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Prologue
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1Introduction

My idea of a perfect school, Miss
Honey, is one that has no children in
it at all.

Miss Trunchbull, in Roald Dahl’s
Matilda

Imagine you find yourself in the following unenviable situation. You are a teacher
at a school tasked with leading a school trip. Don’t freak out, this is only a hypothet-
ical! The last thing you want to happen is to leave a child behind somewhere, so you
decide to periodically count the children.

When you first load the children on the bus, you decide to count them all one-
by-one. This takes quite some time, especially as you have to start over a number of
times as a result of children asking when the bus is leaving and you losing count as
a result. Since the bus leaves five minutes late as a result, you decide to think of a
better way to count the children.

At the first bathroom break you decide to count the number of rows of children,
rather than the individual kids. Children are social creatures and as such they have
filled up the various rows of the bus nicely. This method has sped up the counting
process by a factor of 4, good enough for this trip.

At the next stop the children have caught on to your counting method and decide
to mess with you by intentionally leaving varying numbers of empty seats in each
row. Not to be outsmarted by these little twerps, you grab a notepad and keep track
of the number of rows with 1 child, the number of rows with 2 children, etc. At
the end you add them up, weighted by the number of children in the row, to find
the total number of children. Turns out one of the kinds was still in the bathroom...
Good thing you counted!

Upon your return you are commended on you great performance. Not a single
child left behind, a first for the school! Perhaps you have done a bit too well, as you
are asked to coordinate the next school trip, which is a joint trip with three other
schools. Not wanting to turn down this ’honor’ bestowed upon you by the principle,
you begrudgingly accept the task.

This time the children are encouraged to mingle with the other schools and as a
result they keep switching between the various buses. As the schedule is quite tight
and the children cannot be expected to stand still for more than 5 seconds, counting
the whole group outside of the buses is not an option. You decide to have each
teacher count the number of children in their bus and then step outside to report

3



4 1.1. Algorithms and Complexity

said number. You then add them up and check if all children are accounted for.
Again you return home with all children accounted for.

What we have seen here is an example of how more sophisticated counting tech-
niques allow us to both count faster and count in more complex situations. Of
course, this example is still fairly simple and throughout this thesis we will see ways
to count much more complicated structures using much more sophisticated tech-
niques. We will spend the rest of this chapter introducing the major themes in this
thesis on an intuitive level. While we will use some technical terms in this chapter,
we do not expect the reader to know their (exact) meaning. Precise definitions of
terms relevant for the rest of the thesis can be found in Chapter 2.

1.1 Algorithms and Complexity

Algorithms While the counting in the example above can still be done by a person,
as the complexity and size of problems increases this eventually stops being feasible.
It is at this point that we turn to computers to help lighten the load using specialized
algorithms.

The term algorithm is derived from the name Muhammad ibn Musa al-Khwarizmi,
a Persian polymath and a vastly underrated contender for the title of most influential
mathematician of all time. Translations of his book on Indian arithmetic [103] intro-
duced the Indian numerical system, which we still use today, to medieval Europe in
the 12th century [143]. His book Al-Jabr [104] is arguably the founding text of the
modern field of Algebra, being the first to teach Algebra for its own sake [88]. Hence
it is not surprising that the field was named after this book, translations of which
were used as the primary mathematics textbook from the 12th until the sixteenth
century [85]. One could argue that the systematic solutions to linear and quadratic
equations in the Al-Jabr were an example of ancient algorithms and that the study
of algorithms dates back even further to at least the ancient Greeks, but the modern
study of algorithms is considered to have started with the birth of computer science
in the early 20th century. Many of the topics studied and concepts introduced dur-
ing this time are still relevant today, for example Turing machines [147], Fast Fourier
Transforms [60], the Simplex algorithm [47] or the Ford-Fulkerson algorithm [82],
just to name a few.

An algorithm always has an input and an output. The input consists of some
data describing a problem we want to solve. In the earlier example this would have
been the group of children that needed to be counted. The output then consists of
a/the solution to said problem, i.e. the number of children. When studying algo-
rithms we want to determine how ’good’ they are according to some useful metric.
The most common way to measure the quality of an algorithm is to determine the
amount of resources required to run the algorithm. Of course, the most valuable
resource we have is time and it is not surprising that this is typically the metric we
consider. Other common metrics include the amount of required memory, accuracy
(in the case of approximation algorithms) and success probability (in the case of
randomized algorithms).

The running time (and memory usage) of an algorithm almost always depend on
the data it receives and the hardware it is run on. It therefore does not make sense to
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measure running time in concrete numbers and computer scientists use other means
instead. Practically oriented researchers will often use benchmarks, where the algo-
rithm is run on some large collection of instances of the problem1 and running time
is measured for each instance. This produces a large set of statistics, which can be
compared to the benchmarks of other algorithms. Here special care needs to be
taken that the different algorithms are run the same hardware under the same cir-
cumstances. Theoretical computer scientists are often not interested in the observed
running time and put more emphasis on obtaining worst-case guarantees. To this
end, their goal is typically to determine how the running time grows as a function
of the amount of data the algorithm receives. Constant factors are often ignored,
i.e. they do not care whether the algorithm runs in time n or 2 · n. This function
is referred to as the complexity or time complexity of the problem. As this thesis ap-
proaches algorithms from a theoretical angle, we will use the latter perspective. It
is worth mentioning that this approach is not without its flaws. It is often the case
that the best algorithm in a theoretical setting does not perform well or is difficult
to implement in practice. In the other direction, algorithms that perform well in
practice may appear to be incredibly slow from a theoretical perspective, due to its
poor performance on some far fetched edge cases. Unfortunately this compromise is
necessary for the majority of theoretical results, as formalizing what it means for an
instance to be practical often proves to be quite difficult. There are some ways that
researchers have attempted to bridge the gap, like average-case analysis or parame-
terized complexity, the latter of which is the subject of this thesis.

Theoretical computer scientists often group problems together, depending on
their complexity, into so called complexity classes. The exact definition of such a
class is beyond the scope of this informal introduction, but loosely speaking a class
is often defined by a statement of the form ’all problems that can be solved in . . . time
(and using . . . space), by a computer of type . . . ’. Notable examples include the class
P of problems that can be solved in polynomial time on a deterministic Turing ma-
chine2 and the class NP of problems that can be solved in polynomial time on a
non-deterministic Turing machine. Problems can then be said to be K-hard for a class
K, if they are at least as hard to solve as any problem in the class K. If a problem is
also a member of K, in addition to being K-hard, we say it is K-complete. Showing
hardness for a difficult class is generally considered a good indication that a problem
cannot be solved efficiently by any algorithm. In the field of algorithmic complexity,
the goal is usually to either find a fast algorithm or show hardness for a difficult
class. In the ideal case we find an algorithm and a hardness result that in some sense
match. For example we might find an algorithm that runs in exponential time and
also show hardness for the class of problems that can be solved in exponential time.

Parameterized complexity It turns out that considering only the input size when
analyzing an algorithm is quite limiting. There are often other properties of the
data that can be exploited to produce significantly faster algorithms. This is the

1If we stretch our example to fit this notion, one can think of this as making a teacher count the
number of children in a large number of buses and keeping track of the time needed for each bus.

2One can think of a Turing machine as just a computer and a non-deterministic Turing machine as a
computer that can make choices that are not predetermined. See Chapter 7 for a technical definition.
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main motivation behind the field of parameterized complexity. In this setting, we
consider a problem in conjunction with one or more parameters of that problem.
For example, we saw earlier that it is easier to count children on a bus, if they do
not leave empty seats in any row of seats. We could consider the maximum number
of empty seats per row as a parameter of the problem. Another example is found in
the navigation of the bus. If the road network that the bus is navigating has a few
central intersections that all roads radiate out of, then it is very easy to determine
the fastest route from A to B, you have to go via the central hub. The number of such
intersections3 could be a parameter of the route finding problem.

When analyzing the complexity of an algorithm, we typically assume that the
parameters are small relative to the input size. This means that we prioritize a good
dependency on the input size over the dependency on the parameter. For example,
for a parameter k and input size n a running time 2kn2 is generally considered good,
while k22n is not.

In a sense, parameterized complexity forms somewhat of a middle ground be-
tween theory and practice, as most practical situations concern highly structured
data. Parameterized complexity still provides the same theoretical guarantees, while
also taking this extra structure into account.

While examples of parameterized algorithms date back to the 1980’s [102], the
systematic exploration of parameterized complexity only started in 1990’s, after it
was proposed by Downey and Fellows [63]. It has since turned into a rapidly evolv-
ing field with interest in the field showing no sign of slowing down. In the now
standard textbook for the field Parameterized Algorithms [56] (colloquially referred
to as the ’blue book’), the authors mention that at the time of writing Google Scholar
produces more than 4.000 papers containing the term ’fixed-parameter tractable’.
In the 9 years since this number has grown to over 21.000!

Parameterized complexity has received interest from all kinds of fields within
the study of algorithms, including but not limited to approximation algorithms
[77], streaming algorithms [44], distributed computing [142], parallel algorithms
[1], databases [100], computational biology [16] and robotics [70]. Clearly, parame-
terized complexity has great potential and this is increasingly being recognized by a
diverse subset of the scientific community.

A brief history of counting complexity The study of counting complexity arguably
began with the introduction of the class #P by Valiant [153]. In this paper Valiant de-
scribes a computer that counts things as “magically printing the number of solutions
on a special tape”4. In a follow up paper [151], Valiant gives a list of 14 #P-complete
problems. In this paper he notes that some of these problems, like counting perfect
matchings or directed trees, have easy decision versions. Indeed, it is clearly a trivial
task to find any directed tree in a given graph, but counting them all is quite difficult.
This divergence between easy decision problems and difficult counting versions has
proven to be a popular theme in counting complexity to this day. Recent examples

3Commonly referred to as the vertex cover number of the network.
4The exact phrasing is as follows: “A counting Turing machine is a standard non-deterministic TM

with an auxiliary output device that (magically) prints in binary notation on a special tape the number of
accepting computations induced by the input.”
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of this include the parameterized complexity of counting perfect matchings [55] and
counting Hamiltonian cycles parameterized by pathwidth [53, 57].

In the early days of counting complexity, a big question was how difficult count-
ing problems are, compared to decision problems. Clearly counting the number of
solutions to a problem is more difficult than deciding whether that same problem
even has any solutions. One might wonder though, could the counting classes like
#P also capture more difficult decision classes than the ones they are based5 on? This
question was answered in the affirmative by Toda [146], about a decade after Valiant
first introduced #P. In particular, Toda showed that #P is at least as hard as the entire
polynomial hierarchy, another generalization of the class NP.

Flum and Grohe [80] later initiated the study of the hierarchy #W[1], #W[2], . . . of
classes of parameterized counting problems. These classes play a similar role as #P,
in the sense that they form the counting counterparts to typically difficult classes,
but in this case for parameterized problems. Flum an Grohe showed that in the
parameterized setting there are problems, like counting cycles or paths of length
k, whose counting version is #W[1]-complete, while the decision version is easy to
solve. While in the classical setting many natural counting problems are either easy
or #P-complete, in the parameterized setting there are a lot of problems that are
#W[t]-hard for some t, but are not known to be contained in any such class. In
Chapter 7 we introduce the new classes #XLP and #XALP, for which a number of
these problems are complete.

Various different frameworks, i.e. abstract problems that generalize many natu-
ral problems, for counting problems have been developed over the years. Three of
the most well-studied frameworks are Constraint Satisfaction Problems [38, 31, 32, 48,
39, 66, 69, 34], Graph Homomorphism Problems [68, 30, 67, 94, 35, 33, 98] and Holant
Problems [37, 38, 40, 36, 152, 50]. We will encounter all three frameworks at some
point in this thesis. One reason why such frameworks are interesting is because they
allow for a systematic approach to the complexity of problems that fall under the
frameworks. The ultimate goal of such a framework is to find a full classification of
the complexity of its problems, however even finding a classification for a restricted
version of the framework can be a major result (see [49] for a number of examples).
The fact that this is even possible is noteworthy, as this is not the case in general, for
example if P ,NP, then there are problems in NP \P that are not NP-hard [122].

The graph coloring problem we study in Chapter 3, as well as many evaluations
of the Tutte polynomial (see Chapter 5 or Section 2.6) can be seen as special cases of
counting graph homomorphisms [92]. The complexity bounds we find in Chapter 3
use a version of #CSP as the starting point of the reduction. In Chapter 7 we show
#XLP- and #XALP-hardness6 for two parameterizations of a problem that falls under
the Holant framework, using various other problems from the framework in the
reduction.

ETH Bounds vs W[1] vs XNLP In this thesis we give different types of difficulty
guarantees for various problems. Here will discuss how these notions relate to one

5In this case #P is based on the class NP.
6see Section 2.5 for definitions of these classes.
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another. For the purpose of this discussion we will assume the reader has some
familiarity with the various complexity classes an hypotheses mentioned. For more
technical details, we refer the reader to Sections 2.2, 2.3 and 2.5.

Our two main ways to give an indication of the difficulty of a problem are hard-
ness results based on complexity classes and fine-grained bounds based on difficulty
hypotheses. When using the term fine-grained, we refer to explicit running time
bounds and will do so throughout the thesis. We generally prefer fine-grained bounds
over hardness results as they give a tangible lower bound on the potential running
time of algorithms, rather than a broad statement of difficulty. However, in some
cases it can be difficult to obtain a fine-grained bound. In these cases it will still
prove very insightful to show hardness for some complexity class.

When showing K-hardness for some complexity class K, the rule of thumb is
“the bigger the class, the more difficult the problem”. The (parameterized) classes
we consider can be ordered as follows

FPT ⊆W[1] ⊆ · · · ⊆W[t] ⊆ · · · ⊆ XNLP ⊆ XALP ⊆ XP ⊆ para-NP

with the same inclusions holding for the counting versions. We also consider the
class of NP, which is not comparable to these parameterized classes, as it consists of
classical (i.e. non-parameterized) problems.

One might wonder why so many classes are necessary. After all, if a problem is
unlikely to be solvable in a reasonable time, why should we care how unreasonable
the running time is? In other words, is there really a meaningful difference between
W[1] and W[2], or even W[1] and XNLP? Unfortunately, we are unable to conclu-
sively answer these questions. While some of these inclusions can be shown to be
strict, for example FPT ⊊ XP (see also [62, Proposition 27.1.1]), for most of these in-
clusions it is unclear whether they are strict or not, although most assume that they
are.

One can however use these classes to show that some problems are meaning-
fully more difficult than others, assuming that the relevant inclusions are in fact
strict. This is why the notion of K-completeness is so important, as it indicates that
a problem is as hard and no harder than the problems in K. This is actually one of
the main motivations behind the class XNLP, as it provides completeness for many
problems, that previously where only known to be W[1]- or W[2]-hard, but did not
have completeness results yet.

We will often use fine-grained bounds to refine the complexity of problems in one
of these classes. In particular we will often give lower bounds for problems in FPT,
bounding dependency on the parameter in the running time. As FPT is the small-
est class in this chain, showing hardness for FPT would not give much information
about a problem and thus fine-grained bounds are a big improvement. In contrast,
for problems outside of FPT we will often settle for W[1]- or XNLP-hardness, as
these are bigger classes and thus give more valuable hardness results. When giving
fine-grained bounds, we use the (Strong) Exponential Time Hypothesis (ETH/SETH),
which postulates a fine-grained bound on a problem called the Satisfiability problem.
Lokshtanov, Marx and Saurabh [124, 123] first used this method to give fine-grained
bounds for parameterized problems. They gave lower bounds for a number of fun-
damental problems, most of which were parameterized by treewidth, that match
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the running time of existing algorithms. ETH (and SETH) bounds represent a shift
in perspective, as they give concrete running time bounds, rather than the abstract
notion of hardness found in the study of complexity classes. Hardness results are
useful to get a general idea of the difficulty of a problem and to develop a deeper
understanding of the broader landscape by grouping similarly difficult problems to-
gether in classes. In practice, however, fine-grained results are often preferred as
they don’t just tell us whether a feasible algorithm exists, but also whether existing
algorithms are (broadly) optimal or can potentially be further improved.

1.2 Graphs and Graph Polynomials

Graphs So far we have only discussed algorithmic problems in the abstract. While
there are many different types of algorithmic problem, most of the problems we
consider in this thesis share one common trait, they are defined on graphs.

Graphs are one of the most studied objects in both Discrete Mathematics and
Theoretical Computer Science. Simply put, a graph is a collection of points (often
called vertices or nodes) and lines (often called edges or arcs). This simplicity makes
graphs very versatile, especially when you consider the many variations there are on
the concept of graphs. One could decide to make the edges directed, assign weights
to edges or vertices, give certain edges or vertices special labels and so on.

Graph theory is generally considered to have started in the 18th century, with the
paper on the seven bridges of Königsberg by Leonard Euler [75]. A century later the
mathematician Francis Guthrie posed the four color problem [157], now known as the
four color theorem, as it was proven in 1976 by Appel and Haken [6, 7] using the
first ever computer assisted proof. A cursory glance at the bibliography of this thesis
will provide many more examples of works combining the fields of graph theory and
computer science. Indeed graphs have proven to be a popular model for problems
in theoretical computer science.

Clearly any problem relating to a network of some kind can (typically) be phrased
as a graph problem, i.e. the vertices represent the objects in the network and the
edges represent the relations between them. There are however a lot of other types
of problems that can be seen as a graph problem is less obvious ways. For example,
the problem of having to assign classes to time slots can be modeled as a graph-
coloring problem, the same problem that appeared in Guthrie’s four color problem.
In this problem we are given a graph and a set of colors, with the goal of assigning
colors to vertices in such a way that adjacent vertices are assigned different colors. If
we create a vertex for each class and add edges between vertices (classes) that should
not be scheduled simultaneously, we can then ’color’ the vertices with time slots to
find a valid schedule.

When analyzing algorithms for graphs, the number of vertices is often used as
a proxy for the size of the graph. However, since a graph with n vertices can have
n2 edges, a more accurate measure would be the number of vertices AND edges.
For some algorithms this distinction makes a big difference and as such one might
see the running time expressed in terms of the number of edges. In many cases,
however, it suffices to use the number of vertices. There are also a lot of structural
parameters of graphs that get considered in parameterized complexity analyses. The
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structure of the graph can have major implications for the efficiency of algorithms,
especially for problems that are effected by local structures, like the coloring prob-
lem mentioned earlier. Some structural parameters measure how similar the graph
is to some canonically easy example (like a path- or tree-shaped graph), others mea-
sure the size of some substructure in the graph that might form an obstruction for
the algorithm (for example, a really dense cluster of edges). In Section 2.4 we will
discuss the specific parameters used in this thesis, in more detail.

Graph Parameters When studying algorithmic problems on graphs from the per-
spective of parameterized complexity, one is often concerned with graph parame-
ters. A graph parameter is any numerical property of the graph, like the number of
points, the number of connected components, or more complex properties like the
treewidth (see Definition 2.4.1). These kinds of parameters are one of the most used
used types in parameterized complexity and will be the involved in most of the re-
sults in this thesis. For an overview of the graph parameters we use, see Section 2.4.

Over the years many different types of graph parameters have been developed.
To get an idea of breadth of parameters and their relations we refer the reader to the
Graph Parameter Hierarchy project7. For now we will discuss some of the broader
categories of parameters8.

Some graph parameters are defined by the optimal solution to some problem.
This could be some substructure in the graph, like the smallest vertex cover [24],
smallest dominating set [130] or the largest independent set [97], or it could be some
external object like a proper graph coloring with a minimal number of colors [99].
The graph parameter then consists of the value by which optimality is measured, i.e.
the size of the independent set or the number of colors.

Another category is that defined by the minimal number of vertices one needs
to remove to obtain a graph of some form [101]. Examples of target forms include
planar graphs [129], bipartite graphs [108] and cliques [2].

Finally a very broad category is that of width parameters. Most graph parameters
we consider will fall in this category. Very generally a width parameter is typically
defined by some notion of decomposition of the graph. A decomposition, in this
context, can be seen as some additional structure placed on top of the graph. Some
notion of width is defined for a decomposition and the width of the graph is then
defined as the minimum width over all decompositions. A decomposition might
consist of a partition of the vertices (tree partition width [141]9), a collection of ver-
tex subsets that cover the graph (treewidth [12, 139] 10), a sequence of contractions
that turn the graph into a single vertex (twinwidth [27]), an ordering of the vertices
(cutwidth [45]), or a number of other types of structures. Width measures can vary
from the size of the sets used to cover the graph (treewidth, pathwidth) to the num-
ber of edges crossing any cut of the ordering (cutwidth).

7https://gitlab.com/gruenwald/parameter-hierarchy
8Note that this is by no means an exhaustive list.
9The parameter was originally introduced under the name ’strong tree-width’.

10The parameter was originally introduced under the name ’dimension’.

https://gitlab.com/gruenwald/parameter-hierarchy
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The Tutte Polynomial One of the central objects in this thesis and the subject of
Part II is the Tutte polynomial (T (G;x,y)). It was named after the English/Canadian
mathematician and codebreaker W.T. Tutte, who first introduced it as the dichro-
mate[149, 148, 150]. It is sometimes referred to as the Tutte-Whitney polynomial
as, in Tutte’s words, ”[Hassler Whitney] knew and used analogous coefficients with-
out bothering to affix them to two variables”. The Tutte polynomial of a graph is
a polynomial in two variables x and y. For a formal introduction to the object, see
Section 2.6.

The Tutte polynomial has generated interest in a wide variety of fields, due to the
fact that it generalizes many other properties of graphs (see for example the discus-
sion in [106]). Along the line y = 0, the Tutte polynomial specializes to the chromatic
polynomial of the graph. Along x = 0 we find the flow polynomial, which for pla-
nar graphs is equivalent to the chromatic polynomial of the dual graph. Continuing
with planar graphs, the Tutte polynomial of a planar graph at xy = 1 specializes to
the Jones polynomial of the associated alternating knot. On the line x = 1 we find the
reliability polynomial, which captures the resilience of a network against failures in
connections in the network (i.e. edges being deleted independently, uniformly at
random). It also finds applications in statistical physics by specializing to the parti-
tion function of the q-state Potts model [138, 158, 159] (itself a generalization of the
Ising model) at (x − 1)(y − 1) = q.

Finally there are a number of individual points that capture interesting graph
properties. For example T (G;2,1) gives the number of forests in G, T (G;2,0) gives
the number of acyclic orientations of G and T (G;1,2) gives the number of edge sub-
sets with the same number of connected components as G. One can even compute
the number of ways to tile a 4m by 4n grid with T-shape tetrominoes, as 2T (G;3,3).

In this thesis we will focus on the computational complexity of computing the
Tutte polynomial at various points on a two-dimensional plane. The first, full hard-
ness dichotomy for this problem was given by Jaeger, Vertigan and Welsh [106],
building on a series of previous results. In this paper, the authors show that, with
the exception of a small number of points, for almost all points (x,y), T (G;x,y) is
#P-hard. Many of the techniques that appear in the paper have since been used to
prove further refinements, such as the result by Brand, Dell and Roth [28], who show
that any #P-hard point cannot even be computed in subexponential time, assuming
the #ETH. Even for planar graphs, the Tutte polynomial is #P-hard to compute at al-
most all points [154]. Only the curve corresponding to the Ising model (called ’H2’)
becomes easy in this setting, using techniques developed by Kasteleyn [115].

Approximating the Tutte polynomial has also generated considerable interest.
As was the case for the planar setting, the curve H2 allows for some positive results
here. In particular Jerrum and Sinclair [112] have given an FPRAS11 for this curve.
For most other points such results are very unlikely, as Goldberg and Jerrum [95]
have showed that for almost all points (x,y) with x,y < −1 no such scheme can exist.

In terms of parameterized complexity there has been little study on the Tutte
polynomial on graphs. Aside from the work featured in this thesis (see Chapter 5),

11A Fully Polynomial-time Randomized Approximation Scheme, which is a collections of randomized
algorithms that approximate the value to some ratio ε in time polynomial in both the input size n and
ε−1.
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to our knowledge there have only been a few other paper combining parameterized
complexity with the Tutte polynomial [140, 4, 134, 8, 125, 93]. In one of them Roth
et al. [140] consider a version of the problem where the polynomial itself is pa-
rameterized. In the others [4] give algorithms computing the Tutte polynomial for
graphs of bounded treewidth or cliquewidth. Seeing as there is clearly interest in
computing the Tutte polynomial for restricted graph classes, it makes perfect sense
to ask for complexity lower bounds and more broadly for a full classification of the
parameterized complexity. We think this is currently a major blind spot of the field
and warrants additional research.

Some research has also been done towards determining the complexity of com-
puting the Tutte polynomial modulo some prime. In his thesis Annan [5] discusses
some cases for which hardness can be shown. Goodall [96] later showed that the
complex valued easy points can be translated to the modular setting. A natural con-
jecture then becomes that all other points are hard, but to our knowledge no further
progress towards this goal has been made.

While it is beyond the scope of this thesis, it is worth mentioning that the Tutte
polynomial can also be extended to matroids. In this setting there has also been
some fine-grained analysis of the parameterized complexity of the Tutte polynomial
[15].

For a more extensive overview of research on the Tutte polynomial, we refer the
reader to this book [72] or this survey [73].

1.3 Dynamic Programming and the Rank-Based Approach

Dynamic Programming Dynamic programming (DP) is one of the most used tech-
niques in algorithm design and the basis for many of the results in this thesis. The
technique was first developed by Richard Bellman [11] while working at the RAND
corporation. A firsthand account of its discovery can be read in a publication by
Dreyfus [65], containing excerpts from Bellman’s autobiography. The name dynamic
programming was largely chosen to fool a politician responsible for Bellman’s fund-
ing, who was not particularly fond of fundamental research. In his own words,
Bellman chose the name “to shield Wilson and the Air Force from the fact that I was
really doing mathematics inside the RAND Corporation.”

Since its invention, dynamic programming has become one of the most ubiqui-
tous techniques in algorithm design (see [145] for a recent survey). The basic idea
behind dynamic programming is to solve small parts of the problem and save the
solutions in a table. The algorithm can then use these saved solutions to compute
solutions for larger parts of the problem, until finally a solution for the whole prob-
lem is found.

A simple example that often gets used to illustrate this technique is the compu-
tation of Fibonacci numbers. The n-th Fibonacci number Fn is defined recursively as
Fn = Fn−1 + Fn−2, with F0 = 0 and F1 = 1. If we were to feed this definition to a com-
puter with no further instructions, it try to compute it recursively. This would mean
that to compute one value, it tries to compute two previous values, each of which
requires two more values, etc. The number of recursive calls then grows exponen-
tially and we end up taking 2n time to compute Fn. With dynamic programming
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we essentially compute the number in the same way a human would, by starting at
F2 = F1 + F0 = 1 and then computing the numbers F3, . . . ,Fn in order, while remem-
bering each number to be used in subsequent computations. This method only takes
n time, a dramatic improvement over the recursive method.

Especially in a parameterized setting, DP algorithms often turn out to be very
efficient and even optimal for many problems [99, 123]. One reason for this, which
we will see in some of our results, is that small structural parameters often allow us
to partition our problem into small parts. This then allows us to solve the problem
one part at a time.

One might expect dynamic programming to require a lot of memory, but in the
parameterized setting this is often not an issue. A lot of DP tables can be divided
up into layers, where the computation of a cell in one layer only requires knowledge
of the cells in the previous layer. For many parameterized DP algorithms the size of
these layers is bounded by some function of the parameter. In practice, this means
we only actually need to keep the most recent layer of the DP table in storage and
can delete the rest.

The Rank-Based Approach One of the most important techniques used in this
thesis is the rank-based approach, first introduced in [18]. A formal description can
be found in Section 2.8, but broadly speaking, the rank-based approach uses some
problem specific low-rank matrixM to compress the size of a dynamic programming
table. This then allows for the corresponding dynamic programming algorithm to
be performed much faster.

While the technique existed before this work, there are two new, significant in-
sights that were gained during the course of the research featured in this thesis.

The first insight is that it can often be beneficial to phrase the approach entirely
in terms of linear algebra. When first introduced for decision problems, the ap-
proach was defined using representative sets. This perspective is helpful because it
gives a good intuition for why the compressed information still produces the correct
outcome, but it can be a bit involved to define and argue about. When we replace
these representative sets with vectors, the connection with the rank of M becomes
a lot clearer and we can make much cleaner, succinct statements, using existing
concepts and notation from linear algebra. Both perspectives will be formally intro-
duced in Section 2.8.

This linear algebra perspective enabled a second insight, namely that the ap-
proach can be subtly adapted to work for counting problems. One essentially re-
places the 0,1-vectors of the decision version with arbitrary real-valued vectors12.
The connection to the rank of M becomes even clearer here, as the notion of rep-
resentation can be expressed as a very simple equality involving only matrix-vector
multiplications:

Ma =Mb.

Representation for decision problems can actually be phrased in the same manner,
but requires operations to be performed over the Boolean semiring. Again, for more
information and formal definitions, see Section 2.8.

12However, the entries will typically be integers.
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The rank-based approach has proven to be a powerful tool and a fruitful source
of new results. For many problems, the algorithms obtained from this approach
prove to be optimal, with the matrix M also playing a role in the accompanying
lower bound. This can often be explained by the fact that M, in some sense, encodes
the transferal of information at certain information bottlenecks in the problem in-
stance. The rank of M then precisely captures the amount of information that can
pass through the bottleneck, but also the amount of information you need to distin-
guish two meaningfully different states on one side of the bottleneck. In terms of
information complexity, the matrix M therefore often captures the difficulty of the
problem perfectly and it only remains to show that one can match this in terms of
runtime complexity.

1.4 Our Goals and Contributions

The overarching goal of this thesis is to further our understanding of parameter-
ized counting complexity. Almost all of our results concern the parameterized com-
plexity of counting problems or problems closely related to counting, like the Tutte
polynomial. One of the main questions we will ask is how the counting versions of
problems relate to the decision versions. We will find that for some problems, like
counting colorings, our results show that there is a difference in complexity with
the decision version [109]. In other cases (for example in Chapter 7) we adapt hard-
ness proofs for decision problems to show that the counting version is hard for the
analogous counting class.

Of the results we present that are not related to counting problems, some relate
to the classes XNLP and XALP. One of our goals is to build on recent developments
around these classes [71, 17, 21, 23]. We do this in two ways. The first way is by
providing more problems that are complete for these classes. The second way is by
initiating the study of the counting versions of these classes.

Another goal of this thesis is to initiate the study of the parameterized complexity
of the Tutte polynomial, when parameterizing by graph parameters. We note that
the complexity of a version of the Tutte polynomial where the polynomial itself is
parameterized has already been studied of [140]. Such results build on the seminal
#P-hardness dichotomy by Jaeger, Vertigan and Welsh [106], as well as subsequent
fine-grained classifications [61, 28].

Finally we aim to showcase the potential of the rank-based approach for the
counting paradigm. It was initially introduced [18] for decision problems. The
phrasing used in the original definition does not lend itself well to counting prob-
lems. By rephrasing the method using more linear algebra flavored language, we
aim to both deepen the understanding of the original method, as well as further
developing it to work for counting problems.

Outline of this Thesis This thesis consists of three parts. Part I (which you are
currently reading), is an introductory part containing (technical) background infor-
mation and philosophical discussions about the topics of the other two parts.

Part II works towards a parameterized complexity classification for comput-
ing the Tutte polynomial. Chapter 3 gives SETH tight bounds on the complexity
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of counting (list) colorings modulo a prime, parameterized by cutwidth. These
bounds then get extended to counting connected edgesets. Chapter 4 gives ETH

tight bounds on the complexity of counting forests, parameterized by cutwidth.
Chapter 5 uses the results of the other two chapters in Part II to give ETH/SETH
bounds on the complexity of computing the Tutte polynomial on integer points, pa-
rameterized by cutwidth, pathwidth and treewidth.

Part III is centered around the complexity classes XNLP and XALP. Chapter 6
gives hardness results, including XNLP/XALP-hardness, for a number of variations
on the Multicommodity Flow problem. In Chapter 7 we introduce #XLP and #XALP,
which can be seen as counting versions of XNLP and XALP. We show #XLP/#XALP-
hardness for a number of problems.

List of Publications Chapters 3 to 7 are based on various papers, from which they
differ only slightly. The main changes will be in the introduction and conclusion sec-
tions. Chapters 4 and 5 were published as one paper, but were split into two chap-
ters to create a clearer structure for this thesis. The following papers were adapted
to produce this thesis.

• (Chapter 3) Tight bounds for counting colorings and connected edge sets param-
eterized by cutwidth, by Carla Groenland, Isja Mannens, Jesper Nederlof, and
Krisztina Szilágyi. In Proceedings of the 39th International Symposium on
Theoretical Aspects of Computer Science, STACS 2022, pages 36:1–36:20, 2022.
([99])

• (Chapters 4 and 5) A fine-grained classification of the complexity of evaluating the
Tutte polynomial on integer points parameterized by treewidth and cutwidth, by
Isja Mannens and Jesper Nederlof. In Proceedings of the 31st Annual European
Symposium on Algorithms, ESA 2023, volume 274 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 82:1–82:17, 2023. ([126])

• (Chapter 6) The parameterised complexity of integer multicommodity flow, by
Hans L. Bodlaender, Isja Mannens, Jelle J. Oostveen, Sukanya Pandey, and
Erik Jan van Leeuwen. In Proceedings of the 18th International Symposium
on Parameterized and Exact Computation, IPEC 2023, volume 285 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 6:1–6:19, 2023. ([24])

• (Chapter 7) Problems Complete for #XLP and #XALP, by Radu Curticapean Lars
Jaffke, Paloma T. Lima, and Isja Mannens. Unpublished.





2Preliminaries

It’s the job that’s never started as
takes longest to finish, as my old
gaffer used to say.

Samwise Gamgee

This chapter contains the basic notions and other background knowledge neces-
sary to understand this thesis. The sections will loosely be ordered from general
knowledge to more specialized topics. We will assume knowledge of basic con-
cepts in graph theory and linear algebra, but will nevertheless discuss some more
specialized concepts from these fields. We start by fixing the notation we will use
throughout the thesis.

2.1 Basic Notation

We write N = {1,2, . . . } for the set of natural numbers, Z for the set of integers and
Z≥0 = {0,1,2, . . .} for the set of non-negative integers. For integers a,b ∈ Z, we write
[a,b] = {a,a + 1, . . . , b} for the integers between a and b, and for a natural number n
we short-cut [n] = [1,n] = {1, . . . ,n}. Throughout the chapter, p will denote a prime
number and Fp the finite field of order p. We will use a ≡p b to denote that a and b
are congruent modulo p, i.e. that p divides a− b.

For two sets A and B, we denote by A△B = (A\B)∪(B\A) the symmetric difference
of the sets. For a set S ⊆ A and a function f : A→ B, we will use the abbreviation
f (A) = {f (a) : a ∈ A}. The function f |S : S → A is defined as f |S (a) = f (a) for all a ∈ S.
For a function f : A→ Z, we define the support of f as the set supp(f ) = {a ∈ A :
f (a) , 0}.

Given a graph G = (V ,E) and vertices u,v ∈ V , we denote arcs and edges as vw
(an arc from v to w, or an edge with v and w as endpoints). By N (v) we denote the
open neighborhood of v, i.e. the set of all vertices adjacent to v. We write δ(v) for the
set of edges incident to v. We write V (G) for the vertex set of the graph G. We will
often use the shorthand n = |V (G)| and m = |E(G)|. When considering a parameter
k of different graphs G and H , we will differentiate them by writing k(G) as the
parameter k of graph G. When the relevant graph is clear from context, we simply
write k.

Given a matrixM ∈Cm×n, we writeM[i, j] for the entry ofM at row i and column
j. We write M⊤ for the transpose of M, i.e. M⊤[i, j] = M[j, i]. For a vector a ∈ Cn we
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write the right hand product of M and a as Ma. Similarly for b ∈ Cm we write the
left hand product of b and M as b⊤M.

2.2 Computational Complexity

2.2.1 Computational Problems

The basis of computational complexity is the notion of a compuational problem.

Definition 2.2.1. A computational problem Π consists a set I of instances and a map-
ping f : I → S that maps an instance to an accepted solution (or a set of such solutions).
When multiple computational problems are considered, we will indicate the corresponding
elements with an index, i.e. IΠ,SΠ, fΠ.

The instance is assumed to be given as input and the solution is unknown. The
goal of an algorithm is to find a solution for a given instance, i.e. to compute the
function f on the given I .

There are various common types of computational problem. Perhaps the most
commonly examined are decision problems, where the set S of solutions is simply
given by S = {True,False}. For example the problem might consist of determining
some property of the instance, like connectivity or 3-colorability of a graph. In the
latter case one might also ask for a witness, i.e. a valid 3-coloring of the given graph.
In this case we have turned the decision problem into a search problem, where the
solution set S is some arbitrary set, but often this is the set of potential witnesses
to some decision problem. Note that for a search problem, the function fΠ outputs
the set of all accepted solutions, but we only require an algorithm to find one of
these solutions. An optimization problem is a specific type of search problem, where
we are interested in finding the solution that maximizes some objective function. If
instead of finding a specific solution, we are interested in finding the total number
of solutions, then we are dealing with a counting problem. In this case the solution
set is typically given by the non-negative integers, i.e. S = Z≥0, although one might
also be interested in weighted counting, in which case the solution set could be R or
even some abstract ring. For example one might count over the finite field Fp, i.e.
modulo some prime p. In this thesis we will primarily consider decision problems
and counting problems, although some of our algorithms for decision problems can
easily be made constructive and can thus solve the corresponding search problem as
well. We denote the counting version of a problem by using the prefix # (e.g. #SAT,
#CSP) and the counting modulo p version of by using #p (e.g. #pSAT, #pCSP).

We will present computational problems in the following format.

# q-coloring
Input: A graph G
Question: In how many ways can we color V (G) with q colors, such that adjacent
vertices receive different colors?

When analysing an algorithm or an algorithmic problem we are primarily inter-
ested in the time it takes to execute an algorithm and secondarily in the amount of
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computational space required. We will express these in terms of the size of the prob-
lem instance (often denoted as ’n’) and one or more other parameters of the input
instance. For more details on these additional parameters, see Section 2.3. Note that
the input size can be defined in various ways, depending on the nature of the prob-
lem we examine. There is usually a natural choice, such as the number of vertices
in a graph, but sometimes one might choose to use a different property as its size,
such as the number of edges of the graph. Whenever relevant, we will specify how
we define the size of the problem instance.

2.2.2 Big-O Notation

In the field of Theoretical Computer Science, researchers are often not interested
in the exact runtime or space requirements of an algorithm, as they can depend
on things like hardware and the specifics of the implementation. Instead we will
examine how the time and space requirements of an algorithm are affected when the
various parameters of the problem are increased. For this we employ big O-notation.

Definition 2.2.2. We say that a function f : Z≥0 → Z≥0 is O(g(k)), if there exists con-
stants C > 0 and K such that f (k) ≤ C · g(k) for all k ≥ K .

Note that the constants C and K cannot be dependent on other properties of the
instance. When it is unclear what parameters are in play, we indicate them as a
subscript, i.e. Ok(f (k)). While O(f (k)) is not really a number or function, we will
often treat it as such in notation. For example we will write

g(k) =O(f (k))

to indicate that there is some C > 0 such that g(k) ≤ C · f (k) for all k ≥ 0. Although
this is standard notation, it is somewhat of an abuse of notation, as we are not really
dealing with an equality here. We will also use this notation to relate different big O
statements to one another. We write

O(g(k)) =O(f (k))

to indicate that h(k) = O(g(k)) implies h(k) = O(f (k)) for any h. This notation will
allow for derivations that might look as follows.

g(k,n) =O(2kk2n3/ log(n))

=O(22kn3/ log(n))

=O(22kn3).

Note that the use of the equality sign is asymmetrical in this example, as we do not
have O(22kn3) = O(22kn3/ log(n)). Because of this, there are some that argue for the
notation g(k) ∈ O(f (k)) and treating O(f (k)) as a set, however we will stick with the
standard notation in this thesis.

A related notion is that of little o-notation.

Definition 2.2.3. We say that g(k) = o(f (k)), if limk→∞
g(k)
f (k) = 0.
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We use the same standard abuse of notation for little o as we do for big O. We can
think of the relation between big O-notation and little o-notation as being analogous
to the relation between ≤ and <.

2.2.3 Complexity Classes and Hardness Conjectures

Computational problems are grouped together into complexity classes based on how
difficult they are to solve, in terms of time (and sometimes space) complexity. A
typical example is the class P, which contains all problems that can be solved in
polynomial time. This class is often paired with NP, which contains all problems
that can be solved in polynomial time on a non-deterministic Turing machine.

Definition 2.2.4. A non-deterministic Turing machine is a Turing machine that can
have multiple valid transitions from a single given state to a number of different new
states.

Non-determinism in a Turing machine could, for example, be the result of some
random process or external influence. A useful way to think of a non-deterministic
Turing machine is as a tree where each state with a choice branches into all potential
states that can be transitioned into. An accepting run then consists of a path from
the starting state to one of the accepting states. We will therefore often refer to
accepting paths of a non-deterministic Turing machine. It is a major open problem to
determine whether P and NP are equal, although the general consensus is that they
assumed to be different.

A typical way of defining a class of counting problems is as the class of problems
that count the number of accepting path in a non-deterministic Turing machine. For
example #P is the class of problems that count the number of accepting paths of a
polynomial time non-deterministic Turing machine.

One of the main uses of these classes is to show hardness for such a class. In order
to define hardness, we first need to consider the following notion.

Definition 2.2.5. Let Γ and Π be computational problems. A reduction from Γ to Π

is an algorithm that computes two functions g : IΓ → IΠ and h : SΠ → SΓ , such that
h(fΠ(g(I))) = fΓ (I) if fΠ outputs a single solution and h(fΠ(g(I))) ⊆ fΓ (I) if fΠ outputs a
set of solutions.

In other words, we can transform an instance of Γ into an instance of Π, such
that solving the instance of Π lets us solve the original instance of Γ . We now define
hardness as follows.

Definition 2.2.6. A computational problem Π is hard for a class K, written K-hard, if
any problem in K can be reduced to Π. If Π is K-hard and also a member of K, we say
that Π is K-complete.

Depending on the class there will be additional requirements, typically time and
space requirements, for reductions. For P and NP, we require the reductions to run
in polynomial time. In Sections 2.3 and 2.5 we will see examples of reductions that
have other time and space requirements. If a reduction preserves the number of
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solutions of the instance, i.e. h(k) = k, we say that the reduction is parsimonious.
These types of reductions are useful, but not required for counting problems. As
long as we are able to retrieve the number of solutions for γ from the number of
solutions for π, the reduction is valid.

To determine whether it is likely that an algorithm for a problem Π is optimal
in some sense, we use reductions to show that Π is at least as hard as some other
problem. If for example we can reduce some NP-hard problem to Π, then Π is also
NP-hard and we conclude that it is unlikely that we can find a polynomial time
algorithm for Π. If we want to find more precise (probably) bounds on the possible
running time of algorithms for Π, we may use conjectures such as the Exponential
Time Hypothesis (ETH) or the related Strong Exponential Time Hypothesis (SETH). To
properly state these hypotheses, we first need to state the so called k-Satisfiability
problem (k-SAT).

k-Satisfiability
Input: A boolean formula in conjunctive normal form, with clauses of size k.
Question: Does there exist an assignment of the variables, such that the formula
is true?

Let sk be the smallest integer such that k-SAT can be solved in time 2skn+o(n),
where n is the number of variables. ETH and SETH can now be phrased as follows.

Conjecture 2.2.7 (Exponential time hypothesis). s3 > 0.

Conjecture 2.2.8 (Strong Exponential time hypothesis). limk→∞ sk = 1.

For counting problems the weaker counting versions #ETH and #SETH are often
sufficient (for an example, see [55]). The definitions for these hypotheses are nearly
identical to those of ETH and SETH, replacing k-SAT with #k-SAT.

2.3 Parameterized Complexity

Traditionally, computational complexity measures the efficiency of an algorithm in
terms of the size of the input instance. However, as previously alluded to, one can
incorporate additional parameters of the input instance into this analysis. Doing so
places us into the field of parameterized complexity. Computational problems in this
setting are labeled by some additional parameter, which can either be given as part
of the problem instance, or be some structural property of the problem. We now
give two examples, one with a given parameter and one with a structural parameter
(see Definition 2.4.2).

q-coloring in at least k ways
Input: A graph G
Parameter: k
Question: Can we find at least k different ways to color V (G) with q colors, such
that adjacent vertices receive different colors?



22 2.4. Graph Parameters

vc 2tpw≥ ≥

ctw ≥ pw ≥ tw

Figure 2.1: The relation between the various parameters we use. For the purpose
of comparison, we set all edge weights to 1 when determining tpw. All inequalities
shown can have arbitrarily large gaps.

# q-coloring/pw
Input: A graph G
Parameter: pw
Question: In how many ways can we color V (G) with q colors, such that adjacent
vertices receive different colors?

While in traditional complexity theory one typically hopes to find an algorithm
that runs in polynomial time, in the parameterized setting we attempt to find algo-
rithms that run in fixed-parameter tractable time.

Definition 2.3.1. An algorithm runs in fixed-parameter tractable time (FPT) for pa-
rameter k, if there exist a computable function f , such that its running time is bounded
by f (k)nO(1).

We denote the class of all parameterized problems that can solved in FPT time by FPT.
A reduction, that runs in time g(k)nO(1) and produces an instance with a parameter

k′ ≤ g(k) for some computable function g, is called a fixed-parameter reduction or FPT-
reduction.

Other common complexity classes include XP, the class of problems solvable in
nf (k) time and W[1], the class of problems FPT-reducible to Weighted 3-SAT. In
Section 2.5 we will see more examples of parameterized complexity classes, as well
as a different type of reduction that takes the space requirements into account.

We will now discuss the various structural parameters we will encounter through-
out this thesis. We also use some of these parameters for directed graphs. In that
case, the direction of edges is ignored, i.e. the value of a parameter for a directed
graph equals that parameter for the underlying undirected graph.

2.4 Graph Parameters

2.4.1 Treewidth and Pathwidth

Most of the parameters we encounter will be so called width parameters. These
parameters are typically defined by some notion of a decomposition. We then define
the width of said decomposition and say that the width of a graph is the minimum
width over all decompositions. We will start with the closely related notions of tree-
and pathwidth.

The intuition for these parameters is as follows. We cover the graph in bags, such
that any edge/vertex is contained in some bag. We then connect bags that are close
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Figure 2.2: Examples of a tree decomposition of width 2 (left) and a path decompo-
sition of width 3 (right).

together, such that the bags get a tree-/path-like structure. We now give a formal
definition.

Definition 2.4.1. A tree decomposition of a graph G is given by a tree T and, for each
x ∈ V (T ), a bag Bx ⊆ V (G), such that the following holds.

1. For every v ∈ V (G) there is some x such that v ∈ Bx.

2. For every uv ∈ E(G) there is some x such that u,v ∈ Bx.

3. For every v ∈ V (G), the set {x ∈ V (T ) : v ∈ Bx} induces a subtree of T .

The width of such a decomposition is defined as maxx(|Bx |)−1 and the treewidth, denoted
tw(G), of a graph is defined as the minimum width among its tree decompositions.

The pathwidth of a graph is defined in a similar fashion.

Definition 2.4.2. A path decomposition of a graph is given by a tree decomposition
where the tree T is a path.

Again, the width of such a decomposition is defined as maxx(|Bx |) − 1 and the path-
width, denoted pw(G), of a graph is defined as the minimum width among its path de-
compositions.

Since every path decomposition is also a tree decomposition, we find that pw ≥
tw. The gap in this inequality can be made arbitrarily large, by considering a binary
tree of depth n, which has tw = 1 and pw ≥ n.

We will often think of these decompositions as being rooted at some node r and
will refer to the neighbor x of y on the unique path from y to r as the parent of y and
to y as the child of x. We will refer to set of nodes y whose unique y-r path visits x
as the descendants1 of x. The union of the bags corresponding to descendants of x
will be denoted Gx and we will refer to it as the part of the graph G that lies below x.

One useful property of tree/path decompositions is that each bag Bx forms a
separator of the graph. Indeed, for any pair of vertices v ∈ V (Gx) \Bx and u ∈ V (G) \
Gx, items 2 and 3 of Definition 2.4.1 can be used to show that uv < E(G), since the
presence of such an edge would imply that either u ∈ Bx or v ∈ Bx. The details of this
proof are left as an exercise to the reader.

1Note that under this definition, x is a descendant of itself.
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It is often useful to have a nice tree decomposition.

Definition 2.4.3. A nice tree decomposition is a tree decomposition which contains only
the following types of bags.

• Leaf bag: Bx = ∅ and x has no children.

• Node-forget bag: Bx = By \ {v}, where y is the unique child of x and v ∈ By .

• Node-introduce bag: Bx = By∪{v}, where y is the unique child of x and v ∈ V (G)\By .

• Join bag: Bx = By1
= By2

, where y1 and y2 are the two children of x.

• (optional) Edge-introduce bag: Bx = By , where y is the unique child of x and v ∈ By .
This bag is labeled by some edge uv ∈ E(G) for u,v ∈ V (G). Each edge has exactly
one corresponding edge-introduce bag.

The last type of bag is labeled as optional, as we will need it for some but not all
of our results2. If edge-introduce bags are necessary, they will be mentioned in the
proof, but as they do not affect the width of the decomposition and there are at most
n2 of such bags, we will not discuss explicitly whether we use them or not. The idea
behind this is that we can pretend like an edge doesn’t exist, until it gets introduced
by some bag. We will assume that edges are always introduced exactly once. By
[118, Lemma 13.1.3], we can turn a tree decomposition of width k into a nice tree
decomposition of width k with 4n nodes, in O(n). We may therefore assume that,
when we are given a tree decomposition, it is a nice one.

2.4.2 Weighted Tree Partition Width

1

1

3

4

1

1

21

4 5

Figure 2.3: An example of a tree partition of breadth 2.

We now introduce a similar notion to treewidth, namely the weighted tree par-
tition width. The decomposition will be slightly different, but we then define the
corresponding width notion in the same way.

On an intuitive level the difference with treewidth is that the bags in the decom-
position for weighted tree partition width do not need to cover all edges and instead
must form a partition of the vertices. We now give a formal definition.

2Indeed, in some publications this bag type is left out of the definition
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Definition 2.4.4. A tree partition of a graph G is a pair ({Bi | i ∈ I},T ), with {Bi | i ∈ I}
a family of subsets (called bags) of V (G), and T a tree, such that

1. For each vertex v ∈ V (G), there is exactly one i ∈ V (T ) with v ∈ Bi (in other
words, {Bi | i ∈ V (T )} forms a partition of V , except that we allow that some bags
are empty.)

2. For each edge vw ∈ E(G), if v ∈ Bi and w ∈ Bj then i = j or ij ∈ E(T ).

Let c : E(G)→N be an edge-weight function. The breadth3 of a tree partition ({Bi | i ∈ I},
T ) of the weighted graph (G,c) is the maximum of maxi∈V (T ) |Bi | and maxij∈E(T ) c(Bi ,Bj )
with

c(Bi ,Bj ) =
∑

v∈Bi ,w∈Bj
vw∈E(G)

c(vw),

i.e., the maximum sum of edge weights of edges between the bags of T . Then the weighted
tree partition width tpw(G,c) of (G,c) is the minimum breadth of any tree partition of
(G,c). For notational convenience we will consider c to be a part of the graphG and simply
write tpw(G).

The notion of weighted tree partition width is defined for edge-weighted graphs
and originates in the work of Bodleander et al. [17]. For our application in Chap-
ter 6, we interpret the capacity function of a flow problem as the weight function for
weighted tree partition width.

If we fix all edge weights to 1, we can relate the Weighted tree partition width
to the treewidth as follows. Given a tree partition create a bag Bx,y for each pair
of adjacent nodes x and y, and place its node xy in between x and y in the tree T .
We find a tree decomposition of width 2tpw and thus 2tpw ≥ tw. The gap in this
inequality can be made arbitrarily large, by considering a path of length n2 with one
added vertex connected to all other vertices, which has tw = 2 and tpw ≥ n.

2.4.3 Cutwidth

Figure 2.4: An example of a cut decomposition of width 2.

We now give a width measure that does not use a decomposition into bags, but
instead uses an ordering of the vertex set as a decomposition. Intuitively the width
of a cut decomposition is the maximum edges that are layered on top of each other
by the ordering of the vertices, or alternatively the maximum number of edges that

3This notion of breadth should not be confused with the breadth of a tree decomposition and the
related notion of treebreadth [64]. The breadth of a tree decomposition is defined as the maximum radius
of any bag of a tree decomposition.
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cross a the space between two consecutive vertices. The pathwidth of a graph can
also be defined in a similar way, as the number of vertices on the left of the cut who
have at least one neighbor on the right of the cut. We now give a formal definition
of the cutwidth of a graph.

Definition 2.4.5. A cut decomposition of a graph G is an ordering v1, . . . , vn of the
vertex set. The width of such a decomposition is defined as the maximum number of edges
crossing any cut of the ordering. Formally for an integer i we say an edge vjvl crosses the
i-th cut, if j ≤ i < l. The cutwidth, denoted ctw, of G is the minimum width among all
cut decompositions.

The cutwidth of a graph is related to the path and treewidth, in the sense that
ctw ≥ pw ≥ tw. In particular there is a natural way to obtain a path decomposition
from a cut decomposition, by defining bags Xi = {vi} ∪ {vj ∈ V (G) : j > i,∃k < i,vkvj ∈
E(G)}, i.e. the righthand neighborhood of the i-th cut plus vi . The gap in this in-
equality can be made arbitrarily large, by considering a star with 2n leaves, which
has pw = 1 and ctw = n/2. We will see in Chapters 4 and 5 that the relations between
ctw,pw and tw allow us to study these parameters in parallel.

2.4.4 Vertex Cover

Figure 2.5: The red vertices form a vertex cover of size 3.

The vertex cover number captures how spread out the edges of a graph are. As
the definition is fairly simple, we skip the intuition and immediately give a formal
definition.

Definition 2.4.6. A vertex cover of a graph G is a set X ⊆ V (G) such that X ∩ {u,v} , ∅
for every edge uv ∈ V (G). Then the vertex cover number, denoted vc(G), of G is the size
of the smallest vertex cover of G.

A useful property of vertex covers is the fact that V (G)\X forms an independent
set. For many applications this means that these vertices do not interact and thus
can be considered one at a time.

We can relate the vertex cover number to the pathwidth as follows. Given a vertex
cover X of G, we can create a path decomposition of G by defining Bv = X ∪ {v} for
v ∈ V (G) \ X and connecting the bags Bv arbitrarily to form a path. We find that
vc ≥ pw. The gap in this inequality can be made arbitrarily large, by considering a
path of length 2n, which has pw = 1 and vc ≥ n.
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2.5 Non-Deterministic Parameterized Logspace complexity

In Part III we will discuss a number of complexity classes that include logarithmic
space requirements in their definition. We introduce the classes in question here
and give a number of hardness results in Part III. We begin with a short discussion
on what it means to use logarithmic space.

When we are given an instance I of size |I | = n, in principle we need some storage
location of size n to store I on. When we say an algorithm uses O(logn) space, what
we really mean is that the algorithm is given an instance, saved to some read-only
storage location, and has only O(logn) space that it can freely manipulate. One can
think of the algorithm’s storage as the private storage of a small computer and the
input instance as data that the can be requested at will from some large server.

2.5.1 XNLP and XALP

In this section we introduce the classes XNLP and XALP. The class XNLP was first
introduced by Elberfeld et al. [71], under a different name. Bodlaender et al. [17,
21, 23] introduced the name XNLP and showed a number of problems to be XNLP-
complete with pathwidth as parameter. In particular, [17] gives XNLP-completeness
proofs for several flow problems with pathwidth as parameter.

Before we can introduce the classes XNLP and XALP, we need to define the asso-
ciated types of Turing machines. For this we will assume the reader is familiar with
the notion of a Turing machine. We say that a Turing machine is non-deterministic
if it can make choices that are not predetermined, which we call non-deterministic
steps. A co-non-deterministic step is a point where the computation branches into
a number of different computations that all need to terminate in accepting states. A
Turing machine is alternating if it alternates between non-deterministic and co-non-
deterministic steps.

Definition 2.5.1. An XNLP machine is a non-deterministic Turing machine such that
for a given parameterized instance (I,k), where |I | = n:

(i) For a Yes instance, at least one computation path accepts.

(ii) For a No instance, all computation paths reject.

(iii) There is some computable function f and some constant c such that the machine
runs in at most f (k)nc time and uses at most f (k) logn space.

(iv) The machine has read-only access to an input tape of size n and write-only access to
an output tape.

Definition 2.5.2. An XALP machine is an alternating Turing machine M such that for
each instance (I,k), where |I | = n, items items i, ii and iv of Definition 2.5.1 are satisfied
(where computation trees take the role of computation paths), and:

(iii’) There is some computable function f and some constant c such that M uses at most
f (k) logn space and such that the computation tree of M on input (I,k) has size at
most f (k)nc.
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We now formally define the classes XNLP and XALP as follows.

Definition 2.5.3. (i) The class XNLP consists of all problems that can be solved on an
XNLP machine.

(ii) The class XALP consists of all problems that can be solved on an XALP machine.

Chapter 6 will contain, among other things, hardness results for both XNLP and
XALP. Note that the computation on an alternating Turing machine takes on a tree-
like structure, which explains why we will see XALP-hardness for problems param-
eterized by treewidth and XNLP-hardness for those same problems parameterized
by pathwidth. An equivalent definition for XALP is obtained by giving the Turing
machine from the definition of XNLP access to an additional stack. This stack can
have arbitrary height (only bounded by the runtime), but can only store items of
logarithmic size.

Reductions in these classes are done using the following type of reduction.

Definition 2.5.4. A parameterized logspace reduction or pl-reduction from a param-
eterized decision problem Π, with parameter k, to a parameterized decision problem Γ ,
with parameter k’, is a reduction computing (g,h) such that the following hold.

• There is an algorithm for the reduction using O(f (k(I)) + logn) space, with f a
computable function and n = |I | the number of bits to denote I .

• There is a computable function f , such that for all I ∈Π, k′(g(I)) ≤ f (k(I)).

XNLP-hardness and XALP-hardness are defined with respect to pl-reductions.
The main difference with FPT-reductions (Definition 2.3.1) is that the computation
of the reduction must be done with logarithmic space. In most cases, existing pa-
rameterized reductions are also pl-reductions, as logarithmic space can often be
achieved by not storing intermediate results but recomputing these when they are
needed.

One of the interesting (probable) consequences of XNLP-/XALP-hardness is given
by following conjecture due to Pilipczuk and Wrochna [137] that states that XP-
algorithms for XNLP-hard problems are likely to use much memory.

Conjecture 2.5.5 (Slice-wise Polynomial Space Conjecture [137]). If parameterized
problem Π is XNLP-hard, then there is no algorithm that solves I ∈ IΠ in nf (k) time and
f (k)nO(1) space, for instances I , with f a computable function, k = k(I) and n = |I | the
size of instance I .

Another interesting consequence is captured by the following lemma.

Lemma 2.5.6. If problem Π is XNLP-hard, then Π is hard for all classes W [t], t ∈N.

The hardness proofs in Chapter 6 start from two variations of the well-known
Multicolored Clique problem (see [78]). These problems are common starting
points for proving hardness for XNLP and XALP respectively and thus we state them
here.
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Chained Multicolored Clique

Input: A graph G = (V ,E), a partition of V into V1, . . . ,Vr , such that |i − j | ≤ 1 for
each edge uv ∈ E(G) with u ∈ Vi and v ∈ Vj , and a function c : V → [k].
Parameter: k.
Question: Is there a set of verticesW ⊆ V such that for all i ∈ [r−1],W∩(Vi∪Vi+1)
is a clique, and for each i ∈ [r] and j ∈ [k], there is exactly one vertex v ∈W ∩Vi
with c(v) = j?

Tree-Chained Multicolored Clique

Input: A graph G = (V ,E), a tree partition ({Vi | i ∈ I},T = (I,F)) with T a tree of
maximum degree 3, and a function c : V → [k].
Parameter: k.
Question: Is there a set of vertices W ⊆ V such that for all ii′ ∈ F, W ∩ (Vi ∪Vi′ ) is
a clique, and for each i ∈ I and j ∈ [k], there is exactly one vertex v ∈W ∩Vi with
c(v) = j?

Theorem 2.5.7 (From [22] and [23]). The problem Chained Multicolored Clique

is XNLP-complete, and the problem Tree-Chained Multicolored Clique is XALP-
complete.

2.5.2 #XLP and #XALP

We now introduce the counting versions of XNLP and XALP. As mentioned before,
a typical way of defining a class of counting problems, is by starting with a non-
deterministic class of decision problems and then defining the counting equivalent
as the class of all problems that count the number of accepting computations on a
non-deterministic Turing machine for such a problem.

Definition 2.5.8.

(i) The class #XLP consists of all problems that ask for the number of accepting paths of
some XNLP machine.

(ii) The class #XALP consists of all problems that ask for the number of accepting trees
in some XALP machine.

As mentioned earlier we can think of #XLP as the counting version of XNLP.
Some care needs to be taken however, as it is not immediately obvious that any prob-
lem in XNLP becomes a problem in #XLP when counting the number of solutions,
since one needs to show that the number of accepting paths of the XNLP machine
does in fact correspond to the number of solutions. Fortunately this typically only
forms a small hurdle and most problems in XNLP have an obvious counterpart in
#XLP.
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2.6 Tutte Polynomial

In Part II we work towards a classification of the complexity of computing the Tutte
polynomial. Chapters 3 and 4 can be read without knowledge of the Tutte polyno-
mial. Our main results about the Tutte polynomial are given in Chapter 5.

The Tutte polynomial, named after W. T. Tutte, is a graph polynomial. A graph
polynomial is a polynomial associated with a graph, meaning that its coefficients de-
pend on the graph in question. One can also think of it as a function whose domain
is a class of graphs, that maps each graph to a polynomial. The Tutte polynomial
associates a two variable polynomial with each graph. We typically think of these
polynomials as taking complex values as input.

There are multiple ways of defining the Tutte polynomial. We will work with the
following definition

Definition 2.6.1. For a graph G, we denote by T (G;x,y) the Tutte polynomial of G
evaluated at the point (x,y). If G has no edges we have T (G;x,y) = 1. Otherwise we have

T (G;x,y) =
∑
A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |,

where k(A) indicates the number of connected components of (V ,A).

A central object in the study of the Tutte polynomial is the hyperbolic curve Hα ,
for α ∈C, of the form

Hα = {(x,y) : (x − 1)(y − 1) = α}.

Note that for α = 0 the hyperbola collapses into two orthogonal, straight lines. We
refer to these two lines as separate curves

Hx
0 = {(x,y) : x = 1},

H
y
0 = {(x,y) : y = 1}.

We will sometimes refer to the problem of finding the value of T (G;a,b) for an
individual point (a,b) as computing the Tutte polynomial on (a,b). We will often re-
strict the Tutte polynomial to the one-dimensional curve Hα . Note that in this case
the polynomial can be expressed as a univariate polynomial

Tα(G; t) := T
(
G;
α
t

+ 1, t + 1
)
,

for α , 0 and

T xα (G; t) := T (G;1, t) ,

T
y
α (G; t) := T (G; t,1) ,

for α = 0. We will refer to the problem of finding the coefficients of Tα as computing
the Tutte polynomial along Hα . When proving hardness results for such curves, we
will often use the following transformations.
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Definition 2.6.2. The k-stretch of a graph G is the graph obtained from G by replacing
each edge with a path of length k. The k-thickening of a graph G is the graph obtained
from G by replacing each edge with k parallel edges. We denote the k-stretch of G by kG
and the k-thickening as by kG.

The Tutte polynomial is known to be computable in polynomial time on the
points

(1,1), (−1,−1), (0,−1), (−1,0), (i,−i), (−i, i), (j, j2), (j2, j), (2.1)

and along the curve H1. It is #P-hard to evaluate it on any other point. We call the
points listed in (2.1), along with the points on the curve H1 special points. See also
[106] for more details on (the complexity of) the Tutte polynomial.

2.7 Interpolation

In Chapters 5 and 7 we will use interpolation to retrieve the coefficients of a polyno-
mial, given a finite set of evaluations of said polynomial. For our purposes it suffices
to note that this can be done in polynomial time, for example by solving the sys-
tem of linear equations given by the Vandermonde matrix and the evaluations (see
e.g. [46, Section 30.1]).

Lemma 2.7.1. Given pairs (x0, y0), . . . , (xd , yd), there exists an algorithm which computes
the unique degree d polynomial p such that p(xi) = yi for i = 0, . . . ,d and runs in time
O(d3).

In Chapter 7 we want to ’interpolate’ polynomials on n variables using only
O(logn) space. In particular we want to retrieve the value of p(α1, . . . ,αn) for some
given point4 (α1, . . . ,αn), using the evaluations of p on the grid [d + 1]s. This can be
achieved by specifically using Lagrange interpolation. Let us define

L(j1,...,jn)(x1, . . . ,xn) =
∏
κ∈[n]

∏
i∈[d+1]
i,jκ

xκ − i
jκ − i

and observe that Lj(k) = 1 when j = k and Lj(k) = 0 for all other j,k ∈ [d + 1]n. We
thus have

p(x1, . . . ,xs) =
∑

j∈[d+1]n
p(j)Lj(x1, . . . ,xn).

We can compute the previous expressions using O(logn) space by computing each
term in the sum/product one at a time and storing only the running total. We sum-
marize this result in the following lemma

Lemma 2.7.2. Let R ⊆Q be a finite set. Let p ∈Z[x1, . . . ,xs] for s =O(1) be a polynomial
of maximum degree d. If there is a dO(1) time- andO(logd) space-bounded algorithm that
computes p(j) on input j ∈ [d+1]s, then there also exists such an algorithm for computing
p(ξ) at any input ξ ∈ Rs.

4Note that this point needs to be storable in O(logn) space.
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2.8 Rank-Based Approach

v1

v2

v3

u1

u2

u3

c1 c2 c3 c′1 c′2 c′3 
c′1 c′2 c′3

c1 0 0 1
c2 1 0 0
c3 1 0 1


Figure 2.6: An example of a separator {v1,v2,v3}, the remainder of the graph
{u1,u2,u3}, some partial colorings c1, c2, c3 of {v1,v2,v3} and a partial coloring c′ of
{u1,u2,u3}. To the right we see the associated color compatibility matrix, restricted
to the set of depicted colorings.

In Chapters 3 and 4 we use the rank-based approach to design fast dynamic pro-
gramming (DP) algorithms based on problem specific matrices. As this method is
somewhat new, it was first introduced in [18], we will spend some time to introduce
it properly and discuss the ins and outs of applying it to counting problems.

The rank-based method requires a problem whose solutions can be broken up
into partial solutions. These kinds of problems are often a natural fit for dynamic
programming algorithms, as one can often turn small partial solutions into bigger
ones, until a full solution is found. In this thesis partial solutions are typically de-
fined by some separator of a graph, for example a bag in a tree decomposition. An
example of this can be seen in q-coloring/pw, which we saw earlier in Section 2.3.
Here a partial solution consists of a coloring of some subset of the vertices, see Fig-
ure 2.6 for an example we will use throughout this section. A dynamic programming
algorithm might for example keep track of all partial colorings of the bags, that can
be extended to some partial coloring of the set of vertices appearing in or before said
bag. One can also consider partial solutions, i.e. partial colorings, of both sides of
said bag and ask if they combine into a full solution, i.e. a proper coloring of the
whole graph. We say that two such partial solutions are compatible. In Figure 2.6
partial colorings c2 and c′ are compatible, but c1 and c′ are not. The notion of com-
patibility will play an important role in the rest of this section.

At its core, the rank-based approach is about compressing the size of the dynamic
programming table, without losing relevant information. For a decision problem
this typically means omitting partial solutions that, in some sense, could lead to
duplicate answers. We will refer to the set that is left over as a representative set. More
concretely, let P be the set of all partial solutions on some part I1 of the instance and
let I2 be the remaining part of the instance. A representative set R ⊆ I1 of I1 is a set
of partial solutions such that for any partial solution s2 of I2 we have that there is
some partial solution s1 ∈ P that is compatible with s2 if and only if there is some
partial solution s′1 ∈ R that is compatible with s2. In Figure 2.6 the set {c1, c2} forms a
representative set of {c1, c2, c3}. In fact, any subset of size 2 is a representative set in
this example, since the colorings only differ on v3, which has degree 1.
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The crucial property of a representative set, is the following. Let s be some solu-
tion to I , such that s1, the part of s that lies on I1, is in P . By definition, we can replace
s1 with some element of R. This means that we if we only remember R, instead of
all of P , we still find a solution if and only if we would have found one from P . In
particular if we run a dynamic programming algorithm were we only store some
representative set of each layer of the table, we know the algorithm is still correct.

It can be useful to rephrase the notion of representative sets in terms of matrices.

Definition 2.8.1. Let I be an instance of some computational problem, that consists of
two parts I1 and I2. Given some notion of compatibility between partial solutions on I1
and I2, we define the corresponding compatibility matrixM (at I1 and I2) as follows. The
rows of M are indexed by partial solutions of I1 and the columns are indexed by partial
solutions of I2. The entries are given by

M[s1, s2] =

1 if s1 and s2 are compatible,
0 otherwise.

See Figure 2.6 for an example matrix. We can now rephrase the notion of a rep-
resentative set as follows.

Definition 2.8.2. Let I be an instance of some computational problem, that consists of
two parts I1 and I2. Let P be a set of partial solutions of I1 andM the compatibility matrix
at I1 and I2. Let cov(P ) be the set of partial solutions s2 of I2 for which there is some s1 ∈ P
such that M[s1, s2] = 1. We say that R is a representative set of P if cov(P ) = cov(R).

It is probably not surprising that the word rank in the name ‘rank-based ap-
proach’ refers to the rank of the compatibility matrix M. It turns out that this rank
plays a crucial role in determining the efficacy of this approach.

Lemma 2.8.3. Let I be an instance of some computational decision problem, that consists
of two parts I1 and I2. Let P be the set of all partial solutions of I1 andM the compatibility
matrix at I1 and I2. There exists a representative set R of P of size |R| ≤ rank(M).

Proof. LetR be some basis of the rowspace ofM. Note that |R| ≤ rank(M), by virtue of
it being a basis. Also note that for any partial solution s1, its rowM[s1] can be written
as a linear combination of the rows corresponding to elements of R, again because R
is a basis. In particular this means that for any s2, we have that M[s1, s2] = 1 implies
that there is some s′1 ∈ R such that M[s′1, s2] = 1.

The reverse direction follows from the fact that R ⊆ P .

Lemma 2.8.3 says that there always exists some representative set of size at most
rank(M). This indicates that decision problems that have a low rank compatibility
matrix have fast dynamic programming algorithms, assuming we have a fast enough
way to find representative sets.

The matrix perspective also makes it really easy to translate the notion of rep-
resentation to the counting regime. We could define some notion of a weighted
representative set, but it will prove more useful and far easier to think of the layers
of the dynamic programming table as vectors. These vectors are indexed by partial
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solutions s1 and each entry indicates how many other partial solutions s1 represents.
Typically counting algorithms will already do some compression, by only looking at
the partial solution at the interface of I1 and I2.

To give a concrete example, we may want to count graph colorings on a graph of
bounded pathwidth. I1 may consist of Gx for some node x in the path decomposition
and I2 then consists of G[(V (G) \V (Gx))∪Bx]. The dynamic programming table T
at entry (x,c) will contain the number of partial solutions c′ of Gx such that c′ |Bx = c.
We can then think of the set {T [x,c] : c ∈ col(Bx)} for some fixed x, as a vector T [x]
indexed by colorings of Bx.

We can further compress this vector by considering the following version of rep-
resentation

Definition 2.8.4. Given two vectors T and T ′ , we say T ′ is an M-representative of T if∑
x∈col(X)

M[x,y]T [x] =
∑

x∈col(X)

M[x,y]T ′[x] for all y ∈ col(Y ),

i.e. TM = T ′M.

Definition 2.8.4 actually captures representation for decision problems as well, if
addition and multiplication are done over the Boolean semiring, which is the semir-
ing consisting of 0 and 1, where addition is given by a logical OR and multiplication
is given by a logical AND. The following counting version of Lemma 2.8.3 follows
immediately from the fact that a rowbasis has size rank(M).

Lemma 2.8.5. Let T ∈Rn be some vector and M ∈Rn×m for some n,m ∈N. There exists
a representative vector T ′ of T with a support of size |supp(T ′)| ≤ rank(M).

Note that we don’t even need to know anything about the original problem, to
describe the notion of representation. We can phrase it all in terms of linear algebra,
which results in really clean statements. It is also worth noting that this represen-
tative vector T ′ can be any vector and doesn’t need to have any concrete meaning in
the context of the original problem. This typically is not an issue as a lot of dynamic
programming algorithms will use simple operations like addition and copying of
entries, which we can still apply to the entries of this vector. In practice we see that
the standard DP almost always preserves representation. By this we mean that for
T ′i a representative of Ti , applying a step of the DP to T ′i produces a vector T ′i+1 that
is also a representative of Ti+1, the result of applying that same step to Ti .

One might wonder if there is some meta-theorem that indicates when a DP pre-
serves representation, for example if the DP step is given by a matrix of some specific
type? Writing D for the matrix describing the DP step, i.e. Ti+1 = DTi , we can write
the general requirement as5 MDa = DMa for all vectors a. This is equivalent to
saying that the two matrices must commute. Unfortunately, this is often difficult to
check for a given dynamic program, as the matrices can be highly nontrivial.

As a final note we briefly discuss a type of matrix that we will apply the rank-
based approach to in Chapter 3. In this chapter we consider graph coloring param-
eterized by cutwidth6, which is a problem that is highly local in nature, i.e. the

5For convenience, we assume that Ti and Ti+1 have the same length.
6Not to be confused with the example in Figure 2.6, which is parameterized by pathwidth.
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problem can be defined in terms of requirements on individual edges, rather than
larger structures in the graph. As such the compatibility matrix at a particular cut
is a submatrix of a highly decomposable matrix. This is often the case with local
problems, which can be quite helpful for determining the rank of the compatibility
matrix. In this particular case we can decompose the matrix as a Kronecker product.

Definition 2.8.6. Given two matrices A ∈ Rm×r and B ∈ Rn×t , the Kronecker product
of A and B is anmn×rt matrix, with entries7 given by (A⊗B)[(i, j), (k, l)] = A[i, j] ·B[k, l].

For this type of product we have the following helpful property.

Lemma 2.8.7 (Folkore). Given two matrices A and B, we have rank(A⊗B) = rank(A) ·
rank(B).

This means that for these kinds of local problems we often only need to deter-
mine the rank of one compatibility matrix M0, corresponding for example to an
edge. We can then easily find the rank of the compatibility matrix M corresponding
to any part of the problem, as M is a submatrix of a Kronecker power of M0.

7For convenience, we index by pairs (i, j) with i ∈ [m] and j ∈ [n].
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3Counting List q-Colorings Parameterized by
Cutwidth

The whole point is to live life and be
- to use all the colors in the crayon
box.

RuPaul

3.1 Introduction

In this chapter we discuss the problem of counting (List) q-colorings modulo some
prime. We will give fine-grained matching upper (Section 3.2) and lower (Sec-
tion 3.3) bounds on the parameterized time complexity of this problem. Addi-
tionally we will extend our results to the problem of counting connected edgesets
(Section 3.4). These results will be a first step towards our goal of determining the
parameterized complexity of the Tutte Polynomial, which we discuss in Chapter 5.
Since the results in this chapter were first published, Bojikian et al. [26] extended
the algorithm we give to Coloring-like Problems, a generalization of counting graph
homomorphisms.

Counting the number of colorings of a graph is known to be #P-complete, even
for special classes of graphs such as triangle free regular graphs [97]. Björklund
and Husfeldt [13] and Koivisto [119] gave a 2nnO(1) time algorithm for counting q-
colorings.

In this chapter we only look at parameterization by cutwidth (ctw) (see Defini-
tion 2.4.5). For treewidth (tw), a standard dynamic programming approach results
in a qtwnO(1) time algorithm, for which [123] gave a matching (q − ε)pwnO(1) lower
bound parameterized by pathwidth (pw), even for the decision version. Interest-
ingly enough, there is a 2ctwnO(1) time randomized algorithm [109] for q-coloring,
which begs the question whether one could also lose the dependency on q in the
counting setting, when parameterizing by cutwidth. In this chapter we will see that
this is not the case. This indicates that the cutwidth does not give any extra lever-
age as a parameter, when compared to the path- or treewidth, at least in the general
setting.

In the modular setting we will see that there is one curious case, namely when
the modulus p divides q−1, where we can achieve a slight speedup to (q−1)ctwnO(1).
This anomaly has everything to do with the rank of the color compatibility matrix as
described later in Section 3.1.2. It is good to point out that without the rank-based
perspective, this anomaly is difficult to explain. This chapter is the only time we
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will prove results specifically for modular counting, rather that regular counting.
The previously mentioned anomaly is the main reason we choose to work in the
modular setting here, as it gives an interesting example of the rank-based approach
(see Section 2.8), which we will apply in a later chapter as well, to achieve another
crucial step towards the parameterized complexity of the Tutte Polynomial. In pre-
vious work, it was also shown that the rank of similar matrices can be used to design
both algorithms [18, 57, 109, 132] and lower bounds [53, 57].

3.1.1 Results and Notation

As mentioned, in this chapter we study the complexity of two natural hard (modu-
lar) counting problems: Counting the number of q-colorings of a graph and counting
the number of spanning connected edge sets, parameterized by the cutwidth of the
graph. All graphs we consider will be undirected.

Counting Colorings Given a graph G = (V ,E), and lists L : V → 2[q], a list q-
coloring of G is a coloring c : V → [q] of its vertices such that c(u) , c(v) for all
edges uv and c(v) ∈ L(v) for all vertices v. We will often abbreviate ‘list q-coloring’
to ‘coloring’. Given a subset A ⊆ V , we use colL(A) to denote the set of all list q-
colorings of G[A]. If it is clear which lists are used, we omit the subscript. Our first
result is about counting the number of list q-colorings.

#List q-Colorings/ctw
Input: A graph G, a function L : V → 2[q], a width ctw cut decomposition
v1, . . . , vn of G.
Parameter: ctw
Question: How many colorings c : V (G)→ [q] are there, such that c(u) , c(v) for
all edges uv ∈ E(G) and c(v) ∈ L(v) for all vertices v ∈ V (G)?

Note that, if G is not connected, we can count the number of q-colorings in each
connected component separately and multiply them to get the total number of q-
colorings of G. Therefore, we will assume that G is connected.

We now turn to our main theorem, which reads as follows:

Theorem 3.1.1. Let p,q ∈N with p prime and q ≥ 3.
a. If p divides q − 1, there is no ε > 0 for which there exists a (q − 1− ε)ctwnO(1) time
algorithm that counts the number of list q-colorings modulo p assuming SETH.

b. If p divides q − 1, then there is a O((q − 1)ctwn) time algorithm for counting list q-
colorings modulo p of n-vertex graphs of cutwidth ctw.

c. If p does not divide q − 1, there is no ε > 0 for which there exists a (q − ε)ctwnO(1) time
algorithm that counts the number of list q-colorings modulo p, assuming SETH.

Since the initial publishing of the results in this chapter, a paper by Bojikian et al.
[26] was published that generalizes our algorithmic results to so called coloring-like
problems. One can think of these as colorings, where an arbitrary color compatibility
matrix M is given for the graph of a single edge, in addition to some other extra
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parameters. Alternatively, coloring-like problems can be thought of as a slight gen-
eralization of H-coloring, the problem where one is interested in homomorphisms
from the input graph G to some fixed host graph H . For context, Dyer and Greenhill
[68] showed that counting the number ofH-colorings is #P-complete unlessH is one
of a few exceptions (an independent set, a complete graph with loops on every vertex
or a complete bipartite graph). Kazeminia and Bulatov [117] classified the hardness
of counting H-colorings modulo a prime p for square-free graphs H . Bojikian et al.
showed that, as long as the number of colorings is less than rank(M)2, there still
exists a rank(M)ctwnO(1) algorithm.

Connected Spanning Edge Sets and Tutte polynomial We say that X ⊆ E is a con-
nected spanning edge set if G[X] is connected and every vertex is adjacent to an edge
in X. Our second result is about counting the number of such sets.

#Connected Edgesets/ctw
Input: A graph G, a width ctw cut decomposition v1, . . . , vn of G.
Parameter: ctw
Question: How many subsetsX ⊆ E(G) are there,G[X] is connected and for every
v ∈ V (G), there is some e ∈ X, such that v ∈ e?

This problem is naturally motivated: It gives the probability that a random sub-
graph remains connected, and is an important special case of the Tutte polynomial.
We determine the complexity of counting connected spanning edge sets by treewidth
and cutwidth by giving matching lower and upper bounds:

Theorem 3.1.2. Let p be a prime number. There is an algorithm that counts the number
of connected edge sets modulo p of n-vertex graphs of treewidth tw in time ptwnO(1).

Furthermore, there is no ε > 0 for which there is an algorithm that counts the number
of spanning connected edge sets modulo p of n-vertex graphs of cutwidth ctw in time
(p − ϵ)ctwnO(1), assuming SETH.

Note that before the publication of this work, even for the treewidth parameteri-
zation, the best conditional lower bound by Dell et al. [61] only excluded 2o(tw)nO(1)

time algorithms for this problem.
While the algorithm follows relatively quickly by using a cut-and-count type dy-

namic programming approach, obtaining the lower bound is much harder.
In fact, for related counting variants of connectivity problems such as counting

the number of Hamiltonian cycles or Steiner trees, 2O(tw)nO(1) time algorithms do
exist. So one may think that connected spanning edge sets can be counted in a simi-
lar time bound. But in Theorem 3.1.2 we show that this is not the case (by choosing
p arbitrarily large).

To prove the lower bound, we make use of an existing formula for the Tutte
polynomial that relates the number of connected spanning edge sets to the number
of essentially distinct colorings, and subsequently apply Theorem 3.1.1.c.
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3.1.2 The Color Compatibility Matrix and its Rank

In this subsection we will introduce the central object of this chapter, the color com-
patibility matrix. This will be the matrix used for this chapter’s application of the
rank-based approach (see Definition 2.8.4). The rank of this matrix will play a cru-
cial role in both the running time of our algorithm and the matching lower bound
we find.

We can think of the color compatibility matrix as describing the behaviour of
the coloring problem around some separator in our graph. In particular, we can
think of a graph separator as splitting any proper coloring into two partial colorings
and as such we may ask if two given partial colorings form a proper coloring when
combined. If they do, we call these partial colorings compatible:

Definition 3.1.3. Let A,B ⊆ V . For colorings x ∈ col(A), z ∈ col(B), we say that x and z
are compatible, written x ∼ z, if

• x(v) = z(v) for all v ∈ A∩B, and

• x(u) , z(v) for all uv ∈ E, where u ∈ A and v ∈ B.

For a set of colorings S ⊆ col(B), we write S[x] for the set of colorings y ∈ S that are
compatible with x.

If x ∼ z, then we use the convention of writing x ∪ z for the q-list coloring of
G[A∪ B] defined as (x∪ z)(a) := x(a) for all a ∈ A and (x ∪ z)(b) := z(b) for all b ∈ B.
This is well-defined by the definition above.

Using Definition 3.1.3 we can now define the color compatibility matrix.

Definition 3.1.4. Let (X ∪ Y ,E) be a bipartite graph and q a natural number. The qth
color compatibility matrix M is indexed by all q-colorings of X and Y , with

M[x,y] =

1, if x ∼ y,
0, otherwise,

for x ∈ col(X) and y ∈ col(Y ).

We denote the color compatibility matrix indexed by all q-colorings associated
with the bipartite graph that is matching on t vertices by Jt , and use the short-hand
J := J1.

We conclude this section by determining (a bound on) the rank of this matrix,
when taken over a finite field. We are interested in this particular version of rank
because we are counting in a modular setting. In this setting the rank may be lower
than over the integers and we will find that in some cases the rank of the color
compatibility matrix is in fact strictly smaller over a finite field.

Lemma 3.1.5. Let p be a prime, q a natural number and let G = (X ∪Y ,E) be a bipartite
graph with qth color compatibility matrix M. Then the rank of M over Fp satisfies

rankp(M) ≤

(q − 1)|E| if p divides q − 1,
q|E| otherwise.
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Moreover, equality is achieved if G is a perfect matching.

Proof. Recall that we denote the color compatibility matrix associated with the bi-
partite graph that is a matching on t pairs by Jt . We will first compute rankp(J1),
which will cause the difference between the cases when p divides q − 1 and when it
does not. We then show that rankp(Jt) = rankp(J1)t . Finally we show that rankp(M) ≤
rankp(J|E|) for any graph G and its color compatibility matrix M.

Matchings: Let us first consider the case whereG is a perfect matching on t edges
and thus is its color compatibility matrix is M = Jt .

We first compute the rank of J1. Recall that J1 is a q × q matrix with zeros on the
diagonal and ones off-diagonal. If p divides q − 1 the rows of this matrix sum to 0
and it is easy to see that any other linear combination of rows does not sum to 0. If
p does not divide q − 1 any non-trivial linear combination of rows will not sum to 0.
We conclude that this matrix has rank q − 1 if p divides q − 1 and full rank, i.e. rank
q, otherwise.

We now consider the rank of Jr for r ≥ 2. Recall that the Kronecker product
(Definition 2.8.6) of anm×nmatrix A and a p×q matrix B is defined as the following
pm× qn block matrix

A⊗B =


a11B · · · a1nB
...

. . .
...

am1
B · · · amnB

 .
We will show by induction on r that M = Jr is the rth Kronecker power of J1. By the
well known fact that rankp(A⊗B) = rankp(A) · rankp(B) we then find

rankp(Jr ) = rankp(J1)r .

The entries on the diagonal of J1 are zero and the off-diagonal entries are one: two
colors are in conflict if and only if they are the same. Consider now some r ≥ 2 and
let X = {x1, . . . ,xr }, Y = {y1, . . . , yr } and E = {{x1, y1}, . . . , {xr , yr }}. We write a coloring of
X as (c1, . . . , cr ), where ci is the color assigned to xi . We assume that the entries in M
are indexed by (lexicographically ordered) colorings (c1, . . . , cr ) and (c′1, . . . , c

′
r ), where

ci and c′i are the colors of xi and yi respectively. We will split up M into q2 different
qr−1 × qr−1-matrices:

M =


M(11) . . . M(1q)

...
. . .

...
M(q1) . . . M(qq)

 .
For i, j ∈ [q], the matrix M(ij) is indexed by colorings where x1 receives color i and y1
receives color j. Therefore all M(ii) equal the all-zeros matrix. For i , j, the entries
are 1 if and only if the two colorings are compatible on x1, . . . ,xr , y2, . . . , yr . We find
that M(ij) is the color compatibility matrix Jr−1 of the matching on r − 1 vertices, i.e.
((X \ {x1})∪ (Y \ {y1}),E \ {x1, y1}). This proves that M equals the Kronecker product
J1 ⊗ Jr−1. Therefore, Jr is the rth Kronecker power of J1, so it has rank (rank(J1))r . If
p divides q − 1 we find rankp(Jt) = (q − 1)t and otherwise we find rankp(Jt) = qt .
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General case: Let us now consider the case where G is any bipartite graph with t
edges and let M be the corresponding color compatibility matrix. By a similar argu-
ment to the one above, we may assume that G has no isolated vertices (else we can
write M as the Kronecker product of the all ones matrix and the color compatibility
matrix of the graph G from which one isolated vertex is removed). Let Gt be a per-
fect matching with t edges and Jt the corresponding color compatibility matrix. We
claim that M is a submatrix of Jt .

Namely, note that we can obtainG fromGt by identifying some of its vertices. We
observe how the color compatibility matrix changes after identifying two vertices:
identifying vertices u,v from the left-hand side of the bipartition corresponds to
deleting all rows where u and v are assigned a different color. Similarly, identifying
vertices in the right part corresponds to deleting columns. Therefore, M can be
obtained from Jt by deleting some rows and columns. In particular, rankp(M) ≤
rankp(Jt). As we have already shown that the lemma holds for Jt , this proves the
lemma for M.

In particular, Jt is invertible mod p if and only if p does not divide q − 1. This
difference in rank, depending on the relation between p and q is the reason that the
divisibility by p keeps showing up in the various results in this chapter.

3.2 The Algorithm

We start by giving an algorithm for counting q-colorings modulo p. In particular
we consider the case where p divides q − 1, since this is the only case in which we
can achieve a speedup over the standard qctwnO(1) dynamic programming algorithm
based on Lemma 3.2.1. Specifically, in this section we prove Theorem 3.1.1.b.

Theorem 3.1.1.b. (restated) If p divides q − 1, then there is a O((q − 1)ctwn) time algo-
rithm for counting list q-colorings modulo p of n-vertex graphs of cutwidth ctw.

3.2.1 Definitions and Overview

We first introduce some additional notation and definitions needed in this section.
Let q be an integer and let p be a prime that divides q − 1. We are given a graph
G = (V ,E) with cutwidth ordering v1, . . . , vn of the vertices. Without loss of generality,
we may assume that G is connected. We write Gi = G[{v1, . . . , vi}] and

Li = {v ∈ V (Gi) : vvj ∈ E for some j > i}.

Note that by definition of cutwidth, Li ⊆ Li−1 ∪ {vi} and |Li | ≤ ctw for all i (since the
number of endpoints of a set of edges is upper bounded by the number of edges in
the set).

Let i ∈ [n] be given and write Xi = Li ∪ {vi} for the set of vertices left of the cut
that either have an edge in the cut, or are the rightmost vertex left of the cut. We
also define Yi = {vi+1, . . . , vn} ∩N (Xi). Figure 3.1 illustrates this notation.
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v1 v3 v4 v5 v6v2 v7

Figure 3.1: In the above graph, L4 = {v1,v3}, X4 = {v1,v3,v4} (red vertices) and Y4 =
{v5,v7} (blue vertices).

Let Ti[x] be the number of extensions of x ∈ col(Xi) to a coloring of Gi . Equiva-
lently, Ti[x] gives the number of colorings of Gi that are compatible with x.

A standard dynamic programming approach builds on the following observation.

Lemma 3.2.1 (Folklore). For x ∈ col(Xi),

Ti[x] =
∑

z∈col(Xi−1)
z∼x

Ti−1[z].

Proof. By definition of the Xi , we have Xi \ Xi−1 = {vi} and so there are no edges
between V (Gi−1) \Xi−1 and Xi \Xi−1. This means a coloring of Gi−1 is compatible
with x if (and only if) its restriction to Xi−1 is compatible with x. This ‘cut property’
is why the equation holds.

We now spell out the technical details. Recall that we write col(Xi)[x] for the set
of colorings z ∈ col(Xi) that are compatible with x. We need to prove that

|col(Gi)[x]| = |{(z,φi−1) : z ∈ col(Xi−1)[x], φi−1 ∈ col(Gi−1)[z]}|.

Let φ ∈ col(Gi)[x], that is, a list q-coloring of Gi compatible with x. Then z = φ|Xi−1
is compatible with x and φi−1 = φ|Gi−1

is compatible with z. So φ 7→ (z,φi−1) maps
from the set displayed on the left-hand side to the set displayed on the right-hand
side. Its inverse is given by (z,φi−1) 7→ x∪φi−1. This is well-defined: x and φi−1 are
compatible because z ∈ col(Xi−1) is compatible with x, and φi−1|Xi−1

= z (here we use
the above mentioned ‘cut property’).

Since |col(Xi)|may be of size q|Xi |, we cannot compute Ti in its entirety within the
claimed time bound. The idea of our algorithm is to use the same dynamic program-
ming step to compute Ti from Ti−1, but to compress the table to an equivalent one of
significantly smaller size. Here we will use the notion of representation as described
in Definition 2.8.4. For the readers convenience we will restate this definition in the
context of the color compatibility matrix M.

Definition 3.2.2. LetH = (X∪Y ,E) be a bipartite graph with color compatibility matrix
M. Let T ,T ′ : col(X)→ Fp. We say T ′ is an M-representative of T if M · T ≡p M · T ′ .

In this definition we leave the lists and the integer q implicit.



46 3.2. The Algorithm

Using this definition, the main idea behind our algorithm can now be phrased as
follows. If we think of Ti as a vector indexed by colorings we compute another vector
T ′i with smaller support, that M-represents Ti for the color compatibility matrix M.

We now look a bit closer at what the notion of representation means in this con-
text. Recall that the color compatibility matrix has entries M[x,y] = 1 if x ∈ col(X)
and y ∈ col(Y ) are compatible, and M[x,y] = 0 otherwise. Let i ∈ [n − 1] be given.
Let Mi be the color compatibility matrix of the bipartite graph given by the edges
between Xi and Yi .

Then for y ∈ col(Yi), ∑
x∈col(Xi )

Mi[x,y]Ti[x]

gives the number of colorings of Gi compatible with y.
We can compute the the total number of colorings, by computing a T ′n−1 that is

an Mn−1-representative of Tn−1. By summing over all possible colors for vn we can
then compute the number of q-list colorings of the graph (modulo p) as1∑

y∈col(G[vn])

∑
x∈supp(T ′n−1)

Mn−1[x,y]T ′n−1[x].

By expressing M ·T as a linear combination of some column basis of M, we find a T ′

that M-represents T with |supp(T ′)| ≤ rank(M). We also need to make sure that we
can actually compute this T ′ within the desired time complexity. Simple Gaussian
elimination is too slow and therefore we give a slightly more tailored way to reduce
the support in Section 3.2.2. We then prove an analogue of Lemma 3.2.1 in Section
3.2.3, and describe our final algorithm in Section 3.2.4.

3.2.2 Computing a Reduced Representative

In this subsection, we show how to find a function T ′ that M-represents T , while
decreasing an upper bound on the size of the support of the function.

Definition 3.2.3. For a function f : col(X)→ Fp we say that r ∈ X is a reduced vertex
if f (c) = 0 whenever c(r) = q.

The link between reduced vertices and the support of T : col(X) → Fp is ex-
plained as follows. If R is a set of reduced vertices of T , then we can compute a set,
of size at most (q − 1)|R|q|X |−|R|, of colorings containing the support of T . Indeed, we
may restrict to the colorings that do not assign the color q to any vertex in R.

The following result allows us to turn vertices of degree 1 in H into reduced ver-
tices. The assumption that the vertex has degree 1 will be useful in proving the result
because it implies the associated compatibility matrix can be written as a Kronecker
product with Jq and another matrix.

1Note that one could also sum T ′n[y] over all y ∈ col(Xi ). By summing T ′n−1, the connection with
representation is somewhat clearer.
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Lemma 3.2.4. There is an algorithm Reduce that, given a bipartite graph H with parts
X,Y and associated color compatibility matrix M, a function T : col(X)→ Fp with re-
duced vertices R ⊆ X and a vertex v ∈ X \R of degree 1, outputs a function T ′ : col(X)→
Fp with reduced vertices R∪ {v} that is an M-representative of T . Reduce runs in time
O((q − 1)|R|q|X |−|R|).

Proof. Let H be a bipartite graph with parts X,Y and associated color compatibility
matrix M. Let T : col(X) → Fp be a function with reduced vertices R ⊆ X and let
vertex v ∈ X \R be a vertex of degree 1 inH . We need to find a function T ′ : col(X)→
Fp with reduced vertices R∪ {v} that M-represents T , in time O((q − 1)|R|q|X |−|R|).

We may restrict to colorings x that do not assign value q to any element of R.
There are at most (q − 1)|R|q|X\R| such colorings. For the coloring x′ obtained from x
by changing the value of v to q, we set

T ′[x] =

0, if x(v) = q,
T [x]− T [x′] otherwise.

This computation is done in time linear in the number of the colorings xwe consider,
so the running time is O((q − 1)|R|q|X\R|).

First we will show that T ′ is anM-representative of T . Let y ∈ col(Y ) be a coloring
of the right hand side of the bipartite graph H . We need to show that∑

x∈col(X)
x∼y

T [x] ≡p
∑

x∈col(X)
x∼y

T ′[x].

By definition, ∑
x∈col(X)
x∼y

T ′[x] =
∑

x∈col(X)
x∼y
x(v)=q

0 +
∑

x∈col(X)
x∼y
x(v),q

T [x]− T [x′].

Thus it remains to show that ∑
x∈col(X)
x∼y
x(v),q

−T [x′] ≡p
∑

x∈col(X)
x∼y
x(v)=q

T [x].

Let x ∈ col(X) with x(v) = q. We show the equality by proving that the number of
times T [x] appears on the left hand side equals the number of times T [x] appears on
the right hand side, modulo p. Let w ∈ Y be the unique neighbor of the vertex v.

First assume that x ∼ y. Then y(w) , q. If we adjust x to the coloring xi , which
is equal to x apart from assigning color i to v instead of q, then xi ∼ y if and only if
i , y(w). Hence the term −T [x] appears q − 2 times on the left hand side, and T [x]
appears once on the right hand side. Since p divides q − 1, we find q − 2 ≡p −1 and
hence both contributions are equal modulo p.

If x / y, then either x does not appear on both sides (because x|X\{v} is already
incompatible with y) or y(w) = q. If y(w) = q, then the term T [x] appears q − 1 ≡p 0
times on the left hand side by a similar argument as the above, and does not appear
on the right hand side. This shows the claimed equality and finishes the proof.
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We say that a function T : col(X) → Fp is fully reduced if every vertex v ∈ X of
degree 1 is a reduced vertex of T . In order to keep the running time low, we will
ensure that R is relatively large whenever we apply Lemma 3.2.4.

3.2.3 Computing T ′i from T ′i−1

We now show how to compute T ′i from T ′i−1 and what effect this computation has on
the reduced vertices.

Lemma 3.2.5. Let i ∈ [n−1]. Suppose that T ′i−1 is anMi−1-representative of Ti−1 and that
T ′i−1 is fully reduced. Given T ′i−1 and a set Ri−1 of reduced vertices for T ′i−1, we can com-
pute a function T ′i that is an Mi-representative of Ti in time O((q − 1)|Ri−1 |q|Xi−1 |−|Ri−1 |+1),
along with a set Ri of reduced vertices for T ′i such that |Xi \Ri | ≤ (ctw−|Ri |)/2 + 1.

Proof. Analogous to Lemma 3.2.1, we define, for x ∈ col(Xi),

T ′i [x] =
∑

z∈col(Xi−1)
z∼x

T ′i−1[z].

Note that ∑
z∈col(Xi−1)

z∼x

T ′i−1[z] =
∑

z∈supp(T ′i−1)
z∼x

T ′i−1[z].

We compute T ′i from T ′i−1 as follows. Let

S ′i−1 = {c ∈ col(Xi−1) : c(r) , q for all r ∈ Ri−1}.

By the definition of a reduced vertex, S ′i−1 contains the support of T ′i−1. Recall that
Xi \ {vi} ⊆ Xi−1, so any x ∈ col(Xi) is determined if we provide colors for the vertices
in Xi−1 ∪ {vi}. For a color c ∈ [q], let fc : {vi} → {c} be the function that assigns color c
to vi . For each z ∈ S ′i−1, for each c ∈ [q] for which z ∼ fc, we compute

x = (z∪ fc)|Xi ∈ col(Xi)

and increase T ′i [x] by T ′i−1[z] if it has been defined already, and initialise it to T ′i−1[z]
otherwise. The remaining values are implicitly defined to 0. The running time is as
claimed because |S ′i−1| ≤ (q − 1)|Ri−1 |q|Xi−1 |−|Ri−1 | and |[q]| ≤ q.

Next, we compute a set Ri of reduced vertices for T ′i . We set Ri = Xi\(Ai∪Bi∪{vi}),
where

Ai = {u ∈ Xi \ {vi} : |N (u)∩Yi | ≥ 2}

and
Bi = {u ∈ Xi \ {vi} : |N (u)∩Yi | = 1 and uvi ∈ E}.

It is easy to see that Ai and Bi are disjoint. Within the (i − 1)th cut, each vertex
in Ai ∪ Bi has at least two edges going across the cut, so |Ri | + 2|Ai | + 2|Bi | ≤ ctw.
Therefore, |Xi \Ri | ≤ (ctw−|Ri |)/2 + 1.

We now show that Ri is indeed a set of reduced vertices. Suppose not, and let r ∈
Ri and c ∈ col(Xi) with c(r) = q yet T ′i [c] , 0. Since T ′i [c] , 0, there exists z ∈ col(Xi−1)
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with z ∼ c and T ′i−1[z] , 0. By definition r ∈ Xi \ {vi} ⊆ Xi−1. Moreover, z(r) = q since
z ∼ c and c(r) = q. Therefore r is not reduced for T ′i−1. We now show r moreover has
degree 1 in the bipartite graph between Xi−1 and Yi−1 (corresponding to the (i −1)th
cut), contradicting our assumption that T ′i−1 is fully reduced. Since r < Ai ∪Bi , it has
at most one edge going over the (i−1)th cut. Moreover, r ∈ Xi \{vi} ⊆ Li , and so it has
at least one edge to Yi ⊆ Yi−1. So r has exactly one neighbor in Yi−1.

It remains to prove that T ′i is Mi-representative of Ti . Recall that we work over
Fp and therefore all equalities and computations below take place modulo p. Let
y ∈ col(Yi). We need to show that∑

x∈col(Xi )

Mi[x,y]Ti[x] ≡p
∑

x∈col(Xi )

Mi[x,y]T ′i [x]. (3.1)

By Lemma 3.2.1, for all x ∈ col(Xi),

Ti[x] =
∑

z∈col(Xi−1)[x]

Ti−1[z],

and we crucially use in the computation below that we used the same expression
when definining T ′i , which will allow us to exploit the fact that T ′i−1 is an Mi−1-
representative of Ti−1. We find∑

x∈col(Xi )

Mi[x,y]Ti[x] =
∑

x∈col(Xi )

Mi[x,y]

 ∑
z∈col(Xi−1)[x]

Ti−1[z]


=

∑
z∈col(Xi−1)

∑
x∈col(Xi )
x∼z
x∼y

Ti−1[z].

In the second sum, recall that each x ∈ col(Xi) compatible with z is of the form
x = (z∪ fc)|Xi with fc, z compatible and fc : {vi} → {c} for some c ∈ [q]. We find that x
is compatible with y if and only if fc is compatible with y and z is compatible with
y, so the previous expression equals

=
∑

z∈col(Xi−1)

∑
fc∈col({vi })

Ti−1[z]1z∼fc1z∼y1fc ,∼y

=
∑

fc∈col({vi })
1fc∼y

∑
z∈col(Xi−1)

Ti−1[z]1z∼fc1z∼y ,

where 1b denotes the indicator variable which is equal to 1 if condition b is true
and equals 0 otherwise. Since Yi−1 ⊆ Yi ∪ {vi}, we can consider y′ = (fc ∪ y)|Yi−1

and
find Mi−1[z,y′] = 1 exactly when z is compatible with both fc and y. Using this to
rewrite the previous expression, and then noting that y′ ∈ col(Yi−1) and T ′i−1 is a
Mi−1-representative of Ti−1, we find

=
∑

fc∈col({vi })
1fc∼y

∑
z∈col(Xi−1)

Ti−1[z]Mi−1[z, (fc ∪ y)|Yi−1
]

≡p
∑

fc∈col({vi })
1fc∼y

∑
z∈col(Xi−1)

T ′i−1[z]Mi−1[z, (fc ∪ y)|Yi−1
],
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which for the same reasons as above

=
∑

fc∈col({vi })
1fc∼y

∑
z∈col(Xi−1)

T ′i−1[z]1z∼fc1z∼y

=
∑

z∈col(Xi−1)

∑
fc∈col({vi })

T ′i−1[z]1z∼fc1z∼y1fc∼y

=
∑

z∈col(Xi−1)

∑
x∈col(Xi )
x∼z
x∼y

T ′i−1[z]

=
∑

x∈col(Xi )

 ∑
z∈col(Xi−1)[x]

T ′i−1[z]

Mi[x,y]

=
∑

x∈col(Xi )

Mi[x,y]T ′i [x].

This shows (3.1) and completes the proof.

3.2.4 The Final Algorithm

We now conclude by describing the full algorithm.
We initialize T1 = 1, the all-ones vector. Indeed, each x ∈ col({v1}) has a unique ex-

tension to G1 (namely itself). We then repeatedly apply the Reduce algorithm from
Lemma 3.2.4 until we obtain a fully reduced function T ′1 that is anM1-representative
of T1, with some set of reduced vertices R1. For i = 2, . . . ,n, we repeat the following
two steps.

1. Apply Lemma 3.2.5 with inputs (T ′i−1,Ri−1) in order to obtain the vector T ′i that
is an Mi-representative of Ti , and a set of reduced vertices Ri for T ′i .

2. While Xi \ Ri has a vertex v of degree 1, apply the Reduce algorithm from
Lemma 3.2.4 to (T ′i ,Ri), and add v to Ri .

At the end of step 2, we obtain a fully reduced function T ′i that is anMi-representative
of Ti . Moreover, the set Ri of reduced vertices has only increased in size compared to
the set we obtained in step 1. We apply Lemma 3.2.4 at most |Xi | times in the second
step.

We eventually compute T ′n−1, which is anMn−1-representative of Tn−1 with a fully
reduced set Rn−1. We output∑

y∈col(Yn−1)

∑
x∈col(Xn−1)

T ′n−1[x]Mn−1[x,y].

Since T ′n−1 is an Mn−1-representative of Tn−1, this gives the number of list colorings
of G modulo p. We may compute the expression above efficiently by reducing the
second summation to the colorings in

S ′n−1 = {c ∈ col(Xn−1) : c(r) , q for all r ∈ Rn−1}.
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The total running time is now bounded by

C
n−1∑
i=1

|Xi |(q − 1)|Ri |q|Xi |−|Ri |

for some constant C > 0. By Lemma 3.2.5, |Xi \Ri | ≤ (ctw−|Ri |)/2+1 for all i ∈ [n−1].
For q ≥ 3, q1/2 < q − 1 and so

(q − 1)|Ri |q|Xi |−|Ri | ≤ q(q − 1)|Ri |(q1/2)ctw−|Ri | < q(q − 1)ctw.

This shows the total running time is of order O((q − 1)ctwn). This finishes the proof
of Theorem 3.1.1.b.

3.3 Lower Bounds

In this section we give a reduction from #pSAT to #pList q-Coloring, the problem
of counting the number of valid list q-colorings of a given graph G with color lists
(Lv)v∈V (G). We use this to conclude the lower bounds of Theorem 3.1.1 and Theorem
3.1.2.

We can use existing results to find lower bounds for #pSAT, as follows. There
exists an efficient reduction from SAT to the problem #pSAT of counting the number
of satisfying assignments for a given boolean formula modulo p [41]. There also
exists a reduction from SAT to CSP (q,r), which preserves the number of solutions
[81]. Putting these two together gives a reduction from SAT to #pCSP (q,r).

3.3.1 Controlling the Number of Extensions Modulo p

Our main gadget can be attached to a given set of vertices, and has the property
that for each precoloring of the ‘glued on’ vertices, there is a specified number of
extensions. This is made precise in the result below.

Theorem 3.3.1. Let k ∈ N and f : [q]k → N. There exist a graph Gf , a set of vertices
B = {b1, . . . , bk} ⊆ V (Gf ) of size k and lists (Lv)v∈V (Gf ), such that for any α ∈ [q]k , there
are exactly f (α) list q-colorings c of Gf with c(bi) = α(i) for all i ∈ [k]. Additionally,
|V (Gf )| ≤ 20kqk+1 max(f ) and Gf has cutwidth at most 6kqk+2.

We first reduce the lists of each bi to {1,2} using the following gadget.

Lemma 3.3.2. Let q,k ∈N and let a ∈ [q]. There is a graph G with b,b′ ∈ V (G) and color
lists Lv ⊆ [q] for v ∈ V (G), such that Lb = [q] and the following two properties hold:

• for all cb ∈ [q], there is a unique list coloring c of G with c(b) = cb,

• for all list colorings c of G, if c(b) = a, then c(b′) = 1 and if c(b) , a then c(b′) = 2.
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b′

{a,a′}

{a,1}

{1, a′}

{2, a′}

b′′

{1,2}

Figure 3.2: A gadget to ‘relabel colors’. It has two special vertices b′ and b′′ , and lists
are depicted with sets. For any list coloring c of the depicted gadget, if c(b′) = a, then
c(b′′) = 1 and if c(b′) = a′ , then c(b′′) = 2. In both cases, there is a unique way to color
the remaining vertices.

Proof. We first note that it is easy to ‘relabel colors’, as shown in the construction2 in
Figure 3.2. We can therefore first make a gadget for which b′ has color list {a,a′} for
some a′ , a, and then relabel a,a′ to 1,2. By symmetry, we can therefore assume that
a = 1 (or simply replace 1 with a and 2 with a′ in the argument below). Let

V = {b,b′} ∪ {si : i = 2, . . . , q} ∪ {ti : i = 2, . . . , q}

and
E = {sib : i = 2, . . . , q} ∪ {sib′ : i = 2, . . . , q} ∪ {sitj : i, j = 2, . . . , q}.

Now let Lb = [q], Lb′ = {1,2} and Lti = Lsi = {1, i} for i ∈ {2, . . . , q}. A depiction is given
in Figure 3.3.

b
{1, . . . , q}

s2{1,2} sq {1,q}

t2{1,2} tq {1,q}

b′

{1,2}

. . .

. . .

Figure 3.3: The construction of the list coloring instance of the proof of Lemma 3.3.2.

If a list coloring c of G satisfies c(b) = 1, then c(si) = i and thus c(ti) = 1 for each
i ∈ {2, . . . , q}. In particular c(s2) = 2 and c(b′) = 1.

If cb ∈ {2, . . . ,q}, then any list coloring c with c(b) = cb satisfies c(si) = 1 and c(ti) = i
for all i ∈ {2, . . . , q}, and so c(b′) = 2.

2If a = 1 or a′ = 2 we slightly change the construction by removing the top left or top right vertex
respectively.
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This proves that, starting with the color cb ∈ [q] for b, there is always a unique
extension to a list coloring of G, and this satisfies the property that vertex b′ receives
color 1 if cb = 1, and receives color 2 otherwise.

We use of the following construction to control the number of extensions for a
given coloring of B.

Lemma 3.3.3. Let k,ℓ ∈N. There is a graph G, a subset of vertices B = {b1, . . . , bk} ⊆ V
of size k, and color lists Lv for all v ∈ V (G) such that:

• Lbi = {1,2} for all i ∈ {1, . . . , k},

• there are exactly ℓ list colorings c of G with c(B) = {1},

• for each partial coloring cB of B with cB(B) , {1}, there is a unique extension of cB
to a list coloring of G.

Proof. We start with V = B and add a path3 w1, . . . ,wℓ−1 with color lists

Lwi =


{2,3} if i ≡3 1,
{1,3} if i ≡3 2,
{1,2} if i ≡3 0,

and add edges biw1 for i = 1, . . . , k. A depiction is given in Figure 3.4.

b1

{1,2}
bk

{1,2}

w1

{2,3}

w2

{1,3}

w3

{1,2}

wℓ−1

{2,3}

. . .

. . .

Figure 3.4: Construction in the proof of Lemma 3.3.3 when ℓ ≡3 2.

If a list coloring c satisfies c(bi) = 2 for some i ∈ [k], then c(w1) = 3, c(w2) = 1,
c(w3) = 2 etcetera. Hence there is a unique extension of any partial coloring of B that
assigns color 2 somewhere.

If c(bi) = 1 for all i ∈ [k], then we have a choice for the color ofw1. If c(w1) = 3 then
we get the same propagation as before, however if c(w1) = 2, then we have a choice
for the color of w2. Using a simple induction argument we find that the number of
possible list colorings with c(B) = 1 equals ℓ.

We are now ready to construct the main gadget.

3When ℓ = 1, we add no vertices of the form wi and the statements of the lemma immediately follow.
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Proof of Theorem 3.3.1. Let f ∈ [q]k . We create vertices b1, . . . , bk and give them all [q]
as list.

For each partial coloring α ∈ [q]k , we create a graph Gα that contains b1, . . . , bk in
their vertex set, but the graphs are on disjoint vertex sets otherwise (we ‘glue’ the
graphs on the special vertices b1, . . . , bk). It suffices to show that we can find lists for
the ‘private’ vertices of Gα such that the number of extensions of a coloring cB of B is
1 if cB(bi) , α(i) for some i ∈ [k], and f (α) otherwise. The resulting gadget will then
have 1 · 1 · . . . · 1 · f (α) = f (α) possible extensions for the precoloring α, as desired.

We now turn to constructing the gadget Gα for a fixed coloring α ∈ [q]k . We
first reduce to the case in which each bi has {1,2} as list. Let i ∈ [k]. Using Lemma
3.3.2 with a = α(i), we obtain a gadget Hb,b′ and identify the special vertex b with bi .
For each α, we obtain a new set of vertices b′1, . . . , b

′
k with lists {1,2}. We then glue

these onto the special vertices from a gadget obtained by applying Lemma 3.3.3 with
ℓ = f (α). If b1, . . . , bk are colored as specified by α, then b′1, . . . , b

′
k all receive color 1

and Gα has f (α) possible extensions; however if some bi receives the wrong color,
the corresponding b′i receives color 2 and there is a unique extension to the rest of
Gα .

It remains to show the bounds on the number of vertices and the cutwidth. We
give the very rough upperbound of 6kqk+2 on the cutwidth. The gadget from Lemma
3.3.2 has cutwidth at most q2 + 6 (since this is an upper bound on the number of
edges in that construction). The gadgets from Lemma 3.3.3 have cutwidth at most
k. A final cut decomposition can be obtained by first enumerating the vertices in B,
and then adding the cut decompositions of each Gα , one after the other.

Finally the number of vertices of the graph is upper bounded by qk times the
maximum number of vertices of the graph Gα . The gadget of Lemma 3.3.2 has at
most 2q+6 vertices and there are k of them, so they contribute at most 12kq vertices.
The gadgets from Lemma 3.3.3 add at most f (α) vertices. In total,

|V (Gf )| ≤ 20kqk+1 max(f ).

3.3.2 Reduction for Counting q-Colorings Modulo p

Now that we have constructed the gadgets we need, we can prove the main result of
this section, Theorem 3.1.1.c.

Theorem 3.1.1.c. (restated) If p does not divide q − 1, there is no ε > 0 for which there
exists a (q − ε)ctwnO(1) time algorithm that counts the number of list q-colorings modulo
p, assuming SETH.

Suppose now that p divides q−1. Let q′ = q−1. Then p does not divide q′−1 = q−2
and so the result above applies. Noting that any algorithm for #List q-Coloring also
works for #List q′-Coloring, we find the Theorem 3.1.1.a as a corollary.

Theorem 3.1.1.a. (restated) If p divides q − 1, there is no ε > 0 for which there exists
a (q − 1− ε)ctwnO(1) time algorithm that counts the number of list q-colorings modulo p
assuming SETH.

The reduction in the proof of Theorem 3.1.1.c starts from a #pCSP (q,r) instance,
which is a so called constraint satisfaction problem (CSP). Informally, a CSP asks if
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there is an assignment of values from a given domain to a set of variables such that
they satisfy a given set of relations. We denote by CSP(q,r) the CSP with domain
[q] and constraints of arity at most r. We use #CSP (q,r) to denote the problem of
counting the number of solutions of a given instance of CSP(q,r) and #pCSP (q,r)
to denote the same problem, except with counting modulo p. The following result,
based on a theorem from [81], indicates the complexity of #pCSP (q,r).

Theorem 3.3.4 ([81], Theorem 2.5). For each prime p, for every integer q ≥ 2 and ε > 0
there is an integer r, such that the following holds. Unless the SETH fails, #pCSP (q,r)
with n variables and m constraints cannot be solved in time (q − ε)n(n+m)O(1).

This theorem follows from the proof of [81, Theorem 2.5], since their reduction
preserves the number of solutions.

Proof of Theorem 3.1.1.a. Let q ∈ N and let p be a prime that does not divide q − 1.
Fix ϵ > 0 and let r be given from Theorem 3.3.4. We will reduce a given instance of
#pCSP (q,r) with constraints C1, . . . ,Cm and variables x1, . . . ,xn to an instance (G,L) of
#pList q-Coloring on Op,r,q(nm) vertices of cutwidth n +Op,r,q(1). A (q − ε)ctwnO(1)

algorithm for #pList q-Coloring then implies a (q − ε)n(n +m)O(1) for #pCSP (q,r),
which contradicts Theorem 3.3.4.

The general structure of the reduction will be similar to typical gridshaped SAT

reduction. We will use the gadgets constructed in Theorem 3.3.1 both to check the
whether a clause is satisfied and to ensure proper propagation of the variable assign-
ments.

We think of the graph G as containing 2m columns and n rows: for each con-
straint Cj , and for each variable xi , we create two vertices si,j and ti,j (where j ∈ [m]
and i ∈ [n]), which all get {1, . . . , q} as list. For all j ∈ [m−1], we place an edge between
ti,j and si,j+1.

The color assigned to si,1 will be interpreted as the value assigned to variable xi .
Fix j ∈ [m]. We create gadgets on some vertex set Vj using Theorem 3.3.1, that are
‘glued’ on subsets of vertices from Sj = {si,j , ti,j : i ∈ [n]} as follows.

1. For each i ∈ [n], if j < m, we create a gadget on boundary set {si,j , ti,j } which
ensures that we may restrict to counting list colorings c of (G,L) with c(si,j ) =
c(si,j+1).

2. We create a gadget on the (at most r) si,j corresponding to the variables in-
volved in the jth constraint, for which the number of extensions of any color-
ing of the boundary to this gadget is equivalent to 0 modulo p whenever the
jth constraint is not satisfied, and equal to one otherwise.

A broad overview of the construction is depicted in Figure 3.5.
For the first property, we need the fact that p does not divide q − 1: this ensures

that the color compatibility matrix of a single edge is invertible, which will allow us
to ‘transfer all information about the colors’.

We start by describing the gadgets that perform this information transfer (item 1).
Let j ∈ [m−1] and i ∈ [n]. We will apply Theorem 3.3.1 to a function fi,j with bound-
ary set Bi,j = (si,j , ti,j ) and max(fi,j ) = p, resulting in a graph on O(q3p) vertices. Let
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C1

V1

C2

V2

C3

V3

Figure 3.5: A sketch overview of the construction is given on the left-hand side and
a more detailed view of two of the columns is given on the right-hand side. The red
areas ensure the preservation of information, as described in point 1. The blue area
checks whether the clause is satisfied, as described in point 2.

J1 be the q × q coloring compatibility matrix of a single edge, and let J−1
1 denote its

inverse over Fp (that is, J−1
1 J1 ≡p Iq, the q×q identity matrix). We ‘choose a represen-

tative’ J̃1, which has entries in {1, . . . ,p} that are equivalent to those in J−1
1 modulo p.

For c1, c2 ∈ [q] possible colors for si,j and ti,j respectively, we set

fi,j (c1, c2) = J̃1[c1, c2].

Let Vi,j denote the vertices in the gadget obtained by applying Theorem 3.3.1 to
(fi,j ,Bi,j ) that are not in Bi,j . Let c1, c3 ∈ [q]. The number of list colorings c of the
graph induced on Bi,j ∪Vi,j ∪ {si,j+1} with c(si,j ) = c1 and c(si,j+1) = c3 is equal to∑

c2∈[q]

fi,j (c1, c2)J1[c2, c3] = (J̃1J1)[c1, c3],

since for any coloring c2 we have fi,j (c1, c2)J1[c2, c3] such colorings with c(ti,j ) = c2, by
definition of fi , j and J1. Therefore, modulo p this number of extensions is equal to 1
if c1 = c3 and 0 otherwise, as desired.

We now describe the gadgets that check the constraints (item 2). Let j ∈ [m]
and let i1, . . . , iℓ be given so that the jth constraint only depends on the variables
xi1 , . . . ,xiℓ (where by assumption ℓ ≤ r). We will apply Theorem 3.3.1 to a function
gj with boundary set Bj = (si1,j , . . . , siℓ ,j ) and max(gj ) = p, resulting in a graph on
O(ℓqℓ+1p) =O(rqr+1p) vertices. We set gj (c1, . . . , cℓ) to be equal to 1 if the assignment
(c1, . . . , cℓ) to (xi1 , . . . ,xiℓ ) satisfies the jth constraint, and p otherwise. This ensures
that modulo p the number of extentions is 1 if all constraints are satisfied and 0
otherwise.

We obtain a cutwidth decomposition of the graph by first partially ordering the
vertices as

S1 ∪V1, S2 ∪V2, . . . ,Sm ∪Vm.
Within Sj ∪ Vj , we first list s1,j , t1,j and the vertices in the gadget that has those
vertices as boundary set, and then repeat this for s2,j , t2,j , et cetera. Finally, we order
the vertices in the gadget that verifies the jth constraint arbitrarily. At each point,
the cutwidth is bounded by n+ 6rqr+2.
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3.4 Connected Edgesets

The results for coloring that we found before also have implications for the problem
of counting Connected Edgesets. We start by deriving a lower bound, based on our
lower bound for coloring and then give a matching algorithm.

3.4.1 Lower Bound

We first extend the lower bound of Theorem 3.1.1.c to counting connected edge sets
via the following problem.

Definition 3.4.1. Given a graphG, two q-colorings c and c′ are equivalent if there is some
permutation π : [q]→ [q] such that c = π ◦ c′ . We will refer to these equivalence classes
as essentially distinct q-colorings and denote the problem of counting the number of
essentially distinct q-colorings modulo a prime p by #pEssentially distinct q-coloring.

A simple reduction now gives us the following lower bound for #pEssentially
distinct q-coloring.

Corollary 3.4.2. Let p be a prime and q ∈N an integer such that p does not divide q−1.
Assuming SETH, there is no ϵ > 0 for which there exists an algorithm that counts the
number of essentially distinct q-colorings mod p for a given n-vertex graph that is not
(q−1)-colorable, with a given cut decomposition of cutwidth ctw, in time (q− ϵ)ctwnO(1).

Proof. Let (G,L) be an instance of list coloring with cut decomposition v1, . . . , vn. We
construct an instance of #pEssentially distinct q-coloring. The graphG′ has vertex
set

V (G′) = V (G)∪ {uic : c ∈ [q], i ∈ [n]}.

We add edges such that the vertices {uic : c ∈ [q]} induce a q-clique for all i ∈ [n], and
for i ∈ [n−1] we add the edges uicu

i+1
c′ for all c , c′ . This ensures that, if u1

c is colored
c, then uic is colored c for all i ∈ [n]. We now also add edges uicui for all c < Lvi . See
Figure 3.4.1 for an example.

G

G′ \G

v1

u1
1

u1
2 u1

3

v2

u2
1

u2
2 u2

3

v3

u3
1

u3
2 u3

3

Figure 3.6: Example of the construction on (a part of) a graph G, with the cliques
indicated in red. In this case q = 3 and we have Lv1

= {3},Lv2
= {2,3} and Lv3

= {2}.
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Our new cut decomposition is

v1,u
1
1 , . . . ,u

1
q ,v2,u

2
1 , . . . ,u

n−1
q ,vn,u

n
1 , . . . ,u

n
q .

Note that ctw(G′) ≤ ctw(G) + q2, |V (G′)| ≤ (q + 1)|V (G)| and that G′ is not (q − 1)-
colorable. By Theorem 3.1.1, it suffices to show that the number of essentially dis-
tinct q-colorings of G′ equals the number of list q-colorings of (G,L). We will do this
by defining a bijective map.

Let α be a list coloring of (G,L). Then we can color G′ by setting α′(v) = α(v) for
v ∈ V (G) and α′(uic) = c for c ∈ [q] and i ∈ [n]. This gives us a mapping γ : α 7→
α′ , where α′ is the equivalence class of α′ . We find an inverse map by first fixing
a representative α′ for α′ , such that α′(u1

c ) = c for c ∈ [q]. We can do this since
G′[{u1

1 , . . . ,u
1
q }] is a clique and thus each u1

c must get a unique color. Also note that
since every color is now used, the rest of the coloring is also fixed and thus we find a
unique representative this way. We now map c′ to c′ |V (G). Note that these two maps
are well defined and compose to the identity map. We conclude that the number
of list colorings of (G,L) is equal to the number of essentially distinct colorings of
G′ .

To achieve the lower bound in Theorem 3.1.2, we use an existing argument from
[5] to extend this bound to #pConnected Edge Sets. For this we recall the following
Definition.

Definition 2.6.2. The k-stretch of a graph G is the graph obtained from G by replacing
each edge with a path of length k. The k-thickening of a graph G is the graph obtained
from G by replacing each edge with k parallel edges. We denote the k-stretch of G by kG
and the k-thickening as by kG.

Note that kG has the same cutwidth as G.

Theorem 3.4.3. Assuming SETH, there is no ϵ > 0 for which there exists an algorithm
that counts the number of spanning connected edge sets mod p of n-vertex graphs of
cutwidth at most ctw in time O((p − ϵ)ctwnO(1)).

Proof. This proof closely follows a reduction from Annan [5], using ideas from Jaeger,
Vertigan and Welsh [106].

Let G be any graph with cutwidth ctw and let p be a prime. Note that the number
of spanning connected edgesets of G is equal to the value of T (G;1,2), the Tutte
polynomial of G, computed at the point (1,2). The following equality is found in
([106], proof of Theorem 2)

T (kG;a,b) = (1 + a+ · · ·+ ak−1)n−r(G)T

(
G;ak ,

b+ a+ · · ·+ ak−1

1 + a+ · · ·+ ak−1

)
.

Choosing a = 1,b = 2 and k = p − 1, gives

T (p−1G;1,2) = (p − 1)n−r(G)T

(
G;1,

2 + p − 2
p − 1

)
≡p (−1)n−r(G)T (G;1− p,0).
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Here we use the fact that we have P (x,y) ≡p P (x+ tp,y + sp) for any multivariate poly-
nomial, for any s, t ∈ Z. We find that, since the k-stretch of a graph G has the same
cutwidth as G, an algorithm that counts the number of spanning connected edge-
sets (mod p) on a graph with bounded cutwidth, also gives the Tutte polynomial at
(1− p,0) mod p.

Using another well known interpretation of the Tutte polynomial [135] we can
relate the value T (G;1− p,0) to the chromatic polynomial P (G;p) as follows:

P (G;p) = (−1)r(G)pk(G)T (G;1− p,0).

Note that we may assume that the number of connected components k(G) = 1 (and
thus r(G) = n−1), since the number of spanning connected edgesets is trivially 0 if G
has more than one component. We want to get rid of the remaining factor of p (since
we will work mod p). To do this we will count the number of essentially distinct
colorings using exactly p colors instead. This will turn out to be at least as hard as
counting all colorings.

LetG be a graph that is not (p−1)-colorable. With this assumption, the number of
p colorings of G is p! times the number Cp(G) of essentially distinct p-colorings of G,
since any coloring uses all colors and thus can be mapped to p! equivalent colorings
by permuting the colors. So

(−1)n−1pT (G,1− p,0) = P (G;p) = p(p − 1)!Cp(G),

which holds over the real numbers hence we may divide both sides by p. By Wilson’s
Theorem (p − 1)! ≡p −1, so we find

(−1)n−1T (G,1− p,0) ≡p −Cp(G).

Hence we can use the number of spanning connected edgesets (mod p) of the (p−1)-
stretch of G to find the Tutte polynomial at (1−p,0) mod p and then also the number
of essentially distinct colorings. The claimed result now follows from Corollary 3.4.2
(with q = p).

3.4.2 Algorithm

We now give an algorithm that matches the lower bound we just showed.

Theorem 3.4.4. Let p be a prime number. There is an algorithm that counts the number
of connected edge sets modulo p of n-vertex graphs of treewidth tw in time ptwnO(1).

Together with Theorem 3.4.3 this proves Theorem 3.1.2.
The algorithm uses dynamic programming on the tree decomposition, reminis-

cent of cut-and-count. We will first recall some additional notions about tree decom-
positions.

Let G be an n-vertex graph with a tree decomposition (T , (Bx)x∈V (T )) such that T
is a rooted tree and |Bx | ≤ tw+1 for all x ∈ V (T ). Since T is rooted, we can consider
the children and descendants of x in T . In polynomial time we can adjust the tree
decomposition to be a nice tree decomposition, as described in Definition 2.4.3. This
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means that we may assume that such a decomposition is given. We write Gx for the
graph on the vertices in the bags that are a descendant of x in T , which has as edge
set those edges that have been ‘introduced’ by some bag below Bx.

Proof of Theorem 3.4.4. We assume that a nice tree decomposition (T , (Bx)x∈V (T )) for
G has been given. For each x ∈ V (T ) and each partition X1, . . . ,Xp of Bx, we define

Tx[X1, . . . ,Xp] = |{(X,V1, . . . ,Vp) :V1 ⊔ · · · ⊔Vp = V (Gx),

X ⊆ E(Gx) \ (∪i<jE(Vi ,Vj ))}|,

where ⊔ denotes the disjoint union (that is, we take the union and assume the sets
are disjoint). Thus, we count the number of edge sets X of Gx and number of vertex
partitions P ofGx such thatX does not cross P and P induces the partition (X1, . . . ,Xp)
on Bx. Note that this is not done modulo p, but over the real numbers, and also that
we do not require the edgesets Xi to be connected spanning edgesets.

We claim that for r the root of T ,

1
p

∑
R1,...,Rp

Tr [R1, . . . ,Rp]

equals the number of connected spanning edge sets of G modulo p, where the sum is
over the possible partitions of Br . Note that

∑
R1,...,Rp

Tr [R1, . . . ,Rp] counts the number
of tuples (X,V1, . . . ,Vp) such thatX is an edge set ofG that does not cross the partition
(V1, . . . ,Vp). For an edge set X of G, let U1, . . . ,Uk denote the connected components
(which may be single vertices) of G[X], the graph with vertex set V (G) and edge
set X. The number of partitions (V1, . . . ,Vp) of G for which X respects the partition
equals pk : we assign each connected component to one of the p sets of the partition.
Therefore, the contribution of each X to

∑
R1,...,Rp

Tr [R1, . . . ,Rp] is divisible by p, and

is divisible by p2 if and only if G[X] is not connected. This proves the claim since
G[X] is connected if and only if X is connected and spanning.

What remains to show is that we can calculate the table entries in the claimed
time complexity. If x ∈ V (T ) is a leaf, then we can calculate the table entry naively.
We now assume that all strict descendants of x already have their table entry calcu-
lated. We consider two cases.

Join bags Suppose first that Bx is a ‘join bag’: x has two children y and z with
Bx = By = Bz, and E(Gy)∩E(Gy) = ∅. For any partition (X1, . . . ,Xp) of Bx, we can also
consider this as a partition of the bags By and Bz. We claim that

Tx[X1, . . . ,Xp] = Ty[X1, . . . ,Xp] · Tz[X1, . . . ,Xp].

This follows from the fact that any (V1, . . . ,Vp,X) counted for Tx[X1, . . . ,Xp], is de-
termined by the following parts: the partition X1, . . . ,Xp of Bx (which is ‘fixed’), the
remaining partition of the vertices in

V (Gx) \V (Bx) = (V (Gy) \V (Bx))⊔ (V (Gz) \V (Bx))
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(where we obtain a disjoint union by the standard tree decomposition properties)
and the edge set X ⊆ E(Gx) = E(Gy)⊔ E(Gz) (where we find a disjoint union by our
additional ‘edge-introduce’ property).

Single child bags Suppose now that x has a single child y. Fix a partition Px =
(X1, . . . ,Xp) for Bx and consider a partition Py = (Y1, . . . ,Yp) of By that agrees with the
partition Px, in the sense that Xi ∩ Yj = ∅ for i , j. Note that since |By \Bx | ≤ 1, there
are at most p partitions Py that agree with Px. We can therefore efficiently compute

C ·
∑

Py :Py∼Px

Ty[Y1, . . . ,Yp], (3.2)

where the sum is over those Py = (Y1, . . . ,Yp) that agree with Px = (X1, . . . ,Xp), and
where C = C(X1, . . . ,Xp, y) is given by the number of possible subsets of E(Gx)\E(Gy)
that respect the partition Px (always counting the empty set). We will now show that
(3.2) equals Tx[X1, . . . ,Xp].

When we fix a partition (V1, . . . ,Vp) of V (Gx) agreeing with Px, this uniquely de-
fines a partition Py agreeing with Px, namely Yi = Vi ∩ By for all i ∈ [p]. Similarly,
any partition (V ′1, . . . ,V

′
p) of V (Gy) agreeing with Py (for some Py agreeing with Px),

uniquely defines a partition (V1, . . . ,Vp) of V (Gx) that agrees with Px (where we may
need to add a vertex from Bx \By in the place specified by Px).

If x is not introducing an edge, then E(Gx) = E(Gy). Therefore, there is a one-to-
one correspondence between tuples (V1, . . . ,Vp,X) counted for Tx and tuples (Py ,V1∩
By , . . . ,Vp ∩By ,X) counted for (3.2). Since in this situation C = 1, (3.2) indeed equals
Tx[X1, . . . ,Xp].

If x is introducing the edge uv ∈ E(Gx) \ E(Gy) and uv respects the partition
Px, then there is a two-to-one correspondence between tuples (V1, . . . ,Vp,X

′) and
(V1, . . . ,Vp,X

′ ∪ {uv}) counted for Tx and tuples (Py ,V1 ∩ By , . . . ,Vp ∩ By ,X ′) counted
for (3.2), where X ′ ⊆ E(Gy). In this case C = 2. If uv does not respect the partition,
there is a one-to-one correspondence again and C = 1. This proves that (3.2) equals
Tx[X1, . . . ,Xp] in all cases.

The number of partitions (X1, . . . ,Xp) of a bag Bx is at most p|Bx | (assign each vertex
of B to an element of [p]). The computation of a single table entry is always done in
time polynomial in n, and the size of the tree is also polynomial in n. Therefore, the
running time of this algorithm is at most ptwnO(1).

3.5 Conclusion

In this chapter we have given tight lower and upper bounds for counting the num-
ber of (list) q-colorings and connected spanning edge sets of graphs with a given
cutwidth decomposition of small cutwidth. Our results specifically relate to list
q-coloring and essentially distinct q-coloring, but they can easily be extended to nor-
mal q-coloring for certain cases. In particular, if q < p, we may apply Corollary
3.4.2, since in the setting of the corollary, the values differ by q! which is nonzero
modulo p. If the chromatic number χ(G) ≥ p, then the number of q-colorings is triv-
ially 0 mod p, since the number of q-colorings is a multiple of χ(G)!. This leaves us
with the rather specific case of χ(G) < p ≤ q, for which the exact complexity remains
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unresolved. In any case the lower bound also holds for regular (i.e. non-modular)
q-coloring. Thus, we show that under the cutwidth parameterization, the (modular)
counting variant of q-coloring is much harder than the decision version, as the latter
can be solved in 2ctwnO(1) time with a randomized algorithm [109].

Our results on the modular counting of colorings show that the modulus can
influence the complexity in interesting ways, and that in some cases this effect can
be directly explained by the rank of the compatibility matrix.

In the section on Connected Edgesets, we used a connection with the Tutte Poly-
nomial. In Chapter 5 we will explore this connection further. We also showed how
to use the rank based approach to speed up dynamic programming algorithms. We
will see another application of this approach, this time to counting forests, with a
more dramatic speedup in Chapter 4.



4Counting Forests Parameterized by Cutwidth

A society grows great when old men
plant trees whose shade they know
they shall never sit in.

Greek proverb

4.1 Introduction

In this chapter we consider the problem of counting the number of forests in a graph,
parameterized by path- and treewidth.

#Forests/tw
Input: A graph G, a tree decomposition ((Bx)x∈V (T ),T ) of G.
Parameter: tw
Question: How many edge subsets A ⊆ E(G) are there, such that (V (G),A) is a
forest?

The study of counting forests dates back to Cayley’s formula [144], stated in 1889,
which counts forests on n vertices with exactly s trees, rooted at prelabled vertices.
For counting forests as subgraphs of a given graph some research has been done
into counting k-component forests for a given k, both in general [131] and param-
eterized by treewidth [136]. For counting forests with any number of components
a 2o(n) lower bound is known [28] (see also Theorem 4.1.2) but to our knowledge
no (parameterized) algorithms have been given, beyond the obvious brute-force and
dynamic programming algorithms.

Counting forests corresponds to the value T (G;2,1) of the Tutte Polynomial. As
is the case with the results in Chapter 3, this relation makes it an important case in
determining the parameterized complexity of computing the Tutte Polynomial. We
will discuss this further in Chapter 5.

We will focus on the algorithmic side of the story, since we may use the following
(previously mentioned) theorem by Del et.al [28, Theorem 1] to find a lower bound
in terms of cutwidth.

Theorem 4.1.1. [Theorem 1 in [28]] If #ETH holds then there exists constants ε,C > 0
such that noO(2εn) time algorithm can compute the number of all forests in a given simple
n-vertex with at most Cn edges.

63
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From the trivial bound of ctw(G) ≤ |E(G)| we now find the following theorem as
a corollary.

Theorem 4.1.2. Let ctw be the cutwidth of a given n-vertex graph. Computing the Tutte
polynomial along the curve Hy

0 cannot be done in time 2o(ctw)nO(1), unless #ETH fails.

We suspect that a (4− ε)ctwnO(1) lower bound for any ε > 0, based on SETH, also
holds, but that it will take significant additional technical effort.

To complement this lower bound, we give algorithms to count the number of
forests in a graph G in ck time, where k is either the pathwidth (pw) or the treewidth
(tw). For more detailed descriptions of these parameters, see Section 2.3.

Theorem 4.1.3.
a. There exist an algorithm that, given a graph G with a path decomposition of width
pw(G), computes the number of forests in the graph in time O(4pw pw5/2n).

b. There exist an algorithm that, given a graph G with a tree decomposition of width
tw(G), computes the number of forests in the graph in time O(64tw tw1/2n).

The algorithm uses a rank based approach, the runtime of which depends on
the rank of the so called forest compatibility matrix. In Section 4.2 we introduce this
matrix and examine its rank. Recall that it is not hard to show that tw ≤ pw ≤ ctw
(see also Section 2.4) and thus any algorithmic result for treewidth with a matching
lowerbound in terms of cutwidth, gives tight results for all three parameters.

In Chapter 5 we will see that the results from this chapter indicate an inherent
asymmetry in the problem.

4.1.1 Notation

For sets A,B ⊆ [n], we will write A < B to indicate that a < b for all a ∈ A and b ∈ B.
We write π ⊢ S to indicate that π is a partition of S. We will typically use S = [n]

with the standard ordering on [n]. We write π|S for the partition given by restricting
elements of π to the set S ⊆ [n]. Given two partitions π1 ⊢ S and π2 ⊢ S, we say
that π1 is coarser than π2, written π1 ≥ π2, if every element of π2 is a subset of an
element of π1. Given two partitions π ⊢ S and ρ ⊢ S ′ we define the join π⊔ρ ⊢ S ∪ S ′
of the partitions as the finest partition of S ∪ S ′ such that both (π ⊔ ρ)|S ≥ π and
(π⊔ρ)|S ′ ≥ ρ. Intuitively put π and ρ together and merge any overlapping elements.

Given two permutations p and q, we will write p ◦ q for the composition of these
two permutations. We will write (i, j) for the permutation that swaps elements i and
j.

We will consider matrices indexed by partitions. Let M be such a matrix. We
will write M[π,ρ] for the entry of M in the row corresponding to π and the column
corresponding to ρ. We will write M[π] for the vector containing all elements in the
row corresponding to π.



Chapter 4. Counting Forests 65

4.2 Rank Bound

In this section we give an upperbound on the rank of the so called forest compatibility
matrix Fn. Before we can define the forest compatibility matrix, we first need the
following definitions.

Definition 4.2.1. We say that a boundaried graph G = ([n]∪V ,E), with boundary [n], is
a representative forest for a partition π ⊢ [n], if for every S ∈ π there is some connected
component C ⊆ V (G) of G such that C ∩ [n] = S.

Given two boundaried graphs G and H , both with boundary [n], we define the glue
G⊕H of G and H as follows. First take the disjoint union of G and H . Then identify each
v ∈ [n] in G with its analogue in H .

Throughout this chapter, we will assume that V ∩ [n] = ∅. This definition shows
how one can relate forests and partitions. Throughout this section we will mostly
consider partitions as they capture all the information we need. The following def-
inition elaborates on this by lifting the concept of cycles in a glue of two trees to a
cycle induced by two partitions.

Definition 4.2.2. Let π,ρ ⊢ [n] and let Gπ and Gρ be representative forests of π and ρ
respectively. We say that π and ρ induce a cycle if Gπ ⊕Gρ contains a cycle.

It is not hard to see that it does not matter which representatives Gπ and Gρ we
choose, since one only needs to know the connected components on [n] to determine
whether a cycle is present in the glue of the two forests. This means that this defi-
nition is indeed well-defined. For this same reason, in the following definition, we
only need one row and column for each partition of the separator.

Definition 4.2.3. We define the forest compatibility matrix FS of a set S by

FS [π,ρ] :=

0 if π and ρ induce a cycle,
1 otherwise,

for any π,ρ ⊢ S. We will write Fn := F[n].

The main theorem of this section can now be stated as follows.

Theorem 4.2.4. The rank of Fn is at most Cn, the nth Catalan number. In particular
rank(Fn) =O(4nn−3/2).

The Catalan numbers referenced in this theorem are given by

Cn =
1

n+ 1

(
2n
n

)
.

The Catalan numbers count various things, like the number of ways to order n pairs
of parenthesis in a valid way, the number of full binary trees with n+ 1 leaves or the
number of non-crossing partitions on n elements.

This last interpretations is the one we will use in the proof of Theorem 4.2.4. Let
us now define what it means for a partition to be crossing.
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Definition 4.2.5. We say that two sets A,B ∈ π are crossing on an ordering <, if there
are a1, a2 ∈ A and b1,b2 ∈ B such that either a1 < b1 < a2 < b2 or b1 < a1 < b2 < a2. If a
partition contains two sets that are crossing on <, we say that it is crossing on <. We omit
”on <” and simply call a partition of a pair of sets crossing, if the ordering < is clear from
context.

Throughout this section it will sometimes be convenient to think of the ordering
as a permutation.

The general idea behind the proof of Theorem 4.2.4 is to show that the non-
crossing partitions form a basis of the matrix. We show this by proving that any
partition can be uncrossed, i.e. its row in Fn can be written as a linear combination
of rows, corresponding to non-crossing partitions.

4.2.1 Manipulating Partitions

For the proof of Theorem 4.2.4 we will need the following operations, which will
allow us to manipulate partitions by contracting and expanding intervals and pro-
jecting down to subsets of the ground set.

Definition 4.2.6. An interval is a subset I ⊆ [n] of consecutive numbers, i.e. there is no
b < I such that a1 < b < a2 for some a1, a2 ∈ I . Given an interval I and a partition π of [n],
we define the contraction π−i I of π by I as the partition of the set [n]−i I := ([n]∪{i})\ I
given by merging all sets that intersect I and replacing I by a single element i, i.e.

π −i I := {S ∈ π : S ∩ I = ∅} ∪
{(⋃

{S ∈ π : S ∩ I , ∅} ∪ {i}
)
\ I

}
.

If we have an ordering on [n], we place i in the same place in the ordering as I , that is for
any a ∈ [n] \ I and b ∈ I , we have a < b if and only if a < i.

We define the blowup π+i I of π by I as the partition of the set [n]+i I := ([n]∪I)\{i},
given by adding all elements of I to the set that contains i and then removing i, i.e.

π+i I := {S ∈ π : i < S} ∪ {(S \ {i})∪ I : i ∈ S}.

Again we place I in the same place in the ordering as i.

We will sometimes abuse notation and refer to [n] −i I as simply [n′] for n′ =
n− |I |+ 1.

We now turn our attention to a number of useful lemmas. The first lemma intu-
itively says that summation is preserved under contraction of intervals.

Lemma 4.2.7. Let π be a partition of [n] and let I be an interval such that I ⊆ A ∈ π for
some A. We set n′ = n− |I |+ 1. Suppose that for some set of partitions R of [n′], we have
Fn′ [π −i I] =

∑
ρ∈R aρFn′ [ρ]. Then Fn[π] =

∑
ρ∈R aρFn[ρ+i I].

Proof. Let χ be some partition of [n]. Our aim will be to show that given some
assumptions we have Fn[ρ+i I,χ] = Fn[ρ,χ −i I] for any ρ. This would immediately
imply that for such χ

Fn[π,χ] = Fn[π −i I,χ −i I] =
∑
ρ∈R

aρFn[ρ,χ −i I] =
∑
ρ∈R

aρFn[ρ+i I,χ],
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which proves the lemma.
Note that if |S ′ ∩ I | ≥ 2 for some S ′ ∈ χ, we have that Fn[π,χ] = Fn[ρ +i I,χ] = 0.

Thus we may assume that |S ′ ∩ I | ≤ 1. Let S be the set such that i ∈ S ∈ ρ. If there
is some S ′ ∈ χ such that |S ′ ∩ S | ≥ 2, then by the previous assumption at most one of
the elements in this intersection is in I and thus at least one is in S \ I . We find that
Fn[ρ+i I,χ] = Fn[ρ,χ −i I] = 0 and thus we may assume that |S ′ ∩ S | ≤ 1.

We now show that for χ, such that |S ′∩A| ≤ 1 for all S ′ ∈ χ, we have Fn[ρ+i I,χ] =
Fn[ρ,χ −i I] for any ρ. First note that if ρ and χ +i I induce a cycle, that does not
involve I , then ρ −i I and χ also induce that same cycle and vice versa.

Now suppose that ρ +i I and χ induce only cycles involving I . We take such
a cycle and note that by our second assumption there are no sets that intersect S
at two elements. It follows that all cycles must be of length 4 or longer. We find
that there are some S ′ and S ′′ in the cycle that intersects S, one of which, say S ′ ,
intersects I . If S ′′ ∩ I = ∅, the cycle is not affected by the contraction of I and thus
we may assume that both S ′ and S ′′ intersect S at I . We find that after contraction S ′

and S ′′ are merged into one set S ′′′ that intersects S only at i. Since the cycle was of
length 4 or longer, we find that the cycle still has at least one other set from ρ in it
and thus removing S,S ′ and S ′′ from the cycle and adding S ′′′ gives a cycle induced
by ρ and χ −i I .

In the reverse direction we assume that ρ and χ −i I induce a cycle involving i,
then it is clear to see that this cycle survives after blowing up i, using one of the sets
in χ that intersect I . This proves the claim and thus the lemma.

This next lemma intuitively says that if we project our partition to a subset of the
ground set, then any decomposition of the resulting smaller partition gives the same
decomposition of the larger partition.

Lemma 4.2.8. Let π be a partition of [n] and let n′ < n. Suppose that for some set of
partitions R of [n′], we have Fn′ [π|[n′]] =

∑
ρ∈R aρFn′ [ρ], then Fn[π] =

∑
ρ∈R aρFn[ρ ⊔

π|[n]\[n′]].

Proof. Let χ be some partition of [n]. If χ and π|[n]\[n′] induce a cycle, then the
statement trivially holds. In the rest of the proof we will therefore assume that for
any ρ, any cycle induced by χ and ρ⊔π|[n]\[n′] requires the use of ρ.

We first define an equivalence relation ∼ on [n] by defining two elements to be
equivalent if they are either in the same set of χ or in the same set of π|[n]\[n′]. We
then complete this to a full equivalence relation, by exhaustively adding pairs a ∼ c
to the relation, for which we have a ∼ b and b ∼ c for some c. We now define the
partition χ′ of [n′] as the set of equivalence classes of ∼, restricted to [n′].

We claim that Fn[ρ⊔π|[n]\[n′],χ] = Fn′ [ρ,χ′] for any ρ, which would immediately
imply that

Fn[π,χ] = Fn′ [π|[n′],χ′] =
∑
ρ∈R

aρFn′ [ρ,χ
′] =

∑
ρ∈R

aρFn[ρ⊔π|[n]\[n′],χ]

which proves the lemma.
Suppose that ρ⊔π|[n]\[n′] and χ induce some cycle. Suppose the cycle uses some

set in π|[n]\[n′], then this set lies on a subpath of the cycle that starts and ends at sets
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in ρ (these may be the same set). Since all elements in this path are equivalent, this
path must lie entirely inside of a set S ′ ∈ χ′ and thus replacing any such path with S ′

results in a cyclic graph induced by ρ and χ′ . Note that we may have multiple paths
lying in the same S ′ , however this is not an issue, since this will result in either
multiple cycles intersecting at S ′ or S ′ intersecting some set in ρ at more than one
element. Either way we still find a cycle.

Similarly, in the reverse direction we take a cycle induced by ρ and χ′ and blow
up any sets of χ′ into a path in the corresponding connected component to find a
cycle induced by ρ⊔π|[n]\[n′] and χ.

The following two lemmas ensure that our operations do not introduce new
crossings. The first of the two lemmas shows us that we can safely blow up an inter-
val, as long as it is contained in a set of the partition.

Lemma 4.2.9. Let I ⊆ [n] be an interval of [n]. Let π ⊢ [n]−i I be a non-crossing partition.
Then π+i I is also non-crossing.

Proof. Suppose that there are C,D ∈ π+i I that are crossing. W.l.o.g. there are c1, c2 ∈
C and d1,d2 ∈ D such that c1 < d1 < c2 < d2. Since π is non-crossing, this crossing
does not exist in π and thus at least one of these elements is in I . By definition
of a blowup, we must have either I ⊆ C or I ⊆ D. Since I is an interval, it then
follows that exactly one of the previously mentioned elements is in I . We still find a
crossing in π by replacing this element by i. For example, if d1 ∈ I , we find a crossing
c1 < i < c2 < d2 in π. This again contradicts the assumption that π is non-crossing.
We conclude that π+i I is also non-crossing.

This next lemma shows us that, if we have a partition with a single pair of cross-
ing sets, then replacing these sets with some non-crossing partition cannot introduce
new crossings.

Lemma 4.2.10. Let π ⊢ [n] be a partition such that only A,B ∈ π cross each other and all
other pairs of sets in π are non-crossing. Then for any non-crossing partition ρ of A∪B
we have that ρ∪π|[n]\(A∪B) is non-crossing.

Proof. Suppose there are sets C,D ∈ ρ⊔π|[n]\(A∪B) that cross each other. By assump-
tion π|[n]\(A∪B) is non-crossing and thus w.l.o.g. C ∈ ρ. Also note that since ρ is
non-crossing, this implies that D ∈ π|[n]\(A∪B).

Let I be the interval spanned by A∪ B, then since D crosses C ⊆ I , we find that
D ∩ I , ∅ and D is not an interval itself. We claim that this implies that, in π, D
crosses either A or B. This would contradict the assumption that the only crossings
in π are between A and B, which would then imply the lemma.

Note that D∩I cannot include either the rightmost or the leftmost element of the
interval, since these must be elements of A∪B. Therefore if neither A nor B crosses
D, we must have that w.l.o.g. A < D ∩ I < B. This is not possible, since A and B must
cross at least once.
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4.2.2 Proof of the Rank Bound

With Lemmas 4.2.7 to 4.2.10 in hand, we are now ready to describe the main un-
crossing operation.

Lemma 4.2.11. Let π ⊢ [n] be a partition non-crossing on an ordering p of [n]. In time
O(n) we can find constants cρ, such that Fn[π] =

∑
ρ∈N cρFn[ρ], where N is the set of

partitions that are non crossing on p ◦ (i, i + 1).

Proof. Throughout the proof, we will consider the partitionπ on the ordering p◦(i, i+
1). We first note that since π is non-crossing on p, any crossing of π must involve
both i and i + 1. Let i ∈ A ∈ π and i + 1 ∈ B ∈ π. If A = B, then π is non-crossing and
thus we may assume that A , B.

Since π was non-crossing on p, A and B were non-crossing on p. After swapping
i and i + 1, we find that when viewed as a partition of A∪B, π|A∪B consists of either
4 or 5 intervals which alternate between A and B. Define π′ as the partition given
by contracting these intervals. We find that π′ is a partition on n′ elements, where
either n′ = 4 or n′ = 5, with intervals of size 1 (see Figure 4.1).

Figure 4.1: From left to right, these are examples of π before the swap, π after the
swap, π|A∪B and π′ .

We can explicitly construct the forest compatibility matrices for n′ ∈ {4,5} and
check that the non-crossing partitions span the rowspace. With the original publi-
cation of this work [126] we provided a MATLAB script that verifies this1, by de-
composing each row as a weighted sum of the rows corresponding to non-crossing

1https://archive.softwareheritage.org/browse/directory/2e6936582c19e5fd2f127b3d1e60
1ecb9a1136f1/?origin_url=https://github.com/isja-m/ForestRank4-5&revision=92e7701e8946

4c3fc4a2eccfe232600e9fa91605&snapshot=9399fd1d60243aa5a851ec5a7c7ccaa25f169623

https://archive.softwareheritage.org/browse/directory/2e6936582c19e5fd2f127b3d1e601ecb9a1136f1/?origin_url=https://github.com/isja-m/ForestRank4-5&revision=92e7701e89464c3fc4a2eccfe232600e9fa91605&snapshot=9399fd1d60243aa5a851ec5a7c7ccaa25f169623
https://archive.softwareheritage.org/browse/directory/2e6936582c19e5fd2f127b3d1e601ecb9a1136f1/?origin_url=https://github.com/isja-m/ForestRank4-5&revision=92e7701e89464c3fc4a2eccfe232600e9fa91605&snapshot=9399fd1d60243aa5a851ec5a7c7ccaa25f169623
https://archive.softwareheritage.org/browse/directory/2e6936582c19e5fd2f127b3d1e601ecb9a1136f1/?origin_url=https://github.com/isja-m/ForestRank4-5&revision=92e7701e89464c3fc4a2eccfe232600e9fa91605&snapshot=9399fd1d60243aa5a851ec5a7c7ccaa25f169623
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partitions on p ◦ (i, i + 1). Thus we can write

Fn′ [π
′] =

∑
ρ∈R

cρFn′ [ρ],

where R is the set of non-crossing partitions of [n′]. By applying Lemma 4.2.7 n′

times, we find that

FA∪B[π|A∪B] =
∑
ρ∈R

cρFA∪B[ρ+i1 I1 + · · ·+in′ In′ ].

By Lemma 4.2.9, each ρ +i1 I1 + · · · +in′ In′ is still non-crossing. By Lemma 4.2.8, we
find

Fn[π] =
∑
ρ∈R

cρFA∪B[(ρ+i1 I1 + · · ·+in′ In′ )∪π|[n]\(A∪B)].

By Lemma 4.2.10, each (ρ +i1 I1 + · · · +in′ In′ ) ∪ π|[n]\(A∪B) is still non-crossing. We
conclude that Fn[π] can be written as a linear combination of rows corresponding to
non-crossing partitions.

Note that we can construct π′ in O(n) time. We then find the cρ in O(1) time and
reconstruct the (ρ+i1 I1 + · · ·+in′ In′ )∪π|[n]\(A∪B) in O(n) time.

By repeatedly applying Lemma 4.2.11, we can prove the following theorem.

Theorem 4.2.12. For a given ordering p, the rows corresponding to partitions non-
crossing on p span a row basis of the forest compatibility matrix Fn.

Proof. Let π be a partition of [n] such that we can turn it into a non-crossing partition
by swapping two consecutive elements i and i + 1 in the order of [n]. By Lemma
4.2.11 we can write the row Fn[π] corresponding to π as a linear combination of
rows corresponding to non-crossing partitions of [n]. This shows that, for Bp the set
of rows corresponding to non-crossing partitions on p, we have Bp◦(i,i+1) ⊆ span(Bp).
Since every partition is non-crossing for some permutation and every permutation
can be decomposed into 2-cycles on consecutive elements, by induction we find that
every row can be written as a linear combination of rows corresponding to non-
crossing partitions on p.

From this we immediately find a proof for Theorem 4.2.4.

Proof of Theorem 4.2.4. By Theorem 4.2.12 the non-crossing partitions form a basis
of Fn. Since there are Cn such partitions we find rank(Fn) ≤ Cn.

4.3 The Algorithm

We will now describe the algorithm for counting forests. We first define the dynamic
programming table and the notion of representation. We then handle each type of
node in the tree/path decomposition separately and summarize at the end.
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Definition 4.3.1. Let G be a graph and let (T , (Bx)x∈V (T )) be a tree/path decomposition
of G. Recall that Gx is defined as the graph induced by the union of all bags, whose nodes
are descendants of x in T . For each node x and partition π ⊢ Bx, we define the entry τx[π]
of the dynamic programming table τ by

τx[π] := |{X ⊆ E(Gx) : (V ,X) is acyclic ,
∀u,v ∈ Bx there is a path in (V ,X) from u to v iff ∃S ∈ π s.t. u,v ∈ S}|.

In other words, the table entry τx[π] counts the number of forests in Gx whose
connected components agree with π. In the rest of this section, we will refer to the
set supp(τx) of indices π with nonzero entries τx[π] of the dynamic programming
table for a given x as the support of τx. Our aim will be to ensure that the support of
our rows remains contained in the entries corresponding to non-crossing partitions
for some ordering on the bag Bx. This is captured in the following definition.

Definition 4.3.2. We say a vector a, indexed by partitions, is reduced on an ordering
p, if aπ = 0 for any partition π that is crossing on p. If p is clear from context, we will
simply say that a is reduced.

In order to ensure that we do not lose any relevant information we will reduce
our table, while retaining an FBx -representation. For the readers convenience, we
restate the definition of representation here

Definition 2.8.4. Given two vectors T and T ′ , we say T ′ is an M-representative of T if∑
x∈col(X)

M[x,y]T [x] =
∑

x∈col(X)

M[x,y]T ′[x] for all y ∈ col(Y ),

i.e. TM = T ′M.

We now describe how the algorithm behaves on the various types of nodes. In
each case we apply one step of a naive dynamic programming algorithm and then
reduce the table if it becomes too big. For ease of notation we will write π ∼ ρ if the
partitions π,ρ ⊢ [n] are compatible, i.e. they do not induce a cycle.

We start by setting τ ′x[∅] := τx[∅] = 1 for all leaf nodes x. We trivially find that τ ′x
is reduced and F0-represents τx.

4.3.1 Vertex-Introduce Node

Lemma 4.3.3. Let x be a vertex-introduce node with a child node y. Suppose that τ ′y
is reduced and FBy -represents τy . We can compute a row τ ′x that is reduced and FBx -
represents τx in time O(rank(FBx )).

Proof. If x is a vertex-introduce node, introducing v. We set

τ ′x[π∪ {{v}}] := τ ′y[π]

and
τ ′x[π] := 0
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for any π in which v does not appear as a singleton. Clearly for any non-crossing
partition π, we have that π∪ {v} is still non-crossing and thus τ ′x is reduced.

Note that by definition, we need to show that FBxτ
′
x = FBxτx. In the following

derivation we show that this equality holds at the entry corresponding to any arbi-
trary partition ρ ⊢ Bx. ∑

π∼ρ
τx[π] =

∑
π∼ρ
{v}∈π

τy[π \ {{v}}]

=
∑

π′∼ρ|By

τy[π′]

=
∑

π′∼ρ|By

τ ′y[π′]

=
∑
π∼ρ
{v}∈π

τ ′y[π \ {{v}}]

=
∑
π∼ρ

τ ′x[π].

4.3.2 Vertex-Forget Node

Lemma 4.3.4. Let x be a vertex-forget node with a child node y. Suppose that τ ′y is re-
duced and FBy -represents τy . We can compute a row τ ′x that is reduced and FBx -represents
τx in time O(rank(FBx )).

Proof. Let x be a vertex-forget node, forgetting v. We set

τ ′x[π] :=
∑

π′ |Bx=π

τ ′y[π′].

Clearly for any non-crossing partition π′ , we have that π′ |Bx is still non-crossing and
thus τ ′x is reduced.

Again we now show that FBxτ
′
x = FBxτx, by focussing on the entry of the vector at

coordinate ρ. ∑
π∼ρ

τx[π] =
∑
π∼ρ

∑
π′ |Bx=π

τy[π′].
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Note that π′ projects down to a partition that is compatible with ρ if and only if
π′ ∼ (ρ∪ {{v}}). The above then equals∑

π∼ρ

∑
π′ |Bx=π

τy[π′] =
∑

π′∼(ρ∪{{v}})
τy[π′]

=
∑

π′∼(ρ∪{{v}})
τ ′y[π′]

=
∑
π∼ρ

∑
π′ |Bx=π

τ ′y[π′]

=
∑
π∼ρ

τ ′x[π].

4.3.3 Edge-Introduce Node

Lemma 4.3.5. Let x be an edge-introduce node with a child node y. Suppose that τ ′y is
reduced on p and FBy -represents τy . We can compute a row τ ′x that is reduced on some
ordering p′ and FBx -represents τx in time O(rank(FBx )|Bx |

2).

Before we prove this lemma, we introduce the following technical lemma. This
lemma will be useful to show that representation is preserved after applying the
dynamic programming step.

Lemma 4.3.6. Let π,χ,ρ ⊢ [n] be partitions such that π ∼ χ and ρ ∼ χ. We have that
π⊔χ ∼ ρ if and only if π ∼ ρ⊔χ.

Proof. Recall the definition of a representative forest 4.2.2. Let Gπ, Gχ and Gρ be
representative forests of π, χ and ρ respectively. Suppose that π ⊔ χ ∼ ρ. Since
π ∼ χ, Gπ⊕Gχ is a forest. Moreover it is a representative forest of π⊔χ. By the same
reasoning we find that Gρ⊕Gχ is a representative forest of ρ⊔χ. Since π⊔χ ∼ ρ, we
find that (Gπ ⊕Gχ)⊕Gρ = Gπ ⊕ (Gχ ⊕Gρ) is a forest and thus π ∼ ρ⊔χ.

The reverse direction follows from a similar argument.

Proof of Lemma 4.3.5. Let x be an edge-introduce node for edge uv. It is not hard to
see that if u and v are adjacent in the vertex ordering of Bx, then π ⊔ πuv is non-
crossing if and only if π is non-crossing. We will aim to find a FBy -representative τ ′′y
of τ ′y , that is reduced on an ordering p′ in which u and v are adjacent.

By applying Lemma 4.2.11 to each entry of τ ′y we can find an FBy -representative
of τ ′y , that is reduced on p ◦ (i, i + 1), that is we can swap two consecutive elements.
Using at most |By | of these swaps we can ensure that u and v are adjacent. Each
such swap costs |By | time per non-zero entry of the current vector. Since any reduced
vector has at most rank(FBy ) non-zero entries, we find a runtime ofO(rank(FBy )|By |2).

We can now compute the desired τ ′x. We first define

πuv := {{w} : w ∈ By \ {u,v}} ∪ {{u,v}}
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and set
τ ′x[π] := τ ′′y [π] +

∑
π′⊔πuv=π

Fn[π′ ,πuv]τ ′′y [π′],

which is still reduced on p′ , since u and v are adjacent. Finally we again show that
FBxτ

′
x = FBxτx.

∑
π∼ρ

τy[π] =
∑
π∼ρ

τx[π] +
∑

π′⊔πuv=π

Fn[π′ ,πuv]τx[π′]


=

∑
π∼ρ

(τx[π]) +
∑
π∼ρ

 ∑
π′⊔πuv=π

Fn[π′ ,πuv]τx[π′]

 .
Since τ ′x Fn-represents τx this equals∑

π∼ρ
τy[π] =

∑
π∼ρ

(τ ′x[π]) +
∑
π∼ρ

 ∑
π′⊔πuv=π

Fn[π′ ,πuv]τx[π′]


=

∑
π∼ρ

(τ ′x[π]) +
∑

π′⊔πuv∼ρ
Fn[π′ ,πuv]τx[π′].

If ρ ∼ πuv , by Lemma 4.3.6 this equals∑
π∼ρ

τy[π] =
∑
π∼ρ

(τ ′x[π]) +
∑

π′∼ρ⊔πuv

(τx[π′])

=
∑
π∼ρ

(τ ′x[π]) +
∑

π′∼ρ⊔πuv

(τ ′x[π′])

=
∑
π∼ρ

(τ ′x[π]) +
∑
π∼ρ

 ∑
π′⊔πuv=π

Fn[π′ ,πuv]τ ′x[π′]


=

∑
π∼ρ

τ ′x[π] +
∑

π′⊔πuv=π

Fn[π′ ,πuv]τ ′x[π′]


=

∑
π∼ρ

τ ′y[π].

Otherwise we find π′ ⊔πuv / ρ for any π′ and thus∑
π∼ρ

τy[π] =
∑
π∼ρ

(τ ′x[π])

=
∑
π∼ρ

(τ ′x[π]) +
∑
π∼ρ

 ∑
π′⊔πuv=π

Fn[π′ ,πuv]τ ′x[π′]


=

∑
π∼ρ

τ ′y[π].
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4.3.4 Join Node

Lemma 4.3.7. Let x be a join node with child nodes y1 and y2. Suppose that τ ′yi is
reduced and FByi -represents τyi for i = 1,2. We can compute a row τ ′x that is reduced and

FBx -represents τx in time O(rank(FBx )
3|Bx |3).

Proof. We begin by setting

τ ′′x [π] :=
∑

π1⊔π2=π

Fn[π1,π2]τ ′y1
[π1]τ ′y2

[π2].

We will first prove that τ ′′x FBx -represents τx and then reduce it afterwards.∑
π∼ρ

τx[π] =
∑
π∼ρ

∑
π1⊔π2=π

Fn[π1,π2]τy1
[π1]τy2

[π2].

By changing the order in which we pick π, π1 and π2 we can rewrite this expression
as ∑

π∼ρ
τx[π] =

∑
π∼ρ

∑
π1≤π

τy1
[π1]

∑
π1⊔π2=π

Fn[π1,π2]τy2
[π2]

=
∑
π1

τy1
[π1]

∑
π∼ρ
π1≤π

∑
π1⊔π2=π

Fn[π1,π2]τy2
[π2].

We can now merge the two inner sums into one, which results in∑
π∼ρ

τx[π] =
∑
π1

τy1
[π1]

∑
π1⊔π2∼ρ

Fn[π1,π2]τy2
[π2].

If ρ ∼ π1, by Lemma 4.3.6 we find∑
π1⊔π2∼ρ

Fn[π1,π2]τy2
[π2] =

∑
π2∼ρ⊔π1

τy2
[π2]

=
∑

π2∼ρ⊔π1

τ ′′y2
[π2]

=
∑

π1⊔π2∼ρ
Fn[π1,π2]τ ′′y2

[π2].

Otherwise we find∑
π1⊔π2∼ρ

Fn[π1,π2]τy2
[π2] = 0 =

∑
π1⊔π2∼ρ

Fn[π1,π2]τ ′′y2
[π2].

Either way we find ∑
π∼ρ

τx[π] =
∑
π1

τy1
[π1]

∑
π1⊔π2∼ρ

Fn[π1,π2]τ ′′y2
[π2].
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By applying the same operations as before, but in reverse, we find∑
π∼ρ

τx[π] =
∑
π1

τy1
[π1]

∑
π∼ρ
π1≤π

∑
π1⊔π2=π

Fn[π1,π2]τ ′′y2
[π2]

=
∑
π∼ρ

∑
π1≤π

τy1
[π1]

∑
π1⊔π2=π

Fn[π1,π2]τ ′′y2
[π2]

=
∑
π∼ρ

∑
π1⊔π2=π

Fn[π1,π2]τy1
[π1]τ ′′y2

[π2].

By applying the same reasoning to τy1
, we find∑

π∼ρ
τx[π] =

∑
π∼ρ

∑
π1⊔π2=π

Fn[π1,π2]τ ′′y1
[π1]τ ′′y2

[π2]

=
∑
π∼ρ

τ ′′x [π].

We now describe how we reduce τ ′′x to find τ ′x. For each partition π such that
τ ′′x [π] , 0, we first determine an ordering p′ for which π is non-crossing. Note that
we can transform p′ into p by performing at most |Bx |2 swaps, where we swap the
order of two consecutive elements. Again by applying Lemma 4.2.11 to each entry
of τ ′′x we can find an FBx -representative of2 eπ · τ ′′x [π], that is reduced on p′ ◦ (i, i + 1).

We perform at most O(|Bx |2) such swaps each costing at most O(rank(FBx )|Bx |),
since the support of the vector cannot exceed rank(FBx ) as a result of these swaps.
After we have done this for every such π, we sum the resulting vectors to find an
FBx -representative τ ′x of τ ′′x . Finding the vectors takes O(rank(FBx )|Bx |

3) per non-
zero entry of τ ′′x and thus takes O(supp(τ ′′x ) rank(FBx )|Bx |

3) time in total. Summing
all the vectors takes at most O(rank(FBx )supp(τ ′x)) time. Since we assumed τ ′y1

and
τ ′y2

to be reduced, we find that supp(τ ′′x ) ≤ rank(FBx )
2 and thus the algorithm runs in

time O(rank(FBx )
3|Bx |3).

4.3.5 Algorithmic Results

The previous lemmas together prove Theorem 4.1.3.

Theorem 4.1.3.a. (restated) There exist an algorithm that, given a graph G with a path
decomposition of width pw(G), computes the number of forests in the graph in time
O(4pw pw5/2n).

Proof. W.l.o.g. we assume we are given a nice path decomposition, where the first
and last nodes correspond to empty bags. As mentioned in the section of leaf nodes
we can directly compute a representative solution on the first node. By apply-
ing Lemma’s 4.3.3, 4.3.4 and 4.3.5, we can compute representative solutions for all

2We use the standard notation eπ to indicate the vector with a 1 at coordinate π and 0’s elsewhere.
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nodes. The row corresponding to the last node will contain a single entry, which
gives the number of forests in the graph.

By Lemma’s 4.3.3, 4.3.4 and 4.3.5, each step in the dynamic program takes at
most O(rank(Fpw)pw2) =O(4pw pw1/2) time. Since there are at most O(npw2) edges
in the graph and thus O(npw2) nodes in the path decomposition, we find a total
running time of O(4pw pw5/2n).

Theorem 4.1.3.b. (restated) There exist an algorithm that, given a graph G with a
tree decomposition of width tw(G), computes the number of forests in the graph in time
O(64tw tw1/2n).

Proof. W.l.o.g. we assume we are given a nice tree decomposition, where the leaf
nodes correspond to empty bags. We will root this decomposition at one of the
leaf nodes r. As mentioned in the section of leaf nodes we can directly compute a
representative solution on the first node. By applying Lemma’s 4.3.3, 4.3.4, 4.3.5 and
4.3.7, we can compute representative solutions for all nodes. τr will contain a single
entry, which gives the number of forests in the graph.

By Lemma’s 4.3.3, 4.3.4, 4.3.5 and 4.3.7, each step in the dynamic program takes
at most O(rank(Ftw)3 tw3) = O(64tw tw−3/2) time. Since there are O(n tw2) edges in
the graph and thusO(n tw2) nodes in the tree decomposition, we find a total running
time of O(64tw tw1/2n).

4.4 Conclusion

In this chapter we have given an algorithm for counting forests in a graph, that
matches existing ETH bounds. To achieve this we have deployed a novel application
of the rank-based approach. The matrix involved in this application is indexed by
partitions of a set [n] and has the interesting property that the non-crossing parti-
tions span the row space of the matrix. This implies that the rank of the matrix is
upper bounded by the Catalan numbers. Strictly speaking we have not shown that
the non-crossing partitions form a basis, since we have not shown that they index
linearly independent rows in the matrix. However, explicit computation of the rank
for n = 1, . . . ,8 seems to suggest that the Catalan numbers do in fact give the rank of
the forest compatibility matrix.

We believe that our rank upper bound should have more applications for count-
ing forests with different properties. For example, it seems plausible that it can be
used to count all Feedback Vertex Sets in time 2O(tw)nO(1) or the number of spanning
trees with k components in time 2O(tw)nO(1). The latter result would improve over a
result by Peng and Fei Wan [136] that show how to count the number of spanning
forests with k components (or equivalently, n− k − 1 edges) in twO(tw)nO(1) time.





5Computing the Tutte Polynomial
Parameterized by Various Parameters

General Dwight D. Eisenhower
himself described Tutte’s work as
one of the greatest intellectual feats
of the Second World War.

Nancy Harper, in the University
of Waterloo’s magazine

5.1 Introduction

In this chapter we study the parameterized complexity of computing the Tutte Poly-
nomial. We will use the results from Chapters 3 and 4 to determine the complexity
of some of the cases and will handle the remaining cases in this chapter. We now
state the problem for cutwidth and note that the definition is analogues for path-
and treewidth.

Tutte
(x,y)

/ctw
Input: A graph G, a width ctw cut decomposition v1, . . . , vn of G.
Parameter: ctw
Question: What is the value of T (G;x,y)?

Due to its generality the Tutte polynomial is of great interest to a variety of fields,
including knot theory, statistical physics and combinatorics. For a number of these
fields it is important to understand how difficult it is to compute the Tutte polyno-
mial. A series of papers, culminating in the work by Jaeger, Vertigan, and Welsh
[106] has given a complete dichotomy showing that the problem of evaluating the
Tutte polynomial is #P-hard on all points except on the following special points on
which it is known to be computable in polynomial time:

(1,1), (−1,−1), (0,−1), (−1,0), (i,−i), (−i, i), (j, j2), (j2, j), H1, (5.1)

where j = e2πi/3 and i =
√
−1, and Hα denotes the hyperbola {(x,y) : (x−1)(y−1) = α}.

These hyperbolic curves turn out to be of great importance to understanding the
complexity of the Tutte Polynomial, as the problem is generally equally hard on all
points of the same curve, except for the special points listed in (5.1).

Further refinements of the result by Jaeger et al. [106] have since been made:
Among others, a more fine-grained examination of the complexity was done by

79
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Brand et al. [28] (building on earlier work by Dell et. al. [61]): they showed that for
almost all points the Tutte polynomial cannot be evaluated in 2o(n) time on n-vertex
graphs, assuming (a weaker counting version of) the Exponential Time Hypothesis.
This is tight because, on the positive side, Björklund et al. [14] showed that the Tutte
polynomial can be evaluated on any point in 2nnO(1) time.

We are interested in parameterized versions of such complexity classifications.
On the subject of evaluating the Tutte polynomial parameterized by width measures,
research has already been done over twenty years ago: Noble [134] has given a poly-
nomial time algorithm for evaluation the Tutte Polynomial on bounded treewidth
graphs. Noble mostly focused on the dependence on the number of vertices and
edges, and showed each point of the Tutte polynomial can be evaluated in linear
time, assuming the treewidth of the graph is constant. See also an independently
discovered (but slower) algorithm by Andrzejak [4]. In Section 5.5 we will give an
algorithm with a better dependency on the treewidth, to match some of our lower
bounds. This improvement over Noble comes at the expense of a worse dependency
on the input size n.

In this chapter, we determine the fine-grained complexity for each integer point
(x,y) of the problem of evaluating the Tutte polynomial (x,y), under parameteriza-
tion by treewidth, pathwidth and cutwidth.

As was done in previous works, we base our lower bounds on the Exponential
Time Hypothesis (ETH) and the Strong Exponential Time Hypothesis (SETH) for-
mulated by Impagliazzo and Paturi [105]. For a given width parameter k, the former
will be used to exclude run times of the form ko(k)nO(1) and co(k) for some constant
c, while the latter will be used to exclude run times of the form (c − ε)knO(1) for any
ε > 0.

Specifically we consider the treewidth, pathwidth and cutwidth of the graph. The
first two, in some sense, measure how close the graph is to looking like a tree or path
respectively. The cutwidth measures how many edges are layered on top of each
other when the vertices are placed in any linear order. For more precise definitions
of these parameters, see Section 2.3 of the preliminaries.

Width measures in particular are interesting because instances where such struc-
tural parameters are small come up a lot in practice. For example, the curve H2
corresponds to the partition function of the Ising model, which is widely stud-
ied in statistical physics, on graphs with particular topology such as lattice graphs
or open/closed Cayley trees ([121]). In all such graphs with n vertices, even the
cutwidth (the largest parameter we study) is at most O(

√
n).

5.1.1 Complexity Classification

Our classification handles points (x,y) differently based on whether (x − 1)(y − 1) is
negative, zero or positive, and reads as follows:
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x

y

Figure 5.1: The red points have time complexity of the form kO(k)nO(1), the blue
points have time complexity of the form cknO(1) for some constant c and the green
points have polynomial time complexity.

Theorem 5.1.1. Let G be a graph with given tree, path and cut decompositions of width
tw, pw and ctw respectively. Let (x,y) ∈ Z

2 be a non-special point, then up to some
polynomial factor in |V (G)|, the following holds.
a. If (x−1)(y −1) < 0 or x = 1, then T (G;x,y) can be computed in time twO(tw)nO(1) and
cannot be computed in time ctwo(ctw)nO(1) under ETH.

b. If y = 1, then T (G;x,y) can be computed in time 4pwnO(1) or 64twnO(1) and cannot be
computed in time 2o(ctw)nO(1) under #ETH.

c. If (x−1)(y−1) = q > 1, then T (G;x,y) can be computed in time qtwnO(1). Furthermore,

1. if x , 0, then T (G;x,y) cannot be computed in time (q − ε)ctwnO(1) under SETH.

2. if x = 0, then T (G;x,y) cannot be computed in time (q − ε)pwnO(1) and
(q − ε)ctw /2nO(1) under SETH.

This is a fine-grained classification for evaluating the Tutte polynomial at any
given integer point, simultaneously for all the parameters treewidth, pathwidth and
cutwidth. This is because if a graph has cutwidth ctw, pathwidth pw and treewidth
tw, then tw ≤ pw ≤ ctw. Our result implies that, for evaluating the Tutte polyno-
mial at a given integer point, it does not give a substantial advantage to have small
cutwidth instead of small treewidth. This is somewhat surprising since, for exam-
ple, for computing the closely related chromatic number of a graph there exists a
2ctwnO(1) time algorithm, but any pwo(pw)nO(1) time algorithm would contradict the
ETH [124].

Of particular interest are the upper bounds in Theorem 5.1.1.b for the points
{(x,y) : y = 1}, which are closely related to the problem of computing the number
of forests in the input graph. One reason why this results stands out in particu-
lar is that it indicates an inherent asymmetry between the x- and y-axes, in this
parameterized setting. In the general setting, problems related to the Tutte Polyno-
mial often have a natural dual problem, which one can obtain by interchanging the
x- and y-coordinates. For example the chromatic polynomial can be found (up to
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some computable term f ) as χG(λ) = f (λ)T (1−λ,0), while the flow polynomial can
be found as CG(λ) = g(λ)T (0,1 − λ). These two problems are equivalent on planar
graphs, in the sense that the chromatic number of a planar graph is equal to the flow
number of its dual graph.

We note that for this curve we have a #ETH bound, while for the other results
of the form ctwnO(1) we have a stronger SETH bound. We also note that most our
bounds use non-counting versions of ETH and SETH. The reason for this is that we
will use the results from Chapter 3, which gives bounds for modular counting and
thus cannot use #ETH or #SETH. We suspect that this is purely a technical hurdle
and not a fundamental difference between the cases. Also note that for (x−1)(y−1) =
2, we can use #SETH, but this has been left out of the main theorem for the sake of
brevity.

Techniques In order to get the classification, our first step follows the method
of [106] to reduce the evaluation of T (G;x,y) for all points in hyperbola Hα = {(x,y) :
(x − 1)(y − 1) = α} to the evaluation to a single point inHα . This is achieved in [106] by
some graph operations (stretch and thickening), but these may increase the involved
width parameters. We refine these operations in Section 5.3 to avoid this.

With this step being made, several cases of Theorem 5.1.1 then follow from a
combination of new arguments, some from earlier chapters, and previous work (in-
cluding some very recent work such as [55]). We discuss the various cases in Sec-
tion 5.4.

5.2 Preliminaries

Computational Model In this chapter we frequently have real (and some in-
termediate lemma’s are even stated for complex) numbers as intermediate results of
computations. However, as is common in this area we work in the word RAM model
in which all basic arithmetic operations with such numbers can be done in constant
time, and therefore this does not influence our running time bounds.

5.2.1 Brylawski’s Tensor Product Formula

In Section 5.3 we will make use of Brylawski’s tensor product formula [29] to reduce
the computation of T (G;x,y) to that of T (G;x′ , y′) for some other point (x′ , y′). The
original formula is formulated in terms of pointed matroids, however we will only
need the formulation for (multi)graphs. Before we can state the formula, we first
need to introduce some notation.

Given graphs G and H , where an edge e ∈ E(H) is labeled as a special edge,
we define the pointed tensor product1 G ⊗e H of G and H as the graph given by the
following procedure. For every edge f ∈ E(G) we first create a copy Hf of H , then
identify f with the copy of the edge e in Hf and finally remove the edge f (and thus
also the edge e) from the graph.

1Note that this is different from the standard tensor product for graphs.
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Intuitively it might be easier to think of this product as replacing every edge of
G with a copy H \ e, where two of the vertices in H are designated as gluing points.
For example one could replace every edge with a path of length k by taking as H the
cycle Ck+1 on k+1 vertices, as seen in figure 5.2. This particular transformation and a
closely related one will prove useful in our proofs. We have seen this transformation
in before in Chapter 3, but recall the definition here.

Definition 2.6.2. The k-stretch of a graph G is the graph obtained from G by replacing
each edge with a path of length k. The k-thickening of a graph G is the graph obtained
from G by replacing each edge with k parallel edges. We denote the k-stretch of G by kG
and the k-thickening as by kG.

u

v

w u

v

w

Figure 5.2: The pointed tensor product of the left-hand graph with a 3-cycle is given
by the right-hand graph. The resulting operation is also referred to as a 2-stretch.

Note that the result of this product is not always unique, as one can choose which
endpoint is identified with which. In this chapter we will only consider graphs H
that are symmetric over e and thus the product is actually well-defined.

We are now ready to state Brylawski’s tensor product formula. Let TC and TL be
the unique polynomials that satisfy the following system of equations

(x − 1)TC(H ;x,y) + TL(H ;x,y) = T (H \ e;x,y)

TC(H ;x,y) + (y − 1)TL(H ;x,y) = T (H/e;x,y).

We define

x′ =
T (H\e;x,y)
TL(H ;x,y)

y′ =
T (H/e;x,y)
TC(H ;x,y)

.

Let n = |V (H)|, m = |E(H)| and k = k(E(H)). Brylawski’s tensor product formula
states that

T (G⊗e H ;x,y) = TC(H ;x,y)m−n+kTL(H ;x,y)n−kT (G;x′ , y′).

When we apply this formula to the k-stretch we find the following equality

(1 + a+ · · ·+ ak−1)k(E)T

(
G;ak ,

b+ a+ · · ·+ ak−1

1 + a+ · · ·+ ak−1

)
= T (kG;a,b).

For the k-thickening we find

(1 + b+ · · ·+ bk−1)k(E)T

(
G;
a+ b+ · · ·+ bk−1

1 + b+ · · ·+ bk−1
,bk

)
= T (kG;a,b).
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5.3 Reducing Along the Curve Hα

In this section we describe how we can lift hardness results from a single point
(a,b) ∈ Hα to the whole curve Hα . We summarize the results from this section in
the following theorem.

Theorem 5.3.1. Recall that T (G;x,y) gives the Tutte polynomial of G and α := (a−1)(b−
1).
a. Let (a,b) ∈ C

2, such that |a| < {0,1}. Then there exists a polynomial time reduction
from computing T along Hα for graphs of given tree-, path- or cutwidth, to computing T
on (a,b). In this reduction, the treewidth remains tw, the cutwidth remains ctw and the
pathwidth become at most pw+2.

b. Let (a,b) ∈ C2, such that |b| < {0,1} and a , 0. Then there exists a polynomial time
reduction from computing T along Hα for graphs of given tree-, path- or cutwidth, to
computing T on (a,b). In this reduction, the treewidth remains tw, the cutwidth becomes
at most ctw+2 and the pathwidth become at most pw+2.

c. Let (a,b) ∈ C2, such that |b| < {0,1} and a = 0. Then there exists a polynomial time
reduction from computing T along Hα for graphs of given tree-, path- or cutwidth, to
computing T on (a,b). In this reduction, the treewidth remains tw, the cutwidth becomes
at most 2ctw and the pathwidth become at most pw+2.

d. Let (a,b) ∈ C2, such that |a|, |b| ∈ {0,1}. Then there exists a polynomial time reduction
from computing T along Hα for graphs of given tree-, path- or cutwidth, to computing
T on (a,b). In this reduction, the treewidth remains tw, the cutwidth becomes at most
12ctw and the pathwidth become at most pw+2.

Note that there is a trivial reduction in the opposite direction, i.e. if we can
compute T alongHα , then we can compute T on any (a,b) ∈Hα . Therefore, Theorem
5.3.1 lets us lift both algorithms and lower bounds from a point (a,b) to the whole
curve Hα . While Theorem 5.1.1 only requires Theorem 5.3.1 to be stated for integer
valued points, we will state it as the most general version we can prove. We note
that for Theorem 5.1.1.a, we do not care too much about constant multiplicative
factors in the cutwidth, since we have an ETH bound of the form ctw(G)o(ctw(G)). For
Theorem 5.1.1.b we only need fine-grained bounds on the treewidth and pathwidth,
since we again have an ETH bound for cutwidth, this time of the form 2o(ctw). Thus
the blowup in the cutwidth is only relevant for Theorem 5.1.1.c. In this case the
only integer valued points that fall under Theorem 5.3.1.d are (−1,0), (0,−1) and
(−1,−1). These are all special points, which means that this item is not relevant for
Theorem 5.1.1.c.

Earlier we defined the k-stretch and k-thickening of a graph (Definition 2.6.2). A
new variant we introduce to keep the cutwidth low is defined as follows:

Definition 5.3.2. We define the insulated k-thickening (k)G as the graph obtained by
replacing every edge by a path of length 3 and then replacing the middle edge in each of
these paths by k parallel edges.
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u v

Figure 5.3: The result of applying the insulated 4-thickening to an edge between u
and v.

5.3.1 Effect on Width Parameters

We now give three lemmas that show how these transformations effect the parame-
ters we use.

Lemma 5.3.3. Let G be a graph and k ≥ 1 an integer. Then we have that tw(kG) = tw(G),
tw(kG) = tw(G) and tw((k)G) = tw(G).

Proof. First note that in all three cases G is a minor of the transformed graph and
thus we have tw(G) ≤ tw(kG), tw(G) ≤ tw(kG) and tw(G) ≤ tw((k)G). It remains to
prove the upper bounds.

Note that parallel edges do not affect the treewidth of a graph, since any bag
covering one of these edges will necessarily cover all of them. This means that the
original tree decomposition is also a tree decomposition for the k-thickening kG and
thus tw(kG) ≤ tw(G). It also means that for the purposes of finding a tree decom-
position, the insulated k-thickening is equivalent to a 3-stretch. It remains to show
that the k-stretch does not increase the treewidth.

Note that tw(G) = 1 if and only if G is a tree. Since the k-stretch of a tree is also a
tree, we find tw(kG) = 1.

Now suppose that tw(G) ≥ 2. We will show that subdividing an edge does not
affect the treewidth of the graph. By repeatedly subdividing edges we then find that
the treewidth of the k-stretch kG is at most that of G.

Let uv ∈ E(G) and letG′ be the graph obtained by subdividing uv into uw andwv.
Let x be some node in the tree decomposition ofG such that u,v ∈ Bx. We create a tree
decomposition of G′ by adding a node x′ , with a corresponding bag Bx′ = {u,v,w},
and connecting x′ to x. It is easy to see that the resulting decomposition is still a tree
decomposition. We conclude that tw(kG) ≤ tw(G).

Lemma 5.3.4. LetG be a graph and k ≥ 1 an integer. Then we have that pw(kG) = pw(G),
pw(G) ≤ pw(kG)≤ pw(G) + 2 and pw(G) ≤ pw((k)G) ≤ pw(G) + 2.

Proof. Like in the previous proof, we first note that in all three cases G is a minor
of the transformed graph and thus we have pw(G) ≤ pw(kG), pw(G) ≤ pw(kG) and
pw(G) ≤ pw((k)G). It remains to prove the upper bounds.

Note that parallel edges do not affect the pathwidth of a graph. This means that
the original path decomposition is also a path decomposition for the k-thickening
kG and thus pw(kG) ≤ pw(G). Again, this also means that for the purposes of finding
a path decomposition, the insulated k-thickening is equivalent to a 3-stretch. It
remains to show that the k-stretch does not increase the pathwidth by more than an
additive factor of 2.
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Suppose we are given a path decomposition of G, of width pw(G). Whenever a
new vertex v is introduced in a bag Bx, in the path decomposition of G, we add the
following bags. For each edge uv ∈ E(G) such that u ∈ Bx let wuv1 , . . . ,wuvk = v be the
path replacing uv in kG. We add the bags Bx ∪ {wuvi ,w

uv
i+1} for i = 1, k in order, one

path at a time. Clearly the decomposition has width pw(G) + 2 and every vertex and
edge of kG is covered. Since the intermediate vertices on the paths only appear in
two consecutive bags and any vertex from G is retained until all adjacent paths have
been covered, no vertices are forgotten and then reintroduced. We find that it is a
valid path decomposition and thus pw(kG) ≤ pw(G) + 2.

Lemma 5.3.5. LetG be a graph and k ≥ 1 an integer. Then we have that ctw(kG) = ctw(G),
ctw(kG) = k ctw(G) and ctw(G) ≤ ctw((k)G) ≤ ctw(G) + k − 1.

Proof. Again, we first note that in all three cases G is a minor of the transformed
graph and thus we have ctw(G) ≤ ctw(kG), ctw(G) ≤ ctw(kG) and ctw(G) ≤ ctw((k)G).

For the upper bounds, in each case we will show that, given a cut decomposition
of width ctw(G), we can construct a decomposition that respects the given bounds.

Let π = (v1, . . . , vn) be a cut decomposition of G, of width ctw(G). First note that
the given decomposition already gives a decomposition of kG, of width k ctw(G),
and thus ctw(kG) ≤ k ctw(G). Since any parallel edges are necessarily cut by the
same cuts we also find that any cut decomposition of kG, of width k ctw(G), gives a
decomposition of G, of width ctw(G). We therefore find a stronger lower bound of
k ctw(G) ≤ ctw(kG).

Next, we will examine the k-stretch kG. We will show that subdividing an edge
does not increase the cutwidth. By repeatedly subdividing edges we then find that
the k-stretch does not have larger cutwidth, i.e. ctw(kG) ≤ ctw(G). Let uv ∈ E(G)
such that u < v in a given cut decomposition π = (v1, . . . , vn) of G. We create a new
graph G′ from G, by adding a vertex w, edges uw and wv, and removing the edge
uv. We construct a cut decomposition π′ of G′ as follows. If vi ,vj ∈ V (G), such that
i < j (in π), then we also set vi < vj in π′ . For w, we set w < vi if u < vi in π and vi < w
otherwise. Note that for any cut of the decomposition, we have one of the following
situations. (i) The cut appears before u or after v, in which case the cut contains the
same edges in both decompositions. (ii) The cut appears2 between u and v, in which
case it contains uv in π and either uw or wv in π′ , but not both. In either case we
find that the cut has not increased in width in π′ and thus the decomposition has the
same width.

Finally we examine the insulated k-thickening. As seen before we can subdivide
edges without increasing the cutwidth. We will first create the 3-stretch of G, by
subdividing each edge twice. We will take special care to fully subdivide an edge
before moving on to the next one, so that the two new vertices on the edge appear
next to each other in the cut decomposition. We then replace the middle edge of
each created 3-path with k parallel edges. Since the endpoints of any such bundle
of edges are next to each other in the cut decomposition, each cut contains at most

2In this case we use the convention that the cut immediately before and the cut immediately after w
get associated with the same cut π.
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one bundle and thus we increase the cutwidth by at most k − 1 and thus ctw((k)G) ≤
ctw(G) + k − 1.

We remark that the only significant blowup is that of the cutwidth, when apply-
ing the k-thickening. We will therefore limit our use of this transformation as much
as possible.

5.3.2 Reductions

We can now prove Theorem 5.3.1. We prove each case of the theorem separately.
Note that Theorem 5.3.1.d follows from first applying Lemma 5.3.6 and then one of
the other cases of Theorem 5.3.1.

Theorem 5.3.1.a. (restated) Let (a,b) ∈ C
2, such that |a| < {0,1}. Then there exists a

polynomial time reduction from computing T along Hα for graphs of given tree-, path-
or cutwidth, to computing T on (a,b). In this reduction, the treewidth remains tw, the
cutwidth remains ctw and the pathwidth become at most pw+2.

We prove this case using essentially the same proof as given in [106]. Note that in
our setting we use Lemmas 5.3.3, 5.3.4 and 5.3.5 to ensure that relevant parameters
are not increased by the operations we perform.

Proof. Recall that by Brylawski’s tensor product formula [29], we find the following
expression for the k-stretch of the graph G

(1 + a+ · · ·+ ak−1)k(E)T

(
G;ak ,

b+ a+ · · ·+ ak−1

1 + a+ · · ·+ ak−1

)
= T (kG;a,b). (5.2)

Note that
ak − 1 = (1 + a+ · · ·+ ak−1)(a− 1)

and
b+ a+ · · ·+ ak−1

1 + a+ · · ·+ ak−1
− 1 =

b − 1
1 + a+ · · ·+ ak−1

.

We find that the point on which we evaluate T (G) in (5.2) also lies on Hα .
By examining the formula for the Tutte polynomial, we find that for n = |V (G)|

the degree of the Tutte polynomial is at most n2 + n. By choosing k = 0, . . . ,n2 + n,
since |a| < {0,1}, we can find T (G;x,y), for n2 +n+ 1 different values of (x,y) ∈Hα . By
Lemma 2.7.1, we can now interpolate the univariate restriction

Tα(G; t) = T
(
G;
α
t

+ 1, t + 1
)
.

of T (G) along Hα .
Note that by Lemmas 5.3.3 and 5.3.5 the k-stretch preserves both the cutwidth

and the treewidth of the graph and by Lemma 5.3.4 the pathwidth increases by an
additive constant. We find that any fine-grained parameterized lower bound for Hα
extends to points (a,b).
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The next case is proven in a similar way, however it takes a bit more effort to
make the numbers line up.

Theorem 5.3.1.b. (restated) Let (a,b) ∈ C2, such that |b| < {0,1} and a , 0. Then there
exists a polynomial time reduction from computing T along Hα for graphs of given tree-,
path- or cutwidth, to computing T on (a,b). In this reduction, the treewidth remains tw,
the cutwidth becomes at most ctw+2 and the pathwidth become at most pw+2.

Proof. By Theorem 5.3.1.a we may assume that |a| = 1. In the case that a = 1 we can
still use the k-stretch, since

(1 + a+ · · ·+ ak−1)−k(E)T (kG;a,b) = T
(
G;ak ,

b+ a+ · · ·+ ak−1

1 + a+ · · ·+ ak−1

)
= T

(
G;1,

b+ k − 1
k

)
= T

(
G;1,

b − 1
k

+ 1
)
.

Where the first equality is (5.2). Since b , 1 we can find arbitrarily many points
on the curve Hx

0 this way. By Lemma 2.7.1 we can interpolate to find the T (G) on the
whole curve.

In the remaining case, i.e. 0 , a , 1, we use the insulated k-thickening.
This results in the following transformation.

T ((k)G;a,b) = ((a+ 1)(1 + b+ · · ·+ bk−1) + a2)k(E)(1 + b+ · · ·+ bk−1)|V |−k(E)T (G;A,B)

where

A = a2
(
1 +

a− 1
1 + b+ · · ·+ bk−1

)
= a2

(
a+ b+ · · ·+ bk−1

1 + b+ · · ·+ bk−1

)
B = 1 +

bk − 1
(a+ 1)(1 + b+ · · ·+ bk−1) + a2

.

Which allows us to move to a point with |A| < {0,1}, assuming that |b| < {0,1} and
1 , a , 0. We can then apply Theorem 5.3.1.a to to conclude the proof. Note that by
Lemma 5.3.5 this transformation only increases the cutwidth by an additive factor
of k − 1.

It is not too dificult to see that it suffices to take either k = 2 or k = 3. Suppose
that k = 2 does not work, then we have∣∣∣∣∣ a+ b

1 + b

∣∣∣∣∣ = 1.

From this we can deduce that b = c · a1/2 for some c ∈ R. Now suppose that in this
case k = 3 also does not work. We then find that∣∣∣∣∣∣ a+ c · a1/2 + c2 · a

1 + c · a1/2 + c2 · a

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1/2 + c+ c2 · a1/2

1 + c · a1/2 + c2 · a

∣∣∣∣∣∣ = 1.
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By squaring this term and simplifying the resulting equations we find a = 1 and note
that this case was handled previously.

In the case that a = 0 (and |b| < {0,1}), we first use the 2-thickening to compute

(1 + b)|V |−k(E)T

(
G;
a+ b
1 + b

,b2
)

= T (2G;a,b).

and then apply Theorem 5.3.1.b. Note that this approach increases the cutwidth by
a factor of 2 and thus for any lower bound f (ctw) we would get on the curve Hα ,
we find a lower bound of f (ctw /2) for the point (0,1 −α). We find Theorem 5.3.1.c
follows.

Theorem 5.3.1.c. (restated) Let (a,b) ∈ C2, such that |b| < {0,1} and a = 0. Then there
exists a polynomial time reduction from computing T along Hα for graphs of given tree-,
path- or cutwidth, to computing T on (a,b). In this reduction, the treewidth remains tw,
the cutwidth becomes at most 2ctw and the pathwidth become at most pw+2.

The remaining case concerns points where |a|, |b| ∈ {0,1}. We show that we can
reduce non-special points of this type to a point that is covered by one of the other
cases of Theorem 5.3.1. As noted before, this then proves Theorem 5.3.1.d.

Lemma 5.3.6. Let (a,b) ∈ C2, such that |a|, |b| ∈ {0,1}. If (a,b) is not one of the 8 special
points or on H1, then there exists some transformation f and a computable function g,
such that g(a,b) , 0 and

T (f (G);a,b) = g(a,b)T (G;a′ ,b′)

where either |a′ | < {0,1} or |b′ | < {0,1} and such that tw(f (G)) ≤ tw(G), ctw(f (G)) ≤
6ctw(G) and pw(f (G)) ≤ pw(G) + 2.

Proof. We adapt a proof due to [106].
Suppose that for every such transformation f we have either |a′ |, |b′ | ∈ {0,1} or a′

and b′ are not well-defined. We will show that in this case (a,b) must be one of the 8
special points or on H1.

First assume that |a| = |b| = 1. Note that applying the 2-stretch gives

(a′ ,b′) =
(
a2,

b+ a
1 + a

)
.

By assumption, we have either a = −1 or∣∣∣∣∣b+ a
1 + a

∣∣∣∣∣ ∈ {0,1},
which implies b = −a, b = a2 or b = 1. Using the 2-thickening we find b = −1, a = −b,
a = b2 or a = 1. This reduces the list of possible points to

(a,b) ∈{(1,1), (−1,−1), (j, j2), (j2, j), (−1, i), (−1,−i),
(i,−1), (−i,−1)} ∪ {(a,−a) : |a| = 1}
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This list can be further reduced by applying the 3-stretch and 3-thickening to find
that only

(a,b) ∈{(1,1), (−1,−1), (j, j2), (j2, j), (−i, i), (i,−i)}

remain, which are all special points.
Now suppose that b = 0. Note that, again applying the 2-stretch gives

(a′ ,b′) =
(
a2,

a
1 + a

)
.

By assumption we have either a = −1, a = 0 or |1 + a| = 1. If a = −1 or a = 0, we find
(−1,0), which is a special point, and (0,0) ∈H1. If |1+a| = 1, we must have a ∈ {0, j, j2}.
If a ∈ {0, j, j2}, then (a′ ,b′) ∈ {(0,0), (j,−j), (j2,−j2} and we may again apply a 3-stretch
or 3-thickening to conclude that

(a,b) ∈{(1,1), (−1,−1), (j, j2), (j2, j), (−i, i), (i,−i)}.

We find that the only points left are (−1,0), which is a special point, and (0,0) ∈H1.
Finally suppose that a = 0 and |b| = 1. We apply a 2-thickening to find

(a′ ,b′) =
(
b

1 + b
,b2

)
.

By assumption we either have b = −1 or |1+b| = 1. In the former case, we find (0,−1),
which is a special point. In the latter case we must have b ∈ {j, j2}. If b ∈ {j, j2},
then (a′ ,b′) ∈ {(−j, j), (−j2, j2} and we may again apply a 3-stretch or 3-thickening to
conclude that

(a,b) ∈{(1,1), (−1,−1), (j, j2), (j2, j), (−i, i), (i,−i)}.

Note that the worst blowup in the cutwidth occurs when we apply a 2-thickening,
followed by a 3-thickening, which effectively results in a 6-thickening and thus by
Lemma 5.3.5 a multiplicative blowup in the cutwidth of 6. The treewidth and path-
width bounds follow by Lemma 5.3.3 and Lemma 5.3.4 respectively.

5.4 The complexity of computing T along Hα

In this section determine the complexity of computing T along the various curves
Hα . When combined with the results of Section 5.3 we find proofs for the various
cases of Theorem 5.3.1.

5.4.1 The Curve H2

The curve H2 is equivalent to the partition function of the Ising model. Both our
proofs for the upper and lower bound on the complexity will make use of this fact

Theorem 5.4.1. Computing the Tutte polynomial along the curve H2 cannot be done in
time (2− ε)ctwnO(1), unless #SETH fails.
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Proof. The Tutte polynomial on this curve specializes to the partition function of the
Ising model on G = (V ,E) [10]. Computing this function in its entirety is equivalent
to computing the generating function

CG(z) =
∞∑
k=0

ckz
k

of the closed subgraphs inG [116]. Here ck gives the the number of closed subgraphs
with k edges, i.e. the number of edgesets A ⊆ E such that every vertex has even
degree in (V ,A) and |A| = k. Computing all coefficients of CG is clearly not easier
than computing the number of closed subgraphs of maximum cardinality.

We finally show that computing the number of perfect matchings reduces to com-
puting the number of maximum closed subgraphs, using a reduction from [111]
which can be slightly altered to only increase the cutwidth by an additive factor of
2. There is a lower bound of 2ctw for counting perfect matchings, due to [55], which
finishes the proof. It remains to show that we can reduce #PerfectMatchings to
#MaximumClosedSubgraphs, while increasing the cutwidth by at most 2.

First note that if every vertex in G has odd degree, then F is a perfect matching
if and only if E \ F is a maximum closed subgraph and thus the number of perfect
matchings on G is equal to the number of maximum closed subgraphs. We will now
construct a graph G′ that has the same number of perfect matchings as G, but has
only vertices with odd degree. Using the above remark we then find a reduction
from #PerfectMatchings to #MaximumClosedSubgraphs. Also note that we can
determine whether a graph has at least one perfect matching in polynomial time
and thus we may assume that G has at least one perfect matching.

Let v1,v2, . . . , vn be a cut decomposition of G of width ctw. Now let ve1,v
e
2, . . . , v

e
l

be the vertices with even degree, in order of appearance in the cut decomposition.
Since G has at least one perfect matching we find that n is even. Since the number
of odd degree vertices in a graph is always even we also find that l is even. We
now connect ve2i−1 to ve2i using a 3-star, see figure 5.4, and call the resulting graph
G′ . Note that every vertex in G′ has odd degree and that in a perfect matching the
’dangling’ vertex di of a 3-star has to be matched to the center ci of the 3-star. We
find that the 3-stars have no effect on the number of perfect matchings of the graph.

di

u v

ci

Figure 5.4: A 3-star between u and v.

We find a new cut decomposition by simply inserting the vertices ci and di di-
rectly after ve2i−1 in the cut decomposition.
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We now prove the following matching upper bound.

Theorem 5.4.2. Let G be a graph with a given tree decomposition of width tw. There
exists an algorithm that computes T (G;a,b), for (a,b) ∈H2, in time 2twnO(1).

Proof. As mentioned in the proof of Theorem 5.4.1, computing the Tutte polyno-
mial along the curve is equivalent to computing the partition function of the Ising
model [10]. Computing this function in its entirety is equivalent to computing the
generating function

CG(z) =
∞∑
k=0

ckz
k ,

where ck gives the the number of closed subgraphs with k edges [116]. We can com-
pute the coefficients of this polynomial by computing the following dynamic pro-
gramming table.

Let S[x,p,k] be the number of edgesets A of size |A| = k in the graph below bag Bx
such that degG[A](v) ≡2 p(v). Note that the number of entries in the table is 2twnO(1),
since we only need to consider p ∈ {0,1}tw and k ∈ [n2]. We may compute new entries
as follows where ∅ denotes the empty vector. If Bx is a leaf bag then S[x,∅,0] = 1 and
S[x,∅, k] = 0 otherwise. If x is a vertex-forget node for vertex v, then

S[x,p,k] = S[y,p′ , k],

where p′ is the vector given by p′(u) = p(u) for u , v and p′(v) = 0 and y is the child
node of x. If x is a vertex-introduce node for vertex v, then

S[x,p,k] =

S[y,pBy , k] if p(v) = 0,

0 otherwise,

where y is the child node of x. If x is an edge-introduce node for edge e, then

S[x,p,k] = S[y,p,k] + S[y,p+2 1e, k − 1],

where 1e(u) = 1 if and only if u is one of the endpoints of e and where we use +2 to
indicate addition in Z

ℓ
2 for some ℓ. If x is a join node, with children y1 and y2, we

use fast subset convolution as described in [58, Theorem A.6] to compute

S[x,p,k] =
k∑
i=0

∑
p1+2p2=p

S[y1,p1, i]S[y2,p2, k − i].

We can now find ck as the entry S[r,0, k].

5.4.2 The Curve Hq for q ∈Z≥3

These curves contain the points (1 − q,0), which count the number of q-colorings.
Using previous results and a folklore algorithm, we find matching upper and lower
bounds for these points and thus for the whole curves.
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Theorem 5.4.3. Let q ∈Z≥3. Computing the Tutte polynomial along the curveHq cannot
be done in time (q − ε)ctwnO(1), unless SETH fails.

Proof. Note that Hq contains the point (1−q,0). Computing the Tutte polynomial on
this point is equivalent to counting the number of q-colorings of the graph G.

By choosing a modulus p > q we can apply Theorem 3.1.1.c to find a lower bound
of qctw on the time complexity of counting q-colorings modulo p. This lower bound
clearly extends to general counting.

In order to find a matching algorithm we combine the following folkore result
with Theorem 5.3.1.

Theorem 5.4.4 (Folklore). Let G be a graph with a given tree decomposition of width tw
and q ∈ Z≥3. There exists an algorithm that computes the number of q-colorings of G in
time qtwnO(1).

We immediately find the following algorithm.

Theorem 5.4.5. Let G be a graph with a given tree decomposition of width tw and q ∈
Z≥3. There exists an algorithm that computes T (G;a,b) for (a,b) ∈Hq in time qtwnO(1).

Combining Theorems 5.3.1, 5.4.1, 5.4.2, 5.4.3 and 5.4.5, proves Theorem 5.1.1.c.
We note that the cutwidth lower bound for x = 0 is equal to (q−ε)ctw /2nO(1), because
of the factor 2 blowup in Theorem 5.3.1.c.

5.4.3 The Curve H−q for q ∈Z>0

These curves contain the points (1 + q,0). Using the same results we used to prove
Theorem 5.4.3 and exploiting the fact these results hold for modular counting, we
find an ETH lower bound which matches the running time of the general algorithm
described in Theorem 5.5.1.

Theorem 5.4.6. Let q ∈ Z>0. Computing the Tutte polynomial along the curve H−q
cannot be done in ctwo(ctw) time, unless ETH fails.

Proof. Like mentioned earlier H−q contains the point (1 + q,0). For a prime p > q
we have that T (G;1 + q,0) ≡p T (G;1 + q − p,0). This means that computing the Tutte
polynomial modulo p at the point (1 + q,0) is equivalent to counting the number of
p − q-colorings of G modulo p. Since q > 0 and p > q we find that 0 < p − q < p and
thus as before, we may follow the proof or Theorem 3.1.1.c. Since the cutwidth of
the construction in Theorem 3.1.1.c is n+ 6rpr+2 for some r dependant on p − q and
ε. From the (p−q)n(n+m)O(1) lower bound on #pCSP(p−q,r), we find that there is no

algorithm running in time (p − q − ε)ctw−6rpr+2
nO(1). We choose p such that for some
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constant α < 1/6r we have p = (α ctw)1/(r+2), we find a lower bound of

((α ctw)1/(r+1) − q − ε)(ctw−6rα ctw)nO(1) = ((α ctw)1/(r+1) − q − ε)ctw(1−6rα)nO(1)

≥ ((α ctw−q − ε)1/(r+1))ctw(1−6rα)nO(1)

≥ (α ctw−q − ε)(ctw(1−6rα))/(r+2)nO(1)

≥ (α ctw−q − ε)ctw(1/(2r)−3α)nO(1)

Since q is a constant we find that we cannot have an algorithm that runs in time
ctwo(ctw), unless ETH fails.

By Theorem 5.5.1 points on this curve can be computed in time twO(tw)nO(1).

5.4.4 The Curve Hx
0

The curve Hx
0 contains the point (1,2), which counts the number of connected edge-

sets of a connected graph. Using results from Chapter 3 this gives an ETH lower
bound which matches the running time of the general algorithm described in Theo-
rem 5.5.1.

Theorem 5.4.7. Let 0 < α < 1. Computing the Tutte polynomial along the curve Hx
0

cannot be done in time ctwo(ctw)nO(1), unless ETH fails.

Proof. Theorem 3.4.3 gives a lower bound of (p − ε)ctwnO(1) for counting connected
edgesets modulo p. In the reduction we reduced to counting essentially distinct q-
coloring modulo p, with cutwidth ctw+q2 and p = q. Thus we find a lower bound
of pctw−p2

= (α ctw)(1−α)ctw /2 for p = (α ctw)1/2. Since α is a constant we find that we
cannot have an algorithm that runs in time ctwo(ctw), unless ETH fails.

By Theorem 5.5.1 points on this curve can be computed in time twO(tw)nO(1).
Combining Theorems 5.3.1, 5.4.6, 5.4.7 and 5.5.1 proves Theorem 5.1.1.a.

5.4.5 The Curve Hy
0

The curve Hy
0 contains the point (2,1), which counts the number of spanning forests

of a graph. Using results from Chapter 4 this gives an algorithm which, as mentioned
in Chapter 4, matches the an ETH lower bound we can trivially obtain from a bound
by Brand et al. [28, Theorem 1 or Corollary 2].

Theorem 4.1.1. [Theorem 1 in [28]] If #ETH holds then there exists constants ε,C > 0
such that noO(2εn) time algorithm can compute the number of all forests in a given simple
n-vertex with at most Cn edges.

Using Theorem 4.1.3 and Theorem 5.3.1 we find the following algorithms.

Theorem 5.4.8. Let G be a graph with either a given tree decomposition of width tw or
a path decomposition of width pw. There exist algorithms that computes T (G;a,b) for
(a,b) ∈Hy

0 in time 64tw(G)nO(1) and 4pw(G)nO(1) respectively.

Combining Theorems 5.3.1, 4.1.1 and 5.4.8 proves Theorem 5.1.1.b.
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5.5 A General Algorithm

In this section we show how we can exploit bounded treewidth to compute the Tutte
polynomial at any point in the plane, in FPT-time. For this we use a standard dy-
namic programming approach.

A linear (in the input size) time FPT-algorithm has previously been given by
Noble [134]. This algorithm is double exponential in the treewidth, where the algo-
rithm we give here has a running time of the form 2O(twlog(tw)nO(1). We consider this
an improvement for our purposes, since we are mainly interested in the dependence
on the treewidth.

Theorem 5.5.1. There is an algorithm that, given a graph G and a point (a,b), computes
T (G;a,b) in time twO(tw)nO(1).

Proof. Note that, in order to compute the Tutte polynomial, we only need to know
the number ci,j of edgesets with i components and j edges, for i, j = 1, . . . ,n. We can
then compute

T (G;a,b) =
n∑

i,j=1

ci,j (a− 1)i−k(E)(b − 1)i+j−|V |,

in polynomial time.
We will now focus on computing the values of ci,j . Let (T , (Bx)x∈V (T )) be a rooted,

nice tree decomposition with root r. We define Cx(π,i, j) as the number of edge
subsets of the graph covered by the subtree rooted3 at bag Bx, with i components j
edges and whose connected components give the partition π on Bx. At the leaves of
the decomposition we have Bx = and thus

Cx(π,i, j) =

1, if π = ∅, i = j = 0,
0, otherwise.

If x is an introduce node for vertex v with child y. For Nπ(v) the set of vertices in
the same set of π, we have

Cx(π,i, j) =


∑

∅,A⊆Nπ(v)

Cy(π − v, i − |A|, j), if Nπ(v) , ∅,

Cy(π − v, i, j − 1), otherwise.

If x is a forget node for vertex v with child y, we have

Cx(π,i, j) =
∑

π′∈2By ,π′ |Bx=π

Cy(π′ , i, j).

If x is a join node with children y and z, we have

Cx(π,i, j) =
i∑

k=0

j∑
l=0

∑
π′⊔π′′=π

Cy(π,k, l)Cz(π,i − k, j − l),

3In other words, all vertices that are in some bag y, such that any path in T from y to r must pass
through x.
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where π′ ⊔π′′ = π indicates that merging any overlapping sets in π′ and π′′ results
in π.

5.6 Conclusion

In this chapter we gave a classification of the complexity of evaluating the Tutte
polynomial at integer points, parameterized by treewidth, pathwidth or cutwidth,
into either computable

• in polynomial time,

• in twO(tw)nO(1) time but not in ctwo(ctw)nO(1) time,

• in qtwnO(1) time but not in 2o(ctw) (and for many points not even in rctwnO(1)

time for some constants r < q),

assuming the (Strong) Exponential Time Hypothesis.
This classification turned out to be somewhat surprising, especially considering

the asymmetry between Hx
0 = {(x,y) : x = 1} and H

y
0 = {(x,y) : y = 1} that does not

show up in other classifications such as the ones from [28, 106], but is hinted at in
[61].

It would be interesting to see if our classification of the complexity of all points
on Z

2 can be extended to a classification of the complexity of all points on R
2 (or

even C
2). Typically, evaluation at non-integer points can be reduced to integers

points (leading to hardness for non-integer points), but we were not able to establish
such a reduction without considerably increasing the width parameters.

It would also be interesting to see if a similar classification can be made when pa-
rameterizing by the vertex cover number instead of treewidth/pathwidth/cutwidth.
We already know that the runtime of 2nnO(1) by Björklund et al. [14] for evaluating
the Tutte polynomial cannot be strengthened to a general 2O(k)nO(1) time algorithm
where k is the minimum vertex cover size of the input graph due to a result by Jaf-
fke and Jansen [107], but this still leaves the complexity of evaluating at many other
points open.

Finally it is still an open question what the complexity is of computing the Tutte
polynomial modulo some prime p. Annan [5] discusses this in his PhD thesis and
shows hardness for some of the points in F

2
p . Goodall [96] has shown that T (G;a,b)

can also be computed in polynomial time for some points that are not special points,
but over F

2
p behave like the complex valued special points (−i, i), (i,−i), (j, j2) and

(j2, j). An obvious conjecture is now that all other points, other that the special
points and H1, are #pP -hard, which one can think of as the modular equivalent of
#P -hardness.
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6Integer Multicommodity Flow Parameterized
by Various Parameters

How could drops of water know
themselves to be a river? Yet the
river flows on.

Antoine de Saint-Exupery

6.1 Introduction

The Multicommodity Flow problem is the generalization of the textbook flow prob-
lem where, instead of just one commodity, multiple different commodities have to
be transported through a network. The problem models important operations re-
search questions and several variants of this problem exist (see e.g. [155]). In this
chapter we consider the variant where for each commodity, a given amount of flow
(the demand) has to be sent from the commodity’s source to its sink, subject to a
capacity constraint on the total amount of flow through each arc. The nature and
computational complexity of the problem is highly influenced by (the structure of)
the graph (bounded graph parameters, directed edges or undirected edges, etc.) and
the capacities, demands, and flow value (integral or not, represented in unary or bi-
nary). When the flow values are allowed to be fractional, the problem can be trivially
solved through a linear program (see e.g. [113, 120]).

In this chapter we focus on the parameterized complexity of the Integer Multi-

commodity Flow problem, where all the given capacities and demands are integers,
and the output flow must also be integral. In doing so we encounter the notions
of XNLP and XALP hardness for the first time (see Definition 2.5.3). The Integer

Multicommodity Flow problem is widely studied and well known to be NP-hard
even if all capacities are 1, on both directed and undirected graphs, even when there
are only two commodities [76]. On directed graphs, it is NP-hard even for two com-
modities of demand 1 [83]. These strong hardness results have led to a wide range of
heuristic solution methods being investigated as well as a substantial body of work
on approximation algorithms. For surveys, see e.g. [9, 155, 156].

An important special case of IntegerMulticommodity Flow and the main source
of its computational hardness is the Edge Disjoint Paths problem. It can be readily
seen that Integer Multicommodity Flow is equivalent to Edge Disjoint Paths when
all capacities and demands are 1. Indeed, all aforementioned hardness results stem
from this connection.

99



100 6.1. Introduction

Parameter unary capacities binary capacities
pathwidth XNLP-complete para-NP-complete
treewidth XALP-complete para-NP-complete

weighted tree partition width FPT (1) FPT (1)
vertex cover (2); in XP (2); open

Table 6.1: Overview of our results for Integer 2-Commodity Flow. para-NP-
complete means NP-complete for fixed value of parameter. (1) Capacities of arcs in-
side bags can be arbitrary, capacities of arcs between bags are bounded by weighted
tree partition width. (2) Approximation, see Theorem 6.1.11; conjectured in FPT. For
the undirected case, the same results hold, except that for the para-NP-completeness
for the parameters pathwidth and treewidth, we need a third commodity.

Investigation of the parameterized complexity of Edge Disjoint Paths has re-
cently been continued by considering structural parameterizations. Unfortunately,
the problem is NP-hard for graphs of treewidth 2 [133] and even for graphs with a
vertex cover of size 3 [79]. It is also W[1]-hard parameterized by the size of a ver-
tex set whose removal leaves an independent set of vertices of degree 2 [89]. From
an algorithmic perspective, Ganian and Ordyniak [89] showed that Edge Disjoint

Paths is in XP parameterized by tree-cut width. Zhou et al. [160] give two XP al-
gorithms for Edge Disjoint Paths for graphs of bounded treewidth: one for when
the number of paths is small, and one for when a specific condition holds on the
pairs of terminals. We note that these results imply an XP algorithm on graphs of
bounded treewidth for a bounded number of commodities if the capacities are given
in unary. Ganian et al. [90] give an FPT algorithm parameterized by the treewidth
and degree of the graph. Friedrich et al. [87, 86] give approximation algorithms for
multicommodity flow on graphs of bounded treewidth.

These results naturally motivate the question:

What can we say about the parameterized complexity of the general Integer
Multicommodity Flow problem under structural parameterizations?

6.1.1 Results

We consider the Integer Multicommodity Flow problem for a small, fixed number
of commodities. In particular, Integer ℓ-Commodity Flow is the variant in which
there are ℓ commodities. Furthermore, we study the setting where some well-known
structural parameter of the input graph, particularly its pathwidth or treewidth, is
small.

The main results in this chapter show that Integer 2-Commodity Flow is un-
likely to be fixed-parameter tractable parameterized by treewidth and or by path-
width. However, instead of being satisfied with just a W[t]-hardness result for some
t or any t, we seek stronger results using XNLP and XALP. An overview of the results
can be found in Table 6.1.
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We prove XNLP-completeness (and stronger) results for Integer ℓ-Commodity
Flow. We distinguish how the capacities of arcs and edges are specified: these can
be given in either unary or binary. First, we consider the unary case:

Theorem 6.1.1. Integer 2-Commodity Flow with capacities given in unary, parame-
terized by pathwidth, is XNLP-complete.

Theorem 6.1.2. Undirected Integer 2-Commodity Flow with capacities given in
unary, parameterized by pathwidth, is XNLP-complete.

These hardness results follow by reduction from the XNLP-complete #Chained

Multicolored Clique problem [22], a variant of the perhaps more familiar Mul-

ticolored Clique problem [78]. We follow a common strategy in such reductions,
using vertex selection and edge verification gadgets. However, a major hurdle is to
use flows to select vertices and verify the existence of edges to form the sought-after
cliques. To pass this hurdle, we construct gadgets that use so-called Sidon sets (see
Subsection 6.2.1) as flow values, combined with gadgets to check that a flow value
indeed belongs to such a Sidon set.

For the parameter treewidth, we are able to show a slightly stronger result. It
turns out that many problems that are XNLP-complete with pathwidth as parameter
are XALP-complete with treewidth as parameter. We show that this phenomenon
also holds for the studied Integer Multicommodity Flow problem:

Theorem 6.1.3. Integer 2-Commodity Flow with capacities given in unary, parame-
terized by treewidth, is XALP-complete.

The reduction is from the XALP-complete Tree-Chained Multicolored Clique

problem [23] and follows similar ideas as the above reduction. Combining tech-
niques of the proofs of Theorems 6.1.2 and 6.1.3 gives the following result.

Theorem 6.1.4. Undirected Integer 2-Commodity Flow with capacities given in
unary, parameterized by treewidth, is XALP-complete.

Assuming the Slice-wise Polynomial Space Conjecture [137, 21], these results show
that XP-algorithms for either directed or undirected Integer 2-Commodity Flow for
graphs of small pathwidth or treewidth cannot use only f (k)|x|O(1) memory. More-
over, the XNLP- and XALP-hardness implies these problems are W [t]-hard for all
positive integers t.

If the capacities are given in binary, then the problems become even harder.

Theorem 6.1.5. Integer 2-Commodity Flow with capacities given in binary is NP-
complete for graphs of pathwidth at most 13.

Theorem 6.1.6. Undirected Integer 3-Commodity Flow with capacities given in bi-
nary is NP-complete for graphs of pathwidth at most 18.

Finally, we consider a variant of the Integer Multicommodity Flow problem
where the flow must be monochrome, i.e. a flow is only valid when no edge carries
more than one type of commodity. Then, we obtain hardness even for parameteriza-
tion by the vertex cover number of the graph, for both variants of the problem.
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Theorem 6.1.7. Integer 2-Commodity Flow with Monochrome Edges is NP-hard
for binary weights and vertex cover number 6, and W[1]-hard for unary weights when
parameterized by the vertex cover number.

Theorem 6.1.8. Undirected Integer 2-Commodity Flow with Monochrome Edges

is NP-hard for binary weights and vertex cover number 6, and W[1]-hard for unary
weights when parameterized by the vertex cover number.

To complement our hardness results, we prove two algorithmic results. Bodlaen-
der et al. [17] had given FPT algorithms for several flow problems, using the recently
defined notion of weighted tree partition width as parameter (see [17]). Weighted
tree partition width can be seen as a variant of the notion of tree partition width
for edge-weighted graphs, introduced by Seese [141] in 1985 under the name strong
treewidth. See Section 2.3 for formal definitions of these parameters. We note that the
known hardness for the vertex cover number [79] implies that Edge Disjoint Paths

is NP-hard even for graphs of tree partition width 3. Here, we prove the following:

Theorem 6.1.9. The Integer ℓ-Commodity Flow problem can be solved in time

O(22tpw3ℓ tpw
n), where tpw is the breadth of a given weighted tree partition of the input

graph.

Theorem 6.1.10. The Undirected Integer ℓ-Commodity Flow problem can be solved

in time O(22tpw3ℓ tpw
n), where tpw is the breadth of a given weighted tree partition of the

input graph.

For the standard Integer 2-Commodity Flow problem with the vertex cover
number of the input graph as parameter, we conjecture that this problem is in FPT.
As a partial result, we can give the following approximation algorithms. Let vc(G)
denote the vertex cover number of a graph G.

Theorem 6.1.11. There exists a constant C > 0 such that the following holds. There is a
polynomial-time algorithm that, given an instance of Integer 2-Commodity Flow on a
graph G with demands d1,d2, either outputs that there is no flow that meets the demands
or outputs a 2-commodity flow of value at least di −C vc3 for each commodity i ∈ [2].

Theorem 6.1.12. There exists a constant C > 0 such that the following holds. There is a
polynomial-time algorithm that, given an instance of Undirected Integer 2-Commodity
Flow on a graph G with demands d1,d2, either outputs that there is no flow that meets
the demands or outputs a 2-commodity flow of value at least di − C vc3 for commodity
i ∈ [2].

6.2 Preliminaries

In this chapter, we consider both directed and undirected graphs. Graphs are di-
rected unless explicitly stated otherwise.



Chapter 6. Integer Multicommodity Flow 103

6.2.1 Sidon Sets

A Sidon set is a set of positive integers {a1, a2, . . . , an} such that all pairs have a different
sum, i.e., when ai + ai′ = aj + aj ′ then {i, i′} = {j, j ′}. The notion of a Sidon set is
equivalent to that of a Golomb ruler. In a Golomb ruler, pairs of different elements
have unequal differences, i.e. if i , i′ and j , j ′ , then |ai − ai′ | = |aj − aj ′ |, then {i, i′} =
{j, j ′}. A simple argument implies the following.

Theorem 6.2.1. A Sidon set of n elements in [4n2] can be found in n
√
n logO(1)(n) time

and O(logn) space.

Proof. We follow the argument of [25]. We note that, given a prime number p, Erdös
and Turán [74] give an explicit construction of a Sidon set of size p:

{2pk + (k2 mod p)|k ∈ {0,1, . . . ,p − 1}}.

We use the following procedure to find a prime between n and 2n and then use
the above expression to produce a sufficiently large Sidon set (removing any excess
elements to get a set of exactly size n).

For each ℓ ∈ {n,n + 1, . . . ,2n} we check for i = 1, . . . ,
√
ℓ whether i divides ℓ. If no

dividers are found this way we return p = ℓ. Note that there must be at least one
prime in this interval, by Bertrand’s postulate [42, 3] and that the elements of the set
are of value at most 4n2. Each division can be done in logO(1)(n) time and the set can
be constructed inO(n log(n)) time and thus the whole procedure takes n

√
n logO(1)(n)

time. Each operation can be done using O(log(n)) space and we only need to save p
to memory to construct the set, hence O(log(n)) space suffices.

6.2.2 Multicommodity Flow Problems

We now formally define our flow problems. A flow network is a pair (G,c) of a di-
rected (undirected) graph G = (V ,E) and a function c : E →N0 that assigns to each
arc (edge) a non-negative integer capacity.

For a positive integer ℓ, an ℓ-commodity flow in a flow network with sources
s1, . . . , sℓ ∈ V and sinks t1, . . . , tℓ ∈ V is an ℓ-tuple of functions f 1, . . . , f ℓ : E → R≥0,
that fulfils the following conditions:

• Flow conservation. For all i ∈ [ℓ], v < {si , ti},
∑
wv∈E f

i(wv) =
∑
vw∈E f

i(vw).

• Capacity. For all vw ∈ E,
∑
i∈[ℓ] f

i(vw) ≤ c(vw).

An ℓ-commodity flow is an integer ℓ-commodity flow if for all i ∈ [c], vw ∈ E, f i(vw) ∈
N0. The value for commodity i of an ℓ-commodity flow is equal to

∑
siw∈E f

i(siw) −∑
wsi∈E f

i(wsi). We shorten this to ‘flow’ when it is clear from context what the value
of ℓ is and whether we are referring to an integer or non-integer flow.

The main problem considered in the chapter is as follows:
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Integer ℓ-Commodity Flow

Input: A flow network G = (V ,E) with capacities c, sources s1, . . . , sℓ ∈ V , sinks
t1, . . . , tℓ ∈ V , and demands d1, . . . ,dℓ ∈N.
Question: Does there exist an integer ℓ-commodity flow in G which has value di
for each commodity i ∈ [ℓ]?

The Integer Multicommodity Flow problem is the problem that consists of all
instances of Integer ℓ-Commodity Flow for all non-negative integers ℓ.

For undirected graphs, flow still has direction, but the capacity constraint changes
to:

• Capacity. For all vw ∈ E,
∑
i∈[ℓ] f

i(vw) + f i(wv) ≤ c(vw).

The undirected version of the Integer ℓ-Commodity Flow problem then is as fol-
lows:

Undirected Integer ℓ-Commodity Flow

Input: An undirected flow network G = (V ,E) with capacities c, sources s1, . . . , sℓ ∈
V , sinks t1, . . . , tℓ ∈ V , and demands d1, . . . ,dℓ ∈N.
Question: Does there exist an integer ℓ-commodity flow in G which has value di
for each commodity i ∈ [ℓ]?

Finally, we say that an ℓ-commodity flow f 1, . . . , f ℓ is monochrome if no arc (edge)
has positive flow of more than one commodity. That is, if f i(e) > 0 for some arc
(or edge) e, then f i

′
(e) = 0 for all i′ ∈ [ℓ] \ {i}. We can then immediately define

monochrome versions of Integer ℓ-Commodity Flow and Undirected Integer ℓ-
Commodity Flow in the expected way.

6.3 Hardness results

In this section, we give the proofs of our hardness results. The section is partitioned
into three parts. We start by giving the results for the case of unary capacities, pa-
rameterized by pathwidth and parameterized by treewidth, both for the directed
and undirected cases. This is followed by our results for binary capacities in these
settings. Finally, we give the results for graphs of bounded vertex cover, for both the
unary and binary case.

6.3.1 Unary Capacities

We prove our hardness results for IntegerMulticommodity Flow with unary capac-
ities, parameterized by pathwidth and parameterized by treewidth. We aim to re-
duce from Chained Multicolored Clique (for the parameter pathwidth) and Tree-

Chained Multicolored Clique (for the parameter treewidth). We first introduce a
number of gadgets: subgraphs that fulfill certain properties and that are used in the
hardness constructions. After that, we give the hardness results for directed graphs,
followed by reductions from the directed case to the undirected case.

Before we start describing the gadgets, it is good to know that all constructions
will have disjoint sources and sinks for the different commodities. We will set the
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demands for each commodity equal to the total capacity of the outgoing arcs from
the sources, which is equal to the total capacity of the incoming arcs to the sinks.
Thus, the flow over such arcs will be equal to their capacity.

Furthermore, throughout this section, our constructions will have two commodi-
ties. We name the commodities 1 and 2, with sources s1, s2 and sinks t1, t2, respec-
tively.

Gadgets

We define two different types of (directed) gadgets. Given an integer a, the a-Gate
gadget either can move 1 unit of flow from one commodity from left to right, or at
most a units of flow from the other commodity from top to bottom, but not both.
Hence, it models a form of choice. This gadget will grow in size with a, and thus will
only be useful if the input values are given in unary. Given a set S of integers and a
large integer L (larger than any number in S), the (S,L)-Verifier is used to check if the
flow over an arc belongs to a number in S. The a-Gate gadget is used as a sub-gadget
in this construction. In our reduction, later, we will use appropriately constructed
sets S to select vertices or to check for the existence of edges. Both types of gadget
have constant pathwidth, and thus constant treewidth.

When describing the gadgets and proving that their tree- or pathwidth is bounded,
it is often convenient to think of them as puzzle pieces being placed in a bigger mold.
Formally, a (puzzle) piece is a directed (multi-)graph H given with a set B− ⊆ V (H)
of vertices that have in total a incoming arcs without tail (entry arcs) and a set
B+ ⊆ V (H) of vertices that have in total b outgoing arcs without head (exit arcs).
The sets B− and B+ are disjoint and we call the vertices of B− and B+ the boundary
vertices of H . It is a path piece if H has a path decomposition such that all vertices of
B− are (also) in the first bag and all vertices of B+ are (also) in the last bag.

Now let G be any directed graph or piece. We say that the piece (H,B−,B+, a,b)
is a valid piece for v ∈ V (G) if the in-degree of v is a and the out-degree of v is
b. Then the placement of the valid piece for v in G replaces v by H such that the
original incoming and outcoming arcs of v are identified with the entry and exit arcs
(respectively) of H in any way that forms a bijection. This terminology enables the
following convenient lemmas:

Lemma 6.3.1. Let G be a path piece with boundary vertices B−,B+. Let S ⊆ V (G). Sup-
pose that the path decomposition ({Xi | i ∈ I},T = (I,F)) of G has width pw(G) and, for
every v ∈ S, all in-neighbors of v also appear in the first bag containing v. Moreover, for
every v ∈ S, let (Hv ,B−v ,B

+
v , av ,bv) be a valid path piece for v such that the assumed path

decomposition of Hv has width pw(Hv). Let G′ be obtained from G by the placement of
the pieces of Hv in G for all v ∈ S. Then G′ is a path piece such that the required path
decomposition has width at most the maximum over all i ∈ I of:

|Xi \ S |+ max
v∈S∩Xi

pw(Hv) + 1 +
∑

v′∈(S∩Xi )\{v}
max{|B−v′ |, |B

+
v′ |}

− 1.

Proof. We modify the path decomposition for G. We may assume that the path de-
composition is such that for two consecutive bags Xi ,Xi′ , it holds that |Xi△Xi′ | = 1.
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For every v ∈ S, let Xv be the first bag containing v (note that Xv will be the same for
all v in the first bag of the path decomposition of G, but will otherwise be unique).
Then, for each v ∈ S, iteratively, replace v in Xv by B−v . Then, create a number of
copies of the i ∈ I corresponding to Xv , where the number of copies is equal to the
number of nodes of the assumed path decomposition of Hv . To each of these new
bags, add the vertices in the bags of the assumed path decomposition of Hv in the
natural order. We need special care again for the first bag of the path decomposition:
here we expand the decomposition for one vertex after the other. Finally, we add B+

v
to all further bags containing v. The claimed bound immediately follows from this
construction.

With some additional assumptions on the path decomposition, we find the fol-
lowing strengthening of Lemma 6.3.1.

Lemma 6.3.2. Let G be a path piece with boundary vertices B− and B+. Let S ⊆ V (G).
Suppose that G has a path decomposition ({Xi | i ∈ I},T = (I,F)) of width pw(G), the first
bag contains at most one vertex from S, no bag contains more than two vertices from S,
and, for every v ∈ S, every in-neighbor u of v is contained in the first bag containing v and
if u ∈ S, not in any subsequent bags. Moreover, for every v ∈ S, let (Hv ,B−v ,B

+
v , av ,bv) be a

valid path piece for v such that the assumed path decomposition of Hv has width pw(Hv).
Let G′ be obtained from G by the placement of the pieces of Hv in G for all v ∈ S. Then G′

is a path piece such that the required path decomposition has width at most the maximum
over all i ∈ I of:

|Xi \ S |+ max

 max
v∈S∩Xi

{pw(Hv) + 1} ,
∑

v∈S∩Xi

max{|B−v |, |B+
v |}

− 1.

Proof. We modify the path decomposition for G. We may assume that the path de-
composition is such that for two consecutive bags Xi ,Xi′ , it holds that |Xi′ \Xi | ≤ 1.
For every v ∈ S, let Xv be the first bag containing v (note that Xv is unique by the
previous assumption and the assumption that the first bag contains at most one ver-
tex from S). Treat the bags of the path decomposition in order of the path order on
T . Consider the vertex v ∈ S for which Xv comes first in this order. Replace v by B−v
in this bag. Then, create a number of copies of this bag equal to the number of bags
of the assumed path decomposition of Hv , and insert these bags (joined with the
vertices of Xv \ {v}) into the path decomposition after Xv . At the end, we have a bag
containing (Xv \{v})∪B+

v , because (Hv ,B+
v ,B
−
v , av ,bv) is a path piece. We now continue

along the path order of T and replace v by B+
v in every bag we encounter, until the

first bag we encounter containing a vertex v′ ∈ S \ {v}. In this bag, we still replace v
by B+

v , then replace v′ by B−v′ and create a new subsequent bag where we remove B+
v .

This yields a bag containing (Xv′ \ {v,v′})∪B−v . Since v will not appear in any further
bags by the assumptions of the lemma, this is safe. Then, we continue with the same
treatment for v′ as we did before with v, etc., all the way until we reach the end of
T . The claimed bound immediately follows from this construction.
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We can prove a similar lemma with respect to tree decompositions. A piece
(H,B−,B+, a,b) is a tree piece if H has a tree decomposition that has a bag contain-
ing B− ∪B+.

Remark 6.3.3. Any path piece (H,B−,B+, a,b) with an assumed path decomposition of
width pw(H) is also a tree piece with a tree decomposition of width at most pw(H) + |B+|
by adding B+ to every bag.

Lemma 6.3.4. Let G be a tree piece with boundary vertices B−,B+ such that the assumed
tree decomposition ({Xi | i ∈ I},T = (I,F)) has width tw(G). Let S ⊆ V (G). For every v ∈ S,
let (Hv ,B−v ,B

+
v , av ,bv) be a valid tree piece for v such that the assumed tree decomposition

of Hv has width tw(Hv). Let G′ be obtained from G by the placement of the pieces of Hv
in G for all v ∈ S. Then G′ is a tree piece such that the required tree decomposition has
width at most:

max
{

max
v∈S
{tw(Hv)},max

i∈I

{
|Xi \ S |+ max

v∈S∩Xi
{|B−v′ ∪B

+
v′ |}

}
− 1

}
.

Proof. We modify the tree decomposition for G. For each v ∈ S, replace v in all bags
containing v by B−v ∪ B+

v . For each v ∈ S, add the assumed tree decomposition of
Hv to T by adding an edge between the node of this tree decomposition whose bag
contains B− ∪ B+ and some node i ∈ I for which v used to be in Xi . The claimed
bound immediately follows from this construction.

Remark 6.3.5. The same lemmas hold (with simple modifications) in the case of directed
or undirected graphs for directed or undirected path/tree pieces respectively.

We now describe both gadgets in detail.

a-Gate Gadget

Let a be a positive integer. The a-Gate gadget gadget will allow a units of flow of
commodity 2 through one direction, unless 1 unit of flow of commodity 1 flows
through the other direction.

The gadget is constructed as follows. See Figure 6.1 for its schematic representa-
tion and for an example with a = 4. We build a directed path P with 2 ·a vertices. We
add two additional vertices v and w. The vertex v has arcs towards the first, third,
fifth, etc. vertices of the path, and w has arcs from the second, fourth, sixth, etc. ver-
tices of the path. All these arcs and the arcs of the path have capacity 1. We add an
incoming arc of capacity 1 to the leftmost vertex x of the path and an incoming arc
of capacity a to v. We call these the entry arcs of the gadget. We add an outgoing arc
of capacity 1 at the rightmost vertex y of the path and an outgoing arc with capacity
a to w. We call these the exit arcs of the gadget.

We call v,w,x,y the boundary vertices of the gadget. Note that all arcs incoming
to or outgoing from the gadget are incident on boundary vertices.

Observe that this gadget can be constructed in time polynomial in the given value
of a if a is given in unary, as the gadget has size linear in a. We capture the function-
ing of the gadget in the following lemma.
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Figure 6.1: The a-Gate gadget. Left: the schematic representation of the gadget, with
its entry and exit arcs. Right: the full construction for a = 4, with arcs labelled by
their capacities.

Lemma 6.3.6. Consider the a-Gate gadget for some integer a. Let f be some 2-commodity
flow such that the entry arc at x and the exit arc at y only carry flow of commodity 1 and
such that the entry arc at v and the exit arc at w only carry flow of commodity 2. Then:

• If v receives a units of commodity 2, then x receives no flow of commodity 1.

• If x receives 1 unit of commodity 1, then v receives no flow of commodity 2.

Proof. Suppose that v receives a units of commodity 2. Then, every arc leaving v
is used to capacity by commodity 2. Since the exit arc at y can only have flow of
commodity 1, the flow of commodity 2 can only exit the gadget at w. This means
that the arc leaving x is used to capacity by commodity 2. As such, x cannot receive
any flow of commodity 1.

Suppose that x receives 1 unit of commodity 1. Since w can only receive flow of
commodity 2, the flow of commodity 1 can only exit the gadget at y. This means that
all the arcs in the path P are used to capacity by commodity 1. As such, w cannot
receive any flow of commodity 2.

Lemma 6.3.7. For any integer a, the a-Gate gadget is a path piece such that the required
path decomposition has width 3.

Proof. The gadget is a piece by construction, with B− = {v,x}, B+ = {w,y}, and a = b =
2. To construct the path decomposition, begin with a path decomposition where the
endpoints of each edge on the path from x to y are in a consecutive bags together.
Add v,w to every bag. This is a valid path decomposition of width 3.
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Figure 6.2: The (S,L)-Verifier gadget. Left: a schematic representation of the gadget,
with its entry and exit arcs. The value on the bottom-right of the schematic rep-
resentation denotes the sum of the incoming flows to the gadget. Right: the graph
that realises the gadget for S = {a1, a2, a3}, with arcs labelled by their capacities (the
unlabelled arcs have capacities a2 and L−a2 respectively; their labels are omitted for
clarity).

Verifier Gadget

Let L be a (typically large) integer. Let S ⊆ [L − 1] be a set of integers, where S =
{a1, . . . , a|S |}. An (S,L)-Verifier gadget is used to verify that the amount of flow through
an edge is in S.

The gadget is constructed as follows. See Figure 6.2 for its schematic representa-
tion and for an example with S = {a1, a2, a3}. We add six vertices u, v, w, x, y, z; these
are the boundary vertices of this gadget. We add arcs s1u and zt1 of capacity |S | − 1.
Then, v and w have incoming arcs of capacity L−1 (the entry arcs of this gadget) and
x and y have outgoing arcs of capacity L− 1 (the exit arcs of this gadget). Finally, we
have |S | rows of two Gate gadgets each. The ith row has an ai-Gate gadget and an
(L− ai)-Gate gadget with the following arcs:

• an arc of capacity 1 from u to the first Gate gadget,

• an arc of capacity ai from v to the first Gate gadget,

• an arc of capacity ai from the first Gate gadget to x,

• an arc of capacity 1 from the first to the second Gate gadget,

• an arc of capacity L− ai from w to the second Gate gadget,

• an arc of capacity L− ai from the second Gate gadget to y,

• an arc of capacity 1 from the second Gate gadget to z.
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Observe that this gadget can be constructed in time polynomial in the values of
a1, . . . , a|S | if they are given in unary, as the Gate gadgets have size linear in the given
value. We capture the functioning of the gadget in the following lemma.

Lemma 6.3.8. Consider the (S,L)-Verifier gadget for some integer L and some S ⊆ [L−1].
Let f be some 2-commodity flow such that s1 sends |S | − 1 units of flow of commodity 1
to u, t1 receives |S | − 1 units of flow of commodity 1 from z. Suppose there is an integer
α ∈ [L−1] such that v receives α units of flow of commodity 2 over its entry arc, w receives
L −α units of flow of commodity 2 over its entry arc, and neither entry arc receives flow
of commodity 1. Then:

• α ∈ S,

• x sends α units of flow of commodity 2 over its exit arc,

• y sends L−α units of flow of commodity 2 over its exit arc.

Conversely, if α ∈ S, then there exists a 2-commodity flow that fulfills the conditions of
the lemma.

Proof. Since u receives |S | −1 units of flow of commodity 1 and has |S | outgoing arcs,
u sends 1 unit of flow of commodity 1 over all but one of its outgoing arcs. Recall
that v and w do not receive flow of commodity 1. If 1 unit of flow of commodity 1
is sent over say the ith outgoing arc of u, in order to arrive at z, it must go through
the ai-Gate gadget and the corresponding (L− ai)-Gate gadget. The same amount of
flow must also leave these gadgets and thus by Lemma 6.3.6, these gadgets cannot
transfer flow of commodity 2. Thus, the flow of commodity 2 that v and w receive
must go through the Gate gadgets of the row where u has not sent any flow to,
say this is row j. x and y must send flow through arcs of capacity aj and L − aj ,
respectively. The capacities of the arcs and the gadgets enforce that α ≤ aj and L−α ≤
L− aj , respectively. Thus, α = aj , and so α ∈ S.

All the flow that the (L−aj )-Gate gadget receives (which is only of commodity 2)
must be sent to y, since t1 is a sink. Hence, y sends L−α flow through its exit arc. The
flow that the aj-Gate gadget receives (which is only of commodity 2) must all be sent
to x: we cannot send even 1 unit of flow over the horizontal arc to the second gadget,
as the second gadget would then receive L − α + 1 units of flow of commodity 2.
However, it cannot send flow of commodity 2 to z (as z only has an arc to t1) and can
send out at most L−α flow to y. Thus, x sends α units of flow over its exit arc.

For the converse, u sends 1 unit of flow of commodity 1 through all Gate gadgets
of the values unequal to α, and α and L−α flow through the two other Gate gadgets.

We note that in the later proofs, for a particular choice of L, we may also use
Verifier gadgets with capacities 2L−1, and incoming and outgoing flows adding up to
2L instead of L. We will explicitly indicate that, also in the schematic representation.

Lemma 6.3.9. For any integer L and any S ⊆ [L − 1], the (S,L)-Verifier gadget is a path
piece such that the required path decomposition (ignoring s1 and t1) has width 9.
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Proof. The gadget is a piece by construction, with B− = {u,v,w} and B+ = {x,y,z}.
If we treat the Gate gadgets as vertices, then we can immediately construct a path
decomposition of width 7, by putting u, v, w, x, y, z in all bags and adding the two
vertices corresponding to each row of Gate gadgets in successive bags. Since the
Gate gadgets are each path pieces with a decomposition of width 3 by Lemma 6.3.7
and each have two entry and exit arcs, we obtain a path decomposition of the whole
Verifier of width 9 by Lemma 6.3.2.

Reductions for Directed Graphs

Using the gadgets we just proposed, we show our hardness results for Integer 2-
Commodity Flow (i.e. the case of directed graphs) with pathwidth and with treewidth
as parameter.

We note that our hardness construction will be built using only Verifier gadgets
as subgadgets. The entry arcs and exit arcs of this gadget are meant to transport
solely flow of commodity 2 per Lemma 6.3.8. Hence, in the remainder, it helps to
think of only commodity 2 being transported along the edges, so that we may focus
on the exact value of that flow to indicate which vertex is selected or whether two
selected vertices are adjacent. We later make this more formal when we prove the
correctness of the reduction.

Theorem 6.1.1. Integer 2-Commodity Flow with capacities given in unary, parame-
terized by pathwidth, is XNLP-complete.

Proof. Membership in XNLP can be seen as follows. Take a path decomposition of
G, say with successive bags (X1, . . . ,Xr ). One can build a dynamic programming ta-
ble, where each entry is indexed by a node j with associated bag Xj and a function
f ij : Xj → [−C,C], where C is some upper bound on the maximum value of the flow
of any commodity (note that C is linear in the input size), for i = 1,2 and 1 ≤ j ≤ r.
One should interpret f ij as mapping each vertex v ∈ Xj to the net difference of flow
of commodity i in- or outgoing on that vertex in a partial solution up to bag Xj .
The content of the table is a Boolean representing whether there is a partial flow
satisfying the requirements that f ij sets. Basic application of dynamic programming
on (nice) path decompositions can solve the Integer 2-Commodity Flow problem
with this table. This dynamic programming algorithm can be transformed to a non-
deterministic algorithm by not building entire tables, but instead guessing one ele-
ment for each table with positive Boolean. The guessed element of the table can be
represented byO(pw(G) logC) bits; in addition, we needO(logn) bits to know which
bag of the path decomposition we are handling, and to look up relevant information
of the graph. This yields a non-deterministic algorithm with O(pw(G) logC + logn)
memory.

For the hardness, we use a reduction from ChainedMulticolor Clique (see The-
orem 2.5.7). Suppose we have an instance of Chained Multicolor Clique, with a
graph G = (V ,E), coloring c : V → [k], and partition V1, . . . ,Vr of V .

Build a Sidon set with |V | numbers by applying the algorithm of Theorem 6.2.1.
Following the same theorem, the numbers are in [4|V |2]. We set L = 4|V |2 + 1. To
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each vertex v ∈ V , we assign a unique element of the set S, denoted by S(v). For
any subset V ′ ⊆ V , let S(V ′) = {S(v) | v ∈ W }. For any subset E′ ⊆ E, let S(E′) =
{S(u) + S(v) | uv ∈ E′}.

S(Vi,γ)

s2

L

L

Figure 6.3: Vertex selector gadget used in the proof Theorem 6.1.1. The flow sent
through the (S(Vi,γ ),L)-Verifier will correspond to selecting a vertex from the class
Vi,γ .

We now describe several (further) gadgets that we use to build the full construc-
tion. Let Vi,γ be the vertices in Vi with color γ . Each set Vi,γ is called a class. For each
class Vi,γ , we use a Vertex selector gadget to select the vertex from Vi,γ that should be
in the solution to the Chained Multicolored Clique instance. This gadget (see Fig-
ure 6.3) consists of a single (S(Vi,γ ),L)-Verifier gadget, where its entry arcs jointly
start in a single vertex that in turn has a single arc from s2 of capacity L. Intuitively,
we select some v ∈ Vi,γ if and only if the left branch receives S(v) flow and the right
branch receives L− S(v) flow.

For each pair of incident classes, we construct an Edge check gadget. That is, we
have an Edge check gadget for all classes Vi,γ and Vi′ ,γ ′ with |i − i′ | ≤ 1, and {i,γ} ,
{i′ ,γ ′}. Let Ei

′ ,γ ′

i,γ ⊆ E denote the set of edges between Vi,γ and Vi′ ,γ ′ . An Edge check
gadget will check if two incident classes have vertices selected that are adjacent. The
gadget (see Figure 6.4) consists of a central (S(E),2L)-Verifier gadget (note that we

could also use an (S(Ei
′ ,γ ′

i,γ ),2L)-Verifier gadget instead, but this is not necessary). Its
entry arcs originate from two vertices that have as incoming arcs the exit arcs of
an (S(Vi,γ ),L)- and (S(Vi′ ,γ ′ ),L)-Verifier gadget. Its exit arcs head to two vertices that
have as outgoing arcs the entry arcs of a different (S(Vi,γ ),L)- and (S(Vi′ ,γ ′ ),L)-Verifier
gadget. The gadget thus has four entry arcs and four exit arcs, corresponding to the
entry arcs of the first two Verifier gadgets and the exit arcs of the last two Verifier
gadgets.

Intuitively, if the entry arcs have flow (of commodity 2) of value S(v), L − S(v),
S(w), and L−S(w) consecutively (refer to Figure 6.4), then there is a valid flow if and

only if vw ∈ Ei
′ ,γ ′

i,γ . Note that the sum S(v) + S(w) is unique, because S is a Sidon set,
and thus so is 2L − (S(v) + S(w)). Hence, the only way for the flow to split up again
and leave via the exit arcs is to split into S(v), S(w), L−S(v), and L−S(w); otherwise,



Chapter 6. Integer Multicommodity Flow 113

S(Vi,γ) S(Vi′,γ′)

S(E)

L L

2L

S(Vi,γ) S(Vi′,γ′)
L L

Ei′,γ′
i,γ

Figure 6.4: Edge check gadget for the combination Vi,γ and Vi′ ,γ ′ . Left: the schematic
representation of the gadget. The flow corresponding to the Vi,γ vertex enters on
the left and exits on the right. The flow corresponding to the Vi′ ,γ ′ vertex enters
from the top and exits at the bottom. Right: the realization of the gadget. The flow
sent through the (S(E),2L)-Verifier must correspond to a unique sum of two incident
vertices from the classes Vi,γ and Vi′ ,γ ′ . The (S(Vi,γ ),L)-Verifiers and (S(Vi′ ,γ ′ ),L)-
Verifiers ensure the right combination is checked, and the outgoing flow is the same
as the incoming flow. Chaining Edge check gadgets makes some (S(Vi,γ ),L)-Verifiers
redundant, but this does not matter for the argument.

it cannot pass the (S(Vi,γ ),L)-Verifier or the (S(Vi′ ,γ ′ ),L)-Verifier at the bottom of the
Edge check gadget. Hence, the exit arcs again have flow of values S(v), L−S(v), S(w),
and L− S(w) consecutively, just like the entry arcs.

With these gadgets in hand, we now describe the global structure of the reduc-
tion. Throughout, it will be more helpful to look at the provided figures than to
follow the formal description. For each class Vi,γ , we first create a Vertex selector
gadget (as in Figure 6.3).

We then create Edge check gadgets to check, for any i ∈ [r], that the selected
vertices in Vi,γ for all γ ∈ [k] are adjacent in G. We create k rows of gadgets. Row
γ ∈ [k] has k −γ Edge check gadgets, which correspond to checking that the vertices

selected in Vi,γ and Vi,γ ′ are indeed adjacent (via edges in Ei,γ
′

i,γ ) for each γ ′ ∈ [γ+1, k].
The construction is as follows (see Figure 6.5). For any γ ∈ [k],γ ′ ∈ [γ+1, k], the Edge

check gadget for Ei,γ
′

i,γ has its left entry arcs unified with the bottom exit arcs of the

Edge check gadget for Ei,γ
′−1

i,γ−1 if γ > 1 and γ ′ = γ + 1 and with the right exit arcs of

the Edge check gadget for Ei,γ
′−1

i,γ if γ ′ > γ +1. The Edge check gadget for Ei,γ
′

i,γ has its

top entry arcs unified with the bottom exit arcs of the Edge check gadget for Ei,γ
′

i,γ−1
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s2

V1

S(V1,1) S(V1,2) S(V1,3) S(V1,4)

E1,2
1,1 E1,3

1,1 E1,4
1,1

E1,3
1,2 E1,4

1,2

E1,4
1,3

α1,1
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L− α1,3
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Figure 6.5: Illustration of the structure of Vertex selector and Edge check gadgets to
enforce that the selected vertices from V1 form a clique. In this example, k = 4. The
αi,γ ’s denote the amount of flow, having a value of S(v) for some v ∈ Vi,γ , selected in
the corresponding (S(Vi,γ ),L)-Verifiers of the Vertex selector gadgets.
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Figure 6.6: Illustration of the structure of the Edge check gadgets to enforce that the
selected vertices from V1 and from V2 are complete to each other. In this example,
k = 4. The αi,γ ’s denote the amount of flow, having a value of S(v) for some v ∈ Vi,γ ,
selected in the corresponding (S(Vi,γ ),L)-Verifiers.
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if γ > 1.
We call this the Triangle gadget for Vi . Note that it has 2k entry arcs and 2k exit

arcs. The former can be interpreted to be partitioned into k columns, while the latter
can be seen to be partitioned into k rows (see Figure 6.5).

Note that chaining Edge check gadgets makes some (S(Vi,γ ),L)-Verifiers redun-
dant, as two such verifiers of the same type will follow each other. However, for
the sake of clarity and as it does not matter for the overall argument, we leave such
redundancies in place.

Next, we create Edge check gadgets to check, for any i ∈ [r − 1], that the selected
vertices in Vi,γ and Vi+1,γ ′ for all γ,γ ′ ∈ [k] are indeed adjacent in G. We create a grid
with k rows and k columns of gadgets, where each row corresponds to a combination
of γ and γ ′ . The construction is as follows (see Figure 6.6). For each γ,γ ′ ∈ [k], the

Edge check gadget for Ei+1,γ ′

i,γ has its left entry arcs identified with the right exit arcs

of the Edge check gadget for Ei+1,γ ′−1
i,γ if γ ′ > 1 and it has its top entry arcs identified

with the bottom exit arcs of the Edge check gadget for Ei+1,γ ′

i,γ−1 if γ > 1.
We call this the Square gadget for Vi and Vi+1. Note that it has 4k entry arcs and

4k exit arcs. The horizontal entry and exit arcs (see Figure 6.6) correspond to Vi ,
whereas the vertical entry and exit arcs correspond to Vi+1.

Then, we connect the Vertex selector and Triangle gadgets. For each Vi , we con-
nect the Vertex selector gadgets for Vi to the Triangle gadget for Vi as follows (see
Figure 6.5). The Edge check gadget for Ei,2i,1 of the Triangle gadget has its left entry
arcs unified with the exit arcs of the Vertex selector gadget of Vi,1. For all γ ∈ [2, k],

the Edge check gadget for Ei,γi,γ−1 has its top entry arcs unified with the exit arcs of
the Vertex selector gadget of Vi,γ .

Finally, we connect the Triangle and Square gadgets (see Figure 6.7). The Square
gadget for V1 and V2 has its horizontal entry arcs identified with the exit arcs of the
Triangle gadget for V1. Then, for the Square gadget for Vi and Vi+1 for any i ∈ [r −1],
it has its vertical entry arcs identified with the exit arcs of the Triangle gadget for
Vi+1 and, if i ∈ [r − 2], it has its vertical exit arcs identified with the horizontal entry
arcs of the Square gadget for Vi+1 and Vi+2. Its 2k horizontal exit arcs are paired (one
pair per color class) and directed to a vertex; these k vertices are then each connected
by a single arc of capacity L to t2 (cf. Figure 6.6). Finally, we also do the latter for the
vertical exit arcs of the Square gadget for Vr−1 and Vr .

We now set the demand for commodity 1 to the sum of the capacities of the
outgoing arcs of s1 (which is equal to the sum of the capacities of the incoming
arcs of t1). We set the demand for commodity 2 to the sum of the capacities of the
outgoing arcs of s2 (which is equal to the sum of the capacities of the incoming arcs
of t2). This completes the construction. We now prove the bound on the pathwidth,
followed by the correctness of the reduction and a discussion of the time and space
needed to produce it. To prove the pathwidth bound, we note that all constructed
gadgets are path pieces, and thus we can apply Lemma 6.3.1.
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Figure 6.7: Overview of the complete structure of the pathwidth reduction for r =
4. Triangles represent a structure as in Figure 6.5, and squares a structure as in
Figure 6.6. Directions are not drawn, but clear from Figure 6.5 and 6.6. The labels
inside each block (say Vi or Vi ,Vi+1) denote that flow corresponding to vertices of
this set (i.e. Vi or Vi and Vi+1) is flowing in a block. Note that all points labelled s2, t2
are indeed the same vertex.
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Figure 6.8: Overview of the complete structure of the treewidth reduction for |I | = 7.
Left: the structure of the input tree partition. Right: the structure of the reduction.
Triangles represent a structure as in Figure 6.5, and squares a structure as in Fig-
ure 6.6. Directions are not drawn, but clear from Figure 6.5 and 6.6. The labels
inside each block (say Vi or Vi ,Vi+1) denote that flow corresponding to vertices of
this set (i.e. Vi or Vi and Vi+1) is flowing in a block. Note that all points labelled
s2, t2 are indeed the same vertex. Flow paths corresponding to a selected vertex in
V2 (orange) and one in V5 (purple) are drawn as an example.
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Claim 6.3.10. The constructed graph has pathwidth at most 8k +O(1).

Proof. We construct a path decomposition as follows. First, we will ensure that
s1, t1, s2, t2 are in every bag. Then, we make the following observations about the
gadgets we construct. Notice that Vertex selector gadgets and Edge check gadgets
have pathwidth O(1), which directly follows from Lemma 6.3.1, and that Verifier
gadgets have pathwidth O(1), as proven in Lemma 6.3.9. Note that Vertex selector
gadgets have two exit arcs, whereas Edge check gadgets have four entry arcs and
four exit arcs.

The Triangle gadget is a subgraph of a k×k grid, while the Square gadget is a k×k
grid. Note that a standard path decomposition of the grid has width k and satisfies
the conditions of Lemma 6.3.1. Hence, following Lemma 6.3.1 and the above bounds
for the Vertex selector and Edge check gadgets, the pathwidth of the Triangle gadget
and the Square gadget is at most 4k +O(1). The Triangle gadget has 2k entry arcs
and 2k exit arcs, whereas the Square gadget has 4k entry arcs and 4k exit arcs.

Finally, the full construction (treating Triangle and Square gadgets as vertices)
has a path decomposition of width 2, as it is a caterpillar (see Figure 6.7), with at
most two vertices corresponding to Triangle or Square gadgets per bag. Applying
Lemma 6.3.1, we obtain a bound of 8k +O(1). ■

We note that a slightly stronger bound of 4k +O(1) seems possible with a more
refined analysis, but this bound will be sufficient for our purposes.

Claim 6.3.11. The given Chained Multicolor Clique instance has a solution if and
only if the constructed instance of Integer 2-Commodity Flow has a solution.

Proof. For the forward direction, assume there exists a chained multicolor clique W
in G. We construct a flow. We first consider commodity 2. Recall that one vertex
is picked per Vi,γ class by definition and thus W has size rk. If v ∈ Vi,γ ∩W for
some i ∈ [r],γ ∈ [k], then in the Vertex selector gadget of Vi,γ , we send S(v) units
of flow of commodity 2 to the left and L − S(v) units of flow to the right into the
Verifier gadget (see Figure 6.3). In any Verifier gadget, we route the flow so that
it takes the path with capacity equal to the flow (see Lemma 6.3.8). This flow is
then routed through all Edge check gadgets of the Triangle and Square gadgets, in
the manner presented above in the description of Edge check gadgets. Since W
is a chained multicolor clique, the corresponding edge exist in E and the flow can
indeed pass through the (S(E),2L)-Verifier gadget of each Edge check gadget (again,
see Lemma 6.2). For any i ∈ [r−1], after passing through the Square gadget for Vi and
Vi+1, the flow originating in the Vertex selector gadget corresponding to Vi is sent
to t2 through the horizontal exit arcs of the Square gadget (see Figure 6.6). Finally,
the flow originating in the Vertex selector gadget corresponding to Vr is sent to t2
through the vertical exit arcs of the Square gadget. Since W has size equal to rk and
we send L units of flow through each Vertex selector gadget, all arcs from s2 and to
t2 are used to capacity.

Next, we consider commodity 1. All flow of commodity 1 is routed through the
unused gates in the Verifier gadgets, which is possible as we only use one vertical
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path per gadget for the flow corresponding to a vertex or edge (see Figure 6.2). It
follows that we use all arcs from s1 and to t1 to capacity.

For the other direction, suppose we have an integer 2-commodity flow f that
meets the demands. Hence, there is a 2-commodity flow in the constructed graph
with all arcs from s1 and s2 and to t1 and t2 used to capacity, meaning that their total
flow is equal to their total capacity, with flow with the corresponding commodity:
commodity 1 for s1 and t1, and commodity 2 for s2 and t2.

We first reason that the flow of commodity 1 behaves as expected in the Verifier
gadgets. Notice that the constructed graph is a directed acyclic graph. Abstractly,
it can also be seen as a directed acyclic graph where the vertices are Verifier gad-
gets. Hence, there exists a topological ordering on the Verifier gadgets. We refer
to Figure 6.2 to recall the naming of the vertices u and z of a Verifier gadget. We
prove by induction on the topological ordering that the flow of commodity 1 in f
that enters over the arc s1u leaves over the arc zt1, while staying in the gadget for
the entirety of its flow path. As the base case, consider the last Verifier gadget H
in the ordering. The bottom of this gadget (refer to Figure 6.2) has arcs only going
to t2, by construction and the fact that it is the last Verifier gadget in the ordering.
Hence, flow from u ∈H must all go to z ∈H and the flow on the arcs s1u and zt1 fully
fills the capacities. Then, indeed, flow of commodity 1 behaves as in the precondi-
tion of Lemma 6.3.8, and this flow does not leave the gadget downwards. For the
induction step, consider some Verifier gadget H in the ordering. By the induction
hypothesis, all Verifier gadgets later in the ordering have the arcs to t1 fully filled.
But then the flow of commodity 1 in H can only go to z ∈ H and then on to t1. We
get that the flow on the arcs s1u and zt1 in H fully fills the capacities, and does not
leave the gadget downwards. Hence, flow of commodity 1 behaves as in the precon-
dition of Lemma 6.3.8. By induction, all flow of commodity 1 behaves ‘properly’ for
Lemma 6.3.8.

By applying Lemma 6.3.8 to every Verifier gadget, we get that the amount flow
of commodity 2 always corresponds to some α ∈ S for the associated set S of the
gadget, and the left and right exit arcs carry α and L−α units of flow of commodity 2
respectively. Now, the arc from s2 in a Vertex selector gadget for Vi,γ must have L
flow of commodity 2 and this must be split in α and L − α, with α ∈ S(Vi,γ ). Thus,
there is a v ∈ Vi,γ with α = S(v), which corresponds to placing v in the chained
multicolored clique. In any Edge check gadget, the flow of α ∈ S(Vi,γ ), L − α and
β ∈ S(Vi′ ,γ ′ ),L− β combines to a unique sum α + β and 2L− (α + β), and assures that
the edge between the corresponding vertices is present. As reasoned before, the flow
must split back up into α, L −α and β,L − β by the unique sum due to the fact that
S is a Sidon set. We get that the chosen vertices indeed form a chained multicolor
clique, as the Edge check gadgets in the Triangle and Square gadgets enforce that all
edges between selected vertices are present as should be. ■

Finally, we claim that the constructed graph with its capacities can be built us-
ing O(f (k) + logn) space, for some computable function f . First, Sidon sets can be
built in logarithmic space (cf. Theorem 6.2.1). Second, we use the (for log-space re-
ductions standard) technique of not storing intermediate results, but recomputing
parts whenever needed. E.g., each time we need the ith number of the Sidon set, we
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recompute the set and keep the ith number. Viewing the computation as a recur-
sive program, we have constant recursion depth, while each level usesO(f (k)+logn)
space, for some computable function f . The result now follows.

To show the XALP-hardness of the Integer 2-Commodity Flow parameterized
by treewidth, we reduce from Tree-Chained Multicolor Clique in a similar, but
more involved manner.

Theorem 6.1.3. Integer 2-Commodity Flow with capacities given in unary, parame-
terized by treewidth, is XALP-complete.

Proof. Membership in XALP can be seen as follows. Take a tree decomposition of G,
say ({Xi | i ∈ I},T ); assume that T is binary. One can build a dynamic programming
table, where each entry is indexed by a node j ∈ I with associated bag Xj and a
function f ij : Xj → [−C,C], where C is some upper bound on the maximum flow
(note that C is linear in the input size), for i = 1,2 and 1 ≤ j ≤ r. One should interpret
f ij as mapping each vertex v ∈ Xj to the net difference of flow of commodity i in- or
outgoing on that vertex in a partial solution in the subtree with bag Xj as root. The
content of the table is a boolean representing when there is a partial flow satisfying
the requirements that f ij sets. Basic application of dynamic programming on (nice)
tree decompositions can solve the Integer 2-Commodity Flow problem with this
table.

Now, we transform this to a non-deterministic algorithm with a stack as follows.
We basically guess an entry of each table, similar to the path decomposition case of
Theorem 6.1.1, and use the stack to handle nodes with two children. Recursively,
we traverse the tree T . For a leaf bag, guess an entry of the table. For a bag with
one child, guess an entry of the table given the guessed entry of the child. For a
bag with two children, recursively get a guessed entry of the table of the left child.
Put that entry on the stack. Then, recursively get a guessed entry of the table of the
right child. Get the top element of the stack, and combine the two guessed entries.
We need O(logn) bits to store the position in T we currently are and to look up
information on G. We need O(f (k) logC) bits to denote a table entry and at each
point, we haveO(1) such table entries in memory. This shows membership in XALP.

For the hardness, we use a reduction from Tree Chained Multicolor Clique

(see Theorem 2.5.7). Suppose we have an instance of Tree Chained Multicolor

Clique, with a graph G = (V ,E), a tree partition ({Vi | i ∈ I},T = (I,F)) with T a tree
of maximum degree 3, and a function c : V → [k].

As in the proof of Theorem 6.1.1, we build a Sidon set S of |V | integers in the in-
terval [4|V |2] using Theorem 6.2.1. To each vertex v ∈ V , we assign a unique element
of the set S, denoted by S(v). For any subset W ⊆ V , let S(W ) = {S(v) | v ∈ W } and
for any subset E′ ⊆ E, let S(E′) = {S(u) + S(v) | uv ∈ E′}. Also, let L = 4|V |2 + 1.

We now create a flow network, similar to the network in the proof of Theo-
rem 6.1.1. In particular, we recall the different gadgets that we created in that con-
struction: the Vertex selector gadget (see Figure 6.3), the Edge check gadget (see Fig-
ure 6.4), the Triangle gadget (see Figure 6.5), and the Square gadget (see Figure 6.6).
Their structure, functionalities, and properties will be exactly the same as before.
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Root the tree T at an arbitrary leaf r. We may assume that T has at least two
nodes. We now create gadgets in the following manner, essentially mimicking the
structure of T (see Figure 6.8). Start with r. Let r ′ be its child in T . Create a Triangle
gadget for Vr and a Square gadget for Vr and Vr ′ . Identify the exit arcs of the Triangle
gadget with the horizontal entry arcs of the Square gadget.

Now, for every node i of T , starting with r ′ and traversing the tree down in DFS
order, do the following. Let p be the parent of i. Suppose the depth of p is odd.
Create a Triangle gadget for Vi . Identify the exit arcs of this new Triangle gadget
with the horizontal entry arcs of the (already constructed) Square gadget for Vp and
Vi . If i has a child in T , let d be the first child of i in DFS order. Create a Square
gadget for Vi and Vd and identify the horizontal exit arcs of the Square gadget of Vp
and Vi with the horizontal entry arcs of the Square gadget of Vi and Vd . If i does
not have a second child, then the 2k horizontal exit arcs of the Square gadget of Vi
and Vd are paired (one pair per color class) and directed to a vertex; these k vertices
are then each connected by a single arc of capacity L to t2 (cf. Figure 6.6). If i has
a second child d′ , create a Square gadget for Vi and Vd′ , identify the horizontal exit
arcs of the Square gadget of Vi and Vd with the horizontal entry arcs of the Square
gadget of Vi and Vd′ . Then the 2k horizontal exit arcs of the Square gadget of Vi and
Vd′ are paired (one pair per color class) and directed to a vertex; these k vertices are
then each connected by a single arc of capacity L to t2 (cf. Figure 6.6).

If the depth of p is even, then we do the same as above, but with vertical entry
and exit arcs instead of the horizontal ones.

We now set the demand for commodity 1 to the sum of the capacities of the
outgoing arcs of s1 (which is equal to the sum of the capacities of the incoming
arcs of t1). We set the demand for commodity 2 to the sum of the capacities of the
outgoing arcs of s2 (which is equal to the sum of the capacities of the incoming arcs
of t2). This completes the construction. We now prove the bound on the pathwidth,
followed by the correctness of the reduction and a discussion of the time and space
needed to produce it. To prove the pathwidth bound, we note that all constructed
gadgets are pieces, and thus we can apply Lemma 6.3.4.

Claim 6.3.12. The constructed graph has treewidth at most 16k +O(1).

Proof. We construct a tree decomposition as follows. First, we will ensure that
s1, t1, s2, t2 are in every bag. Following the proof of Claim 6.3.10, the pathwidth (and
thus the treewidth) of the Triangle gadget and the Square gadget is at most 4k+O(1).
Recall that the Triangle gadget has 2k entry arcs and 2k exit arcs, whereas the Square
gadget has 4k entry arcs and 4k exit arcs. The full construction (treating the Triangle
and Square gadgets as vertices) has a tree decomposition of width 1, since it is tree
(see also Figure 6.8). Applying Lemma 6.3.4 and Remark 6.3.3, we obtain a bound
of 16k +O(1). ■

We note that a slightly stronger bound of 4k +O(1) seems possible with a more
refined analysis, but this bound will be sufficient for our purposes.

Claim 6.3.13. The given Tree Chained Multicolor Clique instance has a solution if
and only if the constructed instance of Integer 2-Commodity Flow has a solution.
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Proof. IfG is a YES-instance of Tree-ChainedMulticolor Clique, then using a sim-
ilar construction of flows as in Theorem 6.1.1, we can see that the constructed graph
has a flow with all arcs from s1 and s2 and to t1 and t2 are used to capacity. Minor
modifications are needed to route the flow corresponding through the tree structure
of the Square gadgets in the constructed instance here. Examples of such flow paths
are illustrated in Figure 6.8 for the orange and purple vertices.

Conversely, suppose we have an integer 2-commodity flow that meets the de-
mands. Hence, there is a 2-commodity flow in the constructed graph with all arcs
from s1 and s2 and to t1 and t2 used to capacity; that is, their total flow is equal to
their total capacity, with flow with the corresponding commodity: commodity 1 for
s1 and t1, and commodity 2 for s2 and t2. Like in Theorem 6.1.1, all flow of com-
modity 1 does not leave the Verifier gadget it enters, as the constructed graph again
is a acyclic. Then, s2 sends L units of flow of commodity 2 to each Vertex selector
gadget. This flow now splits into α and L−α, where α ∈ S(Vi,l), as Lemma 6.3.8 can
be applied. Therefore, there is some v ∈ Vi,l such that α = S(v). We select v into the
multicoulored clique. Each Vertex selector gadget in turn sends α and L−α flow re-
spectively through the two input arcs of the edge check gadget incident on it. Since
there is a flow passing through each Edge check gadget, we know that there exists
an edge between the pair of the selected vertices. From the construction, we then
see that the selected vertex form a tree chained multicolor clique. Therefore, G is a
YES-instance of Tree-Chained Multicolor Clique. ■

As the constructed graph with its capacities can be built using O(f (k) + log |V |)
space for some computable function f , the result follows. (See also the discussion at
the end of the proof of Theorem 6.1.1.)

Reductions for Undirected Graphs

We now reduce from the case of directed graphs to the case of undirected graphs in a
general manner, by modification of a transformation by Even et al. [76, Theorem 4].
In this way, both our hardness results (for parameter pathwidth and for parameter
treewidth) can be translated to undirected graphs.

Lemma 6.3.14. Let G be a directed graph of an Integer 2-Commodity Flow instance
with capacities given in unary. Then in logarithmic space, we can construct an equivalent
instance of Undirected Integer 2-Commodity Flow with an undirected graph G′ with
pw(G′) ≤ pw(G) +O(1), tw(G′) ≤ tw(G) +O(1), and unit capacities.

Proof. We consider the transformation given by Even et al. [76, Theorem 4] that
shows the NP-completeness of Undirected Integer 2-Commodity Flow and argue
that we can modify it to obtain a parameterized transformation from Integer 2-
Commodity Flow to Undirected Integer 2-Commodity Flow with capacities given
in unary, and with path- or treewidth as parameter. In particular, the transformation
increases the path- or treewidth of a graph by at most a constant.
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Figure 6.9: The transformation of Lemma 6.3.14 from directed to undirected graphs.
Every arc uv with capacity c is replaced by c parallel copies of gadget (a), where
t1, s1, t2, s2 are the same for every gadget, for all arcs. All capacities are 1. The re-
maining figures illustrate that the gadget either transports no flow (b), a flow of
commodity 1 (c), or a flow of commodity 2 (d).

Given a directed graph G = (V ,E), demands d1 and d2, and capacity function
c : E→N0, we construct the instance G′ , d′1 and d′2, and c′ : E(G′)→ {0,1} as follows.
To the graph G, we add four new vertices s1, s2, t1, t2 as new sources and sinks. We
connect si to si and ti to ti by di parallel undirected edges of capacity 1, for each
i ∈ {1,2}. Next, for each arc uv ∈ E of capacity p, we create p parallel undirected
edges between u and v of capacity 1 each. Then, we replace each of these p undi-
rected edges by the following Diamond gadget. We create a cycle C on six vertices
xuv1 , . . . ,xuv6 , numbered in cyclic order, which we make adjacent to u, t1, s1, v, s2, and
t2 respectively by an edge of capacity 1 (see Figure 6.9(a)).

This is the graph G′ and c′ is as just described. In G′ , the demands on the two
commodities are d′1 = d1 + e∗ and d′2 = d2 + e∗, where e∗ is the number of edge gadgets
in G′ (i.e. the sum of all capacities in c). While G′ is technically a multi-graph, any
parallel edges e can be subdivided once, and the resulting edges e1 and e2 given the
same capacity as e. By abuse of notation, we still call this graph G′ .

Claim 6.3.15. The pathwidth of G′ is pw(G) +O(1) and the treewidth is tw(G) +O(1).

Proof. We note that each of the Diamond gadgets has pathwidth and treewidth 2
and forms a path piece and a tree piece. We add s1, s2, t1, t2 as well as s1, s2, t1, t2 to
every bag. Hence, using Lemma 6.3.1 and 6.3.4 and the above description, the claim
follows. ■

Claim 6.3.16. The demands d1 and d2 are met in G if and only if the demands d′1 and d′2
are met in G′ .

Proof. Suppose that the demands in the directed graph G are met by some flow.
Then, first we send one unit of flow of each commodity in each edge gadget as
shown in Figure 6.9(b). If uv is used to flow one unit of commodity 1 in G, then
we change the direction of flow in the edge gadget as in Figure 6.9(c). If one unit of
commodity 2 flows through uv, we change the flow through the edge gadget as in
Figure 6.9(d). Hence, in addition to the d1 units of flow of commodity 1 and d2 units
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of flow of commodity 2, e∗ units of flow of each type of commodity flows through G′ .
Therefore, the demands d′1 and d′2 are met.

Conversely, suppose that the demands of each commodity are met in the undi-
rected graph G′ by some flow. The pattern of flow through each edge gadget could
be as in one of the three flows in Figure 6.9. If the flow pattern is as in Figure 6.9(b),
then the corresponding flows through the arc uv in G are set as f 1(uv) = f 2(uv) = 0.
If it is in accordance with Figure 6.9(c), then the corresponding flows in G are set as
f 1(uv) = 1 and f 2(uv) = 0. If the flow pattern is as in Figure 6.9(d), then the corre-
sponding flows in G are set as f 1(uv) = 0 and f 2(uv) = 1. There are no other options,
as every edge incident to any of s1, s2, t1, t2 must have 1 unit of flow of that commod-
ity, otherwise the demands cannot be met. Since the capacity of each edge of the
Diamond gadget is 1, the three options (b), (c), (d) in Figure 6.9 model exactly the
possibilities of sending 1 unit of flow over each edge incident to one of s1, s2, t1, t2.
Therefore, the flow through G is at least d1 +d2 and the demands of each commodity
are met. ■

The construction can be done in logarithmic space: while scanning G, we can
output G′ . This completes the proof.

Theorem 6.1.2. Undirected Integer 2-Commodity Flow with capacities given in
unary, parameterized by pathwidth, is XNLP-complete.

Proof. The proof of membership in XNLP follows in the same way as the member-
ship of Integer 2-Commodity Flow as described in the proof of Theorem 6.1.1. For
the hardness, apply the reduction of Lemma 6.3.14 to the construction of Theo-
rem 6.1.1.

Theorem 6.1.4. Undirected Integer 2-Commodity Flow with capacities given in
unary, parameterized by treewidth, is XALP-complete.

Proof. The proof of membership in XALP follows in the same way as the member-
ship of Integer 2-Commodity Flow as described in the proof of Theorem 6.1.3. For
the hardness, apply the reduction of Lemma 6.3.14 to the construction of Theo-
rem 6.1.3.

6.3.2 Binary Capacities

We prove our hardness results for Integer Multicommodity Flow with binary ca-
pacities, parameterized by pathwidth. This immediately implies the same results
for the parameter treewidth; we do not obtain separate (stronger) results for this
case here. Our previous reduction strategy relied heavily on a-Gate gadgets, which
have size linear in a, and thus only work in the case a unary representation of the
capacities is given.

For the case of binary capacities, we can prove stronger results by reducing from
Partition. However, we need a completely new chain of gadgets and constructions.
Therefore, we first introduce a number of new gadgets. After that, we give the hard-
ness results for directed graphs, followed by reductions from the directed case to the
undirected case.
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As before, throughout the section, all constructions will have disjoint sources and
sinks for the different commodities. We will set the demands for each commodity
equal to the total capacity of the outgoing arcs from the sources, which is equal to
the total capacity of the incoming arcs to the sinks. Thus, the flow over such arcs
will be equal to their capacity.

In contrast to the previous, our constructions will have two or three commodi-
ties. We name the commodities 1, 2, and 3, with sources s1, s2, s3 and sinks t1, t2, t3,
respectively. We only need the third commodity for the undirected case.

Gadgets

We define three different types of (directed) gadgets. Since we use binary capacities,
our goal is to double flow in an effective manner. For a given integer a, the a-Doubler
gadget receives a flow and sends out 2a flow of the same commodity. This gadget is
obtained by combining two other gadgets: the a-Switch and the Doubling a-Switch.
The a-Switch gadget changes the type of flow; that is, it receives a flow from one
commodity, but sends out a flow from the other commodity. The Doubling a-Switch
is similar, but sends out 2a flow. All three types of gadgets have constant size, even
in the binary setting.

We now describe the three gadgets in detail.

a-Switch Gadget Let a be any positive integer. The first gadget is called an a-
Switch. This gadget turns a units of flow of one type of commodity (in the remain-
der, of commodity 2) into an equal amount of flow of the other commodity (in the
remainder, of commodity 1).

The gadget is constructed as follows (see Figure 6.10). We create six vertices
v1, . . . , v6. We add an entry arc incoming to v2 (the left entry arc) and an entry arc
incoming to v3 (the right entry arc). We add an exit arc outgoing from v4 (the bottom
exit arc) and an exit arc outgoing from v5 (the top exit arc). We add arcs along
the paths v2v4v6t2, x2v3v5v6, s1v1v2, and v1v3. All arcs have capacity a. We call
v2,v3,v4,v5 the boundary vertices of the gadget.

We note that, technically, we could also count the arc incoming on v1 and the arc
outgoing from v6 as entry and exit arcs, but since they are coming from s1 and going
to t2 respectively, we ignore this aspect.

Lemma 6.3.17. Consider the a-Switch gadget for some integer a. Let f be some 2-
commodity flow such that the arc outgoing from s1 carries a units of flow commodity 1
and the arc incoming to t2 carries a units of flow of commodity 2.

1. If the left entry arc carries a units of flow of commodity 2 and the right entry arc
carries 0 units of flow of commodity 2, then the top exit arc carries a units of flow
commodity 1 and the bottom exit arc carries 0 units of flow of commodity 1.

2. If left entry arc carries 0 units of flow of commodity 2 and the right entry arc car-
ries a units of flow of commodity 2, then the top exit arc carries 0 units of flow of
commodity 1 and the bottom exit arc carries a units of flow of commodity 1.
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Figure 6.10: The a-Switch gadget. Left: the schematic representation of the gadget,
with its entry and exit arcs. Right: the graph that realises the gadget. All arcs have
capacity a.

Proof. Suppose the left entry arc carries a units of flow of commodity 2 and the
right entry arc carries 0 units of flow of commodity 2. We must send a units of
commodity 2 over the path v2v4v6t2, as this is the only way a units of commodity 2
can be sent over the arc v6t2 (recall that this arc must be used to capacity and this
flow cannot come from s1). Then all arcs along the path have been used to capacity.
By a similar argument, the a units of flow of commodity 1 from s1 to v1 must go to
v3, and then via v5 through the top exit arc.

The other case is symmetric.

Lemma 6.3.18. For any integer a, the a-Switch is a path piece such that the required path
decomposition (ignoring the sources and sinks) has width 2.

Proof. The gadget is a piece by construction, with B− = {v2,v3} and B+ = {v4,v5}. To
construct the path decomposition, start with a bag containing v2,v3. We can now
add v1, and in the next bag remove v1 and add v4. Then remove v2 and add v5. In
the final bag, remove v3 and add v6. Each bag contains at most 3 vertices.

Doubling a-Switch Gadget Let a be any positive integer. The second gadget is
called a Doubling a-Switch. This gadget turns a units of flow of one type of commod-
ity (in the remainder, of commodity 1) into a 2a units of flow of the other commodity
(in the remainder, of commodity 2).

The gadget is constructed as follows (see Figure 6.11). We create fourteen ver-
tices v1, . . . , v14. We add an entry arc incoming to v4 (the left entry arc) and an entry
arc incoming to v9 (the right entry arc), each of capacity a. We add an exit arc out-
going from v13 (the bottom exit arc) and an exit arc outgoing from v14 (the top exit
arc), each of capacity 2a. We add arcs with capacity a along the paths v4v5v6v7v8t1,
v9v10v11v12v8. We also add arcs v2v4, v2v6, v3v9, v3v11, v5v13, v7v13, v10v14 and
v12v14 with capacity a. Finally, we add the arcs s2v1, v1v2, v1v3 with capacity 2a. The
vertices v4, v9, v13, v14 are the boundary vertices of the gadget.
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Figure 6.11: The Doubling a-Switch gadget. Left: the schematic representation of
the gadget, with its entry and exit arcs. Right: the graph that realises the gadget.
The arcs are labelled with their capacities; all unlabelled arcs have capacity a.

Lemma 6.3.19. Consider the Doubling a-Switch gadget for some integer a. Let f be
some 2-commodity flow such that the arc outgoing from s2 carries 2a units of flow of
commodity 1 and the arc incoming to t1 carries a units of flow of commodity 2 .

1. If the left entry arc carries a units of flow of commodity 1 and the right entry arc
carries 0 units of flow of commodity 1, then the top exit arc carries 2a units of flow
of commodity 2, and the bottom exit arc carries 0 units of flow of commodity 2.

2. If the left entry arc carries 0 units of flow of commodity 1 and the right entry arc
carries a units of flow of commodity 1, then the top exit arc carries 0 units of flow
of commodity 2 and the bottom exit arc carries 2a units of flow of commodity 2.

Proof. Suppose the left entry arc carries a units of flow of commodity 1 and the
right entry arc carries 0 units of flow of commodity 1. We must send a units of
flow of commodity 1 over the path v4v5v6v7v8t1, as this is the only way a units of
commodity 1 can be sent over the arc v8t1. Then all arcs along the path have been
used to capacity. This implies that the flow from s2 to v1 must go to v3, and then via
v9v10 and v11v12 to v14 after which it must go through the top exit arc.

The other case is symmetric.

Lemma 6.3.20. For any integer a, the Doubling a-Switch is a path piece such that the
required path decomposition (ignoring sources and sinks) has width 5.

Proof. The gadget is a piece by construction, with B− = {v4,v9} and B+ = {v13,v14}.
To construct the path decomposition, start with a bag containing v4,v9,v1,v2,v3, fol-
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lowed by a bag containing v4,v9,v2,v3. From there, we create bags where we sub-
sequently add v5, remove v4, add v6 and v13, remove v5, add v7, remove v2 and v6,
and add v8. The bag then contains v3,v8,v9,v13. Then we create bags where we sub-
sequently add v10, remove v9, add v11 and v14, remove v10, and add v12. This forms
the required path decomposition. All bags contain at most six vertices.

a-Doubler Gadget Let a be any positive integer. We can combine an a-Switch gad-
get with a Doubling a-Switch gadget to get an a-Doubler gadget. The first gadget
changes the commodity of the flow, where the second gadget changes the commod-
ity back with double the amount of flow.

We construct this gadget as follows (see Figure 6.12). Create an a-Switch gadget
and an Doubling a-Switch gadget (refer to Figure 6.10 and 6.11). Identify the top exit
arc of the a-Switch gadget with the left entry arc of the Doubling a-Switch gadget.
Then identify the bottom exit arc of the a-Switch gadget with the right entry arc of
the Doubling a-Switch gadget.

a a

a

a
2a 2a

a a

2a 2a

X X×2

Figure 6.12: The a-Doubler gadget. Left: the schematic representation of the gadget,
with its entry and exit arcs. Right: the graph that realises the gadget. The arcs are
labelled by their capacities.

Note that the a-Doubler gadget has two entry arcs (the left and right entry arcs)
and two exit arcs (the left and right exit arcs), corresponding to the left and right
entry arcs of the a-Switch gadget and the top and bottom exit arcs of the Doubling
a-Switch gadget respectively.

Lemma 6.3.21. Consider the a-Doubler gadget for some integer a. Let f be some 2-
commodity flow. Then:

1. If the left entry arc carries a units of flow of commodity 2 and the right entry arc
carries 0 units of flow of commodity 2, then the left exit arc carries 2a units of flow
of commodity 2 and the right exit arc carries 0 units of flow of commodity 2.

2. If the left entry arc carries 0 units of flow of commodity 2 and the right entry arc
carries a units of flow of commodity 2, then the left exit arc carries 0 units of flow
of commodity 2 and the right exit arc carries 2a units of flow of commodity 2.

Proof. The lemma follows immediately by combining Lemma 6.3.17 and 6.3.19.
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Lemma 6.3.22. For any integer a, the a-Doubler is a path piece such that the required
path decomposition (ignoring sources and sinks) has width 5.

Proof. Recall from Lemma 6.3.18 that the a-Switch is a path piece of pathwidth
at most 2 with two entry arcs and two exit arcs. Recall from Lemma 6.3.20 that
the Doubling a-Switch is a path piece of pathwidth at most 5 with two entry arcs
and two exit arcs. Note that the structure of the a-Doubler gadget trivially satis-
fies the preconditions of Lemma 6.3.2. Hence, the lemma then follows by applying
Lemma 6.3.2.

Reduction for Directed Graphs

With the gadgets in hand, we can prove our hardness result for Integer Multicom-

modity Flow (i.e. the case of directed graphs) for parameter pathwidth.

Theorem 6.1.5. Integer 2-Commodity Flow with capacities given in binary is NP-
complete for graphs of pathwidth at most 13.

Proof. Membership in NP is trivial. To show NP-hardness, we transform from Par-

tition. Recall that the Partition problem asks, given positive integers a1, . . . , an, to
decide if there is a subset S ⊆ [n] with

∑
i∈S ai = B, where B =

∑n
i=1 ai /2. This problem

is well known to be NP-complete [114].
So consider an instance of Partition with given integers a1, . . . , an. Create the

sources s1, s2 and the sinks t1, t2. Create two vertices b1,b2, both with an arc of ca-
pacity B to t2.

For each ai , we build a Binary gadget that either sends ai units of flow to b1
or ai units of flow to a vertex b2, in each case of commodity 2. This will indicate
whether or not ai is in the solution set to the Partition instance. This gadget is
constructed as follows (see Figure 6.13 for the case when ai = 13). Consider the
binary representation a

p
i , . . . , a

0
i of ai . That is, ai =

∑p
j=0 2jaji , with a

j
i ∈ {0,1}. For

each j ∈ [p] such that aji = 1, we create a column of chained Doubler gadgets. For
each j ′ < j, create a 2j

′
-Doubler gadget and identify its entry arcs with the exit arcs

of the 2j
′−1-Doubler gadget (see Figure 6.13). Then the left exit arc of the (final)

2j−1-Doubler gadget is directed to b1, while the right exit arc is directed to b2.

Note that the Binary gadget for ai still has 2
∑p
j=0 a

j
i open entry arcs (of the 1-

Doubler gadget of each column). These naturally partition into
∑p
j=0 a

j
i left entry

arcs and
∑p
j=0 a

j
i right entry arcs. These all have capacity 1. We now connect these

arcs. All further arcs in the construction will have capacity 1.

Create two directed paths P 1
i , P

2
i of 2

∑p
j=0 a

j
i vertices each (see Figure 6.13). We

consider the vertices of each of these paths in consecutive pairs, one pair for each aji
that is equal to 1. For each j ∈ [p] such that aji = 1, create a vertex vji with an arc from

s2, an arc to the first vertex of the pair on P 1
i corresponding to aji , and an arc to the

first vertex of the pair on P 2
i corresponding to aji . Then, add an arc from the second
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vertex of the pair on P 1
i corresponding to aji to the left entry arc of the 1-Doubler

gadget of the jth column of gadgets and an arc from the second vertex of the pair
on P 2

i corresponding to aji to the right entry arc of the 1-Doubler gadget of the jth
column of gadgets. Finally, create a vertex ui with an arc to the first vertex of P 1

i and
to the first vertex of P 2

i and create a vertex wi with an arc from the last vertex of P 1
i

and the last vertex of P 2
i . This completes the description of the Binary gadget.

We now chain the Binary gadgets. For each i ∈ [n−1], add an arc from wi to ui+1.
Add an arc from s1 to u1 and from wn to t1. These arcs all have capacity 1.

We now set the demand for commodity 1 to the sum of the capacities of the
outgoing arcs of s1 (which is equal to the sum of the capacities of the incoming
arcs of t1). We set the demand for commodity 2 to the sum of the capacities of the
outgoing arcs of s2 (which is equal to the sum of the capacities of the incoming arcs
of t2). This completes the construction.

s2

2 2 2 2

4 4 4 4

8 8

b1 b2

×2 ×2

×2 ×2

×2

v3i v2i v0i

ui wi

P 2
i

P 1
i

s1 t1

Figure 6.13: Example of the Binary gadget for ai = 13 and its associated paths P 1
i and

P 2
i and the ends ui and wi . Since 13 = 23 +22 +20, we have a column with three Dou-

bler gadgets, a column with two Doubler gadgets, and one with no Doubler gadgets.
The vertices v3

i , v2
i and v0

i are also drawn. Arcs are labelled by their capacities, but
unlabelled arcs have capacity 1. If 1 unit of flow of commodity 1 is sent from s1 to t1,
then it must pick one of P 1

i , P
2
i to go through. Hence, the gadget ensures that either

13 units of flow of commodity 2 are sent to b1 through the left entry and exit arcs of
the Doubler gadgets, or 13 units of flow of commodity 2 are sent to b2 through the
left entry and exit arcs of the Doubler gadgets.
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Claim 6.3.23. The constructed graph has pathwidth at most 13.

Proof. We construct a path decomposition as follows. Add s1, s2, t1, t2,b1 and b2 to
every bag. Then, we construct a path decomposition for the Binary gadget and its
associated paths P 1

i and P 2
i . We create the trivial path decompositions for P 1

i and P 2
i

and union each of their bags, so that we ‘move’ through the two paths simultane-
ously. When the first vertex of the pair corresponding to aji (where aji = 1) is intro-

duced in a bag, we add a subsequent copy of the bag to which we add vji and another
subsequent copy without it. Then, when the second vertex of the pair corresponding
to aji (where aji = 1) is introduced in a bag, we add bags for the Doubler gadgets of the

column corresponding to aji . Since each Doubler gadget has two entry and exit arcs
and is a path piece with a path decomposition of width 5 by Lemma 6.3.22, it fol-
lows from Lemma 6.3.2 (recalling Remark 6.3.5) that each column has pathwidth 5.
Combining this with the other vertices we add to each bag (s1, s2, t1, t2,b1 and b2) and
to each bag for each column (both second vertices of the pair corresponding to the
column), the total width of the path decomposition is 13. ■

Claim 6.3.24. The given Partition instance has a solution if and only if the constructed
instance of Integer 2-Commodity Flow has a solution.

Proof. Let S ⊆ [n] be a solution to the Partition instance. We will find a corre-
sponding solution to the constructed Integer 2-Commodity Flow instance. For each
i ∈ [n], we do the following. If i ∈ S, then we send flow of commodity 2 from s2
to b1, through left entry and exit arcs of the Doubler gadgets in the Binary gadget
corresponding to ai . To reach this left side of the Doubler gadgets, the flow passes
through vertices and arcs of P 1

i . We can thus send flow of commodity 1 from ui to wi
via P 2

i . Otherwise, if i < S, we send flow of commodity 2 from s2 to b2, through right
entry and exit arcs of the Doubler gadgets in the Binary gadget corresponding to ai .
To reach this right side of the Doubler gadgets, the flow passes through vertices and
arcs of P 2

i . We can thus send flow of commodity 1 from ui to wi via P 1
i .

Now note that by the properties of the Doubler gadget, proved in Lemma 6.3.21,
b1 will receive ai units of flow of commodity 2 if i ∈ S and b2 will receive ai units
of flow of commodity 2 if i < S. Since S is a solution to Partition, both b1 and b2
receive B units of flow of commodity 2, which they can then pass on to t2. Moreover,
we observe that we can send 1 unit of flow from s1 to t1 via the paths P 1

i and P 2
i ,

when i < S and i ∈ S respectively.
In the other direction, suppose we have an integer 2-commodity flow that meets

the demands. That is, there is a 2-commodity flow in the constructed graph with all
arcs from s1 and s2 and to t1 and t2 used to capacity; that is, their total flow is equal
to their total capacity, with flow with the corresponding commodity: commodity 1
for s1 and t1, and commodity 2 for s2 and t2. Hence, the arc wnt1 is used to capacity,
so 1 unit flow of commodity 1 flows over this arc. Because of the direction of the
arcs, this flow can only come from un, and so from wn−1. By induction, this flow
must come over the arc s1u1. We see that the flow of commodity 1 starting at u1

takes a path which is a union of P jii paths, for i ∈ [n] and ji ∈ {1,2}. In particular, this
flow does not ‘leak’ into any Doubler gadget, uses all the arcs wiui+1 for all i ∈ [n−1]
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to capacity, and uses a complete path P jii up to capacity for each i ∈ [n], ji ∈ {1,2}.
Consider the Binary gadget corresponding to ai . By the above argument, we must
have an 1 unit of flow of commodity 1 going through one of the two paths P 1

i or P 2
i ,

also using the arc wiui+1 to capacity. Suppose this is P 1
i . This means that any flow

from s2 to t2, in this Binary gadget, has to utilise P 2
i , the right side of the Doubler

gadgets, and end up at b2. We can apply Lemma 6.3.21 to every Doubler gadget. As
flow of commodity 2 is carried over the right entry and exit arcs and no flow flows
over the left entry and exit arcs, the total flow value reaching b2 has to be equal to ai .
The same argument holds with respect to P 2

i and b1. Let S ⊆ [n] be the set of indices
i for which the flow of commodity 2 through the Binary gadget corresponding to ai
arrives at b1. Since the edge b1t2 has capacity B and since b1 has received

∑
i∈S ai

units of flow of commodity 2, we find that
∑
i∈S ai ≤ B. Similarly,

∑
i<S ai ≤ B. Since∑

i∈[n] ai = 2B, we conclude that S is a valid solution to the Partition instance. ■

Finally, as each a-Doubler has constant size, the gadget for ai has sizeO(log2(ai)),
which is polynomial in the input size. Hence, the construction as a whole has size
polynomial in the input size. Moreover, it can clearly be computed in polynomial
time.

Reduction for Undirected Graphs

We now reduce from the case of directed graphs to the case of undirected graphs
in a general manner. We define a new gadget that is similar to the gadget we used
in Section 6.3.1. However, we note that there we required a copies of the gadget
if the capacity of an arc is a, which is not feasible in the case of binary capacities.
Also note that increasing the capacities of the gadget by Even et al. [76, Theorem 4],
here Figure 6.9, invalidates the gadget, as any under-capacity edge would allow flow
in the other direction. Hence, we need a different gadget, before we can give our
hardness result for undirected graphs.

We first define a subgadget called a Directed twin flow edge gadget, seen in Fig-
ure 6.14, which we construct as follows. Given two vertices u and v, two commodi-
ties i1 and i2, and an integer (capacity) c, we add vertices w1,w2,w3, and w4. We then
add edges uw1, w1w2, w2w3, w3w4, w4v, ti1w1, si1w2, ti2w3 and si2w4, all with capac-
ity 2c. We will refer to the vertex u as the tail vertex of the gadget and to v as the
head vertex. Furthermore, we say that the gadget is labelled by the two commodities
whose source and sink are attached in the gadget.

The gadget only allows flow of the two given commodities through, in only one
direction and only in equal amounts. The following lemma captures this behaviour.

Lemma 6.3.25. Let G be an undirected graph as part of an instance of Undirected

Integer ℓ-Commodity Flow for some ℓ ≥ 2. Let u,v ∈ V (G) and suppose there is a
Directed twin flow edge gadget H in G for commodities i1 and i2 with u as the tail-vertex
of H and v the head-vertex of H . Let f be an ℓ-flow in G that fills all edges incident on
each source and sink to capacity with flow of the corresponding commodity. Then:

• no flow of any commodity other than i1 or i2 can travel from u to v, through H ,
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• the amount of flow of commodities i1 and i2 travelling from u to v through H is
equal,

• no flow can travel through H from v to u.

si1ti1 si2ti2

2c 2c 2c 2c

2c 2c 2c 2c 2c

2c 2c 2c 2c

u v

u v

c

w1 w2 w3 w4

Figure 6.14: The Directed twin flow edge gadget of capacity c. Left: the schematic
representation of the gadget. Right: the gadget itself. The arcs are labelled by their
capacities. The colors are used to indicate the respective commodities.

Proof. For simplicity, we will assume that the flow f does not go back on itself, i.e.
no edge has nonzero flow of the same commodity in both directions.

If in total a units of flow of any commodity other than i1 or i2 travel from u to
w3 through H , then by the capacity of w1w2 and the fact that 2c units of flow of
commodity i1 enter the gadget at w2, b ≥ a units of flow of commodity i1 must travel
from w2 via w3 to w4. Hence, by a similar argument, at least d ≥ a+b units of flow of
commodity i2 leave the gadget at w4. Therefore, the flow of commodity i2 travelling
from u to w3 must be at least d units. However this implies that b ≥ a+d ≥ 2a+b > b
if a , 0. We find that a = 0.

We then note that if we have a1 units of flow of commodity i1 entering the gadget
at w1, we can only have at most a total of a1 units of the other commodities flowing
from w1 to w2. Indeed, note that 2c units of flow of commodity i1 must enter the
gadget from si1 to w2 and leave the gadget via w1 to ti1 . Hence, 2c − a1 units of flow
of commodity i1 would travel from w2 to w1. Similarly, if we have a2 units of flow
of commodity i2 leaving the gadget at w4, we can only have at most a total of a2
units of the other commodities flowing from w3 to w4. Hence, the amount of flow of
commodities i1 and i2 travelling from u to v through H is equal.

We also find that the edges w1w2 and w3w4 are always used to capacity and thus
we cannot send any flow from v to u through H , which proves the last item of the
lemma.

We now create a Directed edge gadget that effectively functions as a directed edge.
To enable this gadget, we need an additional commodity to activate the gadget. So
suppose we have ℓ+1 commodities, with commodity ℓ+1 being this extra commodity.
The gadget is constructed as follows (see Figure 6.15). Given two vertices u and v
and an integer (capacity) c, we wish to simulate the arc e = uv. Create a new vertex
ve. For each i ∈ [ℓ], we then attach a Directed twin flow edge gadget from u to ve
labelled by commodities i and ℓ + 1, with capacity c. Finally, we add an edge vev
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with capacity 2c. We will refer to the vertex u as the tail vertex of the gadget, to v as
the head vertex of the gadget and to ve as the central vertex.

u
v2c

c

c

ve

Figure 6.15: Directed edge gadget, for ℓ = 2 and capacity c.

Lemma 6.3.26. Let G be an undirected graph that is part of an instance of Undirected

Integer ℓ + 1-Commodity Flow for some ℓ ≥ 2. Let u,v ∈ V (G) and suppose there is a
Directed edge gadget H in G with u as the tail-vertex of H and v the head-vertex of H .
Let f be an (ℓ + 1)-flow in G. Then:

• in total, no more than c units of flow of commodities 1, . . . , ℓ can travel from u to v,
through H ,

• the amount of flow of commodity ℓ + 1 travelling from u to v through H is equal to
the sum of all other commodities travelling from u to v through H ,

• no flow can travel through H from v to u.

Proof. Let H1, . . . ,Hℓ be the Directed twin flow edge gadgets in the Directed edge
gadget corresponding to commodities 1, . . . , ℓ respectively and let ve be the central
vertex of the gadget. By the last item of Lemma 6.3.25, no flow can travel from ve to
u through any of the Hi and thus no flow can travel from v to u through H .

By the first two items of Lemma 6.3.25, the amount of flow travelling from u to
ve through Hi is equal to some ai for commodities i and ℓ + 1, and 0 for any other
commodities. We find that the amount of flow travelling from u to ve of commodity
ℓ + 1 is equal to the sum the other commodities and thus the amount of flow of
commodity ℓ + 1 travelling from u to v through H is equal to the sum of all other
commodities travelling from u to v through H .

The first item now holds trivially, since the edge vev has capacity 2c.

This construction now allows us to extend any reductions from some problem Π

to Integer ℓ-Commodity Flow to a reduction from Π to Undirected Integer ℓ + 1-
Commodity Flow. We now show such an extension only increases the pathwidth by
a constant.

Lemma 6.3.27. Let G be a directed graph of an Integer ℓ-Commodity Flow instance
with a path decomposition of width pw(G), such that each bag contains the sources and
sinks of commodities 1, . . . , ℓ. Then in polynomial time, we can construct an equivalent
instance of Undirected Integer ℓ+1-Commodity Flow of pathwidth at most pw(G)+5.

Proof. For each i ∈ [ℓ], let di denote the demand for commodity i for the given in-
stance of Integer ℓ-Commodity Flow. To start, we create a source sℓ+1 and sink tℓ+1
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for the extra commodity, with demand d′ℓ+1 =
∑ℓ
i=1 di . Then, for i ∈ [ℓ], we connect

sℓ+1 to si by an edge with capacity di , and connect ti to tℓ+1 by an edge with capacity
di . Then, replace each arc uv inG by a Directed edge gadget. Call the resulting graph
G′ . Set the remaining demands d′i = di for i ∈ [ℓ]. This completes the construction.

We note that G′ can be constructed in polynomial time from G. The fact that
the given instance of Integer ℓ-Commodity Flow and the constructed instance of
Undirected Integer ℓ+1-Commodity Flow are equivalent follows immediately from
Lemma 6.3.26 and the construction of G′ . Indeed, by the setting of the demand
d′ℓ+1 and the capacities of the edges incident on sℓ+1, every source si of G receives
di units of flow of commodity ℓ + 1. Hence, every flow of commodity i is and can
be accompanied by an equal amount of flow of commodity ℓ + 1. Then, following
Lemma 6.3.26, the direction of uv is maintained by the transformation.

To prove the upper bound on the pathwidth of G′ , consider some arc e = uv in
the directed graph G. In the path decomposition of G, there must be some bag X
that contains both u and v. Create 3ℓ copies of the bag X that we insert after X.
To each of these copies, add the vertex ve of the Directed edge gadget (this covers in
particular the edge vev of the gadget). For each commodity i ∈ [ℓ], add to consecutive
bags the pairs (w1,w2), (w2,w3), and (w3,w4) of the Directed twin flow edge gadget
Hi in the Directed edge gadget. These three bags for each i ∈ [ℓ] handle the path
decomposition for the Directed twin flow edge of commodity i. So, in total, the 3ℓ
bags handle the path decomposition for the entire gadget.

We do this for every arc in G, where the copies we make of bags are copies only
of bags in the path decomposition of G. After we have done this for every arc, we
add the source and sink of the extra commodity ℓ + 1 to every bag. We see that the
maximum number of vertices in any bag increases by at most 5.

By combining Lemma 6.3.27 and Theorem 6.1.5, we obtain the following.

Theorem 6.1.6. Undirected Integer 3-Commodity Flow with capacities given in bi-
nary is NP-complete for graphs of pathwidth at most 18.

Proof. By Theorem 6.1.5, Integer 2-Commodity Flow with capacities given in binary
is NP-complete for graphs of pathwidth at most 13. By inspection of the proof, we
see that it has a path decomposition of width 13 such that each bag contains both
sources and both sinks. Then the reduction of Lemma 6.3.27 immediately implies
the theorem.

6.3.3 Parameterization by Vertex Cover — At Most One Commodity Per
Edge

The last hardness result we will discuss concerns a parameterization by vertex cover.
In this case, we will add the additional constraint that the edges must be monochrome,
that is, for each edge, only one commodity can have positive flow. Later, in Sec-
tion 6.4.2, we will see that it is possible to approximately solve the problem without
this constraint, in polynomial time.
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v1 w1a1

an

a1
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t1

t2

a1

an

(k − 1)a1

(k − 1)an

B

B

(k − 1)B

(k − 1)B

Figure 6.16: Construction for the reduction from Bin Packing to 2-Commodity Flow.

Theorem 6.1.8. Undirected Integer 2-Commodity Flow with Monochrome Edges

is NP-hard for binary weights and vertex cover number 6, and W[1]-hard for unary
weights when parameterized by the vertex cover number.

Proof. We reduce from Bin Packing. Recall that in Bin Packing, we are given integers
a1, . . . , an, an integer B, and an integer k. We are asked to decide whether the integers
a1, . . . , an can be partitioned into at most k bins, such that the sum of the numbers
assigned to each bin does not exceed B. We note that Subset Sum can be seen as
a special case of bin packing by setting B = (

∑n
j=1 aj )/2 and adding an additional

weight a0 = B − T for T the target value. Subset Sum, and thus Bin Packing for
binary weights and k = 2, is NP-hard [91]. Bin Packing for unary weights when
parameterized by k is W[1]-hard [110]. In both cases, we may assume that

∑n
j=1 aj =

kB: In the unary case, we can add kB−
∑n
j=1 aj additional integers that are all equal

to 1. In the binary case we have k = 2 and we can reduce to the Subset Sum, as
mentioned previously.

We first describe our construction. Suppose we are given an instance ((aj )
n
1,B,k)

of Bin Packing. We construct an equivalent instance of Undirected Integer 2-
Commodity Flow with Monochrome Edges that has a vertex cover of size k + 4 (see
also Figure 6.16). We create a graph G with the following vertices and edges:

V (G) = {s1, s2, t1, t2,v1, . . .vn,w1, . . . ,wk}
E(G) = {sivj : i ∈ {1,2}, j ∈ [n]} ∪ {wivj : i ∈ [k], j ∈ [n]} ∪ {witj : i ∈ [k], j ∈ {1,2}}.

We set the capacities of the edges as follows:

c(s1vj ) = aj ∀j ∈ [n]

c(s2vj ) = (k − 1)aj ∀j ∈ [n]

c(wivj ) = aj ∀i ∈ [k], j ∈ [n]

c(wit1) = B ∀i ∈ [k]

c(wit2) = (k − 1)B ∀i ∈ [k].
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We set the demands as d1 = kB and d2 = (k − 1)kB. This completes the reduction.
Suppose that the instance of Bin Packing is a YES-instance. Thus, there is a par-

tition I1, . . . , Ik of {1, . . . ,n} such that
∑
j∈Ii aj ≤ B for each i ∈ [k]. As

∑n
j=1 aj = kB,

actually
∑
j∈Ii aj = B for each i ∈ [k]. For each i ∈ [k] and each j ∈ Ii , route aj units

of flow of commodity 1 from s1 to vj to wi to t1. Hence, edges incident on s1 and t1
only transport flow of commodity 1. For i ∈ [k], since

∑
j∈Ii aj = B, the flow over each

edge wit1 does not exceed B. Also, route (k − 1)aj units of flow of commodity 2 from
s2 to vj . Then, split this flow into aj units of flow to each vertex in {w1, . . . ,wk} \ {wi}
and from these vertices to t2. Hence, edges incident on s2 and t2 only transport flow
of commodity 2. For i ∈ [k],

∑
i∈[k]\{i}

∑
j∈Ii′ aj ≤ (k − 1)B since

∑
j∈Ii aj = B, and thus

the flow over each each edge wit2 does not exceed (k − 1)B. Finally, note that edges
between {v1, . . . , vn} and {w1, . . . ,wk} only transport flow of a single commodity, be-
cause I1, . . . , Ik is a partition of {1, . . . ,n}. Hence, the instance of Undirected Integer

2-Commodity Flow with Monochrome Edges is a YES-instance.
Conversely, suppose that the instance of Undirected Integer 2-Commodity Flow

with Monochrome Edges is a YES-instance and consider a valid flow. We analyse
the structure of this flow. The cut ({s1},V (G) \ {s1}) has capacity

∑n
i=1 ai = kB = d1.

Hence, for each j ∈ [n], we must have aj units of flow of commodity 1 from s1 to
vj . Similarly, the cut ({s2},V (G) \ {s2}) has capacity

∑n
i=1(k − 1)ai = kB = d2. Hence,

for each j ∈ [n], we must have (k − 1)aj units of flow of commodity 2 from s2 to vj .
Since the total capacity of the remaining edges connected to vj (the edges vjwi) is
equal to kaj and since each edge can only be used by one commodity, we find that
exactly one of these edges transports aj units of flow of commodity 1 to some wi and
the other k − 1 edges each transport aj units of flow of commodity 2 to the other wi′
with i′ , i. Finally, any unit of commodity 1 in wi must be sent to t1 and any unit
of commodity 2 must be set to t2, since by construction the total capacity of the cut
(V (G) \ {t1, t2}, {t1, t2}) is k

∑n
j=1 aj = d1 + d2, so we cannot have any flow going in the

reverse direction.
We now construct sets I1, . . . , Ik . Now observe that each vj sends aj units of flow

of commodity 1 to exactly one neighbor wi . Then add j to Ii . Then I1, . . . , Ik forms
a partition of {1, . . . ,n}. Moreover, each wi can send at most B units of flow of com-
modity 1 to t1 and t1 does not receive units of flow of commodity 1 from vertices
outside the set {v1, . . . , vn}. Hence,

∑
j∈Ii aj ≤ B for all i ∈ [k]. Hence, the instance of

Bin Packing is a YES-instance.
Finally, note that |V (G)| = O(n), that V (G) \ {v1, . . . , vn} forms a vertex cover of

size k + 4, and that we can construct the instance in time nO(1). We conclude that
since Bin Packing is NP-hard for binary weights and k = 2 [91], Undirected Integer

2-Commodity Flow with Monochrome Edges is NP-hard for binary weights and
vertex cover size 6. We also conclude that since Bin Packing is W[1]-hard for unary
weights when parameterized by k [110], Undirected Integer 2-Commodity Flow

with Monochrome Edges is W[1]-hard for unary weights, when parameterized by
the vertex cover size.

The reduction to the directed case can be readily seen.
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Theorem 6.1.7. Integer 2-Commodity Flow with Monochrome Edges is NP-hard
for binary weights and vertex cover number 6, and W[1]-hard for unary weights when
parameterized by the vertex cover number.

Proof. The proof immediately follows from the proof of Theorem 6.1.8, by directing
each edge from left to right (direction as in Figure 6.16).

6.4 Algorithms

In this section, we complement our hardness results with two algorithmic results.

6.4.1 Parameterization by Weighted Tree Partition Width

We first give an FPT-algorithm for Integer ℓ-Commodity Flow parameterized by
weighted tree partition width. This algorithm assumes that a tree partition of the
input graph is given. There is an algorithm by Bodlaender et al. [20] that for any
graph G and integer k, runs in time poly(k) · n2 and either outputs a tree partition
of G of width poly(k) or outputs that G has no tree partition of width at most k.
By some simple tricks, this can be expanded to approximate weighted tree partition
width as well, at the expense of a slightly worse polynomial in k. An approximately
optimal tree partition of this form would be sufficient as input to our algorithm.

Theorem 6.1.9. The Integer ℓ-Commodity Flow problem can be solved in time

O(22tpw3ℓ tpw
n), where tpw is the breadth of a given weighted tree partition of the input

graph.

Proof. We will describe a dynamic-programming algorithm on a given tree partition
(T , (Bx)x∈V (T )). Let r ∈ V (T ) be some node, that we will designate as the root of the
tree T . For convenience, we first attach a node to every leaf, with an empty bag.

We will create a table τ , where every entry is indexed by a node x of the tree
partition and a collection fx of functions f ix , one function for every commodity i ∈ [ℓ].
We will refer to fx as a flow profile and use the superscript i to refer to the flow
function for commodity i in the profile. The function

f ix : Bp(x)→ [− tpw, tpw],

where p(x) is the parent node of x, indicates for every v ∈ Bp(x) the net difference
between the amount of flow of commodity i that v receives from (indicated by a
positive value) or sends to (indicated by a negative value) the vertices in the bag Bx,
in the current partial solution. That is, f ix (v) models the value of

∑
u∈Bx (f

i(uv) −
f i(vu)), where f denotes the current partial solution. Notice that this sum has value
in [− tpw, tpw], as the sum over all capacities of edges between bags Bx and Bp(x) is at
most tpw. The content of each table entry will be a boolean that indicates whether
there exists a partial flow on the graph considered up to x that is consistent with the
indices of the table entry.

We will build the table τ , starting at the leaves of the tree, for which we assumed
the corresponding bags to be empty sets, and working towards the root. If x is a
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leaf in the tree partition, we set τ[x, {∅, . . . ,∅}] = True, where we denote by ∅, the
unique function with the empty set as domain. Otherwise, x is some node with
children y1, . . . , yt . We will group these children yi in equivalence classes ξ, defined
by the equivalence relation y ∼ y′ if and only if τ[y,fx] = τ[y′ ,f] for every flow profile
f. Note that there are at most 2tpwℓ(2tpw+1)

such equivalence classes, with at most
tpwℓ(2tpw+1) possible flow profiles fyj = (f 1

yj , . . . , f
ℓ
yj ) for every child yj of x.

We will now describe an integer linear program that determines the value of
τ[x,fx] for a given flow profile fx. We define a variable Xξ,g as the number of sets in
class ξ whose in- and outflow we choose to match flow profile g1. We also define a
variable Y ie for each edge inside the bag Bx or between Bx and its parent bag, which
indicates the flow of commodity i on this edge. We will denote byN in(v) andN out(v)
the set of in-neighbors and out-neighbors of v, respectively, restricted to Bx ∪ Bp(x).
We now add constraints for the following properties, for every commodity i ∈ [ℓ].
Flow conservation for all vertices v in the bag Bx, that are not a sink/source for
commodity i: ∑

u∈N in(v)

Yuv +
∑
ξ,g

Xξ,g · g i(v) =
∑

u∈N out(v)

Yuv .

The flow of commodity i from a source si (if si ∈ Bx):

−
∑

u∈N in(si )

Yusi +
∑

u∈N out(si )

Yusi −
∑
ξ,g

Xξ,g · g i(si) = di

The flow of commodity i to a sink ti (if ti ∈ Bx):∑
u∈N in(ti )

Yuti −
∑

u∈N out(ti )

Yuti +
∑
ξ,g

Xξ,g · g i(ti) = di

The desired flow to a vertex v in the parent bag:∑
u∈N in(v)\Bp(x)

Yuv −
∑

u∈N out(v)\Bp(x)

Yuv = f ix (v).

Edge capacities and non-negative flow:

0 ≤
ℓ∑
i=1

Y ie ≤ c(e)

The number of flow profiles of each type from each class matches the number of
bags in that class: ∑

g:Bx→[− tpw,tpw]

Xξ,g = |ξ |.

1Throughout the proof, if we sum over pairs ξ,g, we only sum over flow profiles that are valid for
bags in ξ. Alternatively, we can set any invalid Xξ,g to 0 beforehand.
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Xξ,g must be a non-negative integer:

Xξ,g ∈N0

We then use an algorithm of Frank and Tardos [84, Theorem 5.3] to solve the ILP
in time N2.5N+o(N ), where N is the number of variables in the ILP. This number is
dominated by the number of variables Xξ,g, of which there are O(2tpwℓ(2tpw+2)

). We
thus find a running time of

2tpwℓ(2tpw+2)(2.5·2tpwℓ(2tpw+2)
+o(2tpwℓ(2tpw+2)

)) = 22.5·2tpwℓ(2tpw+2)
+o(2tpwℓ(2tpw+2)

).

If the ILP has a feasible solution, we set τ[x,fx] = True; otherwise, we set τ[x,fx] =
False. We solve tpwℓ(2tpw+1) such ILP’s per bag in the decomposition and thus find
a total running time of

tpwℓ(2tpw+1) 22.5·2tpwℓ(2tpw+2)
+o(2tpwℓ(2tpw+2)

) =O(22tpw3ℓb

).

Once we reach the root bag, we use a similar ILP to compute the flow on the
root bag, finding a final solution. Since the number of bags is O(n), we find a total

running time of O(22tpw3ℓb
n).

Note that with some minor changes to the ILP (flow variables can be negative and
there is no distinction between in/out edges), this proof also works in the undirected
case. Thus, we also find the following result.

Theorem 6.1.10. The Undirected Integer ℓ-Commodity Flow problem can be solved

in time O(22tpw3ℓ tpw
n), where tpw is the breadth of a given weighted tree partition of the

input graph.

Proof. Adjusting the ILP so that flow variables can be negative and there is no dis-
tinction between in/out edges, we can see the proof of Theorem 6.1.9 extends to the
undirected case.

6.4.2 Parameterization by Vertex Cover

In this section, we give an approximation algorithm for the Integer 2-Commodity
Flow problem, parameterized by the vertex cover number of a graph. Since we
consider a decision problem, the use of the term ‘approximation’ requires some ex-
planation. In our case, we still give a Boolean output, but for the question of whether
there is a flow with values in some range around the demands. We make this more
precise with the following theorem:

Theorem 6.1.11. There exists a constant C > 0 such that the following holds. There is a
polynomial-time algorithm that, given an instance of Integer 2-Commodity Flow on a
graph G with demands d1,d2, either outputs that there is no flow that meets the demands
or outputs a 2-commodity flow of value at least di −C vc3 for each commodity i ∈ [2].
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Proof. Let X be a vertex cover of the graphG. We can assume that one of size vc(G) is
given as part of the input or we can compute a 2-approximation in polynomial time
by the folklore algorithm (attributed to Gavril and to Yannakakis; see e.g. [46]). In
the latter case, the proof still holds, but the (hidden) constant is worse by a factor 8.

We first compute, in polynomial time, a solution to the LP relaxation of the prob-
lem. This gives us a fractional flow f . If this flow does not meet the demands, then
we can immediately answer that there exists no integral flow that meets the de-
mands. We will now argue that we can transform this flow such that the total value
remains the same, but the number of arcs that is assigned a non-integral value is
O(|X |3).

We say that an arc e is a mono-fractional arc if there is exactly one commodity i ∈
[2] such that f i(e) <N0. We say that arc e is a bi-fractional arc if for both commodities
i ∈ [2], we have f i(e) <N0. An arc is fractional if it is mono-fractional or bi-fractional.
An arc that is not fractional is called integral.

We will show that a fractional flow f can be transformed to a flow with the same
values for both commodities, such that there are at most O(|X |3) fractional arcs. The
case analysis is tedious, with many cases that are similar but handled slightly differ-
ently. In each case, small changes are made to the flow, but all vertices in X will have
the same inflow and outflow.

Note that if v is incident to an arc with fractional flow for commodity i, then
there must be another arc with v as endpoint with fractional flow for commodity i,
due to the flow conservation laws. We can have an incoming and an outgoing arc,
two (or more) incoming arcs, or two (or more) outgoing arcs. With arcs that can be
mono-fractional or bi-fractional, this gives in total twelve cases. These are illustrated
in Figure 6.17.

1 2 3 4 5 6

7 8 9 10 11 12

Figure 6.17: Different cases for vertices incident to fractional arcs. Fat edges are bi-
fractional; different colored non-fat edges are for different commodities.

Let Y = V \X. For vertices v ∈ Y , we distinguish the following cases

1. v has an incoming and an outgoing mono-fractional arc for the same commod-
ity.

2. v has two incoming mono-fractional arcs for the same commodity.
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3. v has two outgoing mono-fractional arcs for the same commodity.

4. v has an incoming and an outgoing bi-fractional arc.

5. v has two incoming bi-fractional arcs.

6. v has two outgoing bi-fractional arcs.

7. v has an incoming bi-fractional arc, and for each commodity, an outgoing
mono-fractional arc.

8. v has an incoming bi-fractional arc, for one commodity an incoming mono-
fractional arc, and for the other commodity an outgoing mono-fractional arc.

9. v has an incoming bi-fractional arc, and for each commodity, an incoming
mono-fractional arc.

10. v has an outgoing bi-fractional arc, and for each commodity, an outgoing mono-
fractional arc.

11. v has an outgoing bi-fractional arc, for one commodity an incoming mono-
fractional arc, and for the other commodity an outgoing mono-fractional arc.

12. v has an outgoing bi-fractional arc, and for each commodity, an incoming
mono-fractional arc.

For each of the twelve cases, we have a rule. Each time, we have two ‘similar’
vertices in Y , and give a transformation of an optimal fractional flow to another
optimal fractional flow with fewer fractional values. Some of these rules can be
derived by a symmetry argument from earlier rules, which still leaves seven cases,
each with a relatively simple proof.

For each arc uv and commodity i ∈ [2], write the fractional part of this flow as
g i(uv) = f i(uv) − ⌊(f i(uv)⌋. Recall that all arcs have integral capacities, so a mono-
fractional arc has residual capacity, i.e., it is possible to increase the flow over the arc
by a positive amount.

For each of the twelve cases, we have a rule that changes an optimal fractional
flow to another optimal fractional flow with fewer fractional values. Each time, we
increase over some arcs the flow of specified commodities by γ and decrease over
some other arcs the flow of those same commodities by γ . Each of the changed
values was fractional to start with; in each case, we set γ to the smallest value such
that at least one edge hits an integer value.

Claim 6.4.1 (Case 1 Rule). Let f be an optimal fractional solution to the given instance
of Integer 2-Commodity Flow. Suppose there are vertices u,v ∈ X, and y,z ∈ Y , with
uy,yv,uz,zv mono-fractional for the same resource i ∈ [2]. Then, in polynomial time, we
can compute optimal fractional solution g with less fractional arcs than f .
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y z

u v

Figure 6.18: The subgraph for the Case 1 Rule

Proof. Recall that all arcs have integral capacities. Write γ = min{1−g i(uy),1− g i(yv),
g i(uz), g i(zv)}. Note that we can increase the flow of commodity i over arcs uy and
yv by γ and simultaneously decrease the flow of commodity i over arcs uz and zv by
γ and obtain a flow with the same values. By doing this, the number of fractional
arcs decreases by at least one. ■

Now, when we apply the step of Claim 6.4.1 exhaustively, then we have at most
O(|X |2) vertices where Case 1 applies: if we have more than 2|X |2 such vertices, we
can find a pair of vertices in X and a commodity for which we can apply the rule
from Claim 6.4.1.

For each of the other cases, we can use a similar argument. For Cases 4 – 12, we
change the flow for both commodities. For Cases 7 – 12, we have that the resulting
rules leave O(|X |3) vertices of the specific types.

Claim 6.4.2 (Case 2 Rule). Let f be an optimal fractional solution to the given instance
of Integer 2-Commodity Flow. Suppose there are vertices u,v ∈ X, and y,z ∈ Y , with
uy,uz,vy,vz mono-fractional for the same resource i ∈ [2]. Then, in polynomial time, we
can compute optimal fractional solution g with less fractional arcs than f .

Proof. Set γ = min{1 − g i(uy), g i(uz), g i(vy),1 − g i(vz)}. Increase the flow (for com-
modity i) over arcs uy and vz by γ , and decrease the flow over arcs uz and vy by
γ . All vertices have the same inflow and outflow, so we still have a correct flow, but
with a smaller number of fractional arcs. ■

Case 3 is similar to Case 2 but with reversed directions. The proof is almost
identical.

Claim 6.4.3 (Case 3 Rule). Let f be an optimal fractional solution to the given instance
of Integer 2-Commodity Flow. Suppose there are vertices u,v ∈ X, and y,z ∈ Y , with
yu,zu,yv,zv mono-fractional for the same resource i ∈ [2]. Then, in polynomial time, we
can compute optimal fractional solution g with less fractional arcs than f .

The next three rules deal with vertices in Y incident to two bi-fractional edges
(Cases 4–6).

Claim 6.4.4 (Case 4 Rule). Let f be an optimal fractional solution to the given instance
of Integer 2-Commodity Flow. Suppose there are vertices u,v ∈ X, and y,z ∈ Y , with
uy,yv,uz,zv bi-fractional. Then, in polynomial time, we can compute optimal fractional
solution g with the same or fewer fractional arcs than f , and less bi-fractional arcs than
f .
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Proof. Set γ = min{1 − g1(uy), g2(uy), g1(yv),1 − g2(yv), g1(uz),1 − g2(uz),1− g1(zv),
g2(zv)}. Change the flow as follows: increase by γ the flow of commodity 1 over arcs
uy and yv, and the flow of commodity 2 over arcs uz and zv and decrease by γ the
flow of commodity 2 over arcs uy and yv, and the flow of commodity 1 over arcs uz
and zv. One can check that each arc sends the same amount of total flow, and each
vertex receives and sends the same amount of flow of each commodity. The new flow
has at least one fewer fractional value. ■

Claim 6.4.5 (Case 5 Rule). Let f be an optimal fractional solution to the given instance
of Integer 2-Commodity Flow. Suppose there are vertices u,v ∈ X, and y,z ∈ Y , with
uy,vy,uz,vz bi-fractional. Then, in polynomial time, we can compute optimal fractional
solution g with the same or fewer fractional arcs than f , and less bi-fractional arcs than
f .

Proof. Set γ = min{1 − g1(uy), g2(uy), g1(vy),1 − g2(vy), g1(uz),1 − g2(uz),1− g1(vz),
g2(vz)}. The flow with less fractional values is obtained by increasing by γ the flow
of commodity 1 over arcs uy and vz and of commodity 2 over arcs vy and uz, and
decreasing by γ the flow of commodity 2 over arcs uy and vz and of commodity 1
over arcs vy and uz. ■

Using symmetry, we also have the following rule.

Claim 6.4.6 (Case 6 Rule). Let f be an optimal fractional solution to the given instance
of Integer 2-Commodity Flow. Suppose there are vertices u,v ∈ X, and y,z ∈ Y , with
yu,yv,zu,zv bi-fractional. Then, in polynomial time, we can compute optimal fractional
solution g with the same or fewer fractional arcs than f , and less bi-fractional arcs than
f .

Claim 6.4.7. Let f be an optimal fractional solution to the given instance of Integer
2-Commodity Flow. Suppose none of the rules of Cases 1 – 6 applies. There are O(|X |2)
vertices in Y that are incident to at least two mono-fractional arcs for the same commodity,
or at least two bi-fractional arcs.

Proof. If we have 9|X |2 + 1 vertices in Y that are incident to at least two mono-
fractional arcs for the same commodity, or at least two bi-fractional arcs, then we
have either a commodity i with for one of Cases 1 – 3 at least |X |2 + 1 vertices in Y of
that case, or for one of the Cases 4 – 6, at least |X |2 + 1 vertices in Y of that case. In
each of these situations, we find a pair of vertices in X with two incident vertices in
Y where we can apply a rule. ■

Since the neighborhood of any vertex is contained inX, it follows that the number
of fractional arcs incident to a vertex of Cases 1 – 6 can be bounded by O(|X |3). We
next give rules that deal with pairs of vertices for Cases 7 – 12.

Claim 6.4.8 (Case 7 Rule). Let f be an optimal fractional solution to the given instance
of Integer 2-Commodity Flow. Suppose there are vertices u,v,w ∈ X, and y,z ∈ Y , with
uy,uz bi-fractional, yv,zv mono-fractional for commodity 1, and yw,zw mono-fractional
for commodity 2. Then, in polynomial time, we can compute optimal fractional solution
g with fewer fractional values.
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Proof. Let γ = min{1− g1(uy), g2(uy),1− g1(yv), g2(yw), g1(uz),1− g2(uz), g1(zv),
1− g2(zw)}. Increase by γ the flow of commodity 1 over arcs uy and yv, and of
commodity 2 over arcs uz and zw; decrease by γ the flow of commodity 2 over arcs
uy and yw, and of commodity 1 over arcs uz and zv. Again, we have an optimal flow,
but at least one fractional value became integral, without creating new fractional
values. ■

y z

u v w

Figure 6.19: The subgraph for the Case 8 Rule

Claim 6.4.9 (Case 8 Rule). Let f be an optimal fractional solution to the given instance
of Integer 2-Commodity Flow. Suppose there are vertices u,v,w ∈ X, and y,z ∈ Y , with
uy,uz bi-fractional, vy,vz mono-fractional for commodity i, and yw,zw mono-fractional
for commodity 3−i. Then, in polynomial time, we can compute optimal fractional solution
g with fewer fractional values.

Proof. Without loss of generality, assume i = 1; otherwise switch the commodities.
Let γ = min{1−g1(uy), g2(uy), g1(vy), g2(yw), g1(uz),1−g2(uz),1−g1(vz), 1− g2(zw)}.
Increase by γ the flow of commodity 1 over arcs uy and vz, and of commodity 2 over
arcs uz and zw; decrease by γ the flow of commodity 2 over arcs uy and yw, and of
commodity 1 over arcs vy and uz. One can again check that this flow again fulfils all
conditions, but we have at least one fewer fractional value. ■

Claim 6.4.10 (Case 9 Rule). Let f be an optimal fractional solution to the given instance
of Integer 2-Commodity Flow. Suppose there are vertices u,v,w ∈ X, and y,z ∈ Y , with
uy,uz bi-fractional, yv,zv mono-fractional for commodity 1, and yw,zw mono-fractional
for commodity 2. Then, in polynomial time, we can compute optimal fractional solution
g with fewer fractional values.

Proof. Let γ = min{1− g1(uy), g2(uy),1− g1(yv), g2(yw), g1(uz),1− g2(uz), g1(zv),
1− g2(zw)}. We increase by γ the flow of commodity 1 over arcs uy and yv, and
of commodity 2 over arcs uz and zw, and decrease by γ the flow of commodity 2
over arcs uy and yw and of commodity 1 over arcs uz and zv. This gives the desired
flow. ■

For Cases 10, 11, and 12, we have similar rules. By reversing all directions of
edges, we can observe that these are symmetrical to the rules for Cases 7, 8, and 9.
We skip the details here.

Claim 6.4.11. Let f be an optimal fractional solution to the given instance of Integer
2-Commodity Flow. We can find in polynomial time an optimal fractional solution g
with O(|X |3) fractional edges.
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Proof. Apply the rules for Cases 1 – 12 exhaustively, until none apply.
Note that each vertex in Y incident to four or more fractional edges has either at

least two mono-fractional edges for the same resource, or at least two bi-fractional
edges. By Claim 6.4.7, there are O(|X |2) such vertices. Also, Claim 6.4.7 shows
we have O(|X |2) vertices incident to two fractional edges. The number of fractional
edges incident to these vertices is bounded by O(|X |3).

It remains to bound the number of vertices that are incident to exactly three
fractional edges, and that do not fit in Cases 1–6. Such vertices necessarily belong to
one of the cases 7 – 12. Cases 8 and 11 have two subcases, with the roles of the two
resources switched. If for any one of these eight cases, there are |X |3 + 1 vertices for
which the case applies, then there is a pair of vertices of the same case that has the
same neighbors in X among their fractional arcs, and one of the rules can be applied.
It follows that there are at most 8|X |3 vertices in Y that are incident to exactly three
fractional edges, and do not belong to Cases 1–6.

Thus, the total number of fractional edges is bounded by O(|X |3). ■

Let g be the flow obtained as described above (Claim 6.4.11). We now compute
an integer flow h from g as follows.

For each commodity i ∈ [2], do the following. Take the (standard, 1-commodity)
flow network G with source si , sink ti , and for each arc e, capacity ⌊g i(e)⌋, and com-
pute with the Ford-Fulkerson algorithm (or a similar flow algorithm) an optimal
si − ti flow. Let the resulting flow be hi .

We claim that h1 and h2 form together the desired integer 2-commodity flow
where both commodities differ an additive term of O(k3) from the optimal flow.

The network for commodity i with capacities g i(e) has a fractional si − ti-flow of
optimal value, say αi , namely the flow g i . As there are O(k3) edges with g i(e) frac-
tional, rounding down these values decreases the total of all capacities by O(k3), so
the network for commodity i with capacities ⌊g i(e)⌋ has an optimal value for frac-
tional flows αi −O(k3), but as here, all capacities are integers, this equals the optimal
value for integer flows, and a flow with such optimal integer value is found by the
Ford-Fulkerson algorithm. The result now follows.

Note that this algorithm also works for the undirected case, if we use an undi-
rected LP and interpret the directions of the arcs in the various cases as the (net)
direction of flow. Thus we also find the following result.

Theorem 6.1.12. There exists a constant C > 0 such that the following holds. There is a
polynomial-time algorithm that, given an instance of Undirected Integer 2-Commodity
Flow on a graph G with demands d1,d2, either outputs that there is no flow that meets
the demands or outputs a 2-commodity flow of value at least di − C vc3 for commodity
i ∈ [2].

Proof. We adjust the algorithm of Theorem 6.1.11 to use an undirected LP and in-
terpret the directions of the arcs in the various cases as the (net) direction of flow.
Then, the result holds for undirected graphs.



146 6.5. Conclusion

6.5 Conclusion

In this chapter we have discussed the complexity of the Integer Multicommod-

ity Flow problem (see figure 6.2). We have considered the parameters pathwidth,
treewidth, weighted tree partition width and vertex cover. We found different hard-
ness results depending on whether the capacities in the instance are given in unary
of binary. We find (nearly) the same hardness results for directed and undirected
graphs.

Parameter unary capacities binary capacities
pathwidth XNLP-complete para-NP-complete
treewidth XALP-complete para-NP-complete

weighted tree partition width FPT (1) FPT (1)
vertex cover (2); in XP (2); open

Table 6.2: Overview of our results for Integer 2-Commodity Flow. para-NP-
complete means NP-complete for fixed value of parameter. (1) Capacities of arcs in-
side bags can be arbitrary, capacities of arcs between bags are bounded by weighted
tree partition width. (2) Approximation, see Theorem 6.1.11; conjectured in FPT. For
the undirected case, the same results hold, except that for the para-NP-completeness
for the parameters pathwidth and treewidth, we need a third commodity.

The case of unary capacities, with the parameter pathwidth (treewidth) gives an
interesting example of XNLP-completeness (XALP-completeness), even when there
are only two commodities. The XNLP- and XALP-completeness imply that XP algo-
rithms for the problems are unlikely also to only use O(f (k)nO(1)) space by the Slice-
wise Polynomial Space Conjecture (see Conjecture 2.5.5). Moreover, the XNLP- and
XALP-completeness results imply that the problems are W[t]-hard via Lemma 2.5.6.
In Chapter 7 we will further examine the class #XLP (#XALP), which is the count-
ing equivalent of XNLP (XALP) and thus forms a bridge between the themes of this
chapter and those of Part II.

We end the chapter with some open problems. A number of cases for undirected
graphs remain unresolved. We conjecture that for several such cases, the complexity
results will be analogous to the directed case. A notable open case is Undirected

Integer 2-Commodity Flow, which we conjecture is NP-complete for graphs with a
pathwidth bound, but Theorem 6.1.6 only gives the result with three commodities.

We also conjecture that Integer 2-Commodity Flow is fixed-parameter tractable
with the vertex cover number as parameter, possibly by using a dynamic program-
ming algorithm that only needs to investigate solutions that are ‘close’ to the approx-
imate solution found by Theorem 6.1.11.

Finally, we believe that the problem may be interesting to investigate on certain
graph classes, for example planar graphs of bounded treewidth or in general on
graphs of treewidth or pathwidth below the bounds given by our hardness results.
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Not everything that can be counted
counts, and not everything that
counts can be counted.

William Bruce Cameron

7.1 Introduction

In this chapter we combine one of the themes of Part II with the theme of this part,
by considering the classes #XLP and #XALP. These classes can be thought of as the
counting equivalents of XNLP and XALP respectively. As is the case with XNLP and
XALP, #XLP and #XALP form the natural homes for some problems for which pre-
viously only hardness was known and not completeness. One can typically expect
the counting version of an XNLP-complete problem to be #XLP-complete, although
the reverse does not always need to be the case.

It is worth noting that Bodlaender et al. [19] studied a closely related class called
XLPP, which relates to XNLP and #XLP in the same way as PP relates to NP and #P.

One of the new insights in this chapter is the introduction of the notion of an
adorned DAG and the associated problems of #Path-Like SADBranchings and #SAD

Branchings (see Section 7.3). These problems are in some sense a rephrasing of the
definitions of #XLP and #XALP, but in a more manageable form. This makes them a
very convenient starting point for our chain of reductions.

The remaining results in this chapter can loosely be grouped into three cate-
gories: multicolored pattern problems, satisfiability-like problems and Holant prob-
lems. Of the latter we only consider one instance, namely the #AntiFactor1 problem
(see Section 7.6). Other problems, like the #Perfect Matchings problem1 also fall
under this framework and could potentially be of interest in the context of #XLP and
#XALP. We mostly use the satisfiability problems as intermediate problems and will
not spend too much time discussing them.

The final category deserves a more extensive introduction, as it contains a large
part of the technical contributions of this work. Over the last decades, several classes
of counting and decision problems concerning pattern matching for fixed graph
classes H were studied. These problems have the following form: Given a graph
H ∈ H from the fixed class H and a general graph G with no restrictions, decide

1The #Perfect Matchings problem asks for the number of subsets of the edges, that hit every vertex
exactly once.

147
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whetherH “occurs” in G, according to some formal criterion of occurrence. As main
examples, the problems Hom(H), Sub(H), and Ind(H) respectively ask to determine
the existence of a homomorphism from H to G, a subgraph of G isomorphic to H ,
or an induced subgraph. Variants of the problems for counting and counting mod-
ulo fixed primes have also been studied, also in the presence of colors. In the latter
setting, the case that we will consider is that of multicolored patterns, where each
vertex of the pattern has a unique color.

These problems have been studied under various complexity assumptions. Firstly,
it is known that assuming P , NP does not suffice for full classifications [43, Corol-
lary 10]. Under FPT ,W[1] however, full classifications for the induced subgraph
and homomorphism decision problem are known when parameterizing by pattern
size [43]. The subgraph decision problem remains open, however, a full classifica-
tion is known for the counting version [54] and other related problems called graph
motif parameters [52].

Very recently, Curticapean [51] classified the counting versions of Hom(H), Sub(H),
and Ind(H) under FP , #P, an a priori weaker assumption than P , NP, under the
provision that H comes with a polynomial-time algorithm that enumerates suffi-
ciently complicated patterns from H. More concretely, if a graph class H contains
n-vertex graphs with f (n)× f (n) grids as subgraphs, for any unbounded function f ,
then it is known [59] that the multicolored homomorphism decision and counting
problems are W[1]- and #W[1]-hard. If f is even lower-bounded by a power func-
tion, i.e. f (n) = Ω(nα) for α > 0, then it was shown [51] that the problem is #P-hard.

We will see that the complexity class #XLP allows us to investigate an intermedi-
ate setting, where the grid is of size f (n)×p(n) for some power function p(n) = Ω(nα)
and an unbounded function f , i.e., slim yet long. The known parameterized reduc-
tions show that such problems are #W[1]-hard, while the #P-hardness proofs do not
kick in for such patterns. Still, one is led to believe that W[1] is not the right up-
per bound for such problems, as the pattern size is not bounded by the parameter.
Indeed, we can find an appropriate home for the slim-but-long grids in the class
#P. To this end, we adapt a reduction by Curticapean [51] that was used to prove
#P-hardness into the setting of #XLP.

7.1.1 Results

We introduce the complexity classes #XLP and #XALP. We show completeness for a
number of counting problems. As a starting point, we introduce a pair of new prob-
lems called #SAD Branchings and #Path-Like SAD Branchings, which will func-
tion as both canonically hard problems and a convenient way to prove membership.
See Figure 7.1 for a schematic overview of our reductions.

Theorem 7.1.1.
a. #SAD Branchings is #XALP-complete.

b. #Path-Like SAD Branchings is #XLP-complete.

Based on this result we show completeness for a number of other problems, using
a combination of existing reductions and new or altered reductions. The first pair of
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#(Tree-) Chained Multicolored Clique

#(Tree-Shaped) Thin Multicolored Grid

#(Path-Like) SAD Branchings

#(Tree-) Chained Multicolored Independent Set

#Partitioned (Tree-) Chained Weighted CNF-SAT

#Positive Partitioned (Tree-) Chained Weighted CNF-SAT

#(Tree-) Chained Multicolored Hitting Set

#AntiFactor1/pw (/tw)

Figure 7.1: The reduction tree of our various results. Each arrow points towards the
problem we reduce to.

problems is that of #Thin Multicolored Grids and #Tree-Shaped Thin Multicol-

ored Grids.

Theorem 7.1.2.

a. #Thin Multicolored Grids is #XLP-complete.

b. #Tree-Shaped Thin Multicolored Grids is #XALP-complete.

From this we can easily show hardness for #Chained Multicolored Clique and
#Tree-Chained Multicolored Clique, along with the closely related problems of
#Chained Multicolored Independent Set and #Tree-Chained Multicolored In-

dependent Set.

Theorem 7.1.3.

a. #Chained Multicolored Clique and #Chained Multicolored Independent Set

are #XLP-complete.

b. #Tree-Chained Multicolored Clique and #Tree-Chained Multicolored Inde-

pendent Set are #XALP-complete.
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After that we turn our attention to #Partitioned Chained Weighted CNF-SAT

and #Partitioned Tree-Chained Weighted CNF-SAT. We show hardness for these
problems via a reduction from #ChainedMulticolored Independent Set and #Tree-

Chained Multicolored Independent Set.

Theorem 7.1.4.
a. #Partitioned Chained Weighted CNF-SAT is #XLP-complete.

b. #Partitioned Tree-Chained Weighted CNF-SAT is #XALP-complete.

We can trivially extend the results of Theorem 7.1.4 to #Chained Multicolored

Hitting Set, #Positive Partitioned Chained Weighted CNF-SAT and their tree-
chained variants.

Theorem 7.1.5.
a. #Positive Partitioned Chained Weighted CNF-SAT and #Chained Multicol-

ored Hitting Set are #XLP-complete.

b. #Positive Partitioned Tree-Chained Weighted CNF-SAT and #Tree-Chained

Multicolored Hitting Set are #XALP-complete.

From this, the final result follows by a slight variation on an existing reduction
by Marx et al. [128].

Theorem 7.1.6.
a. #AntiFactor1/pw is #XLP-complete.

b. #AntiFactor1/tw is #XALP-complete.

Membership for #AntiFactor1/pw and #AntiFactor1/tw follow from a reduc-
tion back to #Path-Like SAD Branchings and #SAD Branchings respectively. These
membership results then propagate through the existing chains of reduction to pro-
vide the membership results in Theorems 7.1.2 to 7.1.5.

7.2 Preliminaries

7.2.1 Turing Machines.

In previous chapters we were able to refer to Turing machines, without needing to
examine them in too much detail. However, in this chapter we give new complexity
classes and thus need to show completeness for a problem, directly from the defi-
nition of the class. This requires us to work directly with the inner workings of a
Turing machine and as such we now give a more detailed description.

Throughout, we let denote a special character, called the blank character. A
k-tape Turing machine is a tuple M = (Q,Σ,Γ ,δ,q0,qacc,qrej), where

• Q is a finite set of states,

• Σ is a finite set with < Σ called the input alphabet,

• Γ ⊇ { } ∪Σ is the tape alphabet,
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• q0,qacc,qrej ∈Q are the starting, accepting, and rejecting states, respectively,

• and δ : Q × Γ k → 2Q×(Γ×{−1,0,1})k is the transition function.

A configuration of M is a tuple in Q× (Γ ∗ ×N)k . We say that a configuration C1 = (q1,
(x1,1,p1,1), . . . , (x1,k ,p1,k)) yields a configuration C2 = (q2, (x2,1,p2,1), . . . , (x2,k ,p2,k)) if
the following holds. For all i ∈ [k], let ai = x1,i(p1,i), i.e. the p1,i-th element in string
x1,i . There exists (q2, (b1,D1), . . . , (bk ,Dk)) ∈ δ(q1, a1, . . . , ak) such that:

• For all i ∈ [k]: p2,i = p1,i +Di .

• For all i ∈ [k] and all j , p1,i : x2,i(j) = x1,i(j); and x2,i(p1,i) = bi .

Let x ∈ Σ∗. The starting configuration ofM on input x is the configuration (q0, (x,0),
( ,0), . . . , ( ,0)). Any configuration (qacc, . . .) is called an accepting configuration and ev-
ery configuration (qrej, . . .) is called a rejecting configuration. A configuration that is
either accepting or rejecting is called a final configuration. For a set C of configura-
tions of M and i ∈ [k], the space usage of M on its i-th tape in C is maxC∈C{pi | C =
(q, (x1,p1), . . . , (xk ,pk)}.

We say that M has read-only access to its i-th tape if for all (q,a1, . . . , ak) ∈ Q ×
Γ k and all (q′ , (b1,D1), . . . , (bk ,Dk)) ∈ δ(q,a1, . . . , ak), we have that ai = bi . We say
that M has write-only access to its i-th tape if for all (q,a1, . . . , ak) ∈ Q × Γ k and all
(q′ , (b1,D1), . . . , (bk ,Dk)) ∈ δ(q,a1, . . . , ak), we have that ai = , bi ∈ Σ, and Di = 1.

A non-deterministic k-tape Turing machine is a k-tape Turing machine M, where
we say that M accepts a string x ∈ Σ∗ (where Σ is the input alphabet) if there is a
sequence of configurations C0,C1, . . . ,Cm such that C0 is the starting configuration of
M on input x, Cm is an accepting configuration, and for all i ∈ [m], Ci−1 yields Ci .

A deterministic k-tape Turing machine is a non-deterministic k-tape Turing ma-
chine such that |δ(q,a1, . . . , ak)| = 1 for all q ∈Q and a1, . . . , ak ∈ Γ .

An alternating k-tape Turing machine is a tupleM = (Q,Σ,Γ ,δ,q0,qacc,qrej,κ) where
M ′ = (Q,Σ,Γ ,δ,q0,qacc,qrej) is a k-tape Turing machine and κ : Q \ {qacc,qrej} → {∨,∧}
labels each non-final state as non-deterministic (∨) or co-non-deterministic (∧). A con-
figuration of M is a configuration of M ′ . For x ∈ Σ∗ a computation tree of M on input
x is a rooted tree T whose vertices are configurations of M such that: (1) The root
of T is the starting configuration of M on input x. (2) Each C = (q, . . .) ∈ V (T ) such
that κ(q) = ∨ has precisely one child C′ in T where C yields C′ in M. (3) Each
C = (q, . . .) ∈ V (T ) such that κ(q) = ∧ has all configurations C′ such that C yields C′

in M as children in T . We say that M accepts a string x ∈ Σ∗ if there is a computation
tree of M on input x such that all leaves are accepting configurations.

7.2.2 #XLP and #XALP

We now recall the following definitions from Chapter 2 for #XLP and #XALP and the
associated Turing machines. These classes form the central objects of this chapter.

Definition 2.5.1. An XNLP machine is a non-deterministic Turing machine such that
for a given parameterized instance (I,k), where |I | = n:
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(i) For a Yes instance, at least one computation path accepts.

(ii) For a No instance, all computation paths reject.

(iii) There is some computable function f and some constant c such that the machine
runs in at most f (k)nc time and uses at most f (k) logn space.

(iv) The machine has read-only access to an input tape of size n and write-only access to
an output tape.

Definition 2.5.2. An XALP machine is an alternating Turing machine M such that for
each instance (I,k), where |I | = n, items items i, ii and iv of Definition 2.5.1 are satisfied
(where computation trees take the role of computation paths), and:

(iii’) There is some computable function f and some constant c such that M uses at most
f (k) logn space and such that the computation tree of M on input (I,k) has size at
most f (k)nc.

Using these notions we can define the classes #XLP and #XALP.

Definition 2.5.8.

(i) The class #XLP consists of all problems that ask for the number of accepting paths of
some XNLP machine.

(ii) The class #XALP consists of all problems that ask for the number of accepting trees
in some XALP machine.

7.2.3 Polynomial Interpolation in Logspace

In previous chapters we have used interpolation to retrieve the coefficients of a uni-
variate polynomial from a collection of evaluations. For a multivariate polynomial
p ∈ Z[x1, . . . ,xs] of maximum degree d this is still possible, but requires points to be
sufficiently spread out in each direction. For example, we can compute the (d + 1)s

coefficients of p from its evaluations on the grid [d + 1]s: This can be achieved by
solving a linear system of (d + 1)s equations with a Vandermonde system matrix of
full rank. However, this method a priori requires super-logarithmic space, which will
prove to be a problem for the applications in this chapter. Luckily, for our purposes,
rather than computing the coefficients of p, it suffices to evaluate p(ξ) at an arbitrary
point ξ ∈Qs. This can be achieved with Lagrange interpolation in logarithmic space.
Let us define

L(j1,...,js)(x1, . . . ,xs) =
∏
κ∈[s]

∏
i∈[d+1]
i,jκ

xκ − i
jκ − i

and observe that for j,k ∈ [d + 1]s we have

Lj(k) =

1 if j = k,
0 otherwise.



Chapter 7. #XLP and #XALP 153

We thus have
p(x1, . . . ,xs) =

∑
j∈[d+1]s

p(j)Lj(x1, . . . ,xs)

and conclude the following useful lemma (also mentioned in Chapter 2).

Lemma 2.7.2. Let R ⊆Q be a finite set. Let p ∈Z[x1, . . . ,xs] for s =O(1) be a polynomial
of maximum degree d. If there is a dO(1) time- andO(logd) space-bounded algorithm that
computes p(j) on input j ∈ [d+1]s, then there also exists such an algorithm for computing
p(ξ) at any input ξ ∈ Rs.

7.2.4 Holant Problems

In Section 7.6 we use a framework for graph problems called the Holant Framework.
Holant problems are a class of problems, introduced by Valiant [152], defined as
follows.

Definition 7.2.1. A signature graph is an edge-weighted graph Ω, with at each vertex
v ∈ V (Ω) a signature fv : {0,1}δ(v)→Q.

The Holant of Ω is defined as follows.

Holant(Ω) :=
∑

x∈{0,1}E(ω)


∏
e∈E(Ω)
x(e)=1

w(e)


 ∏
v∈V (Ω)

fv(x|δ(v))

 .
Many graph problems relating to subsets of the edgeset of a graph can be phrased

as a Holant problem and we will see an example of this in #AntiFactor1.

7.3 Branching in DAGs

Many dynamic programming algorithms on linear structures can be rephrased in
terms of deciding the existence of paths in specific directed acyclic graphs: Given
an input instance I for a problem, the instance is transformed into a directed acyclic
graph D =D(I), with unique source and sink vertices s, t ∈ V (D), such that solutions
for I correspond to s-t-paths in D. For counting problems, it should be possible to
recover the number of solutions for I efficiently from the number of s-t-paths in D.
For tree-like structures, trees should play the role of paths, and there may not be a
unique sink.

7.3.1 Adorned DAGs

We capture the above considerations through the notion of an adorned DAG.

Definition 7.3.1. An adorned DAG is a tuple D = (D,w,B,T ,b), where

• D is a DAG with V (D) = [0,n] for some number n ∈N,

• w : E(D)→Z≥0 assigns non-negative integer weights to the edges of D,
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• B,T ⊆ V (D) are referred to as branch and terminal vertices respectively, with B∩T =
∅,

• the out-degree of every v ∈ B is exactly 2.

We call D path-like if B = ∅. A branching in D is a directed tree A in D, rooted at
0 ∈ V (D) and edges directed towards children, such that

• each branch vertex v ∈ B has two children w0 and w1 in A,

• every terminal vertex v ∈ V (A) is a leaf,

• each non-branch, non-terminal vertex v ∈ V (D) \ (B∪ T ) has one child in A.

The weight of A is defined asw(A) =
∏
e∈Aw(e). The depth ofA is the maximum length

of a path from 0 to a leaf. Note that any branching in a path-like adorned DAG is a path.

In the Definition, the weight of T is defined as the product of occurring edge-
weights rather than its sum. This is because edge-weights will be used to encode
independent choices that contribute towards a solution. To determine the overall
number of choices, these numbers should be multiplied.

Intuitively a branching is formed by starting at the root vertex 0 and walking
along the arcs of the DAG in the following manner. If the current vertex is a terminal
vertex (or has no out-neighbors), we stop. If the current vertex is a branch vertex,
we duplicate and walk to both out-neighbors. Otherwise we choose one of the out-
neighbors of the current vertex (in a non-deterministic manner) and walk to that
vertex. The process is considered a success if all terminal vertices are visited (by
some duplicate).

There is a natural analogue between branchings in adorned DAGs and computa-
tion trees in alternating Turing machines. One can think of each vertex in the DAG
as a configuration and the root 0 as the starting configuration. Arcs in the DAG
represent sequences of computation steps on the Turing machine. If a vertex has
multiple out-neighbors, it represents a (co-)non-deterministic step in the computa-
tion, with branch vertices being co-non-deterministic and non-branch vertices being
non-deterministic.

7.3.2 Succinct Representations of Adorned DAGs

In the setting of space-bounded computation, it may not be possible to store an
explicit representation of the adorned DAG D derived from an instance I within
the prescribed memory bounds. However, for many problems, an implicit repre-
sentation suffices: Adorned DAGs D can be encoded via Turing machines M, pos-
sibly much more succinctly than via an explicit encoding. In the following, let
⟨⟩ : N∗ → {0,1}∗ be an injective pairing function that is logspace-computable, as
well as its inverse, and which maps a variable number of arguments from N into
a bitstring.

Definition 7.3.2. A deterministic Turing machine M encodes an adorned DAG D =
(D,w,b,B,T ) if it outputs the following on input ⟨i,q, r⟩ with i, r ∈N and q ∈ {0,1}:
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• If q = 0, then M outputs ⟨z,d⟩ such that:

– The number z ∈ {0,1,2} indicates whether i is contained in B (1), T (2), or
neither (0), and

– d is the out-degree of i.

• If q = 1, thenM outputs ⟨j,w(ij)⟩, where j is the r-th out-neighbor of i, in ascending
order.

The intuition here is as follows. M can be seen as an oracle that provides local
information about the dag D. i is the vertex we want to ask a question about. The bit
q indicates whether we want to ask M for information about i itself (q = 0), or one of
its out-neighbors (q = 1). r is only relevant if q = 1 and indicates the out-neighbor of i
we want to know about. Note that this gives us enough information to walk through
D along the direction of the arcs and to branch when we want to.

7.3.3 Completeness of Counting Branchings in DAGs

We now turn to a pair of counting problems for Succinct Adorned DAGs, that will
form our canonical #XLP- and #XALP-complete problems. Recall that the depth of
a branching is the length of the longest path from the root to any of the leaves of the
branching.

#Succinct Adorned DAG Branchings (#SAD Branchings)
Input: Integer d (in unary), a k logn space- and f (k) ·nc time-bounded determin-
istic Turing machine M, an input x of length n for M such that M(x, ·) encodes an
adorned DAG D.
Parameter: k
Question: The number of branchings of depth at most d in D.

If the adorned dagD is additionally required to be path-like, we call the resulting
problem #Path-Like SAD Branchings for short. Note that for the path-like variant,
the branchings are all paths.

We can think of this problem as just counting branchings in DAGs, but in a set-
ting where the DAG is provided implicitly by the input x and the Turing machine
M. For example x might consist of a graph G with some tree decomposition. The
vertices of the DAG might correspond to colorings of the bags of the tree decom-
position and M might relay information about compatible colorings of neighboring
bags. In this example we see that there is sometimes a direct link between vertices
in an adorned DAG and states in a dynamic programming algorithm.

In essence #SAD Branchings problem is just a rephrasing of counting accepting
computation trees of an alternating Turing machine (see also the discussion in Sub-
section 7.3.1), with bounded depth, i.e. running time. This rephrasing is will turn
out to be quite useful, as it translates the (co-)non-deterministic aspects of the set-
ting into the language of graphs. Since many of our problems are graph problems,
this makes #SAD Branchings and #Path-Like SAD Branchings much easier to work
with.
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Lemma 7.3.3. #SAD Branchings is in #XALP and #Path-Like SAD Branchings is in
#XLP.

Proof. We give a proof for #SAD Branchings and note that the same proof works
for #Path-Like SAD Branchings if we leave out the parts about branching vertices.
Given the Turing machine M that encodes the DAG D, we repeat the following com-
putation. We first write down the ID of the current vertex v in the DAG, starting
with the root vertex. We then run M to find the children of v.

If v is a terminal vertex, we terminate.
If v is a non-branch, non-terminal vertex, choose a child u in a non-deterministic

fashion. If the edge uv has weight w, we simulate this as follows. We create a binary
tree rooted at v, withw leaves, consisting of non-branching vertices. We then connect
each leaf to u. Note that there are w paths from v to u in this tree and thus we
replaced a branching of weight w ·C by w branchings of weight C, for some C. We
then write down the ID of u, replacing that of v, and repeat the process.

If v is a branch vertex, we branch the computation to all children of v, again
simulating the edge-weights with arbitrary branching.

We iterate until all branches of the computation have reached a terminal vertex.
It is easy to see that a computation tree in this process corresponds with a branch-

ing of D. Since we only need to save vertex ID’s and the internal storage of M to
memory, we only need O(f (k) logn) space.

We proceed to prove Theorem 7.1.1 by showing that these problems are also hard
for their respective classes.

Theorem 7.1.1.
a. #SAD Branchings is #XALP-complete.

b. #Path-Like SAD Branchings is #XLP-complete.

Proof. Membership for both cases is shown in Lemma 7.3.3. We prove hardness for
item (a) and observe that for item (b), it follows from essentially the same argument,
ignoring co-non-deterministic steps of XALP-machines.

Let Π be a parameterized counting problem contained in #XALP, and let MΠ be
its XALP-machine. Let f be a function and c a constant such that on inputs I with
parameter k, where n = |I |, MΠ uses at most f (k) logn space and each computation
tree of MΠ on such inputs has size at most f (k)nc.

Now, fix any input I to MΠ, and let n = |I | and k = k(I) the associated parameter
throughout. We construct an instance (d,M,x,D) of #SAD Branchings. We let d =
f (k)nc, x = I , and we describe M and D in the following.

We first describe the adorned DAG D. As D is unweighted in this reduction, it
suffices to consider D as a triple (D,B,T ) of a DAG D, a set B ⊆ V (D) of branching
nodes, and a set T ⊆ V (D) of terminals. (As the branching nodes correspond to
co-non-deterministic steps in MΠ, they can be left out in the proof of item (b).)

The vertices of D essentially correspond to the configurations of MΠ on input I .
Note that since the input tape of MΠ is read-only, it suffices to store the position of
the tape head alone, for which there are only n choices. Let ΓΠ be the tape alphabet of
MΠ. Each such configuration is a tuple (q,p1,p2, s) where q is a state of MΠ, p1 ∈ [n]
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is the position of the first tape head, p2 ∈ [f (k) logn] is the position of the second
tape head, and s is a string in Γ ∗

Π
of length at most f (k) logn. We choose an integer

m large enough such that each configuration of MΠ on input I can be encoded as
a binary string of length precisely ⌊logm⌋ + 1. In particular, for each configuration
C of MΠ on input I , there will be an integer i ≤ m such that the binary expansion
of i using ⌊logm⌋ + 1 bits will be a binary encoding of C. For each configuration
(q,p1,p2, s), a constant number of bits suffices to encode q, O(logn) bits suffice to
encode p1, log(f (k) logn) bits suffice for p2, and O(log(|ΓΠ|) · f (k) logn) bits suffice for
s. Therefore, it suffices to take some m ∈ nO(f (k)). The vertex set of D is [m]. For each
vertex i ∈ [m] of D, consider its binary expansion si using precisely ⌊logm⌋ + 1 bits.
It is of one of the following types.

1. If si is the all-zeroes string, then i = 0 corresponds to the starting configuration
of MΠ on input I .

2. If si is the binary encoding of a non-starting configuration C of MΠ on input I ,
then i corresponds to C.

3. Otherwise, i is a garbage vertex.

Note that with access to I and a description ofMΠ, a Turing machine can check if
some integer i ∈ [m] corresponds to a configuration of MΠ on input I in polynomial
time. Since logm ∈ O(f (k) logn), the space usage of such a machine can be bounded
by f ′(k) logn for some function f ′ , if we assume that I is written to the read-only
input tape of the machine.

In D, all garbage vertices will be isolated. For all i, j ∈ [n] such that i corresponds
to a configuration Ci and j corresponds to a configuration Cj such that Ci yields Cj ,
there is an arc from i to j in D. Note that this indeed yields a DAG, since otherwise
MΠ would loop on input I , which is impossible since an XALP-machine must ter-
minate in at most f (k)nc time. Recall that a co-non-deterministic configuration is a
configuration whose state is labeled co-non-deterministic. We let:

B = {i ∈ V (D) | i corresponds to a co-non-deterministic configuration}.
T = {i ∈ V (D) | i corresponds to an accepting configuration}.

Finally, we describe M, a Turing machine that encodes D. By the definition of
the #SAD Branchings problem, we may assume that I is written on the input tape
of M. As a first step, we hard-code a description of MΠ into M by writing it to its
work tape. Note that the description ofMΠ has constant size, therefore this does not
occur any prohibitive overhead on the space usage. Throughout the following, we
can freely assume that M has access to both I and MΠ.

Let ⟨i,q, r⟩ be an input to M. If q = 0, we check if i corresponds to a configuration
Ci of MΠ on input I ; if not, we return ⟨0,0⟩. Otherwise, we check if the state of
Ci is the accepting state of MΠ; if yes, we set z = 2. Otherwise, if Ci is co-non-
deterministic, we set z = 1; and otherwise z = 0. Using our access to MΠ and I ,
we can check how many configurations Cj exist such that Ci = (q,p1,p2, s) yields
Cj = (q′ ,p′1,p

′
2, s
′). The number of possibilities for Cj we have to check is constant:
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there is a constant number of states in MΠ, we know that p′1 ∈ {p1 − 1,p1,p1 + 1},
p′2 ∈ {p2 − 1,p2,p2 + 1}, and s′ can be obtained from s by (possibly) replacing the
character at position p2, again a constant number of choices. By construction, the
number δ of configurations Cj such that Ci yields Cj is the out-degree of vertex i
in D. We return ⟨z,δ⟩. All of these operations can be done using O(logm) space
and (logm)O(1) steps. Since logm ≤ f ′(k) logn for some function f ′ , this satisfies the
required bounds on the space and time usage of M.

If q = 1, then again, we first check if i corresponds to some configuration Ci or
not. If not, then we report an error (as in this case, i has no out-neighbors). Other-
wise, we enumerate all configurations Cj such that Ci yields Cj in ascending order,
meaning Cj1 ,Cj2 , . . . such that j1 < j2 < . . ., using I and the description ofMΠ, and out-
put ⟨jr⟩. If we find that there are less than r such configurations, we report an error.
Once more, these steps can be done within the required space- and time-bounds.

It is clear from the construction that there is a bijective correspondence between
accepting computation trees in MΠ on input I and the branchings in D.

7.4 Multicolored Pattern Problems

In this section we show hardness for the #Thin Multicolored Grids and #Tree-

Shaped ThinMulticolored Grids problems. As a corollary we also find hardness for
#Chained Multicolored Clique, #Tree-Chained Multicolored Clique, #Chained
Multicolored Independent Set and #Tree-Chained Multicolored Independent

Set. As mentioned in the results section, #XLP- and #XALP-membership follows
from the entire sequence of reductions. It thus suffices to show hardness.

Figure 7.2: An example of a tree-shaped multicolored thin grid. The partition sets
Vt and their partition sets Vt,i are indicated with dashed lines. The colors have no
additional meaning beyond indication the different sets Vt,1,Vt,2,Vt,3.
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For the proof of Lemma 7.4.2, we will make use of the following lemma.

Lemma 7.4.1 (Bodlaender, Groenland, Jacob, Pilipczuk, Pilipczuk [22]). For every
XALP-machine M which on inputs of size n and parameter k uses at most f (k) logn
space and has computation trees of size at most f (k)nc, for some computable function
f and constant c, there is an XALP-machine M∗ that decides the same language using
O(f (k) logn) space, and such that each computation tree T of M∗ on an input of length
n and parameter k has the following property: T is obtained from a binary tree of height
O(logn) + f (k) by subdividing each edge the same number of times, which is at most
f (k)nc.

We now formally state the problem we will discuss in this section.

#Tree-Shaped Thin Multicolored Grids

Input: Graph G, binary tree T , a partition {Vt}t∈V (T ) of V (G), and for each t ∈
V (T ), a partition Vt,1, . . . ,Vt,k of Vt such that

E(G) ⊆{uv : u ∈ Vt,i ,v ∈ Vt,i+1, t ∈ V (T ), i ∈ [k − 1]}
∪ {uv : u ∈ Vt,i ,v ∈ Vt′ ,i , tt′ ∈ E(T ), i ∈ [k]}.

Parameter: k
Question: How many sets W ⊆ V (G) are there, such that for all (t, i) ∈ V (T )× [k]:
|W ∩Vt,i | = 1; and for all st ∈ E(T ), G[W ∩ (Vs ∪Vt)] is a 2× k-grid?

The special case of the previous problem where T is required to be a path is called
#Thin Multicolored Grids. Note that in this case, we can make the path structure
implicit by assuming that we are given a partition V1, . . . ,Vr of the vertex set, instead
of an explicit path.

Lemma 7.4.2.
a. #Tree-Shaped Thin Multicolored Grids is #XALP-hard.
b. #Thin Multicolored Grids is #XLP-hard.

Proof. We prove item a and note that the proof of item b can be done analogously,
starting from an XNLP-machine instead of an XALP-machine and going via #Path-

Like SAD Branchings instead of #SAD Branchings.
We prove item a. Let Π be a parameterized counting problem contained in

XALP, and let MΠ be its XALP-machine that has the special properties described in
Lemma 7.4.1. We furthermore make the standard assumption that the tape alpha-
bet of MΠ is binary. Let I be an input to MΠ with |I | = n and associated parameter
k = k(I). Let T be the binary tree that dictates the shape of computation trees of
MΠ on input I . Let T ′ be the tree of height O(logn) + f (k) such that T is obtained
from T

′ by subdividing each of its edges s ≤ f (k)nc times. Now, we run the reduction
from the proof of 7.1.1.a to obtain an instance I = (f (k)nc,M,I,D) of #SAD Branch-

ings with adorned DAG D = (D,B,T ). (Throughout the following, we disregard the
garbage vertices in D, as they are isolated and therefore have no influence on any
solution to I .)
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As the structure of D models the computation of MΠ on input I we know that
there is a partition2 {Vt}t∈V (T ) of V (D) such that:

(i) Vr = {0} where r is the root of T .

(ii) For each t ∈ V (T ) with one child: Vt ⊆ V (D) \ (B∪ T ).

(iii) For each t ∈ V (T ) with two children: Vt ⊆ B.

(iv) For each leaf t ∈ V (T ): Vt ⊆ T .

(v) E(D) ⊆
⋃
st∈E(T )Vs ×Vt .

We use this structure to create our instance of #Tree-Shaped Thin Multicolored

Grids. However, for each t ∈ V (T ), the size of Vt could be as big as nΩ(f (k)), the
number of configurations of MΠ on input I . We therefore use the same compression
technique as in [22] to give representations of these sets of small enough size, i.e.
f ′(k)nc

′
.

We now follow the proof from [22] in a near-verbatim way. Let v be a vertex in
D, corresponding to a configuration (q,p1,p2, s) of MΠ on input I . Recall that q is a
state of MΠ, p1 the position of the input tape head, p2 the position of the work tape
head, and s the work tape content, i.e., a binary string of length at most f (k) logn.
For each t ∈ V (T ), we construct a set of vertices Xt partitioned into Xt,1, . . . ,Xt,f (k)
such that each configuration can be encoded as a choice of one vertex from each part
of the partition. For each j ∈ [f (k)], the vertices in Xt,j encode the content of the
j-th block of logn bits of the work tape content. To this end, each Xt,j contains, for
all states q of MΠ, for all p1 ∈ [n], for all p2 ∈ [f (k) logn], and all w ∈ {0,1, }logn a
vertex vq,p1,p2,w = uq,p1,p2,w (for convenience, we give this vertex two names) that can
correspond to any configuration (q,p1,p2, s), where the j-th block of logn consecutive
bits of s is equal to w. (We assume that s always has length precisely f (k) logn; if
fewer cells are used we fill up the remaining positions with blanks.)

The vertex set of the graph G is V (G) =
⋃
t∈V (T ),j∈[f (k)]Xt,j . We add two types of

edges. First, between consecutive blocks of each Xt , t ∈ V (T ), to ensure that each
valid choice in a solution corresponds to one configuration (rather than a mix of
some): For each t ∈ V (T ) and j ∈ [f (k) − 1], we add an edge between uq,p1,p2,w ∈ Xt,j
and vq′ ,p′1,p′2,w′ ∈ Xt,j+1, if q = q′ , p1 = p′1, and p2 = p′2. Next, for each edge tt′ ∈ E(T )
(where t is the parent and t′ the child), and each j ∈ [f (k)], we add the following
edges between Xt,j and Xt′ ,j . Let uq,p1,p2,w ∈ Xt,j and vq′ ,p′1,p′2,w′ ∈ Xt′ ,j . There are two
cases to consider.

• Case 1 (p2 < [(j − 1)logn+ 1, j logn]): We connect uq,p1,p2,w and vq′ ,p′1,p′2,w′ if and
only if w = w′ . In this case, the tape head of the work tape is not on the j-
th block, so no change to w can happen. The remaining components of the
configuration could have changed.

2Observe that this is indeed a partition: if a configuration appeared in more than one part, then MΠ

does not halt on input I .
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• Case 2 (p2 ∈ [(j−1)logn+1, j logn]): Let p∗2 = (p2 mod logn)+1, so that the p2-th
position of the work tape content corresponds to the p∗2-th position in the j-th
block. We connect uq,p1,p2,w and vq′ ,p′1,p

′
2,w
′ if and only if there is a transition

in MΠ that upon reading I[p1] on the input tape and w[p∗2] on the work tape,
writes w′[p∗2] to the work tape, moves the input tape head to position p′1 and
the tape head position to p′2, and if w[h] = w′[h] for all h ∈ [logn] \ {p∗2}.

We clean up the graph G in the following way:

1. From Xr, where r is the root of T , we remove all vertices except the ones that
correspond to the starting configuration of MΠ on input w, i.e., are of the form
(q0,1,1, logn), where q0 is the starting state of T .

2. For each non-root node t ∈ V (T ): (a) If t has one child, then we remove all
vertices fromXt that have co-non-deterministic states. (b) If t has two children,
then we remove all vertices from Xt that have non-deterministic states. (c) If
t has no children, then we remove all vertices from Xt that do not have the
accepting state.

This finishes the reduction. Observe for the size of G that each Xt , for t ∈ T , has
at most f ′(k)nc

′
vertices, for some function f ′ and small constant c′ . Since the size

of T is at most f (k)nc, the size of G is at most f ′′(k)nc
′′

for some function f ′′ and
constant c′′ . Moreover, all operations to construct G can be performed using only
O(f (k) logn) space.

We use the following notation. A T-path in G is a path v1, . . . , vf (k) such that there
exists some t ∈ V (T ) where for all j ∈ [f (k)], vj ∈ Xt,j . We also call this path a T-
path in Gt , if t is not clear from context. A local T-grid in G is a 2 × f (k)-grid with
consisting of u1, . . . ,uf (k), a T-path in Gs, and v1, . . . , vf (k), a T-path in Gt , for some
st ∈ E(T ), where for all j ∈ [f (k)], ujvj ∈ E(G). We call the path on vertices u1, . . . ,uf (k)
its top T-path and the path on vertices v1, . . . , vf (k) its bottom T-path.

Observation 7.4.3.
a. Each T-path encodes a configuration of MΠ on input I .
b. Each local T-grid encodes a pair C1,C2 of configurations of MΠ on input I such that
C1 yields C2; moreover, its top T-path encodes C1 and its bottom T-path encodes C2.

Claim 7.4.4. There is an injection ψ from V (D) to the T-paths in G such that
a. For all t ∈ V (T ), ψ maps Vt to the T-paths in Gt .
b. For each uv ∈ E(D), G[V (ψ(u))∪V (ψ(v))] is a local T-grid.
c. Let P be a T-path that is not in the image of ψ. Then, there is no tree-shaped thin
multicolored grid that has P has a subgraph.

Proof. We construct ψ as follows. Recall that each vertex v ∈ V (D) corresponds to a
configuration (q,p1,p2, s) of MΠ on input I . Moreover, there is some t ∈ V (T ) such
that v ∈ Vt . For j ∈ [f (k)], let wj be the j-block of logn consecutive characters of s,
such that s = w1w2 . . .wf (k). Then, we map v to the T-path consisting of the vertices
vq,p1,p2,w1

, vq,p1,p2,w2
, . . ., vq,p1,p2,wf (k)

, where for all j ∈ [f (k)], vq,p1,p2,wj ∈ Xt,j (using
the notation from the construction above). It is clear that this construction gives an
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injection from V (D) to the T-paths in G that satisfies item a. For item b, consider
an edge uv ∈ V (D); then, for some tt′ ∈ E(T ), where t is the parent and t′ the child,
u ∈ Vt and v ∈ Vt′ . By construction of D, the configuration corresponding to u yields
the configuration corresponding to v. By construction of G, G[V (ψ(u))∪V (ψ(v)] is a
local T-grid.

For item c, suppose for a contradiction that there is some T-path P contained
in a tree-shaped thin multicolored grid W such that P is not in the image of ψ. By
construction, there is only one T-path P0 in Gr, where r is the root of T . Therefore,
W must contain P0. Moreover, P0 encodes the starting configuration of MΠ on input
(I,k). This configuration in turn is represented by the vertex 0 in D, and therefore
P0 is in the image of ψ. Using induction and Observation 7.4.3, we eventually reach
the contradiction that P is in fact in the image of ψ. ■

From Claim 7.4.4 and the construction of G we can infer that there is a bijective
correspondence between the branchings in D (and therefore the accepting compu-
tation trees of MΠ on input (I,k) by the proof of Theorem 7.1.1) and the tree-shaped
thin narrow grids in G.

As a corollary of Lemma 7.4.2 we also find hardness for the following, more well-
known variant of #Thin Multicolored Grids.

#Tree-Chained Multicolored Clique

Input: Graph G, binary tree T , partition {Vt}t∈V (T ) of V (G), and for each t ∈ V (T ),
a partition of Vt into Vt,1, . . . ,Vt,k .
Parameter: k
Question: How many sets W ⊆ V (G) are there, such that for all (t, i) ∈ V (T )× [k]:
|W ∩Vt,i | = 1; and for all st ∈ E(T ): W ∩ (Vs ∪Vt) is a clique in G?

A relevant special case of the previous problem is #ChainedMulticolored Clique,
where we restrict T to be a path. In this case, we may for convenience assume that in-
stances come with a partition V1, . . . ,Vr of V (G) (where the order of the Vi ’s indicates
the path structure) and ask to count sets W that induce cliques on each Vi ∪Vi+1.

The #Chained Multicolored Independent Set and #Tree-Chained Multicol-

ored Independent Set problems are the analogues of the two above problems where
we are interested in counting independent sets instead of vertex sets that induce
cliques in adjacent parts. Note that in both problems, we may assume that there
are no edges between parts that are not adjacent in the underlying tree- or path-
structure.

Lemma 7.4.5.
a. #Chained Multicolored Clique and #Chained Multicolored Independent Set

are #XLP-hard.

b. #Tree-Chained Multicolored Clique and #Tree-Chained Multicolored Inde-

pendent Set are #XALP-hard.

Proof. We reduce from #Tree-Shaped Thin Multicolored Grids to #Tree-Chained

Multicolored Clique and note that the reduction from #Thin Multicolored Grids
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to #Chained Multicolored Clique is analogous. We also note that it is not hard
to see that #Tree-Chained Multicolored Clique and #Tree-Chained Multicol-

ored Independent Set are equivalent (idem for #Chained Multicolored Clique

and #Chained Multicolored Independent Set), by swapping edges and non-edges
between adjacent vertex sets Vt .

Given an instance of #Tree-Shaped Thin Multicolored Grids, we perform the
following modifications to retrieve an instance G′ of #Tree-Chained Multicolored

Clique. For Vt,i and Vt,j such that |i − j | > 1 we add all edges uv for u ∈ Vt,i and
v ∈ Vt,j . For Vt,i and Vt′ ,j such that i , j and tt′ ∈ E(T ) we add all edges uv for
u ∈ Vt,i and v ∈ Vt′ ,j . Note that this means that in the resulting instance of #Tree-
Chained Multicolored Clique the adjacency requirements between these sets are
automatically satisfied. The remaining adjacencies are precisely those involved in
the #Tree-Shaped Thin Multicolored Grids instance. We find that a set W ⊆ V (G′)
is a tree-chained multicolored clique in G′ if and only if it is a tree-shaped thin
multicolored grid in G.

It is clear that this reduction can be performed using logarithmic space, as all
operations are local and can be described by only the indices of the sets involved.

7.5 Satisfiability and Hitting Set Problems

In this section we give a series of simple reductions to prove hardness for #Par-

titioned Tree-Chained Weighted CNF-SAT, #Positive Partitioned Tree-Chained

Weighted CNF-SAT, #Tree-Chained Multicolored Hitting Set and their linear
counterparts. As before we state the formal definitions for the tree-shaped versions
of the problems and note that the linear version of the problem is defined by replac-
ing the tree in the definition by a path. We start with #Partitioned Tree-Chained

Weighted CNF-SAT.

#Partitioned Tree-Chained Weighted CNF-SAT

Input: A binary tree T , a set of Boolean variables X partitioned into sets
{Xt}t∈V (T ), for each t ∈ V (T ), a partition of Xt into Xt,1, . . . ,Xt,k , and for each
e = st ∈ E(T ), a CNF-formula Fe over variables Xs ∪Xt .
Parameter: k
Question: How many satisfying assignments of F =

∧
e∈E(T )Fe are there that set

exactly one variable in each Xt,i to true?

The #Partitioned Chained Weighted CNF-SAT problem is the restriction of
#Partitioned Tree-Chained Weighted CNF-SAT to the case when T is a path. Here,
instead of the explicit path structure, we may simply consider having a partition
X1, . . . ,Xr of X and formulas F1, . . . ,Fr−1 where for each i ∈ [i − 1], Fi has variables
Xi ∪Xi+1.

Lemma 7.5.1.

a. #Partitioned Chained Weighted CNF-SAT is #XLP-hard, even when all formulas
are in 2-CNF and only contain negated literals.
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b. #Partitioned Tree-Chained Weighted CNF-SAT is #XALP-hard, even when all
formulas are in 2-CNF and contain only negated literals.

Proof. We first prove item a. We reduce from #Chained Multicolored Indepen-

dent Set, which is #XLP-hard by Lemma 7.4.5.a. Let (G,V1,1, . . . ,V1,k , . . . ,Vr,1, . . . ,
Vr,k) be an instance of #Chained Multicolored Independent Set. We create an in-
stance (X1,1, . . . ,X1,k , . . . ,Xr,1, . . . ,Xr,k ,F1, . . . ,Fr−1) of #Partitioned Chained Weighted

CNF-SAT, where for all i ∈ [r − 1], Fi is in 2-CNF containing only negated literals.
For each (i, j) ∈ [r]× [k], we let Xi,j = {xv | v ∈ Vi,j }. Let uv ∈ E(G). As in the #Chained

Multicolored Independent Set instance, we may assume that there are no edges be-
tween Vi and Vj whenever |i − j | > 1, there is some i ∈ [r] such that {u,v} ⊆ Vi ∪Vi+1.
We add the clause (xu ∨xv) to Fi . Observe that this reduction can be implemented to
run in logarithmic space.

There is a natural bijective correspondence between chained multicolored inde-
pendent sets in G and the satisfying truth assignments to F =

∧
i∈[r−1]Fi that set one

variable per Xi,j to true: the variable set to true is the one that corresponds to the
vertex picked in the independent set.

Using the same proof, but starting the reduction from #Tree-Chained Multicol-

ored Independent Set instead, proves item b.

Using the a simple reduction we can extend Lemma 7.5.1 to the following re-
stricted setting.

#Positive Partitioned Tree-Chained Weighted CNF-SAT

Input: A binary tree T , a set of Boolean variables X partitioned into sets
{Xt}t∈V (T ), for each t ∈ V (T ), a partition of Xt into Xt,1, . . . ,Xt,k , and for each
e = st ∈ E(T ), a CNF-formula Fe over variables Xs ∪ Xt , using no negated vari-
ables.
Parameter: k
Question: How many satisfying assignments of F =

∧
e∈E(T )Fe are there that set

exactly one variable in each Xt,i to true?

Note that this problem is essentially a rephrasing of the following problem.

#Tree-Chained Multicolored Hitting Set

Input: A binary tree T , a universe U partitioned into sets {Ut}t∈V (T ), for each
t ∈ V (T ), a partition ofUt intoUt,1, . . . ,Ut,k , and for each e = st ∈ E(T ), a collection
Ae of subsets of

⋃k
i=1

(
Us,i ∪Ut,i

)
.

Parameter: k
Question: How many sets W ⊆ U are there, such that for all (t, i) ∈ V (T ) × [k]:
|W ∩Ut,i | = 1; and for all e ∈ E(T ), for all A ∈ Ae: W ∩A , ∅?

Lemma 7.5.2.
a. #Positive Partitioned Chained Weighted CNF-SAT and #Chained Multicol-

ored Hitting Set are #XLP-hard.
b. #Positive Partitioned Tree-Chained Weighted CNF-SAT and #Tree-Chained

Multicolored Hitting Set are #XALP-hard.
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Proof. We first prove item a. First note that #Positive Partitioned ChainedWeighted

CNF-SAT and #Chained Multicolored Hitting Set are equivalent, by mapping ei-
ther a clause to the set of variables appearing in that clause, or a set to the clause
containing all element from that set. We will therefore focus on #Positive Parti-

tioned Chained Weighted CNF-SAT.
Let (Fe)e∈E(T ) be the sequence of CNF-formulas for a given instance of #Par-

titioned Chained Weighted CNF-SAT. Note that, since we must set exactly one
variable from each set Xt,i = {x1, . . . ,xℓ} to true, we have that the formulas ¬xj and
φj := x1 ∨ x2 ∨ · · ·xj−1 ∨ xj+1 ∨ · · ·xℓ are equivalent. We can therefore create an equiv-
alent sequence of CNF-formulas (F′e)e∈E(T ) by replacing each instance of xj with φj .
Note that if we do this for every negated variable, we produce an instance of #Posi-
tive Partitioned Chained Weighted CNF-SAT.

Using the same proof, but starting the reduction from #Partitioned Tree-Chained

Weighted CNF-SAT instead, proves item b.

7.6 AntiFactor

In this section we show #XLP- and #XALP-completeness for the #AntiFactor1/pw

and #AntiFactor1/tw respectively. We give detailed proofs for the parameterization
by treewidth and note that the proofs for pathwidth are essentially analogues. The
problem (parameterized by treewidth) is defined as follows.

#AntiFactor1
Input: A graph G, a width tw tree decomposition (T , (Bx)x∈V (T ))) of G, an integer
d.
Parameter: tw
Question: How many edge subsets A ⊆ E(G) are there, for which no vertex in
V (G) is incident to exactly d edges in A.

We can write #AntiFactor1 as a Holant problem, by setting all edge weights to 1
and setting

fv(x) :=

0 if x(e) = 1 for exactly d e ∈ δ(v),
1 otherwise.

There is a closely related problem called #Factor1, where instead of forbidding
a degree d, we require every vertex to be incident to exactly d edges in A. Both
#Factor1 and #AntiFactor1 are special cases of the more general #General Factor.
In this chapter we only consider the #AntiFactor1 problem because #Factor1 can
be shown to be FPT-time solvable for tree- and pathwidth, as a corollary of [127,
Theorem 1.3].

Corollary 7.6.1. There exists an algorithm that can solve #Factor1/tw in time (tw+1)tw

nO(1).

Proof. Let d be the allowed degree and G the graph from the given #Factor1/tw in-
stance. First note that if the minimum degree δ(G) of G is δ(G) < d, then we trivially
have 0 solutions. Also note that the treewidth tw of G is at least tw ≥ δ(G) and thus
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we may assume tw ≥ d. By [127, Theorem 1.3] we can then solve the instance in
(d + 1)twnO(1) ≤ (tw+1)twnO(1) time.

We now turn our attention to the #AntiFactor1 problem. We first show mem-
bership of #AntiFactor1/tw (#AntiFactor1/pw) in #XALP (#XLP).

Lemma 7.6.2.
a. The problem #AntiFactor1/tw is contained in the class #XALP.

b. The problem #AntiFactor1/pw is contained in the class #XLP.

Proof. We give a reduction from #AntiFactor1/tw to #SAD Branchings (and from
#AntiFactor1/pw to #Path-Like SAD Branchings). By Lemma 7.3.3 the claim then
follows.

We will essentially turn a simple dynamic program for #AntiFactor1 into an
adorned DAG and then show that has a succinct representation. A branching in this
DAG will correspond to a collection of cells that together form a valid solution, i.e. a
subset of the edges that does not have any vertices with the forbidden degree d. We
give the proof for treewidth and note that we get a proof for pathwidth, by ignoring
the join bags.

Let (G, (T , (Bx)x∈V (T )),d) be an instance of #AntiFactor1/tw and let x ∈ V (T ) be
a node in the tree decomposition. We may assume that we are given a nice tree
decomposition with edge-introduce bags. Furthermore, for convenience we assume
that the root node and leaves of the decomposition have empty bags. We will now
describe the adorned DAG D = (D,w,B,T ).

We write I(Bx) for the set of edges incident to a vertex in Bx, that have been
introduced by x or some descendant of x. For each A ⊆ I(Bx), we create a vertex vx,A.

If x is a vertex-introduce bag with child y, we create an edge from vx,A to vy,A.
If x is an edge-introduce bag for edge e with child y, we create an edge from vx,A to
vy,A\{e}. In other words we create an edge to each vertex corresponding to an edgeset
that is consistent with A.

If x is a vertex-forget bag for vertex v with child y, we create an edge from vx,A to
vy,A, if v does not have degree d in (Bx,A). Otherwise we add no edges leaving vx,A.

If x is a join node with children y1 and y2 we add edges vx,Avy1,A and vx,Avy2,A.
We add the vertices vx,A to the set of branch vertices B.

If x is a leaf, we add vx,∅ to the set T of terminal vertices. All edges e get weight
w(e) = 1.

We will now show that there is a one-to-one mapping between branchings of D
and edge subsets S ⊆ E(G) such that no vertex has degree d in (V (G),S). For a node
x ∈ V (T ) let Vx = {vx,A : A ⊆ I(Bx)} and if x has two children, letU i

x = {uix,A : A ⊆ I(Bx)}.
Let R be a branching in D. First note that R must contain the root vr, and every

leaf vx,∅ and thus every node x has at least one vertex in Vx visited3 by the branching.
Since every edge is directed from Vx towards Vy , if y is a child of x, and only branch
vertices have multiple children, a node x has at most one, and thus exactly one vertex
in Vx visited. It follows that we can define Ax ⊆ I(Bx) as the unique set such that vx,Ax
is visited by the branching.

3Here we refer to a vertex as being visited, if it has at least one edge adjacent to in in the branching.
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We will map R to the set S := ∪x∈V (T )Ax. We will now argue that no vertex has
degree d in (V (G),S). First note that by construction for any node x with a single
child y, we have that Ax ∩ I(By) = Ay ∩ I(Bx), i.e. the edge subsets Ax are consistent
with one another. We find that a vertex v ∈ V (G) has degree d in (V (G),S), if and
only if it has degree d in (V (G),Ax) at the vertex-forget node x for v. Since vx,Ax has
a child in R, we find that v cannot have degree d in (V (G),Ax). Finally note that by
construction we have that for a join node x, Ax = Ay1

= Ay2
and thus the choice of

edges is consistent at join nodes. We conclude that S is a valid solution.
Clearly this mapping is injective, as each subset S ⊆ E(G) defines a unique set of

vertices VS = {vx,S∩I(Bx) : x ∈ V (T )} in the DAG, which a branching R must visit in
order to be mapped to S.

Now let S ⊆ E(G) be an edge subset such that no vertex has degree d in (V (G),S).
Let R be the branching given by taking all edges between vertices in VS . Clearly
the root vr,∅ and each terminal vertex is visited by the branching. Since we picked
exactly one vertex from each Vx, we find that each branch vertex has exactly two
children and each vertex from a edge-or vertex-introduce bag has exactly one child.
Finally for vertex-forget nodes we find that since no vertex has degree d in (V (G),S),
the selected vertex has a child. We conclude that R is a valid branching. It is easy to
see that R is the preimage of S under the previously described mapping.

It remains to show that there is some Turing machine T that encodesD. Note that
we can easily determine whether a vertex vx,A is a branch vertex, terminal vertex or
neither, by examining the node x it corresponds to. Vertex-introduce, vertex-forget
and edge-introduce nodes produce vertices with outdegree 1. Join nodes produce
vertices with degree 2. We can produce out neighbors by choosing a child node. As
nodes can be indexed using O(logn) space this is clearly a proper encoding.

For the hardness, we follow the #W[1]-hardness proof by Marx et al. [128] (which
in turn uses reductions from [127]). This proof consists of a series of small reduc-
tions. Rather than restating the full proofs for all these reductions, we will only
discuss the changes we make and the additional insights necessary to prove #XALP-
hardness.

Theorem 7.1.6.

a. #AntiFactor1/pw is #XLP-complete.

b. #AntiFactor1/tw is #XALP-complete.

Proof. By Lemma 7.6.2 we find membership for both cases. For hardness, we first
apply either Lemma 7.6.3 or Lemma 7.6.4 to reduce either from #Tree-Chained

Multicolored Hitting Set or #Chained Multicolored Hitting Set respectively to
relation-weighted #AntiFactor

R
1 with relation weights 1, −1 and 2 − n, parameter-

ized by treewidth or pathwidth respectively. We then apply Lemma 7.6.8 to reduce
from #AntiFactor

R
1 to #AntiFactor1, while increasing the tree- and pathwidth by

at most an additive constant.

We start by reducing from #Tree-ChainedMulticoloredHitting Set to relation-
weighted #AntiFactor

R
1 a generalization of #AntiFactor1, where some vertices are
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replaced by complex nodes. In place of the degree constraint, these nodes have an ar-
bitrary function on them called a relation that assigns a weight to the node based on
the set of edges incident to the node. The weight of the solution is then the product
of the weights of all complex nodes. For more details we refer the reader to [128].
In our proofs, the complex nodes will all be hidden in gadgets that we lift from the
original proofs by Marx et al. [127, 128]. Throughout we write ∆∗ to denote the
maximum over all bags of the path/tree decomposition, of the total degree of the
complex nodes in that bag.

Lemma 7.6.3. There is an FPT-time many-one parameterized logspace reduction from
#Tree-Chained Multicolored Hitting Set to relation-weighted #Anti- FactorR1 with
relation weights 1, −1 and 2 − n. Let n be the size of the given universes, m the number
of sets between adjacent nodes in the tree structure and t the number of nodes in the tree
structure. The size of the produced instance is bounded byO(k ·n ·m · t), the total degree of
the complex nodes in any bag is ∆∗ =O(1), and the treewidth is at most tw ≤ 2k +O(1).

J1,x
1 J2,x

1
G1,x

1 G2,x
1

J1,x
2 J2,x

2
G1,x

2 G2,x
2

J1,x
3 J2,x

3
G1,x

3 G2,x
3

J1,x
4 J2,x

4
G1,x

4 G2,x
4

HW=0

HW=1

HW=0

HW=1

J
1,y
1 J

2,y
1

G
1,y
1 G

2,y
1

J
1,y
2 J

2,y
2

G
1,y
2 G

2,y
2

J
1,y
3 J

2,y
3

G
1,y
3 G

2,y
3

J
1,y
4 J

2,y
4

G
1,y
4 G

2,y
4

HW=0

HW=1

HW=0

HW=1

Figure 7.3: An example of two attached gridblocks, for m = 2 and k = 4. Here Ux
3

coincides with Uy
1 and Ux

4 coincides with Uy
2 .

Proof. We will closely follow the proof of [128, Lemma 7.14], which gives a reduction
from #Multicolored Hitting Set to #AntiFactor

R
1 . The general idea is to perform
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this construction for each pair of neighboring instances and then chaining them to-
gether at the shared elements. Figure 7.3 depicts an example of the construction.
We advise the reader to consult this figure before reading the construction in more
detail.

Given an instance of #Tree-Chained Multicolored Hitting Set, we refer to the
parts of the tree structure as nodes, with r as root. Let Ux

1 , . . . ,U
x
k be the universes

in node x from which we chose one element each. Also let Ax1, . . . ,A
x
m be the sets we

want to hit that have elements in x and its parent node.
Let x be a node in the tree structure. Suppose x has a unique child y. With the

universes ordered as Ux
1 , . . . ,U

x
k ,U

y
1 , . . . ,U

y
k , we perform the construction from [128,

Lemma 7.14] with the sets Ay1, . . . ,A
y
m to receive a gridblock By . We will adopt the

convention of adding ’y’ as a superscript to any part of By to distinguish it from
similar parts from other gridblocks. We then attach By to Bx as follows. For each
universe Ux

i that that is shared with y, let j be such that Ux
i appears in the list of

universes of y as Uy
j . We now contract the dangling vertices at Fm,xi into J1,y

j and

remove the monotonicity gadgets at J1,y
j .

Now suppose x has two children y1, y2. We first duplicate the choice of elements
at node x, by creating a block B′x as follows. ForUx

1 , . . . ,U
x
k we create copies V x

1 , . . . ,V
x
k

and use the convention that for an element u ∈ Ux
i we refer to its copy as u′ ∈ V x

i .
We now create the block B′x by performing the construction from [128, Lemma 7.14]
for the sets Ux

1 , . . . ,U
x
k ,V

x
1 , . . . ,V

x
k , where we want to hit the sets {u} ∪ (V x

i \ {u
′}) for

all i ∈ [k] and u ∈ Ux
i . We then create the blocks By1

and By2
in the same way as

before. We refer to the block F
j
i corresponding to Ux

i as Fj,xi,U and to the block F
j
i

corresponding t V x
i as Fj,xi,U . We connect By1

to B′x by contracting the dangling vertices

at Fm,xi,U into J1,y1
j , where j is such that Ux

i appears in the list of universes of y1 as Uy
j .

We connect By2
to B′x by contracting the dangling vertices at Fm,xi,V into J1,y2

j , where

j is such that Ux
i appears in the list of universes of y2 as Uy

j . Again we remove the

extra monotonicity gadgets at J1,y1
i and J1,y2

i .
Correctness Note that by the proof of [128, Lemma 7.14] each local solution

for a block Bx corresponds one-to-one to a solution of its corresponding hitting set
instance. Thus we only need to show that a global solution consists of local solutions
that are consistent with one another and any set of pairwise consistent local solutions
forms a valid global solution.

As seen in the original proof, the Fji gadgets have a monotone in-/output and
and the information about the selected element is transferred consistently, from the
left side to the right side of the gadget. This means that the first ℓ in-/out-edges are
selected for some ℓ. Furthermore for any t, the t-th in-edge is selected if and only if
the t-th out edge is selected.

Let x be a node with a unique child y. A block Fm,xi has the first ℓ dangling edges

selected if and only if the corresponding J1,y
j in By has the first ℓ incoming edges

selected. By the functionality of F1,y
j in By and the proof of [128, Lemma 7.14] we
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find that each block in By has the first ℓ incoming and outgoing edges selected if and
only if Fm,xi in Bx has the first ℓ dangling edges selected. We conclude that the local
solutions of Bx and By must be consistent. Furthermore we conclude that that if the
local solutions of Bx and By are consistent, then they can be glued together.

Let x be a node with two children y1, y2. Node that, by definition, in the corre-
sponding hitting set instance we choose exactly one u ∈Ux

i and one u′ ∈ V x
i for each

i. Furthermore if we choose u′ , then we hit all sets {v} ∪ (V x
i \ {v

′}) for v′ , u′ . Thus
we must choose u to hit the set {u} ∪ (V x

i \ {u
′}). We find that the choice of element

is successfully copied. By the same reasoning as before we find that this choice gets
consistently transferred to By1

and By2
. Furthermore if By1

and By2
have consistent

solutions, they translate into choices of u (and u′) that give a valid solution to the hit-
ting set instance at x, since they make the same choices. This means that consistent
solutions of By1

, By2
and Bx can be glued together.

Bounded treewidth The proof of [128, Lemma 7.14] provides a path decomposi-
tion for a block Bx, which starts with the bag {J1

1,x, . . . , J
1
k,x}. If we contract the dangling

vertices at the Gm,xi and then follow the construction for the path decomposition, it
ends with the bag {J1

1,y , . . . , J
1
k,y} corresponding to the child y of x. If x is a join node,

the start and end bags are {J1,U
1,x , . . . , J

1,U
k,x , J

1,V
1,x , . . . , J

1,V
k,x } and {J1

1,y1
, . . . , J1

k,y1
, J1

1,y2
, . . . , J1

k,y2
},

corresponding to the two copies of the universe, and the two children y1 and y2 of x.
We then connect these path decompositions to one another at the shared start/end

bags to find the desired tree decomposition.

Logspace We first note that the gadgets Fji have bounded pathwidth and that the
individual parts of the gadget are only dependent on the hitting set instance and not
on the rest of the graph. We find that we can construct the gadgets one bag at a time,
which requires only O(f (tw)) space for the construction of the bags and O(log(n))
space for an index to indicate which bag we are constructing. To produce a specific
bag in the tree decomposition, we simply find the path from the root bag to that bag
and construct all bag on that path.

Note that the same construction, but without the join blocks gives a reduction
from #Chained Multicolored Hitting Set to #AntiFactor

R
1 with relation weights

1, −1 and 2−n, but with pathwidth bounded by k +O(1).

Lemma 7.6.4. There is an FPT-time many-one parameterized logspace reduction from
#Chained Multicolored Hitting Set to relation-weighted #AntiFactor

R
1 with rela-

tion weights 1, −1 and 2 − n. Let n be the size of the given universes, m the number of
sets between adjacent nodes in the tree structure and t the number of nodes in the tree
structure. The size of the produced instance is bounded byO(k ·n ·m · t), the total degree of
the complex nodes in any bag is ∆∗ =O(1), and the pathwidth is at most pw ≤ k +O(1).

Proof. We perform the same construction as in the proof of Lemma 7.6.3, leaving
out the join blocks. Correctness and logarithmic space usage follow from the same
argument. To prove bounded pathwidth we also use the same argument as used
for bounded treewidth, but again ignoring the join nodes, thus finding a bound of
k +O(1), instead of 2k +O(1).
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We now turn our attention to the reduction from #AntiFactor
R
1 to #Antifac-

tor1. We again follow the reduction by Marx et al. [128], which consists of a chain
of smaller reductions. Most of these small reductions can be performed using log-
arithmic space. The following lemma allows us to adapt these reductions to our
needs, while only examining parts of their proofs.

Lemma 7.6.5. Let (r,g,h) be a parameterized reduction from counting problem Π to
counting problem Γ . Let I ∈ IΠ and n = |I |. Suppose that (r, f ,g) produces r(I) by per-
forming nO(1) many modifications to I . Furthermore suppose that each modification can
be performed in nO(1) time, only affects an amount of space of O(g(kΠ(I)) + log(n)) and
doesn’t affect a previously modified part of the instance. Then (r,g,h) is also a parameter-
ized logspace reduction.

Proof. We need to show that the reduction can be performed using onlyO(g(kΠ(x))+
log(n)) space. We first note that, since an XNLP machine requires read only access
to the input tape, we must be able to produce an arbitrary bit in the input tape. We
do so by performing the given reduction one modification at a time, until we modify
the desired bit. If we reach the end of the reduction before this happens, we simply
output the input bit at this location.

By assumption we have enough memory to perform the individual modifications
and to keep track of an index that indicates our place in the reduction. Furthermore,
by assumption the reduction never modifies the same section twice and thus we
know that once a section has been modified, we can safely output from that section.

While Lemma 7.6.5 lets us easily adapt most of the reductions in the chain, there
are a few that require a bit more care. We will handle these first and deal with the
remaining reductions in Lemma 7.6.8.

The reductions in question require interpolation of polynomials. As shown in
Lemma 2.7.2 this can be done using logarithmic space. We will handle these two
steps now and handle the rest of the chain afterwards.

Lemma 7.6.6. Given some edge weighted instance of #AntiFactorR1 , that uses the weights
−1, 2−n and 1

2 , we can find a polynomial number of instances of #AntiFactorR1 without
edge weights, such that solving those instances is equivalent to solving the edge weighted
instance. We can do so using O(logn) space. The only complex nodes we need to intro-
duce for this are HW=1 nodes. The size of the instances is at most an additive factor of
O(n2 log2n) bigger and the treewidth, pathwidth and ∆∗ are at most a constant additive
facter bigger than that of the original instance.

Proof. We closely follow the proof of [128, Lemma 7.11] (or similarly [127, Lemma
7.6]). We first replace the edge-weight we want to remove by a variable x, which
turns the solution of the instance into a polynomial. Using the construction from
[128, Lemma 7.11] we can evaluate this polynomial at sufficiently many points. Note
that the construction essentially replaces each weighted edge by a subdivision of a
ladder shape, which has pathwidth at most 4 and sizeO(log2n) and can thus be con-
structed using O(logn) space. By Lemma 2.7.2 we can then compute the polynomial
at the point corresponding to the weight we wish to remove.
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For this next lemma we use the notation w[x,y], which indicates a unary signa-
ture (i.e. on a vertex with degree 1) which has weight y if the only dangling edge
is selected and x otherwise. Note that in the notation of [128], w[1,1] and w[0,1]
correspond to HW (1)

∈{0,1} and HW (1)
=1 respectively.

Lemma 7.6.7. There is a polynomial time Turing reduction from Holant (HW∈Y ,w[1,1],
w[−1,1], w[0,1]) to #AntiFactor1, usingO(logn) space. The reduction creates instances
of tree or pathwidth at most that of the original instance and whose size is at most an ad-
ditive factor of O(∆∗n2) bigger.

Proof. We closely follow the proof of [128, Lemma 7.21]. We first replace the weight
we want to remove by a variable x, which turns the solution of the instance into
a polynomial. Using the construction from [128, Lemma 7.21] we can evaluate this
polynomial at arbitrarily many points. Note that the construction replaces thew[x,y]
nodes with a gadget consisting of a long path with d pendant vertices attached to
each vertex on the path, where d is the forbidden degree from the instance. These
gadgets have pathwidth 1 and, since we may assume that d ≤ n, they have sizeO(n2).
They can thus be constructed using O(logn) space. By Lemma 2.7.2 we can then
compute the polynomial at the point corresponding to the weight we wish to remove.

Lemma 7.6.8. There is some computable function f and a polynomial time Turing re-
duction from relation-weighted #AntiFactor

R
1 with relation weights 1, −1 and 2 − n

and total degree of the complex nodes in any bag is at most ∆∗, to #AntiFactor1, using
O(f (tw) + logn) space. That the size of produced instances is at most nO(1) + f (∆∗) and
the treewidth and pathwidth are at most tw+f (∆∗) and pw+f (∆∗) respectively.

Proof. For clarity we will adopt the notation and phrasing used by the lemmas we
refer to. Since those lemmas are more general than we need, we may set X = Y = {d}
for d the integer given in the #AntiFactor

R
1 instance.

We first apply the reduction of [128, Lemma 7.10] to receive an instance of edge-
weighted #AntiFactor

R
1 with edge weights 1, −1 and 2− n. Note that the reduction

consists entirely of modifying relations and adding degree 1 vertices. These mod-
ifications can all clearly be made in polynomial time and in logarithmic space. By
Lemma 7.6.5 we find that this reduction is a pl-reduction. This step increases the
size by a constant multiplicative factor and the treewidth, pathwidth and ∆∗ by a
constant additive factor.

Using Lemma 7.6.6 we find a pl-reduction to unweighted #AntiFactor
R
1 . This

step increases the size by an additive factor of O(n2 log2n) and the treewidth, path-
width and ∆∗ by a constant additive factor.

Next, we will follow the chain of reductions in [128, Lemma 7.2]. We will state
the intermediate problems as Holant problems.

The first step is to use [127, Lemmas 7.5] to reduce to Holant (HW∈Y , HW=1)
with edge weights. [127, Lemma 7.5] only introduces a polynomial number of con-
stant size4 gadgets and modifies a polynomial number of relations. It introduces

4The size depends on ∆∗.
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edge weights 1, 1
2 and −1. By Lemma 7.6.5 we find that this reduction is a pl-

reduction. This step increases the size by an additive factor of O((∆∗)22∆∗ ), the
treewidth and pathwidth by an additive factor of O(∆∗2∆∗ ) and ∆∗ by an additive
factor of O(∆∗22∆∗ ). Again we remove the edge-weights using Lemma 7.6.6, increas-
ing the size by an additive factor of O(n2 log2n) and the treewidth, pathwidth and
∆∗ by a constant additive factor.

The next step is to use [128, Lemmas 7.19] (case 2 of [128, Lemma 7.17]) to reduce
to Holant (HW∈Y , w[1,1], w[−1,1], w[0,1]). [128, Lemma 7.19] only creates a star-
shaped gadget with complex nodes as leaves. Note that we can construct this gadget
one leaf at a time, by only saving the central gadget and the current leaf to memory,
thus only using log-space. By Lemma 7.6.5 we find that this is a pl-reduction. This
step increases the size by an additive factor of O(∆∗n), the treewidth and pathwidth
by an additive constant and ∆∗ by an additive factor of O(∆∗n).

Finally we apply Lemma 7.6.7 to find an instance of #AntiFactor1. This step in-
creases the size by an additive factor of O(∆∗n2) and does not increase the treewidth
or pathwidth.

7.7 Conclusion

In this chapter we have shown various problems to be #XLP or #XALP complete.
Many of these problems were already known to be #W[t]-hard for some t, but with-
out full completeness it was unclear whether these hardness results fully captured
the difficulty of the problems. Our results settle this question by providing classes
that fully capture the difficulty of these problems.

The introduction of these new classes also raises new questions. For instance, it
is unclear whether #XLP and #XALP are truly distinct classes. We know that #XLP ⊆
#XALP and intuitively one would expect #XALP-complete problems to be substan-
tially more difficult that #XLP-complete problems, but currently we do not have any
strong evidence to support this intuition. It would be interesting to have a better un-
derstanding for this relation, especially when compared to the non-parameterized
setting. There the class #P is defined in terms of the class NP, but we never speak
of #coNP, because it turns out that this class is equivalent to #P. Indeed, if one
can count the number of correct solutions, one can typically also count the number
of incorrect solutions (usually by subtracting the former from the total number of
potential solutions). The class coNP, in terms of Turing machines, allows for a sin-
gle co-non-deterministic step. The class XALP allows for a number of alternations
between non-deterministic and co-non-deterministic steps. If #XLP and #XALP are
indeed distinct, then these alternations add substantially more power to the machine
than just a single co-non-deterministic step, even in the counting regime.

One could also ask how #XLP and #XALP relate to their decision counterparts
XNLP and XALP. While inclusions between these two sets of classes are not possible
for syntactical reasons (one is a class of counting problems and the other a class of
decision problems), they can still be compared in terms of computational complex-
ity. For instance #XLP can be said to be more difficult than XNLP, as solving the
counting version of a problem also solves the decision version. Similarly #XALP can
be said to be more difficult than XALP. One would then expect #XALP to also be
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more difficult than XNLP, but it is unclear how #XLP and XALP relate. Is one more
difficult than the other, or are they incomparable?

Both of these questions can be viewed through the lens of Toda’s Theorem [146],
which intuitively states that the class PP is as hard as the entire polynomial hierarchy
(PH). This implies that #P is also as hard as PH and in particular as hard as NP and
coNP. We find ourselves in a similar situation, with the counting versions of some
non-deterministic classes and thus one might wonder if there is some analogue of
Toda’s theorem for this setting. This question would also be relevant to the study of
XLPP [19], since Toda’s theorem applies to both #P and PP.
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The Sultan asked Solomon for a
Signet motto, that should hold
good for Adversity or Prosperity.
Solomon gave him,
”This too shall pass.”

Persian fable

In this thesis we have studied various parameterized problems, most of which
have been counting problems. We have gained new insight into these problems, in
the form of hardness results and fine-grained bounds. In many cases the upper and
lower bounds match, in other words, we have presented a number of algorithms that
are optimal, either in a fine-grained sense or in terms of hardness.

Determining the Parameterized Complexity of the Tutte Polynomial

In Part II we have given a number of reductions and algorithms for many different
cases of computing the Tutte polynomial, parameterized by cutwidth, pathwidth
and treewidth. This has resulted in the following extensive and nearly complete
complexity classification for this problem in Chapter 5: the Tutte polynomial can be
computed in

• in polynomial time at the known easy points,

• in twO(tw)nO(1) time but not in ctwo(ctw)nO(1) time at integer points for which
(x − 1)(y − 1) < 0 or x = 1,

• in qtwnO(1) time but not in 2o(ctw) at integer points for which (x − 1)(y − 1) =
q > 1 or y = 1 (and for many points not even in rctwnO(1) time for some con-
stants r < q).

As far as we are aware and at the time of writing, no parameterized analysis of this
kind has been done for the Tutte polynomial. The (nearly) matching upper and
lower bounds for tree- and cutwidth indicate that the cost of using a potentially
larger parameter like cutwidth is not balanced out by any substantial benefits. This
is noteworthy since for related problems like computing the chromatic number of a
graph there exists a 2ctwnO(1) time algorithm, but any pwo(pw)nO(1) time algorithm
would contradict the ETH [124]. Natural open questions that arise whether these
results can be extended to non-integer points, what such classifications look like
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for other parameters and (perhaps less obviously) what the complexity is for the
modular counting version of the problem. For the latter, some research has been
done [5, 96], but a full classification has not been found. We see all of this as evidence
that the Tutte polynomial forms an interesting and fruitful framework for studying
problems within (parameterized) complexity.

In Chapters 3 and 4 we have used the rank-bases approach, which we have fur-
ther developed to work in a counting setting, to determine the complexity of the
special cases of counting colorings, connected edgesets and forest. The results form
Chapter 4 provide a particularly interesting case of computing the Tutte polyno-
mial, as the curve associated with counting forests forms an asymmetry in an oth-
erwise symmetric complexity classification. In particular, this curve can be com-
puted in 4pwnO(1) or 64twnO(1), while its mirror image cannot be computed in time
ctwo(ctw)nO(1). The techniques we use could potentially be applicable to other re-
lated problems like counting Feedback Vertex Sets or spanning trees with a fixed
number of components. For the latter a twO(tw)nO(1) time algorithm is known [136],
but we suspect our techniques could improve this to 2O(tw)nO(1).

Parameterized Logarithmic Space Complexity

In Chapter 3 we have given bounds for counting (list) colorings and connected edge-
sets that even hold for modular counting. Our results show that the modulus can
influence the complexity of the problem in interesting ways, allowing for slightly
faster algorithms when the modulus p divides q−1, where q is the number of colors.
Our results trivially extend to the non-modular setting, where they show that count-
ing colorings is significantly harder than the associated decision problem, when pa-
rameterized by cutwidth. Namely, for the latter there exists a 2ctwnO(1) time algo-
rithm [109] for any q, while we can exclude (q − ε)ctwnO(1) time algorithms for the
counting version.

In Part III we have studied the parameterized classes XNLP, XALP, #XLP and
#XALP. In Chapter 6 we have studied the Integer Multicommodity Flow prob-
lem and given algorithms and hardness results for various variations on the prob-
lem, including some XNLP- and XALP-completeness results, see Figure 8.1. Any
XP algorithms for the XNLP- and XALP-complete problems are unlikely to only
use O(f (k)nO(1)) space by the Slice-wise Polynomial Space Conjecture (see Conjec-
ture 2.5.5). We note that there are still some open cases left like Undirected Inte-

ger 2-Commodity Flow parameterized by pathwidth, which we suspect to be NP-
complete. Furthermore, we only have an approximation algorithm for Integer 2-
Commodity Flow parameterized by vertex cover number, but we suspect there is an
FPT-time exact algorithm.

In Chapter 7 we have connected the theme of Part III to the general theme of
the thesis, by introducing the classes #XLP and #XALP, i.e. the counting versions of
XNLP and XALP. For these classes we have given canonical hardness results, for the
newly introduced problems of #SAD Branchings and #Path-Like SAD Branchings.
Additionally, we have given a chain of other hardness results, some of which give
#XLP- or #XALP-completeness for problems which were previously only known to
be W[t]-hard for some t. The introduction of these new classes raises the question
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Parameter unary capacities binary capacities
pathwidth XNLP-complete para-NP-complete
treewidth XALP-complete para-NP-complete

weighted tree partition width FPT (1) FPT (1)
vertex cover (2); in XP (2); open

Table 8.1: Overview of our results for Integer 2-Commodity Flow. para-NP-
complete means NP-complete for fixed value of parameter. (1) Capacities of arcs in-
side bags can be arbitrary, capacities of arcs between bags are bounded by weighted
tree partition width. (2) Approximation, see Theorem 6.1.11; conjectured in FPT. For
the undirected case, the same results hold, except that for the para-NP-completeness
for the parameters pathwidth and treewidth, we need a third commodity.

how they relate to both each other and to existing classes. We know that #XLP ⊆
#XALP, but are they actually distinct or is this inclusion really an equality? Fur-
thermore we do not have a clear understanding of how #XLP and #XALP relate to
other parameterized classes. Clearly #XLP and #XALP are both more difficult than
XNLP and #XALP is also more difficult than XALP, but how does #XLP relate to
XALP? And how do both relate to the classes XLPP and XP? We believe that some
parameterized version of Toda’s theorem [146] could be an interesting goal for fur-
ther research in this direction, as it would likely shed light on a number of these
questions.

Final Remarks

In conclusion, we have studied counting problems in a parameterized setting and
linked this to the relatively new study of the classes XNLP and XALP. We have found
that the rank-based approach lends itself well to counting problems and it can even
be argued that the method makes more intuitive sense in the setting of counting
problems, than that of decision problems.

We suspect that the study of the Tutte polynomial, in a parameterized complexity
setting, has a lot of potential for further results and structural insights. In partic-
ular we believe that the framework of our approach should be applicable to other
parameters and it could perhaps even be adapted into a broader meta theorem for a
large class of (width) parameters. Additionally we suspect that the study of modular
computation of the Tutte polynomial could significantly deepen our understanding
of the Tutte polynomial in general. The existing proofs for tractability of the easy
points are somewhat unsatisfying, as they are somewhat ad-hoc and lack an intuitive
explanation for their tractability.

Furthermore we are hopeful that the classes of #XLP and #XALP will form a
natural home for many parameterized counting problems without completeness re-
sults, in the same way that XNLP and XALP do for many decision problems. As
previously mentioned there are still many open questions about their place in the
broader complexity landscape and resolving (some of) these questions would repre-
sent a significant step forward in parameterized counting complexity.





Bibliography

[1] Faisal N. Abu-Khzam, Shouwei Li, Christine Markarian, Friedhelm Meyer auf
der Heide, and Pavel Podlipyan. Efficient parallel algorithms for parameter-
ized problems. Theoretical Computer Science, 786:2–12, 2019.

[2] Akanksha Agrawal and M. S. Ramanujan. On the parameterized complexity
of Clique Elimination Distance. In Proceedings of the 15th International Sympo-
sium on Parameterized and Exact Computation, IPEC 2020, volume 180 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 1:1–1:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

[3] Martin Aigner and Günter M. Ziegler. Bertrand’s postulate. In Proofs from
THE BOOK, pages 7–12. Springer, 2001.

[4] Artur Andrzejak. An algorithm for the Tutte polynomials of graphs of
bounded treewidth. Discrete Mathematics, 190(1-3):39–54, 1998.

[5] James Douglas Annan. The Complexity of Counting Problems. PhD thesis, Uni-
versity of Oxford, 1994.

[6] K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharg-
ing. Illinois Journal of Mathematics, 21(3):429 – 490, 1977.

[7] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part II:
Reducibility. Illinois Journal of Mathematics, 21(3):491 – 567, 1977.

[8] Ilia Averbouch, Benny Godlin, and J.A. Makowsky. An extension of the bi-
variate chromatic polynomial. European Journal of Combinatorics, 31(1):1–17,
2010.

[9] Cynthia Barnhart, Niranjan Krishnan, and Pamela H. Vance. Multicommodity
Flow problems. In Encyclopedia of Optimization, pages 2354–2362. Springer,
2009.

[10] Rodney J. Baxter. Exactly Solved Models in Statistical Mechanics. Academic
Press, 1982.

[11] Richard Ernest Bellman. An Introduction to the Theory of Dynamic Program-
ming. RAND Corporation, 1953.
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nenhuis. Parameterized problems complete for nondeterministic FPT time
and logarithmic space. In Proceedings 62nd IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2021, pages 193–204. Institute of Electrical
and Electronics Engineers, 2022.

[24] Hans L. Bodlaender, Isja Mannens, Jelle J. Oostveen, Sukanya Pandey, and
Erik Jan van Leeuwen. The parameterised complexity of Integer Multicom-
modity Flow. In Proceedings of the 18th International Symposium on Parame-
terized and Exact Computation, IPEC 2023, volume 285 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 6:1–6:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023.

[25] Hans L. Bodlaender and Marieke van der Wegen. Parameterized complexity
of scheduling chains of jobs with delays. In Proceedings of the 15th Interna-
tional Symposium on Parameterized and Exact Computation, IPEC 2020, volume
180 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[26] Narek Bojikian, Vera Chekan, Falko Hegerfeld, and Stefan Kratsch. Tight
bounds for connectivity problems parameterized by cutwidth. In Proceed-
ings of the 40th International Symposium on Theoretical Aspects of Computer
Science, STACS 2023, volume 254 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 14:1–14:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023.
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Samenvatting

De meeste resultaten uit dit proefschrift hebben betrekking tot zogeheten Grafen.
Een graaf is simpelweg een netwerk van punten en lijnen, maar er wordt binnen
zowel de wiskunde als de informatica veel onderzoek gedaan naar deze objecten.
Grafen kunnen gebruikt worden om allerlei soorten problemen te modelleren. Zo
kan een treinnetwerk weergegeven worden als een graaf, maar ook een sociaal netwerk,
of de bestanden structuur van een computer.

Ook problemen die op het eerste gezicht niets met netwerken te maken hebben
kunnen door de lens van grafen gezien worden. Zo kun je het inplannen van lessen
op een school als graaf tekenen, door voor elke les een punt te tekenen en twee lessen
met een lijn te verbinden als deze niet tegelijk gepland kunnen worden. Het bepalen
van een geldige planning is nu een zogenaamd kleuringsprobleem op de graaf. Om
een geldige graafkleuring te vinden moeten we elk punt in de graaf een kleur geven,
op zo’n manier dat twee punten met een lijn ertussen nooit dezelfde kleur hebben. In
het voorbeeld over de planning kunnen we kleuren als tijdstippen zien en betekent
dit dat twee lessen niet op hetzelfde moment gepland mogen worden als er een lijn
tussen de lessen is. Laat dit nou precies zijn hoe we de graaf gedefinieerd hadden!

Figure 8.1: Een voorbeeld van een geldige graafkleuring.

Voor kleine grafen lukt het vaak nog wel om zo’n kleuring met de hand te vin-
den (als deze bestaat), maar voor een middelgrote school wordt dit al vrij snel erg
veel werk. Het liefst laten we dit dan ook door een computer doen. Om dit soort
problemen goed op te kunnen lossen, heeft een computer instructies nodig. Deze
instructies worden Algoritmen genoemd. Bij het ontwerpen van algoritmen is het
doel meestal om een zo snel mogelijk algoritme de vinden (al is soms het doel om
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de hoeveelheid werkgeheugen die nodig is te beperken). We zeggen dat een prob-
leem een hoge complexiteit heeft als er (waarschijnlijk) geen snelle algoritmen voor
gevonden kunnen worden. De complexiteit van verschillende algoritmische proble-
men is het belangrijkste onderwerp van studie in dit proefschrift. In het bijzonder
kijken we naar geparameteriseerde complexiteit, wat kort gezegd inhoud dat we ex-
tra structurele eigenschappen van het probleem, genaamd parameters, meenemen in
onze analyse. Het type problemen waar we naar zullen kijken zijn zogenaamde tel
problemen. Niet geheel verrassend vraagt een tel probleem om het aantal oplossingen
van een standaard probleem. Zo zouden we in het voorbeeld van de school kunnen
vragen naar het aantal mogelijke planningen, in plaats van één concrete planning.

Het Tutte Polynoom In de eerste helft van dit proefschrift onderzoeken we de com-
plexiteit van het Tutte polynoom. Het Tutte polynoom is een voorbeeld van een graaf-
polynoom. Dit is een polynoom (dus iets als x2 −2y + 3xy) waarvan de vorm afhangt
van de structuur van een gegeven graaf. Een heel simpel voorbeeld is ’n · x’, waarbij
’n’ het aantal punten in de graaf is.

Iedere graaf G heeft dus een Tutte polynoom, welke meestal aangeduid wordt als
T (G;x,y). Het Tutte polynoom van een graaf bevat veel informatie over de graaf, zo
kan het aantal q-kleuringen van een graaf G bepaald worden door T (G;1 − q,0) uit
te rekenen en kunnen we het aantal opspannende bossen1 vinden door T (G;2,1) uit
te rekenen.

In dit proefschrift bepalen we eerst de complexiteit van het tellen van kleuringen
en bossen, waarna we deze resultaten uitbreiden tot het berekenen van het Tutte
polynoom op andere punten.

Complexiteitsklassen In de tweede helft van dit proefschrift onderzoeken we een
aantal zogenaamde complexiteitsklassen. Een complexiteitsklasse is een grote collec-
tie problemen die ongeveer even moeilijk op te lossen zijn, oftewel die een vergeli-
jkbare complexiteit hebben2. Wij onderzoeken de klassen XNLP, XALP, #XLP en
#XALP die specifiek voor geparameteriseerde problemen gedefinieerd zijn. XNLP

en XALP zijn twee klassen waar recentelijk interesse in is ontstaan, omdat deze een
natuurlijk thuis vormen voor een aantal problemen waarvan de precieze complex-
iteit voorheen nog onbekend was, zoals graafkleuring met bepaalde parameters3.
Wij breiden dit onderzoek uit door de klassen #XLP en #XALP de introduceren.
Deze klassen zijn de tel versies van XNLP en XALP. Het doel binnen de complex-
iteitstheorie is meestal om te laten zien dat een probleem moeilijk of compleet is voor
een complexiteitsklasse. Een probleem is moeilijk voor een klasse als het minstens
net zo moeilijk is als ieder willekeurig probleem in de klasse en het is compleet als
het daarnaast ook zelf in de klasse zit. Problemen die XNLP-compleet zijn hebben
meestal een #XLP-complete tel versie (idem voor XALP en #XALP), maar andersom
is niet altijd het geval. Soms is de tel versie veel moeilijker dan het standaard prob-
leem!

1Een bos is een substructuur in de graaf die geen cycli bevat.
2Iets preciezer: de problemen in een klasse hebben een zekere gedeelde bovengrens op hun complex-

iteit.
3In het bijzonder ’pathwidth’, ’linear clique-width’ en ’linear mim-width’
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