and CA is the
matrix that is decomposed by SVD. In LSA, the decomposed matrix is the weighted
matrix A. In CA the decomposed matrix is the matrix S of standardized residuals,
where in the part (P − E) the marginal effects are eliminated (Qi et al., 2023), and
whose rank is one less the rank of A. That is why the CA solution only displays the de-
pendence between documents and terms. In LSA, on the other hand, the decomposed
matrix also includes marginal effects, which are usually not relevant for information
retrieval.

CA is related to the statistical independence model (Greenacre, 1984). The ele-
ments of S display the departure from marginal products, i.e., the departure form the
statistical independence model. The sum of squared elements of S equals the Pearson
chi-square statistic divided by the sum of elements of F. CA decomposes the depar-
ture from statistical independence into a number of dimensions using SVD. LSA, on
the other hand, has no connection with the statistical independence model.

In this paper, we compared four versions of LSA: LSA-RAW, LSA-NROWL1, LSA-
NROWL2, and LSA-TFIDF with CA and found that CA always performs better than
LSA in terms of MAP. Then, we compared LSA-RAW as a function of weighting ex-
ponent α with CA under a range of the numbers of dimensions. Even though LSA is
improved by choosing an appropriate value for α, CA always performed better than
LSA.

Next, we applied different weighting elements of the raw document-term matrix to
CA. We found that weighting elements of the raw matrix sometimes improves the per-
formance of CA, but improvements over CA-RAW are small and data dependent. The
performance of CA-NROWL1 is better than that of LSA-NROWL1, the performance of
CA-NROWL2 is better than that of LSA-NROWL2, and the performance of CA-TFIDF
is better than that of LSA-TFIDF. Then, we adjusted the weighting exponents α in CA.
For CA, as a function of α, MAP first increases and then decreases. Adjusting the
weighting exponent α can potentially improve the performance of CA. However, the
increased performance obtained by adjusting α is data and dimension dependent.

Using the standard coordinates of α = 1, for LSA, the Euclidean distances between
the rows of coordinates approximate the Euclidean distances between the rows of
the decomposed matrix. For CA, the Euclidean distances between the rows of coor-
dinates approximate the χ2−distances between the rows of the decomposed matrix.
α < 1 gives less emphasis to the initial dimensions relative to the standard coordi-
nates. Conversely, α > 1 gives more emphasis to the initial dimensions relative to the
standard coordinates. The optimal α for CA is almost always larger than that for LSA
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and is almost always larger than 1.
Bullinaria and Levy (2012) argued that the initial dimensions in LSA tend not to

contribute the most useful information about semantics and tend to be contaminated
by “noise”. The above mentioned results indicate that CA places more emphasis on
the initial dimensions than LSA. The major difference between LSA and CA is that
LSA involves margins but CA does not (Qi et al., 2023). Thus, we infer that margins
considerably contribute to the initial dimensions in LSA. These margins are irrelevant
for information retrieval. The CA effectively eliminates this irrelevant information.

In this paper, we focused on the performances of CA and LSA using Euclidean dis-
tances. We also performed identical experiments for dot similarity and cosine similar-
ity. Both have nearly identical results with the Euclidean distance. Cosine similarity
performs better than the Euclidean distance and dot similarity. We focus on Euclidean
distance in the paper because (1) it is more easily interpretable in the context of ad-
justing α: as α increases, the Euclidean distances between row points (column points)
on the initial dimensions increase relative to the later dimensions; (2) for CA, dot sim-
ilarity and cosine similarity have never been used before, and therefore, by focusing
on Euclidean distances, the results fit better into the existing literature.

Based on theoretical considerations and experimental results, we have the follow-
ing three suggestions for practical guidance:

1. Use CA instead of LSA under the four kinds of feature extraction: RAW,
NROWL1, NROWL2, and TF-IDF; use CA for visualizing data.

2. If information retrieval is the key issue, use cosine similarity instead of Eu-
clidean distance and dot similarity for calculating MAP.

3. If optimal performance in terms of MAP is not of key importance, there is no
need to weight the elements of raw document-term matrix for CA and optimize
the performance over α for CA to save time. Otherwise, these two weightings
may be considered potential approaches for improving the performance of CA.

Our finding that CA performs better than LSA for information retrieval is very
important for creating next generation intelligent information systems. Among many
other tasks, LSA has been widely used for information retrieval. We expect that the
performance of these tasks can be improved by replacing LSA with CA.

Concluding, CA and LSA are both tools for information retrieval but the perfor-
mance of CA is better. In our paper we tried to further improve CA by weighting the
input matrix and by weighting dimensions. This did not lead to large or consistent
improvements of the performance of CA.

Further studies on the combination of LSA and CA will also be interesting. For
example, creating an ensemble voting system using the coordinates from LSA and CA
in the process of returning documents of a query. This paper, however, focuses on the
comparison of LSA and CA for information retrieval and other explorations are left
for future studies.
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Appendix 3.A Euclidean distance

3.A.1 Comparing LSA and CA for information retrieval

3.A.1.1 MAP as a function of the number of dimensions for the four versions of
LSA with the standard weighting exponent α = 1 and for CA

Figure 3.7 shows MAP as a function of the number of dimensions k with dimension-
ality up to 100 for different weighting schemes of LSA, and for CA.
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Figure 3.7: MAP as a function of the number of dimensions k under standard coordinates.
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3.A.2 Adjusting CA using weighting

3.A.2.1 Weighting the elements of the raw document-term matrix for CA

Similar to Figure 3.7, Figure 3.8 shows MAP as a function of k with dimensionality up
to 100 for different weighting schemes of CA.
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Figure 3.8: MAP as a function of the number of dimensions k for the four versions of CA under standard
coordinates.
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3.A.3 Exploring MAP as a function of α under the optimal number
of dimensions for LSA and CA

Figure 3.9 shows the MAP as a function of α under the optimal number of dimensions.
Similar to Section 3.4.1.1 in the context of α = 1, we can obtain the corresponding
optimal k (not shown in the figure) and the corresponding MAP (shown in the figure)
for each α. Table 3.9 shows the optimal α, optimal k, and corresponding MAP, which
is a condensed version of Figure 3.9. Based on Figure 3.9 and Table 3.9, we can see
that

• CA methods are always better than the LSA methods and term matching meth-
ods under the optimal α and optimal number of dimensions k.

• Weighting the elements of the raw document-term matrix under the optimal
number of dimensions k can improve the performance of CA; however, the im-
provements are small and data dependent.

• Similar to dimension k = 4,6,9,12,and 24, MAP as a function of α under the
optimal number of dimensions k also first increases and then decreases. Thus,
adjusting α can potentially improve the performance of LSA and CA.

• For different datasets, the optimal α under the optimal number of dimensions k
is very different. In constrast to LSA, CA needs a greater α to reach the optimal
performance under the optimal number of dimensions k. This illustrates that
CA places more emphasis on initial dimensions than LSA.
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Figure 3.9: MAP as a function of α under the optimal number of dimensions.

73



3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.9: MAP under the optimal α and optimal dimension k. Bold values are best within group;
underlined values are best overall.

BBCNews BBCSport 20 Newsgroups Wilhelmus
α k MAP α k MAP α k MAP α k MAP

RAW 0.358 0.394 0.339 0.489
LSA-RAW 0.2 6 0.658 -0.2 6 0.642 1.4 12 0.513 0.4 13 0.505
CA-RAW 2 4 0.829 5.5 7 0.799 4.5 6 0.730 0.4 6 0.603
NROWL1 0.353 0.433 0.368 0.463

LSA-NROWL1 -0.4 5 0.738 -0.4 5 0.734 -6 10 0.583 -0.2 8 0.496
CA-NROWL1 3.6 5 0.824 5.5 5 0.803 5.5 7 0.634 0.2 6 0.609

NROWL2 0.602 0.615 0.486 0.474
LSA-NROWL2 -0.4 5 0.747 0 5 0.760 0 4 0.639 0.2 10 0.506
CA-NROWL2 3.6 5 0.826 5 5 0.810 5.5 6 0.703 0.2 6 0.609

TFIDF 0.326 0.365 0.334 0.507
LSA-TFIDF 0.8 10 0.669 -1.4 6 0.678 1 12 0.512 0.6 16 0.529
CA-TFIDF 5 6 0.798 6.5 7 0.803 5 6 0.711 0.6 5 0.619

Appendix 3.B Dot similarity

We performed identical experiments to the main paper as well as Section 3.A.3,
but using dot similarity, instead of Euclidean distance, as similarity measurement
method. The results lead to matching conclusions as those for Euclidean distance
used in the main paper.
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3.B.1 Comparing LSA and CA for information retrieval

3.B.1.1 MAP as a function of the number of dimensions for four versions of LSA
with standard weighting exponent α = 1 and CA
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Figure 3.10: MAP as a function of the number of dimensions under standard coordinates.
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Table 3.10: MAP with the optimal number of dimensions k about dot similarity. Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
k MAP k MAP k MAP k MAP

RAW 0.543 0.534 0.454 0.342
LSA-RAW 14 0.580 15 0.536 36 0.488 90 0.343
LSA-NROWL1 5 0.751 7 0.663 14 0.601 80 0.404
LSA-NROWL2 5 0.744 6 0.693 4 0.672 34 0.475
LSA-TFIDF 32 0.613 22 0.651 60 0.490 100 0.421
CA 4 0.896 7 0.865 6 0.788 12 0.642

3.B.1.2 MAP as a function of the weighting exponent α about LSA and MAP about
CA for various values of the number of dimensions

Figure 3.11 shows MAP as a function of α about LSA-RAW and MAP about CA for the
number of dimensions: k = 4,6,7,12,14,15,36,and 90.
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3.B. Dot similarity
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Figure 3.11: MAP as a function of α for LSA-RAW and MAP for CA under various values of k.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.11: MAP with the optimal weighting exponent α for LSA-RAW and MAP for CA under k =
4,6,7,12,14,15,36,and 90 about dot similarity. Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
α MAP α MAP α MAP α MAP

LSA-RAW (k = 4) -2.5 0.601 -1.8 0.593 -1.4 0.414 -1 0.440
LSA-RAW (k = 6) -0.8 0.701 -1 0.687 -1 0.481 -0.2 0.441
LSA-RAW (k = 7) -0.8 0.697 -0.6 0.673 0.4 0.450 0 0.419

LSA-RAW (k = 12) 0 0.660 0.2 0.638 0.2 0.495 0 0.500
LSA-RAW (k = 14) 0.2 0.646 0.2 0.623 0.4 0.492 0.2 0.500
LSA-RAW (k = 15) 0.4 0.635 0.4 0.617 0.4 0.486 0.2 0.496
LSA-RAW (k = 36) 0.8 0.584 0.6 0.566 0.8 0.490 0.4 0.482
LSA-RAW (k = 90) 1 0.556 0.8 0.547 1.2 0.478 0.4 0.465

CA (k = 4) 0.896 0.826 0.753 0.587
CA (k = 6) 0.880 0.853 0.788 0.632
CA (k = 7) 0.853 0.865 0.782 0.630

CA (k = 12) 0.818 0.839 0.756 0.642
CA (k = 14) 0.811 0.823 0.731 0.640
CA (k = 15) 0.805 0.818 0.708 0.637
CA (k = 36) 0.744 0.756 0.599 0.637
CA (k = 90) 0.663 0.687 0.503 0.626
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3.B. Dot similarity

3.B.2 Improving performance of CA for information retrieval

3.B.2.1 Weighting scheme of raw document-term matrix for CA
0
.5

0
.6

0
.7

0
.8

0
.9

k

M
A

P
 (

d
o

t)

1 10 20 30 40 50 60 70 80 90 100

CA−RAW

CA−NROWL1

CA−NROWL2

CA−TFIDF

(a) α = 1 (BBCNews)

0
.5

0
.6

0
.7

0
.8

0
.9

k

M
A

P
 (

d
o

t)

1 10 20 30 40 50 60 70 80 90 100

CA−RAW

CA−NROWL1

CA−NROWL2

CA−TFIDF

(b) α = 1 (BBCSport)

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

k

M
A

P
 (

d
o

t)

1 10 20 30 40 50 60 70 80 90 100

CA−RAW

CA−NROWL1

CA−NROWL2

CA−TFIDF

(c) α = 1 (20 Newsgroups)

0
.3

0
.4

0
.5

0
.6

k

M
A

P
 (

d
o

t)

1 10 20 30 40 50 60 70 80 90 100

CA−RAW

CA−NROWL1

CA−NROWL2

CA−TFIDF

(d) α = 1 (Wilhelmus)

Figure 3.12: MAP as a function of the number of dimensions k for the four versions of CA under
standard coordinates.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.12: MAP with the optimal number of dimensions k for the four versions of CA about dot
similarity. Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
k MAP k MAP k MAP k MAP

CA-RAW 4 0.896 7 0.865 6 0.788 12 0.642
CA-NROWL1 5 0.893 5 0.882 28 0.663 9 0.641
CA-NROWL2 5 0.896 5 0.887 10 0.741 6 0.644
CA-TFIDF 6 0.877 7 0.871 6 0.763 14 0.669
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3.B. Dot similarity

3.B.2.2 Weighting exponent α in CA
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Figure 3.13: MAP as a function of α for CA-RAW under various values of k.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.13: MAP with the optimal α for CA-RAW under k = 4,6,7,12,14,15,36,and 90 about dot simi-
larity. Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
α MAP α MAP α MAP α MAP

CA (k = 4) 0.4 0.896 3.4 0.834 0.8 0.753 -0.4 0.610
CA (k = 6) 2.2 0.884 3 0.866 1.6 0.789 0.4 0.641
CA (k = 7) 3.2 0.870 3 0.883 2.4 0.785 0.6 0.635

CA (k = 12) 3.8 0.866 3.6 0.884 3.4 0.779 1 0.642
CA (k = 14) 3.8 0.866 3.8 0.883 3.8 0.774 1 0.640
CA (k = 15) 3.8 0.865 3.8 0.883 4 0.771 1 0.637
CA (k = 36) 4 0.864 4 0.883 4.5 0.767 1.2 0.640
CA (k = 90) 4 0.863 4 0.883 4.5 0.765 1.2 0.635
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3.B. Dot similarity

3.B.3 Exploring MAP as a function of α under the optimal number
of dimensions for LSA and CA
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Figure 3.14: MAP as a function of α under optimal dimension.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.14: MAP under the optimal α and optimal dimension k about dot similarity. Bold values are
best within group; underlined values are best overall.

BBCNews BBCSport 20 Newsgroups Wilhelmus
α k MAP α k MAP α k MAP α k MAP

RAW 0.543 0.534 0.454 0.342
LSA-RAW -0.8 6 0.701 -1 6 0.687 0.4 17 0.496 0 13 0.505
CA-RAW 0.4 4 0.896 3.6 10 0.885 1.6 6 0.789 1 12 0.642
NROWL1 0.603 0.600 0.472 0.405

LSA-NROWL1 -1.2 5 0.822 -0.6 5 0.756 -2 12 0.634 0.2 11 0.525
CA-NROWL1 1.4 5 0.893 2.8 6 0.889 5.5 32 0.690 0.2 6 0.651

NROWL2 0.602 0.615 0.487 0.474
LSA-NROWL2 -1.2 5 0.827 -0.6 5 0.792 -1.6 4 0.742 0.2 10 0.534
CA-NROWL2 1.2 5 0.896 3 6 0.893 3.8 10 0.753 0.4 6 0.654

TFIDF 0.553 0.609 0.453 0.422
LSA-TFIDF -0.8 10 0.717 -0.4 9 0.724 0.2 24 0.498 0.2 16 0.555
CA-TFIDF 2 6 0.878 4 10 0.896 2.6 9 0.767 1.4 16 0.674

Appendix 3.C Cosine similarity

We performed identical experiments to the main paper as well as Section 3.A.3,
but using cosine similarity, instead of Euclidean distance, as similarity measurement
method. The results follow the same trend of the main paper, leading similarity con-
clusions.
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3.C. Cosine similarity

3.C.1 Comparing LSA and CA for information retrieval

3.C.1.1 MAP as a function of the number of dimensions for four versions of LSA
with standard weighting exponent α = 1 and CA
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Figure 3.15: MAP as a function of the number of dimensions under standard coordinates.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.15: MAP with the optimal number of dimensions k about cosine similarity. Bold values are
best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
k MAP k MAP k MAP k MAP

RAW 0.602 0.615 0.487 0.474
LSA-RAW 6 0.779 9 0.766 12 0.654 22 0.484
LSA-NROWL1 5 0.817 6 0.775 12 0.651 13 0.481
LSA-NROWL2 5 0.825 5 0.795 4 0.745 13 0.482
LSA-TFIDF 10 0.796 9 0.819 12 0.665 19 0.531
CA 4 0.902 7 0.878 6 0.794 12 0.652

3.C.1.2 MAP as a function of the weighting exponent α about LSA and MAP about
CA for various values of the number of dimensions

Figure 3.16 shows MAP as a function of α about LSA-RAW and MAP about CA for the
number of dimensions: k = 4,6,7,9,12,and 22.
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3.C. Cosine similarity
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Figure 3.16: MAP as a function of α for LSA-RAW and MAP for CA under various values of k.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.16: MAP with the optimal weighting exponent α for LSA-RAW and MAP for CA under k =
4,6,7,9,12,and 22 about cosine similarity. Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
α MAP α MAP α MAP α MAP

LSA-RAW (k = 4) -1.4 0.718 -1.2 0.639 2.8 0.525 -1 0.470
LSA-RAW (k = 6) 0 0.788 0 0.771 1.2 0.644 -0.2 0.472
LSA-RAW (k = 7) 0 0.783 0.2 0.764 1.6 0.646 0 0.452
LSA-RAW (k = 9) 0.8 0.766 0.6 0.770 2 0.647 0 0.521

LSA-RAW (k = 12) 1.2 0.748 1 0.737 1.8 0.670 0.2 0.536
LSA-RAW (k = 22) 3.4 0.738 2.8 0.715 2 0.665 0.4 0.525

CA (k = 4) 0.902 0.863 0.786 0.617
CA (k = 6) 0.888 0.878 0.794 0.650
CA (k = 7) 0.862 0.878 0.788 0.648
CA (k = 9) 0.844 0.861 0.776 0.649

CA (k = 12) 0.827 0.844 0.767 0.652
CA (k = 22) 0.791 0.796 0.682 0.647
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3.C. Cosine similarity

3.C.2 Improving performance of CA for information retrieval

3.C.2.1 Weighting scheme of raw document-term matrix for CA
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Figure 3.17: MAP as a function of the number of dimensions k for the four versions of CA under
standard coordinates.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.17: MAP with the optimal number of dimensions k for the four versions of CA about cosine
similarity. Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
k MAP k MAP k MAP k MAP

CA-RAW 4 0.902 7 0.878 6 0.794 12 0.652
CA-NROWL1 5 0.900 5 0.894 7 0.705 6 0.658
CA-NROWL2 5 0.902 5 0.896 6 0.775 6 0.660
CA-TFIDF 6 0.887 5 0.884 6 0.774 14 0.677
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3.C. Cosine similarity

3.C.2.2 Weighting exponent α in CA
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Figure 3.18: MAP as a function of α for CA-RAW under various values of k.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.18: MAP with the optimal α for CA-RAW under k = 4,6,7,9,12,and 22 about cosine similarity.
Bold values are best.

BBCNews BBCSport 20 Newsgroups Wilhelmus
α MAP α MAP α MAP α MAP

CA (k = 4) 0.8 0.902 2.6 0.864 0.8 0.786 -0.8 0.642
CA (k = 6) 2.4 0.893 3.2 0.887 2.4 0.796 0.4 0.656
CA (k = 7) 3.6 0.881 3.4 0.893 2.8 0.793 0.8 0.649
CA (k = 9) 3.8 0.879 4 0.892 3.4 0.789 1 0.649

CA (k = 12) 4.5 0.876 4.5 0.890 3.6 0.787 1.2 0.652
CA (k = 22) 5 0.871 5 0.890 4.5 0.774 1.2 0.651
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3.C. Cosine similarity

3.C.3 Exploring MAP as a function of α under the optimal number
of dimensions for LSA and CA
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Figure 3.19: MAP as a function of α under optimal dimension.
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3. Improving information retrieval through correspondence analysis instead of latent
semantic analysis
Table 3.19: MAP under the optimal α and optimal dimension k about cosine similarity. Bold values
are best within group; underlined values are best overall.

BBCNews BBCSport 20 Newsgroups Wilhelmus
α k MAP α k MAP α k MAP α k MAP

RAW 0.602 0.615 0.487 0.474
LSA-RAW 0 6 0.788 0 6 0.771 1.8 12 0.670 0.2 13 0.542
CA-RAW 0.8 4 0.902 3.4 7 0.893 2.4 6 0.796 0.4 6 0.656
NROWL1 0.602 0.615 0.487 0.474

LSA-NROWL1 -1.4 5 0.845 -0.2 5 0.788 -2 12 0.666 -0.2 8 0.535
CA-NROWL1 2 5 0.901 2.8 6 0.897 6.5 32 0.721 0.4 6 0.664

NROWL2 0.602 0.615 0.487 0.474
LSA-NROWL2 -1 5 0.851 -0.2 5 0.809 -1 4 0.754 0.0 10 0.540
CA-NROWL2 1.8 5 0.903 2.6 5 0.898 4 10 0.782 0.4 6 0.666

TFIDF 0.596 0.667 0.481 0.520
LSA-TFIDF 0.2 10 0.802 -0.4 6 0.822 1.2 12 0.666 0.2 16 0.578
CA-TFIDF 2.4 6 0.889 5 10 0.901 2.6 9 0.777 1.6 14 0.684
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Chapter 4

A comparison of correspondence
analysis with PMI-based word

embedding methods

Abstract

Popular word embedding methods such as GloVe and Word2Vec are related
to the factorization of the pointwise mutual information (PMI) matrix. In this
paper, we link correspondence analysis (CA) to the factorization of the PMI ma-
trix. CA is a dimensionality reduction method that uses singular value decom-
position (SVD), and we show that CA is mathematically close to the weighted
factorization of the PMI matrix. In addition, we present variants of CA that
turn out to be successful in the factorization of the word-context matrix, i.e.
CA applied to a matrix where the entries undergo a square-root transforma-
tion (ROOT-CA) and a root-root transformation (ROOTROOT-CA). An empiri-
cal comparison among CA- and PMI-based methods shows that overall results of
ROOT-CA and ROOTROOT-CA are slightly better than those of the PMI-based
methods.

This chapter is under review as: Qi, Q., Hessen, D. J., & Van der Heijden, P. G. M.. A comparison of
correspondence analysis with PMI-based word embedding methods. Author contributions: QQ, DH,
and PvdH posed the problem. QQ worked out the idea, set up the experiments, and carried them
out. QQ, DH, and PvdH discussed and edited the text. The code used in this study can be found at
https://github.com/qianqianqi28/ca-pmi.
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4. A comparison of correspondence analysis with PMI-based word embedding
methods

4.1 Introduction

Word embeddings, i.e., dense and low dimensional word representations, are useful
in various natural language processing (NLP) tasks (Jurafsky & Martin, 2023; Sasaki,
Heinzerling, Suzuki, & Inui, 2023). Three successful methods to derive such word
representations are related to the factorization of the pointwise mutual information
(PMI) matrix, an important matrix to be analyzed in NLP (Egleston et al., 2021; Bae
et al., 2021; Alqahtani, Al-Twairesh, & Alsanad, 2023). The PMI matrix is a weighted
version of the word-context co-occurrence matrix and measures how often two words,
a target word and a context word, co-occur, compared with what we would expect if
the two words were independent. The analysis of a positive PMI (PPMI) matrix, where
all negative values in a PMI matrix are replaced with zero (Turney & Pantel, 2010;
M. Zhang, Palade, Wang, & Ji, 2022; Alqahtani et al., 2023), generally leads to a better
performance in semantic tasks (Bullinaria & Levy, 2007), and in most applications the
PMI matrix is replaced with the PPMI matrix (Salle et al., 2016).

The first method, PPMI-SVD, decomposes the PPMI matrix with a singular value
decomposition (SVD) (Levy & Goldberg, 2014; Levy et al., 2015; Stratos, Collins, &
Hsu, 2015; M. Zhang et al., 2022). The second one is GloVe (Pennington et al., 2014).
GloVe factorizes the logarithm of the word-context matrix with an adaptive gradi-
ent algorithm (AdaGrad) (Duchi, Hazan, & Singer, 2011). According to Shi and Liu
(2014); Shazeer et al. (2016), GloVe is almost equivalent to factorizing a PMI ma-
trix shifted by the logarithm of the sum of the elements of a word-context matrix.
The third method is Word2Vec’s skip-gram with negative sampling (SGNS) (Mikolov,
Chen, et al., 2013; Mikolov, Sutskever, et al., 2013). SGNS uses a neural network
model to generate word embeddings. Levy and Goldberg (2014) proved that SGNS
implicitly factorizes a PMI matrix shifted by the logarithm of the number of negative
samples in SGNS.

In this paper we study what correspondence analysis (CA) (Greenacre, 2017; Beh
& Lombardo, 2021) has to offer for the analysis of word-context co-occurrence matri-
ces. CA is an exploratory statistical method that is often used for visualization of a
low dimensional approximation of a matrix. It is close to the T-test weighting scheme
(Curran & Moens, 2002; Curran, 2004), where standardized residuals are studied, as
CA is based on the SVD of the matrix of standardized residuals. In the context of
document-term matrices, CA has been compared earlier with latent semantic analysis
(LSA), where the document-term matrix is also decomposed with an SVD (Dumais et
al., 1988; Deerwester et al., 1990). Although CA is similar to LSA, there is theoretical
and empirical research showing that CA is to be preferred over LSA for text catego-
rization and information retrieval (Qi et al., 2023; Qi, Hessen, & Van der Heijden,
2024).

CA of a two-way contingency table is equivalent to canonical correlation analysis
(CCA) of the data in the form of indicator matrices for the row variable and the col-
umn variable of the two-way contingency table (Greenacre, 1984). Stratos et al. (2015)
proposed to combine CCA with a square-root transformation of the elements of the
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4.2. Research objectives

contingency table. In this paper we refer to this procedure as ROOT-CCA, to distin-
guish it from ROOT-CA introduced later. Stratos et al. (2015) found that, on word
similarity tasks, (1) the performance of CCA is quite bad, but the performance of
ROOT-CCA is a marked improvement, and (2) ROOT-CCA outperforms PPMI-SVD,
GloVe, and SGNS. However, CA has not yet been linked to PMI-based methods.

A document-term matrix has some similarity to a word-context matrix, as they
both use counts. In this paper, mathematically, we show that CA is close to a weighted
factorization of the PMI matrix. We also propose a direct weighted factorization of the
PMI matrix (PMI-GSVD). Furthermore, we empirically compare the performance of
CA with the performance of PMI-based methods on a word similarity task.

In the context of CA, Nishisato, Beh, Lombardo, and Clavel (2021) point out, gen-
erally speaking, a two-way contingency table is prone to overdispersion. Overdisper-
sion may negatively affect the performance of CA (Beh, Lombardo, & Alberti, 2018;
Nishisato et al., 2021). To deal with this overdispersion, a fourth-root transformation
can be used (Field, Clarke, & Warwick, 1982; Greenacre, 2009, 2010). The fourth
root transformation has been widely discussed and applied (Downing, 1981; Kosten-
salo et al., 2023; France & Heung, 2023). Therefore, in addition to the word-context
matrix, CA is also applied to the fourth-root transformation of the word-context ma-
trix (ROOTROOT-CA). Inspired by ROOT-CCA, CA is also applied to the square-root
transformation of the word-context matrix (ROOT-CA). Recently, ROOT-CA has been
explored in biology (Hsu & Culhane, 2023). The difference between ROOT-CCA and
ROOT-CA is discussed in Section 4.3.3.

In the following section, research objectives are presented. In Section 4.3 CA, the
three variants of CA, and the T-Test weighting scheme are introduced. The three PMI-
based methods are described in Section 4.4. Theoretical relationships between CA
and the PMI-based methods are shown in Section 4.5. In Section 4.6 we present two
corpora to build word vectors and five word similarity datasets to evaluate word vec-
tors. Section 4.7 illustrates the setup of the empirical study using these two corpora
where CA, PMI-SVD, PPMI-SVD, PMI-GSVD, ROOT-CA, ROOTROOT-CA, ROOT-
CCA, SGNS, and GloVe are compared. Section 4.8 presents the results for these meth-
ods on word similarity tasks. Section 4.9 concludes and discusses this paper.

4.2 Research objectives

Considering the foregoing, this study focuses on word embeddings in NLP. The objec-
tive is to explore the relationship between CA and PMI-based methods and compare
the performance in word similarity tasks. In addition, we explore the performance of
variants of CA, namely ROOT-CA and ROOTROOT-CA.
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4. A comparison of correspondence analysis with PMI-based word embedding
methods

4.3 Correspondence analysis

In this section, first we describe correspondence analysis (CA) using a distance in-
terpretation (Benzécri, 1973; Greenacre & Hastie, 1987), which is a popular way to
present CA. Then we present CA making use of an objective function, thus making the
later comparison with PMI-based methods straightforward. Third, we present three
variants of CA in word embedding. Finally, the T-Test weighting scheme (Curran &
Moens, 2002; Curran, 2004) is described, as it turns out to be remarkably similar to
CA.

A word-context matrix is a matrix with counts, in which the rows and columns
are labeled by terms. In each cell a count represents the number of times the row
(target) word and the column (context) word co-occur in a text (Jurafsky & Martin,
2023). Consider a word-context matrix denoted as X having I rows (i = 1,2, · · · , I)
and J columns (j = 1,2, · · · , J), where the element for row i and column j is xij . The
joint observed proportion is pij = xij /x++, where “+” represents the sum over the cor-
responding elements. The marginal proportions of target word i and context word j
are pi+ =

∑
j pij and p+j =

∑
i pij , respectively.

4.3.1 Introduction to CA

CA is an exploratory method for the analysis of two-way contingency tables. It allows
to study how the counts in the contingency table depart from statistical independence.
Here we introduce CA in the context of the word-context matrix X . In CA of the
matrix X , first the elements xij are converted to joint observed proportions pij , and
these are transformed into standardized residuals (Greenacre, 2017)

pij − pi+p+j
√
pi+p+j

. (4.1)

Then an SVD is applied to this matrix of standardized residuals, yielding

pij − pi+p+j
√
pi+p+j

=
min(I−1,J−1)∑

k=1

σkuikvjk , (4.2)

where σk is the kth singular value, with singular values in the decreasing order, and
uik , i = 1,2, · · · , I and vjk , j = 1,2, · · · , J are the kth left and right singular vectors, respec-
tively. When X has full rank, the maximum dimensionality is min(I − 1, J − 1), where
the “−1” is due to the subtraction of elements pi+p+j . Multiplying the singular vectors

consisting of elements uik and vjk by p
− 1

2
i+ and p

− 1
2

+j , respectively, leads to

pij
pi+p+j

− 1 =
min(I−1,J−1)∑

k=1

σkφikγjk , (4.3)
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where φik = p
− 1

2
i+ uik and γjk = p

− 1
2

+j vjk. Scores φik , k = 1,2, · · · ,K and γjk , k = 1,2, · · · ,K
provide the standard coordinates of row point i and column point j in K-dimensional
space, respectively, because of

∑
i pi+φik =

∑
j p+jγjk = 0 and

∑
i pi+φ

2
ik =

∑
j p+jγ

2
jk = 1.

Scores φikσk , k = 1,2, · · · ,K and γjkσk , k = 1,2, · · · ,K provide the principle coordinates
of row point i and column point j in K-dimensional space, respectively. When
K < min(I − 1, J − 1), the Euclidean distances between these row (column) points
approximate so-called χ2-distances between rows (columns) of X . The squared χ2-
distance between rows i and i′ of X is

δ2
ii′ =

∑
j

( pij
pi+
− pi′ j

pi′+

)2

p+j
, (4.4)

and similarly for the chi-squared distance between columns j and j ′. Equation (4.4)
shows that the χ2−distance δii′ measures the difference between the ith vector of con-
ditional proportions pij /pi+ and the i′th vector of conditional proportions pi′j /pi′+,
where more weight is given to the differences in these columns if p+j is relatively
smaller compared to other columns.

Although the use of Euclidean distance is standard in CA, Qi et al. (2024) show
that for information retrieval cosine similarity leads to the best performance among
Euclidean distance, dot similarity, and cosine similarity. The superiority of cosine
similarity also holds in the context of word embedding studies (Bullinaria & Levy,
2007). Therefore, in this paper we use cosine similarity to calculate the similarity of

row points and of column points. It is worth noting that p
− 1

2
i+ in φik = p

− 1
2

i+ uik and p
− 1

2
+j

in γjk = p
− 1

2
+j vjk have no effects on the cosine similarity. Details are in Supplementary

materials A. We coin scores uikσk , k = 1,2, · · · ,K and vjkσk , k = 1,2, · · · ,K an alternative
coordinates system for CA directly suited for cosine similarity.

The so-called total inertia is∑
i

∑
j

(
pij − pi+p+j

)2

pi+p+j
=

min(I−1,J−1)∑
k=1

σ2
k . (4.5)

This illustrates that CA decomposes the total inertia over min(I − 1, J − 1) dimen-
sions. The total inertia equals the well-known Pearson χ2 statistic divided by
x++. The relative contribution of cell (i, j) to the total inertia is calculated as
(pij−pi+p+j)

2

pi+p+j
/
∑

i
∑

j
(pij−pi+p+j)

2

pi+p+j
. The relative contribution of the ith row (jth column)

to the kth dimension is calculated as u2
ik (v2

jk).

4.3.2 The objective function of CA

To simplify the later comparison of CA with the other models, we present the objective
function that is minimized in CA. The objective function is (Greenacre, 1984, pp. 345-
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349): ∑
i,j

pi+p+j

(
pij

pi+p+j
− 1− eTi oj

)2

, (4.6)

where ei and oj are parameter vectors for target word i and context word j, with
respect to which the objective function is minimized. The vectors have length
K ≤ min(I − 1, J − 1). We call the part of the formula to be approximated, i.e.(
pij /pi+p+j − 1

)
, the fitting function and the weighting part pi+p+j the weighting func-

tion. Thus, according to (4.6), CA can be viewed as a weighted matrix factorization of(
pij /pi+p+j − 1

)
with weighting function pi+p+j .

The solution is found using the SVD as in Equation (4.2). The K-dimensional
approximation of

(
pij /pi+p+j − 1

)
is

pij
pi+p+j

− 1 ≈
K∑
k=1

σkφikγjk = eTi oj . (4.7)

The matrix [eTi oj] minimizes (4.6) amongst all matrices of rank K in a weighted least-
squares sense. The parameter vectors ei and oj can be represented, for example, as

ei = [φi1σ1,φi2σ2, · · · ,φiKσK ]T (4.8)

and
oj = [γj1,γj2, · · · ,γjK ]T (4.9)

As described above, this representation ei of target word i has the advantage that the
χ2-distance between target words i and i′ in the original matrix is approximated by
the Euclidean distance between ei and ei′ .

The parameter ei can be adjusted by a singular value weighting exponent p, i.e.,
ei = [φi1σ

p
1 ,φi2σ

p
2 , · · · ,φiKσ

p
K ]T . Correspondingly, the alternative coordinate for the

adjusted row i by a singular value weighting exponent is [ui1σ
p
1 ,ui2σ

p
2 , · · · ,uiKσ

p
K ]T .

4.3.3 Three variants of CA for word embeddings

We present three variants of CA. According to Stratos et al. (2015), word counts can be
naturally modeled as Poisson variables. The square-root transformation of a Poisson
variable leads to stabilization of the variance (Bartlett, 1936; Stratos et al., 2015).
Stratos et al. (2015) proposed to combine CCA with the square-root transformation of
the word-context matrix. Even though CA of a contingency table is equivalent to CCA
of the data in the form of an indicator matrix, we call the proposal by Stratos et al.
(2015) ROOT-CCA, to distinguish it from the alternative ROOT-CA, discussed later.

100



4.3. Correspondence analysis

ROOT-CCA In ROOT-CCA, an SVD is performed on the matrix whose typical ele-
ment is the square root of xij /

√
xi+x+j = pij /

√
pi+p+j , that is√

pij
√
pi+p+j

=
min(I,J)∑
k=1

σkuikvjk . (4.10)

The reason that Stratos et al. (2015) ignore pi+p+j in pij − pi+p+j (compare Equa-
tion (4.2)) is that they believe that, when the sample size x++ is large, the first part

pij /
√

(pi+p+j) in (pij − pi+p+j)/
√

(pi+p+j) dominates the expression.

ROOT-CA Inspired by Stratos et al. (2015), we present CA of the square-root trans-
formation of the word-context matrix (ROOT-CA) (Bartlett, 1936; Hsu & Culhane,
2023). ROOT-CA differs from ROOT-CCA in the following way. In the ROOT-CA,
first we create a square-root transformation of the word-context matrix with elements
√
xij , and then we perform CA on this matrix. Let p∗ij =

√
xij∑

ij
√
xij

=
√
pij∑

ij
√
pij

. Then ROOT-

CA provides the decomposition

p∗ij − p
∗
i+p
∗
+j√

p∗i+p
∗
+j

=
min(I−1,J−1)∑

k=1

σkuikvjk . (4.11)

ROOTROOT-CA According to Stratos et al. (2015), word counts can be naturally
modeled as Poisson variables. In the Poisson distribution the mean and variance are
identical. The phenomenon of the data having greater variability than expected based
on a statistical model is called overdispersion (Agresti, 2007). In the context of CA,
Nishisato et al. (2021) point out, generally speaking, a two-way contingency table is
prone to overdispersion. Overdispersion may negatively affect the performance of CA
(Beh et al., 2018; Nishisato et al., 2021).

Greenacre (2009, 2010), referring to Field et al. (1982), points out that in ecol-
ogy abundance data is almost always highly over-dispersed and a particular school
of ecologists routinely applies a fourth-root transformation before proceeding with
the statistical analysis. Therefore we also study the effect of a root-root transfor-
mation before performing CA. We call it ROOTROOT-CA. That is, ROOTROOT-
CA is a CA on the matrix with typical element

√√
xij (Field et al., 1982). Suppose

p∗∗ij =
√√

xij∑
ij

√√
xij

=
√√

pij∑
ij

√√
pij

. Then, we have

p∗∗ij − p
∗∗
i+p
∗∗
+j√

p∗∗i+p
∗∗
+j

=
min(I−1,J−1)∑

k=1

σkuikvjk , (4.12)
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4.3.4 T-Test

The T-Test (TTEST) weighting scheme, described by Curran and Moens (2002) and
Curran (2004), focuses on the matrix of standardized residuals, see Equation (4.1).
Thus it is remarkably similar to CA, where the matrix of standardized residuals is
decomposed. For a comparison between CA and TTEST weighting in word similarity
tasks, as we will carry out below, the question is whether the performance is better on
the matrix of standardized residuals, or on a low dimensional representation of this
matrix provided by CA.

Inspired by Section 4.3.3, we also explore the performances of the matrix

STRATOS-TTEST with typical element
√
pij /
√
pi+p+j (compare Equation (4.10)),

the matrix ROOT-TTEST with typical element
(
p∗ij − p

∗
i+p
∗
+j

)
/
√
p∗i+p

∗
+j (compare

Equation (4.11)), and the matrix ROOTROOT-TTEST with typical element(
p∗∗ij − p

∗∗
i+p
∗∗
+j

)
/
√
p∗∗i+p

∗∗
+j (compare Equation (4.12)).

4.4 PMI-based word embedding methods

4.4.1 PMI-SVD and PPMI-SVD

Pointwise mutual information (PMI) is an important concept in NLP. The PMI between
a target word i and a context word j is defined as (Bullinaria & Levy, 2007; Levy &
Goldberg, 2014; Levy et al., 2015; Jurafsky & Martin, 2023):

PMI(i, j) = log
pij

pi+p+j
(4.13)

i.e. the log of the contingency ratio pij /
(
pi+p+j

)
. If pij = 0, then PMI(i, j) = log 0 = −∞,

and it is usual to set PMI(i, j) = 0 in this situation.
A common approach is to factorize the PMI matrix using SVD, which we call PMI-

SVD. Thus the objective function is

∑
i,j

(
log

pij
pi+p+j

− eTi oj
)2

. (4.14)

In terms of a weighted matrix factorization, PMI-SVD is the matrix factorization of
the PMI matrix with the weighting function 1. The solution is provided directly via
SVD. An SVD applied to the PMI matrix with elements log

(
pij /

(
pi+p+j

))
yields

log
pij

pi+p+j
=

min(I,J)∑
k=1

σkuikvjk , (4.15)
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where min(I, J) is the rank of the PMI matrix. The K-dimensional approximation of
log

(
pij /

(
pi+p+j

))
is

log
pij

pi+p+j
≈

K∑
k=1

σkuikvjk = eTi oj (4.16)

where the matrix with elements eTi oj minimizes (4.14) amongst all matrices of rank K
in a least squares sense, where K ≤min(I, J).

The parameters ei and oj can be represented as

ei = [ui1σ1,ui2σ2, · · · ,uiKσK ]T (4.17)

and
oj =

[
vj1,vj2, · · · ,vjK

]T
. (4.18)

Thus the Euclidean distance between target words i and i′ in the original matrix is
approximated by the Euclidean distance between ei and ei′ . In practice, one regularly
sees that the parameters ei are adjusted by an exponent p used for weighting the

singular values, i.e., ei =
[
ui1σ

p
1 ,ui2σ

p
2 , · · · ,uiKσ

p
K

]T
, where p is usually set to 0 or 0.5

(Levy & Goldberg, 2014; Levy et al., 2015; Stratos et al., 2015).
It is worth noting that the elements in the PMI matrix, where word-context pairs

that co-occur rarely are negative, but word-context pairs that never co-occur are set
to 0 (Levy & Goldberg, 2014), are not monotonic transformations of observed counts
divided by counts under independence. An alternative is the so-called positive PMI
matrix, abbreviated as PPMI matrix. In the PPMI matrix all negative values are set to
0:

PPMI(i, j) = max(PMI(i, j),0) (4.19)

In most applications, one makes use of the PPMI matrix instead of the PMI matrix
(Salle et al., 2016). We call the factorization of the PPMI matrix using SVD PPMI-SVD
(M. Zhang et al., 2022).

4.4.2 GloVe

The GloVe objective function to be minimized is (Pennington et al., 2014):∑
i,j

f (xij)
(
log xij − bi − sj − eTi oj

)2
(4.20)

where

f (xij) =


(
xij /xmax

)α
ifxij < xmax

1 otherwise

In addition to parameter vectors ei and oj , the scalar parameter terms bi and sj are
referred to as bias of target word i and context word j, respectively. Pennington et al.
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(2014) train the GloVe model using an adaptive gradient algorithm (AdaGrad) (Duchi
et al., 2011). This algorithm trains only on the non-zero elements of a word-context
matrix, as f (0) = 0, which avoids the appearance of the undefined log 0 in Equa-
tion (4.20).

In the original proposal of GloVe (Pennington et al., 2014), bi = log xi+ and then,
due to the symmetric role of target word and context word, sj = log x+j . Shi and Liu
(2014) and Shazeer et al. (2016) show that the bias terms bi and sj are highly cor-
related with log xi+ and log x+j , respectively, in GloVe model training. This means
that the GloVe model minimizes a weighted least squares loss function with the
weighting function f (xij) and approximate fitting function logxij − logxi+ − logx+j =

log
(
xijx++/

(
xi+x+j

))
− logx++ = log

(
pij /

(
pi+p+j

))
− logx++:

∑
i,j

f (xij)
(
log

pij
pi+p+j

− log x++ − eTi oj
)2

(4.21)

4.4.3 Skip-gram with negative sampling

SGNS stands for skip-gram with negative sampling of word2vec embeddings
(Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013). The algorithms used
in SGNS are stochastic gradient descent and backpropagation (Rumelhart et al., 1986;
Rong, 2014). SGNS trains word embeddings on every word of the corpus one by one.

Levy and Goldberg (2014) showed that SGNS implicitly factorizes a PMI matrix
shifted by log n:

log
pij

pi+p+j
− log n ≈ eTi oj (4.22)

where n is the number of negative samples. According to Levy and Goldberg (2014)
and Shazeer et al. (2016), the objective function of SGNS is approximately a mini-
mization of the difference between eTi oj and log

(
pij /

(
pi+p+j

)
− log n

)
, tempered by a

monotonically increasing weighting function of the observed co-occurrence count xij ,
g(xij): ∑

i,j

g(xij)
(
log

pij
pi+p+j

− log n− eTi oj
)2

(4.23)

This shows that SGNS differs from GloVe in the use of n instead of x++, and g(xij)
instead of f (xij).
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4.5 Relationships of CA to PMI-based models

4.5.1 CA and PMI-SVD / PPMI-SVD

In this section, we discuss PMI-SVD and PPMI-SVD together, as PMI and PPMI are
the same except that in PPMI all negative values of PMI are set to 0.

CA is closely related to PMI-SVD. This becomes clear by comparing(
pij /

(
pi+p+j

)
− 1

)
in (4.6) with PMI(i, j) = log

(
pij /

(
pi+p+j

))
in (4.14). The relation lies

in a Taylor expansion of log
(
pij /

(
pi+p+j

))
, namely that, if x is small, log(1+x) ≈ x (Van

der Heijden et al., 1989). Substituting x with pij /(pi+p+j) – 1 leads to:

log
pij

pi+p+j
≈

pij
pi+p+j

− 1 (4.24)

This illustrates that if
(
pij /pi+p+j − 1

)
is small, the objective function of CA approxi-

mates ∑
i,j

pi+p+j

(
log

pij
pi+p+j

− eTi oj
)2

. (4.25)

From Equation (4.25) it follows that CA is approximately a weighted matrix factoriza-
tion of log

(
pij /

(
pi+p+j

))
with weighting function pi+p+j .

Comparing Equation (4.25) with Equation (4.14), both CA and PMI-SVD can be
taken as weighted least squares methods having approximately the same fitting func-
tions, namely

(
pij /pi+p+j − 1

)
for CA and log

(
pij /

(
pi+p+j

))
for PMI-SVD. Both make

use of an SVD.
However, they use different weighting functions, namely pi+p+j in CA and 1 in

PMI-SVD. It has been argued that equally weighting errors in the objective function,
as is the case in PMI-SVD, is not a good approach (Salle et al., 2016; Salle & Villav-
icencio, 2023). For example, Salle and Villavicencio (2023) presented the reliability
principle, that the objective function should have a weight on the reconstruction error
that is a monotonically increasing function of the marginal frequencies of word and
of context. On the other hand, CA, unlike PMI-SVD, weights errors in the objective
function with a weighting function equal to the product of the marginal proportions
of word and context (Greenacre, 1984, 2017; Beh & Lombardo, 2021).

4.5.1.1 PMI-GSVD

The weighting function of PMI-SVD is 1 while in the approximate version of CA it is
pi+p+j . Therefore, we also investigate the performance of a weighted factorization of
the PMI matrix, where pi+p+j is the weighting function:

∑
i,j

pi+p+j

(
log

pij
pi+p+j

− eTi oj
)2

. (4.26)
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Similar with CA, we use generalized SVD (GSVD) to find the optimum of the objective
function (PMI-GSVD). That is, an SVD is applied as follows:

√
pi+p+j log

pij
pi+p+j

=
min(I,J)∑
k=1

σkuikvjk , (4.27)

We call the matrix with typical element √pi+p+j log
pij

pi+p+j
the WPMI matrix.

4.5.2 CA and GloVe

Both CA and GloVe are weighted least squares methods. The weighting function in
GloVe is f (xij), which is defined uniquely for each element of the word-context matrix,
while the weighting function pi+p+j in CA is defined by the row and column margins.

In the approximate fitting function of GloVe, log
(
pij /

(
pi+p+j

))
− log x++, the term

log x++ can be considered as a shift of log
(
pij /

(
pi+p+j

))
. And as we showed in Sec-

tion 4.5.1, the fitting function of CA is approximately log
(
pij /

(
pi+p+j

))
when pij is

close to pi+p+j . Thus, from a comparison of the objective functions of CA and GloVe, it

is natural to expect that these two methods will yield similar results if
(
pij /pi+p+j − 1

)
is small.

In comparing the algorithms of these two methods, we find that CA uses SVD while
GloVe uses AdaGrad. These two algorithms have their own advantages and disadvan-
tages. On the one hand, the AdaGrad algorithm trains GloVe only on the nonzero
elements of word-context matrix, one by one, while in CA the SVD decomposes the
entire word-context matrix in full in one step. On the other hand, the SVD always
finds the global minimum while the AdaGrad algorithm cannot guarantee the global
minimum.

4.5.3 CA and SGNS

By comparing Equations (4.23) and (4.25), both the approximation of CA and of SGNS
are found by weighted least squares methods. The weighting function in SGNS is
g(xij), which is defined for each element of word-context matrix where frequent word-
context pairs pay more for deviations than infrequent ones (Levy & Goldberg, 2014),
while the weighting function in CA is defined by the row and column margins, i.e.
pi+p+j .

In the fitting function of the approximation of SGNS, log
(
pij /

(
pi+p+j

))
− log n, the

term log n can be considered as a shift of log
(
pij /

(
pi+p+j

))
. As shown in Section 4.5.1,

the approximate fitting function in CA is log
(
pij /

(
pi+p+j

))
. Thus, considering the

objective function view, both the approximation of CA and of SGNS make use of the
PMI matrix.
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Although the approximate objective function of SGNS is similar to that of CA, the
training processing for SGNS is different from that of CA. SGNS trains word embed-
dings on the words of a corpus, one by one, to maximize the probabilities of target
words and context words co-occurrence, and to minimize the probabilities between
target words and randomly sampled words, by updating the vectors of target words
and context words. In contrast, CA first counts all co-occurrences in the corpus and
then performs SVD on the matrix of standardized residuals to obtain the vectors of
target words and context words at once.

4.6 Two corpora and five word similarity datasets

All methods are trained on two corpora: Text8 (Text8 dataset, 2006) and British Na-
tional Corpus (BNC) (BNC Consortium, 2007), respectively. Text8 is a widely used
corpus in NLP (Xin, Yuan, He, & Jose, 2018; Roesler, Aly, Taniguchi, & Hayashi, 2019;
Podkorytov, Biś, Cai, Amirizirtol, & Liu, 2020; S. Guo & Yao, 2021). It includes more
than 17 million words from Wikipedia (Peng & Feldman, 2017) and only consists of
lowercase English characters and spaces. Words that appeared less than 100 times in
the corpus are ignored, resulting in a vocabulary of 11,815 terms.

BNC is from a representative variety of sources and is widely used (Raphael, 2023;
Samuel, Kutuzov, Øvrelid, & Velldal, 2023). Data cited herein have been extracted
from the British National Corpus, distributed by the University of Oxford on behalf
of the BNC Consortium. We remove English punctuation and numbers and set words
in lowercase form. Words that appeared less than 500 times in the corpus are ignored,
resulting in a vocabulary of 11,332 terms.

Following previous studies (Levy et al., 2015; Pakzad & Analoui, 2021), we eval-
uate each word embeddings method on word similarity tasks using the Spearman’s
correlation coefficient ρ. We use five popular word similarity datasets: WordSim353
(Finkelstein et al., 2002), MEN (Bruni, Boleda, Baroni, & Tran, 2012), Mechanical Turk
(Radinsky, Agichtein, Gabrilovich, & Markovitch, 2011), Rare (Luong, Socher, & Man-
ning, 2013), and SimLex-999 (F. Hill, Reichart, & Korhonen, 2015). All these datasets
consist of word pairs together with human-assigned similarity scores. For example,
in WordSim353, one word pair is (tiger, cat) with human assigned similarity score
7.35. Out-of-vocabulary words are removed from all test sets. I.e., if either tiger or
cat doesn’t occur in the vocabularies of the 11,815 terms created by Text8 corpus, we
delete (tiger, cat). Thus for evaluating the different word embedding methods in Text8
277 word pairs with scores are kept in WordSim353 instead of the original 353 word
pairs. Table 4.1 provides the number of word pairs used by the datasets in Text8 and
BNC.

After calculating the solutions for CA, PMI-SVD, PPMI-SVD, PMI-GSVD, ROOT-
CA, ROOTROOT-CA, ROOT-CCA, GloVe, and SGNS, we obtain the word embed-
dings. We calculate the cosine similarity for each word pair in each word similarity
dataset. For example, for WordSim353 using Text8, we obtain 277 cosine similarities.
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Table 4.1: Datasets for word similarity evaluation.

Dataset Word pairs Word pairs in Text8 Word pairs in BNC
WordSim353 353 277 276
MEN 3000 1544 1925
Turk 287 221 197
Rare 2034 205 204
SimLex-999 999 726 847

The Spearman’s correlation coefficient ρ between these similarities and the human
similarity scores is calculated to evaluate these word embedding methods. Larger
values are better.

4.7 Study setup

4.7.1 SVD-based methods

CA, PMI-SVD, PPMI-SVD, PMI-GSVD, ROOT-CA, ROOTROOT-CA, and ROOT-CCA
are SVD-based dimensionality reduction methods. First, we create a word-context
matrix of size 11,815×11,815 and 11,332×11,332 based on Text8 and BNC, respec-
tively. We use a window of size 2, i.e., two words to each side of the target word. A
context word one token and two tokens away will be counted as 1/1 and 1/2 of an
occurrence, respectively. Then we perform SVD on the related matrices. We use the
svd function from scipy.linalg in Python to calculate the SVD of a matrix, and obtain
singular values σk, left singular vectors uik, and right singular vectors vjk. We obtain

the word embeddings as ei =
[
ui1σ

p
1 ,ui2σ

p
2 , · · · ,uikσ

p
k

]T
.

The choices of the exponent weighting p and number of dimensions k are im-
portant for SVD-based methods. In the context of PPMI-SVD and ROOT-CCA p is
regularly set to p = 0 or p = 0.5 (Levy & Goldberg, 2014; Levy et al., 2015; Stratos et
al., 2015). For p = 0, we have the standard coordinates with U TU = V TV = I . For
p = 0.5, we have Ak = UkΣkV

T
k = (UkΣ

1/2
k )(VkΣ

1/2
k )T . That is, the target words UkΣ

1/2
k

and context words VkΣ
1/2
k reconstruct the decomposed matrix Ak. The two created

word-context matrices based on Text8 and BNC are symmetric, so the matrices to be
decomposed are also symmetric. For the SVD of a symmetric matrix, using the target
words UkΣ

1/2
k for word embeddings is equivalent to using the context words VkΣ

1/2
k

for word embeddings. We vary the number of dimensions k from 2, 50, 100, 200, · · · ,
1,000, 2,000, · · · , 10,000.

4.7.2 GloVe and SGNS

We use the public implementation by Pennington et al. (2014) to perform GloVe and
choose the default hyperparameters. Pennington et al. (2014) proposed to use the
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context vectors oj in addition to target word vectors ei . Here, we only use target word
vectors ei , set window size to 2 and set vocab minimum count to 100 for Text8 and
500 for BNC, in the same way as for the SVD-based methods to keep the settings con-
sistent. We vary the dimension k of word embeddings from 200 to 600 with intervals
of 100.

We use the public implementation by Mikolov, Sutskever, et al. (2013) to perform
SGNS, and use the vocabulary created by GloVe as the input of SGNS. We choose
the default values except for the dimensions k of word embeddings and window size,
which are chosen in the same way as in GloVe, to keep the settings consistent.

4.8 Results

We make a distinction between conditions where no dimensionality reduction takes
place, and conditions where dimensionality reduction is used. For no dimensionality
reduction we compare TTEST, PMI, PPMI, WPMI, ROOT-TTEST, ROOTROOT-TTEST,
STRATOS-TTEST. For dimensionality reduction we first compare CA with the more
standard methods PMI-SVD, PPMI-SVD, PMI-GSVD, GloVe, SGNS, and then com-
pare variants of CA.

4.8.1 TTEST, PMI, PPMI, WPMI, ROOT-TTEST, ROOTROOT-
TTEST, and STRATOS-TTEST

First, we compare methods where no dimensionality reduction takes place. We show
the Spearman’s correlation coefficient ρ for the TTEST, PMI, PPMI, WPMI, ROOT-
TTEST, ROOTROOT-TTEST, and STRATOS-TTEST matrices in Table 4.2. The results
for the five word similarity datasets and the two corpora show that (1) either ROOT-
TTEST or ROOTROOT-TTEST is best, and (2) ROOT-TTEST is consistently better than
PPMI, PMI, STRATOS-TTEST, and WPMI. In the Total column of the block at the bot-
tom of the table we provide the sum of ρ-values for all five datasets and two cor-
pora. Overall, ROOT-TTEST and ROOTROOT-TTEST perform best, closely followed
by PPMI and TTEST. PMI follows at some distance, and last, we find STRATOS-TTEST
and WPMI.

4.8.2 CA, PMI-SVD, PPMI-SVD, PMI-GSVD, GloVe, and SGNS

Next, we compare CA (RAW-CA in Table 4.3) with the PMI-based methods PMI-SVD,
PPMI-SVD, PMI-GSVD, GloVe, and SGNS. Table 4.3 has a left part, where p = 0, and a
right part, where p = 0.5. As p does not exist in GloVe and SGNS, these methods have
identical values for p = 0 and p = 0.5. Plots for ρ as a function of k for SVD-based
methods are in Supplementary materials B.

Comparing the last block of Table 4.3 with the last block of Table 4.2 reveals
that, overall, dimensionality reduction is beneficial for the size of ρ, as CA, PMI-SVD,
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Table 4.2: Correlation coefficient ρ for TTEST, PMI, PPMI, WPMI, ROOT-TTEST, ROOTROOT-TTEST,
and STRATOS-TTEST matrices.

Text8 BNC Total

WordSim353

TTEST 0.588 0.427 1.015
PMI 0.587 0.292 0.879
PPMI 0.609 0.505 1.115
WPMI 0.233 0.221 0.454
ROOT-TTEST 0.658 0.539 1.197
ROOTROOT-TTEST 0.646 0.495 1.141
STRATOS-TTEST 0.438 0.314 0.752

MEN

TTEST 0.248 0.260 0.509
PMI 0.269 0.224 0.494
PPMI 0.253 0.284 0.537
WPMI 0.132 0.171 0.303
ROOT-TTEST 0.305 0.293 0.598
ROOTROOT-TTEST 0.317 0.263 0.580
STRATOS-TTEST 0.156 0.130 0.286

Turk

TTEST 0.619 0.649 1.268
PMI 0.629 0.514 1.143
PPMI 0.651 0.625 1.276
WPMI 0.343 0.417 0.760
ROOT-TTEST 0.666 0.659 1.325
ROOTROOT-TTEST 0.667 0.616 1.283
STRATOS-TTEST 0.561 0.525 1.086

Rare

TTEST 0.392 0.428 0.820
PMI 0.335 0.289 0.624
PPMI 0.328 0.363 0.691
WPMI 0.252 0.255 0.506
ROOT-TTEST 0.389 0.477 0.866
ROOTROOT-TTEST 0.418 0.454 0.872
STRATOS-TTEST 0.243 0.196 0.439

SimLex-999

TTEST 0.220 0.230 0.450
PMI 0.257 0.168 0.425
PPMI 0.251 0.277 0.528
WPMI 0.139 0.118 0.257
ROOT-TTEST 0.276 0.280 0.556
ROOTROOT-TTEST 0.271 0.239 0.509
STRATOS-TTEST 0.181 0.125 0.306

Total

TTEST 2.067 1.994 4.061
PMI 2.078 1.487 3.565
PPMI 2.092 2.054 4.146
WPMI 1.098 1.182 2.280
ROOT-TTEST 2.293 2.249 4.542
ROOTROOT-TTEST 2.319 2.067 4.386
STRATOS-TTEST 1.579 1.289 2.869
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PPMI-SVD, PMI-GSVD, ROOT-CA, ROOTROOT-CA, and ROOT-CCA do better than
their respective counterparts TTEST, PMI, PPMI, WPMI, ROOT-TTEST, ROOTROOT-
TTEST, and STRATOS-TTEST. For TTEST the improvement due to using SVD is
less than for PMI, PPMI, WPMI, ROOT-TTEST, STRATOS-TTEST; for WPMI and
STRATOS-TTEST the improvement due to using SVD is more than for TTEST, PPMI,
ROOT-TTEST, and ROOTROOT-TTEST, which is a result consistent for each corpus
and each word similarity dataset.

For an overall comparison of the dimensionality reduction methods, we study the
block at the bottom of Table 4.3, which provides the sum of the ρ-values over the
five word similarity datasets. For both p = 0 and p = 0.5, among RAW-CA, PMI-SVD,
PPMI-SVD, PMI-GSVD, GloVe, and SGNS, overall PMI-SVD and PPMI-SVD perform
best, closely followed by SGNS. RAW-CA and PMI-GSVD follow at some distance, and
last, we find GloVe. The popular method GloVe does not perform well. Possibly the
conditions of the study are not optimal for GloVe, as the Text8 and BNC corpora are,
with 11,815 and 11,332 terms respectively, possibly too small to obtain reliable results
(Jiang, Yu, Hsieh, & Chang, 2018).

As the focus in this paper is on the performance of CA, we give some extra atten-
tion to RAW-CA and the similar PMI-GSVD. Even though CA and PMI-GSVD have
the same weighting function pi+p+j , and should be close when pij /

(
pi+p+j

)
−1 is small

(compare the discussion around Equations (4.24, 4.25)) their performances are rather
different. This may be because there are extremely large values (larger than 35,000)
in the fitting function

(
pij /

(
pi+p+j

)
− 1

)
of CA, which makes the fitting function of CA

not close to the fitting function log
(
pij /

(
pi+p+j

))
of PMI-GSVD.

When we compare PMI-GSVD with PMI-SVD, we are surprised to find that weight-
ing rows and columns appears to decrease the values of ρ. This is in contrast with the
reliability principle of Salle and Villavicencio (2023) discussed above.

We now discuss why PMI-SVD and PPMI-SVD do better than PMI-GSVD. It turns
out that the number and sizes of extreme values in the matrix WPMI decomposed by
PMI-GSVD are much larger than in PMI and PPMI, and this results in PMI-GSVD
dimensions being dominated by single words. We only include non-zero elements in
the PMI matrix as the PMI matrix is sparse: 94.2% of the entries are zero for Text8;
for a fair comparison, the corresponding 94.2% of entries in the PPMI and WPMI
matrices are also ignored. Following box plot methodology (Tukey, 1977; Schwert-
man, Owens, & Adnan, 2004; Dodge, 2008), extreme values are determined as fol-
lows: let q1 and q3 be the first and third sample quartiles, and let f1 = q1−1.5(q3−q1),
f3 = q3 + 1.5(q3 − q1). Then extreme values are defined as values less than f1 (LTf1)
or greater than f3 (GTf3). The first three rows in Table 4.4 show the number of ex-
treme elements in the PMI, PPMI, WPMI matrices. The number of extreme values of
the WPMI matrix (1,384,231) is much larger than that of PMI and PPMI (32,319 and
27,984). Furthermore, in WPMI the extremeness of values is much larger than in PMI
and PPMI. Let the averaged contribution of each cell, expressed as a proportion, be
1/ (11,815× 11,815). However, in WPMI, the most extreme entry, found for (the, the),
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Table 4.3: Correlation coefficient ρ for SVD-based methods with p = 0,0.5 and for GloVe and SGNS.

p = 0 p = 0.5
Text8 BNC Text8 BNC

k ρ k ρ total k ρ k ρ total

WordSim353

RAW-CA 600 0.578 400 0.465 1.043 9000 0.609 10000 0.498 1.107
PMI-SVD 400 0.675 600 0.628 1.303 400 0.683 500 0.579 1.262
PPMI-SVD 400 0.681 700 0.628 1.309 200 0.694 2000 0.623 1.317
GloVe 200 0.422 600 0.522 0.943 200 0.422 600 0.522 0.943
SGNS 300 0.668 600 0.551 1.219 300 0.668 600 0.551 1.219
PMI-GSVD 700 0.512 600 0.468 0.980 6000 0.548 3000 0.449 0.997
ROOT-CA 300 0.668 400 0.623 1.291 500 0.688 900 0.657 1.345
ROOTROOT-CA 200 0.692 200 0.635 1.327 300 0.697 400 0.630 1.327
ROOT-CCA 100 0.682 700 0.627 1.310 300 0.684 600 0.620 1.304

MEN

RAW-CA 300 0.223 600 0.293 0.516 7000 0.256 9000 0.299 0.556
PMI-SVD 800 0.328 700 0.393 0.721 600 0.317 2000 0.357 0.674
PPMI-SVD 800 0.336 500 0.394 0.730 800 0.324 1000 0.358 0.681
GloVe 300 0.175 600 0.310 0.485 300 0.175 600 0.310 0.485
SGNS 400 0.295 400 0.333 0.627 400 0.295 400 0.333 0.627
PMI-GSVD 800 0.267 600 0.318 0.585 5000 0.256 3000 0.308 0.564
ROOT-CA 800 0.325 500 0.400 0.725 9000 0.324 800 0.374 0.698
ROOTROOT-CA 600 0.340 400 0.396 0.735 1000 0.332 4000 0.359 0.690
ROOT-CCA 600 0.315 400 0.392 0.706 900 0.298 800 0.355 0.653

Turk

RAW-CA 400 0.549 100 0.562 1.111 400 0.592 10000 0.588 1.181
PMI-SVD 100 0.656 50 0.652 1.308 300 0.677 500 0.661 1.338
PPMI-SVD 50 0.668 50 0.671 1.339 50 0.677 50 0.683 1.361
GloVe 600 0.502 200 0.540 1.042 600 0.502 200 0.540 1.042
SGNS 200 0.651 300 0.650 1.302 200 0.651 300 0.650 1.302
PMI-GSVD 900 0.495 200 0.506 1.000 5000 0.563 10000 0.584 1.147
ROOT-CA 50 0.649 50 0.695 1.344 100 0.661 50 0.684 1.345
ROOTROOT-CA 50 0.669 50 0.666 1.334 50 0.664 300 0.673 1.337
ROOT-CCA 50 0.633 50 0.672 1.305 100 0.665 100 0.678 1.343

Rare

RAW-CA 600 0.396 500 0.450 0.846 900 0.411 3000 0.465 0.875
PMI-SVD 100 0.476 700 0.480 0.957 300 0.471 5000 0.464 0.936
PPMI-SVD 100 0.483 400 0.470 0.952 100 0.475 6000 0.469 0.944
GloVe 400 0.181 600 0.379 0.560 400 0.181 600 0.379 0.560
SGNS 600 0.456 200 0.532 0.988 600 0.456 200 0.532 0.988
PMI-GSVD 400 0.451 500 0.418 0.869 900 0.431 600 0.429 0.860
ROOT-CA 400 0.468 400 0.501 0.970 600 0.479 7000 0.526 1.006
ROOTROOT-CA 100 0.503 500 0.476 0.978 100 0.475 4000 0.478 0.953
ROOT-CCA 200 0.469 200 0.505 0.974 600 0.469 900 0.511 0.979

SimLex-999

RAW-CA 4000 0.219 2000 0.322 0.541 8000 0.243 7000 0.327 0.571
PMI-SVD 700 0.310 900 0.409 0.719 3000 0.315 900 0.372 0.687
PPMI-SVD 700 0.309 500 0.393 0.702 3000 0.308 500 0.368 0.676
GloVe 500 0.148 500 0.255 0.403 500 0.148 500 0.255 0.403
SGNS 600 0.306 400 0.376 0.682 600 0.306 400 0.376 0.682
PMI-GSVD 900 0.272 4000 0.365 0.637 5000 0.271 3000 0.312 0.583
ROOT-CA 2000 0.295 900 0.415 0.710 5000 0.309 2000 0.395 0.704
ROOTROOT-CA 700 0.321 900 0.410 0.731 700 0.317 900 0.376 0.693
ROOT-CCA 1000 0.294 1000 0.421 0.715 7000 0.303 2000 0.391 0.693

total

RAW-CA 1.965 2.092 4.057 2.111 2.178 4.290
PMI-SVD 2.445 2.562 5.007 2.465 2.433 4.897
PPMI-SVD 2.476 2.556 5.033 2.478 2.501 4.979
GloVe 1.427 2.006 3.433 1.427 2.006 3.433
SGNS 2.376 2.442 4.819 2.376 2.442 4.819
PMI-GSVD 1.997 2.075 4.072 2.069 2.082 4.151
ROOT-CA 2.405 2.635 5.039 2.462 2.637 5.098
ROOTROOT-CA 2.525 2.582 5.107 2.484 2.515 4.999
ROOT-CCA 2.393 2.617 5.011 2.417 2.555 4.972
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Table 4.4: Text8: the number of extreme values

LTf1 GTf3 total
PMI 4,335 27,984 32,319
PPMI 0 27,984 27,984
WPMI 1,038,236 345,995 1,384,231
TTEST 50,560 627,046 677,606
ROOT-TTEST 5,985 448,860 454,845
ROOTROOT-TTEST 4,942 396,437 401,379
STRATOS-TTEST 0 400,703 400,703

Figure 4.1: Text8: the contribution of the rows, corresponding to the top 10 extreme values, to the first
100 dimensions of PMI-SVD, PPMI-SVD, PMI-GSVD.

contributes around 0.01126 to the total inertia. In PMI (PPMI) the most extreme en-
try is (guant, namo) or (namo, guant) and contributes around 3.1×10−6 (3.2×10−6) to
the total inertia. Figure 4.1 shows the contribution of the rows for the corresponding
to top 10 extreme values, to the first 100 dimensions of PMI-SVD, PPMI-SVD, PMI-
GSVD. The rows, corresponding to the top extreme values in the WPMI matrix, take
up a much bigger contribution to the first dimensions of PMI-GSVD. For example,
in PMI-GSVD, the “the” row contributes more than 0.3 to the third dimension, while
in PMI-SVD and PPMI-SVD, the contributions are much more even. Thus the PMI-
GSVD solution is hampered by extreme cells in the WPMI matrix that is decomposed.
Similar results can be found for BNC in Supplementary materials C.

4.8.3 The results for three variants of CA

Now we compare the three variants of CA (ROOT-CA, ROOTROOT-CA, ROOT-CCA)
with CA-RAW and the winner of the PMI-based methods, PPMI-SVD.

First, in Table 4.3, the three variants of CA perform much better than RAW-CA in
each word similarity dataset and each corpus, both for p = 0 and p = 0.5. In the block
at the bottom of Table 4.3, overall, the performance of the three variants is similar,
where ROOT-CA outperforms ROOT-CCA slightly.

The lower part of Table 4.4 shows the number of extreme values of TTEST, ROOT-
TTEST, ROOTROOT-TTEST and STRATOS-TTEST matrices for Text8. Similar with
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Figure 4.2: Text8: the contribution of the rows, corresponding to top 10 extreme values, to first 100
dimensions of RAW-CA, ROOT-CA, ROOTROOT-CA.

PMI, PPMI, WPMI, 94.2% of entries are ignored. The number of extreme values
of the TTEST matrix (677,606) is larger than that of ROOT-TTEST, ROOTROOT-
TTEST and STRATOS-TTEST (454,845, 401,379, and 400,703). Furthermore, in
TTEST the extremeness of the extreme values is larger than those in ROOT-TTEST,
ROOTROOT-TTEST, and STRATOS-TTEST. For example, in TTEST the most ex-
treme entry (agave, agave) contributes around 0.02117 to the total inertia, while in
ROOT-TTEST, ROOTROOT-TTEST, and STRATOS-TTEST, the most extreme entries
(agave, agave), (pngimage, pngimage), and (agave, agave) contribute around 0.00325,
0.00119, and 0.00017, respectively. Figure 4.2 shows the contribution of the rows for
the top 10 extreme values, to the first 100 dimensions of RAW-CA, ROOT-CA, and
ROOTROOT-CA (The corresponding plot about ROOT-CCA is in Supplementary ma-
terials D). In RAW-CA, the rows, corresponding to top extreme values of TTEST, take
up a big contribution to the first dimensions of RAW-CA. For example, in RAW-CA,
the “agave” row contributes around 0.983 to the first dimension, while in ROOT-CA
and ROOTROOT-CA, the contributions are much smaller which also holds for ROOT-
CCA. Similar results can be found for BNC in Supplementary materials E. Thus, we
infer that the extreme values in TTEST are the important reason that RAW-CA per-
forms badly.

Second, in the rows of the block at the bottom of Table 4.3, the overall perfor-
mances of ROOT-CA, ROOTROOT-CA, ROOT-CCA are comparable to or sometimes
slightly better than PPMI-SVD. Specifically, ROOTROOT-CA and ROOT-CA achieve
the highest ρ for Text8 and BNC corpora, respectively. Based on these results, no mat-
ter what we know about the corpus, ROOTROOT-CA and ROOT-CA appear to have
potential to improve the performance in NLP tasks.

4.9 Conclusion and discussion

PMI is an important concept in natural language processing. In this paper, we the-
oretically compare CA with three PMI-based methods with respect to their objective
functions. CA is a weighted factorization of a matrix where the fitting function is
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pij /

(
pi+p+j

)
− 1

)
and the weighting function is the product of row margins and col-

umn margins pi+p+j . When the elements in the fitting function
(
pij /

(
pi+p+j

)
− 1

)
of

CA are small, CA is close to a weighted factorization of the PMI matrix where the
weighting function is the product pi+p+j . This is because

(
pij /

(
pi+p+j

)
− 1

)
is close to

log
(
pij /

(
pi+p+j

))
when

(
pij /

(
pi+p+j

)
− 1

)
is small.

The extracted word-context matrices are prone to overdispersion. To remedy the
overdispersion, we presented ROOTROOT-CA. That is, we perform CA on the root-
root transformation of the word-context matrix. We also apply CA to the square-
root transformation of the word-context matrix (ROOT-CA). In addition, we present
ROOT-CCA, described in Stratos et al. (2015), which is similar with ROOT-CA. The
empirical comparison on word similarity tasks shows that ROOTROOT-CA achieves
the best overall results in the Text8 corpus, and ROOT-CA achieves the best overall
results in the BNC corpus. Overall, the performance of ROOT-CA and ROOTROOT-
CA is slightly better than the performance of PMI-based methods.

Concluding, our theoretical and empirical comparisons about CA and PMI-based
methods shed new light on SVD-based and PMI-based methods. Our results show
that, regularly, in NLP tasks the performance can be improved by making use of
ROOT-CA and ROOTROOT-CA.
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Appendix 4.A An alternative coordinates system for CA

For row points i and i′, with coordinates σkφik and σkφi′k on dimension k in
K−dimensional space we have

cosine(rowi ,rowi′ ) =
∑K

k=1 (φikσk) (φi′kσk)√∑K
k=1 (φikσk)2 ·

∑K
k=1 (φi′kσk)2

=

∑K
k=1

(
p
− 1

2
i+ uikσk

)(
p
− 1

2
i′+ui′kσk

)
√∑K

k=1

(
p
− 1

2
i+ uikσk

)2
·
∑K

k=1

(
p
− 1

2
i′+ui′kσk

)2

=
∑K

k=1 (uikσk) (ui′kσk)√∑K
k=1 (uikσk)2 ·

∑K
k=1 (ui′kσk)2

,

(4.28)

so the terms p
− 1

2
i+ and p

− 1
2

i′+ drop out of the equation. A similar result is found for column
points.

Appendix 4.B Plots for ρ as a function of k for SVD-
based methods

Plots are for ρ as a function of k for SVD-based methods.
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4.B. Plots for ρ as a function of k for SVD-based methods

(a) WordSim353: p = 0 (b) WordSim353:p = 0.5

(c) MEN: p = 0 (d) MEN: p = 0.5

(e) Turk: p = 0 (f) Turk: p = 0.5

Figure 4.3: Text8
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(g) Rare: p = 0 (h) Rare: p = 0.5

(i) SimLex-999: p = 0 (j) SimLex-999: p = 0.5

Figure 4.3: Text8
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4.B. Plots for ρ as a function of k for SVD-based methods

(a) WordSim353: p = 0 (b) WordSim353: p = 0.5

(c) MEN: p = 0 (d) MEN: p = 0.5

(e) Turk: p = 0 (f) Turk: p = 0.5

Figure 4.4: BNC
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(g) Rare: p = 0 (h) Rare: p = 0.5

(i) SimLex-999: p = 0 (j) SimLex-999: p = 0.5

Figure 4.4: BNC

Appendix 4.C BNC: the number and sizes of extreme
values of PMI, PPMI, and WPMI, and
plots showing the contribution of the
rows about PMI-SVD, PPMI-SVD, and
PMI-GSVD

Table 4.5, part PMI, PPMI, WPMI, shows the number of extreme values of PMI, PPMI,
WPMI matrices. We only include non-zero pairs of PMI matrix because the PMI ma-
trix is sparse: 84.1% of the entries are zero. The corresponding 84.1% of entries in
PPMI and WPMI are also ignored. The number of extreme values of WPMI ma-
trix (2,525,345) is much larger than that of PMI and PPMI (141,366 and 405,830).
Furthermore, in WPMI the extremeness of the extreme values is much larger than
those in PMI and PPMI. For example, where the average contribution of each cell is
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4.D. Text8: plots showing the contribution of the rows about ROOT-CCA

1/ (11,332× 11,332), in WPMI the most extreme entry (the, the) contributes around
0.01150 to the total inertia, while in PMI (PPMI), the most extreme entry (ee, ee)
contributes around 2.2 × 10−6 (2.7 × 10−6) to the total inertia. Figure 4.5 shows the
contribution of the rows, corresponding to top 10 extreme values, to the first 100 di-
mensions of PMI-SVD, PPMI-SVD, PMI-GSVD. The rows, corresponding to the top
extreme values of WPMI, take up a bigger contribution to the first dimensions of
PMI-GSVD. For example, in PMI-GSVD, the “the” row contributes more than 0.3 to
the third dimension, while in PMI-SVD and PPMI-SVD, the contributions are much
smaller.

Table 4.5: BNC: the number of extreme values

LTf1 GTf3 total
PMI 13,982 127,384 141,366
PPMI 0 405,830 405,830
WPMI 2,037,800 487,545 2,525,345
TTEST 334,512 1,480,336 1,814,848
ROOT-TTEST 35,418 927,470 962,888
ROOTROOT-TTEST 31,234 750,433 781,667
STRATOS-TTEST 0 1,173,717 1,173,717

Figure 4.5: BNC: the contribution of the rows, corresponding to top 10 extreme values, to first 100
dimensions of PMI-SVD, PPMI-SVD, PMI-GSVD.

Appendix 4.D Text8: plots showing the contribution of
the rows about ROOT-CCA

Figure 4.6 shows the contribution of the rows, corresponding to top 10 extreme values,
to first 100 dimensions of ROOT-CCA.
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Figure 4.6: Text8: the contribution of the rows, corresponding to top 10 extreme values, to first 100
dimensions of ROOT-CCA.

Appendix 4.E BNC: the number and sizes of ex-
treme values of TTEST, ROOT-TTEST,
ROOTROOT-TTEST, and STRATOS-
TTEST, and plots showing the contribu-
tion of the rows about RAW-CA, ROOT-
CA, ROOTROOT-CA, and ROOT-CCA

The bottom part of Table 4.5 shows the number of extreme values of TTEST, ROOT-
TTEST, ROOTROOT-TTEST and STRATOS-TTEST matrices. Similar with PMI, PPMI,
WPMI, 84.1% of entries are ignored. The number of extreme values of TTEST
matrix (1,814,848) is much larger than that of ROOT-TTEST, ROOTROOT-TTEST
and STRATOS-TTEST (962,888, 781,667, and 1,173,717). Furthermore, in TTEST the
extremeness of the extreme values is much larger than in ROOT-TTEST, ROOTROOT-
TTEST and STRATOS-TTEST. For example, in TTEST the most extreme entry (kong,
hong) or (hong, kong) contributes around 0.00965 to the total inertia, while in
ROOT-TTEST, ROOTROOT-TTEST and STRATOS-TTEST, the most extreme entries
(colitis, ulcerative) or (ulcerative, colitis), (colitis, ulcerative) or (colitis, ulcerative),
(hong, kong) or (kong, hong) contribute around 0.00047, 0.00003, and 0.00008
respectively. Figure 4.7 shows the contribution of the rows, corresponding to top 10
extreme values, to first 100 dimensions of RAW-CA, ROOT-CA, and ROOTROOT-CA.
The corresponding plot about ROOT-CCA is in Figure 4.8. In RAW-CA, the rows,
corresponding to top extreme values of TTEST, have a big contribution to the first
dimensions of RAW-CA, while in ROOT-CA and ROOTROOT-CA, the contributions
are much smaller, which also holds for ROOT-CCA.
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4.E. BNC: the number and sizes of extreme values of TTEST, ROOT-TTEST,
ROOTROOT-TTEST, and STRATOS-TTEST, and plots showing the contribution of

the rows about RAW-CA, ROOT-CA, ROOTROOT-CA, and ROOT-CCA

Figure 4.7: BNC: the contribution of the rows, corresponding to top 10 extreme values, to first 100
dimensions of RAW-CA, ROOT-CA, ROOTROOT-CA.

Figure 4.8: BNC: the contribution of the rows, corresponding to top 10 extreme values, to first 100
dimensions of ROOT-CCA.
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Chapter 5

Correspondence analysis: handling
cell-wise outliers via reconstitution

algorithm

Abstract

Correspondence analysis (CA) is a popular technique to visualize the rela-
tionship between two categorical variables. CA uses the data from a two-way
contingency table and is affected by the presence of outliers. The supplementary
points method is a popular method to handle outliers. Its disadvantage is that
the information from entire rows or columns is removed. However, outliers can
be caused by cells only. In this paper, a reconstitution algorithm is introduced
to cope with such cells. This algorithm can reduce the contribution of cells in
CA instead of deleting entire rows or columns. Thus the remaining information
in the row and column involved can be used in the analysis. The reconstitu-
tion algorithm is compared with two alternative methods for handling outliers,
the supplementary points method and MacroPCA. It is shown that the proposed
strategy works well.

This chapter is under review as: Qi, Q., Hessen, D. J., Vonk, A. N., & Van der Heijden, P. G. M..
Author contributions: PvdH provided the idea. QQ worked out the idea, set up the experiments, and
carried them out. AV provided and analyzed the ocean plastic data. QQ, DH, AV, and PvdH discussed
and edited the text. The code used in this study can be found at https://github.com/qianqianqi28/
ca-outlier.
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5. Correspondence analysis: handling cell-wise outliers via reconstitution algorithm

5.1 Introduction

Correspondence analysis (CA) is an exploratory data analysis method that visualizes
the dependence of the two categorical variables in a two-way contingency table using a
two-dimensional plot (Greenacre, 1984; Greenacre & Hastie, 1987; Greenacre, 2017).
CA has received considerable attention in a variety of areas such as marketing (Pitt
et al., 2020), psychology (Kim et al., 2021), and text categorization and authorship
attribution (Qi et al., 2023). However, relatively little attention has been given to CA
in the presence of outliers (Riani, Atkinson, Torti, & Corbellini, 2022).

Outliers may be errors or unexpected observations which could shed new light
on the researched phenomenon (Sripriya & Srinivasan, 2018). In general, the data
are arranged in a matrix where rows correspond to the individual observations and
columns are variables (Grubbs, 1969; Rousseeuw & Van Den Bossche, 2018; Hubert,
Rousseeuw, & Van den Bossche, 2019; Raymaekers & Rousseeuw, 2024). The term
outlier typically refers to an individual observation that deviates markedly from other
members of the sample in which it occurs.

In a contingency table, the definition of an outlier is different from the general
case (Kuhnt, Rapallo, & Rehage, 2014; Sripriya & Srinivasan, 2018). An entry in the
table represents the number of individuals that occurs jointly in a category of one
variable and a category of the other. Thus, in the contingency table, a row does not
correspond to a single observation but to a number of joint sample frequencies of
individual observations. Here, extreme counts that do not follow the general pattern
in the table are viewed as outliers.

In the context of CA, an outlier can be defined in different ways and the procedure
to detect outliers depends on the definition of an outlier. Two detection procedures
stand out. On the one hand, Greenacre (2013, 2017) uses visual inspecting of CA
plots to detect outliers. Greenacre (2013, 2017) considers a row or column point as an
outlier when it clearly lies far from other points in the CA plot. In addition to large
absolute coordinates, Hoffman and Franke (1986) and Bendixen (1996) define a row
or column point as an outlier if the row or column point has a high contribution to an
axis. The contribution of a point to an axis is determined not only by the position of
the point in the CA plot but also by the marginal proportion of the point. According
to Hoffman and Franke (1986) and Bendixen (1996), if the marginal proportion of
a point is very small, it may not be an outlier, even though, following Greenacre’s
definition, it is an outlier in the sense that it lies far from other points in the CA plot.

On the other hand, Riani et al. (2022) and Raymaekers and Rousseeuw (2024) de-
tect outliers making use of distributional assumptions. Riani et al. (2022) state (p. 8)
“... an outlier is a row which does not agree with the multiplicative model assum-
ing independence fitted to the data.” This outlier detection procedure is less attrac-
tive, because, in interesting applications, the independence model assumption would
be rejected almost always (De Leeuw, Van der Heijden, & Verboon, 1990), and thus,
in this situation, this procedure tends to detect too many rows as outlying points.
Raymaekers and Rousseeuw (2024) use MacroPCA to detect outliers. MacroPCA is
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originally proposed by Rousseeuw and Van Den Bossche (2018) for principal com-
ponent analysis (PCA) and subsequently used in CA by Raymaekers and Rousseeuw
(2024). MacroPCA assumes that the data are generated from a multivariate Gaussian
distribution. However, the two variables in the contingency table are categorical vari-
ables, and therefore the normality assumption for the input matrix of MacroPCA may
be not appropriate for CA.

Hoffman and Franke (1986), Bendixen (1996), Greenacre (2017) and Riani et al.
(2022) detect outlying rows or columns, and, after detecting the outliers, they cope
with the outliers by the supplementary points method. That is, CA is performed on
the contingency table without the outlying rows and columns. Afterwards, the out-
liers are projected into the CA solution of the reduced table. Therefore, the outliers
cannot determine the CA solution.

In contrast, Raymaekers and Rousseeuw (2024) detect outlying cells and outlying
rows and handle the outliers in the same step. The basic idea is to impute the outlying
cells by an iterative PCA algorithm while excluding outlying rows. Their method does
not have a good fit with the theory of CA, and important properties of CA, such as
that Euclidean distances in a CA display can be interpreted in terms of chi-squared
distances, are lost. Moreover, this method seems to flag a lot more rows as outliers
than necessary.

The supplementary points method and MacroPCA delete outlying rows or
columns completely, and therefore, also remove information from these rows or
columns that is not related to this outlying problem. So, the removal of an entire
row or column causes a unnecessary loss of information.

According to Bendixen (1996), a cell frequency that causes its row to be identified
as an outlier might also cause its column to be identified as an outlier, and vice versa.
Thus, an outlying row or column may be caused by a specific joint frequency. This
suggests that we only need to deal with the specific cell and do not need to delete the
entire row or column.

In this paper, the focus is on cell-wise outliers. To detect outlying cells, we follow
Greenacre’s definition using visual inspection of the CA plot, as a main aim of CA
is to summarize the structure of data via a two-dimensional plot and such outliers
cause the other points to be tightly clustered and thus reduce the readability of a CA
plot. A cell is an outlying cell if the corresponding row and column points of this cell
lie far from other points. Here, once a cell is identified as an outlier, the cell is not
removed but its contribution is reduced. For reducing the contribution of an outlying
cell the reconstitution algorithm is proposed. The reconstitution algorithm has been
proposed originally by Nora-Chouteau (1974) and has later been used by Greenacre
(1984) and De Leeuw and Van der Heijden (1988) to handle missing values in cells.

The paper is built up as follows. We start with a description of CA in Section 5.2.
Section 5.3 presents how outliers originate. Section 5.4 presents the reconstitution
algorithm to handle cell-wise outliers and describes MacroPCA and the supplemen-
tary points method. Section 5.5 compares these three methods on a contingency table,
the brands of cars dataset, and compares the reconstitution algorithm and the supple-
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mentary points method on an incidence table, the ocean plastic dataset. Section 5.6
discusses and concludes this paper. Finally, Section 5.7 introduces the implementa-
tion of code.

5.2 Correspondence analysis background

Let X be a contingency table having I rows and J columns with non-negative entries
xij , and suppose that X has full rank. An index is replaced by ‘+’ when summed
over the corresponding elements, such as xi+ =

∑
j xij . It is customary to rescale X to

the correspondence matrix P = X/x++, so that
∑

i
∑

j pij = 1. The row profile for row
i is the vector having elements pij /pi+, j = 1, . . . , J and, similarly, the column profile
for column j is the vector with elements pij /p+j , i = 1, . . . , I . The average row profile
is the vector with elements p+j , j = 1, . . . , J , i.e., the column margins, and the average
column profile is the vector with elements pi+, i = 1, . . . , I , i.e. row margins. Let E =
[pi+p+j] be the matrix with elements under statistical independence. Let Dr and Dc be
diagonal matrices with the row margins pi+ and column margins p+j in the diagonal,
respectively.

CA can be introduced in many ways. We introduce CA here using the concept of
total inertia (Greenacre, 2017), i.e., the well-known Pearson χ2 statistic divided by x++

Total inertia =
∑
i

∑
j

(pij − pi+p+j)2

pi+p+j
. (5.1)

The aim of CA is to provide a multidimensional representation of the matrix X where
the total inertia is projected as much as possible onto a low-dimensional space. The
computational procedure to obtain the solution makes use of the singular value de-
composition (SVD). In the first step the matrix X is transformed into the matrix of

standardized residuals D
− 1

2
r (P −E)D

− 1
2

c with elements (pij − pi+p+j)/
√
pi+p+j , and then

SVD is applied to this matrix, yielding

D
− 1

2
r (P −E)D

− 1
2

c = UΣV T , (5.2)

where U TU = V TV = I and Σ is a diagonal matrix with singular values σk , k =
1, · · · ,min(I −1, J −1) in descending order on the diagonal. Subtracting the matrix E of

rank 1 leads to a reduction of 1 for the rank of the resulting matrix D
− 1

2
r (P −E)D

− 1
2

c .

If we pre-multiply and post-multiply both sides of Equation (5.2) by D
− 1

2
r and

D
− 1

2
c , respectively, on the left hand side we get D−1

r (P − E)D−1
c with elements (pij −

pi+p+j)/(pi+p+j), and this yields

D−1
r (P −E)D−1

c = D
− 1

2
r UΣ(D

− 1
2

c V )T = ΦΣΓ T = FΣ−1GT (5.3)
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where Φ = D
− 1

2
r U , Γ = D

− 1
2

c V , F = ΦΣ, and G = Γ Σ. Φ and Γ are called the stan-
dard coordinates for the row profiles and column profiles, respectively. They have the
property that, for each k, their weighted sum is 0 and their weighted sum of squares
is 1, i.e. 1TDrΦ = 1TDcΓ = 0T and ΦTDrΦ = Γ TDcΓ = I . F and G are called principal
coordinates for the row profiles and column profiles, respectively.

Euclidean distances between rows of F (G) are equal to the so-called χ2− distances
between rows (columns) of X . The squared χ2−distance between the row profiles i
and i′ is

δ2
i,i′ =

∑
j

(
pij
pi+
− pi′ j

pi′+
)2

p+j
. (5.4)

The χ2−distance δi,i′ between row profiles i and i′ gives more weight to differences in
a column j when this column has a lower margin p+j . The χ2−distance δj,j ′ between
column profiles j and j ′ is defined in a similar way.

Joint graphic displays of row points and column points are usually made to study
the relationship between the rows and the columns in the matrix P . For this asymmet-
ric and symmetric maps are used. In an asymmetric map rows of P can be displayed
as points in a multidimensional space using principle coordinates, and columns as
points using standard coordinates. Thus, in full-dimensional space the dot products
of row points F and column points Γ are equal to the elements of D−1

r (P −E)D−1
c . Usu-

ally low-dimensional representations are made of the first few columns of F and Γ , as
the SVD ensures that the first few dimensions provide an optimal approximation of
D−1/2

r (P −E)D−1/2
c in a least-squares sense. Together, the configurations of row points

and column points form a biplot (Gabriel, 1971) of the matrix D−1
r (P −E)D−1

c . Asym-
metric maps have the interesting property that the row points are in the weighted
average of the column points and the other way around. This is evident from the
so-called transition equations

F = D−1
r P Γ and G = D−1

c P TΦ (5.5)

The points for the average row profile and the average column profile fall in the
origin. Thus, for the combination of F and Γ , the transition formulas pull individual
row points towards the column points for which pij /pi+ > p+j .

Asymmetric maps have the drawback that, when for example the pair F and Γ

is used, the Euclidean distances between the columns are not chi-squared distances.
Also, there is the practical disadvantage that the cloud of column points may be huge
in comparison to the cloud of row points, and thus row points tend to huddle together
and reduce the readability of the plot. For this reason one often sees the use of the so-
called symmetric map. That is, both rows and columns are displayed in principle
coordinates. Therefore, the Euclidean distances between row points, i.e., rows of F
(column points, i.e., rows of G) are equal to the χ2−distances between rows (columns)
of X , and in low-dimensional representations the Euclidean distances between row
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5. Correspondence analysis: handling cell-wise outliers via reconstitution algorithm

points and between column points provide approximations of these distances. The
Euclidean distance between row points and column points is not meaningful. How-
ever, the direction between row points and column points is still meaningful, because
the only difference between principal and standard coordinates is a dimensionwise
scalar (compare Equation (5.3)).

The total inertia can be expressed as a weighted sum of squared χ2−distances of
row profiles and of column profiles to the average profile:

Total inertia =
∑
i

pi+
∑
j

(
pij
pi+
− p+j)2

p+j
=

∑
j

p+j

∑
i

(
pij
p+j
− pi+)2

pi+
. (5.6)

This shows that the total inertia can be split up over the rows and over the columns.
The inertia of the row point i and the column point j in dimension k are pi+f

2
ik = u2

ikσ
2
k

and p+jg
2
jk = v2

jkσ
2
k , respectively. The contributions of row i and column j to dimension

k are pi+f
2
ik/σ

2
k = u2

ikσ
2
k /σ

2
k = u2

ik and p+jg
2
jk/σ

2
k = (vjkσk)2/σ2

k = v2
jk, respectively. The

contributions quantify to what extent individual rows and columns, both by their
positions (fik or gjk) and margins (pi+ or p+j), affect the solution (Greenacre, 2013).
This means that, for rows that have equal margins pi+ for dimension k, the further this
point is from the origin, the larger its contribution is to dimension k. In a so-called
contribution biplot, elements fik (uik) are as row coordinates and vjk (gjk) as column
coordinates.

The total inertia can also be split up over cells. The inertia of each cell in the matrix

D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals is (pij − pi+p+j)2/(pi+p+j).
By rewriting Equation (5.3), the correspondence matrix P can be decomposed as

follows
P = Dr(11T +ΦΣΓ T )Dc ≈Dr(11T +ΦKΣKΓ

T
K )Dc (5.7)

Equation (5.7) is called the reconstitution formula and is the foundation of the recon-
stitution algorithm, discussed in Section 5.4.

Similar to Equation (5.5), an additional row can be projected as a supplementary
point in an existing CA plot. Let the extra row (supplementary) point be the row
vector a = [a1, a2, · · · , aJ ] and an extra column (supplementary) point b = [b1,b2, · · · ,bI ],
as a row vector. The projections for the row point a and the column point b are found
by

a∑
j aj

Γ and
b∑
i bi

Φ (5.8)

respectively. These supplementary points do not determine the CA solution, but from
these projections we can see the relationships between the configurations of row and
column points in the existing CA solution to these supplementary points.
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5.3 How outliers originate

CA is sensitive to outliers (Choulakian, 2020). Here, we enumerate three potential
causes for the presence of outliers: an (approximate) block diagonal matrix, rows or
columns with relatively small margins, and cells with relatively high values. We do
not claim that these causes give an exhaustive view, and also note that these three
causes may overlap.

5.3.1 Block diagonal matrix

As we discussed in Equation (5.6), the total inertia can be expressed as a weighted sum
of squared χ2−distances of rows points to the origin (Greenacre, 2017). If all profiles
are the same and thus equal to the average profile, then all χ2-distances of the points
to the origin would be 0 and thus the total inertia would be 0. On the other hand,
maximum inertia can be obtained when all profiles are totally different. For example,
when a matrix is an identity matrix and m = n, the inertia is equal to m− 1.

If, after reordering the rows and columns of a matrix in an appropriate way, X is a
block diagonal matrix with t blocks, the first t −1 dimensions of the CA solution have
singular values equal to 1 (Choulakian, 2020; Handan-Nader, 2023). For example, let
t = 2. Table 5.1a is an illustration. One block is cell (2, b) and the other block consists
of rows 1, 3 and 4 together with columns a, c, d. The CA solution is as follows

D−1
r (P −E)D−1

c = ΦΣ(Γ )T

=


0.27 1.59 0.18
−3.67 0.00 0.00

0.27 −0.50 −1.52
0.27 −0.79 0.97


1 0 0
0 0.44 0
0 0 0.10




0.27 −0.83 1.54
−3.67 0.00 0.00

0.27 −0.40 −0.91
0.27 1.91 0.34


T

(5.9)
The first singular value equals 1. The reordered matrix based on the first coordinates
of the rows and columns, shown in Table 5.1b, is a block diagonal matrix. On dimen-
sion 1 row 2 and column b are outliers with scores -3.67.

Table (5.1c) is a less extreme case, where the elements approximate a block diago-
nal matrix. The CA solution is as follows

D−1
r (P −E)D−1

c = ΦΣ(Γ )T

=


0.19 1.56 0.18
−5.03 −0.03 0.02

0.20 −0.49 −1.49
0.21 −0.78 0.95


0.93 0 0

0 0.44 0
0 0 0.09




0.20 −0.82 1.52
−5.03 −0.07 −0.03

0.21 −0.39 −0.90
0.17 1.88 0.33


T

(5.10)
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Now the first singular value is 0.93, close to 1. The reordered matrix, where the row
and column scores for dimension 1 are used, is in Table 5.1d. It approximates a block
diagonal matrix. On dimension 1 row 2 and column b are outliers with scores -5.03.

By these examples we want to illustrate that, if the rows and columns of the table
can be reordered so that a block diagonal matrix or an approximate block diagonal
matrix arises, this may lead to outlying points for those rows and columns that form
the smaller (approximate) block diagonal matrix.

Table 5.1: Document-term matrix X : size 4×4

a b c d
1 1 0 3 4
2 0 2 0 0
3 2 0 5 1
4 4 0 6 1

(a) Block diagonal matrix

b d c a
2 2 0 0 0
1 0 4 3 1
3 0 1 5 2
4 0 1 6 4

(b) Block diagonal matrix; reordered table

a b c d
1 100 2 300 400
2 2 100 1 4
3 200 3 500 100
4 400 2 600 100

(c) Approximate block diagonal matrix

b d a c
2 100 4 2 1
1 2 400 100 300
3 3 100 200 500
4 2 100 400 600

(d) Approximate block diagonal matrix; re-
ordered table

a b c d
1 1 2 3 4
2 2 100 1 4
3 2 3 5 1
4 4 2 6 1

(e) Large value 100

c a d b
4 6 4 1 2
3 5 2 1 3
1 3 1 4 2
2 1 2 4 100

(f) Large value 100; reordered table

5.3.2 Rows or columns with relatively small margins

For the rows of the matrix X , Equation (5.6), the squared chi-squared distance of row
i to the origin O, δ2

iO, is

δ2
iO =

∑
j

( pij
pi+
− p+j

)2

p+j
. (5.11)

Following Greenacre (2013), we will argue that, in principle, rows (and columns)
with smaller margins pi+ have relatively more potential than rows (and columns) with
larger margins to be in the periphery of a cloud of points, as these rows with smaller
margins pi+ have a higher potential to have a larger chi-squared distance δiO.
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• The marginal profile with elements p+j falls in the origin. Outliers fall relatively
far away from the origin. Thus we are interested in what makes the distance of
row i from the origin, δ2

iO, larger.

• In Equation (5.11)
(
pij /pi+ − p+j

)2
stands for the squared difference between the

row profile element j and the marginal profile element j.

• The marginal profile is the weighted average of the row profiles with weights
pi+, as for each element j,

∑
i pi+(pij /pi+) = p+j .

• Therefore, if row i has a larger size pi+, we expect that, in principle, row i will
be closer to the marginal profile, as it makes up a larger part of the marginal
profile. In other words, row profiles with larger pi+ have a larger expected cor-
relation with the marginal profile. So in principle rows with smaller pi+ have a
higher potential to be relatively further away from the origin.

• Now consider the denominator p+j in the squared chi-squared distance. For a

fixed difference
(
pij /pi+ − p+j

)2
columns with smaller p+j add more to the chi-

squared distance of row i to the origin.

• Now consider the above reasoning for the squared chi-squared distance between
column j and the origin, δ2

jO. The same argument holds, columns with smaller p+j

have in principle a higher potential to be relatively further away from the origin.

• At the same time we noticed that, for a fixed difference
(
pij /p+j − pi+

)2
, rows with

smaller pi+ add more to the chi-squared distance of column j to the origin.

We conclude that smaller margins have the potential to lead to larger chi-squared
distances of individual rows and columns to the origin because of their potential to
deviate more from the marginal profile falling in the origin, and due to the role of the

marginal probability in the denominator. If row i has a large difference
(
pij /pi+ − p+j

)2

in element j, and in particular in element j where p+j is small, then it is more likely
that an outlier arises.

We also note that, if row i is an outlier due to profile element j having a
low p+j , then if profile element i has a low pi+, column j will also be an out-
lier. The reason is that we can formulate independence in three ways, namely as(
pij = pi+p+j

)
, as

(
pij /pi+ = p+j

)
and as

(
pij /p+j = pi+

)
. If there is positive dependence,

then
(
pij > pi+p+j

)
, then also

(
pij /pi+ > p+j

)
and

(
pij /p+j > pi+

)
. The latter two condi-

tional formulations of positive dependence link directly to the squared chi-squared
distances δ2

iO to δ2
jO. Thus a single cell (i, j) with a strong positive relation can cause a

row i as well as column j to be an outlier.
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5.3.3 Cells with relatively high values

Outliers may occur due to relatively large frequencies (Langovaya, Kuhnt, &
Chouikha, 2013; Choulakian, 2020). Table (5.1e) is an illustration where row 2 and
column b have a relative large frequency of 100. The CA solution is

D−1
r (P −E)D−1

c = ΦΣ(Γ )T

=


−1.49 −3.28 0.36

0.56 0.05 0.04
−1.67 0.74 −2.91
−2.05 1.44 1.89


0.75 0 0

0 0.31 0
0 0 0.08



−1.76 1.44 3.08

0.55 0.12 −0.07
−2.18 0.55 −1.83
−0.99 −3.41 0.71


T

(5.12)
The reordered matrix based on the first coordinates of the rows and columns is shown
in Table 5.1f. On dimension 1 row 2 and column b are outliers with scores 0.56 and
0.55, respectively.

5.4 Methods to handle outliers

We discuss three methods to handle outliers. Two methods are cell-wise outlier meth-
ods: reconstitution of order h and MacroPCA. The third is the supplementary points
method. It is worth noting that reconstitution of order h has been used to handle
missing data, but has not been proposed to handle outliers.

5.4.1 Reconstitution of order h

In this paper we propose to deal with an outlier or outliers by changing the data.
Specifically, we assume that specific cells in a matrix are outlying cells if they cause
row and column points to be outliers. We propose to make such cells in the data
matrix missing. We use visual inspection of the CA plot to define outlying cells. In a
second step, we apply an algorithm that imputes a new value for each missing value.
For this, we use the reconstitution algorithm, originally proposed by Nora-Chouteau
(1974) and revisited by Greenacre (1984), De Leeuw and Van der Heijden (1988), and
Josse, Chavent, Liquet, and Husson (2012).

We assume for the moment that there is only a single cell causing a row and a
column to be outliers, but the procedure that we describe can be applied to multiple
outlying cells simultaneously. The idea is to adjust the value in this single cell in
such a way that it is perfectly reconstituted in a h-dimensional CA solution. This
reconstitution is obtained iteratively.

As by iteratively imputing the missing cell the margins also change, it is easier to
describe the method using the raw data xij instead of the proportions pij . For xij we
have
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xij =
xi+x+j

x++

1 +
min{I−1,J−1}∑

k=1

φikσkγjk

 , (5.13)

i.e. xij is reconstituted if the maximum dimensionality min (I −1, J −1) is used. Let x̂ij
be the reconstituted value using h < min (I − 1, J − 1) dimensions. Then

x̂ij =
xi+x+j

x++

1 +
h∑

k=1

φikσkγjk

 . (5.14)

We first explain reconstitution of order 0, meaning that no CA dimensions are
used in the reconstitution. Assume that cell (m,n) is an outlier made missing, and
assume that at iteration t = 0 we impute a non-negative value. Then we iteratively
find updates for this missing value as follows:

xt+1
mn =

xtm+x
t
+n

xt++
. (5.15)

After convergence, we have the converged value x∗mn. Then CA is applied to the origi-
nal data where the outlier value in cell (m,n) is replaced by x∗mn. As x∗mn = x∗m+x

∗
+n/x

∗
++,

in (5.13) the residual for cell (m,n) x∗mn−x∗m+x
∗
+n/x

∗
++ = 0. In this sense, the influence of

the original outlying cell is eliminated. De Leeuw and Van der Heijden (1988) use re-
constitution of order zero in the context of the statistical quasi-independence model.
They adjust CA so that it can decompose the departure from this model, a model that
assumes independence for some but not all cells in a contingency table. Reconstitu-
tion of order zero is also available in the R Package anacor (De Leeuw & Mair, 2009).

However, as the residual for cell (m,n) is 0, the inner-product∑min{I−1,J−1}
k=1 φ∗mkσ

∗
kγ
∗
nk = 0 as well, meaning that in the full-dimensional space

the vectors m and n are orthogonal. This may be an undesirable bi-product of
reconstitution of order 0. An alternative, reconstitution of order h, does not have this
problem. In reconstitution h, the value in cell (m,n) is reconstituted by

xt+1
mn =

xtm+x
t
+n

xt++

1 +
h∑

k=1

φt
mkσ

t
kγ

t
nk

 . (5.16)

Thus in the h-dimensional solution the value in cell (m,n) is reconstituted perfectly
by x∗m,n = (x∗m+x

∗
+n/x

∗
++) (1 +

∑h
k=1φ

∗
mkσ

∗
kγ
∗
nk), and only for higher dimensions than h the

residual as well as inner-product is zero. This means that the parameters φ∗ik, σ ∗k , and
γ∗jk, k = 1,2, · · · ,h provide the CA solution based on the non-outlying cells in the matrix
only. So, when interest goes out to a CA solution of two dimensions, theoretically it
makes sense to eliminate the influence of an outlier by applying reconstitution of
order 2. However, in practice this may lead to a negative value for x∗m,n, as is the case
in the second example of Section 5.5. In such instances reconstitution of order zero is
the preferred option.
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As far as we know, there is no R package in which reconstitution of order h is im-
plemented, where h ≥ 1. We present the R function reconca, that we created by rewrit-
ing the function imputeCA taken from the R package missMDA which implements a
regularized reconstitution algorithm (Josse et al., 2012; Josse & Husson, 2016) that is
meant for the missing value problem where the number of missing values in the data
is relatively large. This is a situation different from our idea to make outlying values
missing and therefore we further ignore this regularized version in this paper.

5.4.2 MacroPCA

MacroPCA was originally proposed for PCA (Hubert et al., 2019) and subsequently
adjusted for CA (Raymaekers & Rousseeuw, 2024). MacroPCA is quite involved and
detects outliers and handles outliers at the same time. It includes two parts. The
first part of MacroPCA is a multivariate method called DetectDeviatingCells (DDC)
(Rousseeuw & Van Den Bossche, 2018; Hubert et al., 2019) that assumes that data are
generated from a multivariate Gaussian distribution but some cells were corrupted.
DDC detects cellwise outliers, and provides these cellwise outliers with initial values.
It also detects initial row-wise outliers. In the second part, the set of outlying rows will
be improved. Low-dimensional representations are obtained in a way that is similar
but not identical to the reconstitution algorithm. The low-dimensional representa-
tions of MacroPCA are not nested. That is, for example, the two-dimensional repre-
sentation is not a subset of three-dimensional representations. We refer to Rousseeuw
and Van Den Bossche (2018); Hubert et al. (2019) for details.

MacroPCA is modified to handle missing data and outlier problems in the context
of CA (Raymaekers & Rousseeuw, 2024). For CA the original matrix is replaced with
the matrix of standardized residuals. As in CA the standardized residuals are only
a starting point in finding the CA solution, the modification is close to but different
from CA. Also, in the DCC step of MacroPCA where outlying cells are detected, the
algorithm makes the assumption of a Gaussian distribution, for which there is no clear
rationale in the context of CA.

5.4.3 Supplementary points method

The supplementary points method is a well-known method to deal with row-wise
outliers or column-wise outliers. That is, after noticing outlying points, for which we
use visual inspection, a new CA is performed on the data matrix where these row-
wise or column-wise outliers are removed. Then, as a second step, these outliers are
projected as supplementary points into the existing CA solution. Using Equation (5.8)
in Section 5.2, if an outlier a is a row point, its coordinates in the K-dimensional CA
solution are given by (a/

∑
j aj)Γ K and if an outlier b is a column point, its coordinates

in the K-dimensional CA solution are given by (b/
∑

i bi)ΦK .
The supplementary points method is a standard method to deal with outliers in

CA, see, for example, Hoffman and Franke (1986), Bendixen (1996), Greenacre (2017),

136



5.5. Empirical studies/Results

and Riani et al. (2022). However, as we argued above, outliers may be caused by a
single cell in the data matrix, and deleting an entire row or column where cell-wise
outliers occur from the contingency table leads to a loss of the entire category, includ-
ing outlying and non-outlying cells. In contrast, reconstitution of order h eliminates
the effect of only the outlying cells, thus keeping as much information as possible in
the analysis.

5.5 Empirical studies/Results

We consider two datasets, the attributes of brands of cars and ocean plastic datasets.
The attributes of brands of cars dataset is a classic dataset to study CA with the prob-
lem of outliers, see, for example, Riani et al. (2022); Raymaekers and Rousseeuw
(2024). Therefore, we compare reconstitution of order h, MacroPCA, and the sup-
plementary points method on this dataset.

The ocean plastic dataset is an incidence dataset created by Vonk, Bos, Smeets, and
Van Sebille (2024). We use this dataset to show that the reconstitution algorithm is
appropriate for incidence data as well. However, we do not discuss MacroPCA for
this example, as MacroPCA applied to this dataset yielded a degenerate solution (See
Supplementary materials). The reason for this is not clear to us, but we notice that as-
sumptions underlying MacroPCA are severely violated by the matrix of standardized
residuals. Therefore, for this dataset, we only compare reconstitution of order h and
the supplementary points method.

5.5.1 The attributes of brands of cars data

As a first dataset, we use the attributes of brands of cars dataset to illustrate our
method. The dataset has been analysed before in Riani et al. (2022); Raymaekers
and Rousseeuw (2024). This dataset is a part of the R package cellWise (Raymaekers,
Rousseeuw, Van den Bossche, & Hubert, 2023). See Table 5.2 for the data. The con-
tingency table consists of 39 rows and 7 columns. The rows represent 39 brands of
cars, such as Jeep, Porsche, and Volvo. The seven columns represent the attributes:
Fuel Economy, Innovation, Performance, Quality, Safety, Style, and Value. In total 1,578
participants were asked what they considered attributes for the 39 different vehicle
brands. They selected all attributes in the list which they felt applied to a brand. An
entry in the table represents the number of respondents that chose the attribute for a
car. In total this led to 11,713 scorings. We note that this is not a typical contingency
table as in a typical table the total count is identical to the number of respondents.

Figure 5.1a shows the symmetric plot of CA. The first four singular values, with
percentage of inertia displayed between brackets, are 0.335 (41.3%), 0.281 (28.9%),
0.171 (10.7%), and 0.157 (9.0%). Using the elbow criterion, we decide to interpret
two dimensions.

The first dimension contrasts cars that score high on Fuel Economy versus cars that
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score high on Style and Performance. On the second dimension the car brand Volvo is
far from other brands of cars, and the attribute Safety is close by. Where the marginal
proportion of Volvo is 0.024, its contribution to the second dimension is 65.7%. For
Safety the marginal proportion is 0.132, but the contribution to the second dimension
is 75.2%. In addition, the contribution of cell (Volvo, Safety) to the total inertia is
17.7%. Hence the cell (Volvo, Safety) is cell-wise outlier, leading to outlying points for
Volvo and Safety on dimension 2.

5.5.1.1 Reconstitution algorithm

Here we use reconstitution algorithm of order 2 to handle the cell-wise outlier (Volvo,
Safety). Using the reconstitution algorithm, the value 180 in (Volvo, Safety) becomes
27.0. (Reconstitution of order 0 leads an imputed value of 13.1, but the graphic results
are similar.) The contribution of cell (Volvo, Safety) to the total inertia went down from
17.7% to 0.4%. The first four singular values become 0.334 (51.0%), 0.186 (15.8%),
0.170 (13.2%), and 0.156 (11.1%). It is clear that the second dimension now is less
important, the proportion of inertia went down from 28.9% to 15.8%. The singular
values of dimensions 2, 3 and 4 do not differ much, and using the elbow criterion, we
decide only to study the first dimension. Also, since in a contingency table the singu-
lar value can be interpreted as the canonical correlation between the row variable and
the column variable, with 0.186 the second singular value is quite small.

Figure 5.1b is a symmetric CA plot of the reconstituted table. On the first dimen-
sion the configuration of row and column points is similar to the configuration of the
CA of the original table, except for the change of location of Volvo. Safety is still in
a similar position, and the reason for this difference between Volvo and Safety is that
bringing down the value of 180 to 27 has a much larger impact on the profile of Volvo,
that originally had a marginal total of 276, than the marginal total of Safety, that orig-
inally was 1,551. Note that by eliminating the impact of a single cell the new figure is
much better readable than Figure 5.1a.

By eliminating the influence of a single cell the reconstitution method allows us
to arrive at the simple conclusion that (i) there is a single outlying cell for Volvo and
Safety, as Safety is chosen as the outstanding characteristic of Volvo (180 out of 276
scores for Volvo come from Safety), and (ii) there is largely a one-dimensional structure
for the cars and features going from Land-Rover, Ferrari and Porsche on the left, scoring
higher than average on Style and Performance, to Smart, Volkswagen, Hyundai and Kia,
on the right, scoring higher on Fuel Economy, with the other car types and features
ordered in between.

5.5.1.2 MacroPCA

We obtain the results of MacroPCA by applying the MacroPCA function in the R
package cellWise (Raymaekers et al., 2023). We use the same parameter setting as in
Raymaekers and Rousseeuw (2024) and Raymaekers et al. (2023), except for α = 0.97
and k = 2. By setting α = 0.97 we make the number of non-outlying rows as large as
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Table 5.2: Car data matrix

Fuel Econo. Innov. Perform. Quality Safety Style Value Total Proport.
Acura 24 38 28 20 28 33 25 196 0.017
Audi 9 54 54 30 19 67 8 241 0.021

Bentley 0 16 18 25 9 27 17 112 0.010
BMW 14 83 94 55 38 93 35 412 0.035
Buick 25 48 39 58 52 52 43 317 0.027

Cadillac 14 73 50 76 40 83 36 372 0.032
Chevrolet 114 103 202 174 140 160 145 1,038 0.089

Chrysler 38 65 96 54 54 103 72 482 0.041
Dodge 60 61 141 61 63 133 69 588 0.050
Ferrari 0 20 45 10 8 46 5 134 0.011

Fiat 19 21 17 20 15 7 16 115 0.010
Ford 167 180 169 179 161 157 188 1,201 0.103

GMC-trucks 40 40 64 57 80 50 58 389 0.033
Honda 163 68 73 118 104 50 135 711 0.061

Hyundai 97 25 31 27 35 42 82 339 0.029
Infiniti 5 39 31 15 10 17 16 133 0.011
Jaguar 0 3 18 19 3 47 12 102 0.009

Jeep 18 33 14 51 19 41 52 228 0.019
Kia 68 30 17 13 24 42 109 303 0.026

Lamborghini 5 19 37 8 6 23 24 122 0.010
Land-Rover 0 43 0 5 0 47 2 97 0.008

Lexus 10 62 29 50 27 64 26 268 0.023
Lincoln 6 37 23 31 24 40 19 180 0.015

Maserati 0 6 9 0 0 41 25 81 0.007
Mazda 46 23 34 10 12 26 38 189 0.016

Mercedes-Benz 8 83 44 87 58 82 42 404 0.034
Mini 23 12 4 4 13 12 4 72 0.006

Mitsubishi 20 13 33 23 7 32 13 141 0.012
Nissan 80 68 51 53 52 55 70 429 0.037

Porsche 0 17 66 14 6 42 5 150 0.013
Ram-trucks 9 22 21 10 18 1 16 97 0.008
Rolls-Royce 0 4 4 35 11 25 17 96 0.008

Scion 20 24 11 6 11 4 4 80 0.007
Smart 38 9 3 7 0 5 10 72 0.006

Subaru 19 14 32 33 75 20 40 233 0.020
Tesla 23 35 10 12 9 15 12 116 0.010

Toyota 238 116 95 134 113 74 150 920 0.079
Volkswagen 90 30 25 37 27 22 46 277 0.024

Volvo 9 15 16 31 180 14 11 276 0.024
Total 1,519 1,652 1,748 1,652 1,551 1,894 1,697 11,713

Proport. 0.130 0.141 0.149 0.141 0.132 0.162 0.145 1.000
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5.5. Empirical studies/Results

possible. We choose k = 2 because this simplifies the comparison with the reconstitu-
tion of order h = 2 in CA.

The results from the first step in MacroPCA, DCC, provides a cellmap. See Fig-
ure 5.2. The red or blue cells indicate cellwise outliers. Specifically, red cells indicate
that the observed values are much larger than the predicted values, and for blue cells
the opposite holds. Thus DDC finds 19 cellwise outliers, including the cellwise out-
lier (Volvo, Safety) found using the visual inspection employed in Section 5.5.1.1. DDC
shows there is no row-wise outlier. However, in the second part of MacroPCA, there
are 2 row-wise outliers, which are Land-Rover and Volvo.

Figure 5.2: Car dataset

Figure 5.1c is the corresponding symmetric CA-type plot. On the first dimension,
the configuration of row and column points is similar to the original Figure 5.1a.

5.5.1.3 Supplementary points method

Here we treat Volvo and Safety as supplementary points. Thus the table analysed has
size 38×6, and now, row Volvo and column Safety have no effect on the solution of CA
but are projected into it afterwards. The first four singular values are 0.350 (56.5%),
0.179 (14.9%), 0.166 (12.7%), and 0.150 (10.3%). As in the reconstitution approach,
the second dimension is now less important, the proportion of inertia went down
from 28.9% to 14.9%, and using the elbow criterion, only the first dimension is to be
studied.

Figure 5.1d shows a symmetric CA plot, where Volvo and Safety are added as sup-
plementary points. On the first dimension the configuration of row and column points
is similar to the original Figure 5.1a, except for Volvo. Again, Safety is still in a similar
position. For this dataset the interpretation using the supplementary points method
is very similar to the interpretation using the reconstitution approach.

5.5.2 The ocean plastic data

The ocean plastic dataset is created by Vonk et al. (2024) to analyze how scientific
studies on ocean plastic are communicated in press releases. The study analyzed press
releases published on EurekAlert! between January 2017 and December 2021. In the
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5. Correspondence analysis: handling cell-wise outliers via reconstitution algorithm

Table 5.3: Frame variables

CCC Cause: Ocean climate change
Resp.C.P Actor responsible for cause: Politics
Resp.C.I Actor responsible for cause: Industry
Resp.C.C Actor responsible for cause: Regions/Countries
Resp.C.S Actor responsible for cause: Society
Resp.C.O Actor responsible for cause: Other

(a) Causal interpretation

PH Health
PE Economic
PB Biological
PnB Non-Biological
PT Treatment
PC Conflict
OC Opportunity
(b) Problem definition

Tr Treatment recommendation

(c) Treatment recommendation

OT Opportunity due to treatment
Resp.T.P Actor responsible for treatment: Politics
Resp.T.I Actor responsible for treatment: Industry
Resp.T.C Actor responsible for treatment: Regions/Countries
Resp.T.S Actor responsible for treatment: Society
Resp.T.O Actor responsible for treatment: Other
Ur Urgency to take action

(d) Moral evaluation

analysis, variables defining the four frame elements of Entman (1993), namely causal
interpretation, problem definition, moral evaluation, and treatment recommendation
were noted, resulting in 21 frame variables. Table 5.3 summarizes these framing vari-
ables, while a more detailed description can be found in Appendix 1 of Vonk et al.
(2024).

The causal interpretation (a) was coded, when the text referred to climate change
(CCC) as a cause of problems. It was coded whether an entity was held responsi-
ble for causing climate change, ocean plastics or related problems (Resp.C.P, Resp.C.I,
Resp.C.C, Resp.C.S, and Resp.C.O). The problem definition (b) describes different prob-
lems (PH, PE, PB, PnB, PT, PC) or opportunities (OC) stated in the text. The moral
evaluation (d) was coded when an entity was held responsible for solving problems
(Resp.T.P, Resp.T.I, Resp.T.C, Resp.T.S, and Resp.T.O); when opportunities would be
named if problems were mitigated (OT); or when the text stated that mitigation of
problems was urgently needed (Ur). The treatment recommendation (c) described a
solution that reduced or remedied problems or their cause (Tr).

The ocean plastic dataset has 81 press releases in the rows and 21 framing variables
in the columns with 0 or 1 in each cell where 1 means the framing variable is present
in the text and 0 otherwise. See Table 5.4 in supplementary materials A. The table
has 81× 21 = 1,701 cells of which 1,389 have a value 0. Note that Documents 10, 34,
50, and 81 are identical, and so are Documents 13, 19, 26, 27, 46, 56, 65, 69, and 84,
Documents 15, 71, and 75, Documents 17 and 59, Documents 28 and 31, Documents
30 and 86, Documents 41, 44, 63, and 67, Documents 48 and 77, and Documents 64,
72, and 85. As the profiles are identical in each group, the points have an identical
position in the graphic configurations and we only provide the label 10, 13, 15, 17,
28, 30, 41, 48 and 64.

Figure 5.3a is a symmetric plot of the dataset. The first four singular values, with
percentages of inertia displayed between brackets, are 0.671 (13.2%), 0.588 (10.2%),
0.570 (9.6%), and 0.544 (8.7%). The closeness of the singular values shows that the
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5.5. Empirical studies/Results

dataset cannot be summarized in a small number of dimensions.
The first dimension contrasts Opportunity due to treatment (OT), Treatment re-

lated problems (PT) and Treatment recommendation (Tr), Responsibility for treat-
ment framings T.O, T.P, T.C and T.I on the left versus responsibility for causes fram-
ings C.P, C.S and C.I, and Problem definitions such as Opportunity (OC), Health (PH),
Economic (PE), Non-Biological (PnB), and Biological (PB) on the right. On the second
dimension, Resp.C.I, i.e. industry is responsible for cause, is far from the origin. The
marginal proportion of Resp.C.I is 0.013, and its contribution to the second dimension
is 76.9%. Resp.C.I masks the visualisation of the structure in the dataset and reduces
the readability of this map. Documents 17, 59, which have identical scores, are far
from the origin and are closest to Resp.C.I. The marginal proportion of documents
17/59 jointly is 0.013, yet its contribution to the second dimension is 61.0%. Also,
the contribution of the two cells (17/59, Resp.C.I) to the total inertia is 7.0%, which is
large (note that there are 81× 21 cells). Hence the cells (17/59, Resp.C.I) are cell-wise
outliers, leading to outlying points for 17, 59 and Resp.C.I on dimension 2.

5.5.2.1 Reconstitution algorithm

Again, we used the reconstitution algorithm of order 2 to handle the cell-wise outliers.
However, this created a negative imputed value −0.0006 for outlying cells (17/59,
Resp.C.I). Negative values are not easy to interpret in an incidence matrix. Therefore,
we applied reconstitution of order 0. This yields value 0.0065 for the cells (17/59,
Resp.C.I). Now the documents 17/59, having a 1 in the framing variable PB, 0.0065 in
Resp.C.I and otherwise 0, are similar to documents 13, 19, 26, 27, 46, 56, 65, 69, 84
which have 1 in PB and 0 otherwise. The first four singular values are 0.672 (13.9%),
0.573 (10.1%), 0.548 (9.3%), and 0.519 (8.3%).

Figure 5.3b is a symmetric CA plot of the reconstituted table. On the first dimen-
sion the configuration of column points is similar to the configuration in Figure 5.3a,
except for Resp.C.I. Resp.C.I is not close to Documents 17/59, and Resp.C.I, 17/59 are
not far from the origin. Now, the contributions to the second dimension of Resp.C.I is
only 1.2% and of 17/59 jointly 0.6%.

By reducing the influence of cells (17/59, Resp.C.I), the new figure is much better
readable than Figure 5.3a. A full interpretation of the table makes use of the outliers
found in standard CA, and the CA solution found with the reconstitution method.
The standard CA reveals a strong positive relation between 17/59 and Resp.C.I. We
interpret the CA solution found with the reconstitution method by interpreting the
four quadrants of Figure 5.3b.

• Press releases in the first quadrant focus on problems related to biology (PB) and
human health (PH), and place the responsibility for causes at society (Resp.C.S);

• The second quadrant represents problems related to treatment (PT) and solu-
tions to these problems in the form of treatment (Tr), and opportunity if treat-
ment is carried out (OT);
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5.6. Discussion and conclusion

• Press releases in the third quadrant focus on the urgency to treat ocean plas-
tic (Ur) and hold entity responsible for carrying out that treatment (Resp.T.C,
Resp.T.P, Resp.T.I, Resp.T.O, Resp.T.S). In some cases they also state the responsi-
bility for cause at industry (Resp.C.I) and specific regions/countries (Resp.C.C);

• Press releases in the fourth quadrant focus on the interconnections between
ocean plastic and climate change (CCC) and they state non-biological (PnB) and
economic consequences (PE). The fourth quadrant also represents the responsi-
bility for cause at politics (Resp.C.P) and opportunity due to problems (OC). We
note that the marginal frequencies of Resp.C.P and OC are low, namely 1 and 2
respectively.

5.5.2.2 Supplementary points method

Here we treat 17/59 and Resp.C.I as supplementary points. Thus the size of the table
analysed is 79 × 20. Now, due to deleting Resp.C.I, documents 25 and 54 are also
identical. Rows 17/59 and column Resp.C.I have no effect on the solution of CA but
are projected into it afterwards. The first four singular values are 0.671 (14.5%), 0.571
(10.5%), 0.544 (9.6%), and 0.511 (8.4%).

Figure 5.3c shows the symmetric CA plot for the supplementary points method.
Figure 5.3c is similar to Figure 5.3b.

5.6 Discussion and conclusion

In this paper, we propose to use the reconstitution algorithm of order h to deal with
outlying cells in CA. The reconstitution algorithm of order h can reduce the effects
of single outlying cells on the CA solution. We compare it with MacroPCA and the
supplementary points method.

In comparison to the reconstitution approach, MacroPCA imputes outlying cells
in the matrix of standardized residuals instead of in the original matrix. Apart from
imputing cell-wise outliers, it can also eliminate complete rows. Yet, MacroPCA is
not as transparent and straightforward as the reconstitution approach. One of the
reasons is that it is originally proposed for the analysis continuous data and makes
distributional assumptions, which does not hold for the reconstitution approach. Due
to these distributional assumptions, that do not always fit with how the data originate,
in our view it appears to flag too many cells as outlying cells.

The supplementary points method deletes complete rows or columns. In contrast,
the reconstitution algorithm only reduces the influence of outlying cells. Thus, the
reconstitution algorithm uses more information in the data and is, from this perspec-
tive, preferable.

We analysed two real data sets to illustrate the use of the reconstitution algorithm
and compared the algorithm with the supplementary points method and MacroPCA.
For the contingency table car dataset, the three methods yielded similar results. For
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5. Correspondence analysis: handling cell-wise outliers via reconstitution algorithm

the ocean plastic dataset, the reconstitution algorithm and the supplementary points
method had similar results, but MacroPCA failed.

We are not able to show empirically that the reconstitution method is prefer-
able over the supplementary points method and MacroPCA. However, on theoreti-
cal grounds the reconstitution method is preferable: it eliminates only single cells to
handle outlier problems, thus it is not necessarily deleting more information than is
necessary.

5.7 Software

The reconstitution algorithm of order h is implemented by a function reconca both for
h = 0 and h > 0. The function is written by adjusting the function imputeCA in the
R Package missMDA. Josse and Husson (2016) proposed the R package missMDA for
handling missing values in multivariate data analysis, where the function imputeCA
is meant for missing values in CA. Another R Package, which can perform a recon-
stitution algorithm of order zero, is anacor, proposed for simple and canonical CA by
De Leeuw and Mair (2009), to deal with missing data in CA.

The MacroPCA method is performed by the MacroPCA function in R package cell-
Wise. The MacroPCA method is proposed for PCA (Hubert et al., 2019) and adjusted
for CA (Raymaekers & Rousseeuw, 2024). To fit CA, the original matrix is replaced
with the matrix of standardized residuals.
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5.B. MacroPCA for ocean plastic dataset

Appendix 5.A Ocean plastic dataset of size 81× 21

Table 5.4: Ocean plastic data matrix

PH PE PB PnB PT PC OC OT CCC Resp.C.P Resp.C.I Resp.C.C Resp.C.S Resp.C.O Resp.T.P Resp.T.I Resp.T.C Resp.T.S Resp.T.O Ur Tr Total Proport.
1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 7 0.022
2 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 3 0.010
3 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 13 0.042
4 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.010
5 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3 0.010
6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0.006
7 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0.013
8 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 7 0.022

10 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.006
11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 5 0.016
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.003
13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.003
14 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 9 0.029
15 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.006
16 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0.003
17 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0.006
18 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 5 0.016
19 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.003
20 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 4 0.013
22 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0.013
23 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 4 0.013
24 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.010
25 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 6 0.019
26 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.003
27 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.003
28 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0.006
29 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 5 0.016
30 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 4 0.013
31 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0.006
34 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.006
35 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 6 0.019
36 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 4 0.013
37 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 4 0.013
38 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 7 0.022
39 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.006
40 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0.010
41 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
42 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 5 0.016
43 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 6 0.019
44 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
45 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 6 0.019
46 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.003
47 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 4 0.013
48 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0.013
49 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.006
51 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 7 0.022
52 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 6 0.019
53 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 7 0.022
54 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 5 0.016
55 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 4 0.013
56 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.003
57 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 8 0.026
58 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 6 0.019
59 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0.006
60 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 7 0.022
61 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 6 0.019
62 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
63 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
64 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
65 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.003
66 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
67 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
68 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0.013
69 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.003
71 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.006
72 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
74 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 8 0.026
75 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.006
76 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0.013
77 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0.013
78 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 6 0.019
80 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 4 0.013
81 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.006
82 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 4 0.013
83 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0.003
84 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.003
85 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0.010
86 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 4 0.013
87 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 8 0.026
88 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 4 0.013

Total 26 10 68 25 16 3 2 8 18 1 4 12 21 2 10 5 4 20 3 16 38 312
Proport. 0.083 0.032 0.218 0.080 0.051 0.010 0.006 0.026 0.058 0.003 0.013 0.038 0.067 0.006 0.032 0.016 0.013 0.064 0.010 0.051 0.122 1.000

Appendix 5.B MacroPCA for ocean plastic dataset

We use the same parameter as in the car dataset to deal with the ocean plastic dataset.
Figure 5.4 is a cellmap based on the results from the first part DDC of MacroPCA.
MacroPCA flags 225 cellwise outliers. The 225 cellwise outliers include (17, Resp.C.I)
and (59, Resp.C.I), which we took as cellwise outliers in reconstitution of order h.
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5. Correspondence analysis: handling cell-wise outliers via reconstitution algorithm

Figure 5.4: Ocean plastic dataset

Figure 5.5 is the corresponding symmetric CA-type plot based on MacroPCA.
MacroPCA does not work well in the ocean plastic dataset. The reason may be that
the analyzed matrix severely violates the assumption of multivariate Gaussian distri-
bution.
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Frobenius, G. (1912). Über matrizen aus nicht negativen elementen.

Gabriel, K. R. (1971). The biplot graphic display of matrices with application to
principal component analysis. Biometrika, 58(3), 453–467.

Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2021). An introduction to statistical
learning: with applications in R. Springer.

Gifi, A. (1990). Nonlinear multivariate analysis. Wiley.

Greenacre, M. (1984). Theory and applications of correspondence analysis. Academic
Press.

Greenacre, M. (2009). Power transformations in correspondence analysis. Computa-
tional Statistics & Data Analysis, 53(8), 3107–3116.

Greenacre, M. (2010). Log-ratio analysis is a limiting case of correspondence analy-
sis. Mathematical Geosciences, 42, 129–134.

Greenacre, M. (2013). The contributions of rare objects in correspondence analysis.
Ecology, 94(1), 241–249.

Greenacre, M. (2017). Correspondence analysis in practice. CRC press.

Greenacre, M., & Hastie, T. (1987). The geometric interpretation of correspondence
analysis. Journal of the American Statistical Association, 82(398), 437–447.

Greene, D., & Cunningham, P. (2006). Practical solutions to the problem of diagonal
dominance in kernel document clustering. In Proceedings of the 23rd International
Conference on Machine Learning (pp. 377–384).

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples.
Technometrics, 11(1), 1–21.

Guo, J., Cai, Y., Fan, Y., Sun, F., Zhang, R., & Cheng, X. (2022). Semantic models for
the first-stage retrieval: A comprehensive review. ACM Transactions on Information
Systems (TOIS), 40(4), 1–42.

Guo, S., & Yao, N. (2021). Document vector extension for documents classification.
IEEE Transactions on Knowledge & Data Engineering, 33(8), 3062–3074.

153



REFERENCES

Gupta, H., & Patel, M. (2021). Method Of Text Summarization Using Lsa And Sen-
tence Based Topic Modelling With Bert. In 2021 International Conference on Artificial
Intelligence and Smart Systems (ICAIS) (pp. 511–517).

Guthrie, D. (2008). Unsupervised detection of anomalous text (Unpublished doctoral
dissertation). University of Sheffield.

Handan-Nader, C. (2023). Graph embeddings with influential outliers us-
ing correspondence analysis. Retrieved October 2, 2023, from https://

www.dropbox.com/scl/fi/7rc8jg5g6lwd1u9q2z71b/CA Algorithms Paper.pdf

?rlkey=mg5jw71q17861nbbocahafn2g&dl=0.

Harris, Z. S. (1954). Distributional structure. WORD, 10(2-3), 146–162.

Hassani, A., Iranmanesh, A., & Mansouri, N. (2021). Text mining using nonnegative
matrix factorization and latent semantic analysis. Neural Computing and Applications,
33, 13745-13766.

Hayashi, C. (1956). Theory and example of quantification (II). Proceedings of the
Institute of Statistical Mathematics, 4, 19–30.

Hayashi, C. (1992). Quantification method III or correspondence analysis in medical
science. Annals of Cancer Research and Therapy, 1(1), 17–21.

Hearst, M. A. (1999). Untangling text data mining. In Proceedings of the 37th Annual
meeting of the Association for Computational Linguistics (pp. 3–10).

Hill, F., Reichart, R., & Korhonen, A. (2015). SimLex-999: Evaluating Semantic
Models With (Genuine) Similarity Estimation. Computational Linguistics, 41(4), 665–
695.

Hill, M. O. (1973). Reciprocal averaging: an eigenvector method of ordination.
Journal of Ecology, 61(1), 237–249.

Hill, M. O. (1974). Correspondence analysis: a neglected multivariate method. Jour-
nal of the Royal Statistical Society: Series C (Applied Statistics), 23(3), 340–354.

Hoffman, D. L., & Franke, G. R. (1986). Correspondence Analysis: Graphical Repre-
sentation of Categorical Data in Marketing Research. Journal of Marketing Research,
23(3), 213–227.

Horasan, F. (2022). Latent Semantic Indexing-Based Hybrid Collaborative Filtering
for Recommender Systems. Arabian Journal for Science and Engineering, 47, 10639-
10653.
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English Summary

In text mining and natural language processing (NLP) applications, a vector repre-
sentation of text data is the key in designing an effective machine learning algorithm.
Document-term and word-context matrices are two important matrices to represent
texts as vectors. These two matrices are usually sparse and high-dimensional. The
process of creating low-dimensional representations of texts is referred to as dimen-
sionality reduction. Dimensionality reduction is associated with the representation of
text data and thus very important. In the machine learning literature, little to no at-
tention has been paid to a popular statistical technique, correspondence analysis (CA).
Other popular dimensionality reduction methods receive more attention, like latent
semantic analysis (LSA). This project is to study whether CA is a good dimensionality
reduction technique in text mining and NLP.

Chapter 2 theoretically compares CA and LSA of a document-term matrix. In ad-
dition, the performance of CA is compared to the performance of different versions
of LSA in the context of text categorization and authorship attribution. The crite-
rion used to make comparisons is mainly a measure for accuracy. From a theoretical
point of view it appears that CA has more attractive properties than LSA. For exam-
ple, in LSA, the effect of the margins as well as the dependence between documents
and terms is part of the matrix that is analyzed, while CA eliminates the effect of the
margins and thus the solution only displays the dependence. The results for four em-
pirical datasets show that CA can obtain higher accuracies on text categorization and
authorship attribution than the different versions of LSA.

Chapter 3 also studies the performance of CA and LSA in the context of document-
term matrices. CA and LSA are empirically compared in information retrieval by cal-
culating the mean average precision. An attempt is made to improve CA by applying
the two kinds of weighting, that are also used in LSA. These are weighting schemes for
the elements of the document-term matrix and the adjustment of the singular value
weighting exponent. The results for four empirical datasets show that CA always per-
forms better than LSA. Weighting the elements of the raw data matrix can improve
CA; however, it is data dependent and the improvement is small. Adjusting the sin-
gular value weighting exponent often improves the performance of CA; however, the
extent of the improvement depends on the dataset and the number of dimensions.

Chapter 4 compares CA with PPMI-SVD, GloVe, and SGNS. Theoretically, like
PPMI-SVD, GloVe, and SGNS, we are able to link CA to the factorization of the PMI
matrix. An attempt is made to improve CA by making use of weighting schemes for
the elements of the word-context matrix. An empirical comparison on word similarity
tasks shows that the overall results for CA with the two weighting schemes are slightly
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better than those of PPMI-SVD, GloVe, and SGNS.
CA is susceptible to outliers. In Chapter 5, the so-called reconstitution algorithm is

introduced to cope with outlying cells. This algorithm can reduce the contribution of
the outlying cells in CA. The reconstitution algorithm is compared with two alterna-
tive methods for handling outliers, the supplementary points method and MacroPCA.
It is shown that the proposed strategy works well.

Summarizing, we have shown that CA is a technique that matches or outperforms
techniques that are now commonly used in computing science. We think that the
performance of CA in the studies of this dissertation shows that CA deserves more
attention in this field.
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Bij tekst mining en natuurlijke taalverwerking (NLP) is een vectorrepresentatie van
tekstgegevens de sleutel tot het ontwerpen van een effectief algoritme voor machi-
naal leren. Document-term en woord-tekst matrices zijn twee belangrijke matrices
om teksten als vectoren weer te geven. Deze twee matrices zijn meestal spaarzaam
gevuld en hoogdimensionaal. Het proces om laagdimensionale representaties van tek-
sten te maken, wordt dimensionaliteitsreductie genoemd. Dimensionaliteitsreductie
wordt geassocieerd met de representatie van tekstgegevens en is dus erg belangrijk.
In de literatuur over machinaal leren is weinig tot geen aandacht besteed aan een
populaire statistische techniek, correspondentieanalyse (CA). Andere populaire di-
mensionaliteitsreductiemethoden krijgen meer aandacht, zoals latente semantische
analyse (LSA). In dit project wordt onderzocht of CA een goede dimensionaliteitsre-
ductietechniek is in tekst mining en NLP.

In hoofdstuk 2 worden CA en LSA van een document-term-matrix theoretisch
vergeleken. Daarnaast worden de prestaties van CA vergeleken met de prestaties van
verschillende versies van LSA in de context van tekstcategorisatie en auteurschap-
stoewijzing. Het criterium dat gebruikt wordt om vergelijkingen te maken is voor-
namelijk een maat voor nauwkeurigheid, de zgn. accuracy. Vanuit theoretisch oog-
punt blijkt dat CA aantrekkelijkere eigenschappen heeft dan LSA. In LSA maakt bi-
jvoorbeeld zowel het effect van de marges als de afhankelijkheid tussen documenten
en termen deel uit van de matrix die wordt geanalyseerd, terwijl CA het effect van de
marges elimineert en de oplossing dus alleen de afhankelijkheid weergeeft. De resul-
taten voor vier empirische datasets laten zien dat CA hogere accuracy kan bereiken
voor tekstcategorisatie en auteurschapstoewijzing dan de verschillende versies van
LSA.

Hoofdstuk 3 bestudeert ook de prestaties van CA en LSA in de context van
document-term-matrices. CA en LSA worden empirisch vergeleken in information
retrieval door de gemiddelde precisie te berekenen. Er wordt geprobeerd om CA te
verbeteren door twee soorten wegingen toe te passen die ook in LSA worden gebruikt.
Dit zijn wegingsschema’s voor de elementen van de document-term matrix en de aan-
passing van de exponent voor weging van de singuliere waarde. De resultaten voor
vier empirische datasets laten zien dat CA altijd beter presteert dan LSA. Het wegen
van de elementen van de ruwe gegevensmatrix kan CA verbeteren; de mate van ver-
betering is echter afhankelijk van de specifieke dataset en de verbetering is klein. Het
aanpassen van de exponent voor het wegen van de singuliere waarde verbetert vaak
de prestaties van CA; de mate van verbetering hangt echter af van de dataset en het
aantal dimensies.

165



Nederlandse Samenvatting

Hoofdstuk 4 vergelijkt CA met PPMI-SVD, GloVe en SGNS. Theoretisch zijn we,
net als PPMI-SVD, GloVe en SGNS, in staat om CA te koppelen aan de factorisatie
van de PMI-matrix. Er wordt geprobeerd om CA te verbeteren door gebruik te maken
van wegingsschema’s voor de elementen van de woord-tekstmatrix. Een empirische
vergelijking op woordovereenkomsttaken laat zien dat de algemene resultaten voor
CA met de twee wegingsschema’s iets beter zijn dan die van PPMI-SVD, GloVe en
SGNS.

CA is gevoelig voor uitbijters. In hoofdstuk 5 wordt het zogenaamde reconstitu-
tiealgoritme geı̈ntroduceerd om met uitbijtende waarden in cellen om te gaan. Dit al-
goritme kan de bijdrage van de uitbijtende cellen in CA verminderen. Het reconstitu-
tiealgoritme wordt vergeleken met twee alternatieve methoden voor het omgaan met
uitschieters, de supplementary points-methode en MacroPCA. Er wordt aangetoond dat
de voorgestelde strategie goed werkt.

Samenvattend hebben we laten zien dat CA een techniek is die overeenkomt met
of beter presteert dan technieken die nu veel gebruikt worden in de computerweten-
schap. We denken dat de prestaties van CA in de studies van dit proefschrift laten
zien dat CA meer aandacht verdient op dit gebied.
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Jelle, Niek, Hadi, Daniel, Arjan, Özgür, Nikolaj, Tina, and Aron. I enjoy the weekly
meeting with you very much. I want to thank Ellen, Herbert, Gerko, Mirjam, Javier,
Mahdi, Beth, Camilla, and all the teachers who taught and helped me. I want to
thank every member of the Department of Methodology and Statistics. I know that
whenever I have some questions, I can always find someone to ask.

I want to thank my office-mates Pia, Jeroen, Dan, Danielle, Ria, Mingyang, and
others for their guidance in the research and for their companionship in life. I had
such a good time with you at the office. Thanks to my friends Shanshan, Dandan,
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