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Chapter 1 

General Introduction 



Parkinson’s disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disease after 
Alzheimer’s disease. More than 10 million people worldwide are currently affected by 
PD. PD is an age-related disease, with incidence sharply rising at around age 65 (1). Over 
the past two decades, PD has emerged as the fastest-growing neurological disorder 
regarding disease burden (death and disability) around the world (2). Global estimates 
show that there may be nearly 13 million people living with PD by 2040, largely due to 
aging populations and increasing longevity (3). 

PD is known as a movement disorder, characterized by four cardinal signs: tremor, 
rigidity, bradykinesia (slowness of movement) and postural imbalance (4). However, 
the clinical presentation of PD is multifaceted and includes many non-motor symptoms, 
such as olfactory loss, sleep dysfunction, autonomic dysfunction (e.g., constipation, 
urinary frequency), psychological or cognitive problems (e.g., cognitive decline, 
depression, anxiety) (4). Recognizing the onset of PD can be challenging, as there is 
typically an average delay of 10 years (prodromal phase) between the first noticeable 
symptom and the formal diagnosis (5). Individuals diagnosed with PD mostly experience 
a gradual progression of non-motor symptoms before the emergence of movement 
symptoms (4). 

Genetic mutations play a role in only 5–10% of PD cases, indicating that the majority 
are related to a variety of lifestyle and environmental factors (6). While therapies and 
medicines are available to alleviate symptoms, there is no cure for the disease. PD is a 
slowly progressive disorder with decades of disease duration from prodromal to late 
stages, with patients increasingly requiring high medical care; thus, a substantial 
disease and economic burden are caused globally (2, 7). 

Environmental exposures and Parkinson’s disease 

The hypothesis suggesting that environmental exposures could modifying PD risk 
emerged initially from the discovery of the neurotoxic effects of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), a byproduct of synthetic heroin. MPTP is converted 
into the toxic metabolite 1-methyl-4-phenylpyridinium (MPP+), which induces an acute 
form of parkinsonism in humans by destroying dopaminergic neurons in the substantia 
nigra (8, 9). This kindled an interest in the potential role of exogenous toxicants in PD 
development, in particular compounds that are structurally similar to MPP+, such as 
pesticides rotenone and paraquat. Epidemiological investigations have shown a 
consistent association between overall pesticide exposure and an increased risk of 
developing PD (10). Specific pesticide classes with suggested neurotoxic effects include 
insecticides rotenone and permethrin, organochlorines like beta-
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hexachlorocyclohexane, and herbicides paraquat and 2,4-dichlorophenoxyacetic acid 
(2,4-D) (11, 12). 

Besides pesticides, smoking and coffee consumption are two commonly reported 
inverse risk factors for PD. Smoking, contrary to its widely recognized adverse effects 
on cancers and other chronic diseases, exhibits neuroprotective effects in PD. Current 
smokers have approximately a 40% lower risk of PD compared to never smokers (13, 
14). Similarly, coffee consumption has consistently shown an association with reduced 
PD risk in many epidemiological studies (15, 16). Both cigarette smoke and coffee are 
complex mixtures, and active components like nicotine and caffeine are assumed to 
contribute to their neuroprotective actions. The proposed mechanisms of action 
involve interactions with nicotinic receptors for nicotine and adenosine 2A receptor for 
caffeine. 

While certain environmental exposures demonstrate strong evidence, others yield 
inconsistent results and suspected associations were indicated. Exposure to various 
metals shows indications of potential links with PD. High-dose manganese exposure, 
which can be experienced in certain occupations such as welding and through contact 
with certain pesticides such as maneb and mancozeb, is known to cause a form of 
parkinsonism called ‘manganism’ (17). Exposure to lead may also be associated with a 
higher risk of PD (18, 19). Furthermore, there are various chemicals that have been 
associated with an increased PD risk, for example long-term exposure to chemical 
solvents, particularly trichloroethylene (TCE) (20). Occupational exposure to 
polychlorinated biphenyls (PCBs) has also been suggested to elevate PD mortality, 
especially in women (21). Agent Orange during the Vietnam War, containing herbicide 
2,4-D and the highly toxic dioxin 2,3,7,8-tetrachlorodibenzodioxin (TCDD), resulted in a 
30% higher PD incidence among exposed veterans compared to non-exposed veterans 
(22). 

Although these suggested associations, confirming causality is challenging due to 
difficulties in accurate exposure measures. For instance, exposure to pesticides and 
welding is typically assessed through agricultural or occupational job history (11, 23), 
while smoking and coffee consumption rely on self-reported questionnaires (14, 16). 
These measures represent generalized estimates and may lead to exposure 
misclassification. Exposure-response analyses are limited, as exposure levels are often 
based on qualitative or semiquantitative data. Furthermore, these exposures are 
complex mixtures, and it is challenging to pinpoint the specific component(s) 
contributing to PD. 

Beyond environmental chemicals, the gut microbiota is gaining attention as a potential 
mechanistic pathway for PD pathogenesis. This originated from the Braak’s hypothesis 

1 

9

General Introduction | Chapter 1



of gut-to-brain spread of α-synuclein deposits, a pathological hallmark of PD (24). With 
the advent of high-throughput sequencing, the role of the gut microbiota has been 
specifically highlighted. Studies have shown alterations in the diversity and composition 
of the microbiota in PD patients, including enrichment of genera Lactobacillus, 
Akkermansia, and Bifidobacterium, and depletion of bacteria from the Lachnospiraceae 
family and the Faecalibacterium genus (25). This microbial dysbiosis may lead to a pro-
inflammatory status, hyperpermeability of the gastrointestinal barrier, and α-synuclein 
misfolding in the enteric nervous system. However, these shifts in microbial profiles 
have not yet been linked to clinical presentations or other functional consequences of 
PD. 

Box 1. An overview of environmental exposures related to Parkinson’s disease risk 
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Evidence is indicated as stronger or weaker for each exposure. A stronger grade indicates an established 
association, based on consistent results in systematic reviews or meta-analysis. A weaker grade indicates a 
suspected association, where only incidental studies have reported the relationship, or where a systematic 
review or meta-analysis has not yielded consistent evidence. 

Abbreviations: Mn, manganese; Pb, lead; TCE, trichloroethylene; TCDD, 2,3,7,8-tetrachlorodibenzodioxin; 
PCBs, polychlorinated biphenyls; PM, particular matter; NSAIDs, nonsteroidal anti-inflammatory drugs; 
CCBs, calcium channel blockers. 

Dairy 
products 

Traumatic 
brain injury 

Pesticides 
Rotenone 
Paraquat 
 

MPTP

UratePhysical 
activity 

Coffee 
Caffeine 

Smoking 
Nicotine 

Air pollution 
PM, CO 
NOx, O3 

PCBs 

Agent Orange 
TCDD Solvents 

TCE 

Welding Metals 
Mn, Pb 

Mediterranean 
diet 

Estrogen Medicines 
NSAIDs 
CCBs 

10

Chapter 1 | General Introduction



Untargeted high-resolution mass spectrometry for measuring 
the exposome 

As a complement to the genome, the exposome is defined as environmental influences 
and associated biological responses throughout the lifespan, including exposures from 
the environment, diet, behavior, and endogenous processes (26). While no universal 
approach exists to measure the entire exposome, the human metabolome, which 
comprises all low-molecular weight (<2000 Da) metabolites in the human body, has 
emerged as one crucial exposome measure (27). The human metabolome can be 
measured from a variety of biological matrices ranging from biofluids such as blood, 
urine and feces, to organs, tissues or even cells. The metabolome includes not only 
metabolites directly linked to endogenous activities, but also those derived from food, 
medications, microbiota that inhabit the body, and environmental chemicals, serving 
as a crucial readout linking environmental effects to molecular mechanisms (28). High-
resolution mass spectrometry (HRMS) is a widely used metabolomics platform due to 
its better sensitivity, high throughput and broad coverage of detectable metabolites 
(29). It is important to note that proteins, polymers, other large molecules and metals 
are not considered part of the metabolome because they require different 
measurement approaches. 

One of the critical challenges for implementing the exposome in practice is developing 
methods that allow for measurement of exposures consistent with the scale 
experienced by an individual over a lifetime. To facilitate research in human 
metabolomics, the Human Metabolome Database (HMDB), a comprehensive and freely 
accessible online repository of human metabolites, has been established and 
consistently updated since 2007 (28). The 2021 version of HMDB contains records of 
220,945 metabolites that have been detected and/or quantified in human tissues and 
biofluids. Unlike targeted analysis, which focuses on known, pre-defined analytes (up 
to a few hundreds), untargeted metabolomics has the capability to simultaneously 
detect a wide range of metabolites spanning various chemical classes. Especially with 
advancements in ultra-high-resolution mass spectrometry (UHRMS), the current 
untargeted metabolomic platform can measure 10,000-100,000 signals using sample 
volumes of less than 100μl (27, 30). Metabolomic profiling of blood samples in humans 
has indicated presence of metabolites from more than 80% of metabolic pathways 
documented in the Kyoto Encyclopedia of Genes and Genomes database, as well as a 
broad spectrum of environmental chemicals (31). Due to the ability to characterize an 
extensive series of endogenous and exogenous metabolites in biological samples, 
metabolomics has the potential to provide insights into the possible etiology and 
molecular mechanisms underlying disease of interest in epidemiological research. 
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Longitudinal studies for Parkinson’s disease and the EPIC4PD 
cohort 

Etiological studies of PD traditionally relied on a case-control study design, because PD 
remains relatively uncommon within the general population. However, many 
longitudinal studies have recently managed to accumulate sufficient cases through 
several decades of follow-up, which have the potential to largely enrich the 
understanding of the role of environmental factors in PD (1). Longitudinal studies have 
well-known advantages over case-control studies, as they reduce the reliance on 
participants’ recall of past events. This is particularly crucial in the context of PD that 
often exhibits a long prodromal phase, and some pre-clinical symptoms may affect 
dietary and lifestyle choices. 

Most of the large prospective cohorts with PD outcome ascertainment are based in the 
United States, including the Health Professionals Follow-up Study (HPFS) (number of 
participants at recruitment=51,529), Nurses’ Health Study (NHS) (n=121,700) (32), 
Cancer Prevention Study-II Nutrition (CPS-IIN) (n=184,190) (33), and National Institutes 
of Health-American Association of Retired Persons Diet and Health Study (NIH-AARP) 
(n=318,260) (34). These cohorts have assessed the impact of diet and nutrients, 
smoking and alcohol consumption, and air pollution on PD risk, predominantly adopting 
external exposure assessment methods. 

In Europe, there is a large cohort available to study PD: the European Prospective 
Investigation into Cancer and Nutrition (EPIC), which was initiated between 1992 and 
2000 across ten countries (35). EPIC was originally designed to investigate the 
relationship between nutrition and cancer, and a subset of 220,494 subjects, known as 
the EPIC4PD cohort, underwent screening for PD diagnosis (36). At baseline, 
information on dietary intake and lifestyle data (smoking and alcohol consumption, 
physical activity, hormone therapy, occupation) was collected through a questionnaire. 
Anthropometric measurements were performed using a standardized approach. Blood 
samples were drawn at recruitment, from which plasma and erythrocytes were 
separated and aliquoted for future analysis (35). Up until 2012, the follow-up rate for 
the EPIC4PD cohort was 98.5%, with a median follow-up period of 12.8 years (maximum 
of 20.8 years). PD cases were initially identified through medical record linkage and 
then validated by movement disorder experts (36). In total, 734 incident PD cases were 
identified, each assigned a reliability label of diagnosis based on the quality of clinical 
data and expert confidence. 
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Thesis aims and outline 

This thesis utilized the EPIC4PD cohort to explore etiological roles of multiple 
environmental exposures in PD occurrence, with a particular focus on applying 
metabolomics for exposure assessment. The specific aims and outline of the thesis are 
described below. 

The goal of Section One (Chapters 2 and 3) was to summarize current evidence and to 
conduct an original study within the EPIC4PD cohort to explore the impact of metal 
exposures on PD. In Chapter 2, we performed a systematic review and meta-analysis to 
assess the evidence of existing epidemiologic studies on the relationship between metal 
exposures and PD risk. In Chapter 3, within the EPIC4PD cohort, we carried out a nested 
case-control study, measuring eleven metal species in erythrocytes collected before PD 
diagnosis. We then explored the association between prediagnostic metal levels and 
PD risk. 

In Section Two (Chapters 4 and 5), our focus was on developing an untargeted 
metabolomics framework for internal exposure assessment in human studies. In 
Chapter 4, we introduced a comprehensive approach for evaluating a specific group of 
chemicals, exemplified by dioxin(-like) exposures in an occupational population. Apart 
from well-known parental dioxin(-like) compounds, we identified related halogenated 
compounds and metabolites of parent compounds using untargeted metabolomics. 
These identified chemicals composed a dioxin(-like) exposure portfolio (chemical-wide), 
which was then used to study their impact on the biological system using a combination 
of metabolome-wide analyses and associated immune responses. Chapter 5 extended 
this chemical-wide approach to assess compounds related to caffeine metabolism. 
Relationship between caffeine intake and PD risk was first evaluated within the full 
EPIC4PD cohort using self-reported coffee consumption as a proxy for exposure to 
caffeine. Subsequently, we measured caffeine and its metabolites in blood within the 
aforementioned nested case-control study within EPIC4PD. This enabled us to 
investigate the frequently suggested inverse associations between caffeine and PD risk, 
using objective biomarkers. 

In Section Three (Chapters 6 and 7), we aimed to provide insights into the microbiota-
gut-brain axis in PD using prediagnostic biomarkers in the nested EPIC4PD case-control 
study. In Chapter 6, we assessed lipopolysaccharide-binding protein (LBP), a blood 
marker for bacterial invasion and intestinal permeability, and explored its association 
with PD risk. In Chapter 7, using untargeted metabolomics and most updated database 
of gut microbial metabolites, we characterized 167 microbial metabolites and examined 
their prospective associations with PD risk. 
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In Chapter 8, I summarized the main findings of this thesis and discuss the applications 
of metabolomics in internal exposome measurement, the role of environmental factors 
in PD, methodological considerations of this thesis, and future directions. 
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Abstract 

Metal exposure has been suggested as a possible environmental risk factor for 
Parkinson’s disease (PD). We searched the PubMed, EMBASE and Cochrane databases 
to systematically review the literature on metal exposure and PD risk and to examine 
the quality of the overall study and exposure assessment method. A total of 83 case-
control studies and five cohort studies were included, of which 73 were graded as low 
or moderate overall quality. 69 studies adopted self-reported exposure and 
biomonitoring after disease diagnosis for exposure assessment approaches. The meta-
analyses showed that concentrations of copper and iron in serum, and zinc in either 
serum or plasma were lower, while concentrations of magnesium in CSF and zinc in hair 
were higher in PD cases compared to controls. Cumulative lead levels in bone were 
found to be associated with increased risk of PD. We did not find associations between 
other metals and PD. The current level of evidence for associations between metals and 
PD risk is limited as biases from methodological limitations cannot be ruled out. High-
quality studies assessing metal levels before the disease onset are needed to improve 
our understanding of the role of metals in the etiology of PD. 

Key words: Parkinson’s disease, metals, systematic review, meta-analysis 
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Introduction 

Parkinson’s disease (PD) is the second most frequent neurodegenerative disease, 
characterized by movement dysfunctions including bradykinesia, muscular rigidity, rest 
tremor and postural instability. The pathological features of PD are represented by the 
selective degeneration of dopaminergic neurons in the substantia nigra pars compacta 
and the Lewy body inclusions, leading to dopamine deficiency and motor defects (1). 
The estimated incidence is 14 per 100,000 overall and increases sharply to 160 per 
100,000 people after the age of 65 (2). The global burden of PD has more than doubled 
over the past decades, showing a faster growth than any other neurological disorder 
(3), which cannot be fully explained by the increasing aging population. 

Although the precise pathological mechanisms remain undetermined, current thinking 
is that PD arises from an interaction between genetic and environmental factors. 
Causative genetic mutations only explain a small proportion of PD patients, and about 
90% of cases are sporadic, suggesting a significant role for environmental risk factors 
(2). Among these factors, heavy metal exposure is one of the concerns in PD 
pathogenesis. Possible mechanisms of metals in the onset and progression of PD 
include mitochondrial dysfunction and oxidative stress, promotion of α-synuclein 
aggregation and fibril formation, and activation of microglial cells and inflammation (4, 
5). Human studies have shown that manganese inhalation from mining and welding 
fume could induce parkinsonism (6), and dental amalgam filling restoration was 
associated with an elevated risk of PD (7). Moreover, numerous studies on specific 
metals and PD risk have been published, but results are inconsistent. Methodological 
limitations may hinder drawing conclusions on the associations between metal 
exposures and PD risk. 

Here, we conducted a systematic review and meta-analysis aiming to evaluate the 
current epidemiological evidence of associations between metal exposure and the risk 
of PD, with specific consideration of the quality of studies and validity of the exposure 
assessment methods. 

Materials and methods 

Study search strategy 
We searched the PubMed, EMBASE and Cochrane databases up to July 2021. The search 
string consisted of a combination of medical subject headings [MeSH] and text words 
(search queries are provided in Table S1). We included ‘Parkinson’s disease’, 
‘Parkinson*’, ‘PD’ and ‘neurodegenerative*’ terms for PD, in combination with ‘metal’ 
and terms for specific metals (aluminum, calcium, cadmium, chromium, copper, iron, 

2 

19

Systematic Review of Metal Exposures and PD | Chapter 2



lead, magnesium, manganese, mercury, nickel, selenium, zinc), as well as ‘exposure’ or 
‘exposed’. We further scrutinized the reference lists of relevant reviews and meta-
analyses for additional publications. 

Inclusion-exclusion criteria and study selection 
Eligible publications in our systematic review were selected based on the following 
criteria: 1) original, peer-reviewed research papers; 2) human observational studies: 
case-control or cohort design; 3) exposure included the metal species as described 
above or general metal exposure; 4) outcome was sporadic PD; and 5) written in English. 
Exclusion criteria were: 1) animal study; 2) review, case report and case series, editorial, 
letter or conference abstract without original data; 3) repeated or overlapping 
publication; 4) exposure was welding or welding fume, not estimating specific or 
general metal exposure; and 5) outcome was parkinsonism, manganism, motor 
dysfunction, or neuropsychological dysfunction. 

After duplicate removal, all articles were screened by title and abstract to exclude 
records on irrelevant topics and based on the exclusion criteria. Full texts for the 
remaining articles were retrieved and assessed by one reviewer (YZ). Any uncertainty 
was discussed with the second reviewer (SP). In case of multiple publications from the 
same study, the most complete and/or most recent paper was included. Re-analyses of 
previously reported studies without updates on the association between metal 
exposure and PD were excluded. 

Data extraction 
The following information was extracted from the candidate articles: first author’s last 
name, year of publication, country or region, study design, sample size, age and gender 
distribution of participants, case ascertainment and control selection, matching 
variables or adjusted confounders, exposure assessment method, and analysis 
technique for measuring metal levels. Additional information for cohort studies 
included the follow-up period and the number of cases that developed the outcome 
(PD diagnosis/mortality). 

For studies with quantitative exposure assessment, the mean and standard deviation 
(SD) of metal concentrations for the case and control groups were collected. When the 
mean and/or SD were not available, alternative statistic parameters for location 
(median, geometric mean), variability (geometric standard deviation, standard error 
(SE), interquartile range (IQR), range) and alternative statistical tests (t statistic, p-value, 
confidence interval (CI)) were considered. For studies only presenting numerical data 
in figures, WebPlotDigitizer was used for digitizing the data points from the figure. For 
studies with dichotomous/ordinal exposure categories, the numbers in each category 
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from each group and the crude/adjusted odds ratio (OR) or relative risk (RR) with 95% 
CI were extracted. 

Study quality assessment 
Study quality was assessed in terms of both study design and exposure assessment (EA) 
method. The Newcastle-Ottawa Scale (NOS) (8) was adapted separately for case-control 
studies and cohort studies (Table S2-S3). There were four parameters to evaluate the 
methodological quality: subject selection, comparability of the groups, ascertainment 
of either exposure or outcome for case-control or cohort studies respectively, and 
statistical analysis. We then appraised the EA methods using an adapted version of a 
previously published EA rating system (9) (Table S4). EA methods were considered as 
uninformative (EA score of 1) when based on self-reported exposure, which could have 
led to non-differential misclassification, or registry job history/self-reported job history 
in industrial cohorts, which are often inaccurate and incomplete (10). Biomonitoring, 
environmental monitoring and food frequency questionnaires (FFQ) after disease onset 
were considered not completely valid (EA score of 2) due to possible reverse causation, 
while bone level measurements of lead, cadmium and chromium after disease onset 
were regarded as accurate (EA score of 4) due to their slow elimination from the human 
body. An EA score of 3 was given to job histories from company records, a valid but not 
agent-specific approach. Approaches considered as valid and agent-specific (EA score 
of 4), included a job-exposure matrix (JEM), case-by-case expert assessment, and 
environmental monitoring or biomonitoring before disease onset. Two reviewers (YZ 
and AR) independently performed the quality assessment of all selected studies. Any 
disagreements were discussed between the two reviewers, and if no consensus was 
reached, they were resolved by a third reviewer (SP). 

Statistical analysis 
For case-control studies assessing metals in biological matrices (except for bone), the 
between-group standardized mean difference (SMD) (Hedges' g) was used as the effect 
measure for each study. SMD was calculated using the mean and SD on the log-
transformed scale (11), due to skewed distributions and small sample sizes in many of 
the included studies. For case-control studies assessing dietary and 
occupational/environmental metal exposures, the OR for ‘ever/higher metal exposure’ 
versus ‘never/background metal exposure’ was used as the effect measure for each 
study. Covariate-adjusted ORs were preferred over crude ORs to reduce possible 
confounding. When studies reported ORs for stratified exposure groups (e.g., quartiles, 
as was done in seven studies), the pooled OR for a single study was calculated by within-
study random-effects meta-analysis of the nonreference groups (12). When the 
mean/SD or OR/SE were not available, they were estimated from alternative statistics 
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according to recommendations of the Cochrane Handbook (13). When metal levels in 
the same matrix or source were presented as continuous data in some studies and as 
categorical data in other studies, effect measures, SMDs and ORs, were mutually 

converted by the formula, 𝑆𝑆𝑆𝑆𝑆𝑆 = √3/𝜋𝜋 ln𝑂𝑂𝑂𝑂 (14). All formulae are provided in the 
Formula appendix. 

Meta-analyses were conducted for each of the different metals (aluminum, calcium, 
cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, 
selenium, zinc , and general metal exposure) from various biological matrices (bone, 
cerebrospinal fluid (CSF), hair, (whole)blood, erythrocyte, plasma, serum, urine) and 
sources (diet, occupation/environment) separately, provided there were at least two 
studies remaining when low-quality papers were excluded. Studies assessing plasma 
and serum were additionally combined because they both assessed metals in the blood. 
As considerable between-study heterogeneity was anticipated, a random-effects model 
was used to pool effect sizes. The restricted maximum likelihood estimator (15) was 
used to calculate the heterogeneity variance tau-squared, τ2. Knapp-Hartung 
adjustment (16) was applied to calculate the confidence interval around the pooled 
effect. 

Cochran's Q-test and I2 (17) were used to assess and quantify between-study 
heterogeneity. A P value less than 0.05 was considered significant statistical evidence 
of heterogeneity. I2 values below 25% were deemed low, 25-75% as medium and above 
75% as high degree of heterogeneity (17). In an attempt to explain heterogeneity, 
subgroup analyses for geological locations and detection methods were performed if 
the original meta-analysis contained at least ten studies. Separate estimates of τ2 were 
assumed in each subgroup. To explore the robustness of meta-analyses, we calculated 
different influence diagnostics (DFFITS value, Cook’s distance, hat value, DFBETAS value) 
of individual studies based on the leave-one-out method, each time omitting one study. 
A study was considered as influential if any of the above influential measures reached 
the chosen cut-offs (18). The presence of publication bias was checked using a funnel 
plot and Egger’s test (19) if the number of studies was more than ten, and then applying 
the trim-and-fill method (20). Analyses were performed with the meta, metafor and 
dmetar packages in R 3.6 (21). 

Results 

Study selection 
After duplicate removal, a total of 4,045 papers from multiple electronic databases as 
well as relevant reviews were screened. From these, 83 case-control studies and five 
cohort studies were selected based on the inclusion and exclusion criteria (Figure 1). 

22

Chapter 2 | Systematic Review of Metal Exposures and PD



Figure 1. Flowchart of study selection 

1) Records through dataset searching: PubMed 
(n = 624), Embase (n = 3,465), Cochrane (n = 423) 
2) Records from references of reviews and meta- 
analyses on the same topic (n = 110)

Duplicates removed 
(n = 577) 

Records screening by title 
and abstract (n = 4,045) 

Irrelevant records excluded 
(n = 3,835) 

Relevant records searched for 
full text (n = 210) 

Records excluded 
Conference abstracts (n = 28) 
Letter to editor (n = 1) 
Reviews or meta-analyses (n = 10) 

Records excluded 
Population: no PD cases (n = 1) 
Exposure: no metal exposure available (n = 8); 
metal related jobs (n = 11); neuroimaging (n = 
2); postmortem tissue (n = 1) 
Comparator: no control group (n = 5) 
Outcome: no outcome (n = 6); other 
neurodegeneration (n = 5); parkinsonism or 
parkinsonian signs (n = 7); neurological 
impairment (n = 7) 
Study: case report (n = 1); ecological studies 
(n = 4); experimental studies (n = 3) 
Language: not English (n = 6) 

Full-text articles assessed for 
eligibility (n = 171) 

Studies included in review: 
case-control studies (n = 83) 

cohort studies (n = 5) 
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Basic information of candidate studies is summarized in Table S5 for case-control 
studies (22-104) and Table 1 for cohort studies (105-109). Overall, 35 (40%) of selected 
studies were carried out in Europe, 21 (24%) in Asia, 22 (25%) in North America and 10 
(11%) in other parts of the world. 

The number of case-control studies concerning each metal in different 
biospecimens/sources are presented in Table 2. Many studies (n=48, 58%) assessed 
more than one type of metal and 24 (29%) included more than one biological matrix or 
exposure source. The metals and exposure sources varied among the five cohort studies 
(Table 1). 

Quality assessment 
Study quality assessment results for all included papers are shown in Tables S6-S7. For 
the general study quality, most case-control studies (n=66, 80%) were scaled as 
moderate-quality, four as low-quality and thirteen as high-quality (Table 3). Three 
cohort studies were deemed as moderate-quality (107-109) and two as high-quality 
(105, 106). Concerning exposure assessment methods, most case-control studies (n=75, 
90%) adopted uninformative or invalid approaches (EA scores of 1 or 2). Eight studies 
used more reliable methods (EA score of 4). All cohort studies assessed metal exposure 
before disease onset (EA score of 4). 

Meta-analyses of metal levels in biological matrices 
The majority of meta-analyses were based on less than five studies, and most of them 
included less than 250 PD cases (Table 4). Pooled SMDs for aluminum, calcium, 
chromium, manganese, mercury, nickel, and selenium did not show any statistically 
significant difference between PD cases and controls in any biospecimen. Statistically 
significant differences in effect size were observed for cadmium in blood (n=2, SMD -
0.61 (95%CI -1.08, -0.13)), copper in serum (n=18, SMD -0.43 (95%CI -0.84, -0.02)), iron 
in serum (n=27, SMD -0.28 (95%CI -0.56, 0.00)), zinc in plasma or serum (n=18, SMD -
0.53 (95%CI -0.92, -0.14)), which were lower in PD cases than in controls, and for 
magnesium in CSF (n=5, SMD 0.66 (95%CI 0.41, 0.91)) and zinc in hair (n=4, SMD 0.52 
(95%CI 0.14, 0.90)), which were higher in PD cases. Forest plots of the meta-analyses of 
copper, iron, and zinc in plasma/serum, from >15 studies, are shown in Figure 2-4.  

The two included studies on lead levels in bone reported an increased risk of PD for 
individuals with higher overall lead bone levels relative to the lowest quartile (OR 1.34 
(95%CI 1.02, 1.76) (48); OR 1.32 (95%CI 1.04, 1.66) (65)). Further, a positive exposure-
response relationship was observed for tibia bone lead (ptrend=0.012 (48); ptrend=0.06 
(65)). 
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For many meta-analyses, between-study heterogeneity was considerable (Table 4). 
Studies assessing copper, iron, and zinc in plasma/serum had an I2 of >90%. Subgroup 
analyses revealed a subtle change in effect sizes between geographic locations (Table 
S8). Significant differences were observed among the detection techniques for copper 
in CSF (psubgroup=0.014), copper in plasma/serum (psubgroup<0.001), iron in CSF 
(psubgroup<0.001), iron in serum (psubgroup=0.005), manganese in plasma/serum 
(psubgroup=0.025), and zinc in serum (psubgroup=0.034). Influential studies were detected in 
some meta-analyses, including those of iron in plasma/serum, selenium in 
plasma/serum, and zinc in serum (Table S9). Removal of these influential studies caused 
small deviations from both the original pooled effects and between-study 
heterogeneity. 

Funnel plot and Egger’s test did not reveal any significant evidence of publication bias, 
except for studies on copper in CSF (Egger’s test, p=0.03) (Table S10, Figure S1). After 
trim-and-fill method adjustment, the pooled effect of -0.23 (-0.49, 0.02) in the meta-
analysis of iron in plasma/serum changed to 0.02 (-0.27, 0.32). 

 

Table 4. Pooled effect estimates for metal levels in biospecimens and Parkinson’s disease 

Metal 
Biological 

matrix 
No. of 
studies 

No. of 
PD cases 

No. of 
controls 

Pooled SMD (95%CI) I2 (%) 

Aluminum 
CSF 4 219 140 -0.50 (-1.05, 0.04) 53 
hair 3 186 243 0.92 (-1.15, 3.00) 94 

serum 4 464 447 -0.44 (-2.53, 1.64) 97 

Calcium 
CSF 4 219 140 0.30 (-0.10, 0.71) 18 
hair 3 163 75 -0.58 (-1.27, 0.11) 10 

serum 5 497 546 0.80 (-0.69, 2.30) 99 

Cadmium 

blood 2 49 37 -0.61 (-1.08, -0.13) 0 
CSF 2 68 33 -1.20 (-12.21, 9.82) 92 

serum 2 97 137 -0.88 (-7.43, 5.68) 84 
urine 2 49 37 -0.04 (-4.21, 4.13) 53 

Chromium 
CSF 5 182 178 -0.40 (-1.58, 0.78) 92 

serum 6 440 586 0.10 (-0.14, 0.34) 33 
urine 3 79 64 -0.14 (-0.45, 0.17) 0 

Copper 

blood 2 114 42 0.42 (-3.76, 4.59) 64 
CSF 11 418 336 0.16 (-0.38, 0.70) 86 
hair 3 150 56 -0.03 (-0.80, 0.73) 14 

plasma 7 603 746 0.27 (-0.58, 1.12) 97 
serum 18 1,147 1,164 -0.43 (-0.84, -0.02) 94 

plasma+serum 25 1,750 1,910 -0.23 (-0.60, 0.14) 96 
urine 4 198 127 -0.11 (-1.21, 0.98) 84 

  

28

Chapter 2 | Systematic Review of Metal Exposures and PD



(Table 4 continued) 

Iron 

CSF 11 483 312 -0.29 (-0.71, 0.13) 81 
hair 4 176 89 -0.13 (-1.03, 0.77) 78 

plasma 5 525 601 0.02 (-0.86, 0.90) 95 
serum 27 2,060 2,380 -0.28 (-0.56, 0.00) 89 

plasma+serum 32 2,585 2,981 -0.23 (-0.49, 0.02) 92 
urine 4 223 152 0.27 (-1.34, 1.87) 88 

Lead 

blood 2 49 37 0.37 (-6.35, 7.09) 81 
CSF 4 154 133 -0.60 (-2.59, 1.40) 95 

serum 4 380 516 -0.13 (-1.48, 1.22) 91 
plasma+serum 5 530 691 0.09 (-1.01, 1.19) 94 

Magnesium 
CSF 5 239 155 0.66 (0.41, 0.91) 0 
hair 2 137 42 -0.35 (-1.32, 0.62) 0 

serum 6 572 580 0.45 (-0.19, 1.09) 82 

Manganese 

blood 3 209 139 0.02 (-0.83, 0.87) 66 
CSF 8 296 243 -0.15 (-0.64, 0.34) 76 
hair 4 199 257 2.70 (-3.84, 9.23) 99 

plasma 2 375 300 0.43 (-7.02, 7.88) 98 
serum 8 589 664 0.11 (-0.43, 0.66) 89 

plasma+serum 10 964 964 0.18 (-0.29, 0.65) 93 
urine 4 205 130 -0.61 (-1.33, 0.11) 64 

Mercury 

blood 4 182 286 -0.20 (-1.69, 1.30) 93 
CSF 2 68 33 -1.05 (-4.14, 2.04) 12 
hair 3 179 273 -0.20 (-1.85, 1.45) 90 

serum 4 195 301 -0.66 (-1.91, 0.59) 90 
urine 3 103 133 -0.62 (-4.55, 3.01) 91 

Nickel 
CSF 3 208 150 -0.81 (-1.80, 0.17) 46 

serum 3 130 236 0.25 (-0.92, 1.42) 75 
plasma+serum 4 355 361 0.75 (-1.09, 2.59) 98 

Selenium 

CSF 3 100 106 0.71 (-0.04, 1.46) 28 
plasma 3 285 356 0.16 (-1.15, 1.47) 76 
serum 7 254 309 0.16 (-0.88, 1.20) 94 

plasma+serum 10 539 665 0.16 (-0.52, 0.84) 92 
urine 2 52 54 0.04 (-0.43, 0.50) 0 

Zinc 

blood 2 114 42 0.40 (-7.49, 8.29) 90 
CSF 7 312 213 -0.06 (-0.85, 0.73) 83 
hair 4 176 89 0.52 (0.14, 0.90) 0 

plasma 5 551 522 -1.04 (-2.07, -0.01) 92 
serum 13 815 837 -0.33 (-0.75, 0.09) 85 

plasma+serum 18 1,366 1,359 -0.53 (-0.92, -0.14) 94 
urine 4 198 127 -0.01 (-0.33, 0.30) 0 

SMD, standardized mean difference 
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Figure 2. Forest plot of copper level in plasma and serum and Parkinson’s disease 
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Figure 3. Forest plot of iron in plasma and serum and Parkinson’s disease 

2 

31

Systematic Review of Metal Exposures and PD | Chapter 2



Figure 4. Forest plot of zinc in plasma and serum and Parkinson’s disease 

Meta-analyses of metal exposure from diet and occupation/environment 
Case-control studies mainly focused on essential nutritional metals (calcium, copper, 
iron, magnesium, zinc) and did not show consistent results in meta-analyses (Table 5). 
An overall OR of 1.11 (95%CI 0.70, 1.76) was estimated for manganese, indicating no 
significant difference in dietary manganese intake between cases and controls. In a 
cohort study from Logroscino et al. (106), a modest increase in PD risk was associated 
with dietary iron intake (the highest vs. the lowest quintile, RR 1.30 (95%CI 0.94, 1.80)). 

As for occupational/environmental metal exposure, a borderline significant OR from 
combing four studies (OR 1.04 (95%CI 1.01, 1.06)) was found for manganese exposure 
and PD risk (Table 6). Lead exposure was associated with an elevated risk (OR=1.14), 
but the effect was not statistically significant (95%CI 0.64, 2.01). The same for non-
specified metal exposure (OR 1.22 (95%CI 0.70, 2.14)). The impacts of exposure to 
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copper, iron, mercury and zinc were inconclusive, and the confidence intervals for 
mercury and zinc were wide. 

Feldman et al. (108) and Brouwer et al. (107) explored the association between 
occupational metal exposures and PD among men in large population-based 
prospective cohorts in Sweden and the Netherlands, respectively, but neither of them 
observed any significant association (Table 1). Palacios et al. (105) found a positive 
monotonic association with airborne mercury exposure and risk of PD (hazard ratio 
(95%CI) through quartiles, Q2 1.15 (0.87, 1.52), Q3 1.24 (0.93, 1.65), Q4 1.33 (0.99, 1.79)) 
in a cohort of female nurses, while relations with other hazardous metals (cadmium, 
chromium, lead, manganese, nickel) showed little evidence of differences. Vinceti et al. 
(109) found that high selenium levels in drinking water were associated with excess PD
mortality, with an RR of 2.47 (95%CI 1.15, 5.29) compared with the control region.

Table 5. Pooled effect estimates for dietary metal intake and Parkinson’s disease 

Metal 
No. of 
studies 

No. of PD 
cases 

No. of 
controls 

Pooled OR (95%CI) I2 (%) 

Calcium 4 826 1,151 1.03 (0.77, 1.39) 64 
Copper 3 700 719 0.83 (0.30, 2.27) 85 

Iron 6 1,140 1,704 0.99 (0.60, 1.61) 69 
Magnesium 3 700 719 0.89 (0.22, 3.63) 89 
Manganese 3 700 719 1.11 (0.70, 1.76) 0 

Selenium 2 122 111 1.24 (0.44, 3.51) 0 
Zinc 4 740 748 0.85 (0.42, 1.72) 83 

Table 6. Pooled effect estimates for occupational/environmental metal exposures and 
Parkinson’s disease 

Metal 
No. of 
studies 

No. of PD 
cases 

No. of 
controls 

Pooled OR (95%CI) I2 (%) 

Copper 3 1,163 2,779 1.11 (0.68, 1.80) 0 
Iron 2 911 2,453 1.08 (0.91, 1.29) 0 
Lead 4 1,351 1,571 1.14 (0.64, 2.01) 41 

Manganese 4 1,547 25,893 1.04 (1.01, 1.06) 0 
Mercury 2 524 840 1.02 (0.009, 111.70) 17 

Zinc 3 947 1,045 1.56 (0.06, 44.07) 66 
Metal 7 2,526 2,971 1.22 (0.70, 2.14) 65 
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Discussion 

In this systematic review and meta-analysis, we assessed the current literature to 
summarize the evidence on the association between metal exposure and PD risk. Most 
case-control studies were biomonitoring studies and were of moderate-quality. Overall, 
there are no consistent associations regarding most metals in biospecimens or from 
dietary, occupational or environmental sources. Only for lead exposure was there an 
indication of a possible increased risk of PD, given the higher bone lead level among PD 
cases reported by two studies. Prospective studies assessing metal exposure prior to 
the outcome occurrence were limited and most did not find changes in risk of PD after 
metal exposure, except for the increased risk after exposure to airborne mercury and 
elevated PD mortality among residents drinking water with high selenium 
concentrations in one single study. 

Trace metals are responsible for a wide variety of neuronal functions, and disturbances 
of metal homeostasis have been implicated in the progression of PD. In mechanistic 
studies, excessive levels of some metals (e.g., manganese, iron, lead, mercury, 
aluminum, cadmium) have been shown to induce injury in dopaminergic neurons (5, 
110-113), which are the cells primarily affected in PD, while magnesium is expected to
act as a neuroprotective agent by inhibiting N-methyl-D-aspartate (NMDA) receptors
activity and oxidative stress (114). However, the role of other metals (e.g., zinc, copper, 
selenium) remains unclear and complicated as both beneficial and deleterious actions
have been postulated in PD (115, 116).

To date, human studies on the relationship between metal exposures and the risk of PD 
face several limitations. The number of studies available for most metal-biospecimen 
combinations is less than five and based on small-scale research, often including less 
than 50 PD patients. Further, few studies on metal exposure from diet, occupation or 
the environment are available to date, although they included larger numbers of PD 
cases. Such data sparsity makes the pooled effects in this review less accurate because 
the standard random-effects meta-analysis method can lead to serious distortions in 
the presence of few studies and/or limited sample sizes (117). Additionally, consistent 
lower levels of iron and copper in serum were drawn from respectively 18 and 27 
studies, but the result became ambiguous when adding a few studies assessing metals 
in plasma, making the inverse association of iron and copper in the combined matrices 
with PD undecisive. Another concern when utilizing biomonitoring studies is that 
circulating metal is not necessarily representative for long-term exposure due to rapid 
elimination in biological fluids. Pathogenesis and progression of PD is slow, thus chronic 
exposures to environmental stimuli will play a major role in the disease etiology. 
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Bone lead, an exception among biomonitoring, is a proxy of distant past exposure 
because of the decades half-life of lead in bone. Two large-scale case-control studies 
assessing bone lead (451 PD patients and 722 controls in total) consistently reported 
increased risk of PD related to cumulative exposure to lead. Further considering the 
relatively good quality of study design, these studies have indicated lead as a possible 
environmental risk factor for PD. 

In our meta-analysis, PD patients had somewhat increased manganese blood levels in 
comparison with controls, but with wide confidence intervals and considerable 
heterogeneity across studies (I2>90%). Studies assessing occupational/environmental 
exposure, however, indicated a possible association (OR 1.04 (95%CI 1.01, 1.06), I2=0%). 
This limited evidence regarding manganese as risk factor for PD seemed contradictory 
to the well-established finding of manganese-induced parkinsonism. The reason behind 
the inconsistence might be the different pathogenesis. Unlike PD, manganese-induced 
parkinsonism does not involve degeneration of midbrain dopamine neurons and that 
levodopa is not an effective therapy (118). The contribution of manganese to these two 
movement disorders may therefore be different. 

The overall lack of consistency among studies limits drawing firm conclusions on 
associations. The high level of between-study heterogeneity was confirmed among 
many evaluated studies, which indicates that effects might differ in certain contexts. 
From our subgroup analysis, metal detection methods in biomonitoring studies might 
have contributed to the high heterogeneity. Other relevant factors such as age 
distribution, gender ratio, disease severity and disease duration may also have resulted 
in heterogeneity, but no sufficient data were available to address their impact in our 
current analyses. What is more, the near null effect of iron in either serum or plasma 
after trim-and-fill correction indicates that the pooled effect in the meta-analysis might 
be overestimated due to small-study effects. 

More importantly, methodological limitations in the available studies could result in 
serious bias and distort the association between metal exposure and the risk of PD. First, 
there is possible case selection bias, as some studies identified PD outcome through 
death certificates or health care registers (40, 107-109). Register-based case 
ascertainment is likely to omit patients with early or mild disease, leading to results only 
based on more severe cases, which may not be translatable to all PD cases. Overlapping 
clinical features with other neurodegenerations and secondary parkinsonism, as well as 
symptom-based diagnosis, might also obscure the association for PD, since disease 
aetiologies may be different. Second is the selection of controls, which is often based 
on patients from the same hospital. Hospital controls, however, may not be 
representative of the source population, whereas the use of relatives as controls (30, 
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65, 84) may be affected by overmatching due to shared living conditions, activities and 
life habits resulting in a similar exposure status. Third, self-reported information on 
exposure in case-control studies (43, 100) can be affected by the awareness of disease 
status, resulting in differential recall between cases and controls. Furthermore, PD 
manifestations may have changed the toxicokinetics of metals, and altered metal levels 
after diagnosis may erroneously be thought to have an aetiological role, so-called 
reverse causality. Fourth, almost half of the case-control studies did not adopt matching 
between case and control groups. Confounding introduced by age, gender, smoking 
status, alcohol consumption and comorbidities could bias effect estimates and 
adjustment should be considered. 

Conclusion and future directions 

To our knowledge, this is the first meta-analysis and systematic review to investigate 
the association between metal exposures from various routes and the risk of PD. 
Besides consistency of results, we also considered the impact of exposure assessment 
and study design, which recently have been recommended when applying pooled 
estimates to causal inference in observational studies (119). In conclusion, because of 
inadequate study quality, high heterogeneity of reported results and methodological 
limitations, the work in PD epidemiology is yet insufficient to establish an association 
between specific metal exposures and the disease risk. Future research on the 
association between metals and PD risk should aim to address the above challenges 
effectively to provide more reliable evidence. This further evidence will heavily rely on 
large prospective cohort studies, with comprehensive lifelong exposure history, 
sufficient follow-up period, well-established biobanks and careful case ascertainment. 
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Table S1. Search queries 

PubMed 
(“Parkinson Disease”[MeSH Terms] OR “parkinson*”[All Fields] OR “pd”[All Fields] OR 
“neurodegenerative*”[All Fields]) AND (“Metals”[MeSH Terms] OR “Manganese”[MeSH 
Terms] OR “Iron”[MeSH Terms] OR “Copper”[MeSH Terms] OR “Lead”[MeSH Terms] OR 
“Mercury”[MeSH Terms] OR “Aluminum”[MeSH Terms] OR “Calcium”[MeSH Terms] OR 
“Selenium”[MeSH Terms] OR "Zinc"[MeSH Terms] OR "Magnesium"[MeSH Terms] OR 
"Cadmium"[MeSH Terms] OR "Chromium"[MeSH Terms] OR "Nickel"[MeSH Terms]) AND 
("exposure*"[All Fields] OR "exposed*"[All Fields]) AND ((humans[Filter]) AND 
(english[Filter]))) NOT (((("Meta-Analysis" [Publication Type])) OR ("Review" [Publication 
Type])) OR ("Systematic Review" [Publication Type])) 
EMBASE 
('parkinson disease'/exp OR 'parkinson disease' OR 'pd'/exp OR 'pd' OR 'parkinson*' OR 
'neurodegenerative*') AND ('metal*' OR 'manganese*' OR 'iron*' OR 'copper*' OR 'lead*' OR 
'mercury*' OR 'aluminium*' OR ‘aluminum*’ OR 'calcium*' OR 'selenium*' OR 'zinc*' OR 
'magnesium*' OR ‘cadmium*’ OR ‘chromium*’ OR ‘nickel*’) AND ('exposure*' OR 'exposed*') 
NOT ([cochrane review]/lim OR [systematic review]/lim OR [meta analysis]/lim) NOT 
[review]/lim AND [english]/lim AND [humans]/lim AND [embase]/lim 
Cochrane 
(parkinson disease OR pd OR parkinson* OR neurodegenerative*) AND (metal* OR 
manganese* OR iron* OR copper* OR lead* OR mercury* OR aluminium* OR aluminum* OR 
calcium* OR selenium* OR zinc* OR magnesium* OR cadmium* OR chromium* OR nickel*) 
AND (exposure* OR exposed*) 
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Table S2. Newcastle-Ottawa scale for case-control studies 

Assessment items Points 
Subject selection 
1. Adequate case definition

a. Independent validation by neurologists or confirmation of PD
diagnosis by reference to secure records (e.g., hospital record)

NB: registers of confirmed PD included 
2 

b. Record linkage (e.g., insurance registry or other health registry) 1 
c. Self-report 0 
d. No description 0 

2. Representativeness of cases 
a. Cases from multiple communities/hospitals/clinics 2 
b. Cases from single community/hospital/clinic 1 
c. Potential for selection bias or not stated 0 

3. Selection of cases
a. Incident cases only 1 
b. Including prevalent cases 0 
c. No description 0 

4. Selection of controls
a. Community controls 2 
b. Hospital controls 1 
c. Family/relative/partner controls or no description 0 

5. Definition of controls
a. No history of PD or confounding condition 1 
b. No description 0 

Comparability 
6. Comparability of cases and controls on the basis of the design or

analysis
a. Besides age and sex, other potential confounders are considered

(e.g., ethnicity, tobacco and alcohol consumption)
2 

b. Controls only matched with age and sex 1 
c. Not controlled or not stated 0 

Exposure assessment 
7. Ascertainment of exposure 

a. Blinded to case/control status 1 
b. Unblinded 0 
c. No description 0 

8. Participation rate
a. All eligible subjects participated or the same rate for both groups 2 
b. Rate different and non-participants described 1 
c. No description 0 
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Statistical analysis 
9. Statistical analysis  

a. Detailed and appropriate analysis: 
If continuous (in biomonitoring and some dietary exposure studies), 
parameters for center and variability (e.g., mean and standard 
deviation, median and interquartile range) of metal levels and the 
significance of differences between case and control groups 
(calculated by unpaired t-test, one-way analysis of variance or other 
reasonable statistics) were provided. 
If categorical (in occupational or environmental exposure or some 
dietary exposure studies), counts/percentage of case/control subjects 
in each group and crude/adjusted odds ratio and 95% confidential 
interval (calculated by logistic regression or other reasonable 
statistics) were provided. 

2 

b. Statistical test and results stated but limited 1 
c. Inappropriate analysis or no description 0 

Total maximum score 15 

 

Low quality: 0-5; moderate quality: 6-10; high quality: 11-15. 
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Table S3. Newcastle-Ottawa scale for cohort studies 

Assessment items Points 
Selection 
1. Representativeness of the exposed cohort 

a. Truly representative of the exposed population in the
community/industry

2 

b. Somewhat representative of the exposed population in the
community/industry

1 

c. Selected group of the exposed population
NB. state which group

0 

d. No description 0 
2. Representativeness of the nonexposed cohort 

a. From the same community/industry as the exposed cohort 1 
b. From a different source 0 
c. No description 0 

3. Demonstration that PD was not present at the start of the study 
a. Yes 1 
b. No 0 

Comparability 
4. Comparability of cohorts on the basis of the design or analysis 

a. Besides age and sex, other potential confounders are considered,
(e.g., ethnicity, tobacco and alcohol consumption)

2 

b. Controls only matched with age and sex 1 
c. Not controlled or not stated 0 

Outcome 
5. Assessment of outcome

a. Independent validation by neurologists or confirmation of PD
diagnosis by reference to secure records (e.g., hospital records)

NB: registers of confirmed PD included 
2 

b. Record linkage (e.g., insurance registry or other health registry) 1 
c. Self-report 0 
d. No description 0 

6. Follow up long enough for outcomes to occur 
a. More than 10 years 1 
b. Less than 10 years 0 

7. Adequacy of follow up cohorts
a. Complete follow-up, all subjects accounted for 2 
b. Subjects lost to follow-up are unlikely to introduce bias, small number

lost < 20%
1 

c. Follow up rate < 80% 0 
d. No description 0 
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Analysis  
8. Statistical analysis  

a. Detailed and appropriate analysis 
Reporting of: the number of participants and exposure status at baseline, 
follow-up period, the number of participants with or without PD at the end of 
the study, relative risk/hazard ratio with 95% confidential interval are reported. 

2 

b. Statistical test and results stated but limited 1 
c. Inappropriate analysis or no description 0 

Total maximum score 13 

 

Low quality: 0-4; moderate quality: 5-9; high quality: 10-13. 
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Formula appendix: Formulas for effect measure calculation 

(1) Between-group standardized mean difference (SMD): 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑥̅𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑥̅𝑥𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + (𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 − 1)𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐2

(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1) + (𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 − 1)  

Standard error of SMD: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐

+
𝑆𝑆𝑆𝑆𝑆𝑆2

2(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐) 

Small-sample correction for SMD, Hedges’s g: 

𝑔𝑔 = 𝑆𝑆𝑆𝑆𝑆𝑆 × (1 −
3

4𝑛𝑛 − 9) 

𝑥̅𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: mean, standard deviation and sample size of case group 
𝑥̅𝑥𝑐𝑐𝑐𝑐𝑐𝑐, 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐, 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐: mean, standard deviation and sample size of control group 
𝑛𝑛, total sample size of the study 

(2) If the median and interquartile range (IQR) were reported, mean and standard deviation (SD) 
were estimated according to Wan et al. (120) as follows: 

𝑥̅𝑥 ≈
𝑞𝑞1 + 𝑚𝑚 + 𝑞𝑞3

3  

𝑆𝑆𝑆𝑆 ≈
𝑞𝑞3 − 𝑞𝑞1

2𝛷𝛷−1(0.75𝑛𝑛 − 0.125
𝑛𝑛 + 0.25 )

 

𝑥̅𝑥, mean; 𝑆𝑆𝑆𝑆, standard deviation 
𝑞𝑞1, the first quartile; 𝑚𝑚, median; 𝑞𝑞3, the third quartile; 𝑛𝑛, sample size 

(3) If the range was reported, SD was estimated using a tabulated conversion factor (f) (121): 
𝑆𝑆𝑆𝑆 ≈ 𝑓𝑓 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

(4) If 95% confidence interval (CI) or standard error (SE) were reported, SD was estimated as 
follows: 

𝑆𝑆𝑆𝑆 = √𝑛𝑛 × (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)/(𝑡𝑡0.05,𝑛𝑛−1 × 2) 

𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 × √𝑛𝑛 

(5) If geometric mean and 95% CI were reported, mean and SD were estimated according to 
Higgins et al (11) as follows: 

𝑧𝑧̅ = 𝑙𝑙𝑙𝑙𝑙𝑙 

𝑠𝑠𝑧𝑧 =
𝑧𝑧̅ − 𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙
𝑡𝑡0.05,𝑛𝑛−1

× √𝑛𝑛 

𝑥̅𝑥 ≈ exp (𝑧𝑧̅ +
𝑠𝑠𝑧𝑧2

2 ) 

 𝑆𝑆𝑆𝑆 ≈ �(exp𝑠𝑠𝑧𝑧2 − 1) × exp (2 × 𝑧𝑧̅ + 𝑠𝑠𝑧𝑧2) 
𝑔𝑔, geometric mean; 𝑔𝑔𝑙𝑙, lower limit of 95% CI for 𝑔𝑔 
𝑧𝑧̅, 𝑠𝑠𝑧𝑧: mean and standard deviation of log-transformed measurements 
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(6) If continuous exposure was reported in two subgroups (merely sub-samples of a whole
group), the below formula can be used to combine into the single sample size, mean and SD 
for the whole group.

𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 

𝑥̅𝑥 =
𝑛𝑛1𝑥̅𝑥1 + 𝑛𝑛2𝑥̅𝑥2
𝑛𝑛1 + 𝑛𝑛2

𝑠𝑠 = �
(𝑛𝑛1 − 1)𝑠𝑠12 + (𝑛𝑛2 − 1)𝑠𝑠22 + 𝑛𝑛1𝑛𝑛2

𝑛𝑛1 + 𝑛𝑛2
(𝑥̅𝑥12 + 𝑥̅𝑥22 − 2𝑥̅𝑥1𝑥̅𝑥2)

𝑛𝑛1 + 𝑛𝑛2
𝑥̅𝑥, 𝑠𝑠, 𝑛𝑛: mean, SD and sample size for the whole group 
𝑥̅𝑥1, 𝑠𝑠1, 𝑛𝑛1: mean, SD and sample size for the subgroup 1 
𝑥̅𝑥2, 𝑠𝑠2, 𝑛𝑛2: mean, SD and sample size for the subgroup 2 
When more than two groups are to be combined, the first two groups are combined first, the 
results are then combined with the third group, then sequentially with each subsequent group 

(7) If studies assessing categorical exposure only reported observed numbers of cases/controls
in each exposure group and no odds ratio (OR), OR and associated SE of logOR were
calculated as below.

𝑂𝑂𝑂𝑂 =
𝑎𝑎/𝑏𝑏
𝑐𝑐/𝑑𝑑

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �1
𝑎𝑎 +

1
𝑏𝑏 +

1
𝑐𝑐 +

1
𝑑𝑑

𝑎𝑎, 𝑏𝑏: the number of exposed and non-exposed subjects in case group 
𝑐𝑐, 𝑑𝑑: the number of exposed and non-exposed subjects in control group 

(8) Conversion between standardized mean difference (SMD) and OR:

𝑆𝑆𝑆𝑆𝑆𝑆 =
√3
𝜋𝜋 ln𝑂𝑂𝑂𝑂 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
√3
𝜋𝜋 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

(9) Conversion to mean and SD on log-transformed scale from these of raw scale (11):

𝑧𝑧̅ = 𝑙𝑙𝑙𝑙𝑥̅𝑥 −
1
2 ln (

𝑠𝑠2

𝑥̅𝑥2 + 1)

𝑠𝑠𝑍𝑍 = �ln (
𝑠𝑠2

𝑥̅𝑥2 + 1)

𝑥̅𝑥, 𝑠𝑠: mean and SD of raw-scaled measurements 
𝑧𝑧̅, 𝑠𝑠𝑧𝑧: mean and standard deviation of log-transformed measurements 
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Table S8. Subgroup analyses of metals in biological matrices 

Subgroup No. of 
studies 

Pooled 
SMD 95% CI p-value I2(%) psubgroup 

Copper in CSF 11 0.16 -0.38, 0.70 0.526 86  
Geographic location     0.631 

Western 9 0.07 -0.44, 0.58 0.750 82  
Non-western 2 0.65 -14.28, 15.57 0.680 96  

Detection method     0.014 
AAS 7 0.21 -0.44, 0.85 0.462 86  

ICP-AES 2 -0.50 -0.52, -0.48 0.002 0  
ICP-MS 2 0.74 -12.93, 14.42 0.615 95  

Copper in serum 18 -0.43 -0.84, -0.02 0.043 94  
Geographic location     0.098 

Western 10 -0.13 -0.39, 0.14 0.301 67  
Non-western 8 -0.80 -1.73, 0.12 0.079 95  

Detection method     <0.001 
AAS 9 -0.63 -1.34, 0.07 0.071 95  

ICP-AES 4 0.16 -1.07, 1.39 0.709 89  
ICP-MS 3 -0.15 -0.27, -0.04 0.030 0  

Colorimetry 1 NA  
NR 1 NA  

Copper in plasma and serum 25 -0.23 -0.60, 0.14 0.210 96  
Geographic location     0.200 

Western 15 -0.02 -0.37, 0.32 0.593 91  
Non-western 10 -0.54 -1.38, 0.30 0.180 98  

Detection method     <0.001 
AAS 14 -0.37 -0.93, 0.18 0.180 97  

ICP-AES 4 0.16 -1.07, 1.39 0.709 89  
ICP-MS 5 0.21 -0.58, 1.00 0.502 94  

Colorimetry 1 NA  
NR 1 NA  

Iron in CSF 11 -0.29 -0.71, 0.13 0.155 81  
Geographic location     0.996 

Western 7 -0.29 -0.91, 0.32 0.291 82  
Non-western 4 -0.29 -1.33, 0.75 0.436 84  

Detection method     <0.001 
AAS 5 -0.13 -1.04, 0.78 0.709 87  

ICP-AES 3 -0.84 -1.11, -0.57 0.006 0  
ICP-MS 2 -0.25 -4.42, 3.91 0.583 61  
ELISA 1 NA  

Iron in serum 27 -0.28 -0.56, 0 0.049 89  
Geographic location     0.398 

Western 15 -0.18 -0.42, 0.06 0.137 79  
Non-western 12 -0.43 -1.05, 0.19 0.152 94  

Detection method     0.005 
AAS 4 -0.21 -0.60, 0.18 0.184 56  

ICP-AES 5 -0.09 -0.95, 0.77 0.784 94  
ICP-MS 3 0.15 -0.13, 0.42 0.149 0  
ELISA 1 N     

Colorimetry 9 -0.43 -1.23, 0.38 0.257 93  
NR 5 -0.59 -1.24, 0.06 0.065 89  

Iron in plasma and serum 32 -0.23 -0.49, 0.02 0.072 92  
Geographic location      0.878 

Western 18 -0.22 -0.43, -0.02 0.034 76  
Non-western 14 -0.27 -0.84, 0.31 0.337 96  

54

Chapter 2 | Systematic Review of Metal Exposures and PD



Detection method 0.065 
AAS 5 -0.09 -0.49, 0.31 0.562 85 

ICP-AES 5 -0.09 -0.95, 0.77 0.784 94 
ICP-MS 4 0.44 -0.36, 1.24 0.180 91 
ELISA 1 NA 

Colorimetry 12 -0.43 -0.99, 0.13 0.122 90 
NR 5 -0.59 -1.24, 0.06 0.065 89 

Manganese in plasma and 
serum 10 0.18 -0.29, 0.65 0.407 93 

Geographic location 0.533 
Western 6 0.07 -0.71, 0.85 0.822 92 

Non-western 4 0.33 -0.56, 1.22 0.325 95 
Detection method 0.025 

AAS 3 -0.31 -1.18, 0.57 0.272 74 
ICP-MS 7 0.40 -0.19, 0.99 0.146 93 

Selenium in plasma and 
serum 10 0.16 -0.52, 0.84 92 

Geographic location 0.735 
Western 6 0.25 -0.47, 0.98 0.409 84 

Non-western 4 0.00 -2.16, 2.17 0.995 96 
Detection method 0.819 

AAS 7 0.10 -0.97, 1.16 0.829 95 
ICP-MS 2 0.33 -2.83, 3.49 0.412 49 

NR 1 NA 
Zinc in serum 13 -0.33 -0.75, 0.09 0.113 85 
Geographic location 0.512 

Western 7 -0.21 -0.48, 0.05 0.094 47 
Non-western 6 -0.50 -1.59, 0.58 0.289 93 

Detection method 0.034 
AAS 7 -0.41 -1.29, 0.48 0.303 91 

ICP-AES 4 -0.37 -0.85, 0.12 0.098 65 
ICP-MS 2 0.00 -0.10, 0.09 0.739 0 

Zinc in plasma and serum 18 -0.53 -0.92, -0.14 0.011 94 
Geographic location 0.330 

Western 10 -0.36 -0.77, 0.05 0.080 81 
Non-western 8 -0.74 -1.57, 0.08 0.071 97 

Detection method 0.735 
AAS 10 -0.62 -1.28, 0.04 0.062 94 

ICP-AES 4 -0.37 -0.85, 0.12 0.098 65 
ICP-MS 4 -0.47 -1.91, 0.97 0.374 96 

NR, not reported; NA, not applicable 

AAS, atomic absorption spectrometry; ICP-AES, inductively coupled plasma-atomic emission 
spectrometry; ICP-MS, inductively coupled plasma-mass spectrometry. 
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Figure S1. Funnel plots and trim-and-fill plots of meta-analyses of metal levels in biological 
matrices 

The closed dots indicate the observed studies, and the open dots indicate the missing studies 
imputed by the trim-and-fill method. The triangular area represents the 95% confidence limits, 
and the vertical line represents the overall effect size. 
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Abstract 

Background: Metals have been postulated as environmental concerns in the etiology of 
Parkinson’s disease (PD), but metal levels are typically measured after diagnosis, which 
might be subject to reverse causality. 

Objectives: To investigate the association between pre-diagnostic blood metal levels 
and PD risk. 

Methods: A case-control study nested in a prospective European cohort, utilizing 
erythrocyte samples collected before PD diagnosis. 

Results: Most assessed metals were not associated with PD risk. Cadmium has a 
suggestive negative association with PD (odds ratio (OR) and 95% confidence interval 
(CI) for the highest quartile, 0.70 (0.42-1.17)), which diminished among never smokers.
Among current smokers only, lead was associated with decreased PD risk (0.06 (0.01-
0.35)), while arsenic showed associations towards an increased PD risk (1.85 (0.45-
7.93)).

Conclusions: We observe no strong evidence to support a role of metals in the 
development of PD. In particular smoking may confound the association with tobacco-
derived metals. 

Keywords: Parkinson’s disease, metals, prospective exposure assessment, cohort study 
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Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative disease. 
Around 90% of PD cases are related to a variety of lifestyle and environmental factors 
(1). Metals have been implicated in the pathogenesis of PD for many years (2). For the 
general population, metal exposures usually result from contaminated food or drinking 
water, cigarette smoking, air pollution, dental amalgam fillings, medication and dietary 
supplements (3). 

We recently evaluated the epidemiological evidence of associations between metal 
exposure and PD risk in a systematic review (2). We did not observe consistent 
associations with PD risk for most metals in meta-analyses. Notably, the research 
quality was greatly limited due to retrospective exposure assessment. Metal levels in 
human biofluids were mostly measured after disease diagnosis, and results were 
therefore possibly affected by reverse causality because PD patients tend to change 
smoking and diet habits when experiencing clinical manifestations (4). 

To elucidate whether metal exposures represent genuine risk factors for PD, we 
assessed the association between PD risk and metal levels in blood samples collected 
several years before PD diagnosis, in a case-control study nested in the EPIC4PD cohort, 
a large prospective European study (5). Meanwhile, possible confounding of smoking 
was also explored for the effect of metals on PD, since smoking was reported to be 
inversely associated with PD risk (6) and cigarette smoke contains various metal species 
(7). 

Methods 

Study population 
The EPIC4PD study is based on 220,494 subjects from the general population residing 
in seven countries, within the European Prospective Investigation into Cancer and 
Nutrition (EPIC) study (5, 8). Within EPIC4PD, 734 incident PD cases who received a 
diagnosis after the date of recruitment were identified through medical record linkage 
and neurologist validation (5). Here, we conducted a nested case-control study within 
the EPIC4PD cohort, including 362 incident PD cases for whom a baseline erythrocyte 
sample was available in the EPIC biobank. The reliability of the diagnoses was 
categorized into ‘definite’, ‘very likely’, ‘probable’ and ‘possible’ (Text S1) (5). One 
control per case matched by age at recruitment, sex and study center was selected 
using incidence density sampling. 
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Measurement of metal levels 
Metal concentrations in erythrocytes were measured by inductively coupled plasma-
mass spectrometry. Eleven elements were assessed: arsenic, cadmium, calcium, copper, 
iron, lead, magnesium, manganese, mercury, selenium and zinc. Details were described 
in Text S2. 

Statistical analysis 
Metal concentrations were compared among subjects with different smoking status. 
Correlations between metal levels and smoking intensity, represented by the reported 
number of cigarettes smoked per day at baseline when blood was collected, were 
tested by Spearman correlation (correlation coefficient, rho). 

Conditional logistic regression for the matched case-control sets was applied to 
estimate the odds ratio (OR) and 95% confidence interval (CI) of PD incidence 
associated with quartile categories of metal levels (based on the distribution among 
controls, denoted as Q1-Q4). Considering the recognized inverse association between 
smoking and the risk of PD (6), smoking status at recruitment (never, former or current 
smoker, and unknown) was deemed as a potential confounder in the conditional 
analyses. Other possible confounding factors, including alcohol consumption, coffee 
drinking, seafood and vegetable intake, education, body mass index and physical 
activity, did not modify the risk estimated (all p>0.1) and were not included in the 
models. 

We performed stratified analyses by sex and smoking status (current, non-current and 
never smokers) to test possible different effects. Two sensitivity analyses were 
conducted to test the robustness of our findings: i) limiting analyses to PD cases 
diagnosed after 8 years (median) since recruitment (timing for blood collection) to 
reduce possible reverse causality; and ii) limiting analyses to PD cases with definite and 
very likely diagnoses. All analyses were carried out in R 4.1.3 (9). 

Results 

For PD cases, the median period between recruitment and PD diagnosis was 7.8 years 
(Table S2). At baseline, 13% of the cases were smokers, compared with 16% among 
controls (p=0.69). Cadmium levels in current smokers were about 2.5 times higher than 
in never smokers (Table S3), and lead in current smokers was around 1.4 times higher 
compared with never smokers. Furthermore, cadmium and lead levels were both 
positively correlated with the number of daily smoked cigarettes (rho=0.50, 0.26, 
respectively). 
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Table 1. The association between pre-diagnostic blood metal concentrations and the risk of 
Parkinson’s disease 

Exposure 
category 

PD cases, n Controls, n OR (95% CI)1 
Smoking adjusted 

OR (95% CI)2 

Arsenic 
Quartile 1 94 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 97 90 1.02 (0.66–1.57) 1.02 (0.66–1.58) 
Quartile 3 76 90 0.78 (0.48–1.27) 0.78 (0.48–1.26) 
Quartile 4 95 91 0.97 (0.61–1.56) 0.96 (0.60–1.55) 

p for trend, linear 0.46 0.47 
Cadmium 

Quartile 1 118 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 71 90 0.59 (0.39–0.91) 0.59 (0.38–0.90) 
Quartile 3 90 90 0.75 (0.49–1.15) 0.75 (0.48–1.15) 
Quartile 4 83 91 0.68 (0.44–1.04) 0.70 (0.42–1.17) 

p for trend, linear 0.09 0.13 
Calcium 

Quartile 1 80 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 82 90 1.14 (0.70–1.87) 1.14 (0.70–1.88) 
Quartile 3 114 90 1.62 (0.98–2.68) 1.60 (0.97–2.66) 
Quartile 4 86 91 1.20 (0.63–2.29) 1.16 (0.61–2.23) 

p for trend, linear 0.32 0.37 
Copper 

Quartile 1 94 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 77 90 0.85 (0.55–1.31) 0.85 (0.55–1.31) 
Quartile 3 90 90 1.01 (0.62–1.64) 1.01 (0.62–1.65) 
Quartile 4 101 91 1.20 (0.70–2.08) 1.20 (0.69–2.08) 

p for trend, linear 0.84 0.83 
Iron 

Quartile 1 97 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 82 90 0.84 (0.54–1.32) 0.84 (0.54–1.32) 
Quartile 3 100 90 1.02 (0.62–1.68) 1.00 (0.60–1.65) 
Quartile 4 83 91 0.82 (0.48–1.41) 0.82 (0.48–1.42) 

p for trend, linear 0.64 0.62 
Lead 

Quartile 1 101 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 92 90 0.90 (0.60–1.36) 0.93 (0.61–1.41) 
Quartile 3 91 90 0.85 (0.56–1.31) 0.87 (0.56–1.34) 
Quartile 4 78 91 0.65 (0.38–1.11) 0.68 (0.39–1.16) 

p for trend, linear 0.09 0.12 

3 

73

Metal Exposures and PD in EPIC4PD | Chapter 3



(Table 1 continued) 

Magnesium     
Quartile 1 88 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 92 90 1.06 (0.69–1.65) 1.05 (0.68–1.63) 
Quartile 3 85 90 0.99 (0.63–1.57) 0.99 (0.62–1.56) 
Quartile 4 97 91 1.12 (0.71–1.77) 1.12 (0.71–1.77) 

p for trend, linear   0.99 0.99 
Manganese     

Quartile 1 97 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 99 90 1.02 (0.68–1.53) 1.01 (0.67–1.53) 
Quartile 3 79 90 0.80 (0.52–1.24) 0.80 (0.51–1.25) 
Quartile 4 87 91 0.87 (0.55–1.37) 0.86 (0.55–1.36) 

p for trend, linear   0.60 0.57 
Mercury     

Quartile 1 95 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 82 90 0.87 (0.56–1.34) 0.88 (0.57–1.35) 
Quartile 3 89 90 0.96 (0.60–1.54) 0.96 (0.60–1.54) 
Quartile 4 96 91 1.10 (0.61–1.97) 1.11 (0.61–2.00) 

p for trend, linear   0.95 0.98 
Selenium     

Quartile 1 90 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 103 90 1.14 (0.76–1.71) 1.12 (0.75–1.68) 
Quartile 3 61 90 0.70 (0.45–1.09) 0.68 (0.43–1.07) 
Quartile 4 108 91 1.28 (0.79–2.05) 1.25 (0.77–2.01) 

p for trend, linear   0.94 0.88 
Zinc     

Quartile 1 72 91 1.00 [Ref] 1.00 [Ref] 
Quartile 2 98 90 1.43 (0.92–2.21) 1.41 (0.91–2.18) 
Quartile 3 103 90 1.53 (0.97–2.42) 1.54 (0.98–2.45) 
Quartile 4 89 91 1.35 (0.80–2.27) 1.35 (0.80–2.28) 

p for trend, linear   0.51 0.54 

 

PD, Parkinson’s disease; OR, odds ratio; CI, confidence interval. 
1 Conditional logistic regression for the matched case-control sets. 
2 Conditional logistic regression for the matched case-control sets, adjusted by smoking status. 
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Our analyses did not demonstrate obvious associations between assessed metals and 
the risk of PD (Table 1). Cadmium was indicated to be associated with a decreased risk 
of PD (ORs and 95% CIs: Q2 0.59 (0.38–0.90), Q3 0.75 (0.48–1.15), Q4 0.70 (0.42–1.17)). 
However, the effects attenuated towards null when limited to never smokers (Figure 1). 
Zinc showed a borderline positive association in the third quartile (1.54 (0.98–2.45), 
p=0.064), which became most pronounced among never smokers (1.81 (1.00–3.33)) 
(Figure 1) and females (2.32 (1.16–4.63)) (Figure S4). No effects were observed for the 
remaining metals: calcium, copper, iron, magnesium, manganese, mercury, and 
selenium. 

Exposure-response trends were not observed from linear (Table 1) nor spline regression 
for any of the assessed metals (Figure S2). Effect estimates from sensitivity analyses 
limiting to late-diagnosed cases and definite and very likely cases were similar to those 
of the main analyses, despite the widening of CIs due to the smaller sample size (Figure 
S5). 

A few metals showed associations only among current smokers (Figure 1). Increased 
lead levels were found to be associated with a decreased risk of PD among current 
smokers (OR for highest quartile 0.06, 95% CI 0.01–0.35), also showing a clear linear 
trend (p=0.007). The inverse associations persisted after further controlling for the 
number of cigarettes (data not shown). In contrast, a positive association was suggested 
between arsenic and PD risk when limited to current smokers (ORs and 95% CIs: Q2 
3.29 (0.97–12.3), Q3 1.81 (0.43–7.95), Q4 1.85 (0.45–7.93)). 

Discussion 

Our study is the first prospective study to investigate the role of metal levels in PD risk 
by assessing blood samples collected years prior to the clinical diagnosis. Our study did 
not provide robust evidence to verify the action of metals in the pathogenesis of PD. 

Lead is a well-recognized toxicant primarily affecting the central nervous system (10). 
Two well-designed case-control studies found bone lead, which is a biomarker for 
cumulative lead exposure (11), to be associated with increased risk of PD (12, 13), 
indicating that long-term environmental lead exposure may be a risk factor for PD. In 
contrast, a strong inverse association between lead levels and PD risk was notable 
among current smokers in our study. A probable explanation is that lead is a surrogate 
measure or intermediate step of smoking in relation to PD, considering the positive 
correlation between lead levels and smoking intensity. This assumption is partly 
confirmed by our previous study on erythrocyte metal levels and the risk of 
amyotrophic lateral sclerosis (ALS) (14). In contrast to the observed decreased risk of 
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PD, smoking is associated with an increased risk of ALS (15), and a positive association 
between blood lead and ALS was found in current smokers. 

Cadmium was also possibly subject to the influence of smoking. In terms of OR 
magnitude, the negative associations between cadmium and PD were stronger among 
current smokers than never smokers. Because cadmium source attributes to cigarette 
smoking more than lead (16), it is more reasonable to speculate the participation of 
smoking in the relation of cadmium to PD. Future studies should aim to explore the 
modification effect of smoking in the relation between tobacco-derived metals and 
neurodegenerations and to help elucidate the etiology of the disease. 

In this study, subjects with higher zinc levels showed an elevated risk of PD, especially 
among never smokers and females, but no clear dose-response trend was observed. In 
our previous meta-analyses, zinc in the blood matrix were found to be lower in PD 
patients compared with controls, with a pooled standardized mean difference of -0.53 
(95% CI:-0.92, -0.14) from 18 retrospective case-control studies (2). The discrepancy 
with results in our study may be due to different biospecimens measured (blood matrix 
or erythrocytes) and possible reverse causality in previous studies. The precise nature 
and underlying mechanisms of the effect of zinc in the development of PD requires 
further investigation. 

We acknowledged some limitations in this study. First, metal levels in erythrocytes 
(with a life span of 120 days (17)) reflect recent exposures proximal to the time of blood 
sample collection. The biomonitoring at one time point could be inaccurate when metal 
exposures fluctuate over the lifetime. For example, unlike elevated levels in current 
smokers, cadmium concentrations in former smokers were similar as in never smokers 
(Table S3), suggesting one-time measurement cannot completely reflect past exposure. 
Second, blood samples were collected on average eight years prior to PD diagnosis, but 
PD prodromal phase could occur as early as 20 years before the onset of motor 
symptoms (18). Therefore, we cannot fully exclude that metal alterations were 
secondary to diet and smoking habit change related to PD symptoms. However, similar 
results were obtained when limiting analyses to those who were diagnosed >8 years 
after recruitment, indicating residual reverse causality does not seem to be substantial. 
Third, although a positive association for arsenic was suggestive among current 
smokers, it makes less sense to postulate that smoking plays a role in the impact of 
arsenic on PD. The arsenic levels measured in our study mostly reflected organic species 
(arsenobetaine) from seafood. The mechanism of arsenic in PD development warrants 
further exploration. Fourth, iron levels we measured were a crude estimation of iron 
status in humans. Besides iron content in erythrocytes, iron status also relies on serum-

3 

77

Metal Exposures and PD in EPIC4PD | Chapter 3



based indicators, such as ferritin, transferrin saturation, and soluble transferrin 
receptor (19). 

In conclusion, our study did not find strong evidence to support the risk of PD altered 
by metal exposures. Smoking may confound the association with lead and cadmium. To 
date, this is the first study to evaluate pre-diagnostic metal levels in blood in the 
development of PD, minimizing reverse causation. Further investigations are needed to 
gain a better understanding of the relationship between smoking, metals and PD. 
Furthermore, future studies of novel biomarkers of long-term metal exposure may 
provide more compelling evidence of the association between metals and PD. 
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Text S1. PD case ascertainment in EPIC4PD 

In EPIC4PD, potential cases were first identified at each center through medical record 
linkage and then validated through clinical record review by movement disorder 
experts (1). The reliability of the diagnoses was determined by the quality of clinical 
data (rated as poor, good or excellent), as well as the degree of the confidence of the 
neurological expert (rated as low, medium or high) (1). Diagnoses were defined as 
‘definite’ only when the confidence degree of the neurologist was high and the data 
quality was excellent; ‘very likely’ when the confidence degree was high, but data 
quality was either good or poor; ‘probable’ when the confidence degree was medium 
and data quality was either excellent or good; and diagnoses were defined as ‘possible’ 
in all remaining cases. 

Reference: 

1. Gallo V, Brayne C, Forsgren L, Barker RA, Petersson J, Hansson O, et al. Parkinson's Disease
Case Ascertainment in the EPIC Cohort: The NeuroEPIC4PD Study. Neurodegener Dis.
2015;15(6):331-8.
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Text S2. Measurement of metal levels 

A blood sample was obtained from each participant at the baseline of the cohort. 
Plasma, erythrocytes and buffy coat were separated and stored in liquid nitrogen at -
196 °C. Because metals are largely bound to erythrocytes in blood and the lifetime of 
erythrocytes is relatively long (about three months), metal concentrations in 
erythrocytes have been shown to be a relevant biomarker of ongoing exposure (1). 

The erythrocyte samples were prepared by a direct alkali dilution method as described 
previously (2, 3). Metal concentrations were measured by inductively coupled plasma-
mass spectrometry (ICP-MS) (Agilent 7700x, Agilent Technologies, Tokyo, Japan). 
Eleven elements (isotope) were assessed: arsenic (75As), cadmium (111Cd), calcium (44Ca), 
copper (63Cu), iron (56Fe), lead (208Pb), magnesium (24Mg), manganese (55Mn), mercury 
(202Hg), selenium (78Se) and zinc (66Zn). The majority of the elements were measured in 
helium mode (75As, 111Cd, 63Cu, 56Fe, 24Mg, 55Mn, 66Zn), 78Se and 44Ca measured in 
hydrogen mode, and 208Pb and 202Hg in standard mode (no gas). The elements 
germanium (72Ge), rhodium (103Rh), lutetium (175Lu), and iridium (193Ir) were included as 
internal standards. 

The limit of detection (LOD) for each element was determined as 3×standard deviation 
(SD) of analyzed blanks (alkali solution) and as signal/noise=3 (Table S1). The limit of 
quantification (LOQ) was determined as 10×SD of analyzed blanks. As quality controls, 
two commercially available whole blood reference materials, Seronorm trace elements 
whole blood L1 and L2 (Lot no. 1702821 and 1406264, SERO, Billingstad, Norway), were 
analyzed. Blanks and reference materials were treated with the collected erythrocyte 
samples and analyzed in the beginning, middle, and end of each analysis. 

In one sample, the mercury level was below the LOD and was replaced by LOD/√2. No 
metal values were between each respective LOD and LOQ. 

References: 

1. Nordberg G, Fowler B, Nordberg M. Handbook on the toxicology of metals. 4th ed. Cambridge, 
MA: Academic Press. 2014. 

2. Peters S, Broberg K, Gallo V, Levi M, Kippler M, Vineis P, et al. Blood Metal Levels and 
Amyotrophic Lateral Sclerosis Risk: A Prospective Cohort. Ann Neurol. 2020. 

3. Levi M, Hjelm C, Harari F, Vahter M. ICP-MS measurement of toxic and essential elements in 
human breast milk. A comparison of alkali dilution and acid digestion sample preparation 
methods. Clinical biochemistry. 2018;53:81-7. 
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Table S1. LOD and LOQ for metal measurement 

Metal Average LOD, ng/g Average LOQ, ng/g 
Arsenic 0.00279 0.01634 

Cadmium 0.00171 0.00645 
Calcium 5.29543 19.45424 
Copper 0.08867 0.44666 

Iron 13.18192 82.89144 
Lead 0.01067 0.04123 

Magnesium 2.20312 12.90307 
Manganese 0.02933 0.05362 

Mercury 0.00697 0.02386 
Selenium 0.00575 0.02166 

Zinc 4.07954 7.69266 

LOD, limit of detection; LOQ, limit of quantification. 
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Table S2. Characteristics of study participants 

Characteristic 
PD cases 

n=362 
Controls 
n=362 

Age at recruitment1, median (IQR) 60.9 (55.0–65.8) 60.6 (55.1–65.8) 
Age at PD diagnosis, median (IQR) 68.7 (62.9–74.1) – 
Years between recruitment and PD diagnosis, median 
(IQR) 

7.8 (4.5–11.0) – 

Reliability of diagnosis, n (%)   
Definite 46 (13%) – 
Very likely 147 (40%) – 
Probable 60 (17%) – 
Possible 109 (30%) – 

Sex1, n (%)   
Male 203 (56%) 203 (56%) 
Female 159 (44%) 159 (44%) 

Country1, n (%)   
Italy 58 (16%) 58 (16%) 
Spain 97 (27%) 97 (27%) 
UK 148 (40%) 148 (40%) 
Netherlands 13 (4%) 13 (4%) 
Germany 46 (13%) 46 (13%) 

Smoking status at recruitment2, n (%)   
Never smokers 183 (51%) 179 (49%) 
Former smokers 121 (33%) 113 (31%) 
Current smokers 48 (13%) 57 (16%) 

Coffee consumption at recruitment3 (ml/d)   
Nonconsumer, n (%) 49 (14%) 39 (11%) 
Daily coffee, median (IQR) 190 (76–475) 190 (75–475) 

Alcohol consumption at recruitment4 (g/d)   
Nonconsumer, n (%) 78 (22%) 66 (18%) 
Total alcohol, median (IQR) 9.3 (3.0–24.1) 10.5 (2.8–26.2) 

BMI at recruitment (kg/m2), median (IQR) 26.5 (24.1–29.2) 26.1 (23.9–29.0) 
Higher education5, n (%) 42 (12%) 47 (13%) 
Physically active6, n (%) 18 (4%) 27 (3%) 

 

PD, Parkinson’s disease; IQR, interquartile range; BMI, body mass index. 

1 Matching variables for PD case and control 

2 Smoking status was missing for 10 PD cases and 13 controls. 

3 Coffee consumption was missing for 3 PD cases and 4 controls. 

4 Alcohol consumption was missing for 3 PD cases and 4 controls. 

5 Education was missing for 26 PD cases and 17 controls. 

6 Combined index of occupational and recreational physical activity. Physically activity was missing for 13 PD 
cases and 10 controls. 
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Table S3. Relationship between metals in blood and smoking 

Metal 

Metal levels (ng/g)1 
Correlation with 

smoking intensity2 
Current smokers 

n=105 

Former 
smokers 
n=234 

Never smokers 
n=362 

Arsenic 3.62 (3.05) 3.58 (2.74) 3.22 (2.97) -0.19
Cadmium3 1.22 (2.03) 0.50 (1.62) 0.48 (1.61) 0.50

Calcium 10,678 (1.60) 12,142 (1.60) 11,262 (1.55) -0.10
Copper 606 (1.24) 601 (1.20) 606 (1.22) -0.04

Iron 873,466 (1.17) 861,206 (1.16) 853,763 (1.18) -0.18
Lead3 92.0 (1.72) 71.5 (1.68) 67.2 (1.78) 0.26

Magnesium 42,384 (1.21) 41,358 (1.18) 41,098 (1.19) -0.17
Manganese 13.3 (1.42) 13.6 (1.43) 14.41 (1.39) -0.03

Mercury 4.70 (2.97) 3.82 (2.60) 4.09 (3.31) -0.22
Selenium 125 (1.31) 123 (1.29) 128 (1.32) -0.18

Zinc 9,732 (1.25) 9,804 (1.21) 9,594 (1.24) -0.23

1 Expressed as geometric mean (geometric standard deviation) 
2 Spearman correlation coefficients between metal levels and cigarettes consumed per day, 
which was only available for 78 current smokers 
3 From Dunn’s test, metal levels among current smokers were significantly higher than these in 
former and never smokers (p<0.05). 
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Figure S1. Correlation matrix of metal concentrations 

Values in tiles were Spearman correlation coefficients. 
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Figure S2. Natural spline for association between metals and risk of Parkinson’s disease 

Histogram shows the metal distribution; solid line represents odds ratios, estimated by 
conditional logistic regression of natural spline with 3 degrees of freedom on metal levels; dashed 
lines are the 95% confidence intervals; Y-axis is truncated at 0.5 and 2.0 for all metals; odds ratios 
are expressed relative to minimum levels of metal. 
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Figure S4. The association between metal concentrations and the risk of Parkinson’s 
disease by gender 

OR, odds ratio; CI, confidence interval, Q, quartile. 

ORs were calculated by conditional logistic regression for the matched case-control sets, 
adjusted by smoking status. 
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Figure S5. The association between metal concentrations and the risk of Parkinson’s disease in 
sensitivity analyses 

OR, odds ratio; CI, confidence interval, Q, quartile. 

ORs were calculated by conditional logistic regression for the matched case-control sets, adjusted 
by smoking status. Late–diagnosed cases were those diagnosed as Parkinson’s disease after 8 
years since recruitment. 
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Abstract 

Dioxin(-like) exposures are linked to adverse health effects, including cancer. However, 
metabolic alterations induced by these chemicals remain largely unknown. Beyond 
known dioxin(-like) compounds, we leveraged a chemical-wide approach to assess 
chlorinated co-exposures and parent compound products (termed dioxin(-like) related 
compounds) among 137 occupational workers. Endogenous metabolites were profiled 
by untargeted metabolomics, namely reversed-phase chromatography with negative 
electrospray ionization (C18-negative) and hydrophilic interaction liquid 
chromatography with positive electrospray ionization (HILIC-positive). We performed a 
metabolome-wide association study to select dioxin(-like) associated metabolic 
features using a 20% false discovery rate threshold. Metabolic features were then 
characterized by pathway enrichment analyses. No significant features associated with 
polychlorinated dibenzo-p-dioxins (PCDDs), a subgroup of known dioxin(-like) 
compounds. However, 3,110 C18-negative and 2,894 HILIC-positive features were 
associated with at least one of the PCDD-related compounds. Abundant metabolic 
changes were also observed for polychlorinated dibenzofurans (PCDF)-related and 
polychlorinated biphenyls (PCB)-related compounds. These metabolic features were 
primarily enriched in pathways of amino acids, lipids and fatty acids, carbohydrates, 
cofactors and nucleotides. Our study highlights the potential of chemical-wide analysis 
for comprehensive exposure assessment beyond targeted chemicals. Coupled with 
advanced endogenous metabolomics, this approach allows for in-depth exploration of 
metabolic alterations induced by environmental chemicals. 

Keywords: Dioxin(-like) exposures, chemical-wide association study, metabolome-wide 
association study, occupational population, biological pathways, exposome 
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Introduction 

Dioxin(-like) compounds rank among the most notorious anthropogenic environmental 
toxicants and have been extensively studied over the past four decades (1). This 
chemical category includes three structurally related subclasses: polychlorinated 
dibenzo-p-dioxins (PCDDs), dioxin-like polychlorinated dibenzofurans (PCDFs) and 
dioxin-like polychlorinated biphenyls (PCBs) (2). The risk assessment of dioxin(-like) 
compounds, like many other exposures, primarily focuses on individual chemicals, 
particularly the most toxic chemical, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD 
is classified as a “known human carcinogen” and associated with an increased risk of all 
cancers combined (3). Furthermore, TCDD has been implicated in toxicities concerning 
the immune, nervous, endocrine and reproductive systems (4). 

A one-by-one assessment of the biological impact of chemicals may overlook important 
biological perturbations. In a metabolome-wide association study (MWAS) by Walker 
et al. on trichloroethylene (TCE), it was shown that most of the observed biological 
effects associated stronger with unknown metabolic products of TCE, as opposed to 
with TCE itself or prior known metabolites (5). This challenges the conventional practice 
of assessing chemical toxicity by focusing solely on parent compounds and known 
metabolites (6). An alternative strategy could be to first comprehensively map 
exposures to known compounds, co-exposures (e.g., unrecognized chemicals with 
analogous properties) and their metabolites, followed by associating these with 
biological changes. This integrated chemical-wide and metabolome-wide approach 
could yield a more comprehensive evaluation of biological effects. 

We illustrate here an example of a chemical-wide and metabolome-wide investigation 
(Figure 1) through i) an exhaustive targeted analysis of dioxin(-like) compounds, ii) 
connecting these targeted dioxin(-like) compounds to associated chlorinated 
compounds characterized using untargeted gas chromatography with high-resolution 
mass spectrometry (GC-HRMS), thus encompassing a thorough representation of 
dioxin(-like) exposures, and iii) linking targeted and related dioxin(-like) compounds 
with biological changes assessed through metabolomics and targeted immunological 
phenotyping. 

For these research goals, we used a highly unique sub-population of the Dutch herbicide 
cohort, recognized as one of the most informative epidemiological studies in dioxin 
research (7). The cohort comprised workers of two chlorophenoxy herbicide producing 
factories (8, 9). One factory (factory A) experienced high TCDD exposure due to a 
reactor vessel explosion in 1963. Even decades later, TCDD levels in blood of ex-factory 
A workers remained substantially higher than the general population (4ppt vs. below 
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detection limit). Likewise, levels of dioxin-like PCDFs and PCBs generally exceeded 
background levels as reported in monitoring data (Table S1). This occupational cohort 
provides a distinctive opportunity to investigate health and biological effects associated 
with dioxin(-like) exposures. 

Figure 1. Workflow of the chemical-wide and metabolome-wide association analyses 

Abbreviation: LC-HRMS, liquid chromatography with orbitrap high-resolution mass spectrometry; 
GC-HRMS, gas chromatography with high-resolution-mass-spectrometry; C18, C18-negative 
mode; HILIC, HILIC-positive mode; MWAS, metabolome-wide association study; FDR, false 
discovery rate. 
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Methods 

Study population 
The subjects involved in this study were drawn from the Dutch herbicide cohort. Details 
have been described elsewhere (8-10). Briefly, this cohort comprised workers from two 
factories (denoted as factory A and factory B) engaged in manufacturing chlorophenoxy 
herbicides during the 1950s-1980s in the Netherlands. Factory A’s primary products 
were 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4,5-trichlorophenol (2,4,5-TCP), 
which included potential contamination with TCDD and other PCDDs. In March 1963, 
an explosion occurred within an autoclave for the synthesis of 2,4,5-TCP, releasing its 
contents, including TCDD. Individuals working in production departments at factory A 
or present during the accident and subsequent clean-up were exposed to high levels of 
TCDD. Conversely, Factory B produced 4-chloro-2-methylphenoxy propanoic acid 
(MCPA), 4-chloro-2-methylphenoxy propanoic acid (MCPP), and in smaller amounts, 
2,4-dichlorophenoxyacetic acid (2,4-D). While potential by-products in factory B 
included PCDDs (mainly with 2 to 3 chlorine atoms) and dioxin-like PCDFs and PCBs, the 
presence of TCDD was unlikely. 

Workers ever employed in factory A (n=1,167) and factory B (n=1,143) were enrolled in 
the cohort. During the third follow-up period (2007-2008), participants were selected 
for blood collection based on a stratified sampling strategy that considered their 
exposure status to chlorophenoxy herbicides, chlorophenols, and associated 
contaminants. The study enrolled 82 workers from factory A, half of whom had worked 
within production departments or participated in accident-related cleaning-up, 
alongside a randomly selected sample of 70 workers from factory B. All study subjects 
were male and completed a questionnaire covering basic information, anthropometric 
parameters (height and weight) and lifestyle habits (smoking status and alcohol 
consumption). Plasma was separated and stored at -80 °C. 

Exposure assessment for dioxin(-like) compounds 

Measurement of targeted dioxin(-like) compounds 

Previously identified dioxin(-like) compounds in plasma were quantified by targeted gas 
chromatography with high-resolution mass spectrometry (GC-HRMS) in the Centers for 
Disease Control and Prevention, USA. Targeted dioxin(-like) compounds covered seven 
PCDDs (TCDD, 12378D, 123478D, 123678D, 123789D, OCDD), ten dioxin-like PCDFs 
(2378F, 12378F, 23478F, 123478F, 123678F, 123789F, 234678F, 1234678F, 1234789F, 
OCDF), twelve dioxin-like PCBs (PCB77, PCB81, PCB126, PCB169, PCB105, PCB114, 
PCB118, PCB123, PCB156, PCB157, PCB167, PCB189) (Table S1). Concentrations of 
these targeted dioxin(-like) compounds were adjusted for total lipids and reported as 
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parts per trillion (ppt). Values below detection limits were imputed using a maximum 
likelihood method (11). 

Given TCDD’s protracted half-life in humans, its presence in biofluids persists for 
decades post initial exposure. We previously developed a predictive model to back-
extrapolate plasma TCDD levels at time of last exposure (TCDDmax). This prediction 
integrated measured TCDD levels within a one-compartment first-order kinetic model, 
where TCDD's half-life was established at 7.1 years (t1/2) (12). 

TCDDmax = background + (measured TCDD – background)*exp(ln(2) * lag / t1/2) 

Lag periods for factory A workers were determined by their occupational history and 
involvement in the clean-up following the 1963 accident (12). Factory B workers were 
not assigned a lag period; the measured TCDD levels were taken as the TCDDmax. The 
average TCDD concentration detected in factory B served as the background level in the 
model. 

Measurement of dioxin(-like) related compounds 

We characterized all possible dioxin(-like) exposures using untargeted GC-HRMS in 
Rollins School of Public Health, Emory University, USA. Plasma samples were prepared 
and analyzed using methods described previously (13). Plasma samples were extracted 
using 4:1 hexane:ethyl acetate and analyzed in duplicate using a Themo Scientific 1310 
gas chromatograph connected to a Thermo Scientific Q Exactive GC Orbitrap GC-MS/MS 
mass spectrometer. The GC-HRMS was operated in full-scan mode over a mass-to-
charge (m/z) range of 85-850 and 60,000 resolution. Uniquely detected metabolic 
features consisting of m/z, retention time and ion abundance were extracted and 
aligned using extensible computational mass spectrometry (XCMS) software (14). To 
identify unique mass spectra, we performed data-driven clustering algorithm using 
RamClustR (15), which aggregates feature intensities based on correlation and 
retention-time grouping, and provides a weight-averaged intensity for each group of 
features corresponding to an individual compound. After m/z clustering, 11,004 unique 
mass spectra, referred to as chemical features, were identified from the untargeted GC-
HRMS data. 

To identify additional compounds related to targeted dioxin(-like) compounds, mass 
spectra corresponding to each chemical feature were evaluated for chlorinated isotopic 
patterns by linking monoisotopic masses to M+2, M+4, M+6 and M+8 isotopic 
envelopes using the R package nontarget (16). Compounds showing a significant 
positive correlation (Spearman’s rank correlation coefficient >0 with a p-value below 
0.002; corresponding to a 20% false discovery threshold) with any of the 29 targeted 
dioxin(-like) compounds were designated as dioxin(-like) related compounds. This 
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criterion was chosen to mitigate the impact of false positives from multiple testing (Text 
S1). The relationship among targeted dioxin(-like) compounds and those identified as 
dioxin(-like) related were depicted by a correlation-based network. Node clustering was 
identified using a multilevel community detection algorithm implemented in the igraph 
package (17). Finally, the network and clustering were visualized using Cytoscape 
software (18). 

Throughout this paper, chlorinated compounds that were correlated with at least one 
targeted PCDD are called ‘PCDD-related compounds’. Similarly, chlorinated compounds 
correlated with at least one PCDF or PCB are called ‘PCDF-related compounds’ or ‘PCB-
related compounds’, respectively. 

High-resolution metabolomics 
Untargeted metabolomic profiling in plasma was conducted using liquid 
chromatography coupled with Orbitrap high-resolution mass spectrometry (LC-HRMS) 
(Dionex Ultimate 3000, Q-Exactive HF, Thermo Scientific) in Emory University, as 
previously described (19). Two complimentary LC columns were used to maximize 
coverage, including reversed-phase with negative electrospray ionization (C18-negative) 
and hydrophilic interaction liquid chromatography with positive electrospray ionization 
(HILIC-positive) (20). Plasma samples were processed by adding two volumes of 
acetonitrile to precipitate proteins, and triplicate analyses were conducted in each 
mode. The HRMS was operated in full scan mode at 120,000 resolution over a m/z range 
85-1,275. Raw data files were extracted and aligned using apLCMS (21) with
modifications by xMSanalyzer (22). In total, 10,477 and 16,605 metabolite features
were detected for C18-negative and HILIC-positive mode, respectively. Before data
analysis, metabolite features were batch-corrected using ComBat (23) and averaged,
followed by removing features with coefficient of variation among technical replicates
≥100% and detected in <60% of the study subjects. Remaining missing values were

imputed using a left-censored quantile regression approach, implemented in
imputeLCMD (24). After imputation, 6,914 C18-negative and 10,773 HILIC-positive LC-
HRMS features were retained for subsequent analyses.

MWAS of dioxin(-like) exposures 
Targeted and related dioxin(-like) compounds and metabolic features were naturally 
log-transformed for analyses. In the MWAS, we used the linear regression framework 
as implemented in Omics R package (25), by regressing metabolic features one-by-one 
on a specific exposure compound (either a known or related dioxin(-like) compound). 
These models were adjusted for age (continuous variable), factory (categorical variable), 
body mass index (BMI; kg/m2, continuous variable) (model 1). To account for multiple 
comparisons, the Benjamini-Hochberg (BH) procedure (26) was applied for the MWAS 
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of each exposure, and a false discovery rate (FDR) threshold of 20% was adopted to 
identify metabolite features associated with the exposure. Separate FDR procedures 
were applied to metabolic features detected by the C18-negative and HILIC-positive 
modes. 

In this study, dioxin(-like) exposures were primarily originated from occupational 
activities and minimally associated with lifestyle factors such as smoking and alcohol 
consumption. Moreover, we conducted an expanded analysis to incorporate smoking 
status and alcohol intake as additional covariates (model 2). However, corresponding 
exposure-feature coefficients in model 2 exhibited minimal deviations, less than 3% on 
average compared to those in model 1 (data not shown). Consequently, smoking and 
alcohol consumption were less likely to act as confounders in this study, leading us to 
select model 1 for subsequent analyses. 

We categorized metabolic features into three subclasses based on their associations 
with PCDD(-related) compounds, PCDF(-related) compounds, and PCB(-related) 
compounds under FDR 20%. Subsequently, separate pathway enrichments were 
performed for each subclass of metabolic features. 

Biological pathway enrichment and metabolite annotation 
To characterize metabolic features associated with dioxin(-like) exposures, we first 
matched the significant features to an internal compound database, confirmed by 
authentic reference standards, denoting a level 1 confidence (27). Features without 
matches with authentic standards were annotated using xMSannotator (28). This tool 
categorizes annotations into different confidence tiers using a multistage clustering 
algorithm, based on database matches. We searched against Human Metabolome 
Database (HMDB) (29) with mass tolerance of ±5 ppm and retention time tolerance of 
±5 seconds. The adduct were ‘M+H’, ‘M+2H’, ‘M+ACH+2H’, ‘M+Na’, ‘M+ACN+H’, 
‘M+ACN+Na’, ‘2M+H’, ‘M+H+H2O’ for positive mode, "M-H","M-H2O-H","M+Na-
2H","M+Cl","M+Hac-H","2M-H" for negative mode. Annotations suggested with high 
confidence level by xMSannotator were presented as level 4 confidence annotations 
according to Schymanski et al (27). 

Metabolic pathways associated with dioxin(-like) exposures were identified using 
Mummichog (version 1.0.10) with a mass tolerance of ±5 ppm (30). Associated 
metabolic pathways were identified using a pathway significance threshold <0.05 as 
well as the presence of at least four metabolites associated with the exposures. 

Integration of metabolic pathways and immune phenotypic measures 
To explore the potential mechanisms underlying dioxin(-like) exposure toxicity, we used 
a network-based integration approach to evaluate the relationship between the 
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metabolic pathways associated with dioxin(-like) exposures and immune phenotypic 
endpoints. Immune markers, including cytokines and growth factors (n=21), 
hematologic parameters (i.e., cell counts) (n=23), humoral immunity markers 
(immunoglobulins (Ig) and complement factors (C)) (n=7), lymphoma makers (n=3), 
were previously measured for factory A workers (31-34) (Table S3). 

For factory A workers, principal component analysis (PCA) was conducted on intensities 
of significant metabolic features within each enriched Mummichog-identified pathway. 
Subsequently, first principal component (PC1) scores were computed as a summary 
measure for each respective pathway. These PC1 scores, representing metabolic 
pathways, were subjected to partial least squares (PLS) regression via the xMWAS 
package (35) to explore potential associations with all immune markers. In PLS 
regression, the association score between variables from two matrices approximates 
their correlation coefficient, determined by PLS components and regression 
coefficients (36). The resultant pairwise associations, marked by an |association score| 
exceeding 0.3 and p-value below 0.05, were used to build a network to visualize the 
connections between the pathways and biomarkers. A multilevel community detection 
method was applied to uncover clustering of pathways and biomarkers (37). The 
network and identified communities were visualized using Cytoscape (18). 

Results 

Study population and dioxin(-like) exposures 
After excluding workers with a diagnosis of cancer (except for skin cancer) (6 from 
factory A and 9 from factory B), 76 workers from factory A and 61 workers from factory 
B were retained in the analyses. Workers in factory A were older compared to those in 
factory B (69.0 vs. 58.8 years, p<0.001) (Table 1). No significant differences were 
observed in BMI, alcohol intake and smoking status between the two factories. 

As expected, the concentrations of PCDDs were markedly higher in factory A workers 
compared to factory B workers (all p<0.05) (Table S1). Notably, the difference in TCDD 
levels between the two factories was substantial (median 4.35 vs. 0.30 ppt, p<0.0001). 
Levels of dioxin-like PCDFs and PCBs were comparable across both factories. We 
observed moderate correlations among PCDDs, and some high correlations among 
PCBs (rs>0.9), while most PCDFs were only weakly correlated (Figure S3). 

Of the 499 suspected chlorinated compounds detected by untargeted GC-HRMS, 152 
were identified as possible dioxin(-like) related compounds. Specifically, 109 
chlorinated compounds correlated to at least one PCDD, 136 to at least one PCDF, and 
58 to at least one PCB (Table S4). Because of the correlated property of targeted 
compounds, the overlap among three categories of dioxin(-like) related compounds 
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was considerable (Figure S4). Our analysis of the network integrating targeted and 
related dioxin(-like) compounds identified six densely interconnected communities 
(Figure 2, Table S5). All PCBs except PCB169 were grouped in Community 1, while five 
PCDDs were in Community 2. TCDD was clustered with 23478F and 234678F in 
Community 3. 

MWAS of dioxin(-like) exposures 
The numbers of metabolic features significantly associated with each targeted and its 
related dioxin(-like) compounds at a 20% FDR threshold are given in Table 2. While no 
feature was significantly associated with any targeted PCDD, we found that the PCDD-
related compounds contributed substantially to metabolic alterations. Specifically, 
3,110 C18-negative and 2,894 HILIC-positive features were found to be associated with 
at least one of the PCDD-related compounds. This phenomenon of enriched metabolic 
changes is held for PCDFs and PCBs, alongside their corresponding related compounds. 
Predicted maximum levels of TCDD were not associated with any metabolic feature 
(Figure S5). 

 

Table 1. Characteristics of study participants 

 Factory A (n=76) Factory B (n=61) p-valuea 

Age (years), mean (SD) 69.0 (7.7) 58.8 (9.0) <0.001 

Body mass index (kg/m2)b, mean (SD) 26.9 (3.0) 27.1 (3.6) 0.726 

Alcohol intake (units/week), mean (SD) 13.2 (13.6) 13.7 (15.1) 0.835 

Smoking status, n (%)   0.594 

Never-smokers 12 (15.8%) 13 (21.3%)  

Former smokers 46 (60.5%) 32 (52.5%)  

Current smokers 18 (23.7%) 16 (26.2%)  

 

Abbreviations: SD, standard deviation. 
a p values from t-test for continuous variables and chi-square test for categorical variable, 
subjects from factory A vs. factory B. 
b Body mass index (BMI) was calculated as the weight in kilograms divided by the square of the 
height in meters. 
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Table 2. The number of metabolic features significantly associated with dioxin(-like) exposures 

Congener 
C18-negative featuresa HILIC-positive featuresa 

Targeted 
compound 

Related 
compoundsb Totalc Targeted 

compound 
Related 

compoundsb 
Totalc 

PCDDs 
TCDD 0 2528 2528 0 776 776 

12378D 0 1789 1789 0 998 998 
123478D 0 2147 2147 0 2163 2163 
123678D 0 2058 2058 0 1099 1099 
123789D 0 1010 1010 0 1604 1604 

1234678D 0 125 125 0 46 46 
OCDD 0 413 413 0 158 158 
Totalc 0 3110 3110 0 2894 2894 

Dioxin-like PCDFs 
2378F 2 NA 2 5 NA 5 

12378F 0 267 267 0 3 3 
23478F 0 3240 3240 0 2839 2839 

123478F 0 1572 1572 0 682 682 
123678F 1 902 903 0 156 156 
123789F 0 0 0 0 0 0 
234678F 0 1688 1688 1 727 727 

1234678F 0 4 4 0 302 302 
1234789F 0 NA 0 0 NA 0 

OCDF 1 NA 1 1 NA 1 
Totalc 4 3411 3413 7 3086 3091 

Dioxin-like PCBs 
PCB77 0 NA 0 143 NA 143 
PCB81 0 NA 0 0 NA 0 

PCB126 237 503 692 42 77 112 
PCB169 0 2153 2153 0 2053 2053 
PCB105 151 1182 1277 12 124 127 
PCB114 0 1314 1314 0 740 740 
PCB118 319 1182 1360 6 124 126 
PCB123 100 292 360 9 67 71 
PCB156 0 1270 1270 0 182 182 
PCB157 0 1270 1270 0 182 182 
PCB167 346 1540 1662 0 195 195 
PCB189 0 1272 1272 0 183 183 
Totalc 507 2347 2536 192 2057 2196 

Abbreviation: NA, not applicable (due to no chlorinated compound identified as related compound for the 
corresponding targeted dioxin(-like) compound). 
a The number of features associated with targeted or related dioxin(-like) compound under FDR 20%, adjusted 
by age, BMI and factory. 
b Features significantly associated with at least one related compound, which were significantly correlated 
with the specific targeted dioxin(-like) compound. 
c Total number of unique features.
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Annotations of metabolic features in response to dioxin(-like) exposures 
Among the metabolic features showing significant associations with dioxin(-like) 
exposures, level 1 annotations included 21 amino acids, 9 fatty acids, 4 cofactors, D-
glucose, cholesterol, uric acid and xanthine (Table S7). Further annotations at level 4 
confidence included 7 androstane steroids and 8 metabolites from glycerolipids and 
glycerophospholipids. 

In terms of metabolic pathway annotations, there were 33 pathways enriched from the 
metabolic features linked with PCDD(-related) compounds, 38 pathways with PCDF(-
related) compounds, and 27 pathways with PCB(-related) compounds (Table 3). Among 
these, 21 pathways showed shared enrichment across all three subclasses, including 7 
lipid pathways (de novo fatty acid biosynthesis, fatty acid activation, fatty acid 
metabolism, linoleate metabolism, phytanic acid peroxisomal oxidation, omega-3 fatty 
acid metabolism, phosphatidylinositol phosphate metabolism), 6 amino acid pathways 
(alanine and aspartate, arginine and proline, aspartate and asparagine, histidine, lysine, 
urea cycle/amino group metabolism), 3 carbohydrate pathways (aminosugar, 
butanoate, pentose and glucoronate interconversion), purine metabolism, vitamin B6 
metabolism, glutathione metabolism, drug metabolism, xenobiotics metabolism. 

Integration of metabolic pathways with immune phenotypic endpoints 
The integration analysis involving metabolic pathways and immune endpoints was 
conducted only among factory A workers. Since the pathways largely overlapped for 
the three subclasses of dioxin(-like) exposures, integration analysis was first done 
involving pathways associated with all exposures, then moved on to analyses including 
pathways associated with PCDD(-related), PCDF(-related) and PCB(-related) 
compounds, separately. 

In the network encompassing all pathways, every pathway (represented by PC1 scores) 
was associated with at least one immune marker (Figure 3). Community detection 
revealed the presence of three communities. Community 1 consisted of subsets of T 
and B lymphocytes, alongside complement factors (C3, C4) and a lymphoma marker, 
soluble B-cell activation marker 27 (sCD27). Pathways associated with this community 
mainly included various amino acid pathways, cofactor metabolism pathway (vitamin 
B3, B6, porphyrin), xenobiotics metabolism pathways, as well as pathways of purine 
and tricarboxylic acid (TCA) cycle. 

Community 2 predominantly included various cytokines and growth factors (mainly on 
interleukins), hematologic parameters (red blood cells, hemoglobin, hematocrit, 
monocytes, B cells, T helper cells) and lymphoma markers (soluble CD30 (sCD30) and 
interleukin 1 receptor antagonist (IL1RA)). This community also exhibited associations  
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with many lipid and fatty acid pathways, glucose metabolism pathways (pentose 
phosphate, pentose and glucuronate interconversions) and propanoate pathway. 

A smaller cluster, Community 3, included cytokines and growth factors, immunoglobins 
(IgD, IgE, IgG), hematologic parameters (naïve CD4 cells, large granular lymphocytes 
(LGL)), clustered with pathways of cofactors (vitamin B1, B9), pyruvate and butanoate. 

For networks specifically for each dioxin(-like) subclass, three communities were 
identified for both networks for PCDD(-related) and PCB(-related) compounds, and 
compositions were similar to those in the network for all exposures (Figure S8A, C). 
Whereas, in the case of PCDF(-related) compounds, the network yielded four 
communities (Figure S8B). 

Discussion 

In this study we employed a pioneering approach that integrates chemical-wide and 
metabolome-wide analyses. The rationale for using a chemical-wide analyses is that 
important biological insights might be missed by neglecting associated chemicals or 
related metabolites. This work was motivated by our previous observation in a MWAS 
on TCE conducted by Walker et al. (5). In that study, it was observed that most 
exposure-related biological effects exhibited stronger associations with previously 
unidentified metabolic products of TCE, rather than with TCE itself or recognized 
precursor metabolites. Similarly, in the present study, by including dioxin(-like) related 
compounds, we have obtained a much richer insight into the associated biological 
responses. This finding challenges the prevailing paradigm of evaluating the toxic 
effects of chemicals solely by examining parent compounds and potentially recognized 
metabolites (6). 

It is important to note that applying this chemical-wide approach to different chemicals 
in other studies may not be straightforward. We acknowledge the uniqueness of the 
TCE and dioxin(-like) instances, wherein the identification of halogenated signals in 
untargeted HRMS analysis and prior knowledge of occupational exposure to parent 
compounds enabled us to identify related compounds and their metabolic products. 
However, considering the progress in HRMS data annotation capabilities through 
authentic standards and various in-silico tools, the feasibility of this approach is likely 
to extend to other chemical-classes in the future. Our findings in this study underscore 
the potential benefits of this strategy, suggesting that it could lead to an enhanced 
assessment of toxicological effects. 

The activation of the aryl hydrocarbon receptor (AhR) stands as a well-established 
mechanism of action for dioxin(-like) compounds (38). While numerous studies have 
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investigated AhR-linked gene and protein expression (38), the underlying metabolic 
mechanism within the human body has received limited exploration. In an earlier study, 
we used nuclear magnetic resonance spectroscopy for metabolomic analysis on the 
same study population (39). Like our current investigation, this earlier analysis yielded 
few signals associated with the targeted TCDD (no. of features=27, p<0.05; none 
survived after multiple testing correction). Jeanneret et al. identified 24 metabolites as 
putative biomarkers of dioxin exposures among TCDD-exposed workers (40, 41). Liang 
et al., comparing HRMS for a high and low TCDD exposed group, identified 20 
metabolites strongly correlated to the summed toxicological equivalent quantity scores 
of 17 congeners of 2,3,7,8-substituted dioxins (42). In our enriched analyses including 
dioxin(-like) related compounds, we identified over 7,000 HRMS signals, underscoring 
the potency of integrating a chemical-wide and metabolome-wide analyses. 

Oxidative stress has been identified as a key mechanism underlying the toxicity of 
dioxin(-like) compounds (38), with biomolecules such as DNA, proteins and lipids 
becoming targets of free radical attacks (43). In our study, pathway enrichment analysis 
strongly suggests effects related to oxidative stress. The results point towards 
disruption in nucleotide metabolism, highlighted by the observation that PCDD(-related) 
and PCB(-related) compounds were linked to the purine pathway, while PCDF(-related) 
compounds were associated with both purine and pyrimidine pathways. Seven amino 
acids susceptible to oxidative damage, annotated at level 1 (methionine, cysteine, 
lysine, proline, threonine, histidine, tyrosine), were found to be associated with at least 
one of the three subclasses of dioxin(-like) exposures, and these associations were 
confirmed through enrichment analysis. Perturbations in lipids, encompassing 
membrane lipids (pathways of phospholipids, glycolipids and cholesterol) and long-
chain polyunsaturated fatty acids (omega-3 fatty acids pathway and linoleic acid with 
level 1 annotation), provide additional support for oxidation-induced lipid peroxidation. 
Conversely, reductions in the antioxidants, specifically glutathione and ascorbic acid 
pathways, further support heightened oxidative stress. 

Carcinogenesis stands as the most severe outcome of dioxin(-like) toxicity, with TCDD, 
PCB126 and 23478F being classified as human carcinogens (44). In our study, pathways 
involving pyruvate (a glycolysis product), pentose phosphate and the TCA cycle 
exhibited associations with both PCDD(-related) and PCDF(-related) compounds. Fatty 
acid pathways, encompassing biosynthesis, transport, activation and degradation, 
demonstrated relations to all three subclasses of dioxin(-like) exposures. These 
aberrations in bioenergetic synthesis and fatty acid metabolism are in line with 
microenvironmental shifts in human malignancies. 
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Our study also presents novel evidence of dysregulations within several metabolic 
pathways associated with dioxin(-like) exposures. Particularly noteworthy are 
microbiome-related pathways involving butanoate and propanoate and cofactor 
metabolisms including porphyrin and B vitamins. Animal studies have indicated that 
exposure to TCDD and PCB126 can induce alterations in gut microbial composition (45, 
46). Additionally, PCB126 has been linked to elevated gut inflammation (46), while 
TCDD administration exhibited a mitigating effect on gut inflammation (47). Alteration 
of cofactors in response to dioxin(-like) compounds remains unexplored in 
experimental studies. The interplay between environmental dioxin(-like) compounds, 
the microbiome and cofactors calls for further investigation. 

Adverse immunological effects have been extensively documented in experimental 
studies (48). However, human data remains inconclusive. To investigate the immune 
toxicity of dioxin(-like) exposures, we performed integrative network analysis, 
connecting perturbed metabolic pathways and phenotypic measures of immune 
responses from samples of highly TCDD-exposed workers. In the network incorporating 
all dioxin(-like) related pathways, distinct subsets of lymphocytes were grouped in the 
same community and linked to antioxidant pathways involving methionine, cysteine, 
and glutathione. Previous studies have shown that TCDD can suppress the 
differentiation of CD4+ T cell into effector cells (49) and potently inhibit IgM production 
(50). Our findings suggest oxidative stress could potentially underlie immune toxicity. 
As expected, relevant measures of cytokines and growth factors clustered together and 
exhibited enrichment with two inflammation-related pathways, linoleate and 
leukotriene. Additionally, pathways related to fatty acid metabolism, bioenergy 
production and gut microbiome were clustered with B-cell activation markers shown to 
be predictive of lymphoma risk. This highlights the potential role of immune responses 
in dioxin(-like)-induced carcinogenesis and microbiome dysbiosis. 

We acknowledge several limitations in our study. First, this study adopts a cross-
sectional design. Consequently, we cannot infer the temporal sequence of exposure 
and health outcomes. Nonetheless, due to the protracted elimination of dioxin(-like) 
compounds, the measured levels effectively represent historical exposures. Second, the 
workers in factory A were, on average, 10 years older than workers in factory B, and it 
is possible that other unmeasured factors differed between factories. However, in 
subgroup analyses by factory, the associations for dioxin(-like) compounds and 
metabolic features remained highly consistent with those in the main analysis, which 
included workers from both factories (Figure S9). Therefore, we conclude that 
characteristics specific to each factory did not substantially impact the effects of 
dioxin(-like) exposures in our presented analyses. Third, over the course of an extended 
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35-year follow-up period in the Dutch herbicide cohort, 27% of participants had died 
(567 out of 2106 workers), and 5% were lost to follow-up (109 out of 2106) (10). This 
attrition may introduce the ‘healthy worker effect’, which may result in 
underestimating the adverse effects attributed to dioxin(-like) exposures. Fourth, 
precise annotations and absolute quantification of dioxin(-like) related compounds 
continue to pose challenges. This limitation also impedes ascertaining these toxic 
chemicals' origin, whether they originate from the environment or from endogenous 
metabolic modification. Therefore, future confirmatory studies are necessary. Lastly, 
the study assessed targeted and untargeted dioxin(-like) exposures in two separate 
laboratories, without accounting for potential measurement variations between 
different analytical pipelines. Additionally, the untargeted compounds were not 
normalized for lipid content. In a sensitivity analysis of MWAS on untargeted 
compounds, we further adjusted for total lipid levels measured at the time of the 
targeted measurement. The resulting altered features were similar to those generated 
in this study (data not shown). This suggests that lipid content did not considerably bias 
our findings. 

We employed a pioneering approach that integrates chemical-wide and metabolome-
wide analyses. This innovative approach substantially broadens the ability to evaluate 
the biological effects of chemical exposures, encompassing not only the traditionally 
recognized dioxin(-like) compounds but also all relevant compounds representing co-
exposures and exposure metabolites. The results from the MWAS align with the existing 
understanding of dioxin(-like) toxicities, highlighting perturbations in metabolic 
pathways linked to amino acids, lipids and fatty acids, carbohydrates and nucleotides. 
Importantly, our study offers new perspectives regarding the mechanisms of action of 
dioxin(-like) compounds, such as altered activities of the gut microbiome. 
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Chapter 4 Supplemental materials 

Text S1. Identification of dioxin(-like) related compounds 

Table S1. Descriptive statistics of targeted dioxin(-like) compounds 

Table S2. The number of significant correlations between targeted dioxin(-like) compounds and 
chlorinated compounds under different cutoffs of p-value 

Table S3. List of immune phenotypic markers 

Table S4. The number of dioxin(-like) related compounds in relation to each targeted 
compound 

Table S5. Targeted and related dioxin(-like) compounds in each community from network 
analysis 

Table S6. Dioxin(-like) related compounds with abundant associated metabolic features (n>300) 

Table S7. Annotation of metabolic features associated with dioxin(-like) exposures 

Table S8. Correlations of the same pathways across different dioxin(-like) subclasses 

Figure S1. Correlation heatmap of targeted dioxin(-like) compounds and all detected 
chlorinated compounds 

Figure S2. Correlations between targeted dioxin(-like) compounds and their related compounds 

Figure S3. Correlation matrix of targeted dioxin(-like) compounds 

Figure S4. Venn diagram of PCDD-related, PCDF-related and PCB-related compounds 

Figure S5. Manhattan plots of MWAS of maximum TCDD levels 

Figure S6. Manhattan plots of MWAS of certain dioxin(-like) related compounds 

Figure S7. Venn diagram of metabolic features associated with PCDD(-related), PCDF(-related) 
and PCB(-related) compounds 

Figure S8. Network analysis of dioxin(-like) related pathways with immune markers, separately 
by PCDD(-related) (A), PCDF(related) (B), and PCB(-related) compounds (C) 

Figure S9. Comparison of main analyses and subgroup analyses by factory 
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Text S1. Identification of dioxin(-like) related compounds 

Approximately 60% of the pairwise Spearman correlations between the 499 chlorinated 
compounds detected by untargeted GC-HRMS and the 29 targeted dioxin(-like) 
compounds exhibited positive relationships (8,427 out of 14,471 correlations) (Figure 
S1). When considering the p-value cutoff as 0.05, the average proportion of negative 
correlations across all targeted dioxin(-like) compounds was 40% (Table S2). Notably, 
compounds displaying negative correlations to targeted compounds are unlikely to be 
co-exposures or metabolites of parental compounds. As such, the percentage of 
negatively correlated significant outcomes can be regarded as empirically derived from 
false discovery rates. For the p-value cutoff of 0.002, the average proportion of negative 
correlations was around 20%. 

Applying the criteria of correlation exceeding 0 and p-value below 0.002, we identified 
152 chlorinated compounds that exhibited correlations with 23 targeted dioxin(-like) 
compounds (Figure S2). These correlation coefficients ranged from 0.26 to 0.75, with a 
median of 0.33. Among these, 106 chlorinated compounds were correlated to more 
than one targeted dioxin(-like) compound, and 45 compounds were related to more 
than five targeted compounds. 

4 
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Table S1. Descriptive statistics of targeted dioxin(-like) compounds 

Compound Factory A (n=76)a Factory B (n=61)a p-valueb Reference levela,c 

PCDDs  
TCDD 4.35 (1.60-5.60) 0.30 (0.21-0.56) <0.0001 <LOD 

12378D 7.55 (6.50-9.10) 6.40 (5.30-7.00) 0.016 <LOD 
123478D 4.50 (3.60-5.40) 1.90 (1.11-3.10) <0.001 <LOD 
123678D 30.0 (27.2-33.1) 20.7 (15.6-25.7) <0.001 19.8 (17.8-21.6) 
123789D 3.70 (2.70-4.60) 0.62 (0.42-1.06) <0.0001 <LOD 

1234678D 15.6 (12.5-18.1) 12.5 (9.6-14.8) 0.041 23.2 (21.1-25.6) 
OCDD 216 (192-269) 171 (139-212) 0.036 <LOD 

Dioxin-like PCDFs  
2378F 0.02 (0.01-0.03) 0.02 (0.01-0.04) 0.523 <LOD 

12378F 0.14 (0.10-0.19) 0.14 (0.12-0.21) 0.342 <LOD 
23478F 22.9 (20.5-27.5) 13.1 (11.6-15.4) <0.0001 <LOD 

123478F 4.75 (4.10-5.70) 4.50 (3.70-4.90) 0.091 <LOD 
123678F 5.65 (5.00-6.20) 4.90 (4.20-5.70) 0.059 <LOD 
123789F 0.39 (0.39-0.40) 0.39 (0.39-0.40) 0.936 <LOD 
234678F 0.30 (0.14-0.55) 0.11 (0.07-0.17) 0.008 <LOD 

1234678F 4.30 (3.70-5.20) 4.10 (3.20-5.90) 0.990 <LOD 
1234789F 0.10 (0.07-0.15) 0.11 (0.07-0.16) 0.827 <LOD 

OCDF 0.68 (0.38-1.80) 0.49 (0.31-0.72) 0.512 <LOD 

Dioxin-like PCBs  
PCB77 23.7 (20.4-26.6) 23.6 (20.0-29.2) 0.940 NA 
PCB81 4.95 (3.80-6.50) 6.80 (6.00-7.90) <0.001 <LOD 

PCB126 38.8 (35.0-46.2) 37.0 (29.4-42.3) 0.276 <LOD 
PCB169 83.3 (78.2-90.1) 63.1 (54.9-74.0) <0.0001 <LOD 
PCB105 1.55 (1.20-1.80) 1.40 (1.10-1.90) 0.661 0.98 (0.85-1.08) 
PCB114 1.00 (0.80-1.10) 0.80 (0.60-1.10) 0.379 NA 
PCB118 11.0 (9.2-13.0) 10.0 (6.7-12.9) 0.557 4.71 (4.16-5.06) 
PCB123 0.23 (0.20-0.30) 0.21 (0.15-0.27) 0.479 NA 
PCB156 13.9 (12.6-15.9) 12.4 (10.0-14.6) 0.076 3.10 (2.80-3.80) 
PCB157 2.50 (2.30-3.00) 2.30 (1.70-2.80) 0.177 0.75 (0.70-0.90) 
PCB167 3.40 (2.90-3.90) 2.80 (2.00-3.80) 0.296 0.50 (0.44-0.60) 
PCB189 2.30 (2.10-2.50) 1.90 (1.70-2.20) 0.008 <LOD 

TCDDmax
d 98.9 (19.2-341.6) 0.30 (0.21-0.56) <0.0001  

 

Abbreviations: PCDD, pentachloro dibenzo-p-dioxin; TCDD, 2,3,7,8-tetrachloro dibenzo-p-dioxin; 
12378D, 1,2,3,7,8-PCDD; 123478D, 1,2,3,4,7,8-PCDD; 123678D, 1,2,3,6,7,8-PCDD; 123789D, 
1,2,3,7,8,9-PCDD; 1234678D, 1,2,3,4,6,7,8-PCDD; OCDD, octachloro dibenzo-p-dioxin; PCDF, 
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pentachloro dibenzofuran; 2378F, 2,3,7,8- tetrachloro dibenzofuran; 12378F, 1,2,3,7,8- PCDF; 
23478F, 2,3,4,7,8-PCDF; 123478F, 1,2,3,4,7,8-hexachloro dibenzofuran (HCDF); 123678F, 
1,2,3,6,7,8-HCDF; 123789F, 1,2,3,7,8,9-HCDF; 234678F, 2,3,4,6,7,8-HCDF; 1234678F, 
1,2,3,4,6,7,8-heptachloro dibenzofuran (HpCDF); 1234789F, 1,2,3,4,5,8,9-HpCDF; OCDF, 
octachloro dibenzofuran; PCB, polychlorinated biphenyls; PCB77, 3,3’,4,4’-tetrachlorobiphynyl 
(tetraCB); PCB81, 3,4,4’,5-tetraCB; PCB126, 3,3’,4,4’,5-pentachlorobiphenyl (pentaCB); PCB169, 
3,3’,4,4’,5,5’-hexachlorobiphenyl (hexaCB); PCB105, 2,3,3’,4,4’-pentaCB; PCB114, 2,3,4,4’,5-
pentaCB; PCB118, 2,3’,4,4’,5-pentaCB; PCB123, 2’,3,4,4’,5-pentraCB; PCB156, 2,3,3’,4,4’,5-
hexaCB; PCB157, 2,3,3’,4,4’,5’-hexaCB; PCB167, 2,3’,4,4’,5,5’-hexaCB; PCB189, 2,3,3’,4,4’,5,5’-
heptaCB; LOD, limit of detection; NA, not available. 
a Parts per trillion, lipid adjusted; data are presented as median (95% confidence interval) 
b p-value from Mann-Whitney-Wilcoxon test, concentrations between factory A vs. factory B 
c Concentrations of dioxin(-like) compounds from US general males in 2003-2004, reported by 
National Health and Nutrition Examination Survey. 
d Estimated maximum levels of TCDD 

4 
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Table S3. List of immune phenotypic markers 

Full name Acronym 
Cytokines and growth factors  

Interleukin 4 IL4 
Interleukin 5 IL5 
Interleukin 6 IL6 
Interleukin 7 IL7 
Interleukin 8 IL8 
Interleukin 10 IL10 
Granulocyte-macrophage colony-stimulating factor GMCSF 
Granulocyte colony-stimulating factor GCSF 
Tumor necrosis factor alpha TNF-a 
Epidermal growth factor EGF 
Eotaxin Eotaxin 
Fibroblast growth factor 2 FGF2 
Fractalkine Fractalkine 
Melanoma growth stimulatory activity/growth-related oncogene GRO 
Interferon gamma-induced protein 10 IP10 
Monocyte chemotactic protein-1 MCP-1 
Macrophage derived chemokine MDC 
Macrophage inflammatory protein-1 alpha MIP-1a 
Macrophage inflammatory protein-1 beta MIP-1b 
Transforming growth factor alpha TGF-a 
Soluble CD40 ligand sCD40L 

Hematologic parameters  
Red blood cells RBC 
Hemoglobin HGB 
Hematocrit HCT 
Platelet count PLT 
White blood cells WBC 
Monocytes MO 
Granulocytes GR 
Lymphocytes LY 
B cells B-cel 
Naïve B cells B-naive 
IgM+ memory B cells B-IgM 
IgG/IgA+ memory B cells B-IgGA 
T cells T-cel 
T helper cells TH-cel 
CD38/CD4 cells TH-CD38/CD4 
Naïve CD4 cells TH-naive 
Memory CD4 cells TH-memory 
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Cytotoxic T cells TC-cel 
CD38/CD8 T cells TC-CD38/CD8 
Naïve CD8 cells TC-naive 
Memory CD8 cells TC-memory 
Large granular lymphocytes LGL 
Natural killer cells NK-cel 

Humoral immunity markers 
Immunoglobulin A IgA 
Immunoglobulin D IgD 
Immunoglobulin E IgE 
Immunoglobulin G IgG 
Immunoglobulin M IgM 
Complement factor 3 C3 
Complement factor 4 C4 

Lymphoma markers 
Soluble CD30 sCD30 
Soluble CD27 sCD27 
Interleukin 1 receptor antagonist IL1RA 

4 
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Table S4. The number of dioxin(-like) related compounds in relation to each targeted 
compound 

Targeted compound n. of chlorinated related compoundsa 
PCDDs  

TCDD 53 
12378D 40 

123478D 38 
123678D 62 
123789D 30 

1234678D 5 
OCDD 17 
Total 109 

Dioxin-like PCDFs  
2378F 0 

12378F 1 
23478F 130 

123478F 25 
123678F 19 
123789F 0 
234678F 27 

1234678F 1 
1234789F 0 

OCDF 0 
Total 136 

Dioxin-like PCBs  
PCB77 0 
PCB81 0 

PCB126 12 
PCB169 52 
PCB105 20 
PCB114 29 
PCB118 20 
PCB123 8 
PCB156 24 
PCB157 23 
PCB167 24 
PCB189 24 

Total 58 

 

a Chlorinated compounds were considered in relation to targeted dioxin(-like) compounds when they 
exhibited a correlation coefficient exceeding 0 and p-value below 0.002 with at least one targeted compound. 
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Table S5. Targeted and related dioxin(-like) compounds in each community from network 
analysis 

Targeted compounds Related compounds 
Community 1 
1234678D 
123478F, 123678F 
PCB126, PCB105, PCB114, PCB118, 
PCB123, PCB156, PCB157, PCB167, 
PCB189 

C00014, C00026, C00036, C00038, C00047, 
C00050, C00068, C00149, C00150, C00206, 
C00268, C00269, C00508, C00586, C02267, 
C03500, C03641, C00031, C00428, C00430, 
C01742, C02696, C00077, C00094, C00459, C01193 

Community 2 

12378D, 123478D, 123678D, 
123789D, OCDD 

C00028, C00239, C00320, C00461, C00764, 
C03231, C04165, C05116, C05225, C00035, 
C00189, C00272, C00294, C00391, C00535, 
C00555, C00582, C00691, C00737, C01785, 
C01911, C00922, C01192, C03354, C05219, 
C00071, C00568, C00609, C00630, C00883, 
C01058, C01362, C02246, C03335, C03698, 
C06046, C01023, C01070, C01761, C00160, 
C00897, C02490, C05131 

Community 3 

TCDD 
23478F, 234678F 

C00087, C00295, C00324, C00556, C00660, 
C00712, C00810, C00915, C00926, C01101, 
C01128, C01215, C02000, C02113, C02226, 
C02624, C02642, C02652, C04306, C04781, 
C06136, C06162, C00052, C05187, C00018, 
C00039, C00241, C00307, C05104, C00644, 
C00738, C01659, C02110, C02614, C05649, 
C00033, C00044, C00045, C00064, C00109, 
C00113, C00134, C00139, C00161, C00221, 
C00466, C00570, C00649, C00795, C01120, 
C01141, C01436, C01480, C01685, C01812, 
C02269, C02655, C02671, C02871, C03365, 
C03428, C03951, C04160, C04163, C04182, 
C04244, C05499, C05657, C06286, C02945 

Community 4 

PCB169 
C00115, C01633, C02016, C03662, C06171, 
C00890, C02084, C00856, C00928, C00488, C00805 

Community 5 
12378F C04604 
Community 6 
1234678F C00066 

4 
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Table S6. Dioxin(-like) related compounds with abundant associated metabolic features (n>300) 

Related 
compound 

Communitya Correlated known compoundsb No. of featuresc 

C18-negative 
C00295 3 TCDD 1179 
C05187 3 123478D, 23478F, 123478F 952 
C00459 1 123478F, PCB167 732 
C02671 3 23478F, 234678F 679 

C00430 1 
12378D, 123678D, 23478F, 123678F, PCB169, 
PCB105, PCB114, PCB118 PCB156, PCB157, 
PCB167, PCB189 

585 

C00047 1 
TCDD, 12378D, 123478D, 123678D, 23478F, 
PCB169, PCB105, PCB114, PCB118, PCB156, 
PCB157, PCB167, PCB189 

567 

C00044 3 23478F 565 

C00764 2 
TCDD, 12378D, 123478D, 123678D, 23478F, 
234678F, PCB169 

556 

C00094 1 
123478D, 123678D, 23478F, PCB169, PCB105, 
PCB114, PCB118, PCB156, PCB157, PCB167, 
PCB189 

518 

C02113 3 TCDD, 23478F 512 
C01480 3 23478F 493 
C00660 3 TCDD, 123678D, 23478F, 234678F, PCB169 458 
C04182 3 23478F 431 
C02945 3 234678F 411 
C00795 3 23478F, 234678F 391 
C00915 3 TCDD, 23478F 363 
C00052 3 12378D, 123678D, 23478F, 234678F 352 
C00139 3 23478F, 123478F 343 
C00582 2 12378D, 23478F, 234678F 338 

C00269 1 

TCDD, 12378D, 123478D, 123678D, 23478F, 
123478F, 123678F, PCB126, PCB169, PCB105, 
PCB114, PCB118, PCB156, PCB157, PCB167, 
PCB189 

327 

C00691 2 
12378D, 123678D, OCDD, 23478F, 123478F, 
234678F 

310 

C02016 4 TCDD, 23478F, PCB169 309 
HILIC-positive 

C00922 2 123478D 1464 
C02084 4 123789D, 23478F, PCB169 1186 
C00221 3 23478F 1158 

C00035 2 
12378D, 123478D, 123678D, 23478F, 
123478F, PCB169, PCB114 

565 

C00066 6 1234678F 302 
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a Community from community detection of the network between known and related dioxin(-like) related 
compounds (Supplemental table 5). 

b Under the criteria of Spearman correlation coefficient exceeding 0 and p-value below 0.002. 

c The number of significantly associated features under FDR 20%, adjusted by age, BMI and factory. 
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Table S8. Correlations of the same pathways across different dioxin(-like) subclasses 

Pathway PCDD vs. PCDF PCDD vs. PCB PCDF vs. PCB 

De novo fatty acid biosynthesis 1.00 1.00 1.00 

Aspartate and asparagine metabolism 0.99 0.99 0.99 

Fatty acid activation 1.00 1.00 1.00 

Arginine and Proline Metabolism 0.98 -0.98 -0.98 

Pentose and Glucuronate Interconversions 0.98 0.97 0.98 

Butanoate metabolism 0.93 -0.97 -0.88 

Lysine metabolism -0.97 0.95 -0.95 

Linoleate metabolism 0.99 -1.00 -0.99 

Phytanic acid peroxisomal oxidation 0.98 0.98 1.00 

Purine metabolism -1.00 0.99 -0.98 

Histidine metabolism 0.99 -0.96 -0.96 

Fatty Acid Metabolism 1.00 0.55 0.56 

Omega-3 fatty acid metabolism 1.00 1.00 1.00 

Drug metabolism - other enzymes 0.99 -0.99 -1.00 

Vitamin B6 metabolism 1.00 1.00 1.00 

Aminosugars metabolism 0.97 0.99 0.99 

Phosphatidylinositol phosphate metabolism 0.99 -0.98 -0.98 

Glutathione Metabolism 0.89 -0.97 -0.93 

Xenobiotics metabolism 0.99 -0.99 -0.99 

Urea cycle/amino group metabolism 0.98 -0.73 -0.74 

Alanine and Aspartate Metabolism -0.86 -0.62 0.82 

 

PC1 scores for each pathway were calculated based on selected features in the corresponding 
pathway. For the same pathway, included features could be slightly different across the three 
dioxin(-like) subclasses. Correlation coefficients of the same pathway in different exposure 
subclasses were presented. 
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Figure S1. Correlation heatmap of targeted dioxin(-like) compounds and all detected 
chlorinated compounds 

Tile color showed magnitude of pairwise Spearman correlation coefficients of the targeted 
dioxin(-like) compounds (n=29) and all chlorinated compounds detected by untargeted GC-HRMS 
(n=499). 

4 
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Figure S2. Correlations between targeted dioxin(-like) compounds and their related compounds 

Chlorinated compounds (n=152) were identified as possible related dioxin(-like) compounds, 
under the criteria of pairwise correlation coefficient exceeding 0 and p-value below 0.002. Tile 
color showed magnitude of correlation coefficients; gray color indicated the correlation was 
either non-significant (p-value≥0.002) or in negative direction, or both. 
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Figure S3. Correlation matrix of targeted dioxin(-like) compounds 

Values in tiles were pairwise Spearman correlation coefficients among targeted dioxin(-like) 
compounds (n=29). 
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Figure S4. Venn diagram of PCDD-related, PCDF-related and PCB-related compounds 

Dioxin(-like) related compounds were grouped by being related to PCDDs, PCDFs and PCBs. The 
respective numbers were 109, 136, 58. 

 

 

 

 

 

Figure S5. Manhattan plots of MWAS of maximum TCDD levels 

Each dot represented a metabolic feature (in total 6,914 for C18-negative mode, 10,733 for HILIC-
positive mode) and was presented by -log10(p-value), measuring the strength of association, 
against retention time of the feature. Dashed line represented raw p-value of 0.05. No feature 
was deemed significant under the threshold of false discovery rate 20%. 
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Figure S6. Manhattan plots of MWAS of certain dioxin(-like) related compounds 

These four dioxin(-like) related compounds were significantly associated with >1000 metabolic 
features. Each dot represented a metabolic feature (in total 6,914 for C18-negative mode, 10,733 
for HILIC-positive mode) and was presented by -log10(p-value), measuring the strength of 
association, against retention time of the feature. Significant features were colored according to 
the association direction. Dashed line represented raw p-value of 0.05; solid line represented FDR 
20%. 
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Figure S7. Venn diagram of metabolic features associated with PCDD(-related), PCDF(-related) 
and PCB(-related) compounds 

C18-negative (A) and HILIC-positive (B) features were identified under FDR 20% of MWAS with at 
least one of known and related dioxin(-like) compounds. Metabolic features were categorized by 
being associated with PCDD(-related), PCDF(-related) and PCB(-related) compounds. 

 

 

 

 

 

 

 

 

Figure S8. Network analysis of dioxin(-like) related pathways with immune markers, separately 
by PCDD(-related) (A), PCDF(related) (B), and PCB(-related) compounds (C) 

Abbreviation: IL, interleukin; GMCSF, granulocyte-macrophage colony-stimulating factor; GCSF, 
granulocyte colony-stimulating factor; TNF-α, tumor necrosis factor alpha; EGF, epidermal 
growth factor; FGF2, fibroblast growth factor 2; GRO, melanoma growth stimulatory 
activity/growth-related oncogene; IP10, interferon gamma-induced protein 10; MCP-1, 
monocyte chemotactic protein-1; MDC, macrophage derived chemokine; MIP-1α, macrophage 
inflammatory protein-1 alpha; MIP-1β, macrophage inflammatory protein-1 beta; sCD40L, 
soluble CD40 ligand; TGF-α, transforming growth factor alpha; sCD30, soluble CD30; sCD27, 
soluble CD27; IL1RA, interleukin 1 receptor antagonist; RBC, red blood cells; HGB, hemoglobin; 
HCT, hematocrit; PLT, platelet counts; MO, monocytes; GR, granulocytes; LY, lymphocytes; B-cel, 
B cells; B-naïve, naïve B cells; B-IgM, IgM+ memory B cells; B-IgG, IgG/IgA+ memory B cells; T-cel, 
T cells; TH-cell, T helper cells; TH-CD38/CD4, CD38/CD4 cells; TH-naïve, naïve CD4 cells; TH-
memory, memory CD4 cells; TC-cel, cytotoxic T cells; TC-CD38/CD8, CD38/CD8 cells; TC-naïve, 
naïve CD8 cells; TC-memory, memory CD8 cells; LGL, large granular lymphocytes; NK-cel, natural 
killer cells. 

 

138

Chapter 4 | Dioxin(-like) Exposures and MWAS



4 

139

Dioxin(-like) Exposures and MWAS | Chapter 4



  

 

 
 

140

Chapter 4 | Dioxin(-like) Exposures and MWAS



4 

141

Dioxin(-like) Exposures and MWAS | Chapter 4



 

 

Figure S9. Comparison of main analyses and subgroup analyses on factory 

Each dot represented one significant association (one targeted/related dioxin(-like) compound – 
one metabolic feature) detected in the main analysis of all workers (in total 22,557 C18-negative 
MWAS, 11,642 from HILIC-positive MWAS). They were displayed by coefficients from the main 
analysis against the corresponding values from subgroup analysis of factory A or factory B 
workers (adjusted by age and BMI). The dotted line is the line of identity. 
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Abstract 

Background and Objective: Inverse associations between caffeine intake and 
Parkinson’s disease (PD) have been frequently implicated in human studies. However, 
no studies have quantified biomarkers of caffeine intake years before PD onset and 
investigated if and which caffeine metabolites are related to PD. 

Methods: Associations between self-reported total coffee consumption and future PD 
risk were examined in the EPIC4PD study, a prospective population-based cohort 
including six European countries. PD cases were identified through medical records and 
reviewed by expert neurologists. Hazard ratios (HRs) and 95% confidence intervals (CIs) 
for coffee consumption and PD incidence were estimated using Cox proportional 
hazards models. A case-control study nested within the EPIC4PD was conducted, 
recruiting incident PD cases and matching each case with a control by age, sex, study 
center and fasting status at blood collection. Caffeine metabolites were quantified by 
high-resolution mass-spectrometry in baseline collected plasma samples. Using 
conditional logistic regression models, odds ratios (ORs) and 95% CIs were estimated 
for caffeine metabolites and PD risk. 

Results: In the EPIC4PD cohort (comprising 184,024 individuals), the multivariable-
adjusted HR comparing the highest coffee intake to nonconsumers was 0.63 (95%CI 
0.46-0.88, p-value 0.006). In the nested case-control study, which included 351 PD 
incident cases and 351 matched controls, prediagnostic caffeine and its primary 
metabolites, paraxanthine and theophylline, were inversely associated with PD risk. The 
ORs were 0.80 (95%CI 0.67-0.95, p-value 0.009), 0.82 (95%CI 0.69-0.96, p-value 0.015), 
and 0.78 (95%CI 0.65-0.93, p-value 0.005), respectively. Adjusting for smoking and 
alcohol consumption did not substantially change these results. 

Discussion: This study demonstrates that the neuroprotection of coffee on PD is 
attributed to caffeine and its metabolites by detailed quantification of plasma caffeine 
and its metabolites years prior to diagnosis. 
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Introduction 

Parkinson’s disease (PD) is the most common motor neurodegenerative disorder for 
which there is no effective prevention or curative treatment available so far. Coffee 
consumption has been associated with a reduced risk of PD in several prospective 
cohorts during the past twenty years (1-5). The protective effect was also present for 
caffeine from non-coffee sources, such as tea, cola beverages, and chocolate (2-4). In 
contrast, the effect was not observed for decaffeinated coffee (5), suggesting that the 
inverse association between coffee consumption and PD is largely due to caffeine and 
its metabolites, rather than other bioactive compounds in coffee. However, these 
findings were based on food questionnaire data rather than on measuring caffeine or 
its metabolites in pre-disease biological samples. 

Some exploratory case-control studies have indicated that blood concentrations of 
caffeine and its major metabolites in humans, namely paraxanthine and theophylline, 
were reduced in prevalent PD patients as compared to healthy individuals (6-8). 
Following these observations, clinical trials have been initiated to investigate whether 
caffeine or its metabolites could slow the progression of PD. Unfortunately, these 
studies have shown no benefit of caffeine and its metabolites on symptom attenuation 
and progression in PD (9, 10). However, no studies to date have prospectively 
investigated the role of caffeine levels in prediagnostic samples to investigate whether 
caffeine and its metabolites could be protective in a prodromal state of the disease. 
This research question can only be investigated in very large cohorts with baseline 
blood samples and long follow-up available, such as in the European Prospective 
Investigation into Cancer and Nutrition (EPIC) cohort. The EPIC cohort comprises more 
than half million participants across Europe that have been followed up for >20 years 
and for which baseline blood samples were collected and ascertained in a highly 
standardized fashion (11). During the long follow-up, several hundred participants have 
been diagnosed with PD (12). 

Coffee is the most widely consumed psychoactive beverage in the world. Unraveling 
the biological action of caffeine on PD not only carries important public health 
implications, but also enhances our understanding of PD etiology and fosters potential 
prevention strategies. In this study, we aimed to investigate the relationship between 
caffeine and future PD risk prospectively in the EPIC cohort, utilizing self-reported 
coffee consumption and direct measurement of prediagnostic caffeine and its 
metabolites. 
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Methods 

The EPIC4PD cohort 
The EPIC is an ongoing prospective cohort study designed to explore the relationship 
between nutrition and non-communicable diseases (11). Baseline recruitment was 
conducted between 1992 and 2000 across 23 centers in 10 European countries. The 
EPIC cohort comprises 519,978 participants (366,521 women and 153,457 men), mostly 
aged 35-70 years at recruitment. At enrollment, comprehensive dietary habits and 
lifestyle data were collected using questionnaires. Moreover, anthropometric 
measurements were conducted, and blood samples were obtained (11). 

To prospectively investigate the association between prediagnostic risk factors and the 
incidence of PD, a sub-study known as EPIC4PD was initiated with the EPIC cohort (12). 
The inclusion of study centers in EPIC4PD depended on the availability of neurologists 
for PD ascertainment. Ultimately, the EPIC4PD was based on a source population of 
192,980 subjects from six countries, including Sweden (Umeå and Malmö), the UK 
(Cambridge), the Netherlands (Utrecht), Germany (Heidelberg), Spain (Navarra, San 
Sebastián and Murcia), and Italy (Turin, Varese, Florence and Naples). The Naples and 
Utrecht cohorts exclusively comprised women, while all the other cohorts included 
participants of both sexes. To date, follow-up for the EPIC4PD is 98.5% complete, and 
the median duration follow-up of the entire population is 12.8 years (maximum 20.8 
years) (12). 

Case ascertainment and study population 
In brief, potential PD cases were identified through record linkage and validated by 
experts in movement disorders through clinical records (12). Reliability of diagnoses 
was determined by the quality of clinical data (rated as ‘poor’, ‘good’ or ‘excellent’), as 
well as the confidence degree of the neurologist expert on the basis of their final 
judgement (rated as ‘low’, ‘medium’ or ‘high’). Diagnoses were defined as ‘definite’ only 
when the confidence degree of the neurologist was high and the data quality was 
excellent; ‘very likely’ when the confidence degree was high, while data quality was 
either good or poor; ‘probable’ when the confidence degree was medium and data 
quality was either excellent or good; and diagnoses were defined as ‘possible’ in all 
remaining cases. A total of 786 PD cases was ascertained. Cases who received a 
diagnosis after the date of recruitment were defined as incident cases (n=639) (12). 

Our study consisted of two parts, including a prospective cohort study (EPIC4PD) and a 
nested case-control study, to interrogate the links of coffee consumption and caffeine 
and its metabolites with PD risk, respectively. For the EPIC4PD, several exclusion criteria 
were applied: prevalent PD cases and cases without date of diagnosis (n=147); 
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participants with PD-like conditions (multiple system atrophy, progressive supranuclear 
palsy, vascular parkinsonism, dementia with Lewy bodies, essential tremor, PD with 
essential tremor, unclassifiable parkinsonism) (n=214); those with missing information 
on coffee consumption and smoking status at recruitment (n=8,484); those with 
extreme coffee consumption (>2,500 ml/day) (n=111), to exclude possible bias related 
to caffeine addiction. 

Incident PD cases within the EPIC4PD study were considered for inclusion in the nested 
case-control study, provided that a plasma sample was accessible. Subjects from 
Sweden were excluded due to the unavailability of plasma samples. For each PD case, 
one control was selected by incidence density sampling matched for age at recruitment, 
sex, study center and fasting status at blood collection. 

Dietary and lifestyle data 
Dietary intake was assessed by a dietary questionnaire that had been developed and 
validated in each participating country. A face-to-face dietary interview was applied in 
Spain, while self-administered questionnaires were used in other countries (11). To 
increase comparability across the study centers, a standardized 24-hour diet recall was 
collected, as a reference calibration method, from a stratified random sample of 36,900 
subjects from the entire EPIC cohort (13). Total coffee consumption was available for 
all countries. Caffeinated coffee consumption was available for almost all centers 
except for Naples and Umeå. Information regarding decaffeinated coffee consumption 
was collected from participants in Germany, Italy (excluding Naples), the Netherlands, 
and the UK (14). Participants reported the number of cups of coffee consumed per 
month, week or day. Daily coffee consumption (in milliliters, ml) was then calculated 
using the typical sizes of cups for each center (14). 

Participants also completed questionnaires on lifestyle including smoking and alcohol 
consumption, education level, and physical activity. Female participants additionally 
reported menopausal status and hormone usage. Height and weight were measured 
following standardized protocols, and body mass index (BMI) was subsequently 
calculated (11). 

Caffeine metabolite measurement 
In the nested case-control study, plasma samples for the subjects were sourced from 
the cohort biobank at the International Agency for Research on Cancer (IARC). These 
samples were collected between 1992 and 1998, with on average 8 years prior to the 
diagnosis of PD in cases. To profile circulating caffeine metabolites in plasms, we 
performed untargeted metabolomics analysis using a liquid chromatography-high 
resolution mass spectrometry (LC-HRMS)-based platform as previously described (15, 
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16) (Text S1). To maximize detection of polar and nonpolar metabolites, two 
complementary analyses were performed, namely hydrophilic interaction liquid 
chromatography (HILIC)-ESI(+) and reverse-phase chromatography (RPC)-ESI(-), termed 
as ‘HILpos’ and ‘C18neg’, both operated in full scan mode at 120,000 mass resolution 
with a mass-to-charge (m/z) range of 85-1,275. Raw data files were extracted and 
aligned using apLCMS R package (17) and further processed through xMSanalyzer (18) 
and corrected for batch effects (ComBat). Uniquely detected peaks consisting of m/z, 
retention time (RT) and ion abundance, were referred to as metabolite features. In total, 
9,435 features for HILpos and 8,439 for C18neg were yielded. 

Structural annotation of compounds of caffeine metabolism was implemented through 
an integrated cheminformatic strategy. We retrieved a complete set of 22 structures 
from caffeine metabolism referencing the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (19), alongside 1,3,7-trimethyldihydrourate, a novel caffeine metabolite 
recently discovered through our in vitro exposomic platform (20). We first built internal 
RT-m/z libraries respectively for HILpos and C18neg modes, including caffeine and its 
major metabolites. Meanwhile, to expand the coverage, we leveraged in silico 
cheminformatic analyses for annotating all plausible metabolites involved in caffeine 
metabolism. Using accurate m/z, isotopic ratios, and RT, we annotated detected peaks 
based on formula prediction (21, 22) and RT estimation by XGBoost algorithm (23), and 
manually curated based on extensive bioanalytical inferences and expert consultation. 
Annotation confidence was assigned as Level 1 for features matched with our in-house 
library, and Level 2 for features with predicted parameters but not validated by 
authentic chemical standards (24). 

A total of 15 features were successfully annotated, corresponding to 12 unique caffeine 
metabolites. Three metabolites, 5-acetylamino-6-amino-3-methyluracil (AAMU), 1-
methylxanthine and 3,6,8-trimethylallantoin, were detected in both HILpos and C18neg 
modes. 

Statistical analysis 
In the EPIC4PD, coffee consumers were binned into quartiles based on the distribution 
in each country (country-specific quartiles), to account for heterogeneity of consumed 
volume and concentration of coffee between countries (14). Hazard ratios (HRs) and 
their corresponding 95% confidence intervals (CIs) for PD risk were estimated using Cox 
proportional hazards models, with age as the underlying time variable. The entry time 
for all participants was defined as age at recruitment, and the exit time was either the 
age at diagnosis for PD cases or the last date when follow-up was deemed complete for 
participants without PD. We also performed analysis using coffee overall, non-country 
specific, quartiles (based on data from all countries combined). Exposure-response 
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effect of coffee intake on PD was examined by entering the categorical value of the 
quartiles (0 for nonconsumers and 1-4 for coffee quartiles) into the model as a 
continuous term. PD risk was also estimated per 100 ml/d coffee intake. To assess the 
impact of coffee consumption in the population, the population preventable fraction 
(PPF) was calculated. PPF is defined as the proportion of PD cases that could be 
prevented within the population if coffee intake were intervened upon (formula in Text 
S2). 

Age, male gender and smoking are well recognized risk factors for PD (25) (26), and they 
might influence coffee-consumption habits. Moreover, there might be systematic 
differences in data collection among study centers. Thus, the main analyses were 
adjusted for age at recruitment, sex, study center, and smoking status at recruitment 
(never, former and current smoker). In additional analyses, a set of confounders were 
also considered, including BMI, alcohol consumption (nonconsumer, 0.1-5, 5-15, 15-30, 
30-60, ≥60 g/day], physical activity (inactive, moderately inactive, moderately active,
active and not specified), education level (none, primary school, secondary/technical
school, longer education and not specified). Age (in years) and BMI (in kg/m2) were
included in the Cox models as continuous variables, while categorical variables were
represented using dummy codes in the models (‘male’ and ‘Italy’ as reference for sex
and study center respectively, lowest level as reference for alcohol consumption,
physical activity and education level). None of variables in additional analyses
considerably modified the risk estimates (Table S1), and they were thus not included in
the final models.

The main analyses were stratified by sex and smoking status to account for possible 
effect modifications. In the subgroup analysis of women, menopausal status 
(premenopausal, postmenopausal, perimenopausal and ovariectomy) and history of 
using hormone therapy (ever used or not) were further adjusted. Possible interactions 
between sex or smoking status and coffee intake were tested using the likelihood ratio 
test based on models with and without the interaction terms. 

Heterogeneity across countries was investigated using a meta-analytic approach based 
on HRs of coffee consumers compared with nonconsumers in each country. The I2 
statistic was used to illustrate the proportion of observed variance that reflects true 
variance among countries rather than sampling error (27). I2 values of 25%, 50% and 
75% represent low, moderate and high levels of heterogeneity. Sensitivity analyses 
were performed limiting to ‘definite’ and ‘very likely’ PD cases (n=314). To rule out 
possible reverse causality, our analyses were limited to PD cases diagnosed after eight 
years (median) since recruitment into the cohort. Additionally, we further conducted 
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analyses after exclusion of cases by consecutive one-year interval of prediagnostic 
periods (from >0 to >16 years). 

To account for the potential role of caffeine in the effects of coffee on PD, stratified 
analyses were conducted for caffeinated and decaffeinated coffee consumption. 
Subjects for whom the sum of both coffee subtypes was equal to the total coffee intake 
were included in stratified analyses. Caffeinated and decaffeinated coffee consumers 
were divided into country-specific tertiles due to the smaller sample size, and models 
for caffeinated and decaffeinated coffee were mutually adjusted for one another. 
Coffee consumers were additionally categorized according to coffee types they 
consumed (only caffeinated, only decaffeinated, and both types of coffee). 

In the nested case-control study, missing values of the detected caffeine metabolites 
(missing percentage ranging between 0% and 64.1%, Figure S1) that were below limits 
of detection were imputed using a quantile regression approach for left-censored 
missing data based on distributions of available values of metabolites, as implemented 
in imputeLCMD R package (28). Correlations among the metabolites and correlations 
between coffee consumption volume and metabolites were examined by Spearman 
correlation (rho). Ion intensities of metabolites were log2 transformed to reduce 
influence of extreme values and scaled (divided by standard deviation, SD) to make 
results of analysis comparable. Conditional logistic regression for the matched case-
control sets was applied to estimate odds ratios (ORs) and 95% CIs for associations 
between caffeine metabolites and PD, adjusting for smoking status. The nested case-
control study adopted the same stratified and sensitivity analyses as in the analysis of 
coffee consumption and PD in the cohort to evaluate the robustness of results. 

Results 

Study population 
Following the application of exclusion criteria, our analysis included a total of 184,024 
subjects from the EPIC4PD cohort, with a median follow-up of 13.1 years. Within this 
cohort, 308 and 285 incident PD cases were recorded among men and women, 
respectively (Table 1). The age-adjusted incidence rates for individuals aged 65 and 
older were 134 and 77 per 100,000 person-years for men and women, respectively. The 
median period between recruitment and PD diagnosis was 8.3 years. The median age 
at recruitment for subjects with PD was higher than those without PD (61.2 vs. 52.6 
years). The prevalence of coffee consumption in the entire EPIC4PD population was 
93%. The daily coffee consumption volume was highest in the Netherlands (median 500 
ml/d) and lowest in Italy and Spain (median 100 ml/d for both countries) (Table S2). 
Participants in the highest quartile of coffee intake were more likely to be men, current 
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smokers, younger and reported higher alcohol consumption (Table S3). In our nested 
case-control study, which included 351 incident PD cases and 351 matched controls, 
the demographics, lifestyle factors and coffee consumption were comparable with 
those observed in the EPIC4PD cohort (Table 1). 

Coffee consumption and Parkinson’s disease 
An inverse exposure-response relationship between coffee consumption and PD was 
observed (p-trend 0.003) with HR of 0.63 (95% CI 0.46-0.88) for the highest quartile of 
consumers vs. nonconsumers (Table 2). HRs based on overall coffee intake quartiles 
were similar to those using country-specific quartiles (Table S4). The point estimates of 
HR for coffee consumers compared to nonconsumers varied between 0.37 and 0.95 
across countries, with a minimal heterogeneity noted (I2=3.3%) (Figure S2). The PPF, 
with the HR of coffee consumers vs. nonconsumers at 0.72 (95% 0.56-0.94), was 26% 
(95% CI 6.6%-41%) for coffee consumption in the EPIC4PD population. In sub-analyses, 
the inverse association was limited to caffeinated coffee consumers (HR for highest 
tertile vs. nonconsumers 0.57, 95% CI 0.35-0.94; p-trend 0.007), and no association was 
observed for decaffeinated coffee consumption (Table S5). 

No obvious difference was noted for associations between men and women (p for 
interaction 0.974), although a statistically significant trend for coffee intake and PD was 
only found in women (p-trend 0.025) (Table 2). Further adjustment for menopause 
status and hormone use did not materially change the associations among women 
(Table S6). A slightly stronger association for the highest quartile was observed among 
hormone never users (HR 0.50, 95% CI 0.26-0.96). 

A stronger association between coffee consumption and PD was observed in never 
smokers (HR for highest quartile vs. nonconsumers 0.59, 95% CI 0.38-0.93), than in 
former and current smokers (Table 2). Interaction between smoking and coffee intake 
was not significant (p for interaction 0.185). Furthermore, compared with individual 
effect of smoking and coffee, a more pronounced inverse association was observed for 
subjects who were both cigarette smokers and coffee drinkers at baseline (HR vs. 
nonconsumers for both cigarettes and coffee 0.41, 95% CI 0.29-0.59) (Table S7). 

In the analyses limited to 281 PD cases diagnosed after eight years of follow-up, the 
associations between coffee intake and PD were strengthened across all quartiles (HR 
for highest quartile 0.54, 95% CI 0.35-0.84) (Table 2). Slightly stronger inverse 
associations with increasing prediagnostic time lags were also reflected when we 
progressively excluded cases diagnosed within a certain time frame (Figure S3). 
Estimates based on the analysis limiting to 314 definite and very likely cases were 
similar to those in the main analysis (Table 2). 

5

151

Caffeine Metabolites and PD in EPIC4PD | Chapter 5



Ta
bl

e 
1.

 B
as

el
in

e 
ch

ar
ac

te
ris

tic
s a

m
on

g 
pa

rt
ic

ip
an

ts
 in

 th
e 

EP
IC

4P
D 

co
ho

rt
 a

nd
 n

es
te

d 
ca

se
-c

on
tr

ol
 st

ud
y 

Ch
ar

ac
te

ris
tic

 
EP

IC
4P

D 
co

ho
rt

, n
=1

84
,0

24
 

N
es

te
d 

ca
se

-c
on

tr
ol

 st
ud

y,
 n

=7
02

1 

PD
 c

as
es

 
n=

59
3 

N
on

-c
as

es
 

n=
18

3,
43

1 
PD

 c
as

es
 

n=
35

1 
Co

nt
ro

ls 
n=

35
1 

Ag
e 

at
 re

cr
ui

tm
en

t (
ye

ar
s)

, m
ed

ia
n 

(IQ
R)

 
61

.2
 (5

5.
2-

65
.8

) 
52

.6
 (4

6.
7-

59
.9

) 
60

.7
 (5

4.
8-

65
.6

) 
60

.4
 (5

5.
0-

65
.2

) 
Ag

e 
at

 d
ia

gn
os

is 
(y

ea
rs

), 
m

ed
ia

n 
(IQ

R)
 

69
.8

 (6
3.

6-
74

.4
) 

-- 
68

.7
 (6

2.
8-

74
.0

) 
-- 

Ye
ar

s b
et

w
ee

n 
re

cr
ui

tm
en

t a
nd

 d
ia

gn
os

is,
 m

ed
ia

n 
(IQ

R)
 

8.
3 

(4
.9

-1
1.

5)
 

-- 
7.

8 
(4

.6
-1

1.
0)

 
-- 

De
fin

ite
 a

nd
 v

er
y 

lik
el

y 
ca

se
s,

 n
 (%

) 
31

4 
(5

3%
) 

-- 
18

8 
(5

4%
) 

-- 
Se

x,
 n

 (%
) 

 
 

 
 

M
al

e 
30

8 
(5

2%
) 

67
,4

42
 (3

7%
) 

19
5 

(5
6%

) 
19

5 
(5

6%
) 

Fe
m

al
e 

28
5 

(4
8%

) 
11

5,
98

9 
(6

3%
) 

15
6 

(4
4%

) 
15

6 
(4

4%
) 

Co
un

tr
y2 

 
 

 
 

Ita
ly

 
64

 (1
1%

) 
40

,1
11

 (2
2%

) 
54

 (1
5%

) 
54

 (1
5%

) 
Sp

ai
n 

10
1 

(1
7%

) 
24

,8
52

 (1
3%

) 
97

 (2
8%

) 
97

 (2
8%

) 
U

K 
17

0 
(2

9%
) 

23
,2

27
 (1

3%
) 

14
1 

(4
0%

) 
14

1 
(4

0%
) 

N
et

he
rla

nd
s 

13
 (2

%
) 

16
,8

13
 (9

%
) 

13
 (4

%
) 

13
 (4

%
) 

G
er

m
an

y 
50

 (8
%

) 
25

,3
49

 (1
4%

) 
46

 (1
3%

) 
46

 (1
3%

) 
Sw

ed
en

 
19

5 
(3

3%
) 

53
,0

79
(2

9%
) 

-- 
-- 

Co
ffe

e 
co

ns
um

pt
io

n 
at

 re
cr

ui
tm

en
t (

m
l/d

) 
 

 
 

 
N

on
co

ns
um

er
, n

 (%
)3 

67
 (1

1%
) 

12
,8

26
 (7

%
) 

45
 (1

2.
9%

) 
36

 (1
0.

4%
) 

To
ta

l c
of

fe
e,

 m
ed

ia
n 

(IQ
R)

3 
26

1 
(1

04
-4

75
) 

28
6 

(1
13

-5
00

) 
19

0 
(7

9-
47

5)
 

19
0 

(7
3-

47
5)

 
Ca

ffe
in

at
ed

 c
of

fe
e,

 m
ed

ia
n 

(IQ
R)

4 
26

1 
(1

00
-4

75
) 

26
1 

(9
0-

47
5)

 
19

0 
(6

0-
47

5)
 

19
0 

(8
2-

47
5)

 
De

ca
ffe

in
at

ed
 c

of
fe

e,
 m

ed
ia

n 
(IQ

R)
5 

19
0 

(4
7-

33
2)

 
62

 (2
5-

19
0)

 
19

0 
(4

8-
30

0)
 

86
 (2

0-
27

3)
 

Sm
ok

in
g 

st
at

us
 a

t r
ec

ru
itm

en
t, 

n 
(%

)6 
 

 
 

 
N

ev
er

 sm
ok

er
 

32
1 

(5
4%

) 
85

,7
17

 (4
7%

) 
18

3 
(5

2%
) 

17
4 

(4
9%

) 
Fo

rm
er

 sm
ok

er
 

19
8 

(3
3%

)) 
53

,5
57

 (2
9%

) 
11

5 
(3

3%
) 

10
9 

(3
1%

) 

152

Chapter 5 | Caffeine Metabolites and PD in EPIC4PD



Cu
rr

en
t s

m
ok

er
 

74
 (1

3%
) 

44
,1

57
 (2

4%
) 

43
 (1

2%
) 

55
 (1

6%
) 

BM
I a

t r
ec

ru
itm

en
t (

kg
/m

2 ), 
m

ed
ia

n 
(IQ

R)
 

25
.8

 (2
3.

8-
28

.5
) 

25
.4

 (2
3.

1-
28

.2
) 

26
.5

 (2
4.

2-
29

.2
) 

26
.0

 (2
3.

8-
29

.1
) 

Al
co

ho
l c

on
su

m
pt

io
n 

at
 re

cr
ui

tm
en

t (
g/

d)
7 

N
on

co
ns

um
er

, n
 (%

) 
11

8 
(2

0%
) 

30
,9

94
 (1

7%
) 

77
 (2

2%
) 

62
 (1

8%
) 

To
ta

l a
lc

oh
ol

, m
ed

ia
n 

(IQ
R)

 
7.

4 
(2

.7
-1

8.
7)

 
7.

4 
(2

.1
-1

8.
8)

 
9.

1 
(2

.8
-2

4.
2)

 
10

.6
 (2

.6
-2

6.
7)

 
Hi

gh
er

 e
du

ca
tio

n,
 n

 (%
)8 

84
 (1

4%
) 

32
,6

25
 (1

8%
) 

41
 (1

2%
) 

46
 (1

3%
) 

Ph
ys

ic
al

ly
 a

ct
iv

e,
 n

 (%
)9 

24
 (4

%
) 

15
,6

74
 (9

%
) 

18
 (5

%
) 

26
 (7

%
) 

Po
st

m
en

op
au

sa
l, 

n 
(%

)10
 

22
0 

(7
7%

) 
57

,2
80

 (4
9%

) 
-- 

-- 
Ev

er
 u

se
 o

f m
en

op
au

sa
l h

or
m

on
e 

th
er

ap
y,

 n
 (%

)10
, 1

1  
59

 (2
1%

) 
24

,3
88

 (2
1%

) 
-- 

-- 

IQ
R,

 in
te

rq
ua

rt
ile

 ra
ng

e;
 B

M
I, 

bo
dy

 m
as

s i
nd

ex
. 

1  P
D 

ca
se

s a
nd

 c
on

tr
ol

s w
er

e 
m

at
ch

ed
 o

n 
ag

e 
at

 re
cr

ui
tm

en
t, 

se
x,

 c
ou

nt
ry

 a
nd

 fa
st

in
g 

st
at

us
 in

 th
e 

ne
st

ed
 c

as
e-

co
nt

ro
l s

tu
dy

 
2  N

o 
su

bj
ec

ts
 fr

om
 S

w
ed

en
 w

er
e 

in
cl

ud
ed

 in
 th

e 
ne

st
ed

 c
as

e-
co

nt
ro

l s
tu

dy
. 

3  In
fo

rm
at

io
n 

on
 to

ta
l c

of
fe

e 
w

as
 m

iss
in

g 
fo

r 3
 P

D 
ca

se
s a

nd
 4

 c
on

tr
ol

s i
n 

th
e 

ne
st

ed
 c

as
e-

co
nt

ro
l s

tu
dy

. 
4  In

fo
rm

at
io

n 
on

 c
af

fe
in

at
ed

 c
of

fe
e 

w
as

 m
iss

in
g 

fo
r 6

8 
PD

 c
as

es
 a

nd
 3

0,
35

9 
pa

rt
ic

ip
an

ts
 w

ith
ou

t P
D 

in
 E

PI
C4

PD
 c

oh
or

t, 
an

d 
fo

r 6
 P

D 
ca

se
s 

an
d 

7 
co

nt
ro

ls 
in

 th
e 

ne
st

ed
 c

as
e-

co
nt

ro
l s

tu
dy

. 
5  In

fo
rm

at
io

n 
on

 d
ec

af
fe

in
at

ed
 co

ffe
e 

w
as

 m
iss

in
g 

fo
r 3

09
 P

D 
ca

se
s a

nd
 8

2,
97

4 
pa

rt
ic

ip
an

ts
 w

ith
ou

t P
D 

in
 E

PI
C4

PD
 co

ho
rt

, a
nd

 fo
r 1

03
 P

D 
ca

se
s a

nd
 1

04
 c

on
tr

ol
s i

n 
th

e 
ne

st
ed

 
ca

se
-c

on
tr

ol
 st

ud
y.

 
6  In

fo
rm

at
io

n 
on

 sm
ok

in
g 

st
at

us
 w

as
 m

iss
in

g 
fo

r 1
0 

PD
 c

as
es

 a
nd

 1
3 

co
nt

ro
ls 

in
 th

e 
ne

st
ed

 c
as

e-
co

nt
ro

l s
tu

dy
. 

7  In
fo

rm
at

io
n 

on
 a

lc
oh

ol
 c

on
su

m
pt

io
n 

w
as

 m
iss

in
g 

fo
r 3

 P
D 

ca
se

s a
nd

 4
 c

on
tr

ol
s i

n 
th

e 
ne

st
ed

 c
as

e-
co

nt
ro

l s
tu

dy
. 

8  In
fo

rm
at

io
n 

on
 e

du
ca

tio
n 

le
ve

l w
as

 m
iss

in
g 

fo
r 2

0 
PD

 c
as

es
 a

nd
 1

,7
29

 p
ar

tic
ip

an
ts

 w
ith

ou
t P

D 
in

 E
PI

C4
PD

 c
oh

or
t, 

an
d 

fo
r 2

4 
PD

 c
as

es
 a

nd
 1

7 
co

nt
ro

ls 
in

 th
e 

ne
st

ed
 c

as
e-

co
nt

ro
l s

tu
dy

. 
9  In

fo
rm

at
io

n 
on

 p
hy

sic
al

 a
ct

iv
ity

 w
as

 m
iss

in
g 

fo
r 5

8 
PD

 c
as

es
 a

nd
 2

5,
59

0 
pa

rt
ic

ip
an

ts
 w

ith
ou

t P
D 

in
 E

PI
C4

PD
 c

oh
or

t, 
an

d 
fo

r 1
3 

PD
 c

as
es

 a
nd

 1
0 

co
nt

ro
ls 

in
 th

e 
ne

st
ed

 c
as

e-
co

nt
ro

l s
tu

dy
. 

10
 O

nl
y 

am
on

g 
w

om
en

. 
11

 In
fo

rm
at

io
n 

on
 e

ve
r u

se
 o

f m
en

op
au

sa
l h

or
m

on
e 

th
er

ap
y 

w
as

 m
iss

in
g 

fo
r 5

5 
PD

 c
as

es
 a

nd
 1

6,
66

7 
pa

rt
ic

ip
an

ts
 w

ith
ou

t P
D 

in
 E

PI
C4

PD
 c

oh
or

t 

5

153

Caffeine Metabolites and PD in EPIC4PD | Chapter 5



Ta
bl

e 
2.

 A
ss

oc
ia

tio
ns

 o
f t

ot
al

 c
of

fe
e 

co
ns

um
pt

io
n 

an
d 

ris
k 

of
 P

ar
ki

ns
on

’s
 d

ise
as

e 
in

 th
e 

EP
IC

4P
D 

co
ho

rt
 

An
al

ys
is 

Co
ffe

e 
co

ns
um

pt
io

n1 
p 

fo
r 

tr
en

d 
Pe

r 1
00

 m
l/d

 
N

on
co

ns
um

er
s 

Q
ua

rt
ile

 1
 

Q
ua

rt
ile

 2
 

Q
ua

rt
ile

 3
 

Q
ua

rt
ile

 4
 

Al
l p

ar
tic

ip
an

ts
 n

=1
84

,0
24

 
 

 
 

 
 

 
 

PD
 c

as
es

, n
 

67
 

20
3 

14
5 

90
 

88
 

 
 

HR
 (9

5%
 C

I)2 
Re

fe
re

nc
e 

0.
80

 (0
.6

1-
1.

06
) 

0.
71

 (0
.5

3-
0.

96
) 

0.
66

 (0
.4

8-
0.

91
) 

0.
63

 (0
.4

6-
0.

88
) 

0.
00

3 
0.

97
 (0

.9
4-

1.
00

) 
M

en
 n

=6
7,

75
0 

 
 

 
 

 
 

 
PD

 c
as

es
, n

 
36

 
10

5 
74

 
45

 
48

 
 

 
HR

 (9
5%

 C
I)2 

Re
fe

re
nc

e 
0.

81
 (0

.5
6-

1.
19

) 
0.

68
 (0

.4
6-

1.
02

) 
0.

70
 (0

.4
5-

1.
11

) 
0.

69
 (0

.4
4-

1.
07

) 
0.

09
0 

0.
97

 (0
.9

3-
1.

01
) 

W
om

en
 n

=1
16

,2
74

 
 

 
 

 
 

 
 

PD
 c

as
es

, n
 

31
 

98
 

71
 

45
 

40
 

 
 

HR
 (9

5%
 C

I)2  
Re

fe
re

nc
e 

0.
78

 (0
.5

2-
1.

17
) 

0.
75

 (0
.4

9-
1.

15
) 

0.
63

 (0
.3

9-
1.

00
) 

0.
60

 (0
.3

7-
0.

96
) 

0.
02

5 
0.

98
 (0

.9
3-

1.
03

) 
N

ev
er

 sm
ok

er
s n

=8
6,

03
8 

 
 

 
 

 
 

 
PD

 c
as

es
, n

 
41

 
10

3 
83

 
55

 
39

 
 

 
HR

 (9
5%

 C
I)2  

Re
fe

re
nc

e 
0.

68
 (0

.4
7-

0.
97

) 
0.

72
 (0

.4
9-

1.
04

) 
0.

69
 (0

.4
6-

1.
05

) 
0.

59
 (0

.3
8-

0.
93

) 
0.

10
7 

1.
00

 (0
.9

5-
1.

05
) 

Fo
rm

er
 sm

ok
er

s n
=5

3,
75

5 
 

 
 

 
 

 
 

PD
 c

as
es

, n
 

99
 

41
 

24
 

34
 

 
 

HR
 (9

5%
 C

I)2  
Re

fe
re

nc
e3  

0.
64

 (0
.4

5-
0.

92
) 

0.
63

 (0
.3

9-
0.

99
) 

0.
78

 (0
.5

2-
1.

16
) 

0.
08

5 
0.

96
 (0

.9
1-

1.
01

) 
Cu

rr
en

t s
m

ok
er

s n
=4

4,
23

1 
 

 
 

 
 

 
 

PD
 c

as
es

, n
 

27
 

21
 

11
 

15
 

 
 

HR
 (9

5%
 C

I)2  
Re

fe
re

nc
e3  

0.
97

 (0
.5

5-
1.

72
) 

0.
62

 (0
.3

0-
1.

30
) 

0.
67

 (0
.3

5-
1.

28
) 

0.
11

7 
0.

95
 (0

.8
7-

1.
04

) 
La

te
-d

ia
gn

os
ed

 c
as

es
4 

n=
18

3,
74

3 
 

 
 

 
 

 
 

PD
 c

as
es

, n
 

38
 

11
0 

69
 

47
 

48
 

 
 

HR
 (9

5%
 C

I)2 
Re

fe
re

nc
e 

0.
77

 (0
.5

3-
1.

11
) 

0.
60

 (0
.4

1-
0.

90
) 

0.
50

 (0
.3

2-
0.

77
) 

0.
54

 (0
.3

5-
0.

84
) 

0.
00

1 
0.

96
 (0

.9
1-

1.
01

) 
De

fin
ite

&
ve

ry
 li

ke
ly

 c
as

es
 n

=1
83

,7
45

 
 

 
 

 
 

 
 

PD
 c

as
es

, n
 

33
 

95
 

90
 

52
 

44
 

 
 

HR
 (9

5%
 C

I)2 
Re

fe
re

nc
e 

0.
80

 (0
.5

4-
1.

19
) 

0.
90

 (0
.6

0-
1.

34
) 

0.
72

 (0
.4

6-
1.

13
) 

0.
62

 (0
.3

9-
0.

98
) 

0.
05

0 
0.

97
 (0

.9
3-

1.
02

) 

 

154

Chapter 5 | Caffeine Metabolites and PD in EPIC4PD



HR, hazard ratio; CI, confidence interval. 
1 Based on country-specific quartiles for coffee consumers. Quartile cutoffs were 62, 100, 145 
ml/day in Italy, 47, 100, 184 ml/day in Spain, 190, 475, 557 ml/day in UK, 375, 500, 750 ml/day in 
the Netherlands, 261, 392, 573 ml/day in Germany, and 300, 400, 601 ml/day for Sweden. 
2 Cox regression adjusted for age at recruitment, sex (when appropriated), country and smoking 
status (when appropriated). 
3 Reference category merged with quartile 1 due to low case numbers among nonconsumers. 
4 PD cases diagnosed within 8 years of follow-up were excluded. 

Caffeine metabolites and Parkinson’s disease 
Prediagnostic levels of most caffeine metabolites were positively associated with self-
reported coffee volume, as indicated by correlation coefficients ranging from 0.10 to 
0.41 (Table 3). Several metabolites including caffeine, theophylline, paraxanthine, 
AAMU (C18neg) were moderately correlated with each other (correlation coefficient, 
rho>0.4) (Figure S4). 

Caffeine and three other metabolites (paraxanthine, theophylline, 1-methyluric acid), 
were negatively associated with PD risk (OR per SD increase (95% CI) 0.80 (0.67-0.95), 
0.82 (0.69-0.96), 0.78 (0.65-0.93), 0.84 (0.72-0.98), respectively) (Table 3). Subtle 
associations with PD risk, although not statistically significant, were observed for 1,3,7-
trimethyldihydrouric acid (OR 0.85, 95% CI 0.72-1.01), 5-acetylamino-6-formylamino-3-
methyluracil (AFMU) (OR 1.19, 95% CI 0.99-1.43), and 1,3,7-trimethyl-5-
hydroxyisourate (OR 1.19, 95% CI 0.99-1.41). Analyses for caffeine and theophylline 
were more pronounced among men than women (p for interaction by sex 0.020 and 
0.011, respectively) (Figure 1). There was no evidence for effect modification by 
smoking status for the associations between caffeine metabolites and PD (Figure S5), 
although the inverse association for caffeine was stronger among current smokers (OR 
0.55, 95% CI 0.31-0.92) than in noncurrent smokers. Furthermore, sensitivity analyses 
of limiting to cases diagnosed after eight years since recruitment and cases with high 
validity did not reveal substantial changes (Figure S6). 

Analyses by increasing prediagnostic time periods for caffeine metabolites showed that 
for caffeine and the major metabolites paraxanthine and theophylline, associations 
became slightly stronger with increasing prediagnostic time periods (Figure S7). 
Interestingly, for several downstream metabolites (1-methyluric acid, 1,3,7-
trimethyldihydrouric acid, AFMU and 1,3,7-trimethyl-5-hydroxyisourate), the 
associations became weaker for prediagnostic time periods longer than 10 years. 
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Figure 1. Associations between caffeine metabolites and Parkinson’s disease risk among men 
and women in the nested case-control study (n=702) 

OR, odds ratio; CI, confidence interval; AFMU, 5-acetylamino-6-formylamino-3-methyluracil; 
AAMU, 5-acetylamino-6-amino-3-methyluracil. 

ORs and CIs (per SD increase of log2 ion intensity) were calculated by conditional logistic 
regression for the matched case-control sets, adjusted for smoking status, for men and women 
separately. P values for interaction of sex and metabolite were estimated by likelihood ratio test 
based on models with and without the interaction terms. 
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Discussion 

This study demonstrated an inverse association of caffeinated coffee consumption with 
the risk of PD in one of the largest longitudinal cohorts worldwide with more than 20 
years of follow-up. The neuroprotective effects of coffee were exposure-dependent, 
and individuals in the highest coffee consumption group had nearly 40% lower risk of 
PD compared with nonconsumers. This observation was strengthened with a 
comprehensive evaluation of prospectively measured plasma caffeine and its 
metabolites. These analyses showed strong inverse associations for caffeine and its 
major metabolites with the risk of PD. 

The EPIC4PD population is not a strictly random sample for the entire European 
population, with women outnumbering men in the cohort. There was still a slight 
predominance of men among the PD patients. Notably, individuals who developed PD 
were generally older at the time of recruitment compared to those who did not develop 
PD. These findings further underscore the important role of aging and male gender for 
PD risk. Moreover, incidence of PD in the EPIC4PD cohort was comparable to those 
reported in the North America (162-277 per 100,000 person-years among males, 66-
161 per 100,000 person-years among females) (29). Several large US prospective 
cohorts have reported comparable effect sizes for the highest coffee intake group (with 
adjusted HR ranging from 0.43 to 0.81 for men, from 0.61 to 0.90 for women), which 
aligns with our findings (5, 30, 31). 

The strength of our study was utilizing objective blood markers for caffeine metabolism, 
which largely mitigates regional variations on coffee consumption. More notably, our 
study largely minimizes the possibility of reverse causation by collecting blood samples 
before PD diagnosis. In contrast, previous studies analyzed caffeine biochemical 
markers in biosamples from individuals who had been living with PD, with an average 
disease duration ranging from 6 to 8 years (6-8). This approach introduced potential 
bias, as these patients might change their coffee-consumption habits due to smell and 
taste dysfunction. In addition, caffeine is primarily metabolized by CYP1A2, an isoform 
of the hepatic cytochrome P450 enzyme family (32). Antiparkinsonian drugs such as 
levodopa has been shown to upregulate CYP1A2 activities, resulting in an increased 
metabolism of caffeine (33). 

Coffee consumption has long been suggested to reduce or delay the development of 
PD, with caffeine identified as the most likely causal factor (1, 2, 5). Caffeine 
administration attenuated motor impairment, neuronal death and dopamine depletion 
in various animal models of PD (34-36). It is believed that caffeine’s neuroprotective 
effects are mainly attributed to the blocking of adenosine 2A receptor (A2AR) (37). 
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Moreover, two major caffeine metabolites, paraxanthine and theophylline, have 
demonstrated the ability to mitigate symptoms in PD animal models (38) (39). These 
neuroprotective effects align with our findings, which revealed an inverse association 
between caffeine, paraxanthine, theophylline and the incidence of PD. More important, 
these associations tended to be marginally stronger with increasing prediagnostic 
period, indicating minimal effect due to reverse causality. 

On the other hand, other caffeine-derived metabolites, specifically AFMU, 1,3,7-
trimethyldihydrouric acid and 1,3,7-trimethyl-5-hydroxyisourate, exhibited altered 
associations with PD, although these association did not reach statistical significance. 
Notably, these associations were absent when the time between biomarker assessment 
and PD diagnosis was longer than 10 years. The molecular underpinnings of these 
metabolites remain elusive, partially due to lack of relevant publications, warranting 
investigations to decipher changes in other downstream caffeine metabolites. 

Some studies have reported effect modification of estrogen and tobacco on the 
beneficial effects of caffeine on PD (5, 30, 31). Estrogen and caffeine are known to 
competitively metabolized by CYP1A2, resulting in an inhibitory effect on caffeine 
metabolism (40). Conversely, tobacco has been shown to strongly induce the CYP1A2 
enzyme, thereby increasing the metabolism of caffeine in smokers (41). Because 
metabolites of caffeine, such as paraxanthine and theophylline, are also A2AR 
antagonists and neuroprotectants, the net effect of perturbed caffeine metabolism is 
difficult to predict. In this study, we did not observed statistically significant effect 
modification by hormonal use and smoking. However, more-marked trends toward a 
reduced risk of PD were observed among women who never used postmenopausal 
hormones with increasing coffee intake and among individuals who were both smokers 
and coffee drinkers. Our results might be hampered by limited power, and results from 
literature on the estrogen- and smoking-specific modification of caffeine and PD are 
inconsistent. The interaction mechanism needs to be elucidated further in experimental 
studies. 

As a widely consumed beverage, coffee has a discernible public health impact on PD 
prevention, even though its effect size is relatively modest. However, the therapeutic 
effectiveness of caffeine and its metabolites for alleviating parkinsonian symptoms has 
been limited in current clinical trials (9) (10). Together with our findings, these results 
suggest that caffeine may exert a neuroprotective effect during the prodromal phase, 
rather than after the onset of classical motor PD symptoms. Therefore, the 
administration of caffeine to individuals at high risk for PD, such as those with rapid eye 
movement sleep behavior disorder, which is the strongest indicator of prodromal PD 
(42), could be a promising approach to stop or delay the disease deterioration. In 
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parallel, it remains to be determined if advocating for public intervention with 
promoting increased coffee consumption or caffeine supplements is appropriate due 
to the potential side effects of caffeine. 

We acknowledged several limitations in our study. First, diet information and blood 
samples were collected on average eight years prior to PD diagnosis. Participants’ 
coffee-consumption behavior can change due to an altered sense of taste and smell, 
which may occur up to 10 years before the onset of motor symptoms (43). Therefore, 
we cannot fully exclude that coffee-consumption habits were secondary to PD-related 
symptoms. However, as consistent inverse associations between coffee/caffeine and 
PD risk were found as early as 12 years prior to disease diagnosis, residual reverse 
causality does not seem to be substantial. Second, the observed associations could be 
confounded by unmeasured factors. Genes CYP1A2 and ADORA2A, which encode 
caffeine metabolism enzyme CYP1A2 and action target A2AR respectively, might modify 
the protective effect of caffeine on PD (44). Environmental toxicants such as pesticides 
have been suggested to be associated with an increased risk of PD (45). However, to 
explain a 40% decrease in PD risk, any confounder must confer a risk ratio greater than 
2.7 with both coffee consumption and PD risk (46). None of the known or suspected 
risk factors for PD demonstrate such strong associations. Thus, the chance that residual 
confounding fully explains our presented results is very limited. Third, coffee 
consumption assessed by dietary questionnaires might be subject to measurement 
error, in particular because of different coffee types and caffeine concentration in 
different countries. However, the dietary questionnaire has been validated in our 
cohort (11), and coffee intake was overall positively correlated with caffeine contents, 
although the extent varied across countries (Figure S8). In addition, non-differential 
measurement error would likely bias results towards the null, so the true coffee-PD 
associations could be stronger than the observed ones. Lastly, subjects with missing 
data on coffee consumption and smoking status exhibited notable differences from the 
entire EPIC4PD population regarding demographics and recruitment countries (Table 
S8). However, given the relatively small percentage of missing group (approximately 
4%), the subjects included in our study remained a representative sample of the 
EPIC4PD cohort. 

Conclusion 

In summary, our study validated the protective effect of caffeine on PD risk in a large 
prospective cohort, and further confirmed the etiological role of caffeine utilizing 
biosamples before PD diagnosis in an untargeted exposomic framework. Our findings 
on the protective action of caffeine and its main metabolites provide insights into the 
etiology and prevention of PD. 
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Text S1. Metabolomics method for caffeine metabolite measurement 

To profile circulating caffeine metabolites in EPIC4PD, we performed global 
metabolomics analysis of all plasma samples using a liquid chromatography-high 
resolution mass spectrometry (LC-HRMS)-based platform that was established and 
optimized in our prior work (1, 2). Further de novo structural annotation was conducted 
for untargeted, semi-quantitative profiling of caffeine pathway metabolites through an 
integrated cheminformatic approach. 

Sample preparation 

Blood plasma samples were thawed on ice; each 50 μL was aliquoted and extracted into 
100 μL cold acetonitrile (ACN) spiked with internal standard mix (ACN:plasma, 2:1, v/v). 
The extracts were cold incubated under -20 ºC before centrifugation for protein and 
particulate removal. Ten µL of the supernatant was injected on LC-MS, resulting in ~3.33 
μL raw plasma loaded on column. Sample extracts were injected in triplicate alongside 
intermittent injection of quality control (QC) extracts of NIST1953 and BioIVT plasma, 
obtained respectively from National Institute of Standards and Technology (NIST) 
(Gaithersburg, MD, USA) and Bioreclamation Inc. (New Cassel, NY, USA). 

Instrumental analysis 

The injected extracts were chromatographically separated, ionized, and analyzed on a 
Thermo Fisher Scientific Vanquish dual chromatograph coupled to a high-resolution 
accurate-mass (HRAM) Orbitrap Exploris™ 240 mass spectrometer interfaced with a 
heated electrospray ionization (ESI) source (Waltham, MA, USA). To maximize detection 
of polar and nonpolar metabolites, two complementary analyses were performed, 
namely hydrophilic interaction liquid chromatography (HILIC)-ESI(+) and reverse-phase 
chromatography (RPC)-ESI(-), which were further referred to as “HILpos” and “C18neg,” 
both operated in full scan mode at 120,000 mass resolution (FWHM) with a mass-to-
charge (m/z) range of 85-1,275. Stringent quality assurance and quality control (QA/QC) 
procedures were applied, including sample randomization, timely mass calibration, and 
routine check of instrumental sensitivity. For this study, a total of 4,872 *.RAW data 
were acquired (18 batches in total), covering triplicate sample injections and 
intermittent QC injections. 

Data processing 

The acquired *.RAW data were converted to *.mzXML format using ProteoWizard 
msConvert and subject to feature extraction and sample alignment using apLCMS 
package of R (3). Crude alignment feature tables were yielded separately for HILpos and 
C18neg, both consisting of uniquely detected features (m/z, retention time) and their 

5

165

Caffeine Metabolites and PD in EPIC4PD | Chapter 5



ion abundance (peak area) across samples. The feature tables were processed through 
xMSanalyzer (4) where ion abundances were median summarized, cleaned up by QC, 
and corrected for batch effects (ComBat), yielding 9,435 ion features for HILpos and 
8,439 for C18neg for statistical and informatic analyses. 

Compound identification 

Structural annotation of compounds of caffeine metabolism was implemented through 
an integrated cheminformatic strategy. We first built internal RT-m/z libraries 
respectively for HILpos and C18neg modes using hundreds of authentic chemical 
standards purchased from IROA Technologies (Chapel Hill, NC, USA) and Sigma Aldrich 
(St. Louis, MO, USA), from which caffeine and its major metabolites were included for 
a quick and reliable identification. Meanwhile, to expand the coverage, we leveraged in 
silico cheminformatic analyses for annotating all plausible metabolites involved in 
caffeine metabolism. We first retrieved a complete set of 22 structures from caffeine 
metabolism (map00232, version 11-30-18) referencing the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (5), alongside 1,3,7-trimethyldihydrourate, a novel 
caffeine metabolite recently discovered through our in vitro exposomic platform (6). 
Using accurate m/z, isotopic ratios, and chromatographic retention time (RT), we 
annotated detected peaks based on formula prediction (Seven Golden Rules) (7, 8) and 
chromatographic retention time estimation (Retip, XGBoost algorithm) (9), and 
manually curated based on extensive bioanalytical inferences and expert consultation. 
Level of annotation confidence was assigned based on the Schymanski scale for LC-
HRMS metabolomics practice (10, 11). 
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Text S2. Formula of population preventable fraction (PPF) 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑒𝑒(1 − 𝐻𝐻𝐻𝐻) (1) 

𝑃𝑃𝑒𝑒 , the prevalence of exposure. The prevalence of coffee consumption (coffee 
consumers) among the included EPIC4PD participants was 93.0%. 

𝐻𝐻𝐻𝐻, hazard ratio of PD risk for coffee consumers compared with nonconsumers, 0.72 
(95% confidence interval 0.56-0.94). 

Reference: 

1. Strain T, Brage S, Sharp SJ, Richards J, Tainio M, Ding D, et al. Use of the prevented fraction for 
the population to determine deaths averted by existing prevalence of physical activity: a
descriptive study. Lancet Glob Health. 2020;8(7):e920-e30. 
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Table S5. Associations of caffeinated and decaffeinated coffee consumption and Parkinson’s 
disease risk 

Coffee type PD cases, n HR (95% CI)1 

Caffeinated coffee2 

Nonconsumers 55 Reference 
Tertile 1 111 1.09 (0.78-1.52) 
Tertile 2 62 0.77 (0.53-1.13) 
Tertile 3 26 0.57 (0.35-0.94) 
p for trend3 0.007 

Decaffeinated coffee4 

Nonconsumers 180 Reference 
Tertile 1 33 0.90 (0.61-1.32) 
Tertile 2 22 1.04 (0.66-1.66) 
Tertile 3 19 1.34 (0.79-2.26) 
p for trend3 0.586 

Coffee combination 
Nonconsumers for all coffee 31 Reference 
Only caffeinated coffee 149 0.81 (0.55-1.20) 
Both caffeinated and decaffeinated coffee 50 0.92 (0.57-1.49) 
Only decaffeinated coffee 24 0.92 (0.54-1.57) 

From the EPIC4PD cohort, subjects for whom the sum of both coffee subtypes was equal to the 
total coffee intake were included (79,689 participants and 254 incident PD cases) in the analyses. 

HR, hazard ratio; CI, confidence interval. 
1 Cox regression adjusted for age at recruitment, sex, country, smoking status, caffeinated and 
decaffeinated coffee for one another. 
2 Based on country-specific tertiles for caffeinated coffee consumers. Quartile cutoffs were 60, 
116 ml/day in Italy, 190, 475 ml/day in UK, 312, 450 ml/day in the Netherlands, 261, 458 ml/day 
in Germany. 
3 Coffee intake tertiles were entered into model as continuous term. 
4 Based on country-specific tertiles for decaffeinated coffee consumers. Quartile cutoffs were 8, 
27 ml/day in Italy, 190, 475 ml/day in UK, 50, 100 ml/day in Netherlands, 19, 203 ml/day in 
Germany. 
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Table S7. Joint associations of coffee drinking and smoking in relation to Parkinson’s disease risk 

Exposure group Participants, n PD cases, n HR (95% CI)1 

Nonconsumers of both cigarettes 
and coffee 

10,652 59 Reference 

Consumers only of coffee 129,141 460 0.75 (0.57, 0.99) 
Consumers only of cigarettes 2,241 8 0.86 (0.41, 1.80) 
Consumers of both cigarettes and 
coffee 

41,990 66 0.41 (0.29, 0.59) 

HR, hazard ratio; CI, confidence interval. 
1 Cox regression adjusted for age at recruitment, sex and country. 

Table S8. Characteristics of EPIC4PD cohort, subjects included and subjects with missing data 

Characteristics 
Whole EPIC4PD 

n=192,980 
Subjects included 

n=184,024 

Subjects with missing data 
on coffee and smoking 

n=8,484 
Age at recruitment 
(years), median (IQR) 

52.8 (46.9-60.0) 52.6 (46.7-60.0) 56.8 (49.2-65.7) 

Male, n (%) 71,893 (37%) 67,750 (37%) 3,887 (46%) 
Country, n (%) 

Italy 41,140 (21%) 40,175 (22%) 904 (11%) 
Spain 25,017 (13%) 24,953 (13%) 16 (0.2%) 
UK 30,440 (16%) 23,397 (13%) 6,931 (82%) 
Netherlands 17,031 (9%) 16,826 (9%) 200 (2%) 
Germany 25,538 (13%) 25,399 (14%) 75 (0.8%) 
Sweden 53,814 (28%) 53,274 (29%) 358 (4%) 

IQR, interquartile range. 
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Figure S1. Percentage of missing values for each caffeine metabolite 

Missing percentage was calculated among all subjects (A) and among PD cases and controls 
separately (B). 
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Figure S2. Associations of coffee consumption and Parkinson’s disease for each country 

HR, hazard ratio; CI, confidence interval. HRs and CIs were calculated for coffee consumers vs. 
nonconsumers, from Cox regressions adjusted for age at recruitment, sex, country, smoking 
status. Netherlands was not included because there was no nonconsumer in the country. 

p-value from Cochran’s Q test=0.4.

Figure S3. Associations of coffee consumption and Parkinson’s disease in different pre-
diagnostic periods 

HR, hazard ratio; CI, confidence interval. For PD cases, periods between recruitment and 
diagnosis (pre-diagnostic periods) ranged from <1 to 18 years. HRs and CIs were calculated for 
coffee consumers vs. nonconsumers, from Cox regressions adjusted for age at recruitment, sex, 
country, smoking status. 
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Figure S4. Correlation matrix of caffeine metabolites 

Values in tiles were Spearman correlation coefficients for corresponding two metabolites 
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Figure S5. Associations between caffeine metabolites and Parkinson’s disease among current 
and noncurrent smokers 

OR, odds ratio; CI, confidence interval; AFMU, 5-Acetylamino-6-formylamino-3-methyluracil; 
AAMU, 5-acetylamino-6-amino-3-methyluracil. 

ORs and CIs (per SD increase of log2 ion intensity) were calculated by unconditional logistic 
regression adjusted for age at recruitment, sex and study center for current and noncurrent 
smokers separately. P values for interaction of smoking status and metabolite were estimated by 
likelihood ratio test based on models with and without the interaction terms. 
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Figure S6. Sensitivity analyses of associations between caffeine metabolites and Parkinson’s 
disease 

OR, odds ratio; CI, confidence interval; AFMU, 5-Acetylamino-6-formylamino-3-methyluracil; 
AAMU, 5-acetylamino-6-amino-3-methyluracil. 

ORs and CIs (per SD increase of log2 ion intensity)  for main analyses were calculated by 
conditional logistic regression for the matched case-control sets, adjusted for smoking status. 
ORs and CIs for sensitivity analyses were calculated by unconditional logistic regression adjusted 
for age at recruitment, sex, study center and smoking status. 
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Figure S8. Caffeine levels in coffee intake quartiles for each country 
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Abstract 

Introduction: Lipopolysaccharide (LPS) is the outer membrane component of gram-
negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates 
immune responses triggered by LPS and has been used as a blood marker for LPS. LBP 
has recently been indicated to be associated with Parkinson’s disease (PD) in small-scale 
retrospective case-control studies. We aimed to investigate the association between 
LBP blood levels with PD risk in a nested case-control study within a large European 
prospective cohort. 

Methods: A total of 352 incident PD cases (55% males) were identified and one control 
per case was selected, matched by age at recruitment, sex and study center. LBP levels 
in plasma collected at recruitment, which was on average 7.8 years before diagnosis of 
the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) 
were estimated for one unit increase of the natural log of LBP levels and PD incidence 
by conditional logistic regression. 

Results: Plasma LBP levels were higher in prospective PD cases compared to controls 
(median (interquartile range) 26.9 (18.1-41.0) vs. 24.7 (16.6-38.4) µg/ml). The OR for 
PD incidence per one unit increase of log LBP was elevated (1.46, 95%CI 0.98-2.19). This 
association was more pronounced among women (OR 2.68, 95%CI 1.40-5.13) and 
overweight/obese subjects (OR 1.54, 95%CI 1.09-2.18). 

Conclusion: The findings suggest that higher plasma LBP levels may be associated with 
an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the 
pathogenesis of PD, particularly in women and overweight/obese individuals. 

 

Keywords: Parkinson’s disease, lipopolysaccharide-binding protein, pre-diagnostic, 
systemic inflammation, endotoxemia 
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Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative disease 
affecting more than 1% of the population aged 60 years and older (1). The pathogenesis 
is complex and multifaceted, with increasing evidence suggesting that 
neuroinflammation likely plays a fundamental role (2). Mounting evidence suggests a 
crosstalk between brain inflammation and peripheral inflammation (2). 
Lipopolysaccharide (LPS, also known as endotoxin), the component of the outer 
membrane of gram-negative bacteria, is a potent activator of innate immune responses. 
LPS normally presents at much higher concentrations in the human gut as compared to 
blood (3). It has been speculated that already during the early stages of PD, LPS 
increasingly enters the blood due to a disrupted intestinal barrier, possibly induced by 
altered gut microbiota (4). The resultant systemic inflammation, induced by elevated 
circulating LPS, might in turn exacerbate ongoing neurodegeneration in PD by 
reinforcing microglial activation in the brain (5). Thus, endotoxemia has been 
hypothesized as a potential pathological mechanism of PD (6). 

Although accumulating animal studies indicate the involvement of the systemic innate 
immune response in PD (5), the associated components and underlying mechanism in 
humans remain unclear. The LPS-binding protein (LBP) is a secretory acute-phase 
protein synthesized mainly in the liver. LBP has the dual role of promoting innate 
immune responses to LPS (7), as well as enhancing the neutralization and clearance of 
LPS by high density lipoprotein (8). Given technical limitations of measuring LPS in 
biofluids with sufficient accuracy (9), elevated LBP concentrations in serum or plasma 
have been suggested as a useful marker indicating endotoxemia and systemic 
inflammation in chronic diseases (10-12). Elevated LBP blood concentration was also 
recently proposed as a biomarker for intestinal permeability (13). 

Several studies have reported lower LBP blood levels in prevalent PD cases as compared 
to healthy controls (14-18) (Table S1). However, these studies were mostly based on 
small groups of PD patients from hospitals. Moreover, LBP levels were assessed after 
the diagnosis, which might be subject to reverse causation. To the best of our 
knowledge, no prospective study has yet been conducted on the possible relation 
between LBP and the risk of PD. Therefore, we aimed to investigate the association 
between plasma LBP levels and the future PD onset measuring LBP levels in pre-
diagnostic plasma samples in a large prospective European cohort. 

6 

185

LBP and PD in EPIC4PD | Chapter 6



Methods 

Study design 
The European Prospective Investigation into Cancer and Nutrition (EPIC) is a large 
prospective cohort study that was initiated in 1992 and recruited more than half a 
million people in ten European countries. At the time of enrollment, information on 
diet and lifestyle was collected through validated questionnaires, anthropometric 
measurements were performed, and blood samples were collected (19). The EPIC study 
was approved by the ethical committee of the International Agency for Research on 
Cancer (IARC) and by the ethical review boards of each study center. All participants 
signed a written informed consent. 

The EPIC4PD study was conducted within EPIC and aimed to prospectively assess the 
role of risk factors in PD. This sub-study was based on a source population of 220,494 
subjects from Sweden, the United Kingdom (UK), the Netherlands, Germany, Spain, 
Italy and Greece (20). Potential PD cases were identified through medical record linkage 
and further validated by experts in movement disorders through clinical records, 
according to the diagnostic criteria of the UK Brain Bank. A total of 881 PD cases were 
ascertained. Cases who received a diagnosis after the date of recruitment were defined 
as incident cases (n=734) (20). 

Reliability of diagnoses was determined by the quality of clinical data (rated as ‘poor’, 
‘good’ or ‘excellent’), as well as the confidence degree of the expert neurologist’s final 
judgement (rated as ‘low’, ‘medium’ or ‘high’) (20). Diagnoses were defined as ‘definite’ 
only when the confidence degree of the neurologist was high and the data quality was 
excellent; ‘very likely’ when the confidence degree was high, but data quality was either 
good or poor; ‘probable’ when the confidence degree was medium and data quality 
was either excellent or good; and diagnoses were defined as ‘possible’ in all remaining 
cases. 

Here, we conducted a nested case-control study within the EPIC4PD cohort. A total of 
352 incident PD cases for whom a plasma sample was available were included for 
current analyses. No subjects from Sweden and Greece were included as no blood 
samples were available in the central EPIC biobank. Among the included cases, 45 and 
144 were categorized as ‘definite’ and ‘very likely’ cases, respectively. One control per 
case was selected by incidence density sampling matched by age at recruitment, sex 
and study center. 

Lipopolysaccharide-binding protein measurement 
A blood sample was obtained from each participant at recruitment and stored at a 
central biobank in liquid nitrogen (at -196 °C). LBP in plasma was measured by enzyme 
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linked immunosorbent assay (ELISA) (HK315-02, Hycult Biotech) in duplicates. The 
arithmetic mean of the duplicate measurements for each participant was calculated 
and used in the statistical analyses. Relative standard deviation (RSD) was calculated to 
check the variability of the two measurements. The ELISA assays were run on eleven 
plates, with samples from 64 subjects in each. All pairs of PD case and matched control 
were measured on the same plates to avoid batch effects in the case-control 
comparison.  

Statistical analysis 
Conditional logistic regression for the matched case-control sets was applied to 
investigate the association between plasma LBP levels and PD. LBP levels were naturally 
log-transformed to reduce influence of extreme values. Smoking is a well recognized 
inverse risk factor for PD (21), and increased body mass index (BMI) is indicated 
associated with higher PD incidence (22). Further considering being overweight and a 
smoker are related to higher LBP levels (23), smoking status and BMI were deemed as 
potential confounders and adjusted for in our models. Subjects with missing 
information on smoking status (n=10 for cases, n=13 for controls) were coded as 
‘unknown’. 

To assess possible effect modification by sex, we performed stratified analyses on men 
and women. We also stratified analyses by smoking status at recruitment (current, 
former, never smokers) and BMI (BMI<25 kg/m2, BMI≥25 kg/m2), for which mixed 
effects logistic regression was used, adjusted for the matching variables (age at 
recruitment, sex, study center) and BMI/smoking status as fixed effects. ELISA plate was 
treated as random effect since batch effects might exist given different RSDs in 
analytical plates (Figure S1). 

To investigate LBP levels in different stages prior to diagnosis, we ran mixed linear 
regression analyses on the pre-diagnostic periods (defined as time between 
recruitment and PD diagnosis) and natural log LBP levels among PD cases. 

Furthermore, we performed sensitivity analyses: i) excluding PD cases diagnosed within 
8 years (median) after recruitment to rule out possible reverse causality; ii) including 
only definite and very likely PD diagnosis; and iii) excluding case-control pairs in the two 
plates of ELISA where the RSDs for duplicate LBP measurements were relatively high 
(Figure S1). 

Results 

A total of 352 PD cases (55% males) and 352 matched controls were included in this 
study (Table 1). The median age at recruitment was 60 years, and the median period 
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between recruitment and PD diagnosis was 7.8 years. Smoking status and BMI at 
recruitment were not significantly different between PD cases and controls. 

Plasma LBP levels were right-skewed distributed (Figure S2). LBP levels were slightly 
higher in PD cases than in controls (median (interquartile range), 26.9 (18.1-41.0) vs. 
24.7 (16.6-38.4) µg/ml). LBP concentrations in overweight/obese subjects (BMI≥25 
kg/m2) were significantly higher than in normal-weight subjects (BMI<25 kg/m2) 
(median (interquartile range), 27.2 (18.1-42.7) vs. 23.3 (16.5-37.1) µg/ml; p-value 0.004) 

A positive association was observed between LBP levels at baseline and future PD 
diagnosis (Table 2). The adjusted odds ratio (OR) was 1.46 (95% confidence interval (CI) 
0.98-2.19) per one natural log unit increase in LBP levels. Stratified by sex, elevated LBP 
levels were associated with PD incidence among women (OR 2.68, 95%CI 1.40-5.13), 
while for men the OR was 0.93 (0.55-1.59) (p-value for interaction 0.016). The 
association among never smokers was slightly stronger (OR 1.30, 95%CI 0.87-1.95) than 
in current and former smokers but there was no evidence for effect modification (p-
value for interaction >0.05). In contrast, BMI significantly modified the association 
between LBP and PD (p-value for interaction 0.018). LBP was positively associated with 
incident PD in overweight/obese subjects (OR 1.54, 95%CI 1.09-2.18), but not in 
normal-weight counterparts (OR 0.78, 95%CI 0.48-1.28). Sensitivity analyses did not 
materially change the observed associations (Table 2). 

There was no obvious trend for plasma LBP levels in different pre-diagnostic periods 
among PD cases (Figure 1). The coefficient estimate between logarithmic LBP and year 
to diagnosis from the linear regression was -0.004 (95%CI -0.015-0.007). 

 

 

  

Figure 1. Scatter plot of pre-diagnostic plasma 
LBP levels in PD cases only (n=352) in relation to 
years to diagnosis. 

The line represents the linear regression fitted on 
log-transformed LBP levels (β -0.004). 
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Table 1. Characteristics of study participants 

Characteristic 
PD cases 

n=352 
Controls 
n=352 

Age at recruitment, yearsa 60.8 (54.8-65.7) 60.4 (55.0-65.2) 
Age at PD diagnosis, years 68.7 (62.8-74.0) -- 
Years between recruitment and PD diagnosis 7.8 (4.6-11.0) -- 
Sex, n (%)a 

Male 195 (55%) 195 (55%) 
Female 157 (45%) 157 (45%) 

Country, n (%)a 
Italy 54 (15%) 54 (15%) 
Spain 97 (28%) 97 (28%) 
UK 142 (40%) 142 (40%) 
Netherlands 13 (4%) 13 (4%) 
Germany 46 (13%) 46 (13%) 

Smoking status at recruitment, n (%) 
Never smokers 183 (52%) 174 (49%) 
Former smokers 116 (33%) 110 (31%) 
Current smokers 43 (12%) 55 (16%) 
Unknown 10 (3%) 13 (4%) 

BMI categories, n (%) 
BMI<25 kg/m2 119 (34%) 137 (39%) 
BMI≥25 233 (66%) 215 (61%) 

a Matching variables 

Continuous data were expressed as median (interquartile range) 

Categorical data were expressed as number (percentage) 

BMI, body mass index, calculated as the weight in kilograms divided by the square of the height 
in meters. 
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Discussion 

This is the first study to investigate the association between pre-diagnostic LBP levels 
and PD risk, utilizing a large European-wide prospective cohort. LBP levels at 
recruitment were higher in those who subsequently developed PD, which was most 
pronounced among women and overweight/obese subjects. No differences in LBP 
levels were observed in different pre-diagnostic periods. 

LBP is an acute-phase protein synthesized mainly by hepatocytes. It binds and transfers 
LPS in blood to the cellular receptor complex consisting of CD14, MD2 and Toll-like 
receptor 4, resulting in the activation of immune cells and production of inflammatory 
factors (7). The levels of LBP rapidly increase when LPS enters the circulation, even at a 
subclinical level (24). LBP is more stable than LPS in blood (half-life, 12-24 hours (25) vs. 
2-4 minutes (26)) and can be easily measured with immunoassay, making it a good
indicator of exposure to LPS.

Elevated LBP levels in blood have been shown to be associated with a higher risk of 
diverse chronic diseases, including cardiovascular disease (10), allergy (27), arthritis (12), 
Crohn’s disease (11), and metabolic syndrome (28). Similar to our findings (median level 
26.9 µg/ml), LBP concentrations in patients from these studies were around 20 µg/ml, 
which are much lower than the levels in acute-phase response (>100 µg/ml) (29). These 
low but increased LBP levels possibly reflect low-grade endotoxemia and chronic 
systemic inflammation. Chronic systemic inflammation, which, unlike acute 
inflammation, fails to resolve and leads to a persistent and chronic state (7), has been 
well acknowledged to be involved in PD pathogenesis (5). Our findings, in particular 
those among women and overweight/obese individuals, provide further support for the 
role of low-grade chronic inflammation in the development of PD. 

Excess LPS in the circulation has been hypothesized to result from leaky gut in PD due 
to intestinal barrier dysfunction. A few preliminary studies observed reduced tight 
junction protein expression in colonic samples of PD patients (18, 30, 31), and some 
studies reported increased intestinal permeability in patients (14, 18, 32, 33). Changes 
of gut microbiota composition may cause alterations in the gut barrier function and 
permeability. Recent studies have reported depletion of bacteria in the 
Lachnospiraceae family and the Faecalibacterium genus (34), which produce butyrate 
that is a fundamental energy source for intestinal epithelial cells and plays a role in the 
maintenance of colonic homeostasis (35, 36). Bacterial products such as LPS in gut 
lumen gain access to lamina propria and the bloodstream by gut hyperpermeability. In 
our study, higher LBP levels in PD cases, which are suggested as an indicator for 

6 

191

LBP and PD in EPIC4PD | Chapter 6



increased intestinal permeability (13), further supports the involvement of LPS from the 
intestine in PD pathogenesis. 

Aside from the inflammation pathway induced by LPS in the bloodstream, a putative 
mechanism by which compromised intestinal barrier may influence the brain in PD is 
the vagal pathway. It has been speculated that alpha-synuclein misfolding and 
aggregation initially start at the intersection of the gut lumen and the enteric nervous 
system, which are probably triggered by microbes and their products (37). Alpha-
synuclein may then be propagated to neurons in the central nervous system through 
the vagus nerve via retrograde transport, causing abnormal alpha-synuclein deposits in 
the brain, which is a hallmark of PD pathology (37). 

In our study, circulating LBP levels were higher in overweight/obese than in normal-
weight individuals, which is in line with previous findings from general populations in 
China (28, 38) and Spain (23). Effect modification of BMI of the association between LBP 
and PD risk was noted, and the association was strongest among overweight/obese 
individuals. This phenomenon is reasonable due to the low-grade chronic inflammation 
in the development of obesity (39), and gut microbiota is considered as one of the 
factors in the process. Many experimental studies demonstrated altered microbiota 
composition, enhanced intestinal permeability, low-grade endotoxemia in animal 
models of obesity (40-42). However, the exact biological mechanisms of obesity in the 
crosslink between gut and PD need further exploration. 

Several epidemiological studies have reported an association between LBP levels in 
serum or plasma and the presence of PD (Table S1) (14-18). However, contrary to our 
results, they all found lower LBP levels in clinically manifest PD compared to controls. 
Therefore, the difference in LBP is possibly driven by the consequences of the disease 
(e.g., chronic constipation that is typical of PD, changes in diet, medications) and does 
not necessarily contribute to the occurrence of the disease (the average disease 
duration in these studies ranged from 2 to 9.5 years (14-18)). One study indicated that 
LBP could be transported from the systemic circulation to the intestinal epithelial 
basolateral and finally into the gut lumen during endotoxemia (43). This transintestinal 
efflux possibly explains lower LBP levels in prevalent PD cases, especially when the 
disease progresses, and the intestinal barrier function deteriorates further. The 
mechanisms underlying discordant blood LBP levels before and after PD onset remain 
to be elucidated. 

A limitation of our study is that we did not simultaneously analyze proinflammatory 
cytokines, systemic endotoxin, and intestinal barrier function, thus we could not verify 
the mechanistic associations between intestinal microbiota composition, increased 
intestinal permeability, and LPS invasion. Second, our study was performed in patients 
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whose samples were taken during the prodromal phase of PD, on average eight years 
prior to the diagnosis. Constipation occurs as early as 20 years before the onset of 
motor symptoms (44), and we have no information about the presence of bowel 
dysfunction in our participants at the time of sample collection. Therefore, we cannot 
fully exclude that the higher LBP levels in our study were secondary to PD-related 
constipation. However the fact that we see no association between time-to-diagnosis 
and LBP levels while symptoms worsen closer to diagnosis might speak against this. 
Furthermore, the observed sex-related discrepancy of LBP levels and PD risk, as the 
association was significant in women only, suggests the potential presence of distinct 
sex-dependent pathological mechanisms, which need further confirmation in an 
independent cohort and warrant further exploration. 

Conclusion 

Overall, our results showed that elevated LBP levels prior to diagnosis were associated 
with higher PD risk in women and overweight/obese individuals. This is the first study 
to evaluate pre-diagnostic blood LBP levels, shedding some light on LPS-mediated 
inflammation in the gut-brain axis hypothesis of PD. Future prospective studies are 
needed to elucidate the association between markers of endotoxemia and the risk of 
PD. 
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Figure S2. Histogram with density plot of LBP concentrations on original scale (A) or on natural 
log scale (B), faceting on controls and Parkinson’s disease cases. 

 

 

  

Figure S1. Boxplot of relative standard 
deviations of two LBP measurements from 
the same subjects, grouped on eleven ELISA 
plates. 

 

198

Chapter 6 | LBP and PD in EPIC4PD



Chapter 7 

Gut Microbial Metabolites and Future Risk of 
Parkinson’s Disease: A Metabolome-wide 
Association Study 

Yujia Zhao#, Yunjia Lai#, Sirwan KL Darweesh, Bastiaan R Bloem, Lars Forsgren, 
Johnni Hansen, Verena A Katzke, Giovanna Masala, Sabina Sieri, 
Carlotta Sacerdote, Salvatore Panico, Raul Zamora-Ros, Maria-Jose Sánchez, 
José María Huerta, Marcela Guevara, Ana Vinagre-Aragon, Paolo Vineis, 
Christina M. Lill, Gary Miller, Susan Peters, Roel Vermeulen 

# Joint first authors 

Corresponding author: Roel Vermeulen 

Submitted 



Abstract 

Background: Gut microbiota is altered in individuals with Parkinson’s disease (PD). 
Metabolites derived from microbiota activity have been utilized as functional indicators 
to investigate the gut-brain interaction in PD by exploratory case-control studies. 
However, these studies were typically small-scale and adopted post-diagnosis 
measurements, which are susceptible to reverse causality. 

Objectives: To prospectively investigate the association between plasma microbial 
metabolites and PD risk within a metabolomics framework. 

Methods: A nested case-control study was conducted within the EPIC prospective 
population cohort, comprising 351 cases with incident PD and 351 controls who were 
matched on age, sex and study center. Plasma samples were obtained at the cohort 
recruitment, on average 8 years (ranged 0.2-18 years) before PD diagnosis for the cases. 
The untargeted metabolome was profiled in plasma, with 167 microbial metabolites 
annotated. We performed a metabolome-wide association study (MWAS) to identify 
metabolites associated with future PD risk. Microbiota-relevant pathways related to PD 
risk were explored across different groups based on sex, smoking status, body mass 
index, and lipopolysaccharide-binding protein (LBP) levels as a biomarker of intestinal 
permeability. 

Results: Our MWAS identified 13 microbial metabolites which were nominally 
associated with PD risk (p-value<0.05), including amino acids, bile acid, indoles, and 
hydroxy acid. However, none of these results remained significant after false discovery 
control (FDR=20%). Pathway analyses across the whole metabolome implicated three 
pathways in PD risk: (i) valine, leucine and isoleucine degradation, (ii) butanoate 
metabolism, and (iii) propanoate metabolism. In stratified analyses, more pronounced 
PD-associated microbial pathways were found in men, smokers, overweight/obese 
individuals, and those with higher LBP levels. 

Conclusion: This study suggests that changes in microbial metabolites may be a pre-
diagnostic feature of PD. We observed biologically plausible associations between 
microbial pathways and PD, and our results indicate that pathway enrichment may 
depend on individual characteristics. 

 

Keywords: Parkinson’s disease, gut-brain axis, microbial metabolites, pre-diagnostic 
biosamples, untargeted metabolomics 

  

200

Chapter 7 | Microbial Metabolites and PD in EPIC4PD



Introduction 

The hypothesis that the gut plays an etiologic role in the development of Parkinson’s 
disease (PD) has garnered interest, ever since the discovery of α-synuclein aggregation, 
a PD hallmark, originating in the gastrointestinal tract in many PD cases (1). Subsequent 
studies have shown alterations in the composition of microbiota in prevalent PD cases 
compared to healthy controls (2). The causes for these microbiota changes in prevalent 
cases and their functional consequences currently remain largely unclear. Importantly, 
as these measurements were performed in already diagnosed patients, it remains 
unclear whether these changes preceded the onset of PD or—alternatively—were a 
consequence of it, raising concerns about reversed causality. 

To overcome that issue, there is a need for prospective investigations which examine 
the association between measures of the microbiota and the future risk of PD. Ideally, 
such studies should not only focus on microbiota composition, but also on microbiota 
functionalities, dysbiosis, and host-microbe interactions. To this end, metabolites 
originating from microbiota activity and released in the blood have emerged as 
promising biomarkers (3). Microbial metabolites can be broadly categorized into three 
types: i) metabolites directly produced by gut microbiota from diets, such as short-chain 
fatty acids and indole derivatives; ii) metabolites initially produced by the host and 
subsequently modified by gut microbiota, such as secondary bile acids; iii) metabolites 
synthesized de novo by microbiota, such as polysaccharide A (4). These metabolites 
play crucial roles in host-microbiota crosstalk by participating in a range of physiological 
and pathological functions. They contribute to the modulation of energy metabolism, 
facilitate nutrition absorption, regulate the composition and function of gut microbiota, 
and influence intestinal barrier integrity and permeability (5). 

Previous studies have observed alterations in the levels of short-chain fatty acids and 
secondary bile acids in prevalent PD cases compared to controls (6, 7). Similar to studies 
on microbiota composition profiles, reverse causality cannot be ruled out since 
biosamples were collected post-diagnosis, while the disease process may have started 
up to 20 years earlier (8). Importantly, PD comorbidities such as constipation, as well as 
anti-PD medications like levodopa and catechol-O-methyltransferase inhibitors, could 
all influence gut microbiota and associated metabolites (7, 9). 

In this study, we utilized a population-based prospective cohort study, EPIC4PD, where 
plasma samples were collected at recruitment, and participants were subsequently 
followed until PD onset (10). Being one of the largest biorepositories for PD, EPIC4PD 
offers significant opportunities for biomarker discovery in PD research. An earlier study 
within this cohort showed that plasma lipopolysaccharide-binding protein (LBP), a 
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biomarker of bacterial invasion and intestinal permeability, is associated with an 
elevated risk of PD, indicating potential involvement of gut microbiota in the disease 
development (11). Here, we aim to conduct a metabolome-wide association study 
(MWAS) within the EPIC4PD cohort, focusing on plasma microbial metabolites, to 
further illuminate the gut-brain interplay in PD. 

Methods 

Study design 
This MWAS was performed as a nested case-control study within the EPIC4PD cohort, 
a multinational prospective cohort with up to two decades of follow-up. Cohort details 
and PD case ascertainment have been reported previously (10, 11). Out of the 734 
incident PD cases confirmed in the EPIC4PD cohort, 351 cases were eligible for inclusion 
in the current study based on the availability of their pre-diagnostic plasma samples. 
One control per case was selected with incidence density sampling matching by age at 
recruitment, sex, and study center. Detailed information on diet and lifestyle factors 
was collected at enrollment (12). 

Untargeted metabolomics 
Microbial metabolites in plasma were characterized using untargeted metabolomics. 
Plasma samples were analyzed by liquid chromatography-high resolution mass 
spectrometry (LC-HRMS) in two complementary modes, namely hydrophilic interaction 
liquid chromatography-electrospray ionization [ESI(+)] and reverse-phase 
chromatography-ESI(-), referred to as ‘HILIC-ESI+’ and ‘C18-ESI–’ modes, respectively 
(13). Individual ion features were picked and aligned in all samples with unique 
retention time (RT), mass-to-charge (m/z), and ion abundance (peak area). In total, 
9,435 features for HILIC-ESI+ and 8,439 for C18-ESI– were aligned across samples and 
kept for analysis after quality control procedures and batch effect corrections. Details 
of analytical methods and data processing are provided in Text S1. 

Before statistical analysis, ion features with >50% missing data were excluded. Missing 
values for the remaining features were considered below the limit of detection and 
imputed using quantile regression for left-censored missing data via the imputeLCMD R 
package (14). After imputation, 7,487 HILIC-ESI+ and 6,968 C18-ESI– features were 
retained for subsequent analysis. 

Annotation of microbial metabolites 
Structural annotation of microbial metabolites within the metabolome was conducted 
based on two sources, including a large internal spectral library (established from >800 
chemical standards) and a reference compound list of curated microbial metabolites 
from the Exposome-Explorer database that contains 457 unique structures (4). The 
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Exposome-Explorer database defines metabolites of microbial origin based on three 
types of evidence: a) in vitro experiments with fecal samples showing the metabolite 
production by gut bacteria; b) in vivo manipulation of gut microbiota with antibiotics, 
resulting in decreased metabolite concentrations; and c) comparison of metabolite 
concentrations in germ-free and conventional animals (4). In the Exposome-Explorer 
database, metabolites supported by both in vitro (a) and in vivo (b or c) evidence are 
considered largely or exclusively produced by human gut microbiota. Metabolites 
supported by only one type of evidence are probably to be influences or modified by 
microbiota. Details for compound annotation are provided in Text S1. 

Of the whole metabolome, 167 features (78 HILIC-ESI+ and 89 C18-ESI– features) were 
annotated as microbial metabolites, primarily falling into the categories of amino acids 
and peptides (n=42), fatty acyls (n=20), carbohydrates and conjugates (n=10), indoles 
and derivatives (n=10), phenylpropanoids and polyketides (n=10) (Table S1). 

Statistical analysis 
The relationship between microbial metabolism perturbation and PD was investigated 
by an MWAS, including the 167 microbial metabolites. Ion intensities of metabolites 
were log2-transformed and scaled by standard deviation (SD) for subsequent analyses. 
Conditional logistic regression was applied for the matched case-control sets. Odds 
ratios (ORs) and 95% confidence intervals (CIs) were estimated, with each model 
including a single metabolite as the independent variable. Smoking status and body 
mass index (BMI) were considered as covariates. Subjects with missing smoking status 
(n=23) were coded as ‘unknown’ and retained as a distinct group within the variable in 
the analyses. Multiple statistical tests in the MWAS raises concerns regarding an 
inflated rate of false positives if the significance cutoff remains at the conventionally 
stated p-value of 0.05 for a single test. Therefore, the Benjamini-Hochberg procedure, 
a commonly used multiple testing correction method, was applied and features were 
considered significant at a false discovery rate (FDR) threshold of 20%. 

Stratified analyses were conducted by sex, smoking status (smokers or non-smokers at 
baseline), and BMI (normal weight, <25 kg/m2; overweight/obese, ≥25 kg/m2) to assess 
potential effect modification of the associations between metabolome and PD. 
Stratified analyses were also performed for plasma LBP concentrations, grouping 
subjects into those with lower (<median, 25.6 µg/ml) and higher LBP levels (≥median). 
We conducted the following, separate sensitivity analyses by repeating the main model 
after: i) limiting PD cases to those diagnosed more than eight years since recruitment 
to further rule out possible reverse causality (n=170); ii) limiting PD cases to those with 
higher validity of diagnosis (n=188) (labeled as ‘definite’ and ‘very likely’ in the EPIC4PD 
cohort (10)); or iii) additional adjustment for individual food category (fruit, vegetables, 
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meat, cereal, dairy, fish/seafood intake) for which consumption was reported at 
baseline to account for the impact of diet on gut microbiota. 

We further examined the relationship between time-to-diagnosis (defined as years 
between recruitment and PD diagnosis) and the intensity of metabolites among PD 
cases, aiming to explore potential metabolite changes across different PD prodromal 
phases. Given the potential for a non-linear relationship, we utilized natural spline 
regression with 3 degrees of freedom. 

To enable a pathway enrichment analysis, we performed an MWAS including the whole 
metabolome (7,487 HILIC-ESI+ and 6,968 C18-ESI– features). The analytic framework 
and stratified analyses were same as those applied in the aforementioned MWAS 
focusing the microbial metabolites. Metabolites with a raw p-value below 0.05 were 
chosen for the pathway enrichment analysis using MetaboAnalystR 5.0 (15). The mass 
tolerance, analytical mode, and permutation number were set as ±5 ppm, mixed 
(‘positive’ for HILIC-ESI+ and ‘negative’ for C18-ESI–), and 1000, respectively. Enriched 
metabolic pathways were identified using a Gamma threshold (p-value derived from 
the permutation tests for the pathway) of 0.05 and required the presence of at least 
three metabolites associated with PD risk. This study presents enriched pathways 
related to gut microbiota. The selection criteria for determining pathways associated 
with the microbiota were knowledge-driven, based on extensive literature searches, 
particularly using the Exposome-Explorer database. For instance, the butanoate 
metabolism pathway is chosen due to documented evidence of butyric acid in both in 
vitro and in vivo studies within the database. 

Results 

Our study included participants with a median age of 60 years (ranged 38-76 years) at 
recruitment (Table S2). PD patients had a median period of 8 years (ranged 0.2-18 years) 
between recruitment and PD diagnosis. Smoking status and BMI at baseline were not 
significantly different between the case and control groups. 

In the MWAS of annotated microbial metabolites, 13 metabolites showed associations 
with PD risk (raw p-value<0.05); however, none met the FDR 20% threshold (Table 1). 
Most of these metabolites exhibited higher abundance in pre-diagnostic plasma 
samples of PD cases compared to controls, including five amino acids and derivatives 
(arginylglutamate, creatinine, leucylproline, phenylalanine, delta-aminovaleric acid), 
xylose, indole-3-propionic acid, purine, gallic acid, L-2-hydroxyglutarate and 4-
hydroxyphenylpyruvic acid. Conversely, dihydroresveratrol and taurocholic acid had 
lower plasma abundance among PD cases than their corresponding controls. 
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Short-chain fatty acids and bile acids are among the extensively studied microbial 
metabolites, and several metabolites in the two categories were identified in our study. 
Butyric acid, a common short-chain fatty acid, exhibited lower, albeit non-significant, 
abundance in PD cases compared to controls (OR 0.91, 95%CI 0.76-1.08). Primary bile 
acids, chenodeoxycholic and taurocholic acid, exhibited altered abundance within PD 
cases, although with opposing directions, with ORs of 1.13 (95%CI 0.97-1.31) and 0.81 
(95% 0.67-0.96), respectively. However, the secondary bile acids, including lithocholic 
acid, glycodeoxycholic acid, and 3-oxodeoxycholic acid, did not show obvious changes 
among cases and controls (Table S1). 

In the MWAS involving the whole metabolome, we identified 1000 metabolic features, 
comprising 547 HILIC-ESI+ and 453 C18-ESI– features, exhibiting nominal associations 
with PD risk (raw p-value<0.05), but none met the FDR 20% threshold. Through pathway 
enrichment analysis, three pathways relating to microbiota activity showed enrichment, 
namely valine, leucine and isoleucine degradation, butanoate metabolism, and 
propanoate metabolism (Figure 1). 

Stratified analyses showed limited overlap across subgroups of sex, smoking status, and 
BMI for PD-associated features (raw p-value<0.05) from the MWAS (Figure S1). Formal 
tests of interaction between sex, smoking status, BMI, and the 13 associated microbial 
metabolites (raw p-value<0.05) were non-significant for most features. Yet interestingly, 
microbiota-relevant pathways enriched for PD-associated features were 
heterogeneous across subgroups (Figure 1). In general, more PD-associated pathways 
were seen for individuals who were male, overweight/obese, and smoked. Only amino 
acid pathways were found associated with PD among individuals with lower LBP levels. 
In contrast, pathways of short-chain fatty acids (butanoate and propanoate) were 
further enriched among those with higher LBP levels. 

In the sensitivity analyses, we limited PD cases to those with higher certainty levels of 
diagnosis, as well as those diagnosed more than eight years since recruitment. The 
effect estimates for metabolic features were consistent with those from the analyses 
including all cases (Figure S2). Additional adjustments for food intake yielded similar 
results compared to the main analyses (Figure S3). 
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Discussion 

For the first time, we explored the associations between microbial metabolites and the 
future risk of PD within a large prospective cohort. We detected 13 metabolites which 
were nominally associated with PD risk. Furthermore, through the analysis of whole 
metabolome, we uncovered three microbiota-relevant pathways associated with PD 
risk, namely valine, leucine and isoleucine degradation, butanoate metabolism, and 
propanoate metabolism. Notably, individual characteristics might contribute to the 
variability in the involvement of gut microbiota in PD. 

Over the past decade, numerous preclinical and clinical studies have shed light on the 
highly complex relationship between the gut and the brain in PD. The prevailing is that 
there are two distinct PD phenotypes: the ‘gut-first’ and ‘brain-first’, each with different 
symptomatic trajectories (17). Pre-diagnostic changes of gut microbiota may primarily 
be associated with the ‘gut-first’ phenotype but not the ‘brain-first’ one. However, the 
mechanisms behind the varied impacts of gut microbiota on PD remain unexplored. 

Previous studies have suggested increased blood levels of both short-chain fatty acids 
and secondary bile acids among individuals with PD compared with healthy controls 
(sTable3) (6, 18). However, our study observed minimal changes in the abundance of 
these metabolites. These discrepancies may arise from differences in the timing of 
metabolite assessment, after-diagnostic versus pre-diagnostic samples. Nonetheless, 
alterations in the pathway level of short-chain fatty acid metabolism (butanoate and 
propanoate) were found to be associated with PD in our study. Therefore, further 
exploration of the involvement and mechanisms of short-chain fatty acids and 
secondary bile acids in the gut-brain axis is warranted. 

Our study presents novel evidence of possible involvement of certain microbial 
metabolites in PD development, and their observed associations aligns with their 
previously implicated roles in the neurological system. For example, phenylalanine and 
L-2-hydroxyglutarate, recognized for their neurotoxic effects (19, 20), were associated 
with increased PD risk, whereas dihydroresveratrol, known for its neuroprotective 
properties (21), showed an inverse association with PD. Notably, phenylalanine, being 
a precursor of dopamine, may be influenced by dopamine medication. However, this 
bias is mitigated by utilizing pre-diagnostic samples from PD cases in our study. 
Interestingly, despite its well-known anti-inflammatory and antioxidant properties (22), 
indole-3-propionic acid displayed a positive relationship with PD risk. 

In addition to their direct effects on the brain, blood metabolites and pathways may 
serve as indicator of gut-related pathogenic processes in PD. α-Synuclein aggregation, 
a PD hallmark, potentially originates in the enteric nervous system in cases of the ‘gut-
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first’ PD type (1). Arginylation, a post-transcriptional modifications of α-synuclein 
involving the transfer of arginine to aspartate or glutamate (23), has been revealed to 
reduce the aggregation of α-synuclein, subsequently mitigating neurotoxicity (24). 
Notably, in our study, one arginylation product, arginylglutamate, showed a positive 
association with PD risk, suggesting an increased arginylation process of α-synuclein 
preceding the onset of PD. In a healthy gut, microbiota reside as biofilms on the 
intestinal mucus (25). However, under environmental pressures, these biofilms get 
disassembled, leading to the release of pathogenic bacteria. These pathogens might 
cause increased intestinal inflammation and permeability—two critical steps implicated 
in the gut-brain crosstalk of PD (26). Microbiota-produced amino acids, like aspartate, 
leucine, methionine, tyrosine and tryptophan, can trigger biofilm disassembly (27, 28). 
Importantly, our study linked pathways involving these amino acids with PD among 
analyses of all subjects or subgroups. Arginylation of α-synuclein and biofilm 
disassembly need further confirmation in the gut-related pathogenesis of PD. 

This study noted differences in metabolite profiles and pathway enrichment related to 
sex, smoking status, and BMI. Similarly, our previous study on another microbiota-
related marker, LBP, also revealed sex- and BMI-specific effects (11). Among smokers 
and overweight/obese individuals, more microbial pathways were found to be 
associated with PD, and stronger association between LBP and PD risk was observed 
among overweight/obese individuals. The effect modification of smoking and obesity 
on the relationship of microbial dysbiosis and PD is plausible. Previous research has 
indicated that both factors can induce gut microbiota dysbiosis, increased intestinal 
permeability and contribute to gut inflammation in animal models (29, 30). However, 
sex appears to play distinct roles. The positive association between LBP and PD risk was 
observed exclusively among women (11), whereas a larger number of microbial 
pathways were identified for men in the current study. These sex-related differences 
may be attributed to sex hormones, which are known as a potent driver to affect the 
microbiota composition (31). Additionally, diets, antibiotics, and environmental factors 
impact gut microbiota in a sex-dependent manner. In summary, our research suggests 
that personal traits and lifestyles might influence the involvement of the gut-brain axis 
in PD, potentially contributing to differentiation of ‘gut-first’ and ‘brain-first’ subtypes. 
Further investigation is warranted to elucidate the mechanisms through which these 
factors affect microbial metabolites and other microbiota-related markers, such as LBP. 

Besides personal characteristics, this study observed the impact of LBP on the 
relationship between metabolites and PD. Individuals with higher levels of LBP 
exhibited more microbiota-relevant pathways compared to those with lower LBP levels. 
Elevated LBP levels has been proposed as a potential biomarker for intestinal 

7 

209

Microbial Metabolites and PD in EPIC4PD | Chapter 7



permeability (32). Therefore, our findings imply the presence of intestinal leakage and 
increased microbial metabolites in the blood. 

Our study's strengths include using blood samples collected up to 18 years before PD 
diagnosis, minimizing influences from prodromal symptoms and medication. Second, 
our sample size featuring 351 case-control pairs is among the largest studies of 
microbial metabolites in PD. This surpasses previous studies, which included a 
maximum of 96 PD patients (Table S3). Third, our untargeted metabolomics framework 
broadens the scope of microbial alterations examined, including both metabolite and 
pathway analyses. This expansion enables a more comprehensive analysis of the role 
of gut microbiota in PD development. Fourth, the cases and controls in this study were 
drawn from the general European population, and their demographics are similar to 
those reported in other community-based European PD research, albeit with slightly 
younger age at diagnosis age. Therefore, our findings can be fairly generalized to the 
wider population of individuals affected by PD. 

However, some limitations are acknowledged. First, extended prodromal phases of PD 
could still introduce residual reverse causality. Specifically, early prodromal symptoms 
of PD such as chronic constipation and loss of taste and smell, which may occur up to 
10 years before the onset of the cardinal motor symptoms (33), might influence the gut 
microbiota. Sensitivity analysis with a cut-off of 8 years before diagnosis was consistent 
with the main findings. Additionally, an extended analysis regressing time-to-diagnosis 
(varying from <1 to 18 years) to the 13 metabolites prospectively related to PD in our 
study showed no effect between time-to-diagnosis and abundance of these 
metabolites (Figure S4). We therefore infer that the influence of the prodromal stage 
was limited in our study. Second, many microbial metabolites are co-metabolized by 
the host and microbiota. It is difficult to distinguish the contributions from microbiota, 
particularly without direct measurement of the gut microbiota. Third, the microbiota 
undergoes a rapid turnover and exhibit high heterogenous between individuals. Even 
with the large sample size available, this study might still lack sufficient power to detect 
statistically significant changes. 

In summary, among the reported microbiota-relevant metabolites in humans (4), our 
study singled out a number of metabolites nominally associated pre-diagnostically with 
PD incidence. These functional metabolites were linked to biological pathways including 
valine, leucine and isoleucine degradation, butanoate metabolism, and propanoate 
metabolism. To our knowledge, this is the first large-scale prospective study examining 
metabolites relevant to gut microbiota in pre-clinical PD. The results of this study 
warrant further investigation of the role of the gut microbiota in PD development. 
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Text S1. Methods for untargeted metabolomics measurement and compound 
annotation 

To profile circulating microbial metabolites in EPIC4PD, we performed global 
metabolomics analysis of all plasma samples using a liquid chromatography-high 
resolution mass spectrometry (LC-HRMS)-based platform (1, 2). Further de novo 
structural annotation was conducted for untargeted, semi-quantitative profiling of 
microbial metabolites through an integrated cheminformatic approach. 

Sample preparation 

Blood plasma samples were thawed on ice, and a 50 μL sample was aliquoted and 
extracted into 100 μL cold acetonitrile (ACN) spiked with internal standard mix 
(ACN:plasma, 2:1, v/v). The extracts were cold incubated under -20 ºC before 
centrifugation for protein and particulate removal. Ten µL of the supernatant was 
injected on LC-MS, loading ~3.33 μL raw plasma on the column. Sample extracts were 
injected in triplicate alongside intermittent injection of quality control (QC) extracts of 
NIST1953 and BioIVT plasma, obtained respectively from the National Institute of 
Standards and Technology (NIST) (Gaithersburg, MD, USA) and Bioreclamation Inc. 
(New Cassel, NY, USA). 

Instrumental analysis 

The injected extracts were chromatographically separated, ionized, and analyzed on a 
Thermo Fisher Scientific Vanquish dual chromatograph coupling to a high-resolution 
accurate-mass (HRAM) Orbitrap Exploris™ 240 mass spectrometer interfaced with a 
heated electrospray ionization (ESI) source (Waltham, MA, USA). To maximize the 
detection of polar and nonpolar metabolites, two complementary analyses were 
performed, namely hydrophilic interaction liquid chromatography (HILIC)-ESI(+) and 
reverse-phase chromatography (RPC)-ESI(-), which were further referred to as “HILIC-
ESI+” and “C18-ESI–,” both operated in full scan mode at 120,000 mass resolution 
(FWHM) with a mass-to-charge (m/z) range of 85-1,275. Stringent quality assurance and 
quality control (QA/QC) procedures were applied, including sample randomization, 
timely mass calibration, and routine check of instrumental sensitivity. For this study, a 
total of 4,872 *.RAW data were acquired (18 batches), covering triplicate sample 
injections and intermittent QC injections. 

Data processing 

The acquired *.RAW data were converted to *.mzXML format using ProteoWizard 
msConvert and subject to feature extraction and sample alignment using the apLCMS 
package of R (3). Crude alignment feature tables yielded separately for HILIC-ESI+ and 
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C18-ESI–, both consisting of uniquely detected features (m/z, retention time) and their 
ion abundance (peak area) across samples. The feature tables are processed through 
xMSanalyzer (4) where ion abundances were median summarized, cleaned up by QC, 
and corrected for batch effects (ComBat), yielding 9,435 ion features for HILIC-ESI+ and 
8,439 for C18-ESI–  for statistical and informatic analyses. 

Compound identification 

Structural annotation of compounds derived from microbiota was implemented 
through an integrated cheminformatic strategy. We first retrieved a set of 457 
metabolites relevant to gut microbiota, by referring to the Exposome-Explorer 
microbial exposome database (5). We built internal RT-m/z libraries respectively for 
HILIC-ESI+ and C18-ESI– modes using hundreds of authentic chemical standards 
purchased from IROA Technologies (Chapel Hill, NC, USA) and Sigma Aldrich (St. Louis, 
MO, USA), from which some acknowledged microbial metabolites were included for 
quick and reliable identification. Meanwhile, to expand the coverage, we leveraged in 
silico cheminformatic analyses for annotating all plausible metabolites relevant to 
microbiota. Using accurate m/z, isotopic ratios, and chromatographic retention time 
(RT), we annotated detected peaks based on formula prediction (Seven Golden Rules) 
(6, 7) and chromatographic retention time estimation (Retip, XGBoost algorithm) (8), 
and manually curated based on extensive bioanalytical inferences and expert 
consultation. The level of annotation confidence was assigned based on the Schymanski 
scale for LC-HRMS metabolomics practice (9, 10). Annotation confidence was assigned 
as Level 1 for features matched with our in-house library, and Level 2 for features with 
predicted parameters but not validated by authentic chemical standards. 
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Table S1. Annotated microbial metabolites and results of metabolome-wide association study 
with Parkinson’s disease 

Metabolite name 
Evidence on  

microbial  
origin1 

LC-MS 
mode 

Retention 
time (s) m/z Annotation 

level2 OR (95% CI)3 

Amino acids and peptides, n=42  
Asparagine Both HILIC-ESI+ 133.0608 85.7 1 0.98 (0.81-1.18) 
Aspartic acid Both C18-ESI– 132.0302 23.5 1 1.02 (0.83-1.24) 
Citrulline (C18neg) Both C18-ESI– 174.0885 29.2 1 0.99 (0.85-1.15) 
Citrulline (HILpos) Both HILIC-ESI+ 176.1031 83 1 1.15 (0.98-1.36) 
Glutamic acid (C18neg) Both C18-ESI– 146.0459 27.5 1 1.05 (0.88-1.25) 
Glutamic acid (HILpos) Both HILIC-ESI+ 148.0606 68.9 1 1.03 (0.84-1.25) 

Histidine Both C18-ESI– 154.0623 35.3 1 1.09 (0.92-1.30) 
Lysine Both C18-ESI– 145.0982 54.1 2 0.87 (0.72-1.05) 
Methionine (C18neg) Both C18-ESI– 148.0438 32.5 2 0.99 (0.84-1.17) 
Methionine (HILpos) Both HILIC-ESI+ 150.0578 47.9 1 1.02 (0.83-1.24) 
Ornithine Both C18-ESI– 131.0827 35.5 2 1.02 (0.86-1.21) 
Phenylalanine (C18neg) Both C18-ESI– 164.0716 34.3 2 1.19 (1.01-1.41) 
Phenylalanine (HILpos) Both HILIC-ESI+ 166.0839 46.4 1 1.09 (0.92-1.28) 
Proline betaine Both HILIC-ESI+ 144.102 57.5 1 0.95 (0.80-1.13) 
Tyrosine (C18neg) Both C18-ESI– 180.0667 33.7 1 1.04 (0.89-1.22) 
Tyrosine (HILpos) Both HILIC-ESI+ 182.0809 53.1 1 1.04 (0.87-1.23) 

delta-Aminovaleric acid Both C18-ESI– 116.0718 30.4 1 1.18 (1.00-1.40) 
3,4-Dihydroxy-L-
phenylalanine 

Only in vivo C18-ESI– 196.0593 33 1 0.98 (0.83-1.15) 

4-Hydroxyproline Only in vivo HILIC-ESI+ 132.0654 63.3 1 0.97 (0.83-1.13) 
Arginine Only in vivo HILIC-ESI+ 175.1191 92.7 2 0.98 (0.84-1.16) 
Arginylglutamate 
(C18neg) 

Only in vivo C18-ESI– 302.1553 32.2 2 1.22 (1.03-1.45) 

Arginylglutamate 
(HILpos) 

Only in vivo HILIC-ESI+ 304.16 105.3 2 1.08 (0.92-1.28) 

Arogenic acid Only in vivo HILIC-ESI+ 228.0812 55.7 2 1.02 (0.87-1.21) 

Aspartylhistidine Only in vivo C18-ESI– 269.0876 32 2 1.05 (0.87-1.26) 

Creatine (C18neg) Only in vivo C18-ESI– 130.0594 34.9 2 1.12 (0.92-1.36) 
Creatine (HILpos) Only in vivo HILIC-ESI+ 132.0767 62.3 2 0.97 (0.82-1.16) 
Creatinine Only in vivo HILIC-ESI+ 114.0662 33.6 1 1.22 (1.01-1.48) 
D-Alanyl-D-alanine Only in vivo HILIC-ESI+ 161.0922 73.9 2 1.01 (0.86-1.18) 
Diaminopimelic acid Only in vivo HILIC-ESI+ 191.1027 81.4 2 1.06 (0.83-1.37) 
Dimethylarginine 
(ADMA) 

Only in vivo HILIC-ESI+ 203.1504 76.9 1 1.22 (1.00-1.51) 

Glutamine (C18neg) Only in vivo C18-ESI– 145.0619 29.7 1 1.03 (0.87-1.21) 
Glutamine (HILpos) Only in vivo HILIC-ESI+ 147.0766 79.5 1 1.04 (0.88-1.24) 
Isoleucine Only in vivo HILIC-ESI+ 132.102 40.3 1 1.07 (0.89-1.28) 

Leucylproline Only in vivo HILIC-ESI+ 229.1548 50 2 1.27 (1.03-1.55) 
N-Acetyl-L-glutamic acid Only in vivo HILIC-ESI+ 190.0762 40.6 2 1.06 (0.89-1.25) 
Phenylacetylglutamine Only in vivo C18-ESI– 263.1038 30.1 2 1.04 (0.89-1.21) 
Phenylacetylglycine Only in vivo HILIC-ESI+ 194.0811 20 1 0.95 (0.79-1.14) 
Pyroglutamic acid 
(C18neg) 

Only in vivo C18-ESI– 128.0354 29.5 2 1.00 (0.80-1.26) 

Pyroglutamic acid 
(HILpos) 

Only in vivo HILIC-ESI+ 130.0499 35.4 1 1.02 (0.86-1.21) 

Threonine (C18neg) Only in vivo C18-ESI– 118.0511 38.3 2 0.99 (0.84-1.16) 
Threonine (HILpos) Only in vivo HILIC-ESI+ 120.0655 68.2 1 1.02 (0.85-1.23) 

beta-Alanine Only in vivo HILIC-ESI+ 90.055 60.4 1 1.09 (0.90-1.32) 
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Fatty acyls, n=20 
4-Butyric acid betaine Both HILIC-ESI+ 146.1177 43 2 0.96 (0.79-1.16) 
Butyric acid (4:0) Both HILIC-ESI+ 89.0597 28.2 2 0.91 (0.76-1.08) 
Margaric acid (17:0) Both C18-ESI– 269.2486 168.7 1 0.93 (0.79-1.10) 
Palmitic acid (16:0) Both C18-ESI– 255.233 161.3 2 0.93 (0.79-1.11) 
Palmitoleic acid (cis-
16:1n-7) (C18neg)

Both C18-ESI– 253.2173 148.9 1 0.98 (0.82-1.16) 

Palmitoleic acid (cis-
16:1n-7) (HILpos)

Both HILIC-ESI+ 255.2321 24.9 2 0.96 (0.82-1.14) 

Acetylcarnitine Only in vivo HILIC-ESI+ 204.123 38.9 1 1.10 (0.93-1.29) 
Dihomo-gamma-linolenic
acid (DGLA) (C18neg)

Only in vivo C18-ESI– 305.2482 154.7 1 1.00 (0.84-1.19) 

Dihomo-gamma-linolenic
acid (DGLA) (HILpos)

Only in vivo HILIC-ESI+ 307.2627 18.4 2 1.04 (0.88-1.23) 

Myristic acid (14:0) Only in vivo C18-ESI– 227.2017 144.7 2 0.94 (0.79-1.11) 
Stearic acid (18:0) Only in vivo C18-ESI– 283.2644 181.7 2 0.96 (0.81-1.13) 
5-Dodecenoic acid 
(C18neg)

Only in vitro C18-ESI– 197.1547 104.5 2 0.87 (0.70-1.08) 

5-Dodecenoic acid 
(HILpos) 

Only in vitro HILIC-ESI+ 199.1694 25.2 2 1.06 (0.83-1.36) 

Conjugated linoleic acids 
(CLA) 

Only in vitro HILIC-ESI+ 281.2477 24.6 2 1.04 (0.88-1.22) 

Isocaproic acid (6:0) Only in vitro HILIC-ESI+ 117.091 22.4 1 0.98 (0.80-1.19) 
Lauric acid (12:0) Only in vitro C18-ESI– 199.1703 124.8 2 0.86 (0.73-1.03) 
Myristoleic acid (cis-
14:1n-5) (C18neg) 

Only in vitro C18-ESI– 225.186 133.2 2 0.95 (0.80-1.14) 

Myristoleic acid (cis-
14:1n-5) (HILpos) 

Only in vitro HILIC-ESI+ 227.2007 24.4 2 1.00 (0.83-1.19) 

Oleic acid (cis-18:1n-9) 
(C18neg) 

Only in vitro C18-ESI– 281.2487 163.9 2 1.02 (0.86-1.20) 

Oleic acid (cis-18:1n-9) 
(HILpos) 

Only in vitro HILIC-ESI+ 283.2635 24.9 2 1.01 (0.85-1.20) 

Carbohydrates and conjugates, n=10 
2-Dehydro-3-deoxy-D-
arabino-heptonate-7-
phosphate

Only in vivo C18-ESI– 287.0126 52 2 1.02 (0.83-1.24) 

D-Ribulose-5-phosphate Only in vivo C18-ESI– 229.018 31.6 2 1.12 (0.96-1.31) 
Glucose 6-phosphate Only in vivo C18-ESI– 259.0283 32.6 2 1.01 (0.87-1.18) 
Glyceric acid Only in vivo C18-ESI– 105.0194 27.1 1 0.98 (0.80-1.19) 
Indole-3-carboxylic acid 
glucuronide 

Only in vivo HILIC-ESI+ 338.081 68.9 2 1.03 (0.85-1.25) 

N-Acetylglucosamine Only in vivo C18-ESI– 220.0831 46.8 2 0.89 (0.73-1.09) 
N-Acetylneuraminic acid Only in vivo HILIC-ESI+ 310.1132 86.7 2 0.89 (0.75-1.06) 
Xylose (C18neg) Only in vivo C18-ESI– 149.0456 37.3 2 1.25 (1.05-1.49) 

Xylose (HILpos) Only in vivo HILIC-ESI+ 151.0618 47.4 2 1.04 (0.86-1.26) 
p-Cresol glucuronide Only in vivo HILIC-ESI+ 285.0994 40.1 2 1.11 (0.94-1.32) 
Indoles and derivatives, n=10 
Indole-3-aldehyde Both HILIC-ESI+ 146.0601 40.2 2 1.04 (0.87-1.24) 
Indoleacetic acid Both C18-ESI– 174.0561 43.7 2 0.96 (0.81-1.15) 
Indolelactic acid Both C18-ESI– 204.0666 31.8 2 0.99 (0.84-1.17) 
Indolepropionic acid 
(C18neg) 

Both C18-ESI– 188.0718 32.6 1 1.02 (0.87-1.20) 

Indolepropionic acid 
(HILpos) 

Both HILIC-ESI+ 190.0864 34.2 1 1.22 (1.05-1.43) 

Tryptophan (C18neg) Both C18-ESI– 203.0825 33.7 2 1.03 (0.87-1.21) 
Tryptophan (HILpos) Both HILIC-ESI+ 205.0973 41.1 1 1.06 (0.90-1.26) 
Indoleacrylic acid Only in vitro HILIC-ESI+ 188.0707 41 2 1.04 (0.88-1.24) 
Indolepyruvic acid Only in vitro C18-ESI– 202.0492 32.3 2 0.98 (0.84-1.15) 
Skatole Only in vitro C18-ESI– 130.0663 65.3 2 0.85 (0.72-1.01) 

7 

217

Microbial Metabolites and PD in EPIC4PD | Chapter 7



Phenylpropanoids and polyketides, n=10 
3-
Hydroxyphenylpropionic 
acid 

Both HILIC-ESI+ 167.0709 17.8 2 1.00 (0.85-1.17) 

3-Phenylpropionic acid Both C18-ESI– 149.0609 40.1 2 0.90 (0.78-1.05) 
Dihydrodaidzein Both C18-ESI– 255.0632 77.4 2 1.14 (0.94-1.38) 
Dihydroferulic acid Both C18-ESI– 195.0664 19.7 1 1.02 (0.87-1.18) 
Equol Both C18-ESI– 241.0918 58.5 2 1.00 (0.85-1.19) 
Ferulic acid Both C18-ESI– 193.0499 52.9 2 0.92 (0.79-1.08) 
Gentiobiose Only in vivo HILIC-ESI+ 343.1233 91 2 1.09 (0.91-1.31) 
Cinnamic acid (C18neg) Only in vitro C18-ESI– 147.0452 32.9 2 1.10 (0.93-1.30) 
Cinnamic acid (HILpos) Only in vitro HILIC-ESI+ 149.0597 41.1 2 1.11 (0.96-1.28) 

Dihydroresveratrol Only in vitro C18-ESI– 229.0808 73.6 2 0.84 (0.70-1.00) 
Purines and derivatives, n=9 
Adenine (C18neg) Only in vivo C18-ESI– 134.0473 50.7 2 0.93 (0.75-1.15) 
Adenine (HILpos) Only in vivo HILIC-ESI+ 136.0619 42.5 2 1.10 (0.92-1.31) 
Guanine Only in vivo HILIC-ESI+ 152.0535 68.3 2 0.95 (0.78-1.17) 
Hypoxanthine (C18neg) Only in vivo C18-ESI– 135.0304 28.6 1 1.01 (0.82-1.25) 
Hypoxanthine (HILpos) Only in vivo HILIC-ESI+ 137.0452 40.7 1 1.11 (0.84-1.48) 
Uric acid (C18neg) Only in vivo C18-ESI– 167.021 30.4 2 0.98 (0.83-1.17) 

Uric acid (HILpos) Only in vivo HILIC-ESI+ 169.0361 57.5 1 1.17 (0.96-1.43) 

Xanthine Only in vivo HILIC-ESI+ 153.0408 42.3 1 1.03 (0.87-1.23) 
Purine Only in vitro C18-ESI– 119.0351 34.7 2 1.24 (1.03-1.48) 
Keto acids and derivatives, n=7 
2-Oxobutyric acid 
(C18neg) 

Only in vivo C18-ESI– 101.0245 30.7 2 1.15 (0.97-1.36) 

2-Oxobutyric acid 
(HILpos) 

Only in vivo HILIC-ESI+ 103.039 53.1 2 0.94 (0.79-1.11) 

2-Oxoglutaric acid Only in vivo C18-ESI– 145.0142 27.3 1 0.89 (0.71-1.12) 
3-Methyl-2-oxobutyric 
acid (C18neg) 

Only in vivo C18-ESI– 115.0401 31.6 2 1.19 (0.95-1.49) 

3-Methyl-2-oxobutyric 
acid (HILpos) 

Only in vivo HILIC-ESI+ 117.0567 38.7 2 1.08 (0.91-1.28) 

4-Methyl-2-oxovaleric 
acid 

Only in vivo C18-ESI– 129.0558 32.4 2 1.06 (0.86-1.30) 

Oxaloacetic acid Only in vitro C18-ESI– 130.9986 27.7 2 1.13 (0.93-1.36) 

Phenols, n=7       
1,2-Dihydroxybenzene Both C18-ESI– 109.0296 31.3 2 1.00 (0.86-1.16) 
3,4-
Dihydroxybenzeneacetic 
acid 

Both C18-ESI– 167.0349 29.6 1 1.15 (0.95-1.38) 

Homovanillic acid Both C18-ESI– 181.0507 28.1 2 1.13 (0.96-1.33) 
5-(3',4',5'-
Trihydroxyphenyl)-
gamma-valerolactone 

Only in vitro C18-ESI– 223.0575 30.1 2 0.89 (0.75-1.06) 

5-(3',4'-
Dihydroxyphenyl)-
gamma-valerolactone 

Only in vitro C18-ESI– 207.0664 30.4 2 1.05 (0.89-1.24) 

5-(3',4'-
Dihydroxyphenyl)-valeric 
acid 

Only in vitro C18-ESI– 209.0809 36.2 2 0.99 (0.84-1.18) 

5-(3'-Hydroxyphenyl)-
gamma-valerolactone 

Only in vitro C18-ESI– 191.071 62 2 0.99 (0.84-1.17) 

Organic acids and derivatives, n=6 
Guaiacol sulfate Only in vivo C18-ESI– 203.0004 29.6 2 0.97 (0.83-1.13) 

Indoxyl sulfate Only in vivo C18-ESI– 212.0016 32 1 1.02 (0.88-1.18) 
Taurine (C18neg) Only in vivo C18-ESI– 124.0075 31.3 2 0.88 (0.74-1.05) 
Taurine (HILpos) Only in vivo HILIC-ESI+ 126.0219 119.7 2 1.17 (0.98-1.38) 
p-Cresol sulfate Only in vivo C18-ESI– 187.0012 35 2 1.02 (0.87-1.19) 
N1-Acetylspermidine Only in vitro HILIC-ESI+ 188.1757 83.9 2 1.00 (0.84-1.20) 
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Benzoic acids and derivatives, n=5 
Gallic acid Both C18-ESI– 169.0134 38.8 2 1.22 (1.03-1.46) 

Hippuric acid (C18neg) Both C18-ESI– 178.051 30.2 1 1.02 (0.88-1.19) 
Hippuric acid (HILpos) Both HILIC-ESI+ 180.0658 29.2 1 1.08 (0.93-1.26) 
2,6-Dihydroxybenzoic 
acid 

Only in vitro C18-ESI– 153.0186 32.5 1 1.03 (0.87-1.22) 

Syringic acid Only in vitro C18-ESI– 197.0436 32.2 2 1.01 (0.82-1.25) 
Bile acids and derivatives, n=5 
Chenodeoxycholic acid Both C18-ESI– 391.286 100.1 1 1.13 (0.97-1.31) 
Lithocholic acid Both C18-ESI– 375.293 153.3 2 0.92 (0.78-1.08) 

Glycodeoxycholic acid Only in vivo HILIC-ESI+ 450.3206 27.7 1 0.95 (0.79-1.13) 

Taurocholic acid Only in vivo HILIC-ESI+ 516.3055 35.5 1 0.81 (0.67-0.96) 
3-oxodeoxycholic acid Only in vitro C18-ESI– 389.27 101.1 2 1.03 (0.89-1.19) 
Pyrimidines and derivatives, n=5 
Cytosine Only in vivo HILIC-ESI+ 112.0507 50 2 1.11 (0.95-1.30) 
Orotic acid Only in vivo HILIC-ESI+ HILIC-ESI+ 94.7 2 1.11 (0.93-1.32) 
Thymine Only in vivo HILIC-ESI+ 127.0503 27.4 2 1.09 (0.93-1.28) 
Uracil Only in vivo HILIC-ESI+ 113.0346 30.7 1 0.94 (0.80-1.10) 
Thiamin Only in vitro HILIC-ESI+ 265.1168 41.4 2 1.16 (0.98-1.37) 
Organicnitrogen compounds, n=4 
Alanine betaine Both C18-ESI– 130.0874 35.8 2 1.07 (0.90-1.28) 
N-Oleoylethanolamine Only in vivo HILIC-ESI+ 326.3048 25.2 2 1.16 (0.95-1.41) 
Choline Only in vitro HILIC-ESI+ 104.107 38.9 1 0.89 (0.75-1.07) 
Histamine Only in vitro HILIC-ESI+ 112.0898 64.6 2 1.04 (0.89-1.21) 
Organoheterocyclic compounds, n=4 
Piperidine Both HILIC-ESI+ 86.0965 40.3 2 1.05 (0.88-1.26) 

Ascorbic acid (C18neg) Only in vivo C18-ESI– 175.0248 29.9 2 1.09 (0.90-1.32) 
Ascorbic acid (HILpos) Only in vivo HILIC-ESI+ 177.0441 66.2 2 0.92 (0.78-1.07) 
Biotin Only in vitro C18-ESI– 243.0749 54.7 2 1.13 (0.89-1.43) 
Pyridines and derivatives, n=4 
4-Pyridoxic acid Only in vivo C18-ESI– 182.0447 37.4 1 1.09 (0.92-1.29) 
Nicotinamide Only in vivo HILIC-ESI+ 123.0553 35.8 1 1.11 (0.93-1.34) 
Pyridoxal (C18neg) Only in vivo C18-ESI– 166.051 58.4 2 1.08 (0.92-1.26) 
Pyridoxal (HILpos) Only in vivo HILIC-ESI+ 168.0641 45.6 2 0.89 (0.75-1.06) 
Alcohols and polyols, n=3 
4-
Hydroxycyclohexylacetic 
acid 

Only in vivo C18-ESI– 157.0871 31.8 1 0.91 (0.77-1.06) 

Pantothenic acid Only in vivo HILIC-ESI+ 220.118 33 2 0.94 (0.81-1.09) 
Quinic acid Only in vitro HILIC-ESI+ 193.0687 63.8 2 1.08 (0.90-1.29) 
Carboxylic acids and derivatives, n=3 
Methylmalonic acid 
(MMA) 

Both C18-ESI– 117.0194 27.9 2 1.02 (0.86-1.20) 

Citric acid Only in vitro C18-ESI– 191.0198 27.8 1 1.15 (0.95-1.40) 
Malonic acid Only in vitro C18-ESI– 103.0037 29 2 0.92 (0.74-1.13) 
Hydroxy acids and derivatives, n=3 
Malic acid (C18neg) Only in vivo C18-ESI– 133.0143 27.9 1 1.05 (0.88-1.25) 
Malic acid (HILpos) Only in vivo HILIC-ESI+ 135.0276 48.9 2 1.15 (0.96-1.39) 
L-2-Hydroxyglutaric acid Only in vitro C18-ESI– 147.0299 29.2 1 1.40 (1.05-1.85) 
Steroids and derivatives, n=3 
16alpha-Hydroxyestrone Only in vitro C18-ESI– 285.1543 70.4 2 1.03 (0.88-1.21) 
Estrone (C18neg) Only in vitro C18-ESI– 269.1576 127 2 0.94 (0.80-1.10) 
Estrone (HILpos) Only in vitro HILIC-ESI+ 271.166 23.4 1 1.06 (0.90-1.25) 
Benzene and substituted derivatives, n=2 
4-Hydroxyphenylpyruvic 
acid 

Only in vivo HILIC-ESI+ 181.053 41 2 1.30 (1.11-1.52) 

Phenylpyruvic acid Only in vitro C18-ESI– 163.0401 34 2 0.99 (0.84-1.16) 
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Lipids and lipid-like molecules, n=2 
alpha-Tocopherol Only in vivo HILIC-ESI+ 431.3837 24.6 2 0.97 (0.82-1.14) 

Phylloquinone Only in vivo HILIC-ESI+ 451.3608 23.9 2 1.04 (0.89-1.22) 
Carbonyl compound, n=1      
Kynurenine Only in vitro HILIC-ESI+ 209.0921 42.7 1 1.08 (0.92-1.28) 
Nucleoside, n=1 
Uridine Only in vivo C18-ESI– 243.0622 33.8 1 1.01 (0.85-1.19) 

Penol ether, n=1       
5-(3'-Methoxyphenyl)valeric 
acid Only in vitro HILIC-ESI+ 209.1172 25.4 2 0.96 (0.81-1.16) 

 

1 ‘Both’ indicated that the specific metabolite simultaneously met in vitro (production by gut bacteria) and in 
vivo (reduction of concentrations by antibiotics or in germ-free animals) evidence supporting a microbial 
origin. ‘Only in vivo/in vitro’ indicates that evidence was limited to either in vivo or in vitro studies. 

2 Features matched with the in-house library were assigned with Level 1 annotation, and features matched 
with predicted chemical retention time with Level 2 annotation. 

3 Main analyses included all subjects. Conditional logistic regression for the matched case-control sets, 
adjusted by smoking status and BMI. OR was calculated per standard deviation (SD) increase of log2 ion 
intensity. 
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Table S2. Basic information/demographics of participants from the case-control study nested in 
the EPIC4PD cohort 

Characteristic 
PD cases 

n=351 
Controls 
n=351 

Age at recruitment1, median (range) 60 (38-76) 60 (38-76) 
Age at PD diagnosis, median (range) 68 (45-86) -- 
Years between recruitment and PD 
diagnosis, median (range) 

8 (0.2-18) -- 

Diagnosis validity 
Definite 45 (13%) -- 
Very likely 143 (40%) -- 
Probable 59 (17%) -- 
Possible 104 (30%) -- 

Sex1, n (%)a 
Male 195 (55%) 195 (55%) 
Female 156 (44%) 156 (44%) 

Country1, n (%)a 
Italy 54 (15%) 54 (15%) 
Spain 97 (28%) 97 (28%) 
UK 141 (40%) 141 (40%) 
Netherlands 13 (4%) 13 (4%) 
Germany 46 (13%) 46 (13%) 

Smoking status at recruitment, n (%) 
Smokers 43 (12%) 55 (16%) 
Non-smokers 298 (85%) 283 (80%) 
Unknown 10 (3%) 13 (4%) 

BMI categories, n (%) 
BMI<25 kg/m2 118 (34%) 136 (39%) 
BMI≥25 kg/m2 233 (66%) 215 (61%) 

LBP categories, n (%) 
LBP<25.6 µg/ml 165 (47%) 183 (52%) 
LBP≥25.6 µg/ml 186 (53%) 168 (48%) 

PD, Parkinson’s disease; BMI, body mass index; LBP, lipopolysaccharide-binding protein. 
1 Matching variables. 
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Figure S1. Numbers of features associated with Parkinson’s disease from metabolome-wide 
association study 

Panel A: metabolome-wide association study (MWAS) including features annotated as microbial 
metabolites (n=167). Panel B: MWAS including the rest of features (not annotated as microbial 
metabolites) (7,409 HILIC-ESI+ and 6,879 C18-ESI– features). 

In each panel, left part showed the number of features (dark grey for HILIC-ESI+, light grey for 
C18-ESI–) associated with PD risk (raw p-value<0.05) in the main analyses and stratified analyses. 
Upper part shows the number of overlapped features among different categories of stratified 
analyses. 

7 

223

Microbial Metabolites and PD in EPIC4PD | Chapter 7



 

 

 

Figure S2. Comparison of metabolome-wide association study results between main analyses 
and sensitivity analyses 

Panel A: effect estimate comparison between main analyses and analyses limiting to definite and 
very likely PD diagnoses for HILIC-ESI+ features. Panel B: effect estimate comparison between 
main analyses and analyses limiting to definite and very likely PD diagnoses for C18-ESI– features. 
Panel C: effect estimate comparison between main analyses and analyses limiting to cases 
diagnosed >8 years since recruitment for HILIC-ESI+ features. Panel D: effect estimate comparison 
between main analyses and analyses limiting to cases diagnosed >8 years since recruitment for 
C18-ESI– features. 

In each panel, each dot represented one metabolic feature (in total 7,487 HILIC-ESI+ features and 
6,968 C18-ESI– features). They were displayed by ln(OR) estimated from the main analyses (all 
subjects) against the corresponding values from sensitivity analyses. Pearson correlation 
coefficients were labelled on the plot. The dotted line is the line of identity. 
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Figure S3. Comparison of metabolome-wide association study results between main analyses 
with analyses adjusting food intake 

In each panel, each dot represented one metabolite (in total 167 microbial metabolites). They 
were displayed by ln(OR) estimated from the main analyses against the corresponding values 
from analyses further adjusting for food intake. Six main food groups were further adjusted, and 
they entered the model one-by-one. Pearson correlation coefficients were labelled on the plot. 
The dotted line is the line of identity. 
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Figure S4. Nature spline regression for associations between time-to-diagnosis and metabolites 
among PD cases 

Histogram shows the distribution of ion intensities of metabolites; solid line represents 
coefficients estimated by analyses where time-to-diagnosis was regressed on metabolite 
intensities (natural spline with 3 degrees of freedom) among PD cases only. Covariates including 
age at recruitment, sex, study center, smoking status and BMI, were taken into consideration; 
gray areas are the 95% confidence intervals. 
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Chapter 8 

General Discussion 



Parkinson’s disease (PD) is a complex and multifaceted illness linked to many 
environmental factors. Despite numerous suspected risk factors, few environmental 
exposures have been definitively proved as a causal factor, primarily due to the scarcity 
of prospective studies and the lack of objective exposure markers. This thesis 
contributes to the existing knowledge of environmental exposures in PD etiology within 
a prospective context, significantly reducing the risk of reverse causality and other 
biases such as retrospective recall of lifestyle factors. 

This thesis explored the utilization of blood samples collected prior to PD diagnosis for 
exposure assessment through internal markers. The primary focus was on investigating 
the roles of metals, caffeine, and the gut-brain axis in PD development. Metals and the 
protein marker of gut microbiota were assessed by conventional methods (ICP-MS and 
ELISA, respectively). Furthermore, state-of-the-science high-resolution mass 
spectrometry (HRMS) was applied to measure caffeine metabolites, as well as 
microbiota-derived metabolites within an exposomic framework. Both liquid 
chromatography (LC)- and gas chromatography (GC)-HRMS has been applied to 
measure small molecules in blood, and this thesis is grounded in the LC-HRMS data. 

This work not only provides insights into the understanding of PD etiology but also 
establishes an analytical pipeline for internal exposure assessment. This pipeline 
involves integrating untargeted HRMS, large chemical libraries, chemoinformatic and in 
silico tools for metabolite/pathway identification. 

The key messages of this thesis include: 

Untargeted HRMS provides the opportunity to efficiently detect a wide range of 
environmental chemicals in biomonitoring studies and has the potential to uncover 
previously unrecognized chemicals (Chapters 4 and 5). 

Caffeine and its metabolites are shown to have neuroprotective effects in PD, shedding 
light on the PD’s etiology and potential preventive measures (Chapter 5). 

The involvement of metal exposure in PD development remains unproven in current 
research. When using internal markers, smoking may confound the association with 
some of the tobacco-related metals (Chapters 2 and 3). 

LPS-mediated inflammation is implicated in the gut-brain interaction of PD. Some 
microbiome-derived metabolites are suggestively associated with PD risk, and 
individual characteristics may modify the relationship between the gut microbiome and 
PD (Chapters 6 and 7). 

This chapter begins with a summary of the main findings in this thesis. I then discussed 
application of HRMS in the characterization of the internal exposome and the role of 
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environmental factors in PD etiology, as well as further methodological considerations 
specific for the work presented in this thesis. Finally, recommendations for future 
research opportunities are provided. 

Main findings of this thesis 

In Chapter 2, we systematically reviewed the existing evidence regarding the 
associations of metal exposures with PD risk. A total of 83 case-control studies and 5 
cohort studies were included in the review. Emphasis was placed on assessing study 
quality, particularly with regard to study design (methodological quality) and exposure 
assessment methods. The adapted Newcastle-Ottawa scale was utilized to evaluate 
study design across four domains, including subject selection, comparability of the 
groups, ascertainment for exposure (for case-control studies) or outcome (for cohort 
studies), and statistical analysis. Of the included studies, most (70 case-control and 3 
cohort studies) were deemed to have low or moderate overall quality. Notably, a large 
portion of case-control studies (n=64) assessed metal levels in various biosamples after 
the onset of PD, which was considered of low quality within our self-developed 
exposure assessment evaluation framework due to potential reverse causation. Studies 
on copper, iron, manganese and zinc were most prevalent. Meta-analyses were 
conducted for these metals. Pooled effects indicated lower levels of copper, iron and 
zinc in blood among PD cases, while magnesium in cerebrospinal fluid and zinc in hair 
were higher. However, due to methodological limitations, small sample sizes, limited 
exposure assessment approaches, and high between-study heterogeneity, the current 
research on PD epidemiology is insufficient to establish associations between these 
metals and the risk of the disease. Notably, two large-scale and well-designed case-
control studies consistently reported increased PD risk related to bone lead levels (a 
proxy measure for distant lead exposure), suggesting lead as a possible risk factor for 
PD. 

We aimed to deepen the understanding of metals in PD development with an improved 
study design within EPIC4PD, a prospective population-based cohort spanning six 
European countries. Chapter 3 details a case-control study nested within the EPIC4PD 
cohort, including 362 incident PD cases and 362 age- and sex-matched controls. Metal 
concentrations in erythrocytes, collected on average eight years prior to PD diagnosis, 
were measured for eleven metal species. Most assessed metals were not associated 
with PD risk, except for cadmium and lead. Cadmium had a suggestive negative 
association with PD (odds ratio (OR) for the highest quartile 0.70, 95% confidence 
interval (CI) 0.42-1.17), which, however, diminished among never smokers. Among 
current smokers only, lead was associated with decreased PD risk (OR 0.06, 95% CI 0.01-
0.35). Smoking is a recognized inverse risk factor for PD, and cigarette smoke 
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contributes to cadmium and lead exposure among smokers. In current smokers, the 
concentrations of these metals were higher compared to never smokers, with 
geometric mean levels of 1.22 ng/g for cadmium and 92.0 ng/g for lead, as opposed to 
0.48 ng/g for cadmium and 67.2 ng/g for lead, respectively. Furthermore, their levels 
exhibited a positive correlation with smoking intensity among smokers, with a 
correlation coefficient of 0.50 for cadmium and 0.26 for lead. In summary, our study 
did not provide further evidence supporting that metals play a role in the pathogenesis 
of PD. Internal metal measures should be considered carefully as smoking is a potential 
strong confounder. Even after correction, residual confounding may exist. 

In Chapters 4 and 5, we applied cutting-edge untargeted HRMS to comprehensively 
evaluate internal exposures beyond known targeted compounds. In Chapter 4, we 
leveraged a highly unique occupational population with a history of exposure to dioxin(-
like) compounds. We measured 29 currently recognized dioxin(-like) compounds by 
targeted GC-HRMS in blood samples. We connected these targeted compounds to all 
chemical features with a chlorinated isotopic pattern. Through this procedure we 
identified 152 dioxin(-like) co-exposures or metabolized products (collectively termed 
‘dioxin(-like) related compounds’). This chemical-wide approach significantly 
broadened the scope of suspected environmental chemicals and associated 
metabolites. Furthermore, by including dioxin(-like) related compounds, we gained a 
much richer insight into the associated biological responses measured by untargeted 
LC-HRMS in the metabolome-wide association study (MWAS). Our findings underscore 
the potential benefits of integrated chemical-wide and metabolome-wide analyses for 
assessment of the toxicological effects of environmental exposures. 

In Chapter 4, dioxin(-like) exposures were associated with extensive changes in 
pathways of amino acids, lipid and fatty acids, carbohydrates, and nucleotides. These 
metabolic alterations suggest a disruption of redox balance and bioenergetic synthesis, 
which have been recognized as central mechanisms of PD pathogenesis (1). This finding 
suggests a potential role of dioxin(-like) components in contributing to PD development. 
Chapter 4, along with previous work on trichloroethylene (TCE) (2), establishes a 
paradigm for assessing dioxin(-like) and TCE compounds, as well as other halogenated 
compounds. This framework can be further applied in PD research to explore potential 
associations with these environmental chemicals. 

In Chapter 5, we presented another example utilizing a chemical-wide concept, 
focusing on metabolites in the caffeine pathway. Coffee, long implicated to have a 
neuroprotective effect on PD, was associated with a reduced risk of PD within the full 
EPIC4PD cohort (number of subjects=184,024), with a hazard ratio of 0.63 (95% CI 0.46-
0.88) for the highest coffee intake group compared to nonconsumers. To validate the 
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inverse association with objective markers and to unravel the active component in 
coffee exerting neuroprotection, we measured plasma caffeine metabolites in the 
nested case-control study within EPIC4PD that was also mentioned in Chapter 3, based 
on 351 case-control pairs (the number of subjects were lower than for the metal 
analyses in erythrocytes in Chapter 3 due to the availability of plasma samples). We 
annotated 22 caffeine metabolites, along with a recently discovered novel metabolite 
(1,3,7-trimethyldihydrourate) using the untargeted LC-HRMS data. Caffeine and its 
primary metabolites, paraxanthine and theophylline, were inversely associated with PD 
risk. The ORs for one standard deviation (SD) increase of log2 ion intensity were 0.80 
(95% CI 0.67-0.95), 0.82 (95% CI 0.69-0.96), and 0.78 (95% CI 0.65-0.93), respectively. 
Importantly, these inverse associations remained robust as early as 10 years before PD 
diagnosis. This study confirms the neuroprotective action of caffeine and its primary 
metabolites and provides valuable insights into the etiology of PD and possible leads 
for prevention. 

The gut-brain axis has emerged as an important etiologic hypothesis for PD (3). 
However, previous research has mainly focused on alterations of microbiota abundance 
and composition, with limited connections to changes in biological function. In 
Chapters 6 and 7, we explored gut-brain crosstalk using microbiota-related markers 
with specific biological relevance and functions within the EPIC4PD nested case-control 
study. LPS-binding protein (LBP) is the reactant of LPS, a component of Gram-negative 
bacteria and a potent activator of innate immune response. In Chapter 6, LBP was found 
to be associated with increased risk of PD, with an OR of 1.46 (95% CI 0.98-2.19) per 
one unit increase of log LBP. This positive association was more pronounced among 
women (OR 2.68, 95%CI 1.40-5.13) and overweight/obese subjects (OR 1.54, 95%CI 
1.09-2.18). Elevated LBP indicates excess LPS in blood circulation, which might result 
from compromised intestinal barrier function (i.e., leaky gut) and directly lead to 
inflammation. Our results pinpoint the involvement of LPS-mediated inflammation in 
the gut-brain interaction in PD. 

Using the same untargeted LC-HRMS data as described in Chapter 5, Chapter 7 
annotated 167 microbial metabolites in plasma by linking to the recently released 
Exposome-Explorer dataset and the use of authentic standards. Under the nominal 
criteria of a 0.05 p-value, 13 microbial metabolites were associated with PD risk, 
including amino acids, bile acid, indoles, and hydroxy acid, though none remained 
significant after multiple comparison corrections. To move beyond individual 
metabolites towards global insights into pathways, we performed pathway enrichment 
analyses based on an MWAS utilizing the whole metabolome from the untargeted LC-
HRMS. Three microbiota-relevant pathways were enriched based on 1,000 features 
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associated with PD risk (p-value<0.05). These pathways included valine, leucine and 
isoleucine degradation, as well as pathways involved with short-chain fatty acids 
(butanoate and propanoate metabolism). These pathways have been previously 
associated with dioxin(-like) exposure, as described in Chapter 4. From subgroup 
analyses, differences in metabolite profiles and pathway enrichment related to sex, 
smoking status and BMI were observed. More PD-associated pathways were identified 
for men, smokers, and overweight/obese individuals. These findings suggest that 
personal traits and lifestyles might contribute to involvement of microbiota in PD. 
Notably, individuals with higher levels of LBP exhibited more enriched microbial 
pathways compared to those with lower LBP levels. These results might reflect 
increased influx of microbial metabolites into the blood due to intestinal leakage, 
supporting the findings in Chapter 6. 

Application of metabolomics in characterizing the internal 
exposome 

Exposomics is a rapidly growing field of research, with the goal of identifying all non-
genetic factors contributing to disease development. Metabolomics has emerged as a 
powerful tool for measuring environmental chemicals and endogenous biomolecules in 
biosamples. This thesis centers on the utilization of metabolomics in assessing 
environmental exposures within epidemiological studies. The following sections 
provide considerations regarding the choice between targeted and untargeted analyses, 
development of metabolite identification in untargeted metabolomics, and comparison 
and integration of metabolomics data. 

Choice between targeted and untargeted analyses 
Untargeted metabolomics serves as an unbiased method for assessing all small 
molecules extracted from a sample, unveiling both known and unknown environmental 
chemicals. This comprehensive assessment of environmental exposures facilitates an 
exposome-wide association study (ExWAS). An example is a pilot case-control study on 
a cholestatic liver disease, primary sclerosing cholangitis (PSC) (4). An ExWAS of PSC was 
conducted using 10,121 chemical features from untargeted GC-HRMS. The GC-HRMS 
platform enables detection of volatile and semivolatile organic pollutants, many of 
which have previously been linked to liver toxicity. The study identified 54 disease-
associated metabolites, emphasizing the power of studies using untargeted HRMS. 

Besides expanding coverage beyond known chemicals untargeted HRMS also allows 
detailed interrogation of a specific chemical class to study known and unknown related 
compounds and metabolites. This chemical-wide approach has been exemplified by the 
exposure assessment of TCE among occupationally exposed populations (2). Beyond 
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TCE itself, TCE metabolites including those currently unrecognized were identified 
based on significant statistical associations with parent compounds and the presence 
of chlorine atoms. This approach was applied in Chapter 4 of this thesis to identify of 
dioxin(-like)-related compounds. Currently, this approach is confined to halogenated 
compounds in specific populations with prior indication of high exposure to these 
chemical groups. However, with advancements of metabolite identification capabilities 
through various in-silico tools, this approach is likely to extend to other chemical classes 
in the future. 

This chemical-wide approach, with its expanded scope of exposure markers, has the 
potential to enhance the assessment of health effects associated with environmental 
chemicals. The TCE study showed that biological effects exhibited stronger associations 
with unknown metabolic products of TCE, as opposed to TCE itself and known 
metabolites (2). Similarly, in Chapter 4, richer insights into exposure-associated 
biological responses were obtained by introducing dioxin(-like)-related compounds. 
Even for exposure markers that were previously known but less studied, the exposomic 
framework could provide valuable insights into health impact assessment, as 
demonstrated in Chapter 5 with the neuroprotective effects of caffeine metabolites, 
paraxanthine and theophylline. 

While untargeted metabolomics provides a holistic understanding of environmental 
exposures in disease etiology, the methodology also has inherent limitations. First, 
untargeted analysis, aiming to broaden the scope of detection coverage, compromises 
sensitivity in measuring low-abundant environmental chemicals (5). One solution is to 
remove high-abundant analytes and concentrate low-abundant compounds, mirroring 
the historical focus of targeted analysis. Second, chemical confirmation poses a 
formidable challenge, as the identity of most detected metabolites remains unknown, 
hindering result interpretation. Third, quantitative risk assessment faces challenges 
because chemicals are reported in terms of intensity counts rather than concentrations. 

In addressing these challenges, Trowbridge et al. illustrated a path forward for 
combining untargeted screening with targeted methods in pregnant individuals. The 
work started with a suspect screening for environmental chemicals among over 30,000 
untargeted features in maternal and cord blood (6-8). Taking into account prioritized 
criteria including the ubiquity of exposure, potential implications for pregnancy and 
previous monitoring, nine chemicals (six exogenous and three endogenous) were 
selected for confirmation and quantification using targeted approach (9). Their 
associations with pregnancy complications were then evaluated. This study 
underscores that targeted analysis constitutes an important part of a metabolomics 
workflow to validate results from untargeted analysis. 
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The choice between targeted and untargeted metabolomics should align with the study 
objectives. Hypothesis-driven studies optimized for specific metabolites may benefit 
from targeted approaches, while exploratory studies aiming to screen understudied 
chemical exposures may leverage untargeted methods. Integration of both approaches 
emerges as a future direction to maximize advantages of both platforms. 

Development of metabolite identification in untargeted metabolomics 
Ion peaks detected by untargeted metabolomics are referred to as features, each 
characterized by a unique mass-to-charge ratio (m/z) of ions and retention time. The 
process of determining the true chemical identity of these features is known as 
annotation. Features are best annotated by matching the exact mass, retention time 
and tandem mass spectrometry (MS/MS) fragmentation spectra against authentic 
standards of compounds (10). To facilitate such comparisons, extensive compound 
databases (e.g., PubChem, HMDB, KEGG, ChemSpider) and MS/MS spectral databases 
(e.g., METLIN, GNPS, MassBank, NIST) have been developed. However, these libraries 
are small in comparison to the vast array of natural and synthetic chemicals (11). On 
average, only 10% of untargeted features can be annotated to date (12), making 
metabolite identification a primary challenge in the field. 

For the application of annotated features, Schymanski’s criteria are commonly used to 
communicate the identification confidence of annotations (13). The criteria range from 
Level 1 (the highest confidence) to Level 5 (the lowest confidence). Levels 1 and 2, with 
sufficient structure information, are considered acceptable for application. Levels 3-5 
are tentative annotations and are usually deemed as unreliable. In this thesis (Chapters 
4, 5 and 7) we considered therefore annotation at levels 1 and 2 but ignored 
annotations at levels 3-5. 

In cases where chemicals are not archived in current databases, many computational 
tools have been developed to predict their physicochemical properties, such as MS/MS 
spectra and retention times, to aid in feature annotation (14). A recent tool for 
retention time prediction, Retip (15), was utilized in Chapters 5 and 7 for annotation of 
caffeine metabolites and microbial metabolites. More than half of the candidate 
metabolites were annotated with assistance of Retip. Additionally, many chemicals may 
be even more abundant in the human body after enzymatic modification, but to date 
their metabolized products remain largely unrecognized. Various computational tools 
are available to predict the structures of molecules undergoing biological 
transformation. BioTransformer, an open access software tool (16), was used to predict 
chemical products after human metabolism for benzene exposure in an occupational 
study, enabling the annotation of nine benzene metabolites, four of which were 
previously unknown (17). Another approach to expand the exposure metabolic 
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products is searching for isotopic patterns specific to targeted chemicals, as adopted 
for halogenated chemicals in the TCE study (2) and in Chapter 4 using the nontarget R 
package (18). In summary, these in silico tools can expand the scope of metabolites 
annotated from untargeted metabolomics and enhance exposure assessment. 

When linking environmental chemicals to endogenous biomolecules, pathway 
mappings help to understand the roles that biomolecules play in relation to each other 
and in biological aberrations. These include metabolite set enrichment analysis (MSEA) 
for annotated metabolites (19) and the Mummichog algorithm for unannotated 
features (20). These enrichment analyses rely on a complete reference library of the full 
endogenous metabolome. Creating such a library is laborious and currently impossible 
due to incomplete knowledge of biomolecules. MSEA and Mummichog now refer to 
public databases, as well as manually curated metabolites from the literature. A more 
comprehensive and biologically meaningful library of metabolites is warranted for the 
interpretation of biological pathways in metabolomics studies. 

Comparison and integration of metabolomics data 
Reproducibility of metabolomics is always a matter of concern, due to the lack of 
universally accepted gold standard methods. Diverse workflows in sampling, extraction 
procedures, and instrument settings can lead to distinct coverage of detectable 
metabolites, rendering it challenging to align metabolomics data obtained from 
different platforms. Additionally, post-analytical procedures (including feature and 
sample filtering, data imputation and normalization), and feature selection approaches 
can induce variations in the selected features associated with disease phenotypes. This 
further complicates result comparison and evidence synthesis for biological 
interpretation across studies. To address this, some studies have showed that adopting 
standardized protocols and instruments, along with using reference materials for data 
normalization, can enhance inter-laboratory reproducibility (21-23). 

In addition to standardization of the analytical procedure, epidemiologists find 
statistical approaches for pooling metabolomics data particularly intriguing, as the one 
developed by Viallon et al. (24). This method does not require quality controls and 
reference assay data for metabolomics normalization and accommodates various 
biosamples. It relied on identifying major sources of variation in metabolomics data 
through principal component partial R-square (PC-PR2) analysis. Subsequently, the 
approach corrects for unwanted variability using mixed models while preserving 
biological variability. This pipeline has already been applied to targeted metabolomics 
data obtained from LC-HRMS platforms in eight case-control studies nested in the EPIC 
cohort. However, its application into other scenarios, especially in untargeted 
metabolomics, requires further investigation. 
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Role of environmental factors in Parkinson’s disease etiology 

The diagnosis of PD relies on the observation of motor symptoms. Unfortunately, by 
the time these symptoms become noticeable, about 50% of substantia nigra dopamine 
neurons are lost (25). Furthermore, there is currently no cure or established strategy 
for slowing the progression of the disease. Therefore, it is crucial to understand the 
underlying causes of PD and stride toward disease prevention and modification to 
alleviate the global burden of PD. Various environmental factors, which have been 
implicated in affecting the risk of PD, hold promise for disease modification, but the 
available evidence has been inconsistent. This section explores the complex nature of 
environmental factors and the individual variability in the gut-brain axis involvement in 
PD, before discussing the therapeutic potential of environmental factors. 

Complex nature of environmental factors in PD etiology 
Conclusive establishment of causality of most environmental factors remains elusive. 
One major challenge arises from the prolonged prodromal period of PD, spanning up to 
20 years. Throughout this extended stage, various environmental factors may have 
come into play, influencing the risk and progression of PD (Box 1 in the General 
Introduction). Some exposures are inherently interconnected or involved in similar 
biological mechanisms, leading to confounding and effect modification. 

Smoking consistently emerges as an inverse risk factor for PD (26). This protective effect 
has been attributed to nicotine, which influences dopaminergic activity by acting at 
nicotinic receptors in the brain and could protect against nigrostriatal damage (27). 
Cigarette smoke is a complex mixture and also serves as an important source of certain 
metals, such as lead (28), as discussed in Chapter 3 of this thesis. Lead levels in current 
smokers were around 1.4 times higher compared to never smokers. An inverse and 
robust association between lead levels and PD risk was observed among current 
smokers. However, this effect diminished among never smokers. Lead is a well-
recognized neuro-toxicant and exhibited a positive association with PD risk when 
measured as a cumulative biomarker (bone lead) from previous studies (29, 30). The 
inverse and smoking-specific association for lead as reported in Chapter 3 is likely due 
to the confounding effect of smoking, suggesting that lead might act as a surrogate 
exposure measure for smoking. 

Further illustrating the complexity of environmental interactions is the interplay among 
caffeine, smoking and estrogen. Both caffeine and estrogen demonstrate 
neuroprotective effects and share competitive metabolism by a cytochrome P450 
enzyme, CYP1A2 (31). Smoking significantly induces the CYP1A2 enzyme, accelerating 
the metabolism of caffeine and estrogen in smokers (32). Effect modifications among 
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these three protective factors for PD have been observed in prior research and in 
Chapter 5 of this thesis. Smoking was found to enhance the inverse association 
between caffeine and PD in some cohort studies (33-35) and in Chapter 5. Conversely, 
hormone usage may diminish the protective effects of caffeine on PD, a finding also 
corroborated in Chapter 5. 

In summary, caution is essential in epidemiological studies especially considering the 
intricate interactions when investigating the etiological role of environmental factors in 
PD. As human observational research is limited in fully elucidating these interactions 
and their underlying mechanisms, experimental studies are warranted for future in-
depth exploration. 

Individual variability in the gut-brain axis involvement in PD 
Aggregation of α-synuclein in the form of Lewy bodies and Lewy neurites and neuronal 
loss in the substantia nigra are the pathological hallmarks of PD. Beginning with the 
discovery of α-synuclein deposits in the enteric nervous system (ENS) and Braak’s 
hypothesis of gut-to-brain spread of PD synucleinopathy, it has been hypothesized that 
PD pathology might originate from intestinal dysfunction (36). Key events of the gut-
brain hypothesis include gut microbial dysbiosis, gut inflammation and 
hyperpermeability, and propagation of α-synuclein in the ENS (37). Over the past two 
decades, both supporting and contradicting evidence for this gut-first hypothesis for all 
PD cases has emerged from human and experimental research (Box 1). These 
inconsistencies have promoted researchers to propose distinct ‘body-first’ and ‘brain-
first’ subtypes of PD (38). These subtypes are clinically distinguished by the presence or 
absence of REM sleep behavior disorder (RBD) during the PD prodromal phase (39). It 
implies that misfolded α-synuclein may originate in the ENS for the body-first group, 
whereas it originates in the brain for the brain-first group. However, in the EPIC4PD 
cohort, the distinction of PD subtypes based on the presence of RBD cannot be readily 
determined due to the absence of documentation regarding pre-clinical symptoms. 

While existence of these two phenotypes has been confirmed, underlying determinants 
remain largely unexplored. This thesis provides some insights on the variability of gut 
involvement in PD. In Chapter 6, elevated LBP levels were associated with an increased 
risk of PD, especially among women and obese/overweight individuals. In Chapter 7, 
perturbation profiles of microbial metabolites were heterogenous across subgroups of 
sex, smoking status and BMI. Enriched microbial-related pathways were more 
pronounced for men, smokers and obese/overweight individuals. These findings 
suggest that personal traits and lifestyles may contribute to the differentiation of PD 
subtypes. Furthermore, they may have varying effects on different microbial-related 
markers, as evidenced by the differential influence of sex on LBP and microbial 
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metabolites in Chapters 6 and 7. Further research is warranted to explore the 
mechanism underlying diverse disease trajectories in PD. 

Moreover, individuals may fall along a continuum between the body-first and brain-first 
dichotomy, potentially exhibiting both phenotypes simultaneously (40). A deeper 
exploration of the heterogeneity of gut involvement in PD patients could pave the way 
for personalized gut-directed therapies. 

 

Box 1. Evidence in favor of and against the gut-first hypothesis in PD cases (adapted from Tan et 
al. 2022 (3)) 

Evidence in favor Evidence against 

Epidemiological studies  
Gastrointestinal symptoms such as constipation 
can precede PD motor symptoms by several 
decades 

Full truncal vagotomy is associated with a reduced 
risk of PD 

Increased intestinal inflammation and 
permeability found in PD patients. 

Preceding of gastrointestinal symptoms because 
the ENS is less able to compensate to 
neurodegeneration than CNS 

Neuroprotective effect of vagotomy is not 
consistent 

Results from enteric inflammation and 
hyperpermeability were heterogenous. 

Neuropathological studies  
Synucleinopathy in the ENS in almost all PD 
patients 

Gastrointestinal α-synuclein deposition up to 20 
years before PD diagnosis 

Gastrointestinal α-synuclein accumulation in 
neurologically healthy individuals 

No notable neuronal loss was detected in the ENS 
in PD patients 

Animal studies  
Gut-to-brain α-synuclein transmission, 
accompanied by dopaminergic neurodegeneration 
and PD-like symptoms 

Hemivagotomy prevented both α-synuclein 
accumulation in vagus nerve and brain 

α-synuclein pathology and PD-related 
dysregulation in the ENS before striatal 
dopaminergic abnormalities 

Exposure to microbial amyloid proteins in the 
gastrointestinal tract increased α-synuclein 
pathology and inflammation in the gut and brain, 
with corresponding motor deficits. 

Animal models involving the injection of α-
synuclein into the gastrointestinal tract might not 
accurately recapitulate human PD 

Brain-to-gut α-synuclein transfer has been 
demonstrated 

Bidirectional gut-to-brain and brain-to-gut α-
synuclein propagation was independent of vagus 
nerve 

CNS disorders can also alter gut function; nigral 
pathology in rats resulted in enteric dysmotility, 
inflammation and microbiome alterations 

ENS, enteric nervous system; CNS, central nervous system.  
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Therapeutic potential of environmental factors for PD 
The challenge of drug development for PD is partly attributed to the uncertainty 
surrounding the disease etiology. While accumulating evidence points towards 
environmental factors that either increase or decrease the risk of PD, it is still unclear 
how these environmental agents mediate subsequent pathological changes. Another 
obstacle is the lack of early biomarkers for PD diagnosis, with motor signs typically 
emerging only after about 50% of substantia nigra dopamine neurons are lost (25). Early 
detection is crucial for administering therapeutic treatments before the onset of 
noticeable symptoms. 

Observations of consistent inverse associations between smoking and coffee 
consumption and the risk of PD have prompted investigations into their therapeutic 
potency. Nicotine has been proposed as the active component responsible for the 
neuroprotective effect. Through the activation of nicotinic acetylcholine receptors, 
nicotine could modulate dopamine transmission and reduce levodopa-induced 
dyskinesias, as shown in animal models (41, 42). Chapter 5 in this thesis has confirmed 
the inverse association between pre-diagnostic caffeine intake and PD. Caffeine, an 
adenosine 2A receptor antagonist, could attenuate neuronal death, dopamine 
depletion and motor impairment, as shown in parkinsonian rodents (43-45). However, 
clinical trials evaluating the efficacy of nicotine and caffeine in PD patients have yielded 
inconclusive results (Box 2). Recent double-blinded, placebo-controlled trials with 
sizable PD patient cohorts and extended follow-up periods failed to demonstrate the 
effectiveness of nicotine and caffeine in addressing motor deficits (46, 47). One can 
speculate that the lack of efficacy is due to the intervention being applied after the 
clinical PD diagnosis (with an average disease duration 4-11 years across trials). At this 
stage, pathological changes and movement impairment are largely irreversible. 

Additionally, novel therapeutic approaches targeting the gut microbiota have been 
proposed, given the potential involvement of gut-related factors in PD. This connection 
has been suggested by the finding of increased chronic inflammation and altered 
microbial metabolism, as shown in Chapters 6 and 7 in this thesis. Current therapies 
include diet intervention to increase prebiotics (substrates utilized by microbiome, such 
as high-fiber foods), microbiota modulation by faecal microbiota transplantation and 
antimicrobials, as well as the use of postbiotics and small-molecule drugs (e.g., short-
chain fatty acids, tight junction modulators) (3). Although these approaches have 
shown potential benefits for PD patients with regards to motor symptoms and bowel 
functions like constipation in small pilot studies, double-blind controlled trials in PD 
patient populations are limited (48, 49). 
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In summary, the therapeutic potential of nicotine, caffeine and microbiota-targeted 
treatments merits validation through well-designed randomized controlled trials, 
ideally initiated early in the disease course. This can be achieved by administering 
candidate agents to individuals with rapid eye movement (REM) sleep behavior 
disorder (RBD), which is by far the strongest indicator of prodromal PD. The interval 
between development/diagnosis of RBD and defined PD averages 10-15 years (50). 
Determining specific treatment regimens, especially regarding the timing of treatment, 
and adopting personalized modalities based on the pathways driving PD are essential 
steps to optimize the success of disease modification. 

 

 

Box 2. Double-blind controlled trials of clinical efficacy of nicotine and caffeine on PD 

n. of patients 
(ref) 

Treatment, dose 
Duration of 
treatment 

Primary endpoint Efficacy* 

Nicotine     
48 (51) Nicotine gum, 2mg/gum 3 times at 

2h intervals 
UPDRS Part III 0 

32 (52) Transdermal nicotine, up 
to 35mg daily 

3 weeks CURS part D and E 
score 

0 

77 (53) Oral selective nAChR 
agonist, up to 40mg twice 
daily 

4 weeks UPDRS Part I to III, 
cognitive test 

0 

65 (54) Oral nicotine, up to 24mg 
daily 

10 weeks UPDRS Part II and III, 
UDysRS 

+ 

163 (47) Transdermal nicotine, up 
to 28mg daily 

52 weeks Total UPDRS score 0 

Caffeine     
61 (55) Oral caffeine, up to 200mg 

twice daily 
6 weeks UPDRS Part III + 

121 (46) Oral caffeine, up to 200mg 
twice daily 

≥ 6 months UPDRS Part III 0 

 

UPDRS, unified Parkinson’s disease rating scale; CURS, Columbia University rating scale; nAChR, 
nicotinic acetylcholine receptor; UDysRS, unified dyskinesia rating scale 

* +, efficacy found; 0, no efficacy found. 
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Methodological considerations of this thesis 

PD research faces unique challenges related to reverse causality as compared to other 
chronic diseases like cancer and diabetes. Over the course of decades in the prodromal 
phase of PD, various pre-clinical symptoms manifest, including sleep disorders, 
constipation, and lost sense of olfactory and taste. These symptoms may prompt future 
PD patients to modify their diet habits and lifestyles, thereby altering relevant 
exposures. Unlike PD, other chronic diseases typically have a less evident prodromal 
phase, making pre-clinical symptoms less apparent and may therefore not affect diet 
habits and lifestyles prior to disease as much. 

The main strength of this thesis lies in reducing reverse causality by utilizing the 
prospective EPIC4PD cohort and its biobank established at baseline. The assessments 
of internal exposure markers through biomonitoring occurred in samples collected 
prior to PD diagnosis. However, certain methodological aspects within this thesis 
warrant discussion, particularly the biomonitoring based on a single moment in time, 
the captured exposure window for environmental factors, and tracking microbiome 
dysbiosis with blood biomarkers. 

One-time biomonitoring of exposures 
In this thesis, we adopted biomonitoring to evaluate exposures to metals, dioxin(-like) 
compounds, caffeine metabolites and microbial markers. However, it is essential to 
recognize that exposure levels measured in blood at a single time point only offer a 
snapshot of an individual’s exposure history, only reflecting exposures proximal to the 
time of blood sample collection. The alignment of one-time biomonitoring results with 
long-term exposure status depends on the chemical properties of the assessed 
exposures and the trajectory of exposure states throughout an individual’s lifetime. 

For environmental chemicals with decades-long biological half-lives, such as dioxin(-like) 
compounds and other persistent organic pollutants, blood concentrations can 
effectively mirror exposures spanning the preceding 20-25 years (56). Moreover, due 
to their exclusive anthropogenic sources, these chemicals are less likely to be affected 
by natural or physiological processes. Conversely, in the case of nutrients and metals, 
with half-lives varying from a few hours to a few months in the blood, the reliability of 
biomonitoring in representing long-term exposure hinges on the stability of exposure 
status. One-time biomonitoring could be inaccurate when exposures fluctuate over a 
lifetime due to changes in lifestyles and environmental sources.  

Cigarette smoke is a major source of cadmium intake among smokers. In Chapter 3, we 
observed that cadmium concentrations in former smokers resembled those in never 
smokers, but that levels in current smokers were higher. This demonstrates that a single 
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measurement may not adequately reflect past exposure status. Another example is 
lead; in the general population, blood lead levels have declined by over 90% since the 
1980s-1990s due to reduced lead emissions from petrol (57). As blood samples in the 
EPIC4PD nested case-control study were collected during the 1990s, with a median age 
of subjects at 60, the assessed lead levels may not have accurately represented high 
exposures during subjects’ early life. Notably, exposure misclassification resulting from 
a one-time measurement occurs equally in both the case and control groups, leading to 
an underestimate of the true strength of the association between exposure and disease. 
Consequently, while false negatives may occur, the false positive rate is typically low. 
Despite uncertainties regarding extrapolation to chronic and past exposures, 
biomonitoring remains a promising approach to quantify exposure gradients, enabling 
characterization of exposure-response analyses. 

Relevant exposure windows for environmental factors 
Most epidemiologic studies on PD thus far have focused on exploring potential 
environmental risk factors that are present during mid or late-life. Despite PD being 
recognized as a neurodegenerative disorder typically presenting after the age of 60, the 
possibility that PD could be driven by lifelong environmental factors has been proposed 
(58). Smoking and coffee consumption have consistently been identified to have 
protective associations, and these behaviors generally start in early adulthood. Chapter 
5 in this thesis has revealed that inverse associations with caffeine metabolites are 
evident as early as 12 years before PD diagnosis. A prior report from the EPIC4PD cohort 
indicated that individuals who started to smoke before age 16 had a stronger reduction 
in PD risk (59). Furthermore, some studies have highlighted potential roles of perinatal 
and neonatal factors, including birthweight, birth season and place, multiple birth, 
suggesting that early-life exposures might also be important contributors for late-onset 
PD (60, 61). 

It is plausible that environmental factors have a long latency or a slow effect on PD 
development. Therefore, a life course approach, examining the causal relationship 
between exposures during gestation, childhood, adolescence and young adulthood, 
and subsequent PD, has been emphasized. In the EPIC4PD nested case-control study, 
blood samples were gathered on average 8 years prior to disease diagnosis of PD cases, 
around their age of 60. The absence of associations with blood exposure markers, as 
demonstrated in Chapter 3 for metals, might be attributed to a misalignment between 
exposure assessment and the relevant etiological time window, and this cannot rule 
out their etiological roles during earlier stages of life. The characterization of early 
exposures necessitates extended follow-up periods and repeated exposure 
measurements for existing cohorts. Rather than focusing solely on PD occurrence, 
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utilizing early disease indicators as observational outcomes, such as the presence of 
RBD, which typically precedes PD onset by 10-15 years, could help shorten prolonged 
follow-up periods. 

Tracking gut microbiome dysbiosis with blood biomarkers 
Direct measurements of gut microbial composition and diversity are usually infeasible 
in large cohort studies where no faecal samples have been collected. In instances of 
microbiome dysbiosis, the permeabilization of the blood-gut barrier allows microbiota-
derived products to cross into systemic circulation. Therefore, blood-based measures 
including markers of host immune response (e.g., LPS-binding protein (LBP in Chapter 
6), soluble CD14, endotoxin core antibody) and microbial metabolic products (e.g., 
microbial metabolites in Chapter 7) offer practical alternatives for gut microbiome 
functions. 

When utilizing blood biomarkers, it is crucial to consider the role of the intestinal barrier 
permeability. Short chain fatty acids (SCFAs), such as propionate, butyrate and acetate, 
are produced from the metabolism of digested fibers by bacteria. Low faecal levels of 
butyrate and acetate have been associated with worsened PD symptoms (62, 63). 
Conversely, plasma levels of acetate and propionate levels were found to be higher in 
PD patients than in control individuals (64, 65). Some researchers postulated that this 
discrepancy could be attributed to the leakage of gut SCFAs into systemic circulation 
due to intestinal barrier disruption and reduced clearance of these SCFAs by the colonic 
epithelium (64). On the other hand, certain microbial metabolites, such as amino acids, 
can also be produced by human tissues or directly derived from the diet (66). Thus, 
metabolites primarily or exclusively synthesized by the microbiota provide a better 
insight on microbial function in the complex pathogenesis of PD. The classification for 
metabolites based on their origin (in this thesis in Chapter 7) has been adopted by the 
Exposome-Explorer database (66). This database categorized evidence from the 
literature into in vitro and in vivo types regarding microbial origin. Metabolites 
substantiated by both types of evidence are deemed as largely or exclusively produced 
by the gut microbiota. 

With the emergence of advanced analytical techniques, microbial DNA sequencing in 
blood, which is historically considered sterile, holds promise for studying gut microbial 
translocation and would extend the current work on gut metabolites. Exploratory work 
has highlighted the heterogenous richness of blood bacterial genera between PD 
patients and healthy controls, with specific genera showing associations with clinical 
characteristics of PD (67). 
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Future directions 

In this thesis, HRMS-based metabolomics provides an avenue to comprehensively 
characterize diverse environmental exposures in a high-throughput manner. This 
approach has been applied for the measurement of dioxin(-like) compounds (Chapter 
4), caffeine metabolites (Chapter 5), and microbial metabolites (Chapter 7). The 
detailed characterization of these exposures largely facilitates subsequent research on 
health impacts. The next step in exposure assessment by metabolomics involves 
broadening the coverage of detectable or annotated chemicals. This expansion is crucial 
for enhancing exposome-wide association studies, contributing to a deeper exploration 
of PD etiology. With integration of metabolomics and other omics, a holistic view on PD 
can be obtained. 

Exposome-wide association study for PD 
As outlined in the General Introduction, various environmental chemicals have been 
proposed to be linked with an altered risk of PD. Among these, pesticides stand out as 
one of consistently reported risk factors in the literature (68). However, limitations in 
previous exposure assessment methods hindered the accurate estimation of pesticide 
exposures. Most studies relied on self-reported contact with pesticides, treating them 
either as a single entity or categorizing them into sub-classes such as insecticides, 
herbicides or fungicides. However, these sub-classes comprise numerous active 
ingredients with different chemical properties and action mechanisms, complicating 
the identification of specific pesticides as potential etiological factors for PD. A recent 
study overcame this limitation by estimating ambient exposure to 288 specific 
pesticides in California using a geographic information systems-based model (69). The 
study further identified ten pesticides directly toxic to human dopaminergic neurons. 
In addition to external exposure assessment, blood metabolomics provides a unique 
opportunity for the comprehensive characterization of internal pesticide levels. The LC-
HRMS data (used in this thesis) and GC-HRMS data (currently under analysis) from the 
EPIC4PD project would allow for the identification of hundreds of specific pesticides, 
facilitating a pesticide-wide association study for the risk of PD. 

Beyond pesticides, metabolomics, particularly with GC-HRMS, enables the detection of 
numerous other environmental chemicals. This is particularly relevant as most 
environmental chemicals are hydrophobic, semi-volatile and poorly ionize with LC-
HRMS methods. Within our collaborative network, an analytical pipeline utilizing 
untargeted GC-HRMS has been established to operationalize the human exposome (70). 
This approach facilitates a comprehensive screening of various chemical groups, 
including polychlorinated biphenyls (PCBs), organic acids, per-and polyfluoroalkyl 
substances (PFASs), and dioxins, some of which are suspected risk factors for PD. Such 
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broad screening empowers an exposome-wide association analysis for PD in the near 
future. Furthermore, utilizing the methodology outlined in Chapter 4 on dioxin(-like) 
compounds and the previous work on TCE, a comprehensive chemical-wide analysis, 
including both parent compounds and their metabolites, can be applied to thoroughly 
explore the potential effects of particular chemical groups. 

Multi-omics data integration 
Although this thesis exclusively discusses environmental factors, the prevailing view 
acknowledges that most PD cases likely arise from a combination of environment 
exposures and genetic susceptibility. Growing evidence suggests that epigenetic 
changes are key mechanism at the interface of the gene-environment interaction. 
Many in vitro and in vivo studies have shown that PD-relevant toxins, 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), as well as pesticides rotenone and paraquat, 
can induce histone acetylation and DNA methylation -- two common types of epigenetic 
changes (71, 72). A recent systematic review identified ten human studies investigating 
epigenetic regulation in PD acting upon pesticides, metals, smoking and coffee 
consumption (73). The research on this topic is just emerging, and definitive conclusions 
regarding any of the aforementioned exposure categories remain elusive. Notably, anti-
parkinsonian therapy has been found to influence DNA methylation (74), potentially 
introducing confounding factors into associations derived from prevalent PD patients. 
The EPIC4PD cohort, with its pre-diagnostic blood samples and relatively large sample 
size, proves particularly valuable for conducting epigenome-wide association studies. 
Furthermore, the integration with environmental exposures assessed by metabolome 
analysis can be utilized to explore the mechanism underlying gene-environment 
interactions in PD. 

Beyond the realms of epigenome and metabolome, high-throughput transcriptome and 
proteome analyses have begun to be applied to in human PD research (75, 76). These 
omics platforms collectively offer a holistic perspective to understanding the disease 
mechanisms of PD across various molecular layers. With the ongoing development of 
data integration algorithms, the crossover analysis of multi-omics holds tremendous 
promise for uncovering novel disease markers and pathogenic pathways.  

Concluding remarks 

PD stands out as a complex neurodegenerative disorder featuring a wide spectrum of 
motor and non-motor symptoms, intertwined with multifaceted environmental causes. 
The exploration of PD etiology in human observational research encounters challenges, 
particularly the issue of reverse causality due to the extended pre-disease periods. This 
thesis provides valuable insights into the impact of environmental exposures on PD 
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development, leveraging a relatively large sample size and pre-diagnostic biosamples 
from the EPIC4PD cohort. The findings of this thesis, in line with previous studies, 
consistently highlight a protective effect of coffee consumption on PD risk. This effect 
is predominantly attributed to caffeine and its primary metabolites. Additionally, 
chronic systemic inflammation induced by the bacterial product, LPS, is implicated prior 
to PD diagnosis, and the metabolic profiles of microbial metabolites show variations 
influenced by individual characteristics. These results underscore the involvement of 
the gut in the pathogenesis of PD. However, the conclusive roles of metal exposures 
remain elusive, with no definitive reports from either the existing literature or analyses 
within the EPIC4PD cohort. 

This thesis particularly emphasizes the characterization of internal exposures through 
untargeted metabolomics. Leveraging this advanced analytic platform enables the 
detection of a broad spectrum of exposure biomarkers, encompassing both known and 
currently unidentified chemicals. The integration of metabolomics into epidemiological 
research facilitates the identification of body burden of environmental agents and their 
relevance with biological outcomes. Looking forward, the application of multi-omics 
holds a major promise with the EPIC4PD cohort being one of the largest bio- and omics-
data repositories for PD worldwide, offering entirely new possibilities for biomarker 
discovery work. 
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Summary 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after 
Alzheimer’s disease. Disability and death due to PD are rapidly increasing globally. PD 
symptoms get worse over time, and there is no cure for the disease due to an 
incomplete understanding of its etiology and mechanism. Genetic and environmental 
factors may lead to PD, with genetic factors only accounting for up to 10% of PD. 
Emerging research suggests associations between PD and various environmental 
factors, including pesticides, smoking, coffee consumption and metals. However, 
identifying specific causal agents has been challenging, primarily due to the scarcity of 
prospective studies and the absence of objective exposure markers. 

This thesis aims to investigate the etiology of multiple environmental exposures, 
particularly metals, caffeine, and the role of the gut-brain axis in PD development. The 
strengths of the approaches applied in this thesis are 1) the prospective study design 
with blood samples obtained prior to PD diagnosis, 2) exposure assessment of blood-
based markers, and 3) the application of metabolomics techniques, primarily via high-
resolution mass spectrometry (HRMS), for measuring small molecular metabolites. 

In this thesis, most chapters (Chapters 3, 5, 6 and 7) are based on a European 
prospective cohort, EPIC4PD, spanning >20 years of follow-up and identifying >700 
incident PD cases. Blood samples, detailed dietary intake, and lifestyle information 
were collected from participants at recruitment. Within the EPIC4PD cohort, a nested 
case-control study was conducted, matching incident PD cases with controls based on 
age and sex. Erythrocyte and plasma samples, collected on average eight years prior to 
disease diagnosis for PD cases, were sourced from the EPIC4PD biobank for internal 
exposure assessment. The number of samples utilized in the study was contingent upon 
availability (362 case-control pairs for erythrocytes and 351 pairs for plasma). 
Furthermore, this thesis made use of an occupational population highly exposed to 
dioxin(-like) compounds and HRMS to establish an analytical pipeline of a chemical-
wide approach (Chapter 4). 

Impact of metal exposures on PD Risk 

In Chapter 2, a systematic review was conducted, including 83 case-control studies and 
five cohort studies. Most of these studies exhibited limitations in their study design, 
primarily focusing on prevalent PD cases post-diagnosis, thereby potentially introducing 
reverse causality. Despite indications of pooled effects from meta-analyses for certain 
metal species, such as copper, iron, and zinc, significant heterogeneity was observed 
across studies. In Chapter 3 we aimed to address these limitations by employing an 

254



improved study design and by analyzing pre-diagnostic erythrocyte samples to 
investigate the relationship between erythrocyte metal levels and PD risk. The 
measurements involved eleven metal species, but the majority showed no significant 
association with PD risk. Notably, an inverse association was detected between lead 
levels and PD risk only among current smokers. However, this finding is likely 
confounded by smoking, a recognized inverse risk factor for PD, as cigarette smoke 
contributes to lead exposure among smokers. Despite these efforts, Chapters 2 and 3 
did not yield definitive conclusions regarding the roles of metal exposures in PD risk. 

Establishment of a chemical-wide framework and investigating caffeine effect in PD 

In Chapter 4 we established a comprehensive framework to explore the health impacts 
of a specific chemical group. The study subjects comprised a unique population with a 
history of exposure to dioxin(-like) compounds. Targeted gas chromatography (GC)-
HRMS was employed to quantify the 29 currently recognized dioxin(-like) compounds 
in plasma. Moreover, untargeted GC-HRMS was applied to identify all potential 
chlorinated chemicals. Through correlating these compounds to 29 targeted 
compounds, 152 new dioxin(-like) related compounds were identified. Incorporating 
dioxin(-like) related compounds in a metabolome-wide association study provided 
richer insights into the biological responses associated with such exposures. This 
chemical-wide approach was applied in Chapter 5 to investigate the effect of caffeine 
on PD within the EPIC4PD cohort. Notably, a 40% lower risk of PD was observed among 
the highest consumers of coffee within the EPIC4PD cohort. Untargeted HRMS 
characterized caffeine and 14 other metabolites in the caffeine pathway in the EPIC4PD 
nested case-control study. Caffeine and its primary metabolites, paraxanthine and 
theophylline, exhibited inverse associations with PD risk. These findings reinforce the 
long-implicated protective role of caffeine in PD. Chapters 4 and 5 underscore the utility 
of untargeted metabolomics in detecting a broad spectrum of exposure markers, 
encompassing those that are less studied or currently unknown, thereby significantly 
aiding in the assessment of health impacts of environmental chemicals. 

Exploration of the gut-brain axis in PD development 

In Chapters 6 and 7 we investigated the relationship between the gut-brain axis in PD 
by blood-based microbiota-relevant markers. Lipopolysaccharide (LPS) is the outer 
membrane component of Gram-negative bacteria and a potent activator of innate 
immune response. LPS-binding protein (LBP) serves as a reactant of LPS in the blood 
and is utilized as a marker of LPS. In Chapter 6, elevated LBP levels were associated with 
an increased risk of PD in the nested case-control study. This positive association was 
notably more pronounced among women and overweight/obese individuals. These 
findings demonstrate the involvement of LPS-mediated inflammation in the gut-brain 
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crosstalk in PD. Chapter 7 focuses on the identification of microbial metabolites in 
plasma, utilizing the aforementioned untargeted HRMS data in Chapter 5. Out of the 
167 microbial metabolites identified, 13 were associated with PD risk under the criteria 
of a 0.05 p-value. These metabolites include various amino acids, bile acid, indoles, and 
hydroxy acid. Furthermore, through an analysis including the entire metabolome and 
subsequent pathway enrichment, three microbiota-relevant pathways—i) valine, 
leucine and isoleucine degradation, ii) butanoate metabolism, and iii) propanoate 
metabolism—were associated with PD risk. Importantly, personal traits and lifestyles 
might contribute to the variability in the involvement of the gut-brain axis in PD, with 
observations indicating more PD-associated pathways for men, smokers, and 
overweight/obese individuals. 

In Chapter 8 we discuss the broader implications of the thesis findings, contextualizing 
the application of metabolomics in measuring the internal exposome, understanding 
the role of environmental factors in PD etiology, and addressing methodological 
considerations. The complex relationship between environmental factors and PD risk 
remains a paramount area of research. Metabolomics emerges as a promising tool due 
to its extensive coverage in measuring internal metabolite markers within health impact 
studies. Moving forward, the next step involves expanding the spectrum of 
environmental chemicals to facilitate an exposome-wide association study. 
Furthermore, integrating the metabolome with other omics platforms holds great 
promise in discovering novel PD biomarkers. This integration is poised to illuminate 
avenues for disease prevention, early detection, and treatment strategies. 
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Samenvatting 

De ziekte van Parkinson is de op één na meest voorkomende neurodegeneratieve ziekte 
na de ziekte van Alzheimer. Invaliditeit en sterfte als gevolg van Parkinson nemen 
wereldwijd snel toe. De symptomen van Parkinson verslechteren in de loop van de tijd 
en er is geen genezing voor de ziekte vanwege onvolledig begrip van de etiologie en 
mechanismen. Een combinatie van genetische factoren en omgevingsfactoren kan 
leiden tot Parkinson, waarbij genetische factoren slechts tot 10% van de 
Parkinsongevallen verklaren. Een groeiend aantal onderzoeken suggereert associaties 
tussen Parkinson en verschillende omgevingsfactoren, waaronder pesticiden, roken, 
koffieconsumptie en metalen. Het identificeren van specifieke causale factoren is 
echter uitdagend gebleken, voornamelijk vanwege het gebrek aan prospectieve studies 
en het ontbreken van objectieve markers van blootstelling. 

Dit proefschrift beoogt de etiologische rol van blootstelling aan verschillende 
omgevingsfactoren, met name metalen, cafeïne, en de zogenaamde “darm-hersen-as”, 
te onderzoeken bij de ontwikkeling van Parkinson. De kracht van dit proefschrift ligt in 
1) het prospectieve studieontwerp waarin bloedmonsters zijn verkregen vóór de
Parkinsondiagnose, 2) de beoordeling van markers in het bloed en 3) de toepassing van
metabolomics-technieken, voornamelijk via hoge resolutie massaspectrometrie
(HRMS), voor het meten van kleine moleculaire metabolieten.

In dit proefschrift zijn de meeste hoofdstukken (Hoofdstuk 3, 5, 6 en 7) gebaseerd op 
een Europese prospectieve cohortstudie, EPIC4PD, met meer dan 20 jaar follow-up en 
meer dan 700 mensen met incidente Parkinson. Bloedmonsters en gedetailleerde 
informatie over voedingsinname en levensstijl werden verzameld bij de werving van 
deelnemers. Binnen het EPIC4PD-cohort werd een geneste patiënt-controle studie 
uitgevoerd, waarbij mensen met incidente Parkinson werden gekoppeld met controles 
op basis van leeftijd en geslacht. Erytrocyten- en plasmamonsters, die gemiddeld acht 
jaar vóór de diagnose zijn verzameld, werden verkregen uit de EPIC4PD-biobank voor 
interne blootstellingsevaluatie. Het aantal monsters dat in de studie werd gebruikt, was 
afhankelijk van de beschikbaarheid (362 patiënt-controle paren voor erytrocyten en 
351 paren voor plasma). Ook wordt in dit proefschrift gebruik gemaakt van een studie 
van een hoog blootgestelde beroepspopulatie aan dioxine(-achtige) verbindingen en 
HRMS om een  analytische pijplijn op te zetten voor brede chemische screening 
(Hoofdstuk 4). 

A 

257



Het effect van metaalblootstellingen op het risico op Parkinson 

In Hoofdstuk 2 werd een systematische review uitgevoerd van 83 patiënt-controle 
studies en vijf cohortstudies. De meerderheid van deze studies vertoonde beperkingen 
in hun onderzoeksdesign, waarbij ze zich vooral richtten op mensen met Parkinson na 
de diagnose, waardoor er mogelijk sprake is van omgekeerde causaliteit. Ondanks 
aanwijzingen van gepoolde effecten uit meta-analyses voor bepaalde metaalsoorten, 
zoals koper, ijzer en zink, werd significante heterogeniteit waargenomen tussen studies. 
In Hoofdstuk 3 beoogden we deze beperkingen aan te pakken door een verbeterd 
studiedesign te gebruiken en pre-diagnostische erytrocytenmonsters te analyseren om 
de relatie tussen erytrocytenmetaalniveaus en het risico op Parkinson te onderzoeken. 
De metingen omvatten elf metaalsoorten, maar de meerderheid vertoonde geen 
significante associatie met het Parkinsonrisico. Opvallend genoeg werd alleen bij 
huidige rokers een omgekeerde associatie waargenomen tussen loodniveaus en het 
risico op Parkinson. Deze bevinding is echter waarschijnlijk vertekend door roken, een 
erkende beschermende factor voor Parkinson, aangezien sigarettenrook bijdraagt aan 
de blootstelling aan lood bij rokers. Ondanks deze inspanningen hebben Hoofdstuk 2 
en 3 geen definitieve conclusies opgeleverd over de rol van metaalblootstellingen in 
het risico op Parkinson. 

Opzet van een brede chemische screening raamwerk en onderzoek naar het effect 
van cafeïne op Parkinson 

Hoofdstuk 4 richt zich op het opzetten van een uitgebreid raamwerk om de 
gezondheidseffecten van een specifieke chemische groep te onderzoeken. De 
studiepopulatie bestond uit een unieke populatie die in het verleden is blootgesteld 
aan dioxine(-achtige) stoffen. Gerichte gaschromatografie (GC)-HRMS werd gebruikt 
om de 29 momenteel erkende dioxine(-achtige) verbindingen in het plasma te 
kwantificeren. Bovendien werd ongerichte GC-HRMS toegepast om alle mogelijke 
gechloreerde chemicaliën te identificeren. Door deze te correleren met de 29 bekende 
verbindingen, werden 152 nieuwe dioxine(-achtige) gerelateerde verbindingen 
geïdentificeerd. Het opnemen van dioxine(-achtige) gerelateerde verbindingen in een 
metaboloom-brede-associatiestudie leverde meer inzicht op in de biologische reacties 
die gepaard gaan met dergelijke blootstellingen. Deze brede chemische screening 
benadering werd toegepast in Hoofdstuk 5 om het effect van cafeïne op Parkinson 
binnen het EPIC4PD-cohort te onderzoeken. Opvallend genoeg werd een 40% lager 
risico op Parkinson waargenomen bij de grootste koffiedrinkers binnen het EPIC4PD-
cohort. Ongerichte HRMS karakteriseerde cafeïne en 14 andere metabolieten in de 
cafeïne-route in de geneste EPIC4PD patiënt-controle studie. Cafeïne en zijn primaire 
metabolieten, paraxanthine en theofylline, verlaagde het risico op Parkinson. Deze 
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bevindingen versterken de al lang veronderstelde beschermende rol van cafeïne bij 
Parkinson. Hoofdstuk 4 en 5 benadrukken het nut van ongerichte metabolomics bij het 
detecteren van een breed spectrum van blootstellingsmarkers, waaronder markers die 
minder bestudeerd of momenteel onbekend zijn, en draagt hiermee aanzienlijk bij aan 
de beoordeling van de gezondheidseffecten van chemicaliën in de omgeving. 

Verkenning van de darm-hersen-as in de ontwikkeling van Parkinson 

In Hoofdstuk 6 en 7 onderzochten we de relatie tussen de darm-hersen-as in Parkinson 
aan de hand van microbiota-gerelateerde bloedmarkers. Lipopolysaccharide (LPS) is het 
buitenmembraancomponent van Gram-negatieve bacteriën en een sterke activator van 
het aangeboren immuunrespons. Lipopolysaccharide-bindend (LBP) eiwit is een eiwit 
in de acute fase met het vermogen om bacterieel LPS (of endotoxine) te binden en door 
te geven. LBP kan gebruikt worden als een marker van LPS. In Hoofdstuk 6 bleken 
verhoogde LBP-niveaus geassocieerd te zijn met een verhoogd risico op Parkinson in de 
geneste patiënt-controle studie. Deze positieve associatie was met name meer 
uitgesproken bij vrouwen en personen met overgewicht/obesitas. Deze bevindingen 
tonen de betrokkenheid van LPS-gemedieerde inflammatie in de darmen in Parkinson 
aan. Hoofdstuk 7 richt zich op de identificatie van microbiële metabolieten in plasma, 
waarbij gebruik wordt gemaakt van de eerdergenoemde ongerichte HRMS-gegevens 
uit Hoofdstuk 5. Van de 167 geïdentificeerde microbiële metabolieten waren er 13 
geassocieerd met het risico op Parkinson onder de criteria van een p-waarde van 0,05. 
Deze metabolieten omvatten verschillende aminozuren, galzuur, indolen en 
hydroxyzuur. Bovendien werden, door een analyse van het hele metaboloom en 
daaropvolgende routes, drie microbieel relevante routes — i) valine, leucine en 
isoleucinedegradatie, ii) butanoaatmetabolisme, en iii) propanoaatmetabolisme — 
geassocieerd met het Parkinsonrisico. Belangrijk is dat persoonlijke kenmerken en 
levensstijl bijdragen aan de variabiliteit in de betrokkenheid van de darm-hersen-as in 
Parkinson, met observaties die wijzen op meer Parkinson-geassocieerde biologische 
routes voor mannen, rokers en personen met overgewicht/obesitas. 

In Hoofdstuk 8 bespreken we de bredere implicaties van de bevindingen van het 
proefschrift, waarbij de toepassing van metabolomics bij het meten van het interne 
exposoom, het begrijpen van de rol van omgevingsfactoren in de etiologie van 
Parkinson en het aanpakken van methodologische overwegingen in context wordt 
geplaatst. De complexe relatie tussen omgevingsfactoren en het risico op Parkinson 
blijft een belangrijk onderzoeksgebied. Metabolomics komt naar voren als een 
veelbelovend instrument vanwege de uitgebreide dekking bij het meten van interne 
metabole markers in onderzoeken naar gezondheidseffecten. Vooruitkijkend is de 
volgende stap het uitbreiden van het aantal exogene chemische verbindingen in bloed 
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om een exposoombrede associatiestudie mogelijk te maken. Bovendien is de integratie 
van het metaboloom met andere omics-platforms veelbelovend voor de ontdekking 
van nieuwe biomerkers voor Parkinson. Deze integratie biedt mogelijkheden voor 
ziektepreventie, vroegtijdige detectie en behandelingsstrategieën. 
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